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In this paper, a very tight approximation is derived for the signal-to-interference ratio

of a multicell massive multiple-input multiple-output system with a finite number of

base station (BS) antennas. The approximation is derived considering that each term

in the SIR is log-normal distributed. To this end, the first and second moments of

the logarithm of each variable are used. In addition, an exact expression is derived

for the cumulative distribution function for the net capacity. In order to corroborate

our derivations, simulations using the Monte Carlo method were carried out, and it

was observed that the proposed analytical results tightly match the numerical simu-

lations. The asymptotic result is also obtained for the case in which the number of

BS antennas tends to infinity (M →∞), considering both uniform and nonuniform

spatial user distributions.
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1 INTRODUCTION

Massive multiple-input and multiple-output (MIMO) emerges as a promising technology to meet the stringent requirements of future

fifth-generation systems. This technology represents a drastic change in the infrastructure of cellular networks, since its communication sys-

tem is composed of base stations (BS) with hundreds of antennas and can simultaneously serve dozens of user terminals, each having a

single antenna. The BS is responsible for sending independent data streams to multiple user terminals in the same time-frequency resource.1

Furthermore, each user terminal is ideally assigned an orthogonal pilot sequence in the uplink channel during the training stage. However,

the maximum number of such sequences is limited by the duration of the coherence interval. So, the available amount of orthogonal pilot

sequences, in a multicell system, is finite and can result in pilot contamination in two different situations.

In the first, when the number of pilot sequences is superior or equal to the number of user terminals, orthogonality is assumed between pilot

sequences of the same cell. However, the frequency is reused and employed in a regular pattern to ensure that the intercell interference remains

below a harmful level. On the other hand, when the number of pilot sequences is inferior to the number of user terminals, pilot sequences are

reused within the same cell to reduce the training overhead.2 In this way, nonorthogonal pilot sequences need to be employed, which is the

major source of pilot contamination, known as intracell interference.1

The influence of all the interference is normally modeled in the signal-to-interference ratio (SIR) parameter. As our main contribution, this

work presents an accurate log-normal approximation to the cumulative distribution function (CDF) of SIR in two scenarios: when the number

of antennas at BS is finite and when this number is large enough and can be considered infinite. Moreover, an approximation for the capacity

has also been presented, in which the slow fading is a combination of path loss and log-normal shadowing. Practical case studies are provided

to illustrate the very good match between simulation results and our analytical approximation. The validity of our approximation is extended

not only to uniform user distribution but also to users distributed nonuniformly. To the best of our knowledge, no similar results have been

found in the literature.

The remaining of this paper is organized as follows: section 2 presents the system model, while section 3 proposes closed-form expressions

for SIR and system capacity. Section 4 shows some examples of a common scheme in the literature, and final remarks are given in section 5.
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FIGURE 1 System model with hexagonal cells and the distance djkl between k-user of l-cell and the BS in j-cell

2 SYSTEM MODEL

Based on Marzetta’s work,3 our model, as shown in Figure 1, consists of a hexagonal cellular geometry. The BSs, located at the center of

the cell, hold a determined number of antennas, M. For operation simplicity, the orthogonal frequency division multiplexing (OFDM)/time

division duplex (TDD) is used. In this way, it is assumed that the channel is flat and exhibits a reciprocity behavior, reducing the overhead

required for the acquisition of channel state information (CSI) by means of uplink training signals. The OFDM symbol interval is denoted by

Ts, the subcarrier spacing by Δf , and the useful symbol duration by Tu = 1/Δf .

The scheme consists of a tessellation of noncooperative hexagonal cells. The N BSs are deterministically distributed in a circular region.

It is assumed that the BSs employ frequency reuse Δ and that the BSs in different bands do not interfere with each other. There are, in total,

K user terminals within each of the L active cells reusing the same frequency bands and pilot sequences. The system performance is studied

under the identically and independently distributed (iid) fading assumption, including log-normal shadow fading, and geometric attenuation.

The user terminals are randomly distributed in a hexagonal cell, whose radius is rc, except in a disk of radius 100 m centered at the BS.

Interfering nodes, which affect a particular cell, are separated into tiers that reuse the same frequency band and are within eight cell-diameters

of that cell, as adopted by Marzetta.3 In addition, perfect synchronism is assumed between the signals received from different cells, which is

the worst case in terms of pilot contamination.

As in Filho et al4, for each subcarrier the vector between the j-th BS and the k-th user at the l-th cell is denoted by g𝑗𝑘𝑙 =
√
𝛽𝑗𝑘𝑙g

𝑗𝑘𝑙
, in

which 𝛽 jkl refers to the long-term fading coefficient, comprising path loss and log-normal shadowing. g
𝑗𝑘𝑙

is the short-term fading channel

vector that follows a normal distribution with zero mean and unitary variance. In its turn, the orthogonal pilot sequences set is represented

by Ψ= [Ψ1Ψ2…Ψ𝜏 ] ∈ C𝜏 × 𝜏 , in which 𝜏 is the number of available sequences, ΨHΨ= I𝜏 , and H is Hermitian operator. Considering Ψk the

assigned sequence for the k-th user, the received signal at the j-th user BS during the training stage is

Yp
j =

√
𝜌p

L∑
l=1

𝜏∑
k=1

g𝑗𝑘𝑙ΨH
k + Np

j , (1)

in which 𝜌p is the uplink pilot transmit power, and Np
j ∈ CM×𝜏 is the additive white Gaussian noise (AWGN) matrix with iid elements

following a complex normal distribution with zero mean and variance 𝜎2
n . The j-th user BS estimates the k-th user CSI by correlating Yp

j with

Ψk. By acquiring such estimates, the BS is able to perform linear detection in uplink employing the maximal ratio combining (MRC) scheme

in frequency domain. So, the j-th user BS receives the following signal

yj =
√
𝜌u

L∑
l=1

K∑
k=1

g𝑗𝑘𝑙x𝑘𝑙 + nj, (2)

in which 𝜌u is the uplink data transmit power, xkl is the data symbol from the k-th user of the l-th user cell, and nj is the M × 1 AWGN sample

vector.

3 PROPOSED APPROXIMATION

Next, this work presents the assumptions and steps to derive our proposed approximation for the distribution of SIR, considering a finite and

infinite number of antennas M. Without loss of generality, only the uplink SIR is considered, but the downlink case is very similar.

3.1 Finite number of BS antennas
From the estimates available at the j-th user BS, and the received signal during the uplink data transmission stage (Equation 2), the uplink

SIR, employing MRC, can be given by,4, Eq. 14

𝛾u
𝑗𝑘 =

𝜁2
𝑗𝑘𝑗

L∑
l=1,l≠j

𝜁2
𝑗𝑘𝑙

+
𝛼2
𝑗𝑘

M

( L∑
l=1

K∑
i=1

𝜁𝑗𝑖𝑙 +
𝜎2

n
𝛾𝜌u

) , (3)

in which the index jkl refers to a quantity related to the kth terminal in the lth cell and the BS in the jth cell. 𝜁𝑗𝑘𝑗 =
𝛽𝑗𝑘𝑗

d𝜀
𝑗𝑘𝑗

, in which the variable

𝛽 jkl represents the shadow fading coefficient, modeled as a log-normal random variable with mean 𝜇 and variance 𝜎2 in the logarithmic scale,

and djkl is the distance between the user terminal and the correspondent BS. The variable 𝜀 is the decay exponent, typically 𝜀≥ 2. The AWGN

follows a complex normal distribution with zero mean and variance 𝜎2
n , 𝛼2

𝑗𝑘
=

∑L
l=1 𝜁𝑗𝑘𝑙 +

𝜎2
n
𝜌p , and 𝜌u = 1 as it is assumed that all users have

unit transmit power. In addition, 𝛾 accounts for the transmit power loss due to cyclic prefix (CP).
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FIGURE 2 Simulated, approximate, and exact cumulative distribution function for Θ (r = 100 and R= 2000)
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FIGURE 3 Simulated, approximate, and exact probability density function for Θ (r = 100 and R= 2000)

Given a certain number of users inside the cell, it is assumed that all of them are uniformly distributed from the inner radius r to the outer

radius R for a given tier. As the circumference of a circle is proportional to its radius, the probability density function (PDF) fd𝑗𝑘𝑙 (d) is also

proportional to its radius, that is, fd𝑗𝑘𝑙 (d) = 𝑎𝑑 for some constant a. The condition ∫ R
r fd𝑗𝑘𝑙 (d) = 1 implies a = 2

R2−r2
. Therefore

fd𝑗𝑘𝑙 (d) =

{
2d

R2−r2
, if r ≤ d ≤ R

0, otherwise.
(4)

The computation of the exact distribution of Equation 3 is very intricate, and possibly, the final solution would be useless due to its

complexity. In order to corroborate this assertion, the exact distribution of the numerator of Equation 3, defined as Θ = 𝛽2
𝑗𝑘𝑗

d−2𝜖
𝑗𝑘𝑗

, is derived.

As mentioned before, the random variable 𝛽 jkj is log-normally distributed, and the distribution of djkj is given by Equation 4. Finally, the PDF

of Θ can be computed as the ratio of two random variables5 and is given in an exact manner as in Equation 5, where erf(⋅) is the error function.

Unfortunately, this PDF does not have a closed-form solution for its characteristic function; therefore, the computation of the PDF of the

sum, presented in the denominator, would not be possible. In order to circumvent this problem, a proposal is made to approximate Θ by a

log-normal distribution X. Through the moment matching method, the mean 𝜇x and the variance 𝜎2
x of X are estimated using the equalities

E[log X]=E[log Θ] and also V[log X]=V[log Θ], where E[⋅] and V[⋅] are the expectation and variance operator, respectively. Therefore, the

following can be written

fΘ(𝜃) =
𝜃−

𝜖+1
𝜖 e

2(𝜎2+𝜇𝜖)
𝜖2

[
erf

(
− 1

2
𝜖(2𝜖 log(R)+log(𝜃))+2𝜎2+𝜇𝜖√

2𝜎𝜖

)
− erf

(
− 1

2
𝜖(2𝜖 log(r)+log(𝜃))+2𝜎2+𝜇𝜖√

2𝜎𝜖

)]
2𝜖(r2 − R2)

(5)

𝜇x = E[log(Θ)] = 2E[log(𝛽)] − 2𝜖E[log(d𝑗𝑘𝑙)] =

= 2𝜇 −
𝜖{r2[1 − 2 log(r)] + R2[1 − 2 log(R)]}

r2 − R2
, (6)

where E[log(djkl)] is evaluated with respect to the distribution of djkl, as defined in 4. In the same way, the variance 𝜎2
x can be computed as:

𝜎2
x = V[log(Θ)] = 4V[log(𝛽)] + 4𝜖2V[log(d𝑗𝑘𝑙)] =

= 4𝜎2 +
𝜖2

{
r4 − r2R2

[
2 + 4log2

(
R
r

)]
+ R4

}
(r2 − R2)2

. (7)

Then, as supposed, the PDF of X is the very well-known log-normal distribution given as5

fX(x) =
e
− (log(x)−𝜇x)2

2𝜎2
x√

2𝜋x𝜎x

. (8)

The accuracy of the proposed approximation is illustrated in Figures 2 and 3. These figures show the approximate, simulated, and exact

CDF and PDF of the random variable Θ, respectively. As can be noted, our approximation is excellent, and this is the key assumption for

approximating the distribution of Equation 3 as a log-normal distribution.

It is well known, in the literature, that the ratio of two log-normal variables is also a log-normal variable. In this sense, if a log-normal

distribution could approximate the distribution of the denominator of Equation 3, then the entire ratio would also be log-normally distributed.
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To this end, every term inside the sum of the denominator is approximated as a log-normal distribution (similar to the X variable), and then,

based on the result of Filho et al,6 the sum of log-normal variables is approximated as a log-normal variable. This can be performed by

matching the first two moments of the inverse exact sum with those of the inverse log-normal approximation. In this way, the parameters of

the resulting log-normal distribution are determined.

Let’s call the first term in the denominator of Equation 3 as S. This random variable can be approximated as the sum of approximate iid

log-normal variables, S =
∑

l≠j𝛽
2
𝑗𝑘𝑙

d−2𝜖
𝑗𝑘𝑙

. We want to approximate the sum of log-normal variates in S by a single log-normal variable, denoted

here as Y . To this end, the moments are matched in the following way: E[Y−1]=E[S−1], and also, E[Y−2]=E[S−2]. As E[Y−1] = e−(𝜇y−𝜎2
y ∕2)

and E[Y−2] = e−2(𝜇y−2𝜎2
y ∕2)

, with some mathematical manipulations, it is possible to write:

𝜇y = 0.5 ln E[S−2] − 2 ln E[S−1]
𝜎2

y = ln E[S−2] − 2 ln E[S−1], (9)

where E[Sn] is the n-th moment of S, while 𝜇y and 𝜎y are the mean and standard deviation of the approximated log-normal random variable

Y , respectively.

Following the same reasoning, the second term in the denominator of Equation 3 presents the terms V =
𝛼2
𝑗𝑘

M
and W =

L∑
l=1

K∑
k=1

𝛽𝑗𝑘𝑙

d𝜖
𝑗𝑘𝑙

+ 𝜎2
n .

Both of them are approximated as log-normal variables, and as the product of log-normal distributions is also log-normally distributed, the

random variable Z =V W can be approximated as a log-normal variable. So, 𝜇z = 𝜇v + 𝜇w and 𝜎2
z = 𝜎2

v + 𝜎2
w, where 𝜇v, 𝜇w, 𝜎2

v , and 𝜎2
w are

means and variances of the variables V and W, respectively. Following the same rationale, the sum Y +Z can be approximated by another

log-normal variable, whose parameters are 𝜇𝑦𝑧 and 𝜎2
𝑦𝑧.

As the terms of the numerator and denominator are uncorrelated, the distribution of the ratio of log-normals is also log-normally distributed,

so the resultant parameters of the distribution of the SIR are 𝜇𝑥𝑦𝑧 = 𝜇x −𝜇𝑦𝑧 and 𝜎2
𝑥𝑦𝑧 = 𝜎2

x +𝜎2
𝑦𝑧. Finally, the CDF of 𝛾u

𝑗𝑘
, given in Equation 3,

can be written as

P[𝛾u
𝑗𝑘 ≤ 𝜈] = 1

2
erfc

(
log 𝜈 − 𝜇𝑥𝑦𝑧

𝜎2
𝑥𝑦𝑧

√
2

)
, (10)

where erfc(⋅) is the complementary error function.

According to Marzetta,3 the net capacity per terminal for uplink, Cu
𝑗𝑘

, in bits/sec/terminal for uplink is given by

Cu
𝑗𝑘 =

B
Δ

(Tslot − Tpilot

Tslot

)(
Tu

Ts

)
log2(1 + 𝛾u

𝑗𝑘), (11)

where B is the total bandwidth in Hz, Tslot is the slot length, Tpilot is the time to transmit pilot sequences, Tu is the useful symbol duration, and

Ts is the OFDM symbol interval, where the time is measured in seconds. Then, defining a constant U = B(Tslot−Tpilot)Tu
ΔTslotTs

, it is possible to obtain

a closed-form expression for the CDF of Cu
𝑗𝑘

as shown in Equation 12.

P[Cu
𝑗𝑘 ≤ c] =

|𝜇𝑥𝑦𝑧 − log(2c∕U − 1)|erf

[ |𝜇𝑥𝑦𝑧−log(2c∕U−1)|√
2𝜎𝑥𝑦𝑧

] |−𝜇𝑥𝑦𝑧 + log(2c∕U − 1)|
2|𝜇𝑥𝑦𝑧 − log(2c∕U − 1)| (12)

3.2 Infinite number of BS antennas
As shown in Madhusudhanan et al,7 as the number of BS antennas is very large (M →∞), the effects of uncorrelated noise and fast fading

vanish completely, and there is no interference between data transmissions inside a cell. So, the simplest linear precoders and detectors are

proved to be optimal. However, as every terminal is assigned an orthogonal time-frequency pilot sequence reused in other cells according to

Δ, the only source of pilot contamination is the intercell interference. The asymptotic uplink SIR can be expressed as

𝛾u
𝑗𝑘 =

𝜁2
𝑗𝑘𝑗∑

l=1,l≠j
𝜁2
𝑗𝑘𝑙

. (13)

Note that as Equation 13 is composed in the numerator by Θ and in the denominator by S, it can be approximated by X and Y , respectively, as

a ratio of two log-normal random variables whose mean and variance parameters are, respectively, given by 𝜇𝑥𝑦 = 𝜇x −𝜇y and 𝜎2
𝑥𝑦 = 𝜎2

x + 𝜎2
y .

Finally, when M →∞, the CDFs of 𝛾u
𝑗𝑘

and Cu
𝑗𝑘

can be obtained from Equations 10 and 12, respectively, assuming 𝜇𝑥𝑦𝑧 = 𝜇𝑥𝑦 and 𝜎2
𝑥𝑦𝑧 = 𝜎2

𝑥𝑦.

3.2.1 Nonuniform spatial distributions
In this section, an approximation for Equation 13 considering two types of nonuniform spatial distributions for terminal users is presented.

Center-intensive user distribution and edge-intensive user distribution, which are not only analytically simple but can model practical scenar-

ios. The center-intensive user distribution is particularly suitable for urban scenarios with populated buildings, while the edge-intensive user

distribution is used to model rural mountainous propagation scenarios.8

For center-intensive user distribution, the PDF of the distance can be expressed by

fd𝑗𝑘𝑙 (d) =
ac(R − d)2 + 2d

R2 − r2
bc, r ≤ d ≤ R (14)
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FIGURE 4 Cumulative distribution of SIR (dB) when M = 10 (gray curves) and M →∞ (black curves)

in which the scaling factor ac controls how strongly the users cluster towards the BS, and bc = 3(r+R)
ac(r2−2rR+R2)+3(r+R)

. In this case, 𝜇x and 𝜎x are

given, respectively, by Equations 15 and 16. The variable 𝜎x is a function of the parameter A.

𝜇x = (r − R) −7𝑟𝑅𝑎c + r𝜖(2𝑟𝑎c + 9) + 11R2ac + 9R)
3(r − R)[r2ac + r(3 − 2𝑅𝑎c) + R(𝑅𝑎c + 3)]

+ 6𝜇(r2ac − 2𝑟𝑅𝑎c + R2ac + 3r + 3R)
3(r − R)[r2ac + r(3 − 2𝑅𝑎c) + R(𝑅𝑎c + 3)]

+
6R2𝜖 log(R)(𝑅𝑎c + 3)

3(r − R)[r2ac + r(3 − 2𝑅𝑎c) + R(𝑅𝑎c + 3)]
+

6r𝜖 log(r)(acr2 − 3ac𝑟𝑅 + 3acR2 + 3r)
3(r − R)[r2ac + r(3 − 2𝑅𝑎c) + R(𝑅𝑎c + 3)]

(15)

𝜎x = −
√

A(r − R)2 − 36rR2𝜖2 log
(

r

R

){
(acR + 3)(−3acrR + r(acr + 3) + 3acR2) log

(
r

R

)
+ ac(r − R)[3acrR + R(9 − 5aR) + r]

}
A = 𝜖2{4a2

cr4 + 2acr
3(21 − 17acR) + 3r2[acR(59acR − 26) + 27] + 2rR[acR(123 − 116acR) + 81] + R2[acR(49acR + 366) + 81]}

+36𝜎2[acr
2 + r(3 − 2acR) + R(acR + 3)]2 (16)

On the other hand, for the edge-intensive user distribution, the PDF of the distance is given by

fd𝑗𝑘𝑙 (d) =
aed2 + 2d
R2 − r2

be, r ≤ d ≤ R (17)

in which ae controls how strongly the users cluster toward the cell edge and be = 3(r+R)
ae(r2+rR+R2)+3(r+R)

. In this case, 𝜇x and 𝜎x are given by Equation

18, and the variable 𝜎x is a function of the parameter B. From Equations 14 and 17, it can be noted that, for the special case ac = ae = 0, both

distributions reduce to the conventional uniform distribution.

𝜇x =
𝜖[r2(2aer + 9) − 6r2(aer + 3) log(r) − 2aeR

3 + 6R2(aeR + 3) log(R) − 9R2]
3aer3 − 3R2(aeR + 3) + 9r2

+ 2𝜇

𝜎x =
√

𝜖2B
9(aer3 − R2(aeR + 3) + 3r2)2

+ 4𝜎2

B = 4a2
er6 − 8a2

er3R3 + 4a2
eR6 + 42aer

5 − 42aer
3R2 − 42aer

2R3 − 36r2R2(aer + 3)(aeR + 3)log2(r)
−36r2R2(aer + 3)(aeR + 3)log2(R) + 36aer

2R2(r − R) log(R) + 36r2R2 log(r)[ae(R − r)
+2(aer + 3)(aeR + 3) log(R)] + 42aeR

5 + 81r4 − 162r2R2 + 81R4 (18)

4 SIMULATION RESULTS

For the comparison between the analytical and simulated results, it is assumed that the cellular area of interest is a tessellation filled by

hexagonal cells with a radius of rc = 1600 meters. The BSs are distributed deterministically in the center of each hexagon cell whose whole

radius is 100 meters.

The OFDM parameters are identical to long-term evolution (LTE): Ts = 500/7 μs, Δf = 15 kHz, Tu = 1/Δf ,
Tslot−Tpilot

Tslot
= 3∕7, and

B= 20 MHz. The shadow fading is modeled as a random variable, 𝛽 jkl, that follows a log-normal distribution with 𝜇= 0 and 𝜎 = 8 dB. The

frequency reuse factor varies as Δ= 3, 7, while the decay exponent is 𝜖 = 3.8. There is no power control, and the power of BSs and the user

terminals are unitary, in addition to 𝛾 .

Figure 4 shows the CDFs of SIR, in which the analytical result is represented by dashed black lines, while the solid ones refer to the

simulated data. The circles indicate the curves for Δ= 3, 7. As can be seen, our approximation perfectly matches the simulated results for all

the range of SIR.

In order to investigate the influence of the number of antennas M, Figure 4 also shows the CDF for 𝜎n = 0, K = 5, and M = 10 in gray color

and for M →∞ in black color. Using Δ= 7, for an arbitrary value of 0.6 for the CDF, a gap of 6 dB between the SIRs can be observed. The

CDF was also calculated for M = 106, and in this case, the gap between the finite M and the asymptotic case, although small, still does not

vanish. So, it has been observed that the convergence between Equations 3 and 13 is slow. In this sense, our derived expression can be used to

assess how many antennas are necessary to achieve a target performance. In addition, as expected, as Δ increases, the number of interferers

decreases, and the SIR becomes larger, so the curve of Δ= 7 is positioned to the right in this plot, while the curve of Δ= 3 is on the left side.



6 of 6 FACINA AND FRAIDENRAICH

FIGURE 5 Cumulative distribution function of the net uplink capacity per terminal (Mbps)

FIGURE 6 Cumulative distribution function of SIR (dB), considering center- and edge-intensive user distributions

Figure 5 shows the analytical (Equation 12) and simulated CDFs of the net uplink capacity per terminal represented by dashed and solid

lines, respectively. It is observed that, for larger Δ, the capacity increases when the asymptotic SIR is low. In this region, the gains due to SIR

compensate the loss by the frequency reuse, associated with the reduction in the bandwidth used by each cell. On the other side, when the

SIR is high, a higher frequency reuse factor causes a net decrease in the system performance. As before, in all the cases, both simulated and

analytical curves are almost indistinguishable.

Finally, considering infinite M and nonuniform user distribution, Figure 6 shows the CDFs of SIR, in which the analytical result is repre-

sented by dashed lines, while the solid ones refer to the simulated data. The circles indicate the curves for Δ= 3, 7. The black and gray colors

refer to the curves obtained from the center and edge user distributions, respectively. As it can be seen, our approximation again presents an

excellent agreement.

5 CONCLUSIONS

In this work, the performance of a massive MIMO system is evaluated, modeling the shadowing as a log-normal distribution. We have

presented an approximated closed-form expression for the PDF and CDF of the SIR for finite and infinite number of antennas. Using the

proposed approximation, the CDF for the net capacity is also derived, which allows the analysis of the system performance. All approximations

are based on the moment matching method. The results have been validated by numerical simulations and have shown an excellent agreement,

considering both uniform and nonuniform user distributions.
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