

UNIVERSIDADE ESTADUAL DE CAMPINAS

Faculdade de Engenharia Química

JOÃO PEDRO MEIRELES CARDOSO

DESENVOLVIMENTO DE UMA FERRAMENTA COMPUTACIONAL PARA O ENSINO DE DESTILAÇÃO MULTICOMPONENTE

CAMPINAS

2020

JOÃO PEDRO MEIRELES CARDOSO

DESENVOLVIMENTO DE UMA FERRAMENTA COMPUTACIONAL PARA O ENSINO DE DESTILAÇÃO MULTICOMPONENTE

Dissertação apresentada à Faculdade de Engenharia Química da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Mestre em Engenharia Química

Orientadora: Prof^a. Dr^a. Katia Tannous

Este trabalho corresponde à versão final da dissertação defendida pelo aluno João Pedro Meireles Cardoso sob orientação da Prof^a. Dr^a. Katia Tannous.

CAMPINAS

2020

Ficha catalográfica Universidade Estadual de Campinas Biblioteca da Área de Engenharia e Arquitetura Rose Meire da Silva - CRB 8/5974

Cardoso, João Pedro Meireles, 1991 C179d Desenvolvimento de uma ferramenta computacional para o ensino de destilação multicomponente / João Pedro Meireles Cardoso. – Campinas, SP : [s.n.], 2020.

Orientador: Katia Tannous. Dissertação (mestrado) – Universidade Estadual de Campinas, Faculdade de Engenharia Química.

1. Destilação. 2. Software - Desenvolvimento. 3. Engenharia química -Ensino. 4. Separação (Tecnologia). I. Tannous, Katia, 1962-. II. Universidade Estadual de Campinas. Faculdade de Engenharia Química. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Development of a computational tool for teaching multicomponent distillation Palavras-chave em inglês: Distillation Software - Development Chemical Engineering - Teaching Separation (Technology) Área de concentração: Engenharia Química Titulação: Mestre em Engenharia Química Banca examinadora: Katia Tannous [Orientador] Leonardo Vasconcelos Fregolente Jorge Eduardo da Silva Ourique Data de defesa: 30-11-2020 Programa de Pós-Graduação: Engenharia Química

Identificação e informações acadêmicas do(a) aluno(a) - ORCID do autor: https://orcid.org/ 0000-0002-8310-162

- Currículo Lattes do autor: http://lattes.cnpq.br/8799326289742046

Folha de Aprovação da Dissertação de Mestrado defendida por João Pedro Meireles Cardoso, em 30 de novembro de 2020 pela banca examinadora constituída pelos doutores:

> Profa. Dra. Katia Tannous (Orientadora) FEQ/UNICAMP

Prof. Dr. Leonado Vasconcelos Fregolente FEQ/UNICAMP

Prof. Dr. Jorge Eduardo da Silva Ourique TEQ/UFF

A Ata da defesa com as respectivas assinaturas dos membros encontra-se no SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Agradecimentos

Agradeço, primeiramente, a meus pais e meu irmão, por me apoiarem, me compreenderem nos momentos que estive ausente, e me darem a força necessária do início ao fim desse trabalho.

Faço um agradecimento especial aos meus amigos e pessoas que estiveram próximas a mim durante a jornada. Aos amigos feitos em Campinas, que desde o início do trabalho discutiamos sobre os nossos trabalhos, e sempre me faziam enxergar que os problemas tinham solução. E aos anteriores e que vieram depois, que me deram o apoio para iniciar essa jornada, e estiveram juntos nos momentos de tristeza e felicidades.

Agradeço à Professora Katia, por estar sempre à disposição, e me orientar a enfrentar os problemas que eu achava que não tinham solução.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001, e do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) – Código de Financiamento 167870/2018-1

RESUMO

Desde a criação do curso de engenharia química, houve um grande salto tecnológico. Softwares para simulação e projeto de equipamentos foram criados, porém alguns destes possuem um custo elevado, incompatíveis com orçamentos de empresas, universidades, profissionais autônomos e estudantes. Com isso, este trabalho objetiva o desenvolvimento de uma ferramenta computacional para o projeto e avaliação de colunas de destilação de misturas multicomponentes, considerando uma base de dados de 113 hidrocarbonetos em dois módulos operacionais diferentes, Shortcut e Rigoroso. Equações de estado cúbicas de Peng-Robinson e Soave-Redlich-Kwong foram introduzidas para a determinação dos parâmetros termodinâmicos (pressão de bolha e de orvalho, e volatilidade relativa). Para o módulo Shortcut, foi implementado o método de Fenske-Underwood-Gilliland, a fim de determinar a razão de refluxo mínimo, o número teórico de estágios, as vazões molares e temperaturas do destilado e do resíduo de fundo, e o estágio de alimentação da coluna. Já para o módulo Rigoroso, utilizouse o método Theta, que determina as vazões molares de líquido e vapor interestágios, a temperatura de cada estágio, a composição molar do destilado e do resíduo de fundo, e o fluxo de calor no condensador e refervedor. Os resultados podem ser exportados em arquivo PDF ou podem ser transferidos para uma nova planilha para tratamento dos dados. A metodologia de desenvolvimento do software foi o do "modelo V" em VBA usando Microsoft Excel[®] 2013. Os resultados foram comparados com o software Aspen Hysys[®]. Os testes termodinâmicos, do módulo Shortcut e do Rigoroso, obtiveram erros relativos médios menores que 5%. Esta ferramenta computacional foi testada em três diferentes cursos na Faculdade de Engenharia Química da Universidade Estadual de Campinas (FEQ-UNICAMP), mostrando que o software é intuitivo, fácil de achar as informações e de calcular os exercícios mais complexos. Sendo assim, este apresentou resultados significativos visto ser uma operação complexa, permitindo facilmente o projeto de uma coluna fracionadora, podendo ser usado por estudantes de engenharia química e profissionais de diferentes áreas para expandir seus conhecimentos.

Palavras-chave: Destilação; Software - Desenvolvimento; Engenharia química - Ensino; Separação (Tecnologia)

ABSTRACT

Since the beginning of the chemical engineering course, there has been a great technological leap. New software were created for simulation and equipment design, nevertheless some of them have a high cost, incompatible with budgets of companies, universities, freelancers, and student. Thus, this work aims to develop a computational tool for evaluation and distillation columns design of multicomponent mixtures, considering a database of 113 hydrocarbons in two different operational modules, Shortcut and Rigorous. Peng Robinson and Soave-Redlich-Kwong cubic equations of states were introduced to determine the thermodynamics parameters (bubble and dew pressure, and relative volatility). For the Shortcut module, the Fenske-Underwood-Gilliland method was implemented in order to determine the minimum reflux ratio, the theoretical number of stages, the molar flows and temperatures of the distillate and bottom residue, and the feeding stage of the column. For the Rigorous module, the Theta method was used, which determines the interstages molar flow rates of liquid and vapor, the temperature of each stage, the molar composition of the distillate and bottom residue, and the heat flow in the condenser and reboiler. The Results can be exported as a PDF file or can be transferred to a new spreadsheet for data processing. The software development methodology was the "V model" in VBA using Microsoft Excel[®] 2013. The results were compared with Aspen Hysys[®] software. Thermodynamic, Shortcut and Rigorous modules tests resulted in a mean relative errors of less than 5%. This computational tool was tested in three different courses in the School of Chemical Engineering at University of Campinas (FEQ-UNICAMP) showing that the software is intuitive, easy to find information and to calculate the most complex exercises. Therefore, it presented significant results since multicomponents distillation is a complex operation, allowing easily a fractionating column design, that can be used by chemical engineering students and professionals from different areas to expand their knowledge.

Keywords: Distillation; Software – Development; Chemical Engineering – Teaching; Separation (Technology)

NOMENCLATURA

А	Coeficiente de ajuste das equações de estado de PR e SRK [Eq. 1.20]	[-]
A _A	Coeficiente da equação de Antoine [Eq. 1.21]	[-]
A _{ij}	Fator de absorção do componente i no estágio j [Eq. 2.7 e 2.8]	[-]
ai	Coeficiente de ajuste das equações de estado de PR e SRK [Eq. 1.18 e	[-]
	1.19]	
am	Coeficiente de ajuste das equações de estado de PR e SRK [Tabela 1.1]	[-]
В	Coeficiente de ajuste das equações de estado de PR e SRK [Eq. 1.20]	[-]
B _A	Coeficiente da equação de Antoine [Eq. 1.21]	[-]
bi	Coeficiente de ajuste das equações de estado de PR e SRK [Eq. 1.18 e 1.19]	[-]
b_{m}	Coeficiente de ajuste das equações de estado de PR e SRK [Tabela 1.1]	[-]
CA	Coeficiente da equação de Antoine [Eq. 1.21]	[-]
E _{i,j}	Equações de equilíbrio de fases para o componente i no estágio j [Eq.	[-]
al		
f_i^L	Fugacidade do componente i puro na fase líquida [Eq. 1.11]	[bar]
f_i^{ν}	Fugacidade do componente i puro na fase vapor [Eq. 1.11]	[bar]
f_i^L	Fugacidade do componente i na mistura na fase líquida [Eq. 1.13]	[bar]
\hat{f}_i^V	Fugacidade do componente i na mistura na fase vapor [Eq. 1.14]	[bar]
$f_{w} \\$	Coeficiente de ajuste das equações de estado de PR e SRK [Tabela 1.1]	[-]
\mathbf{h}_{Fj}	Entalpia da corrente de alimentação oriunda do estágio j [Eq. 1.5]	[J]
H_{j}	Equação de balanço de energia no estágio j [Eq. 1.5]	[W]
h_{Lj}	Entalpia de líquido oriunda do estágio j [Eq. 1.5]	[J]
$h_{Vj} \\$	Entalpia de vapor oriunda do estágio j [Eq. 1.5]	[J]
$K_{i,j} \\$	Constante de equilíbrio de fases do componente i no estágio j [Eq. 1.6]	[-]
kij	Coeficiente de interação binário [Tabela 1.1]	[-]
L	Vazão molar de líquido que retorna a coluna [Eq. 2.3]	[kmol/s]
$M_{i,j} \\$	Equações de balanço material para o componente i no estágio j [Eq.	[-]
	1.1]	
M_i	Matriz com os fatores de absorção do componente i [Eq. 2.9]	[-]
Ν	Número de estágios teóricos [Eq. 2.5]	[-]
N_{min}	Número mínimo de estágios teóricos [Eq. 2.1]	[-]
N_R	Número de estágios teóricos na seção de retificação [Eq. 2.6]	[-]
N_S	Número de estágios teóricos na seção de esgotamento [Eq. 2.6]	[-]
Р	Pressão do sistema [Eq. 1.30]	[bar]

P_{bol}	Pressão de bolha [Eq. 1.29]	[bar]
P_{ci}	Pressão crítica de i [Tabela 1.1]	[bar]
p_i	Pressão parcial do componente i [Eq. 1.8]	[bar]
$p_i{}^{vap}$	Pressão de vapor do componente i [Eq. 1.9]	[bar]
\mathbf{P}_{j}	Pressão no estágio j [Figura 1.8]	[bar]
Porv	Pressão de orvalho [Eq. 1.22]	[bar]
q	Relação de cargas térmicas da alimentação [Eq. 2.2]	[-]
В	Vazão molar de produto de fundo [Eq. 2.6]	[kmol/s]
D	Vazão molar de produto de topo [Eq. 2.3]	[kmol/s]
F_j	Vazão molar de alimentação no estágio j [Eq. 1.1]	[kmol/s]
вi	Matriz das vazões molares por componente i na alimentação [Eq. 2.9]	[-]
Lj	Vazão molar de líquido proveniente do estágio j [Eq. 1.1]	[kmol/s]
\mathbf{l}_{ij}	Vazão molar do componente i na fase líquida proveniente do estágio j	[kmol/s]
	[Eq. 2.8]	
U_{j}	Vazão molar de retirada de líquido no estágio j [Eq. 1.1]	[kmol/s]
\mathbf{V}_{j}	Vazão molar de vapor proveniente do estágio j [Eq. 1.1]	[kmol/s]
Vij	Vazão molar do componente i na fase vapor proveniente do estágio j	[kmol/s]
	[Eq. 2.8]	
Vi	Matriz das vazões molares do componente i [Eq. 2.9]	[-]
\mathbf{W}_{j}	Vazão molar de retirada de vapor no estágio j [Eq. 1.1]	[kmol/s]
Qj	Taxa de transferência de calor no estágio j [Eq. 1.5]	[W]
R	Razão de refluxo [Eq. 2.4]	[-]
R_{min}	Razão de refluxo mínimo [Eq. 2.4]	[-]
$\mathbf{S}_{\mathbf{j}}$	Soma das frações molares no estágio j [Eq. 1.3 e 1.4]	[-]
T_{ci}	Temperatura crítica de i [Tabela 1.1]	[K]
T_j	Temperatura no estágio j [Figura 1.8]	[K]
T _{ri}	Temperatura reduzida de i [Tabela 1.1]	[-]
u	Coeficiente de ajuste das equações de estado de PR e SRK [Eq. 1.20]	[-]
v	Fração molar vaporizada [Eq. 1.30]	[-]
W	Coeficiente de ajuste das equações de estado de PR e SRK [Eq. 1.20]	[-]
Х	Coeficiente de ajuste da equação de Molokanov [Eq. 2.4]	[-]
X _{i,j}	Fração molar em fase líquida do componente i no estágio j [Eq. 1.2]	[-]
y _{i,j}	Fração molar em fase vapor do componente i no estágio j [Eq. 1.2]	[-]
Z	Fator de compressibilidade [Eq. 1.20]	[-]
Zi	Fração molar do elemento i na alimentação [Eq. 1.1]	[-]
$\alpha_{i,j}$	Volatilidade relativa dos componentes i e j [Eq. 1.7]	[-]

$\alpha_{i,j}{}^{avg}$	Volatilidade relativa média entre os componentes i e j na coluna de	[-]
	destilação [Eq. 2.1]	
$\gamma_i{}^L$	Coeficiente de atividade na fase líquida [Eq. 1.17]	[-]
γ	Coeficiente de ajuste das equações de estado de PR e SRK [Eq. 1.26]	[-]
3	Coeficiente de ajuste das equações de estado de PR e SRK [Eq. 1.26]	[-]
θ	Coeficiente de ajuste da equação de Underwood [Eq. 2.2]	[-]
θ	Coeficiente de ajuste do método Theta [Eq. 2.15]	[-]
σ	Coeficiente de ajuste das equações de estado de PR e SRK [Eq. 1.26]	[-]
$\widehat{\phi}_{i}^{\scriptscriptstyle L}$	Coeficiente de Fugacidade do componente i na fase líquida [Eq. 1.12]	[-]
$\widehat{\phi}_i^{\scriptscriptstyle V}$	Coeficiente de Fugacidade do componente i na fase vapor [Eq. 1.12]	[-]
ωi	Fator acêntrico [Tabela 1.1]	[-]

LISTA DE SIGLAS

AmProS	Ambiente de Processos de Separação
ASTM	American Society for Testing and Materials
BP	Ponto de Bolha
ER	Erro Relativo
FUG	Método de Fenske, Underwood e Gilliland
НК	Componente Chave-Pesada
LK	Componente Chave-Leve
MESH	Equações de balanço material (Material balance equations), equações de
	equilíbrio de fases (Equilibrium equations), equações de soma das frações
	molares (Summation equations) e equações de balanço de energia (Heat
	equations)
NC	Número de Componentes
NR	Newton-Raphson
PEV	Ponto Ebulição Verdadeiro
PR	Peng-Robinson
SEQ	Semana da Egenharia Química
SR	Soma das Taxas
SRK	Soave-Redlich-Kwong
VBA	Visual Basic for Aplication

LISTA DE FIGURAS

Figura 1.1 Esquema de uma refinaria de petróleo	23
Figura 1.2 Capacidade de refino e produção de óleo nas refinarias brasileiras em 2016	24
Figura 1.3 Estágio teórico de uma coluna de destilação	25
Figura 1.4 Coluna debutanizadora	26
Figura 1.5 Esquema da metodologia proposta por McCabe-Thiele	27
Figura 1.6 Esquema da metodologia proposta por Ponchon-Savarit	27
Figura 1.7 Algoritmo do método FUG	29
Figura 1.8 Estágio teórico de equilíbrio Geral	30
Figura 1.9 Algoritmo do método BP	33
Figura 1.10 Algoritmo do método Theta	34
Figura 1.11 Algoritmo do método de Newton-Raphson	35
Figura 1.12 Incorporação das propriedades termodinâmicas nos métodos: a) BP; b)	36
NR; c) Inside-out	
Figura 1.13 Algoritmo do cálculo de Flash	43
Figura 1.14 Tela com as especificações de topo e fundo de um destilador do software	44
de Lima et al. (2006)	
Figura 1.15 Dsym Simulator	45
Figura 1.16 Simulador educacional de Guevara (2009)	46
Figura 1.17 Simulador de destilação do LABVIRTUAL	47
Figura 1.18 Ambiente do software educacional – KAHROBA software	48
Figura 1.19 Tela inicial do software educacional de ANDRADE et al. (2016)	49
Figura 1.20 Interface Aspen Hysys [®] V8.6 para inserção de dados em uma	49
fracionadora	
Figura 2.1 Esquema do modelo em V aplicado no desenvolvimento do software	51
Figura 3.1 Layout de apresentação do AmProS	62
Figura 3.2 Explicação do (a) Método Shortcut e (b) Método Rigoroso ao se apertar os	63
botões de dúvidas na Figura 3.1	
Figura 3.3 Mensagens iniciais do módulo Shortcut	64
Figura 3.4 Tela de trabalho inicial do módulo Shortcut	64
Figura 3.5 Informações do módulo Shortcut no botão (a) "Como usar?" e (b)	65
mensagem que aparece ao se organizar os componentes pelos seus pontos de ebulição	

Figura 3.6 Informação sobre os componentes-chave	65
Figura 3.7 Informação sobre os pacotes termodinâmicos	66
Figura 3.8 Imagem do módulo Shortcut com os dados necessários para execução do	67
projeto de uma coluna de destilação	
Figura 3.9 Imagem do módulo Shortcut com os dados inseridos e a coluna já	68
calculada	
Figura 3.10 Erros da inserção dos componentes-chave	69
Figura 3.11 Erros da inserção da pressão de alimentação	69
Figura 3.12 Erros da inserção da taxa de refluxo	70
Figura 3.13 Informação sobre (a) Estágio de alimentação e (b) Razão de refluxo min.	70
Figura 3.14 Equações aplicadas para o cálculo do (a) Número mínimo de estágios,	71
N_{min} e (b) Número de estágios, N , e informativos	
Figura 3.15 Imagem dos resultados finais do módulo Shortcut	72
Figura 3.16 Imagem da (a) inserção do número de estágios e erro de (b) poucos	73
estágios (<3) e (c) muitos estágios (>30)	
Figura 3.17 Imagem da (a) Inserção do estágio teórico da alimentação e erro se a	74
alimentação for no (b) condensador e (c) refervedor	
Figura 3.18 Imagem da (a) Inserção da vazão molar da alimentação e (b) do resíduo	75
de fundo, e (c) erro se a vazão de fundo for maior que a alimentação	
Figura 3.19 Imagem da (a) Inserção da razão de refluxo, (b) número de componentes	75
na alimentação, (c) erro do número de componentes e (d) informação sobre o próximo	
passo	
Figura 3.20 Tela de trabalho do módulo Rigoroso	76
Figura 3.21 Passo-a-passo do módulo Rigoroso	77
Figura 3.22 Botões de dúvida do (a) Número de Estágios, (b) Estágio de Alimentação,	77
(c) Razão de Refluxo, e (d) Vazão Molar do resíduo de fundo	
Figura 3.23 Informação que aparece após colocar os componentes em ordem crescente	78
de ponto de ebulição	
Figura 3.24 Mensagem pendido para que os valores exportados do Módulo Shortcut	78
para o Rigoroso sejam conferidos	
Figura 3.25 Tela de trabalho do Módulo Rigoroso com os valores importados do	79
Módulo Shortcut	
Figura 3.26 Mensagem com a quantidade de iterações feitas	79

Figura 3.27 Tela de trabalho do Módulo Rigoroso com a coluna calculada	80
Figura 3.28 Imagem da página de resultados finais do Módulo Rigoroso	81
Figura 3.29 Teste termodinâmico com o par Benzeno-Hexano (a) 100 °C PR, (b) 100	83
°C SRK, (c) 50 °C PR, e (d) 50 °C SRK	
Figura 3.30 Teste termodinâmico com o par Propano-Butano (a) 25 °C PR, (b) 25 °C	86
SRK, (c) 0 °C PR, e (d) 0 °C SRK	
Figura 3.31 Teste termodinâmico com o par Butano-Isopentano (a) 100 °C PR, (b)	89
100 °C SRK, (c) 50 °C PR, e (d) 50 °C SRK	
Figura 3.32 Comparação dos resultados da aplicação do método Rigoroso entre	95
AmProS e Aspen Hysys® para o caso-base A usando as equações de estado (a) SRK e	
(b) PR	
Figura 3.33 Comparação dos resultados da aplicação do método Rigoroso entre	96
AmProS e Aspen Hysys [®] para o caso-base B usando as equações de estado (a) SRK e	
(b) PR	
Figura 3.34 Comparação dos resultados da aplicação do método Rigoroso entre	98
AmProS e Aspen Hysys [®] para o caso-base C usando as equações de estado (a) SRK e	
(b) PR	

LISTA DE TABELAS

Tabela 1.1 Fórmulas para resolução das equações de estado cúbica por PR e	40
SRK	
Tabela 2.1 Misturas binárias e temperaturas para o teste dos pacotes	58
termodinâmicos	
Tabela 2.2 Alteração dos parâmetros iniciais para teste do módulo FUG	60
Tabela 2.3 Aplicação do AmProS em cursos diferentes para o Teste de Aceitação	61
Tabela 3.1 Misturas binárias e temperaturas para o teste dos pacotes	82
termodinâmicos, e indicação das tabelas e gráficos de resultados	
Tabela 3.2 Erro relativo às pressões de bolha e orvalho à temperatura de 100 $^{\circ}$ C	84
para o par hexano-benzeno	
Tabela 3.3 Erro relativo às pressões de bolha e orvalho à temperatura de 50 $^{\circ}$ C	85
para o par hexano-benzeno	
Tabela 3.4 Erro relativo às pressões de bolha e orvalho à temperatura de 25 $^{\circ}$ C	87
para o par propano-butano	
Tabela 3.5 Erro relativo às pressões de bolha e orvalho à temperatura de 0 $^{\circ}$ C	88
para o par propano-butano	
Tabela 3.6 Erro relativo às pressões de bolha e orvalho à temperatura de 100 $^{\circ}$ C	90
para o par butano-isopentano	
Tabela 3.7 Erro relativo às pressões de bolha e orvalho à temperatura de 50 $^{\circ}$ C	91
para o par butano-isopentano	
Tabela 3.8 Casos utilizados para o teste Shortcurt, com a indicação das tabelas	92
de resultado respectivas as variáveis modificadas	
Tabela 3.9 Média dos erros relativos das variáveis de análise da coluna de	93
destilação, considerando a média entre os pares dos casos A, B e C, através dos	
pacotes termodinâmicos de PR e SRK	
Tabela 3.10 Média dos erros relativos das vazões molares interestágios de vapor	95
(Vj) e líquido (Lj), e temperatura (Tj) nos estágios para o caso-base A aplicando	
PR e SRK	
Tabela 3.11 Média dos erros relativos das vazões molares interestágios de vapor	97
(Vj) e líquido (Lj), e temperatura (Tj) nos estágios para o caso-base B aplicando	
PR e SRK	

Tabela 3.12 Média dos erros relativos das vazões molares interestágios de vapor	97
(Vj) e líquido (Lj), e temperatura (Tj) nos estágios para o caso-base C aplicando	
PR e SRK	
Tabela 3.13 Resultados do questionário de usabilidade do AmProS	101
Tabela B1 Teste alterando a taxa de razão de refluxo para o caso A, aplicando o	110
método SRK	
Tabela B2 Teste alterando a taxa de razão de refluxo para o caso A, aplicando o	111
método PR	
Tabela B3 Teste alterando a pressão da coluna para o caso A, aplicando o	112
método SRK	
Tabela B4 Teste alterando a pressão da coluna para o caso A, aplicando o	113
método PR	
Tabela B5 Teste alterando a recuperação do componente chave-leve no topo para	114
o caso A, aplicando o método SRK	
Tabela B6 Teste alterando a recuperação do componente chave-leve no topo para	115
o caso A, aplicando o método PR	
Tabela B7 Teste alterando a recuperação do componente chave-pesada no fundo	116
para o caso A, aplicando o método SRK	
Tabela B8 Teste alterando a recuperação do componente chave-pesada no fundo	117
para o caso A, aplicando o método PR	
Tabela B9 Teste alterando a temperatura de alimentação para o caso A,	118
aplicando o método SRK	
Tabela B10 Teste alterando a temperatura de alimentação para o caso A,	119
aplicando o método PR	
Tabela B11 Teste alterando a taxa de razão de refluxo para o caso B, aplicando o	120
método SRK	
Tabela B12 Teste alterando a taxa de razão de refluxo para o caso B, aplicando o	121
método PR	
Tabela B13 Teste alterando a pressão da coluna para o caso B, aplicando o	122
método SRK	
Tabela B14 Teste alterando a pressão da coluna para o caso B, aplicando o	123
método PR	

Tabela B15 Teste alterando a recuperação do componente chave-leve no topo	124
para o caso B, aplicando o método SRK	
Tabela B16 Teste alterando a recuperação do componente chave-leve no topo	125
para o caso B, aplicando o método PR	
Tabela B17 Teste alterando a recuperação do componente chave-pesada no	126
fundo para o caso B, aplicando o método SRK	
Tabela B18 Teste alterando a recuperação do componente chave-pesada no	127
fundo para o caso B, aplicando o método PR	
Tabela B19 Teste alterando a temperatura de alimentação para o caso B,	128
aplicando o método SRK	
Tabela B20 Teste alterando a temperatura de alimentação para o caso B,	129
aplicando o método PR	
Tabela B21 Teste alterando a taxa de razão de refluxo para o caso C, aplicando o	130
método SRK	
Tabela B22 Teste alterando a taxa de razão de refluxo para o caso C, aplicando o	131
método PR	
Tabela B23 Teste alterando a pressão da coluna para o caso C, aplicando o	132
método SRK	
Tabela B24 Teste alterando a pressão da coluna para o caso C, aplicando o	133
método PR	
Tabela B25 Teste alterando a recuperação do componente chave-leve no topo	134
para o caso C, aplicando o método SRK	
Tabela B26 Teste alterando a recuperação do componente chave-leve no topo	135
para o caso C, aplicando o método PR	
Tabela B27 Teste alterando a recuperação do componente chave-pesada no	136
fundo para o caso C, aplicando o método SRK	
Tabela B28 Teste alterando a recuperação do componente chave-pesada no	137
fundo para o caso B, aplicando o método PR	
Tabela B29 Teste alterando a temperatura de alimentação para o caso C,	138
aplicando o método SRK	
Tabela B30 Teste alterando a temperatura de alimentação para o caso C,	139
aplicando o método PR	
Tabela C1 Teste do Caso Base A, aplicando o método SRK	140

Tabela C2 Teste do Caso Base A, aplicando o método PR	140
Tabela C3 Teste do Caso Base B, aplicando o método SRK	141
Tabela C4 Teste do Caso Base B, aplicando o método PR	141
Tabela C5 Teste do Caso Base C, aplicando o método SRK	142
Tabela C6 Teste do Caso Base C, aplicando o método PR	143
Tabela A1 Tabela de constantes básicas dos componentes	144
Tabela A2 Tabela de capacidade calorífica do gás ideal e constantes de Antoine	151

<u>cun í dio</u>
SUMARIO

INTRODUÇÃO	20
OBJETIVO GERAL	21
OBJETIVOS ESPECÍFICOS	21
CAPÍTULO 1: REVISÃO BIBLIOGRÁFICA	22
1.1. Petróleo e Refino	22
1.2. Destilação	24
1.3. Embasamento Teórico de Destiladores em Estado Estacionári	o 26
1.3.1. Métodos Não-Rigorosos	28
1.3.2. Métodos Rigorosos	30
1.3.3. Termodinâmica de Equilíbrio Líquido Vapor	36
1.3.4. Softwares para Cálculo de Colunas de Destilação	43
CAPÍTULO 2: MATERIAIS E MÉTODOS	50
2.1. Materiais	50
2.2. Metodologia	50
2.2.1. Métodos de Destilação Aplicados no Software	52
2.2.2. Testes Aplicados ao Software	57
2.2.2.1. Teste Termodinâmico	58
2.2.2.2. Teste Módulo Shortcut	58
2.2.2.3. Teste Módulo Rigoroso	60
2.2.2.4. Teste de Aceitação	60
CAPÍTULO 3: RESULTADOS E DISCUSSÃO	62
3.1. Apresentação do Software	62
3.1.1. Módulo Shortcut	63
3.1.2. Módulo Rigoroso	73
3.2. Testes do Software	81
3.2.1. Resultados dos Testes Termodinâmicos	82
3.2.2. Método Shortcut	92
3.2.3. Método Rigoroso	94
3.2.4. Aceitação do Usuário	99
CONCLUSÕES	102
PERSPECTIVAS FUTURAS	104
REFERÊNCIAS	105
Apêndice A – Questionário Utilizado para Aceitação de Usuário	108
Apêndice B – Tabelas de Resultados Método Shortcut	110
Apêndice C – Tabelas de Resultados Método Rigoroso	140
Anexo A – Propriedades dos Componentes	144

INTRODUÇÃO

O curso de engenharia química surgiu no final do século 19, como uma junção dos cursos de química industrial e engenharia mecânica, direcionando esta área aos processos industriais que transformam materiais de pouco valor agregado em produtos com alto valor agregado. No início do século 20, e com o desenvolvimento do conceito de operações unitárias, o curso de engenharia química se distanciou da química industrial (MCCABE et al., 1993; MIT, 2019).

As operações unitárias servem para unificar e simplificar os processos industriais que lidam com os fenômenos de transporte de sólidos e líquidos, transferência de calor e processos de separação dentro de uma linha de produção (MCCABE et al., 1993). Uma das indústrias que possui grande parte das operações unitárias é a de refino de petróleo. Este processo é de alta importância, pois transforma a matéria bruta em diversos produtos com alto valor agregado (FAHIM et al., 2012). Segundo FIRJAN (2020), para cada R\$ 1 bilhão de receita obtido em uma refinaria são gerados 6,7 empregos diretos e indiretos e R\$ 2 bilhões em efeito de renda populacional no Brasil. Além disso, destacou que no 1º semestre de 2020 a produção de petróleo aumentou 15% em relação ao mesmo período do ano anterior, havendo a necessidade de profissionais especializados.

Varma e Grossmann (2014) mostraram que as duas maiores companhias contratantes de engenheiros químicos nos Estados Unidos são da área de exploração e refino de petróleo. E também, mostraram que, ranqueados pelas companhias, as operações unitárias são as áreas de maior importância relativa para os engenheiros químicos.

Segundo a ManpowerGroup[™] (2016), no Brasil 43% dos empregadores tiveram dificuldades de preencher as vagas abertas. E dois dos cinco principais motivos dessa dificuldade são a falta de experiência e a de habilidades técnicas. Uma sugestão desse relatório é aumentar o estímulo ao aprendizado dos funcionários por meio de treinamentos.

A PricewaterhouseCoopers (PwC) e a Fundação Getúlio Vargas em 2014, mostraram, que mais de 70% dos executivos já apontavam que havia uma tendência à baixa qualificação dos profissionais no mercado nacional. A PwC no mesmo ano reportou que é importante investir em treinamento para conseguir o aumento de produtividade.

Para diminuir o custo das empresas com treinamento e diminuir a dificuldade de preenchimento das vagas no mercado de trabalho, é necessário que os futuros profissionais estejam melhor preparados. As qualidades principais dos engenheiros químicos são habilidades analíticas, trabalho em equipe, comunicação e criatividade, que podem ser desenvolvidas com

aprendizagem baseada em projeto (TANNOUS, 2007) em sala de aula e com a inserção de softwares de simulação (MARANESI E TANNOUS, 2009; WANKAT, 2013).

Alguns autores utilizaram com sucesso softwares comerciais no ensino de engenharia química aumentando a retenção e satisfação dos alunos diminuindo a taxa de evasão (CALVO E PRIETO, 2016; CASTRELLÓN et al., 2011). Esses softwares conseguem atender a demanda do mercado, como o Aspen *Hysys*[®], porém o custo da licença anual se encontra entre US\$ 30 mil e US\$ 50 mil dólares, não sendo compatível com o orçamento de algumas universidades e estudantes (DRY et al., 2015).

Sendo assim, este trabalho tem como motivação e relevância, o desenvolvimento de um software para o cálculo de colunas de destilação, possuindo alta usabilidade e praticidade, com a finalidade de atender às diversas necessidades existentes na indústria e na academia. Este possui um grande potencial de aplicação, devido a carência de desenvolvimentos de software com esta temática.

OBJETIVO GERAL

O objetivo deste projeto é desenvolver uma ferramenta computacional em VBA destinada ao ensino de projeto e avaliação de colunas de destilação de misturas multicomponentes.

OBJETIVOS ESPECÍFICOS

- a) Seleção de dados termodinâmicos de hidrocarbonetos;
- b) Aprendizado da linguagem VBA;
- c) Desenvolvimento dos cálculos termodinâmicos de equilíbrio líquido-vapor utilizando as equações de estado de Peng-Robinson e Soave-Redlich-Kwong para misturas multicomponentes;
- d) Desenvolvimento do método *shortcut* de Fenske, Underwood e Gilliland para cálculo do projeto de coluna de destilação;
- e) Desenvolvimento do método rigoroso *Theta* para avaliação de coluna de destilação;
- f) Simulação das colunas de destilação no Aspen Hysys[®] para validação;
- g) Aplicação do software para validação mediante mini-curso/sala de aula.

CAPÍTULO 1: REVISÃO BIBLIOGRÁFICA

1.1. Petróleo e Refino

O petróleo é a fonte energética mais usada no mundo, com o início de sua exploração ao final do século XIX para iluminação, como um substituto ao óleo de baleia. Com a produção do querosene, foram descobertas outras frações comerciais do petróleo, como o diesel e a gasolina (FAHIM et al., 2012; ÍNDIO DO BRASIL et al., 2014; SPEIGHT, 2006).

O petróleo é uma mistura de hidrocarbonetos, utilizado não somente como fonte energética, mas também como fonte de matéria-prima para plásticos, roupas, fertilizantes, tintas, borracha e outros materiais. Para isso, o mesmo tem que ser separado em suas diversas frações para que haja um melhor aproveitamento de suas faixas de hidrocarbonetos. Essa separação faz parte do processo chamado de refino (SPEIGHT, 2006; FAHIM et al., 2012; ÍNDIO DO BRASIL et al., 2014).

As refinarias transformam o óleo bruto em produtos de maior valor agregado. Estas são projetadas e operadas de acordo com seu objetivo, que pode ser a produção de matériaprima para petroquímicos, de lubrificantes e/ou combustíveis. Na Figura 1.1 pode se observar um esquema básico de uma refinaria de petróleo.

Na refinaria, o petróleo passa por diversos processos, que podem ser divididos em: processos de separação, podendo ser por diferença de pontos de ebulição ou com o uso de solventes; processos de conversão, onde ocorrem reações químicas para o maior ganho econômico; e processos de tratamento, para deixar os produtos dentro das especificações desejáveis com a retirada de impurezas.

Todas as refinarias possuem uma unidade de destilação como o primeiro processo em seus esquemas de refino e que pode ser utilizada, junto com outras operações unitárias, para medir o seu potencial de refino. Na Figura 1.2 é mostrada a capacidade de refino e o quanto é refinado nas refinarias brasileiras. Também há torres de destilação em outras unidades, para separar os produtos dos processos de conversão, sendo uma operação unitária extremamente importante para os profissionais dessa indústria.

Figura 1.1. Esquema de uma refinaria de petróleo

Fonte: FAHIM et al. (2012)

Figura 1.2. Capacidade de refino e produção de óleo nas refinarias brasileiras em 2016

Fonte: adaptado de ANP (2017)

1.2.Destilação

A destilação é um processo de separação de misturas que se utiliza da diferença da volatilidade de seus componentes. Cada mistura, a uma dada temperatura e pressão em um sistema fechado, possui um estado onde as fases líquida e vapor ocorrem simultaneamente, chamado de equilíbrio líquido-vapor (SMITH et al., 2011).

Na Figura 3 apresenta-se um esquema de um estágio teórico j de uma coluna de destilação, na qual o vapor ascendente do estágio inferior (V_{j+1}) e o líquido descendente do estágios superior (L_{j-1}) entram em contato criando um novo estágio de equilíbrio líquido-vapor, onde a corrente de vapor (V_j) e líquido (L_j) , que deixam esse estágio, estão à mesma temperatura e pressão. O vapor sobe para o estágio superior j-l, onde é resfriado, e parte do componente menos volátil retorna à fase líquida, regressando para o estágio j. Já o líquido do estágio j (L_j) desce para o estágio inferior j+l, onde é aquecido, e o componente mais volátil retorna à fase vapor ascendendo para o estágio superior. Com isso, o vapor fica mais concentrado com o componente mais volátil a medidade que sobe na coluna, e o líquido com o componente menos volátil a medidade que sobe na coluna, e o líquido com o componente menos volátil a medida que desce na coluna, ocorrendo a separação pela diferença de volatilidade entre os componentes (VAN WINKLE, 1967; KISTER, 1992; SEADER et al., 2010).

Figura 1.3. Estágio teórico de uma coluna de destilação

Fonte: de Autoria própria

Os processos de destilação podem ser classificados de acordo com o número de componentes em sua alimentação, sendo:

- destilação binária: para dois componentes. Ex.: destilação de bebidas alcóolicas para aumentar o teor alcoólico das mesmas;
- destilação multicomponente: mais de dois componentes definidos. Ex.: coluna debutanizadora, que é uma coluna de destilação voltada para separar os hidrocarbonetos de até 4 carbonos dos hidrocarbonetos mais pesados (Figura 1.4);
- destilação complexa: os componentes não são identificados separadamente, como na destilação do petróleo bruto, em que os produtos são separados por pseudocomponentes (ex.: gasolina e o diesel) (VAN WINKLE, 1967).

A coluna de destilação pode ser composta por pratos perfurados, por um recheio ou híbrido (prato e recheio). Em cada estágio teórico da destilação, delimitado pelos pratos, ocorre equilíbrio das fases líquida e gasosa das misturas, com o aumento da concentração do composto de maior volatilidade à medida que os estágios se aproximam do topo da coluna de destilação, e diminuem deste componente à medida que se direciona para o fundo do destilador.

Fonte: Adaptado de SEADER et al. (2010)

1.3. Embasamento Teórico de Destiladores em Estado Estacionário

Os destiladores podem ser projetados ou avaliados para cada caso de interesse. Como existem as classificações de acordo com o número de componentes, existem métodos para cada agrupamento considerado. Para misturas binárias existem métodos de natureza gráfica e de natureza numérica. Dentre os métodos gráficos, usualmente ensinados em cursos de engenharia química, podem-se citar:

- Método McCabe-Thiele (Figura 1.5): usa o diagrama que relaciona as composições de equilíbrio da espécie mais leve nas fases líquido (x) e vapor (y), a uma dada pressão fixa. Não são considerados os balanços de energia para o sistema, para o qual se admitem vazões molares constantes de líquido e vapor;
- (2) Método de Ponchon-Savarit (Figura 1.6): além das relações de equilíbrio líquido-vapor e balanços materiais, utilizam-se balanço de energia, considerando que as vazões molares não são constantes (PERRY e GREEN, 1997).

Figura 1.5. Esquema da metodologia proposta por McCabe-Thiele

Fonte: adaptado de ANDRADE et al. (2016)

Figura 1.6. Esquema da metodologia proposta por Ponchon-Savarit

Fonte: adaptado de ANDRADE et al. (2016)

Nas indústrias é muito difícil ter um sistema puramente binário ou até mesmo ternário, sendo assim necessário o uso de cálculo para *design* de destiladores multicomponentes. Para se ter a separação completa de um certo número de componentes (NC) são necessárias NC-1 colunas. Em cada coluna, até haver somente dois componentes a serem separados, é necessário escolher os componentes-chave de cada separação, sendo estes: (a) chave-leve (LK) e (b) chave pesada (HK), que são os componentes com composições definidas de separação que possuem maior e menor volatilidade relativa, respectivamente. Para a elaboração de projetos e avaliação das colunas pode se usar métodos rigorosos, como cálculos de prato a prato envolvendo relações de equilíbrio líquido-vapor e balanços materiais e energéticos, ou métodos não rigorosos em que são feitas relações entre a razão de refluxo e número de pratos (VAN WINKLE, 1967).

Nas misturas complexas não é viável a identificação dos componentes individuais. Assim os produtos não são representados por componentes com propriedades específicas, e sim por propriedade médias determinadas empiricamente para pseudocomponentes, como a curva do ponto de ebulição verdadeiro (PEV), da curva de destilação mediante a norma ASTM D5307-97 - "Determinação da distribuição da faixa de ebulição do petróleo bruto por cromatografia gasosa" (FERREIRA e AQUINO, 2005), e das curvas de destilação mediante as normas ASTM D86-17 – "Destilação de produtos de petróleo e líquidos combustíveis à pressão atmosférica" e D1160-18 – "Destilação de produtos de petróleo à pressão reduzida", que determinam a destilação do petróleo a pressão atmosférica e a baixas pressões, respectivamente. Pela complexidade do sistema, a mistura é dividida em pseudocomponentes caracterizados por intervalos das curvas PEV ou ASTM's, e em seguida é usado um dos métodos rigorosos de destilação multicomponente (PERRY e GREEN, 1997; VAN WINKLE, 1967)

Como os métodos de destilação multicomponente são utilizados tanto para esse fim quanto para destilação complexa, a seguir serão discutidos os métodos não-rigorosos e rigorosos de destilação de sistemas multicomponentes.

1.3.1. Métodos Não-Rigorosos

Os métodos não-rigorosos, também conhecidos como *shortcut*, permitem o cálculo do número de pratos teóricos como função da razão de refluxo, número mínimo de pratos e o refluxo mínimo. Isso pemite uma diminuição do gasto computacional na determinação da coluna facilitando o estudo do efeito da razão de refluxo nos custos de operação e investimento (VAN WINKLE, 1967).

Os métodos são compostos por equações ou correlações para a definição:

 da razão de refluxo mínima, como a equação de Underwood, de Colburn ou de Brown-Martin;

- do número mínimo de pratos, como a equação de Fenske;
- do número de pratos teóricos no refluxo de operação utilizando a correlação de Gilliland ou Brown-Martin; e
- do estágio ótimo da alimentação com a equação de Kirkbride (KISTER, 1992; PERRY e GREEN, 1997; VAN WINKLE, 1967).

O método FUG, nomeado pelas equações usadas de Fenske, Underwood e pela correlação de Gilliland, pode ser usado para o cálculo de todos os pontos necessários para o *design* prévio e otimização de uma coluna. A Figura 1.7 mostra o algoritmo desse método.

Figura 1.7. Algoritmo do método FUG

Fonte: adaptado de SEADER et al. (2010)

1.3.2. Métodos Rigorosos

Os métodos rigorosos, até a década de 50, eram usados somente para colunas menos complexas. Com o avanço tecnológico dos computadores, os cálculos rigorosos poderiam ser feitos rapidamente para colunas maiores. Esses métodos equacionam a coluna e resolvem essas equações para encontrar a condição de operação. Para o estado estacionário, é usado o conjunto de equações MESH, que são as equações de balanço material (Equação 1.1) (*Material balance equations*), equações de equilíbrio de fases (Equação 1.2) (*Equilibrium equations*), equações de soma das frações molares (Equações 1.3 e 1.4) (*Summation equations*) e equações de balanço de energia (Equação 1.5) (*Heat equations*) (KISTER, 1992; SEADER et al., 2010).

Na Figura 1.8 é mostrado um estágio de equilíbrio geral, onde podem ser associadas as equações MESH. F_j corresponde a vazão molar da alimentação no estágio j; W_j e U_j são as vazões molares de retirada de vapor e líquido, respectivamente, no estágio j, h_{Fj} é a entalpia da corrente F oriunda do estágio j, Q_j corresponde a quantidade de calor transferida para ou do estágio j, T_j e P_j , respectivamente, na temperatura e pressão do estágio j; e V_j e L_j são as correntes de vapor e líquido que sobem e descem do estágio j, respectivamente.

Figura 1.8. Estágio teórico de equilíbrio geral

Fonte: adaptado de SEADER et al., 2010

 M – Equações de balanço material para cada componente, totalizando NC (número de componentes) para cada estágio.

$$M_{i,j} = L_{j-1}x_{i,j-1} + V_{j+1}y_{i,j+1} + F_j z_{i,j} - L_j x_{i,j} - V_j y_{i,j} = 0$$
(1.1)

• E – Equações de equilíbrio de fases, com NC equações para cada estágio

$$E_{i,j} = y_{i,j} - K_{i,j} x_{i,j} = 0 \tag{1.2}$$

na qual K_{i,j} é a constante de equilíbrio de fases do componente *i* no estágio *j*.

• S – Somas de frações molares, uma por estágio.

$$(S_y)_j = \sum_{i=1}^{NC} y_{i,j} - 1 = \sum_{i=1}^{NC} K_{i,j} x_{i,j} - 1 = 0$$
(1.3)

$$(S_x)_j = \sum_{i=1}^{NC} x_{i,j} - 1 = \sum_{i=1}^{NC} \frac{y_{i,j}}{K_{i,j}} - 1 = 0$$
(1.4)

• H – Equações de balanço de energia, uma por estágio

$$H_{j} = L_{j-1}h_{L,j-1} + V_{j+1}h_{V,j+1} + F_{j}h_{F,j} - (L_{j} + U_{j})h_{L,j} - (V_{j} + W_{j})h_{V,j} - Q_{j} = 0$$
(1.5)

Para resolução das equações MESH, antes dos avanços computacionais, eram usados os métodos de Lewis-Matheson (1932) e o de Thieles-Geddes (1933). O segundo é um método avaliativo de colunas, devido a quantidade de variáveis que são especificadas, calculando a composição do produto e as capacidades dos trocadores de calor. O método de Lewis-Matheson, por sua vez, é um método de projeto, especificando a distribuição dos componentes-chave nos produtos de topo e fundo e calculando o número de estágios (KISTER, 1992; SEADER et al., 2010).

Atualmente as equações MESH são resolvidas principalmente pelos seguintes métodos, de acordo com Kister (1992), Perry e Green (1997), e Seader et al. (2010):

- Métodos de ponto de bolha (BP);
- Método da soma das taxas (SR), usado para colunas de absorção e dessorção, também conhecido como procedimento de particionamento de equações (*Equation Tearing Procedures*),

- Método de Newton-Raphson (NR);
- Método dos ciclos interno-externo (*Inside-Out Method*) que combina os procedimentos de particionamento com o de Newton-Raphson; assim como,
- Métodos de relaxação, de continuação Homotópica, e os de não-equilíbrio, usados para colunas altamente não-ideais.

O método do ponto de bolha calcula as temperaturas em cada estágio a partir de: vazões dos componentes calculadas pela matriz tridiagonal, equações de ponto de bolha, e equações MESH, com exceção das equações de balanço material utilizadas na matriz tridiagonal. Normalmente, o método BP funciona melhor em sistemas ideais ou próximos do ideal, e com componentes com uma faixa de volatilidade pequena. O algoritmo para este método é mostrado na Figura 1.9 (KISTER, 1992; PERRY e GREEN, 1997; SEADER et al., 2010).

Os procedimentos de particionamento de equações utilizam um algoritmo de matriz tridiagonal para calcular as taxas de vazão total e por componente. Essa matriz é resultado de uma modificação das equações de balanço material (Equação 1.1) e reagrupadas por componente. Após isso é utilizado o Algoritmo de Thomas para resolver a matriz (KISTER, 1992; SEADER et al., 2010). Um procedimento de particionamento de equações está mostrado na Figura 1.10, chamado de método *Theta*.

O método de NR resolve as equações MESH como um grupo, tendo como resposta as temperaturas dos estágios, vazões, composições, entre outros. As Equações 1.3 e 1.4 são multiplicadas pela vazão de vapor e líquido, respectivamente, deixando em função da vazão molar por componente. Em seguida, substitui essas duas equações modificadas nas Equações 1.1, 1.2 e 1.5. Essas três equações, após essa modificação, são resolvidas pelo método iterativo de NR. O algoritmo para este método é mostrado na Figura 1.11 (PERRY e GREEN, 1997; SEADER et al., 2010).

Figura 1.9. Algoritmo do método BP

Fonte: adaptado de SEADER et al. (2010)

Fonte: adaptado de HOLLAND (1981)

Início

Fonte: Adaptado de SEADER et al. (2010)

O método *Inside-out* difere dos outros três apresentados, BP, *Theta* e NR, devido aos cálculos termodinâmicos. Nos métodos anteriores os valores das constantes de equilíbrio (K_{ij}) e entalpia são calculados por correlações termodinâmicas complexas em cada iteração, o que faz que aumente o gasto computacional. Já no *Inside-out*, as equações MESH são calculadas em um ciclo interno, como uma variação do BP com modelos termodinâmicos mais simples, e um ciclo externo com modelos mais complexos para os cálculos dos $K_{i,j}$ e das entalpias utilizando as composições e temperaturas calculados no ciclo interno. O método *Inside-out* é bastante robusto, tendo baixa sensibilidade à qualidade dos valores iniciais, e é atualmente o método que alguns simuladores usam, como o RADFRAC e MULTIFRAC do Aspen *Hysys*[®]. O algoritmo usado nesse método é separado em três partes: o procedimento de inicialização, as iterações do ciclo interno, e as iterações do ciclo externo (KISTER, 1992; PERRY e GREEN, 1997; SEADER et al., 2010).

A Figura 1.12 mostra a inserção das propriedades termodinâmicas nos métodos rigorosos discutidos.

Figura 1.12. Inserção das propriedades termodinâmicas nos métodos (a) BP, (b)NR e (c)*Inside-out*

Fonte: adaptado de SEADER et al. (2010)

1.3.3. Termodinâmica de Equilíbrio Líquido Vapor

Como foi visto na seção 1.2., para se ter a separação em um destilador, em cada estágio deve ocorrer o equilíbrio líquido-vapor. A constante de equilíbrio ($K_{i,n}$) representa a tendência de vaporização do componente *i* no estágio *n* (Eq. 1.6).

$$K_{i,n} = \frac{\text{fração molar de } i \text{ na fase vapor no estágio } n}{\text{fração molar de } i \text{ na fase líquida no estágio } n}$$
(1.6)

Quando o valor de $K_{i,n}$ é maior que a unidade, o componente *i* tende para a fase vapor, se for menor, tende para a fase líquida (KISTER, 1992).
Como a destilação é feita de acordo com a volatilidade relativa ($\alpha_{i,j}$) é necessário calculá-la, conforme a Equação 1.7.

$$\alpha_{i,j} = \frac{\text{valor de K do componente } i}{\text{valor de K do componente } j}$$
(1.7)

Por convenção, a volatilidade relativa é a razão entre o valor de *K* do composto mais volátil e o valor do menos volátil. Quanto mais próximo da unidade mais difícil é a separação por destilação, sendo necessário então usar outros métodos de separação quando a volatilidade relativa for igual a um (KISTER, 1992).

As misturas podem ser ideais ou não ideais, sendo que a parte vapor das misturas ideais pode ser adequadamente representada pela lei dos gases ideais, como a lei de Dalton para misturas (Equação 1.8) e a parte líquida obedece a lei de Raoult (Equação 1.9).

$$p_i = y_i P \tag{1.8}$$

$$p_i = x_i p_i^{vap} \tag{1.9}$$

Substituindo as Eq 1.8 e 1.9 na Eq 1.6 se têm:

$$K_{i,n} = \frac{y_i}{x_i} = \frac{p_i^{vap}}{P} \tag{1.10}$$

na qual p_i^{vap} é a pressão de vapor do componente *i*, e p_i é a pressão parcial do componente *i*. Essa sistemática pode ser substituida, para sistemas não ideais, pela fugacidade do componente *i* puro na fase líquida (f_i^L) e na fase vapor (f_i^V). No equilíbrio a fugacidade da fase vapor é igual a da fase líquida (KISTER, 1992).

$$f_i^L = f_i^V \tag{1.11}$$

A fugacidade do componente *i* na mistura na fase líquida (\hat{f}_i^L) é igual a da fase vapor (\hat{f}_i^V) (VAN WINKLE, 1967; KISTER, 1992; SEADER et al., 2010). O fator que explica o efeito da não idealidade na fugacidade é o coeficiente de fugacidade $\hat{\phi}_i$, definido conforme a Equação 1.12.

$$\hat{\phi}_{i}^{\ L} = \frac{\hat{f}_{i}^{\ L}}{x_{i}^{P}} \text{ ou } \hat{\phi}_{i}^{\ V} = \frac{\hat{f}_{i}^{\ V}}{y_{i}^{P}}$$
(1.12)

Aplicando o coeficiente de atividade para cada fase, têm-se a Equações 1.13 e 1.14.

$$\hat{f}_i^V = \hat{\phi}_i^V y_i P \tag{1.13}$$

$$\hat{f}_i^L = \hat{\phi}_i^L x_i P \tag{1.14}$$

Combinando as Equações 1.11, 1.13 e 1.14, tem-se a Equação 1.15.

$$\hat{\phi}_{i}^{V} y_{i} = \hat{\phi}_{i}^{L} x_{i} \ (i=1,2,...,NC) \tag{1.15}$$

Podendo então reescrever a Equação 1.10 a Equação 1.16.

$$K_{i,n} = \frac{y_i}{x_i} = \frac{\hat{\phi}_i^L}{\hat{\phi}_i^V} (i=1,2,...,NC)$$
(1.16)

Essa abordagem é chamada de *phi/phi* pois leva em conta o coeficiente de fugacidade para ambas as fases. Porém, outra abordagem é a *gamma/phi*, onde, para a fase líquida, o desvio da idealidade, em pressões baixas e moderadas (SMITH et al, 2011), é descrito pelo coeficiente de atividade (γ_i), pelos cálculos da energia de Gibbs em excesso, a Equação 1.14 pode ser reescrita como a Equação 1.17.

$$\hat{f}_i^L = \gamma_i^L x_i f_i \tag{1.17}$$

Na abordagem *gamma/phi* é utilizado uma equação de estado para o cálculo da fase vapor, e para o cálculo do comportamento da fase líquida é utilizada a energia de Gibbs em excesso. Essa abordagem não é aplicável para altas pressões, pois a energia de Gibbs em excesso é calculada a baixas pressões. Já na abordagem *phi/phi*, tanto o comportamento da fase vapor e líquida é calculada por uma equação de estado dependente da temperatura e pressão, podendo ser utilizado em uma faixa maior dessas constantes, não necessitando o uso de um estado de referência, e podendo calcular as propriedades volumétricas e calorimétricas (PERRY e GREEN, 1997; SMITH et al., 2011).

Para predizer a constante de equilíbrio para misturas de hidrocarbonetos são utilizadas, com sucesso, as equações de estado cúbico de Soave-Redlich-Kwong (SRK) e de Peng-Robinson (PR), respectivo as Equações 1.18 e 1.19 (SEADER et al., 2010). Essas equações podem ser resolvidas pela Equação 1.20 que leva em conta o fator de compressibilidade (Z), com as constantes A, B, u e w sendo calculadas pelas fórmulas da Tabela 1.1. (PERRY e GREEN, 1997), na qual, tabelados no Anexo A, estão T_{ci} e P_{ci} a temperatura e pressão críticas do componente *i*, respectivamente, ω_i o fator acêntrico, e k_{ij} é o parâmetro de interação binário, que pode ser considerado nulo para misturas de hidrocarbonetos (SMITH et al, 2011).

$$P = \frac{RT}{V - b_i} - \frac{a_i}{V^2 + b_i V}$$
(1.18)

$$P = \frac{RT}{V - b_i} - \frac{a_i}{V^2 + 2b_i V - b_i^2}$$
(1.19)

$$Z^{3} - (1 + B - uB)Z^{2} + (A + wB^{2} - uB - uB^{2})Z - (AB + wB^{2} + wB^{3}) = 0$$
(1.20)

Da Figura 1.6, que mostra o algoritmo do método FUG, é visto que os primeiros cálculos são do ponto de orvalho (a) e de bolha (b), seguidos do cálculo do flash adiabático (c), que podem ser feitos utilizando os cálculos da Equação 1.21 até a 1.24 (PERRY e GREEN, 1997; SEADER et al., 2010; SMITH et al., 2011).

a) <u>Cálculo do ponto de Orvalho</u>

Para o ponto de orvalho, com a temperatura e as frações molares de vapor definidas, é feito uma estimativa inicial, considerando gás ideal, calculando as pressões de saturação de cada componente pela equação de Antoine (Equação 1.21), nas quais A_A , B_A e C_A são constantes experimentais dadas no Anexo A, e se estima a pressão de orvalho (P_{orv}) pela Equação 1.22.

$$\log\left(P_i^{Sat}\right) = A_A - \frac{B_A}{T + C_A} \tag{1.21}$$

$$P_{orv} = \frac{1}{\sum_{i=1}^{NC} \left(\frac{y_i}{P_i^{Sat}}\right)}$$
(1.22)

	Equação do Estada da	Egyação de Estada da				
Constantes	Equação de Estado de	Equação de Estado de				
Constantes	Peng-Robinson	Soave-Redlich-Kwong				
a _i	$0,45724 \frac{(RT_{ci})^2}{P_{ci}} \alpha_i$	$0,42747 \frac{(RT_{ci})^2}{P_{ci}} \alpha_i$				
α_{i}	$(1 + f_{\omega}(1 - T_{ri}^{0,5}))^2$ na qual: $\left(T_{ri} = \frac{T}{T_{ci}}\right)$	$(1 + f_{\omega}(1 - T_{ri}^{0,5}))^2$ na qual: $\left(T_{ri} = \frac{T}{T_{ci}}\right)$				
\mathbf{f}_{ω}	$0,37464 + 1,54226 - 0,26992\omega_i{}^2$	$0,\!48+1,\!574\omega_i-0,\!176{\omega_i}^2$				
am	$\sum_{i}^{NC} \sum_{j}^{NC} y_{i} y_{j} (a_{i} a_{j})^{0,5} (1 - k_{ij})$	$\sum_{i}^{NC} \sum_{j}^{NC} y_i y_j (a_i a_j)^{0,5} (1 - k_{ij})$				
b _i	$0,0778 \frac{RT_{ci}}{P_{ci}}$	$0,08664 \frac{RT_{ci}}{P_{ci}}$				
b _m	$\sum_{i}^{NC} y_i b_i$	$\sum_{i}^{NC} y_i b_i$				
А	$\frac{a_m P}{(RT)^2}$	$\frac{a_m P}{(RT)^2}$				
$A_{i,j}$	$\sqrt{a_i a_j} \frac{P}{(RT)^2}$	$\sqrt{a_i a_j} \frac{P}{(RT)^2}$				
В	$\frac{b_m P}{RT}$	$\frac{b_m P}{RT}$				
u	2	1				
W	-1	0				

Tabela 1.1.-Equações para resolução das equações de estado cúbica por PR e SRK

Fonte: PERRY e GREEN, 1997; SEADER et al., 2010; SMITH et al., 2011

Com a pressão de orvalho, são estimados, considerando a idealidade das fases, a constante de equilíbrio (K_i) pela Equação 1.23, e as frações molares de líquido pela Equação 1.24.

$$K_i = \frac{P_i^{Sat}}{P_{orv}}$$
(1.23)

$$x_i = \frac{y_i}{K_i} \tag{1.24}$$

Em seguida são calculados os termos a_i , b_i , a_m , b_m , A, $B \in A_{i,j}$ por PR ou SRK (Tabela 1.1) e substituídos na Equação 1.20. A maior raíz da equação cúbica é o fator de compressibilidade do estado vapor (Z^V) e assim calcula-se o coeficiente de atividade para a fase vapor ($\hat{\phi}_i^V$) pela Equação 1.25.

$$ln(\widehat{\varphi}_{i}^{V}) = \frac{b_{i}}{b}(Z^{V} - 1) - ln(Z^{V} - B) - \gamma \frac{A}{B}\left(\frac{2\sum_{j=1}^{NC}(y_{j}A_{i,j})}{A} - \frac{b_{i}}{b}\right)$$
(1.25)

na qual γ é dado pela Equação 1.26:

$$\gamma = \frac{1}{\sigma - \varepsilon} ln \left(\frac{Z^V + \sigma B}{Z^V + \varepsilon B} \right); \tag{1.26}$$

Com $\sigma = 1 + \sqrt{2}$ e $\varepsilon = 1 - \sqrt{2}$ para PR, e $\sigma = 1$ e $\varepsilon = 0$ para SRK.

Após esse passo são calculados as variáveis a_i , b_i , a_m , b_m , A, B e $A_{i,j}$ (Tabela 1.1) pela equação de estado cúbica escolhida, mudando as frações molares do estado vapor (y_i) pelas do estado líquido (x_i). Com os valores de A e B, as raízes da Equação 1.20 são calculadas, e a menor raíz é o fator de compressibilidade do estado líquido (Z^L), e assim calcula-se o coeficiente de fugacidade para a fase líquida ($\hat{\phi}_i^L$) pela Equação 1.27:

$$ln(\widehat{\varphi}_{i}^{L}) = \frac{b_{i}}{b}(Z^{L} - 1) - ln(Z^{L} - B) - \gamma \frac{A}{B} \left(\frac{2\sum_{j=1}^{NC}(x_{j}A_{i,j})}{A} - \frac{b_{i}}{b}\right)$$
(1.27)

na qual γ é dado pela Equação 1.28:

$$\gamma = \frac{1}{\sigma - \varepsilon} ln \left(\frac{Z^L + \sigma B}{Z^L + \varepsilon B} \right); \tag{1.28}$$

Com os valores dos coeficientes de fugacidade para a fase líquida ($\hat{\phi}_i^L$) e vapor ($\hat{\phi}_i^V$), pode-se rearranjar a Equação 1.15 para calcular as novas frações molares do estado líquido (x_i). Esses novos valores de x_i são comparados com os usados no cálculo da equação de estado cúbica. Se forem diferentes, os $\hat{\phi}_i^L$ devem ser recalculados até não haver mudança no valor de x_i. Quando não houver mais mudanças, a soma dos x_i deve ser igual a unidade, quando diferir desse valor deve-se mudar o P_{orv} e recalcular Z^V , $\hat{\phi}_i^V$, Z^L , $\hat{\phi}_i^L$ e x_i refazendo as verificações de convergência.

b) Cálculo do ponto de bolha

Para o ponto de bolha com a temperatura e as frações molares de líquido definidas são calculadas as pressões de saturação de cada componente pela equação de Antoine (Equação 1.21) e se estima a pressão de bolha (P_{bol}) pela Equação 1.29.

$$P_{bol} = \sum_{i=1}^{NC} (P_i^{Sat} x_i)$$
(1.29)

Com a pressão de bolha, são estimados a constante de equilíbrio (K_i) pela Equação 1.23 substituindo o P_{orv} pelo P_{bol} , e as frações molares de vapor pela Equação 1.24. Em seguida, são calculados os termos a_i , b_i , a_m , b_m , A, B e $A_{i,j}$ por PR ou SRK (Tabela 1.1) ultilizando x_i ao invés de y_i , e substituídos na Equação 1.20. A menor raiz é Z^L , que é substituído na Eq. 1.27, calculando-se o $\hat{\phi}_i^L$. Em seguida são calculados os termos da Tabela 1.1 utilizando os valores de y_i , e substituíndo-os na Eq. 1.20. A maior raíz é o Z^V , que é usado na Eq. 1.25 para calcular o $\hat{\phi}_i^V$.

Com os valores do coeficiente de fugacidade, a Equação 1.15 é usada para calcular os novos valores de y_i , que são comparados com os valores antigos, enquanto houver diferença entre as frações molares da fase vapor nova e antiga, os $\hat{\phi}_i^V$ devem ser recalculados. Quando não houver mais mudanças, a soma dos y_i deve ser igual a unidade, quando diferir desse valor deve-se mudar o P_{bol} e recalcular Z^L , $\hat{\phi}_i^L$, Z^V , $\hat{\phi}_i^V$ e y_i e refazer as verificações de convergência.

c) Cálculo de Flash adiabático

Para os cálculos de Flash, segue o fluxograma na Figura 1.13, na qual v é a fração molar vaporizada, Z_i é a composição do elemento i antes da separação. As Equações 1.30, 1.31, 1.32 e 1.33 são usadas de acordo com o fluxograma da Figura 1.13.

$$v = \frac{P_{bol} - P}{P_{bol} - P_{orv}} \tag{1.30}$$

$$F(v) = \sum_{i=1}^{NC} \frac{Z_i \times (K_i - 1)}{[1 + v(K_i - 1)]}$$
(1.31)

$$F'(v) = \sum_{i=1}^{NC} \frac{Z_i \times (K_i - 1)^2}{[1 + v(K_i - 1)]^2}$$
(1.32)

$$x_i = \frac{Z_i}{[1 + \nu(K_i - 1)]} \tag{1.33}$$

Fonte: adaptado de SMITH et al. (2011)

1.3.4. Softwares para Cálculo de Colunas de Destilação

Em 2006, Lima et al. implementaram o método *shortcut* para processo flash e destilação multicomponente no software Excel, mostrado na Figura 1.14. Esse método é considerado um método aproximativo para cálculo de colunas de destilação. Esse software possui um banco dados de 15 hidrocarbonetos, em sua maioria de cadeia aberta e sem

ramificações. Para o cálculo do número de estágios ideais, os autores usaram o método gráfico de Erbar e Maddox.

Figura 1.14. Tela com as especificações de topo e fundo de um destilador do software de Lima et al. (2006)

Outro software desenvolvido para o aprendizado sobre destilação é o de Mendes et al. (2009), que trata de destilação multicomponentes, chamado *Dsym Simulator* (Figura 1.15). Este foi feito em Delphi, em linguagem Pascal, utilizando o método de Newton-Raphson para destilação rigorosa, possuindo um custo computacional maior que outros métodos. Esse software permite que o usuário implemente dois *loops* de controle dinâmico, focando mais em como os distúrbios são propagados e no aprendizado de controle. Ainda, o mesmo utiliza somente as equações de Raoult, Dalton e Antoine para os cálculo do equilíbrio termodinâmico.

Figura 1.15. Dsym Simulator

Fonte: MENDES et al. (2009)

Guevara (2009) desenvolveu um simulador educacional (Figura 1.16) de destilação para dar suporte ao processo de ensino-aprendizagem no curso de química básica. O software desenvolvido tem especificidades técnicas e teóricas, viabilizando ao estudante cenários interativos, podendo propor problemas e, posteriormente, realizar simulações que possam responder à hipóteses previamente definidas. O simulador permite ao usuário realizar a montagem de um destilador de bancada, recebendo alertas sobre possíveis erros no processo de montagem. Com isso, após a montagem correta, o usuário insere a temperatura de ebulição em graus Celsius ao nível do mar de um líquido teórico A e de um líquido teórico B, bem como a pressão atmosférica, a altura acima do nível do mar e a temperatura máxima do sistema, definidos para a execução da simulação de destilação. Ainda, é possível, nesse mesmo cenário, a interação professor-aluno e aluno-aluno via bate-papo ou fórum, o que torna a comunicação mais acessível permitindo a troca de informações no decorrer das simulações, contribuindo, portanto, para uma aprendizagem em conjunto.

Figura 1.16. Simulador educacional de Guevara (2009)

Em 2012, Granjo et al. implementaram uma extensão ao site LABVIRTUAL da Universidade de Coimbra, portal de laboratórios virtuais, o ensino do processos de separação. Nessa ferramenta, os autores desenvolveram simuladores de destilação, extração líquidolíquido, absorção e adsorção, todos possuindo fundamentos e estudos de caso. As sub-rotinas para os cálculos dos modelos matemáticos foram feitas em Matlab[®], FORTRAN e JavaTM.

O simulador de destilação (Figura 1.17) possui o método de McCabe-Thiele para destilação binária, o método FUG para destilação *shortcut* e o método de Wang-Henke de Ponto de Bolha para destilação rigorosa. Os cálculos termodinâmicos podem ser calculados como fases vapor e líquido ideais, fase líquida pelo método UNIFAC e vapor ideal, ou fase líquida pelo UNIFAC e vapor pela equação de virial. O banco de dados conta com vinte e cinco (25) componentes, podendo ser escolhido no máximo cinco (5) para a separação.

PORTAL LABORATÓRIOS VIRTUAIS DE PROCESSOS QUÍMICOS		
	- Oual o método de cálculo a adontar?	
Destilação	Qual o metodo de calculo a adoptar ?	
	Apenas método aproximado (FUGK)	
- Seleccione 2 a 5 componentes para a alimentação	Métodos aproximado (FUGK) seguido de método	lo rigoroso (Wang-Henke)
	 Apenas método rigoroso (Wang-Henke) 	
Metano	and the second second second second	
Eteno	Pretende efectuar dimensionamento apr	oximado de uma coluna de pratos
Etano	C Não	
Propeno	(Sim	
E Propage		
E fas Direction		
	Contrained Report	
- Botano	Received Received	
1 n-butano		-
I Pentano	— Composição molar da alimentação (frace	ções molares)
Acetona	Etheral 0.6	
1 Metanol	Etanot	
Hexano	Água 0.4	
Etanol		
Benzeno		
Propanol	Componente chave leve (LK)	
C 2-Butanol	C Franci C Aria	
🔽 Água	Le control - Hone	
Metilciclohexano	They I I I AN INC. I THE REPORTS	
Tolueno	Componente chave pesado (HK)	
Rutanol	C Etanol C Água	
Cárida Aréfica	Amount Commission of Commission	
	Ennesifians as seculates undificale	
T Deceno	Especinque as seguintes variaveis	
1 hDecano	.: Razão de refluxo	5.7
I n-Dodecano		
I n-Heptadecano	.: Caudal de destilado	6750 mol - h*1
Pass de Dades de Brasisdades Terrestisions	E Contraction of the Contraction	25
base de Gapos de Proprietades Termolisidas	.: Numero de andares teoricos	20
	Andar da alimentação	20
Especifique as seguintes variaveis		
· Pressão da coluça de destilação 1.01325 bar	.: Tolerância para o método (Wang-Henke)	0.5e-3
6at		0.4
.: Caudal molar da alimentação 10000 mol - h ⁻¹	Espaçamento entre os pratos	0.4 m
For a state of the second state of the second state	-> Estimativa inicial para a composição do	destilado (fracções molares)
Especinque una uas seguintes variaveis	1000 MIT 72722	
Condição térmica da alimentação (parâmetro de q) C Temperatura da alimentação	.: Etanol 0.88	
	- Ádua 0.12	
- Valor da variável escolhida		
-> Qual o modelo termodinâmico a adoptar?		
C L'anida a una sideria C INIERE a una sideri C INIERE a superio de vider		
- Ednoro e valor incere () Distruct e valor ideal (, Distruct e ednadao de sual	Continuar Apagar	

Figura 1.17. Simulador de destilação do LABVIRTUAL

Fonte: GRANJO et al. (2012)

Dabaghian et al. (2016) desenvolveram um software educacional em *Visual Basic for Application* (VBA), Figura 1.18, para o ensino de destilação utilizando o método de McCabe. Esse método é uma aproximação para misturas binárias. Nesse software, o usuário também consegue calcular o projeto hidráulico dos pratos da coluna podendo entender os fenômenos indesejáveis de *flooding*, *dumping* e exsudação, e como a pressão da coluna e a razão de refluxo atua sobre a performance dos pratos.

Figura 1.18. Ambiente do software educacional – KAHROBA software

Fonte: DABAGHIAN et al. (2016)

Também em 2016, foi desenvolvido uma outra ferramenta computacional que utiliza os métodos de McCabe-Thiele e de Ponchon-Savarit, para misturas binárias, utilizando ferramentas do *Excel*[®], mostrado na Figura 1.19 (ANDRADE et al., 2016). Nessa ferramenta computacional, o usuário insere a volatilidade relativa dos dois componentes a serem separados e a relação de cargas térmicas da alimentação. Com isso, os estudantes puderam observar a relação da razão de refluxo com a quantidade de estágios teóricos, e o processo de cálculo do número mínimo de estágios com a razão de refluxo total. Pelo método de Ponchon-Savarit, o usuário pode observar o efeito do balanço de energia no cálculo do número de estágios.

Figura 1.19. Tela inicial do software educacional de Andrade et al. (2016)

Calvo e Prieto (2016) e Castrellón et al. (2011) utilizaram o Aspen Plus[®] para o ensino de processos de destilação avançados, retornando um resultado positivo entre os alunos com o uso do software, conseguindo um melhor entendimento sobre o conteúdo da disciplina e retenção dos conceitos estudados. Os autores recomendaram que os softwares comerciais não sejam usados como uma caixa preta, havendo a necessidade de um estudo sobre suas funcionalidades e conteúdo a ser estudado. Porém, este é um software caro e não intuitivo, como mostrado na Figura 1.20, podendo até dificultar a aprendizagem dos fundamentos de projeto de colunas fracionadoras.

Figura 1.20. Interface Aspen Hysys[®] V8.6 para inserção de dados em uma fracionadora

Fonte: interface do Aspen Hysys®, de autoria própria

CAPÍTULO 2: MATERIAIS E MÉTODOS

2.1.Materiais

O material utilizado foi um computador com 6Gb de memória, 500Gb de HD, processador intelcore i5 de 5ª geração.

Para o desenvolvimento do software foi utilizado o VBA da *Microsoft*[®] *Excel*[®] *2013 (15.0.5023.1000)*, por ser um software de ampla utilização e com uma interface de fácil utilização para o usuário. Os pontos positivos para desenvolver o software no *Excel*TM são que o *Excel*TM é usado por mais de 1 bilhão de pessoas no mundo (Microsoft[®], 2017); a interface pode ser facilmente modelada para atender o público, e sua versatilidade em funções matemáticas já existentes ou facilmente programáveis em VBA. A validação do software desenvolvido foi feita mediante comparação com o Aspen *Hysys*[®] V8.6, desenvolvido pela AspenTech.

2.2.Metodologia

O processo de desenvolvimento do software foi baseado no modelo em V, como mostrado na Figura 2.1, seguindo as etapas de (a) Requisitos, (b) Projeto, (c) Codificação e (d) Testes. Ao completar as três primeiras etapas, o software executável estava pronto para as etapas de Teste a fim de buscar sua qualidade e validação (PRESSMAN e MAXIM, 2015).

a) **Requisitos**: Nessa etapa (Figura 2.1a), foram definidas as características principais do software como uma base para a etapa de Projeto (Figura 2.1b). Os principais objetivos foram descrever as funcionalidades e aplicações do software, como os conceitos de projeto e avaliação de colunas de destilação, graus de liberdade e interface gráfica. O software foi criado para ser de fácil uso, prático, que pudesse ser utilizado em computadores com programas básicos, e em diferentes níveis de cursos antes dos software comerciais. Assim, permitiria aos estudantes e profissionais um maior desenvolvimento cognitivo.

Figura 2.1. Esquema do modelo em V aplicado no desenvolvimento do software

Software Executável

Fonte: adaptado de PRESSMAN e MAXIM (2015)

b) Projeto: É a fase mais importante do processo de desenvolvimento do software. O projeto do software (Figura 2.1b) foi dividida em três partes: Projeto do sistema, Projeto de integração e Projeto dos módulos. Fazendo a compilação dessas partes, o esboço do software e o plano para o seu desenvolvmento estava definida, levando às escolhas dos métodos matemáticos, algoritmos, base de dados, ferramentas computacionais e do interface gráfico.

c) **Codificação**: A codificação (Figura 2.1c) foi implementada de acordo com o Projeto do sistema (Figura 2.1b), na linguagem de programação escolhida (*Visual Basic for Application*, VBA, Excel). O software desenvolvido contêm três diferentes módulos para os cálculos termodinâmicos e métodos de destilação, com 14 *userforms* para explicar os métodos e equações usadas. Nesses módulos foi implementado o método *shortcut* em 1742 linhas, o método rigoroso em 2267 linhas e a chamada dos *userforms* em 44 linhas. O banco de dados de 113 hidrocarbonetos foi implementado em uma tabela do Excel. Assim, o software executável estava pronto para o estágio de Testes (Figura 2.1d).

d) **Testes**: Essa fase também foi dividida em três partes. A primeira, chamada de Teste de Unidade (Figura 2.1d₁), realizado concomitantemente com a programação, eliminou a maioria dos erros, como incompatibilidade de formato de dados e tamanho de matriz. O segundo, correspondeu ao Teste do Software (Figura 2.1d₂), na qual a integração dos componentes e suas funções foram testadas, e os resultados comparados ao Aspen *Hysys*[®] para avaliar a performance do software desenvolvido. O terceiro teste é o de Aceitação do Usuário (Figura 2.1d₃), no qual a ferramenta foi implementada em estudos de casos específicos com estudantes de engenharia química da Universidade Estadual de Campinas (UNICAMP).

2.2.1. Métodos de Destilação Aplicados no Software

O software foi desenvolvido e chamado de Ambiente de Processos de Separação (AmProS) apresentado em dois módulos:

(a) projeto de colunas utilizando o método de Fenske-Underwood-Gilliland (FUG);

(b) avaliação de destiladoras utilizando o método Theta.

Ambos os métodos (FUG e *Theta*) tem em comum os cálculos termodinâmicos, como as constantes de equilíbrio, volatilidade relativa, coeficientes de atividade e entalpia. Os cálculos termodinâmicos rigorosos foram desenvolvidos utilizando as equações de estado de Soave-Redlich-Kwong (SRK) e Peng-Robinson (PR), onde o usuário pode escolher qual modelo termodiâmico usar. Uma quantidade 113 hidrocarbonetos foram inseridos utilizando como base de dados dispostos no Anexo A de Prausnitz et al. (2001).

Os métodos implementados, (a) FUG e (b) *Theta*, com suas respectivas equações serão explicadas a seguir:

 a) O método FUG segue o algoritmo descrito na Figura 1.6. Neste algoritmo o usuário insere as especificações da alimentação e os dois componentes-chave (chave-leve e chave-pesada). Com isso são feitos os cálculos de:

- Ponto de bolha e orvalho da alimentação, destilados e fundo, para o cálculo da volatilidade relativa média;
- ii. Flash da alimentação na pressão de operação da coluna;

iii. Número mínimo de estágios teóricos pela equação de Fenske (1932), pela Equação 2.1, na qual $\alpha_{i,j}^{avg}$ é a volatilidade relativa média entre os componentes *i*(chave-leve) e *j*(chave-pesada), e *x*_i é a composição do componente i na fase líquida.

$$N_{min} = \frac{\log\{[x_{i,N+1}/x_{i,1}][x_{j,1}/x_{j,N+1}]\}}{\log \alpha_{i,j}^{avg}}$$
(2.1)

sabendo que:

$$\alpha_{i,j}^{avg} = \sqrt[2]{\alpha_{i,j}^{Temperatura \ do \ Destilado} \times \alpha_{i,j}^{Temperatura \ do \ fundo}}$$

iv. Razão de refluxo mínima utilizando as equações de Underwood (Shiras et al., 1950). No uso das Equações 2.2 e 2.3, as volatilidades relativas foram calculadas na condição de alimentação. Essas equações são empregadas quando um ou mais componentes só aparecem em um dos produtos. O uso da Equação 2.4 é para misturas com diferença de pontos de ebulição muito próximas ou quando o grau de separação não é acentuado, ou seja, quando os componentes não chaves são encontrados no destilado e no produto de fundo em quantidades significativas (SHAH e AGRAWAL, 2010). No software desenvolvido foram implementada somente as Equações 2.2 e 2.3 para cálculo da razão de refluxo mínima.

$$(1-q) = \sum_{i=1}^{NC} \frac{\alpha_{i,HK} z_i}{\alpha_{i,HK} - \theta}$$
(2.2)

$$R_{min} + 1 = \sum_{j=1}^{N} \frac{\alpha_j x_{Dj}}{\alpha_j - \theta}.$$
(2.3)

$$R_{min} = \frac{\frac{x_{LK,D}}{x_{LK,F}} - \left(\alpha_{LK,HK}\right)_F \left(\frac{x_{HK,D}}{x_{HK,F}}\right)}{\left(\alpha_{LK,HK}\right)_F - 1}$$
(2.4)

nas quais:

q é a relação de cargas térmicas da alimentação,

 z_i é a composição do elemento i na alimentação,

 θ é determinado pela Equação 2.2, e

HK e LK são os componentes chave-pesada e chave-leve, respectivamente;

v. Cálculo do número de estágios teóricos (N) da coluna para uma razão de refluxo (R) maior que a mínima pela equação de Molokanov (MOLOKANOV et al., 1972), Equações 2.5 e 2.6. Estas equações foram geradas a partir de um método gráfico proposto por Gilliland (GILLILAND, 1940).

$$X = \frac{R - R_{min}}{R + 1} \tag{2.5}$$

$$\frac{N - N_{min}}{N+1} = 1 - \exp\left[\left(\frac{1 + 54,4X}{11 + 117,2X}\right)\left(\frac{X-1}{X^{0,5}}\right)\right]$$
(2.6)

vi. Determinação do estágio da alimentação pela equação de Kirkbride (SEADER et al., 2010), Equação 2.7, na qual NR é o número de estágios teóricos da seção de retificação, e N_S é o número de estágios teóricos da seção de esgotamento.

$$\frac{N_R}{N_S} = \left[\left(\frac{z_{HK,F}}{z_{LK,F}} \right) \left(\frac{x_{LK,B}}{x_{HK,D}} \right)^2 \left(\frac{B}{D} \right) \right]^{0,206}$$
(2.7)

b) O método *Theta* segue o algoritmo da Figura 1.10. O usuário deve inserir a temperatura, a pressão e a vazão da alimentação e sua composição molar, número de estágios da coluna e estágio da alimentação, vazão molar de fundo ou de topo e a razão de refluxo. A partir desse início, é seguido o cálculo explicado por Holland (1981) da seguinte forma:

- (1) Adota-se as temperaturas em cada estágio (T_j) com uma pequena variação do estágio de alimentação. As vazões molares de líquido (L_j) e vapor (V_j) que deixam cada estágio são consideradas constantes e calculadas pelo balanço material no condensador e estágio de alimentação.
- (2) Para cada estágio são calculadas as constantes de equilíbrio (K_{ij}) entre os componentes, e as equações de balanço material e as relações de equilíbrio são passadas para o fator de absorção (A_{ij}), definido pela Equação 2.8, ou pelas vazões de líquido (l_{ij}) e vapor (v_{ij}) por componente pela Equação 2.9.

$$A_{ij} = \frac{L_j}{\left(K_{ij}V_j\right)} \tag{2.8}$$

$$A_{ij} = \frac{l_{ij}}{v_{ij}} \tag{2.9}$$

(3) Os balanços materiais e as relações de equilíbrio são estabelecidas na forma de matrizes (Equação 2.10, 2.11, 2.12 e 2.13). Esse multiplicação matricial é resolvida pelo algoritmo de Thomas (HOLLAND, 1981), achando assim os valores de (v_{ij})_{cal} e (l_{ij})_{cal}, em que o subscrito "*cal*" significa que esses valores foram recalculados.

$$M_i v_i = -f_i \tag{2.10}$$

$$M_{i} = \begin{bmatrix} -\rho_{i1} & 1 & 0 & 0 & \dots & \dots & \dots & 0 \\ A_{i1} & -\rho_{i2} & 1 & 0 & \dots & \dots & \dots & 0 \\ \dots & \dots \\ 0 & 0 & A_{if-2} & -\rho_{if-1} & 1 & 0 & \dots & 0 \\ 0 & \dots & 0 & A_{if-1} & -\rho_{if} & 1 & 0 & 0 \\ \dots & \dots \\ 0 & \dots \\ 0 & \dots & \dots & \dots & 0 & A_{iN-2} & -\rho_{iN-1} & 1 \\ 0 & \dots & \dots & \dots & 0 & 0 & A_{iN-1} & -\rho_{iN} \end{bmatrix}$$
(2.11)

Em que, $\rho_{ij} = 1 + A_{ij}$

$$v_i = \begin{bmatrix} d_i & v_{i2} & v_{i3} & \dots & v_{i\,f-1} & v_{i\,f} & \dots & v_{i\,N-1} & v_{i\,N} \end{bmatrix}^T$$
(2.12)

$$f_i = \begin{bmatrix} 0 & 0 & \dots & 0 & v_{iF} & l_{iF} & 0 & \dots & 0 & 0 \end{bmatrix}^T$$
(2.13)

(4) A fim de corrigir os valores da fração molar de líquido (x_{ij}) e vapor (y_{ij}) em cada estágio é usado o método theta (θ) de convergência. Nesse método primeiro é feito o balanço material por componente, e sua conformidade com a vazão de destilado, como nas Equações 2.14 e 2.15, respectivamente, nas quais o subscrito "*co*" significa corrigido.

$$FZ_i = (d_i)_{co} + (b_i)_{co}$$
(2.14)

$$\sum_{i}^{NC} (d_i)_{co} = D$$
 (2.15)

Essas condições são satisfeitas, quando o valor de θ é definido corretamente pela Equação 2.16.

$$\left(\frac{b_i}{d_i}\right)_{co} = \theta \left(\frac{b_i}{d_i}\right)_{cal} \tag{2.16}$$

Com as Equações 2.14 e 2.16, pode-se calcular a vazão molar corrigida de cada componente no destilado na forma da Equação 2.17:

$$(d_i)_{co} = \frac{FZ_i}{1 + \theta \left(\frac{b_i}{d_i}\right)_{cal}}$$
(2.17)

Fazendo com que a Equação 2.15 se torne uma função de θ , têm-se:

$$g(\theta) = \sum_{i=1}^{NC} (d_i)_{co} - D$$
 (2.18)

O valor de θ pode ser calculado usando o método de Newton, utilizando a primeira derivada da função g(θ), da forma:

$$g'(\theta) = -\sum_{i=1}^{NC} \frac{\binom{b_i}{d_i}_{cal} FZ_i}{\left[1 + \theta \binom{b_i}{d_i}_{cal}\right]^2}$$
(2.19)

Encontrado o valor de θ pelo método de Newton, os valores de $(d_i)_{co}$ são calculados pela Equação 2.17. Assim, as novas composições molares de cada componente em cada estágio são corrigidas pelas Equações 2.20 e 2.21.

$$x_{i,j} = \frac{\left(\frac{l_{i,j}}{d_i}\right)_{cal} (d_i)_{co}}{\sum_{i=1}^{NC} \left[\left(\frac{l_{i,j}}{d_i}\right)_{cal} (d_i)_{co} \right]}$$
(2.20)

$$y_{i,j} = \frac{\left(\frac{v_{i,j}}{d_i}\right)_{cal} (d_i)_{co}}{\sum_{i=1}^{NC} \left[\left(\frac{v_{i,j}}{d_i}\right)_{cal} (d_i)_{co}\right]}$$
(2.21)

(5) Com os valores corrigidos das frações molares dos componente ($x_{i,j}$ e $y_{i,j}$) em cada estágio (calculados no passo 4) e a temperatura definida previamente (1º iteração, passo 1, e iterações seguintes, passo 5), determina-se uma constante de equilíbrio (K_{bj}) para um componente-base "b" mediante a Equação 2.22, na qual a volatilidade relativa, α_{ij} , é referente à este componente na temperatura do estágio j. Ao final do passo 6, se o programa não convergir, a temperatura é retornada ao passo 2 para sua correção. Com K_{bj} calculado, é utilizada a equação de Antoine (Equação 1.21) de forma rearranjada para o cálculo da temperatura corrigida em cada estágio.

$$K_{bj}\big|_{T_{novo,j}} = \frac{1}{\sum_{i=1}^{NC} \alpha_{ij}\big|_{T_{atual,j}} x_{ij}}$$
(2.22)

Com as temperaturas e composições molares de cada estágio são computadas as entalpias com as equações de estado escolhida. Com esses valores, pelo balanço de energia em cada estágio são calculados os V_j e os L_j .

(6) Se os critérios de convergência para as temperaturas e vazões não forem atendidos, o algoritmo retorna ao passo 2 e refaz os cálculos com os novos valores. Caso contrário, as vazões molares, as temperaturas, as composições molares de destilado e de fundo, e as vazões de calor do condensador e do refervedor são vistas como resultado final.

2.2.2. Testes Aplicados ao Software

Para a etapa de Teste do Software (Figura 2.1d₂) foram feitas algumas simulações baseadas em três módulos: Termodinâmico, Shortcut e Rigoroso, e os resultados foram comparados com o Aspen *Hysys*[®].

2.2.2.1.Teste Termodinâmico

Os métodos termodinâmicos de Peng-Robinson (PR) e Soave Redlich-Kwong (SRK) foram testados primeiramente com misturas binárias, devido à praticidade e rapidez na verificação dos resultados. Estas misturas e respectivas temperaturas avaliadas (Tabela 2.1) foram escolhidas por serem bem definidas termodinamicamente, simplificando a análise de erros no algoritmo e depurações. As variáveis respostas desse teste foram as pressões de bolha e orvalho das misturas, baseado na alteração das composições molares da mistura de 0 a 1, com incremento de 0,1.

Tabela 2.1. Misturas binárias e temperaturas para o teste dos pacotes termodinâmicos

Mistura	Temperaturas (°C)
Benzeno-Hexano	50 e 100
Propano-Butano	0 e 25
Butano-Isopentano	50 e 100

2.2.2.2.Teste Módulo Shortcut

O módulo do método FUG foi testado baseado nos seguintes casos-base:

- A) Mistura de Propano, Isobutano, Butano, Isopentano e Pentano, com vazões molares de entrada de 5, 15, 25, 20 e 35 mols/h, respectivamente. As condições da alimentação foram de 85 °C de temperatura e 820 kPa de pressão. O componente chave-leve foi o Butano, e o chave-pesada, o Isopentano com ambas recuperações de 95% no topo e no fundo, respectivamente. A fração da razão de refluxo pela razão de refluxo mínima (*R*/*R_{min}*) foi considerada igual a 2,0. Esse caso foi adaptado de Perry e Green (1997).
- B) Mistura de **Benzeno, Tolueno e m-Xileno**, com vazões molares de entrada de 450, 380 e 170 mols/h, respectivamente. As condições da alimentação foram de 80 °C de temperatura e 50 kPa de pressão. O componente chave-leve foi o Tolueno e o chave-pesada, o m-Xileno, com ambas recuperações de 95% no topo e no fundo, respectivamente. A fração da razão de refluxo pela razão de refluxo mínima (R/R_{min}) foi considerada igual a 2,0.

C) Mistura de **Propano, Isobutano, Butano, Isopentano, Pentano, Hexano, Heptano, Octano e Nonano**, com vazões molares de entrada de 30,7, 380, 473, 36, 15, 23, 39,1, 272,2 e 31 mols/h, respectivamente. As condições da alimentação foram de 180 °F (82,22 °C) de temperatura e 552 kPa de pressão. O componente chave-leve foi o Isobutano e o chavepesada, o Butano, com ambas recuperações de 95% no topo e no fundo, respectivamente. A fração da razão de refluxo pela razão de refluxo mínima de (R/R_{min}) foi considerada igual a 2,0. Esse caso foi adaptado do Seader et al. (2010).

A partir destas avaliações, houve a necessidade da alteração dos parâmetros de inicialização (R/R_{min} , pressão da alimentação, recuperação dos componentes-chave, e temperatura de alimentação) detalhado na Tabela 2.2, para verificação dos possíveis erros no cálculo do presente método. As razões entre a razão de refluxo (R) e a razão de refluxo mínima (R_{min}) escolhidas foram de 1.5 e 10 para verificação dos possíveis erros, com relação ao aumento do número de estágios e quando o número de estágios aproxima-se do mínimo de estágios, respectivamente. A pressão da alimentação de cada mistura foi alterada, para seu valor máximo (Pressão de Bolha) e mínimo (Pressão de Orvalho) à mesma temperatura, para o refinamento dos pacotes termodinâmicos.

Ainda na Tabela 2.2, é visto que as recuperações dos componentes-chave foram diminuídas (90% e 80%) para testar a equação de Underwood implementada (Equações 2.2 e 2.3) a qual é válida para um grau de separação acentuado. Essas porcentagens foram escolhidos, pois foi observado frações consideráveis (>2%) e não desejáveis de componentes menos voláteis que o chave pesada junto ao destilado, e mais voláteis que o chave leve no produto de fundo. E por fim, para a temperatura da alimentação foi escolhida uma variação de 10 graus, para mais e para menos, na unidade de referência do teste, a fim de analisar a variação da volatilidade relativa média ($\alpha_{LK, HK}$) entre os componentes-chave mediante as equações de Fenske (Equação 2.1) e Molokanov (Equações 2.5 e 2.6). Este limitante foi escolhido ao ser constatado uma significância no resultado da $\alpha_{LK, HK}$. Essas equações foram implementadas no AmProS, as quais aplicam condições de gás ideal e não a equação de estado cúbica.

As variáveis repostas analisadas são: a razão de refluxo mínima, calculada pela equação de Underwood (Equações 2.2 e 2.3); as temperaturas e vazões molares do destilado e do fundo; o número mínimo de estágios que é calculado pela equação de Fenske (Equação 2.1); o número de estágios teóricos que é calculado pela equação de Molokanov (Equações 2.4 e 2.5); e o estágio de alimentação calculado pela equação de Kirkbride (Equação 2.6).

Parâmetro Inicial	Valores
R/R_{min}	1,5 e 10
Pressão (kPa)	Pressão de Orvalho e Pressão de Bolha
Recuperação de Chave-Leve	90% e 80%
Recuperação de Chave-Pesada	90% e 80%
Temperatura*(Unidade referente ao caso)	$T_{base} \pm 10$

Tabela 2.2. Alteração dos parâmetros iniciais para teste do módulo FUG

*A pressão de alimentação foi modificada para a média entre a Pressão de Orvalho e Pressão de Bolha, a fim de que a mistura ficasse entre vapor saturado e líquido saturado.

2.2.2.3. Teste Módulo Rigoroso

Para finalizar essa etapa do Teste do Software, o módulo do método rigoroso foi aplicado para os três casos-base utilizando os resultados do método *shortcut*. As variáveis de entrada no presente módulo são, além dos componentes e suas frações molares: a razão de refluxo, o estágio e vazão de alimentação, a vazão de produto de fundo, assim como a temperatura e pressão da alimentação. Esses parâmetros são as variáveis de saída do método FUG. As variáveis respostas analisadas no Módulo Rigoroso foram as temperaturas e vazões molares de líquido e vapor que deixam cada estágio.

2.2.2.4. Teste de Aceitação

O Teste de Aceitação do Usuário (Figura 2.1d₃) foi aplicado em três (3) cursos com estudos de caso específicos, com estudantes de engenharia química de diferentes períodos da graduação e na pós-graduação de várias universidades. A Tabela 2.3 apresenta o tipo do curso e sua duração, o perfil dos estudantes, o módulo do AmProS testado e a metodologia de implementação do software. Ao final dos cursos, os cinquenta e dois (52) estudantes responderam o teste de usabilidade organizado na forma online.

Esse teste de usabilidade foi baseado no QUIS 5.0 (Chin et al., 1988), onde o usuário respondeu um questionário subdividido em cinco (5) seções distintas: (I) Impressões gerais do software; (II) Interface gráfica; (III) Terminologia e mensagens do sistema; (IV) Aprendizagem do software; e (V) Capacidade do simulador. O questionário, apresentado no Apêndice A, foi respondido anonimamente pelos estudantes, considerando quinze questões que variavam de 1 a 4, cada uma com diferentes classificações.

Curso	Tempo (h)	Tipo do Curso	Perfil dos Estudantes	Módulo aplicado	Metodologia		
Desenvolvimento de Software para Pesquisa	2	Minicurso aplicado na 21ª Semana de Engenharia Química (SEQ), Feq/Unicamp	15 alunos de graduação de diversas universidades e semestres, e 2 alunos de pós-graduação	Shortcut	Simulação de duas separações multicomponentes.		
EQ852 – Operações unitárias III – Processos de Separação	2	Curso obrigatório para os estudantes de graduação.	28 alunos de graduação do 4º ano do curso de Engenharia Química – UNICAMP	Shortcut	Três simulações comparadas aos cálculos manuais do método FUG e Aspen <i>Hysys</i> ®		
EQ052 - Tópicos em Processos Químicos	15	Disciplina eletiva. EQ852 foi exigida como pré-requisito	7 alunos de graduação do 4º ano do curso de Engenharia Química - UNICAMP	<i>Shortcut</i> e Rigoroso	Estudantes com conhecimento prévio de destilação. AmProS foi aplicado considerando três estudos de caso diferentes, e usando a integração entre os módulos (Shortcut e Rigorous)		

 Tabela 2.3.
 Aplicação do AmProS em cursos diferentes para o Teste de Aceitação

CAPÍTULO 3: RESULTADOS E DISCUSSÃO

Neste capítulo apresentam-se as telas e funcionalidades do software AmProS, e as mensagens informativas que aparecem ao usuário. Em seguida, serão apresentados e discutidos os resultados provenientes dos testes de software e aceitação do usuário, explicitados no Item 2.2.2.

3.1. Apresentação do Software

A apresentação do software desenvolvido, entitulado Ambiente de Processos de Separação (AmProS), será feita com a simulação do caso-base A (item 2.2.2.2), correspondente à separação de propano, isobutano, butano, isopentano e pentano com vazões molares de entrada de 5, 15, 25, 20 e 35 mols/h, respectivamente. As condições da alimentação foram de 85 °C de temperatura e 820 kPa de pressão O *layout* da página inicial do AmProS é mostrado na Figura 3.1. Nesta figura é possível observar o esquema de uma coluna de destilação, os botões para os métodos *Shortcut* e Rigoroso, e dois botões de dúvida representados pelo sinal de interrogação (?) ao lado de cada método. Ao clicar nesses botões, aparecerão as Figuras 3.2a e 3.2b correspondentes as teorias para os métodos *Shortcut* e Rigoroso, respectivamente. Nas informações mostradas na Figura 3.2 é visto o método utilizado nos dois módulos, e uma breve explicação sobre os cálculos feitos em cada módulo.

Figura 3.1. Layout de apresentação do AmProS

Figura 3.2. Explicação do (a) Método Shortcut e (b) Método Rigoroso ao se apertar os botões

de dúvidas na Figura 3.1

3.1.1. Módulo Shortcut

No ínicio da aplicação do método *shortcut* é requerido ao usuário colocar o seu nome (Figura 3.3a) e em seguida a quantidade de componentes na alimentação da coluna, com o máximo de 10 (Figura 3.3b). Em caso de inserção de um número superior a este, a Figura 3.3c é apresentada, indicando que um erro referente a quantidade máxima de componentes está sendo excedida, e retorna para a requisição do número de componentes. Por último, aparece uma informação pedindo ao usuário para inserir os componentes e suas vazões molares (Figura 3.3d), e os dispôr em ordem crescente de ponto de ebulição, que aparece ao se inserir os componentes.

Ao dar continuidade, aparecerá a tela de trabalho do método *Shortcut* do software (Figura 3.4), na qual o usuário poderá inserir as informações requisitadas na Figura 3.3d. Observa-se na Figura 3.4, no canto superior direito, o botão "Como usar?", que ao ser acionado faz aparecer uma caixa de informação com o passo-a-passo do software (Figura 3.5a), com os passos de 1 a 6 que o usuário deve seguir. Com isso, os componentes e suas respectivas vazões molares são inseridos, e o botão para organizar os componentes em ordem crescente do ponto

de ebulição é acionado, aparecendo a Figura 3.5b, que solicita que o usuário escolha os componentes-chave e insira suas respectivas recuperações.

Figura 3.3. Mensagens iniciais do módulo Shortcut

Figura 3.5 Informações do módulo *Shortcut* no botão (a) "Como usar?" e (b) mensagem que aparece ao se organizar os componentes pelos seus pontos de ebulição

(a	a) AmProS - Passo a Passo FUG	×
	1- Colocar componentes e suas vazões mol	ares.
	2- Organizar os componentes em ordem cro ponto de ebulição	escente de
	3- Escolher os componentes chave-leve e c colocar suas recuperações (%)	have-pesada e
	4- Colocar a Temperatura da alimentação e cálculos de Pressão de Bolha e Orvalho	e fazer os
	5- Inserir a Pressão de operação da coluna razão de refluxo	e um fator de
	6- Calculando a coluna, o botão resultados arquivo para impressão	gera um
(b)	Ambiente de Processos de Separação	×
	Insira agora quem são os componentes Cha Chave-Pesada, e as suas recuperações no to respectivamente.	ave-Leve e opo e no fundo,
		ОК

Também é visto, na Figura 3.4, botões de dúvida ao lado dos "Componentes-chave" (Figura 3.6) e do"Pacote Termodinâmico" (Figura 3.7). Esses botões mostram as informações sobre os componentes-chave e como estes são utilizados no software, e as equações usadas nas Equações de Estado Cúbicas de Peng-Robinson e Soave-Redlich-Kwong, respectivamente.

Figura 3.6 Informação sobre os componentes-chave

Z ³ - ($(1 + B - uB)Z^2 + (A + wB^2 - uB - uB^2)$	$^{2})Z - (AB + wB^{2} + wB^{3}) = 0$		
onstantes	Equação de Estado de	Equação de Estado de		
ai	0,45724 $\frac{(RT_{ci})^2}{P_{ci}} \alpha_i$	Soave-Redlich-Kwong 0,42747 $\frac{(RT_{ci})^2}{P_{ci}}\alpha_i$		
αί	$(1 + f_{\omega}(1 - T_{ri}^{0,5}))^2$ na qual: $\left(T_{ri} = \frac{T}{T_{ci}}\right)$	$(1 + f_{\omega}(1 - T_{ri}^{0,5}))^2$ na qual: $\left(T_{ri} = \frac{T}{T_{ci}}\right)$		
$\mathbf{f}_{\boldsymbol{\varpi}}$	$0,37464 + 1,54226 - 0,26992 {\omega_i}^2$	$0,48 + 1,574\omega_i - 0,176{\omega_i}^2$		
am	$\sum_{i}^{NC} \sum_{j}^{NC} y_{i} y_{j} (a_{i} a_{j})^{0.5} (1 - k_{ij})$	$\sum_{i}^{NC} \sum_{j}^{NC} y_i y_j (a_i a_j)^{0,5} (1 - k_{ij})$		
$\mathfrak{b}_{\mathbf{i}}$	$0,0778\frac{RT_{ci}}{P_{ci}}$	$0,08664 \frac{RT_{ci}}{P_{ci}}$		
b_{m}	$\sum_{i}^{NC} y_i b_i$	$\sum_{i}^{NC} y_i b_i$		
A	$\frac{a_m P}{(RT)^2}$	$\frac{a_m P}{(RT)^2}$		
Aij	$\sqrt{a_i a_j} rac{P}{(RT)^2}$	$\sqrt{a_i a_j} \frac{P}{(RT)^2}$		
В	$\frac{b_m P}{RT}$	$\frac{b_m P}{RT}$		
u	2	1		
w	-1	0		

Figura 3.7 Informação sobre os pacotes termodinâmicos

AmProS - Equações de Estado Cúbicas

Seguindo o passo-a-passo da Figura 3.5a, após a inserção dos componentes-chave e de suas respectivas recuperações, a temperatura de alimentação deve ser inserida e solicita-se o cálculo das pressões de bolha e orvalho. Depois, informa-se a pressão da coluna e o fator de razão de refluxo (R/R_{min}). Na Figura 3.8 é mostrado a tela de trabalho com todos os parâmetros inseridos, antes dos cálculos. Ativando o botão "Calcular coluna", os cálculos do método FUG são executados, e os resultados são mostrados conforme a Figura 3.9.

Х

Figura 3.8. Imagem do módulo Shortcut com os dados necessários para execução do projeto

Ambiente de Processos de Separação										
	Usuário Data Como usar							ousar?		
João Pedro 07/01/2020 14:50						Com	o usar :			
Pacote Termodinâmico: 🥑 Soave-Redlich-Kwong										
	Componentes da Alimentação	Fórmula Molecular	Massa Molar	Ponto De Ebulição (K)	Fi (Mol/Hora)	Componentes Chaves 🥐	E	ntrada		
1	Propano	C3H8	44,097	231,02	5	Não-Chave			Unidades	
2	Isobutano (2-Metil-Propano)	C4H10	58,123	261,34	15	Não-Chave	T=	85	С	
3	Butano	C4H10	58,123	272,66	25	Chave-Leve	P _{orv} =	656,3072	kPa	Pressão
4	Isopentano (2-Metil-Butano)	C5H12	72,15	300,99	20	Chave-Pesada	P _{bol} =	882,3648	kPa	
5	Pentano	C5H12	72,15	309,22	35	Não-Chave	$(P_{orv} \leq) P(\leq P_{bol}) =$	820,00	kPa	
Mudar Número de Componentes										
	Recuperação Chave-Le	ve no Topo(%):	95							
	Recuperação Chave-Pesa	ada no Fundo(%):	95							
	Clique aqui para	a organizar os componer	ites em ordem cre	escente de Po	nto de Ebulição					
Clique aqui para organizar os componentes em ordem crescente de Ponto de Ebulição Condensador 2										

de uma coluna de destilação

Ambiente de Processos de Separação									
Usuário Data Como usar?							ousar?		
João Pedro	07/01/2020 14:50								o usur.
Pacote Termodinâmico: 📀	Soave-Redlich-Kwong								
Componentes da Alimentação	Fórmula Molecular	Massa Molar	Ponto De Ebulição (K)	Fi (Mol/Hora)	Componentes Chaves	E	ntrada		
1 Propano	C3H8	44,097	231,02	5	Não-Chave			Unidades	
2 Isobutano (2-Metil-Propano)	C4H10	58,123	261,34	15	Não-Chave	T=	85	С	
3 Butano	C4H10	58,123	272,66	25	Chave-Leve	P _{orv} =	656,3072	kPa	Pressão
4 Isopentano (2-Metil-Butano)	C5H12	72,15	300,99	20	Chave-Pesada	P _{bol} =	882,3648	kPa	
5 Pentano	C5H12	72,15	309,22	35	Não-Chave	$(P_{orv} \leq) P(\leq P_{bol}) =$	820,00	kPa	
Mudar Número de Componentes									
Recuperação Chave-Pesa	ada no Eundo(%):	95							
Cline and reception and reception of the second state of the secon						1			
Cirque aqui para	a organizar os componer	ites em ordem cré	escente de Po	nto de Ebulição		,			
F(mol/h) = 100,00 Implication F(mol/h) = 100,00 Implication Implication Implication Implipute Implica									
Voltar ao Início			Refervero Estágio	dor N	B= T=	54,96 383,89	mol/h K		

Figura 3.9. Imagem do módulo Shortcut com os dados inseridos e a coluna já calculada

Pode-se ver que o software retorna ao usuário um balanço molar da coluna, com a vazão molar de topo e de fundo, bem como suas temperaturas. Também retorna o estágio de alimentação, a carga térmica da mistura de alimentação, a razão de refluxo mínima (R_{min}), o número mínimo de estágios (N_{min}), e o número de estágios, não contando com o condensador.

Se o usuário colocar mais que dois componentes chave-leve ou pesada, a coluna de inserção dos componentes-chave ficará amarela, mas se mesmo assim o usuário colocar para calcular a coluna, aparecerá uma mensagem de erro, como na Figura 3.10a. Porém se o usuário colocar os componentes-chave separados, ou o componente chave-pesada sendo um componente mais leve que o chave-leve, visualmente a coluna aparecerá sem erros, mas quando o usuário for calcular a coluna, aparecerá outra mensagem de erro, mostrado na Figura 3.10b.

(a)	Componentes Chaves 2 Não-Chave Chave-Leve Chave-Leve	Ambiente de Processos de Separação X Erro! Tem mais que um componente Chave-Leve e/ou Chave-Pesada	
	Chave-Pesada Não-Chave	ОК	
,		(b) Componentes Chaves ? Não-Chave Chave-Leve Não-Chave Não-Chave	:
		Chave-Pesada OK	

Figura 3.10. Erros da inserção dos componentes-chave

Quando o usuário coloca a pressão da alimentação maior que a pressão de bolha e calcula a coluna, o software retorna um erro mostrado na Figura 3.11a. E quando a pressão for menor que a de orvalho, o erro retornado é mostrado na Figura 3.11b.

Outro erro que pode ocorrer nessa parte é quando o usuário coloca a taxa de refluxo menor ou igual a unidade, pois se assim for, a razão de refluxo será menor que a razão mínima, como o refluxo mínimo considera infinitos estágios não se conseguiria calcular com o valor abaixo do R_{min} . Esse aviso de erro é mostrado da Figura 3.12.

Figura 3.12. Erros da inserção da taxa de refluxo

É visto na Figura 3.8 e 3.9 que há botões de dúvida ao lado dos resultados do Estágio de Alimentação, da razão de refluxo mínima ($R_{mín}$), do número mínimo de estágios ($N_{mín}$) e do número de estágios (N). Apertando cada um desses botões, aparecem, respectivamente, as Figuras 3.13a e 3.13b, e as Figuras 3.14a e 3.14b. Esses botões mostram as fórmulas usadas para o cálculo de cada uma dessas variáveis, e uma breve explicação destas.

Figura 3.13. Informação sobre (a) Estágio de alimentação e (b) Razão de refluxo mínima

(b) AmProS - Equação de Underwood Caso 1 – Mistura com diferença de pontos de ebulição muito próximas ou o grau de separação não é acentuado $R_{min} = \frac{\frac{x_{CL,D}}{x_{CL,F}} - (\alpha_{CL,CP})_F \left(\frac{x_{CP,D}}{x_{CP,F}}\right)}{(\alpha_{CL,CP})_F - 1}$ Caso 2 – Um ou mais componentes só aparecem em um dos produtos $R_{min} + 1 = \sum_{i=1}^{NC} \frac{\alpha_{j,CP} \times x_{j,D}}{\alpha_{j,CP} - \theta} \qquad (1 - q) = \sum_{i=1}^{NC} \frac{\alpha_{i,CP} \times z_i}{\alpha_{i,CP} - \theta}$

Neste Software é usado somente o caso 2.

Figura 3.14. Equações aplicadas para o cálculo do (a) Número mínimo de estágios, *N_{min}* e (b) Número de estágios, *N*, e informativos

Da Figura 3.9, também são vistos os botões: "Mudar número de Componentes" onde o usuário pode alterar a quantidade de componentes para uma nova simulação; "Resultados", que leva o usuário para a página com todos os parâmetros inseridos e resultados calculados, inclusive com as composições e vazões molares dos componentes no destilado e no fundo, como visto na Figura 3.15; "Exportar Resultados para Avaliação Rigorosa", onde os resultados e alguns parâmetros iniciais são exportados como valores iniciais do módulo Rigoroso; e "Voltar ao Início" que volta a Figura 3.1.

Pode ser visto, na Figura 3.15, o botão "Imprimir", que gera um arquivo PDF com as informações presentes nesta página, que pode ser anexados a relatórios, os resultados também podem ser copiados para uma outra planilha para tratamento. O botão "Voltar", também presente na Figura 3.15, retorna para a tela do software presente na Figura 3.9.

Figura 3.15. Imagem dos resultados finais do módulo Shortcut
3.1.2. Módulo Rigoroso

Tem duas formas para acessar o módulo rigoroso: (I) A partir do menu inicial (Figura 3.1) ou (II) A partir do módulo *Shortcut*, exportando os resultados com o botão "Exportar Resultados para Avaliação Rigorosa" (Figura 3.9).

I) Módulo Rigoroso a partir do Menu Inicial

A partir da Figura 3.1, o botão "Método Rigoroso (Avaliação de Colunas)" é pressionado. Com isso, inicia-se novamente o mesmo procedimento perguntando o nome do usuário (Figura 3.3a), e em seguida a quantidade de estágios teóricos 9 (Figura 3.16a), lembrando de contar o condensador e limitando a 30 estágios. Se forem colocados menos que 3 estágios ou mais que 30, as mensagems das Figuras 3.16b e 3.16c, respectivamente, aparecerão.

Figura 3.16. Imagem da (a) inserção do número de estágios e erro de (b) poucos estágios (<3) e (c) muitos estágios (>30)

Com a inserção do número de estágios, o AmProS solicita a inserção do estágio teórico de alimentação (Figura 3.17a). Se a alimentação for colocada no estágio 1, ou seja, no condensador, ou no número máximo de estágios, no refervedor, o programa mostra, respectivamente, as Figuras 3.17b e 3.17c, e retorna para a Figura 3.17a, para que o estágio teórico de alimentação seja um valor válido.

Figura 3.17. Imagem da (a) inserção do estágio teórico de alimentação e erro se a alimentação for no (b) condensador e (c) refervedor

Inserindo um estágio de alimentação válido, o software solicita a vazão molar da alimentação, e em seguida a vazão molar do resíduo de fundo, mostrado nas Figuras 3.18a e 3.18b, respectivamente. Caso a vazão molar do resíduo de fundo seja maior do que a da alimentação, o erro mostrado na Figura 3.18c aparece, e retorna ao pedido de inserção da vazão molar do resíduo. Dando sequência, o software requisita a razão de refluxo (Figura 3.19a) e o número de componentes na alimentação (Figura 3.19b). Se forem inseridos mais que dez componentes aparecerá uma mensagem de erro (Figura 3.19c), retornando para uma nova inserção do número de componentes dentro do limite recomendado (Figura 3.19d).

Figura 3.18. Imagem da (a) Inserção da vazão molar da alimentação e (b) do resíduo de fundo, e (c) erro se a a vazão de fundo for maior que a alimentação

(a)	Ambiente de Processos de Separ	ação X	
	Qual é a vazão molar da Aliment	tação? (mol/h) OK Cancelar	
	(b)	Ambiente de Processos de Separ	ação X
		Qual é a vazão molar do resíduo (mol/h)	de fundo? OK Cancelar
		(c)	Ambiente de Processos de Separação X
			🛕 Erro! Vazão molar de Resíduo Maior que a de Alimentação!
			ОК

Figura 3.19. Imagem da (a) Inserção da razão de refluxo, (b) número de componentes na alimentação, (c) erro do número de componentes e (d) informação sobre o próximo passo

(a)	Ambiente de Processos de Separação	×	(c)	Ambiente d	le Processos de Separação	×
	Qual é a razão de refluxo?	OK Cancelar		m	rro! Número de componentes na alimentação não pode ser naior que 10	
					ОК	
(b)	Ambiente de Processos de Separação	×	(d)	Ambiente d	le Processos de Separação	×
	Número de Componentes na alimentação? (Máximo de 10)	OK Cancelar		A mo	gora você deve inserir os componentes, e as suas frações Iolares. Em seguida, aperte o botão para os colocar em rdem crescente de ponto de ebulição	
					ОК	

Após pressionar *ok* na Figura 3.19d, a tela de trabalho do módulo Rigoroso aparece, com os parâmetros iniciais inseridos em seus respectivos lugares, como mostrado na Figura 3.20. Observa-se nessa última figura (tela), o botão "Como usar?", que mostra o passo-a-passo do módulo rigoroso (Figura 3.21), e os botões de dúvida (?).

O botão de dúvida ao lado do informe "Pacote termodinâmico" mostra as equações de estado, Peng-Robison e Soave-Redlich-Kwong (Figura 3.7). Já os botões de dúvida ao lado do número de estágios (Figura 3.22a) e do estágio da alimentação (Figura 3.22b) informam que o condensador total deve ser inserido pelo usuário como um estágio adicional. Nas Figuras

3.22c e 3.22d destacam-se que à razão de refluxo deve ser maior que zero, e a vazão molar do resíduo de fundo deve ser menor do que a da alimentação, respectivamente.

Figura 3.20. Tela de trabalho do módulo Rigoroso

Figura 3.21. Passo-a-passo do módulo Rigoroso

AmProS - Passo a Passo Rigoroso X
 1- Inserir Número de estágios, contando com o condensador.
2- Inserir Estágio de alimentação, contando de cima para baixo.
3- Inserir Vazão molar da alimentação.
4- Inserir Vazão molar do produto de fundo.
5- Inserir razão de refluxo da coluna.
6- Inserir os componentes da alimentação e colocá-los em ordem crescente de ponto de ebulição.
7- Inserir frações molares dos componentes, atentando- se para que a soma seja igual a unidade.
8- Inserir temperatura da alimentação, e apertar o botão para o cálculo da Pressão de Bolha e Orvalho.
9- Inserir pressão da coluna, atentando-se para que seja entre a pressão de bolha e a de orvalho, e apertar o botão para o cálculo da coluna.

Figura 3.22. Botões de dúvida do (a) Número de Estágios, (b) Estágio de Alimentação, (c) Razão de Refluxo, e (d) Vazão Molar do resíduo de fundo

Acompanhando o passo-a-passo, depois de inserir os componentes, o botão para colocá-los em ordem crescente é pressionado, aparecendo a Figura 3.23. Colocando as frações molares, a temperatura de alimentação, fazendo os cálculos de pressão e inserindo a pressão da coluna, já pode ser feito o cálculo da coluna. Todos os parâmentros inseridos já são automaticamente transferidos quando faz a exportação dos resultados do módulo *Shortcut*.

Figura 3.23. Informação que aparece após colocar os componentes em ordem crescente de

II) Vindo do módulo Shortcut

Apertando o botão "Exportar Resultados para Avaliação Rigorosa" (Figura 3.9), após ter simulado a coluna *Shortcut*, a mensagem da Figura 3.24 aparecerá, pedindo para que os valores inseridos sejam conferidos. Ao pressionar o botão "OK", a tela com os parâmetros já inseridos será mostrada (Figura 3.25). Acionando o botão "Calcular Coluna", uma mensagem avisando quantas iterações foram feitas aparecerá ao usuário (Figura 3.26), e na Figura 3.27, é mostrado a tela de trabalho do Módulo Rigoroso os resultados calculados.

Figura 3.24. Mensagem pendido para que os valores exportados do Módulo *Shortcut* para o Rigoroso sejam conferidos

Ambiente de Processos de Separação											
Usuário	Data							Con			
João Pedro	07/01/2020 15:47							Con	ilo usai :		
Pacote Termodinâmico: ioave-Redlich-Kwong ? Condensador Total ? Número de Estágios= 13 ? Estágio da Alimentação= 7 F(mol/h)= 100,00											
Clique aqui para organiz	aros componentes s	em ordem cres	Referv	erdor	—— B=	54,96	mol/h 🕐)			
Componentes da			Ponto De								
Alimentação	Fórmula Molecular	Massa Molar	Ebulição (K)	Fração Molar		Enti	rada				
1 Propano	C3H8	44,097	231,02	0,05		Soma das Frações Molares =	1,000	Unidades			
2 Isobutano (2-Metil-Propa	C4H10	58,123	261,34	0,15		T=	85	с			
3 Butano	C4H10	58,123	272,66	0,25		P _{orv} =	656,3072	kPa	Drazaža		
4 Isopentano (2-Metil-Buta	C5H12	72,15	300,99	0,2		P _{bol} =	882,3648	kPa	Pressao		
5 Pentano	C5H12	72,15	309,22	0,35		$(P_{ov} \leq) P(\leq P_{bol}) =$	820	kPa			
						Calcular Coluna	Muda Cor	ar Número mponentes	de ;		
Componentes	Di	x _{di}	Bi	Х _{ві}		T topo=		к			
1 0,0000						T fundo=		к			
2 0,0000						Q condensador=		kJ/h			
3 0,0000						Q refervedor=		kJ/h			
4 0,0000											
5 0,0000						Resultados					
								Volta	r ao FUG ao Início		

Figura 3.25. Tela de trabalho do Módulo Rigoroso com os valores importados do Módulo

Shortcut

Figura 3.26. Mensagem com a quantidade de iterações feitas

Figura 3.27. Tela de trabalho do Módulo Rigoroso com a coluna calculada

Na Figura 3.27, observa-se os valores das frações e vazões molares de cada componente na corrente de topo e de fundo, as temperaturas, e os fluxos de calor do condensador e refervedor. Acionando o botão "Resultados" têm-se a tela conforme a Figura 3.28, onde pode ser observado as temperaturas e vazões de líquido e vapor de cada estágio, as vazões e frações molares de cada componente, além de suas respectivas porcentagens de recuperação no topo e no fundo.

Na Figura 3.27, o usuário pode retornar ao módulo *Shortcut*, pressionando o botão "Voltar ao FUG", ou voltar ao início, pressionando o botão "Voltar ao Início". Na Figura 3.28, o usuário pode pressionar o botão "Imprimir" para gerar um arquivo PDF, ou este pode copiar os resultados para outra planilha para tratamento.

Ambiente de Processos de Separação												
07/01/2020) 15:47		Pacot	e Termodir	nâmico:	Soave-Red	lich-Kwon	g				
Usuário: J	oão Pedro)						.				
	Está	gio	Tj (K)	Vj (mol/h)	Lj (mol/h)	R=	3,522					
11	Conder	nsador	331,85	0,00	158,64	D=	45,04	mol/h				
2	1		338,87	203,68	156,59	Qc=	2389, 228	kJ/h				
3	2	-	344,13	201,63	154,29							
4	3	}	349,12	199,33	151,88	ļ						
5	4	l .	354,13	196,92	149,77							
6	5	5	358,76	194,81	148,30	ļ						
7	Alimer	ntação	363,25	193,34	227,24							
8	7		367,75	172,28	226,53	ļ						
9	8	8	371,88	171,57	226,00							
10	9)	375,51	171,04	225,67	ļ						
11	10	0	378,56	170,71	225,50							
12	1	1	380,99	170,54	225,41	B=	54,96	mol/h				
13	Refer	vedor	382,91	170,45	54,96	Qr=	2169,426	kJ/h				
14						ļ						
15												
16												
17]						
18												
19												
20												
21						t						
22						t						
23						t						
24						t						
25						t						
26						t						
27						t						
28												
29						t						
30						1						
				I	I	1	1					
Compos	tos	Alime	ntação		Destilado			Fundo				
compos		mol/h	Fraç. Mol.	mol/h	Fraç. Mol.	Rec. Topo	mol/h	Fraç. Mol.	Rec. Fundo			
Propano		5,00	0,050	5,00	0,111	100,00	0,00	0,000	0,00			
Isobutano (2-N	Vetil-Prop	15,00	0,150	14,77	0,328	98,47	0,23	0,004	1,53			
Butano		25,00	0,250	23,04	0,511	92,16	1,96	0,036	7,84			
Isopentano (2-	-Metil-Bu	20,00	0,200	1,47	0,033	7,35	18,53	0,337	92,65			
Pentano		35,00	0,350	0,77	0,017	2,20	34,23	0,623	97,80			
4	Voltar			1		1	1	Imprimi				

Figura 3.28. Imagem da página de resultados finais do Módulo Rigoroso

3.2.Testes do Software

Nesse item serão apresentados os resultados e discussões dos Testes do Software. Das simulações foram calculados os erros relativos (ER) entre os dados provenientes do Aspen e do AmProS de acordo com as Equações 3.1 e 3.2, respectivamente, onde o x é a variável que está sendo considerada para ambos os pacotes termodinâmicos: (a) no teste termodinâmico, são as pressões de bolha e orvalho; (b) no teste FUG, são a razão de refluxo mínima, as temperaturas e vazões de destilado e fundo, o número mínimo de estágios, o número de estágios e o estágio de alimentação; (c) no teste Rigoroso, são as vazões molares de líquido e vapor interestágios e a temperatura nos estágios.

$$ER_{Aspen} = \frac{|x_{Aspen} - x_{AmProS}|}{x_{Aspen}} \times 100\%$$
(3.1)

$$ER_{AmProS} = \frac{|x_{AmProS} - x_{Aspen}|}{x_{AmProS}} \times 100\%$$
(3.2)

3.2.1. Resultados dos Testes Termodinâmicos

Na primeira etapa dos Testes do Software (Item 2.2.2.1) refere-se a validação dos resultados termodinâmicos, aplicando misturas binárias e equações de estado de Peng-Robinson (PR) e Soave-Redlich-Kwong (SRK), variando as frações molares dos componentes de 0 à 1. A Tabela 3.1 mostra os pares e as respectivas temperaturas dos testes realizados, bem como em quais gráficos e tabelas estão seus resultados.

Mistura	Temperatura (°C)	Figuras(Método)	Tabela
		PR	SRK	
Benzeno-Hexano	100	3.29a	3.29b	3.2
Benzeno-Hexano	50	3.29c	3.29d	3.3
Propano-Butano	25	3.30a	3.30b	3.4
Propano-Butano	0	3.30c	3.30d	3.5
Butano-Isopentano	100	3.31a	3.31b	3.6
Butano-Isopentano	50	3.31c	3.31d	3.7

 Tabela 3.1. Misturas binárias e temperaturas aplicadas ao teste dos pacotes

 termodinâmicos(PR e SRK), e respectivas tabelas e figuras relacionadas

Pode-se observar nos testes, que os erros foram baixos e, dependendo da composição da mistura, ser visualmente coincidente, como é no caso da mistura com Propano-Butano. Observa-se nas Tabelas 3.2 à 3.7, o menor erro de 0,0032% na pressão de bolha do teste a 25 °C (Figura 3.30d), com uma fração molar de propano igual a 0,9, utilizando SRK. Já o maior erro encontrado foi de 4,01%, correspondente à pressão de orvalho do teste a 50 °C do par Butano-Isopentano (Figura 3.31b), com uma fração molar de Butano igual a zero, também utilizando SRK. Esse erro pode se dar devido à uma maior precisão das constantes termodinâmicas utilizadas no Aspen, e/ou modelo computacional usado para convergência das iterações necessárias para o cálculo das pressões de bolha e orvalho.

Figura 3.29. Teste termodinâmico com o par Benzeno-Hexano (a) 100°C PR, (b) 100°C SRK, (c) 50°C PR, e (d) 50°C SRK

		T=100	°C; PR	T=100 °C; SRK					
γ.	P _{Or}	valho	P _B	olha	P _{Or}	valho	P_E	Bolha	
∿hexano	$ER_{Aspen}(\%)$	$ER_{AmPros}(\%)$	$ER_{Aspen}(\%)$	$ER_{AmPros}(\%)$	$ER_{Aspen}(\%)$	$ER_{AmPros}(\%)$	$ER_{Aspen}(\%)$	ER_{AmProS} (%)	
0	1,01	1,00	1,01	1,00	0,81	0,80	0,81	0,80	
0,05	0,57	0,57	0,03	0,03	0,35	0,35	0,52	0,53	
0,1	0,34	0,33	0,56	0,56	0,03	0,03	1,37	1,39	
0,2	0,26	0,26	1,20	1,21	0,86	0,87	2,25	2,31	
0,3	0,80	0,81	1,45	1,47	1,63	1,66	2,58	2,64	
0,4	1,23	1,24	1,52	1,54	2,23	2,28	2,64	2,71	
0,5	1,22	1,23	1,43	1,45	2,34	2,40	2,49	2,55	
0,6	1,15	1,16	1,22	1,24	2,24	2,29	2,17	2,22	
0,7	1,18	1,20	0,95	0,95	2,12	2,16	1,76	1,79	
0,8	0,75	0,75	0,57	0,58	1,47	1,49	1,20	1,21	
0,9	0,18	0,18	0,10	0,10	0,61	0,61	0,56	0,49	
0,95	0,06	0,06	0,14	0,14	0,12	0,12	0,07	0,07	
1	0,53	0,53	0,53	0,53	0,36	0,36	0,36	0,36	

Tabela 3.2. Erro relativo às pressões de bolha e orvalho à temperatura de 100 °C para o par hexano-benzeno

		T=50 °	C; PR	T=50 °C; SRK					
v	Port	valho	P_B	olha	Por	valho	P_{B}	P_{Bolha}	
<i>⊁hexano</i>	$ER_{Aspen}(\%)$	$ER_{AmProS}(\%)$	$ER_{Aspen}(\%)$	$ER_{AmProS}(\%)$	$ER_{Aspen}(\%)$	$ER_{AmProS}(\%)$	$ER_{Aspen}(\%)$	$ER_{AmProS}(\%)$	
0	1,74	1,71	1,74	1,71	1,59	1,57	1,59	1,57	
0,05	1,46	1,44	0,40	0,40	1,12	1,11	0,51	0,52	
0,1	1,12	1,10	0,44	0,44	0,60	0,60	1,76	1,79	
0,2	0,39	0,39	1,27	1,28	0,32	0,32	2,79	2,87	
0,3	0,34	0,34	1,55	1,57	1,34	1,35	3,11	3,21	
0,4	0,97	0,98	1,57	1,60	2,23	2,28	3,09	3,19	
0,5	1,38	1,40	1,46	1,48	2,80	2,88	2,86	2,94	
0,6	1,48	1,50	1,24	1,26	2,76	2,83	2,49	2,56	
0,7	1,25	1,27	0,93	0,94	2,52	2,58	2,00	2,04	
0,8	0,76	0,77	0,52	0,52	1,74	1,77	1,43	1,45	
0,9	0,09	0,09	0,05	0,05	0,68	0,69	0,54	0,55	
0,95	0,30	0,30	0,31	0,31	0,10	0,10	0,04	0,04	
1	0,65	0,65	0,65	0,65	0,57	0,57	0,57	0,57	

Tabela 3.3. Erro relativo às pressões de bolha e orvalho à temperatura de 50 °C para o par hexano-benzeno

Figura 3.30. Teste termodinâmico com o par Propano-Butano (a) 25°C PR, (b) 25°C SRK, (c) 0°C PR, e (d) 0°C SRK

		T=25 °	°C; PR		T=25 °C; SRK					
x	Por	valho	P_B	olha	Por	valho	P_B	P_{Bolha}		
∧ Propano	$ER_{Aspen}(\%)$	$ER_{AmProS}(\%)$	$ER_{Aspen}(\%)$	$ER_{AmProS}(\%)$	$ER_{Aspen}(\%)$	$ER_{AmProS}(\%)$	$ER_{Aspen}(\%)$	$ER_{AmProS}(\%)$		
0	0,35	0,35	0,35	0,35	0,23	0,23	0,23	0,23		
0,05	0,38	0,38	0,42	0,42	0,21	0,21	0,49	0,49		
0,1	0,36	0,36	0,31	0,31	0,19	0,19	0,29	0,29		
0,2	0,32	0,32	0,25	0,24	0,14	0,14	0,18	0,18		
0,3	0,26	0,26	0,20	0,20	0,23	0,23	0,16	0,16		
0,4	0,33	0,33	0,17	0,17	0,22	0,22	0,14	0,14		
0,5	0,31	0,31	0,14	0,14	0,21	0,21	0,12	0,12		
0,6	0,28	0,28	0,11	0,11	0,19	0,18	0,10	0,10		
0,7	0,23	0,23	0,08	0,08	0,15	0,15	0,10	0,10		
0,8	0,11	0,11	0,12	0,12	0,05	0,05	0,04	0,04		
0,9	0,01	0,01	0,06	0,06	0,09	0,09	0,00	0,00		
0,95	0,03	0,03	0,03	0,03	0,06	0,06	0,03	0,03		
1	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06		

Tabela 3.4. Erro relativo às pressões de bolha e orvalho à temperatura de 25 °C para o par propano-butano

		T=0 °	C; PR		T=0 °C; SRK					
r	Por	valho	P_B	olha	Por	valho	P_B	P_{Bolha}		
∧propano	$ER_{Aspen}(\%)$	$ER_{AmPros}(\%)$	$ER_{Aspen}(\%)$	$ER_{AmProS}(\%)$	$ER_{Aspen}(\%)$	$ER_{AmPros}(\%)$	$ER_{Aspen}(\%)$	$ER_{AmProS}(\%)$		
0	0,41	0,41	0,41	0,41	0,33	0,33	0,33	0,33		
0,1	0,49	0,49	0,43	0,42	0,33	0,32	0,34	0,33		
0,2	0,46	0,46	0,28	0,28	0,32	0,31	0,33	0,33		
0,3	0,44	0,44	0,22	0,22	0,39	0,39	0,20	0,20		
0,4	0,40	0,40	0,18	0,18	0,28	0,28	0,18	0,18		
0,5	0,36	0,36	0,15	0,15	0,25	0,25	0,17	0,17		
0,6	0,40	0,40	0,12	0,12	0,21	0,21	0,24	0,24		
0,7	0,35	0,35	0,10	0,10	0,25	0,25	0,20	0,20		
0,8	0,29	0,29	0,15	0,15	0,23	0,23	0,14	0,14		
0,9	0,19	0,19	0,08	0,08	0,18	0,18	0,07	0,07		
1	0,01	0,01	0,01	0,01	0,10	0,10	0,10	0,10		

Tabela 3.5. Erro relativo às pressões de bolha e orvalho à temperatura de 0 °C para o par propano-butano

Figura 3.31. Teste termodinâmico com o par Butano-Isopentano (a) 100°C PR, (b) 100°C SRK, (c) 50°C PR, e (d) 50°C SRK

		T=100	°C; PR	T=100 °C; SRK					
γ	P _{Orvalho}		P _{Bolha}		P _{Or}	valho	P_E	Bolha	
≁Butano	$ER_{Aspen}(\%)$	$ER_{AmPros}(\%)$	$ER_{Aspen}(\%)$	$ER_{AmPros}(\%)$	$ER_{Aspen}(\%)$	$ER_{AmPros}(\%)$	$ER_{Aspen}(\%)$	ER_{AmProS} (%)	
0	0,60	0,60	0,60	0,60	2,58	2,52	2,58	2,52	
0,05	0,58	0,57	0,58	0,58	2,48	2,42	2,32	2,27	
0,1	0,55	0,55	0,46	0,46	2,38	2,33	2,08	2,03	
0,2	0,50	0,50	0,46	0,46	2,29	2,24	1,67	1,64	
0,3	0,43	0,43	0,63	0,63	2,17	2,12	1,32	1,31	
0,4	0,56	0,55	0,36	0,35	1,96	1,92	1,04	1,03	
0,5	0,53	0,53	0,34	0,34	1,73	1,70	0,78	0,77	
0,6	0,38	0,38	0,26	0,26	1,30	1,28	0,66	0,66	
0,7	0,31	0,31	0,18	0,18	0,99	0,98	0,47	0,47	
0,8	0,24	0,23	0,20	0,20	0,65	0,65	0,30	0,30	
0,9	0,15	0,15	0,13	0,13	0,42	0,42	0,13	0,13	
0,95	0,11	0,11	0,10	0,10	0,25	0,25	0,16	0,16	
1	0,06	0,06	0,06	0,06	0,09	0,09	0,09	0,09	

Tabela 3.6. Erro relativo às pressões de bolha e orvalho à temperatura de 100 °C para o par butano-isopentano

		T=50 °	C; PR		T=50 °C; SRK					
	P _{Orvalho}		P_B	P_{Bolha}		valho	P_{Bol}	ha		
x_{Butano}	$ER_{Aspen}(\%)$	$ER_{AmPros}(\%)$	$ER_{Aspen}(\%)$	$ER_{AmPros}(\%)$	$ER_{Aspen}(\%)$	$ER_{AmPros}(\%)$	$ER_{Aspen}(\%)$	ER _{AmPros} (%)		
0	0,07	0,07	0,07	0,07	4,01	3,86	3,55	3,43		
0,05	0,08	0,08	0,08	0,08	3,81	3,67	3,44	3,33		
0,1	0,10	0,10	0,09	0,09	3,61	3,49	3,03	2,95		
0,2	0,13	0,13	0,09	0,09	3,45	3,34	2,38	2,32		
0,3	0,20	0,20	0,15	0,15	3,18	3,08	1,87	1,83		
0,4	0,23	0,23	0,11	0,11	2,87	2,79	1,46	1,44		
0,5	0,22	0,22	0,04	0,04	2,51	2,45	1,13	1,12		
0,6	0,23	0,23	0,10	0,10	2,24	2,19	0,79	0,78		
0,7	0,22	0,22	0,15	0,15	1,81	1,78	0,61	0,61		
0,8	0,17	0,17	0,19	0,19	1,33	1,31	0,39	0,39		
0,9	0,04	0,04	0,22	0,22	0,78	0,78	0,32	0,32		
0,95	0,19	0,19	0,23	0,23	0,49	0,49	0,25	0,25		
1	0,23	0,23	0,23	0,23	0,18	0,18	0,18	0,18		

Tabela 3.7. Erro relativo às pressões de bolha e orvalho à temperatura de 50 °C para o par butano-isopentano

3.2.2. Método Shortcut

Na segunda etapa dos Testes do Software, como explicitado no item 2.2.2, a fim de validar o módulo *Shortcut*, foram conduzidos testes utilizando as equações de estado de Peng-Robinson (PR) e Soave-Redlich-Kwong (SRK). A Tabela 3.8 mostra os componentes dos 3 casos, variável modificada e as tabelas de seus respectivos resultados.

respectivus us variavens mounicadas					
			Tabela de		
Casa	Componentes	Varióval modificada	resultado		
Caso		v anaver mounicada	(No apêndice B)		
			SRK	PR	
А	Propano, Isobutano,	Razão de Refluxo	B1	B2	
	Butano, Isopentano e	Pressão de alimentação	B3	B4	
	Pentano	Recuperação do chave-leve	B5	B6	
		Recuperação do Chave-Pesada	B7	B8	
		Variação da Temperatura	B9	B10	
В	Benzeno, Tolueno e	Razão de Refluxo	B11	B12	
	m-Xileno	Pressão de alimentação	B13	B14	
		Recuperação do chave-leve	B15	B16	
		Recuperação do Chave-Pesada	B17	B18	
		Variação da Temperatura	B19	B20	
С	Propano, Isobutano,	Razão de Refluxo	B21	B22	
	Butano, Isopentano,	Pressão de alimentação	B23	B24	
	Pentano, Hexano,	Recuperação do chave-leve	B25	B26	
	Heptano, Octano e	Recuperação do Chave-Pesada	B27	B28	
	Nonano	Variação da Temperatura	B29	B30	

 Tabela 3.8. Casos utilizados para o teste Shortcurt, com a indicação das tabelas de resultado

 respectivas as variáveis modificadas

Com os resultados das Tabelas B.1 à B.30 foi feito a média dos erros relativos (ER) e dispostos na Tabela 3.9. As médias apresentadas foram feitas em relação aos casos-base e suas variações. Observa-se nesta última tabela, que os valores de ER foram próximos (<5%) quando comparados aos resultados gerados no Aspen $Hysys^{\text{(B)}}$. Porém, na média das variações do caso C, valores de ER maiores que 5% são observados para a razão de refluxo mínima (R_{min}) e no estágio de alimentação, e ER maiores que 10% no número de estágios (N) e no número mínimo de estágios (N_{min}).

de PR e SRK								
	Caso A e suas		Caso E	e suas	Caso C e suas			
Variával	variações		varia	ıções	variações			
	Média dos ER (%)							
-	PR	SRK	PR	SRK	PR	SRK		
R _{min}	0,77	3,89	3,65	4,12	8,48	9,52		
T topo (K)	1,09	1,26	1,08	0,89	0,45	0,60		
T fundo (K)	0,09	0,20	0,16	0,13	0,80	0,65		
D (mol/h)	0,04	0,29	0,01	0,01	0,01	0,01		
B (mol/h)	0,03	0,25	0,03	0,04	0,01	0,01		
N_{min}	5,72	2,43	2,15	3,40	12,75	10,83		
N	9,00	5,58	2,92	4,27	15,07	12,18		
Estágio de Alimentação	3,14	3,19	2,85	3,19	9,74	7,76		

Tabela 3.9. Média dos erros relativos das variáveis de análise da coluna de destilação, considerando a média entre os pares dos casos A, B e C, através dos pacotes termodinâmicos

Observa-se na Tabela 3.9 para o caso C e suas variações um ER maior que 5% relativo ao Aspen *Hysys*[®] referente ao R_{min} nos dois pacotes termodinâmicos PR e SRK, devido a utilização da equação de Underwood (Equações 2.2 e 2.3) no AmProS. Uma restrição na aplicação destas equações é quando os pontos de ebulição dos componentes-chave são muito próximos, devendo-se então usar a Equação 2.4. Exemplificando-se essa análise, observa-se as temperaturas de ebulição dos componentes-chave na Tabela A1 do Anexo A:

- Caso A: A diferença entre os pontos de ebulição dos componentes-chave, Butano (*T_{eb}=272,66 K*) e Isopentano (*T_{eb}=300,99 K*) é de 28,33 K;
- Caso B: A diferença entre os pontos de ebulição dos componentes-chave, Tolueno (*T_{eb}*=383,79 K) e *m*-Xileno (*T_{eb}*=412,34 K) é de 28,55 K;
- Caso C: A diferença entre os pontos de ebulição entre o componentes-chave, Butano (*T_{eb}*=272,66 K) e Isobutano (*T_{eb}*=261,34 K) é de 11,32 K, ou seja, mais próximas do que nos casos A e B.

Portanto, esse aumento no caso C vem do uso de equações diferentes. Porém o ER continuou abaixo de 10%.

Relativo ao N_{min} , um de seus principais parâmetros é a volatilidade relativa média entre os compontes chaves ($\alpha_{cl,cp}^{avg}$), que para os cálculos no AmProS foram considerados gás e líquidos ideais usando a equação de Fenske (Equação 2.1). Entretanto, o Aspen *Hysys*[®] usa a equação de estado pré-determinada para calcular esse fator, o que leva a um erro maior com o aumento da quantidade de componentes e com a diminuição da diferença de temperatura de ebulição entre os componentes-chave, comparando o caso C com os casos A e B. O erro do N_{min} é propagado para o cálculo do N pelas Equações 2.5 e 2.6, levando a valores de ER maiores no número de estágios. Esse erro no cálculo do N é propagado, ainda, para o cálculo do estágio de alimentação pela Equação 2.7.

3.2.3. Método Rigoroso

Os resultados do método shortcut no AmProS, obtidos no item 3.2.2 para os três casos-base, foram exportados diretamente para o Módulo Rigoroso, pela própria funcionalidade do software desenvolvido. Os mesmos resultados de projeto da coluna foram implementados no Aspen *Hysys*[®].

Para o caso-base A (separação de propano, isobutano, butano, isopentano e pentano) utilizando o pacote termodinâmico de Soave-Redlich-Kwong (SRK) a razão de refluxo inserida foi de 3,522, o número de estágios e o estágio de alimentação foram 13 e 7, respectivamente, e a vazão molar de fundo foi 54,96 mol/h. Utilizando o pacote termodinâmico de Peng-Robinson (PR) as entradas foram iguais ao do pacote SRK, com exceção da razão de refluxo que foi de 3,486. Os resultados das vazões molares interestágios de líquido (L_j) e vapor (V_j), e temperatura (T_j) em função dos estágios estão dispostos para SRK e PR, respectivamente, nas Tabelas C1 e C2 do Apêndice C. Esses dados foram graficados nas Figuras 3.32 a e 3.32 b e as médias dos erros relativos (ER) estão dispostas na Tabela 3.10.

Figura 3.32. Comparação dos resultados da aplicação do método Rigoroso entre AmProS e Aspen *Hysys*[®] para o caso-base A usando as equações de estado (a) SRK e (b) PR

Tabela 3.10. Média dos erros relativos das vazões molares interestágios de vapor (V_j) e líquido (L_j), e temperatura (T_j) nos estágios para o caso-base A aplicando PR e SRK

		Média dos ER (%)			
Variável analisada	Simbolo	PR	SRK		
Vazão molar interestágio de vapor	Vj	1,39	1,58		
Vazão molar interestágio de líquido	Lj	1,49	1,71		
temperatura	Tj	0,12	0,09		

Para o caso B, da separação de benzeno, tolueno e m-xileno, utilizando o pacote termodinâmico de SRK a razão de refluxo foi de 0,936, o número de estágios e o estágio de alimentação foram 14 e 9, respectivamente, e a vazão molar de fundo foi 180,56 mol/h. Utilizando o pacote termodinâmico de PR as entradas foram iguais ao do pacote SRK, com exceção da razão de refluxo que foi de 0,986. Os resultados das vazões molares interestágios Lj e Vj, e temperatura (Tj) em função dos estágios, para SRK e PR, estão dispostos nas Tabelas C3 e C4, respectivamente, do Apêndice C. Esses dados estão apresentados nas Figuras 3.33a e 3.33b e as médias dos ER estão dispostas na Tabela 3.11.

Figura 3.33. Comparação dos resultados da aplicação do método Rigoroso entre AmProS e Aspen*Hysys*[®] para o caso-base B usando usando as equações de estado (a) SRK e (b) PR

		Média dos ER (%)			
Variável analisada	Simbolo	PR	SRK		
Vazão molar interestágio de vapor	Vj	2,17	2,20		
Vazão molar interestágio de líquido	Lj	2,56	2,60		
temperatura	Tj	0,20	0,17		

Tabela 3.11. Média dos erros relativos das vazões molares interestágios de vapor (V_j) e líquido (L_j), e temperatura (T_j) nos estágios para o caso-base B aplicando PR e SRK

Para o caso C, da separação de propano, isobutano, butano, isopentano, pentano, hexano, heptano, octano e nonano, utilizando o pacote termodinâmico de SRK a razão de refluxo foi de 14,77, o número de estágios e o estágio de alimentação foram 28 e 13, respectivamente, e a vazão molar de fundo foi 884,7 mol/h. Utilizando o pacote termodinâmico de PR as entradas foram iguais ao do pacote SRK, com exceção da razão de refluxo que foi de 15,01. Os resultados das vazões molares interestágios Lj e Vj, e temperatura (Tj) em função dos estágios, para SRK e PR, estão dispostos nas Tabelas C5 e C6, respectivamente, do Apêndice C. Esses dados estão apresentados nas Figuras 3.34a e 3.34b e as médias dos erros relativos estão dispostas na Tabela 3.12.

Tabela 3.12. Média dos erros relativos das vazões molares interestágios de vapor (*Vj*) e líquido (*Lj*), e temperatura (*Tj*) nos estágios para o caso-base C aplicando PR e SRK

		Média dos ER (%)			
Variável analisada	Simbolo	PR	SRK		
Vazão molar interestágio de vapor	Vj	3,28	3,62		
Vazão molar interestágio de líquido	Lj	2,84	3,12		
temperatura	Tj	0,10	0,11		

Figura 3.34. Comparação dos resultados da aplicação do método Rigoroso entre AmProS e Aspen *Hysys*[®] para o caso-base C usando usando as equações de estado (a) SRK e (b) PR

As Tabelas 3.10 à 3.12 mostram a confiabilidade do AmProS, possuindo médias de erros relativos menores que 5% nos três casos. Nas Figuras 3.32 à 3.34, é possível observar um erro maior na seção de retificação, devido o método utilizado no AmProS fazer os cálculos iterativos de cima para baixo na coluna, fazendo com que o erro se propague na mesma sequência. Os erros relativos também são causados pela diferença entre os métodos utilizados no AmProS e no Aspen *Hysys*[®], que foram o método Theta e o método dos ciclos interno-externo, respectivamente.

3.2.4. Aceitação do Usuário

Os cinquenta e dois (52) alunos, de maioria do curso de graduação, que participaram dos cursos dispostos na Tabela 2.3 responderam o questionário de Aceitação de Usuário. As respostas dos alunos, que variam de 1 a 4 com diferentes classificações, e suas respectivas médias estão apresentados na Tabela 3.13, subdividido nas cinco (5) seções distintas:

- (I) Impressões gerais do software;
- (II) Interface gráfica;
- (III) Terminologia e mensagens do sistema;
- (IV) Aprendizagem do software; e
- (V) Capacidade do simulador.

Das respostas apontadas pode-se ver que:

As impressões gerais (I) sobre o AmProS foram positivas, os alunos acharam o software de fácil uso (Pergunta 1.1), e ficaram satisfeitos (Pergunta 1.2) e entusiasmados (Pergunta 1.2) com o seu uso.

A interface gráfica (II) do software traz as informações como o tipo de método(*Shorcut* e Rigoroso) e suas equações de maneira clara (Pergunta 2.2) e com fácil leitura (Pergunta 2.1).

Os alunos entenderam as solicitações na maior parte do tempo de uso do software (Pergunta 3.1) devido às nomenclaturas consistentes (Pergunta 3.2) e às caixas de mensagens, como as de erro (Pergunta 3.3), de alerta (Pergunta 3.4)e de informações (Pergunta 3.5), criadas para ajudar os usuários, possuindo posicionamento adequado (Pergunta 3.6) e com os campos de entrada organizados (Pergunta 3.7) (Terminologia e mensagens do sistema, III).

Em geral, os estudantes realizaram atividades complexas facilmente (Pergunta 4.2) (Aprendizagem, IV) e com facilidade de aprendizado do software (Pergunta 4.1). Por fim, os estudantes concordaram que o AmProS tem uma resposta rápida para o cálculo de colunas de destilação (Pergunta 5.1) (Capacidade do simulado, V).

Além dessas perguntas, também foi questionado se o AmProS facilitou o entendimento da matéria de destilação, obtendo uma resposta positiva de 92% e não obteve-se resposta negativa ao questionar se o usuário utilizaria o AmProS para estudar destilação.

Resu	lltados	1	2	3	4	Média
1. Impressões gerais do software						
1.1	1- Difícil 4- Fácil	0	0	6	46	$3,88 \pm 0,32$
1.2	1- Frustrante 4- Satisfeito	1	0	8	43	$3,\!79\pm0,\!53$
1.3	1- Monótono 4- Estimulante	0	5	20	27	$3,42 \pm 0,66$
2 In	terface gráfica					
2.1	1- Letras pequenas 4- Fácil ler as informações	0	2	5	45	$3,\!83\pm0,\!47$
2.2	1- Informações desorganizadas 4- Informações claras	0	4	10	38	$3,\!65\pm0,\!62$
3 Ta	erminologia e mensagens do sistema					
3.1	1- Não entendi as solicitações de entrada 4- Sempre entendi as solicitações	0	0	10	42	3,81 ± 0,39
3.2	 1- Nomenclatura inconsistente 4- Nomenclatura consistente 	0	0	7	45	$3,87 \pm 0,34$
3.3	1- Mensagens de erro não me ajudaram 4- Me ajudaram	0	4	17	31	$3,52 \pm 0,64$
3.4	1- Mensagens de alerta não me ajudaram 4- Me ajudaram	0	4	20	28	$3,\!46\pm0,\!63$
3.5	1- Mensagens de informação não me ajudaram	0	2	19	31	$3{,}56\pm0{,}57$
	4- Me aiudaram					
3.6	1- Posicionamento inadequado das	0	1	15	36	$3{,}67 \pm 0{,}51$
	4- Posicionamento adeguado					
3.7	1- Os campos de entrada são confusos	0	1	7	44	$3,83 \pm 0,43$
4- Os campos sao organizados						
4. Ap	prendizagem	0	0	0	4.4	2.95 . 0.26
4.1	4- Eácil de aprender	0	0	8	44	$3,85 \pm 0,36$
4.2	1- Nunca é fácil realizar as tarefas	0	0	18	34	3.65 ± 0.48
	4- Sempre é fácil realizar as tarefas					-,,-
5. Capacidade do simulador						
5.1	1-Software lento	0	1	18	33	$3,62 \pm 0,52$
	4-Software rápido					

Tabela 3.13. Resultados do questionário de usabilidade do AmProS

CONCLUSÕES

Neste trabalho, foi desenvolvida, utilizando o modelo em V, uma ferramenta computacional em VBA, nomeada AmProS, destinada ao ensino de simulação e projeto de colunas de destilação de misturas multicomponentes. Com isso, destaca-se que:

- Uma base de dados de 113 hidrocarbonetos e suas propriedades termodinâmicas foram inseridas;
- A metodologia aplicada (Modelo em V) no desenvolvimentodo AmProS mostrou-se efetiva no reconhecimento de falhas, correção e melhoria do código de programação;
- Os cálculos termodinâmicos efetuados no software, advindos da implementação das equações de estado cúbica de Peng-Robinson e Soave-Redlich-Kwong, em comparação com os do Aspens *Hysys*[®] tiveram erros relativos menores que 5%;
- Com a implementação do algoritmo do método *shortcut* com as equações de Fenske-Underwood-Gilliland obteve-se a média de erros relativos menores que 5% em comparação com os do Aspen *Hysys*[®]. Os erros que foram maiores, chegando até 15,07% no número de estágios e até 12,75% no número mínimo de estágios, que são decorrentes da diferença de métodos utilizados neste trabalho e no Aspen *Hysys*[®];
- Com a implementação do algoritmo do método *Theta* com as equações MESH obteve-se a média de erros relativos ao Aspen *Hysys*[®] menores que 5%, causados pela diferença nos métodos utilizados, *Theta* e ciclos interno-externo, respectivamente, ao AmProS e ao Aspen *Hysys*[®];
- Dos resultados de ambos os métodos, os usuários podem observar os efeitos dos parâmetros de entrada no projeto e na avaliação de colunas de destilação rapidamente, o que pode levar a um melhor entendimento do processo de destilação, e facilitando a reprodução dos cálculos dessa operação complexa;
- O AmProS, pela interface amigável e simplicidade de uso, pode ser uma ferramenta auxiliadora em sala de aula, com uso de casos reais, diminuindo o tempo de cálculo e aumentando o tempo de discussão sobre destilação e termodinâmica;

Ademais, algumas dificuldades foram encontradas durante o desenvolvimento desse projeto: (1) livros de termodinâmica/tabela de dados termodinâmicos utilizam notações e unidades diferentes, sendo necessário unificar as notações e transformar as unidades para uma

unidade comum para não haver problemas na implementação dos códigos. (2) Na implementação dos algoritmos, o código em VBA possui 1742 linhas para o cálculo Shortcut, 2267 linhas para o cálculo rigoroso e 44 linhas para trazer as informações requeridas pelos usuários, dificultando a análise dos erros no código. Todas as linhas devem ser olhadas minuciosamente, observando se há erros nas fórmulas, notações, unidades, funções, cálculos iterativos, e na convergência dos valores.

Portanto, o software educacional AmProS, desenvolvido nesse trabalho, mostra uma oportunidade promissora de ser utilizado na academia e na indústria para o cálculo de colunas de destilação com facilidade e precisão.

PERSPECTIVAS FUTURAS

Este trabalho possui um alto potencial de uso e crescimento, porém é necessário uma equipe multidisciplinar formada por Engenheiros de Software, Engenheiros Químicos e Educadores auxiliar em sua ampliação. Algumas sugestões para trabalhos futuros são:

- Adicionar mais componentes, como água, compostos oxigenados, nitrogenados e fluorados;
- Adicionar pacotes termodinâmicos diversos, desde gás ideal à pacotes termodinâmicos permitindo misturas polares como NRTL, UNIQUAC e UNIFAC;
- Implementação de cálculo de trocadores de calor casco e tubo para projeto e avaliação dos condensadores e refervedores das colunas de destilação;
- Considerar o efeito da queda de pressão nos estágios;
- Fazer o projeto hidráulico dos pratos da coluna;
- Desenvolvimento de módulos de separação, como (i) Colunas de Absorção; (ii) Extração líquido-líquido; (iii) Destilação azeotrópica e reativa; e (iv) Destilação em batelada.

REFERÊNCIAS

- AGÊNCIA NACIONAL DO PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEIS. Oil, Natural Gas and Biofuels Statistical Yearbook 2017, Rio de Janeiro, 31 Ago. 2017. Disponível em http://www.anp.gov.br/wwwanp/publicacoes/anuario-estatistico/oil-natural-gas-and-biofuels-statistical-yearbook-2017>. Acesso em: 14 nov. 2017.
- ANDRADE, B. L.; CARVALHO, G. V.; CARDOSO, J. P. M. Ferramenta Computacional para Resolução Gráfica de Sistemas Binários de Destilação, Utilizando Métodos de McCabe-Thiele e Ponchon-Savarit. 2016. 76f. Trabalho de Conclusão de Curso (Graduação em Engenharia Química) - Curso de Engenharia Química, departamento de Engenharia Química e de Petróleo, Universidade Federal Fluminense, 2016.
- CALVO, L.; PRIETO, C. The teaching of enhanced distillation processes using a commercial simulator and a project-based learning approach. **Education for Chemical Engineers**, v.17, p.65–74, 2016.
- CASTRELLÓN, T.; BOTÍA, D.C.; GÓMEZ, R.; OROZCO, G.; GIL, I.D. Using process simulators in the study, design, and control of distillation columns for undergraduate chemical engineering courses. **Computer Applications in Engineering Education**, v. 19, n.3, p. 621-630, 2011.
- CHIN, J.P.; DIEHL, V.A.; NORMAN, K.L. Development of an instrument measuring user satisfaction of the human-computer interface. In: **Proceedings of the SIGCHI** conference on Human factors in computing systems. 1988. p. 213-218.
- DABAGHIAN, Z.; MOVAGHARNEJAD, K.; MOHAMMADI, M. Development of educational software for undergraduate Chemical Engineering courses. Computer Applications in Engineering Education, v. 24, n. 4, p. 577–585, 2016.
- DRY, R.; RABADIA, H; FELIPE, D; INGRAM, G; MAYNARD, N; VENTURA-MEDINA,
 E. SigmaPipe as an education tool for engineers. Education for Chemical Engineers, v. 14, p. 1-15, 2016.
- FAHIM, M. A.; AL-SAHHAF, T. A.; ELKILANI, A. S. Introdução ao Refino de Petróleo. Rio de Janeiro: Elsevier, 2012.
- FENSKE, M. Fractionation of straight-run Pennsylvania gasoline. Industrial & Engineering Chemistry, v. 24, n. 5, p. 482-485, 1932.
- FERREIRA, A. de A.; AQUINO NETO, F. R.; A Destilação Simulada na Indústria do Petróleo.
 Química Nova. v. 28, n. 3, p. 478-482, 2005.

- GRANJO, J. F.; RASTEIRO, M.G.; GANDO FERREIRA L.M.; BERNARDO, F.P.;
 CARVALHO, M.G.; FERREIRA, A.G. A virtual platform to teach separation processes.
 Computer Applications in Engineering Education, v. 20, n. 1, p. 175-186, 2012.
- GUEVARA, J. C. Model of simulator for the teaching of chemical distillation. In: **2009 39th IEEE Frontiers in Education Conference**. IEE, 2009. p.1-6.
- GILLILAND, E. R. Multicomponent rectification. Industrial & Engineering Chemistry, v. 32, n. 8, p. 1101-1106, 1940.
- HOLLAND, C.D. Fundamentals of multicomponent distillation. McGraw-Hill, 1981.
- ÍNDIO DO BRASIL, N.; ARAÚJO, M. A. S.; SOUZA, E. C. M. Processamento de petróleo e gás: petróleo e seus derivados, processamento primário, processos de refino, petroquímica e meio ambiente. 2. ed. Rio de Janeiro: LTC, 2014.

KISTER, H. Z. Distillation Design. Nova Iorque: McGraw-Hill, Inc. 1992.

- LIMA, O. C. DA M.; VARESCHINI, D. T.; UEMURA, V. O.; de BARROS, M. A. S. D. Excel como Ferramenta Didática de apoio na Análise de Processos de Flash e Destilação Multicomponentes. In: XXXIV COBENGE - ABENGE, 2006, Passo Fundo. Anais... Passo Fundo: Universidade de Passo Fundo, 2006. p.1361-1368.
- MANPOWERGROUP[™]. Pesquisa Escassez de Talentos 2016/2017. São Paulo. Disponível em: https://www.manpowergroup.com.br/wp-content/uploads/2016/10/Final_Escassez -de-Talentos-2016.pdf> Acesso em: 18/09/2017.
- MARANESI, L. A. H.; TANNOUS, K. Real time interface for fluidized bed reactor simulator. In: Encyclopedia of Information Science and Technology, 2ed. Pensilvânia: IGI Global, 2009. p. 3205-3212
- MCCABE, W. L.; SMITH, J. C.; HARRIOTT, P. Unit Operations of Chemical Engineering. Singapura: McGraw-Hill Book Company, 1993.
- MENDES, D; MARANGONI, C.; MENEGUELO, A.P.; MACHADO, R. A. F.; BOLZAN, A. Educational Simulator for Multicomponent Distillation Research and Teaching in Chemical Engineering. Computer Applications in Engineering Education, v. 18, n. 1, p. 175–182, 2009.
- MICROSOFT. **By the Numbers**, Washington. Disponível em: http://news.microsoft.com/bythenumbers/planet-office>. Acesso em: 17/09/2017.
- MIT. History, Massachusets Disponível em: < https://cheme.mit.edu/about/history/>. Acesso em 05/08/2019.

- MOLOKANOV, Y.K.; KORABLINA T.P.; MAZURINA N.I.; NIKIFOROV G.A.; An approximate method of calculating the basic parameters of a multicomponent fractionation. **Chemistry and Technology of Fuels and Oils**, v. 7, n. 2, p. 129-133, 1971.
- PERRY, R. H.; GREEN D. W. **PERRY'S chemical engineers' handbook**. 7 ed. Nova Iorque: McGraw-Hill, 1997.
- PRAUSNITZ, J. M.; POLING, B. E.; JOHN PAUL, O. C.; REID, R. C. The properties of gases and liquids. Nova Iorque: Mcgraw-hill, 2001.
- PRESSMAN, R.; MAXIM, B. Engenharia de Software-8ª Edição. McGraw Hill Brasil, 2016.
- PWC SARATOGA. Um panorama da gestão de capital humano no Brasil, São Paulo. Disponível em: https://www.pwc.com.br/pt/estudos/servicos/consultoria-negocios/2014/benchmarking-capital-humano-14.pdf>. Acesso em: 18/09/2017.
- SEADER, J. D.; HENLEY, E. J.; ROPER, D. K. Separation Process Principles: Chemical and Biochemical Operations. Nova Jérsei: Jon Wiley and Sons, Inc. 2010.
- SHAH, V. H., AGRAWAL, R., A Matrix for Multicomponent Distillation Sequences. AIChE journal, v.56, n. 7, p. 1759-1775, 2010.
- SHIRAS, R. N., HANSON, D. N., GIBSON, C. H. Calculation of Minimum Reflux in Distillation Columns. Industrial and Engineering Chemistry, v.42, n.5, p. 871-876, 1950.
- Sistema FIRJAN; Anuário da indústria de petróleo no Rio de Janeiro: panorama 2020. Rio de Janeiro: Sistema FIRJAN, 2020.
- SMITH, J. M.; VAN NESS, H. C.; ABBOTT, M. M. Introdução à termodinâmica da engenharia química. Rio de Janeiro: LTC, 2011.
- SPEIGHT, J. G. The Chemistry and Technology of Petroleum.4 ed. Florida: CRC Press, 2006
- TANNOUS, K. Project-based learning in chemical engineering education using distance education tools. In: Cases on Global E-Learning Practices: Successes and Pitfalls. IGI Global, 2007. p. 202-217.
- VAN WINKLE, M. Distillation. Nova Iorque: McGraw-Hill Inc. 1967
- VARMA, A. V.; GROSSMAN, I. E. Evolving Trends in Chemical Engineering Education. American Institute of Chemical Engineers Journal, v.60 n. 11, 2014.
- WANKAT, P.C. Progress in reforming chemical engineering education. Annual review of chemical and biomolecular engineering, v. 4, p. 23-43, 2013.

Apêndice A – Questionário Utilizado para Aceitação de Usuário

Os questionário usado foi baseado no QUIS 5.0 (CHIN et al., 1998).

Conhecimentos prévios sobre destilação

1) Você já tinha conhecimentos prévios de Destilação

a) Não, nunca vi. B)Sim, lembro com dificuldade C) Sim, lembro bem.

Usabilidade do AmProS (Quanto ao uso/manejo do software)

2) A sua impressão quanto a operacionalidade do software foi:

(1) Difícil a (4) Fácil

(1) Foi uma experiência frustrante a (4) Estou satisfeito

(1) Monótono a (4) Estimulado

3) Quanto as telas das etapas da simulação:

3.1. Sobre o tamanho das letras:

(1) Tamanho das letras muito pequeno, ficou difícil ler as informações a (4) Fácil ler as informações

3.2. Sobre a organização das informações na tela:

(1) Informações desorganizadas a (4) Informações claras

4) Quanto as informações em tela:

4.1 Sobre o que é pedido durante o software:

(1) Não consegui entender as solicitações nos campos de entrada a (4) Consegui entender as solicitações nos campos de entrada do simulados

4.2 A nomenclatura empregada se manteve constante durante o software?

(1) Não consistente a (4) Consistente

4.3 Sobre as mensagens de erro que apareciam durante o programa

(1) Não me ajudaram a (4) Me ajudaram

4.4 Sobre as mensagens de alerta que apareciam durante o programa

(1) Não me ajudaram a (4) Me ajudaram

4.5 Sobre as mensagens de informação que apareciam durante o programa

(1) Não me ajudaram a (4) Me ajudaram

4.6 Sobre o posicionamento das mensagens (de erro, alerta e informação) na tela:

(1) Não adequado a (4) Adequado

4.7 Sobre os campos de entrada de informação:
(1) Os campos de entrada estavam confusos a (4) Os campos de entrada estavam claros5) Quanto a aprender a usar o simulador:

5.1 Sobre a facilidade de aprender a usar o simulador:

(1) Difícil a (4) Fácil

5.2 Sobre a facilidade de realizar tarefas necessárias:

(1) Nunca é fácil realizar tarefas a (4) Sempre é fácil realizar as tarefas

6) Quanto a capacidade do simulador:

(1) O software processa as informações lentamente a (4) O software processa as informações rapidamente

7) Você acha que o software facilitou seu entendimento da matéria de Destilação:

(1) Sim e (2) Não

8) Você usaria ele para estudar Destilação

(1) Sim; (2) Talvez e (3) Não

9) Você teria alguma sugestão ou crítica para melhorar o simulador? Do que você sentiu falta? Pergunta aberta

SRK						
	Tipo de		R/Rm			
SRK	Software	1,5	2	10		
	AmProS	1,76	1,76	1,76		
Rm	Aspen	1,70	1,70	1,70		
	ER (%)	3,47	3,47	3,47		
	AmProS	335,38	335,38	335,38		
T topo (K)	Aspen	331,40	331,40	331,40		
	ER (%)	1,20	1,20	1,20		
	AmProS	383,89	383,89	383,89		
T fundo (K)	Aspen	383,10	383,10	383,10		
	ER (%)	0,21	0,21	0,21		
	AmProS	45,04	45,04	45,04		
D (mol/h)	Aspen	45,14	45,14	45,14		
	ER (%)	0,22	0,22	0,22		
	AmProS	54,96	54,96	54,96		
B (mol/h)	Aspen	54,86	54,86	54,86		
	ER (%)	0,18	0,18	0,18		
	AmProS	8,69	8,69	8,69		
Nmin	Aspen	8,93	8,93	8,93		
	ER (%)	2,75	2,75	2,75		
	AmProS	15,13	12,75	9,31		
N estágios	Aspen	16,36	13,62	9,69		
	ER (%)	7,50	6,39	4,00		
Estácio do	AmProS	8,08	6,89	5,16		
Limentação	Aspen	8,19	6,82	4,83		
Annentação	ER (%)	1,31	1,01	6,87		

 Tabela B1. Teste alterando a taxa de razão de refluxo para o caso A, aplicando o método

Apêndice B – Tabelas de Resultados Método Shortcut

	Tipo de		R/Rm	
PR	Software	1,5	2	10
	AmProS	1,74	1,74	1,74
Rm	Aspen	1,74	1,74	1,74
	ER (%)	0,06	0,06	0,06
	AmProS	335,38	335,38	335,38
T topo (K)	Aspen	331,90	331,90	331,90
	ER (%)	1,05	1,05	1,05
	AmProS	383,89	383,89	383,89
T fundo (K)	Aspen	383,50	383,50	383,50
	ER (%)	0,10	0,10	0,10
	AmProS	45,04	45,04	45,04
D (mol/h)	Aspen	45,03	45,03	45,03
	ER (%)	0,02	0,02	0,02
	AmProS	54,96	54,96	54,96
B (mol/h)	Aspen	54,97	54,97	54,97
	ER (%)	0,02	0,02	0,02
	AmProS	8,69	8,69	8,69
Nmin	Aspen	9,31	9,31	9,31
	ER (%)	6,72	6,72	6,72
	AmProS	15,15	12,76	9,31
N estágios	Aspen	16,98	14,15	10,05
	ER (%)	10,80	9,81	7,38
Estácia da	AmProS	8,09	6,89	5,16
Alimentação	Aspen	8,51	7,09	5,03
Annentação	ER (%)	4,88	2,71	2,58

Tabela B2. Teste alterando a taxa de razão de refluxo para o caso A, aplicando o método PR

	Tipo de	Pressão (kPa)		
SRK	Software	Porv	820	Pbol
	AmProS	2,77	1,76	1,60
Rm	Aspen	2,63	1,70	1,58
	ER (%)	5,17	3,47	1,71
	AmProS	325,96	335,38	338,61
T topo (K)	Aspen	321,90	331,40	334,60
	ER (%)	1,26	1,20	1,20
	AmProS	373,27	383,89	387,53
T fundo (K)	Aspen	372,70	383,10	386,60
	ER (%)	0,15	0,21	0,24
	AmProS	45,03	45,04	45,04
D (mol/h)	Aspen	45,14	45,14	45,14
	ER (%)	0,24	0,22	0,22
	AmProS	54,97	54,96	54,96
B (mol/h)	Aspen	54,86	54,86	54,86
	ER (%)	0,20	0,18	0,18
	AmProS	8,42	8,69	8,78
Nmin	Aspen	8,42	8,93	9,12
	ER (%)	0,01	2,75	3,74
	AmProS	11,97	12,75	12,98
N estágios	Aspen	12,43	13,62	13,99
	ER (%)	3,72	6,39	7,20
Estágio do	AmProS	6,50	6,89	7,01
Alimentação	Aspen	6,22	6,82	7,01
Alimentação	ER (%)	4,39	1,01	0,03

Tabela B3. Teste alterando a pressão da coluna para o caso A, aplicando o método SRK

	Tipo de	Pressão (kPa)		
PR	Software	Porv	820	Pbol
	AmProS	2,78	1,74	1,62
Rm	Aspen	2,69	1,74	1,64
	ER (%)	3,27	0,06	1,22
	AmProS	325,48	335,38	338,03
T topo (K)	Aspen	322,10	331,90	334,60
	ER (%)	1,05	1,05	1,03
	AmProS	372,72	383,89	386,88
T fundo (K)	Aspen	372,70	383,50	386,60
	ER (%)	0,01	0,10	0,07
	AmProS	45,03	45,04	45,04
D (mol/h)	Aspen	45,02	45,03	45,03
	ER (%)	0,02	0,02	0,02
	AmProS	54,97	54,96	54,96
B (mol/h)	Aspen	54,98	54,97	54,97
	ER (%)	0,02	0,02	0,02
	AmProS	8,41	8,69	8,76
Nmin	Aspen	8,79	9,31	9,47
	ER (%)	4,33	6,72	7,49
	AmProS	11,95	12,76	12,95
N estágios	Aspen	12,94	14,15	14,46
	ER (%)	7,65	9,81	10,45
Estácia da	AmProS	6,49	6,89	6,99
Limontação	Aspen	6,48	7,09	7,25
Alimentação	ER (%)	0,09	2,71	3,51

Tabela B4. Teste alterando a pressão da coluna para o caso A, aplicando o método PR

	Tipo de	Recup	eração Chave	-Leve
SRK	Software	95%	90%	80%
	AmProS	1,76	1,73	1,67
Rm	Aspen	1,70	1,67	1,59
	ER (%)	3,47	3,96	4,83
	AmProS	335,38	335,24	334,87
T topo (K)	Aspen	331,40	331,20	330,60
	ER (%)	1,20	1,22	1,29
	AmProS	383,89	382,34	379,32
T fundo (K)	Aspen	383,10	381,70	378,80
	ER (%)	0,21	0,17	0,14
	AmProS	45,04	43,71	40,83
D (mol/h)	Aspen	45,14	43,80	40,88
	ER (%)	0,22	0,21	0,12
	AmProS	54,96	56,29	59,17
B (mol/h)	Aspen	54,86	56,20	59,12
	ER (%)	0,18	0,16	0,08
	AmProS	8,69	7,80	6,62
Nmin	Aspen	8,93	7,78	6,51
	ER (%)	2,75	0,30	1,57
	AmProS	12,75	11,31	9,75
N estágios	Aspen	13,62	11,94	10,12
	ER (%)	6,39	5,25	3,66
	AmProS	6,89	6,87	6,53
Estagio de	Aspen	6,82	6,79	6,39
Annentação	ER (%)	1,01	1,15	2,16

 Tabela B5. Teste alterando a recuperação do componente chave-leve no topo para o caso A,

 aplicando o método SRK

Tino da Dagupargaão Chava Lava				
	Tipo de	Kecup		e-Leve
PR	Software	95%	90%	80%
	AmProS	1,74	1,71	1,65
Rm	Aspen	1,74	1,71	1,63
	ER (%)	0,06	0,47	1,16
	AmProS	335,38	335,24	334,87
T topo (K)	Aspen	331,90	331,77	331,11
	ER (%)	1,05	1,05	1,14
	AmProS	383,89	383,34	379,32
T fundo (K)	Aspen	383,50	382,10	379,30
	ER (%)	0,10	0,32	0,01
	AmProS	45,04	43,71	40,83
D (mol/h)	Aspen	45,03	43,69	40,77
	ER (%)	0,02	0,05	0,15
	AmProS	54,96	56,29	59,17
B (mol/h)	Aspen	54,97	56,31	59,23
	ER (%)	0,02	0,04	0,10
	AmProS	8,69	7,70	6,62
Nmin	Aspen	9,31	8,11	6,80
	ER (%)	6,72	5,07	2,65
	AmProS	12,76	11,32	9,76
N estágios	Aspen	14,15	12,40	10,51
	ER (%)	9,81	8,71	7,16
Estázia da	AmProS	6,89	6,88	6,54
Estagio de	Aspen	7,09	7,06	6,64
Alimentação	ER (%)	2,71	2,55	1,63

Tabela B6. Teste alterando a recuperação do componente chave-leve no topo para o caso A,aplicando o método PR

	· 1	_		
	Tipo de	Recupe	ração Chave	-Pesada
SRK	Software	95%	90%	80%
	AmProS	1,76	1,59	1,24
Rm	Aspen	1,70	1,53	1,17
	ER (%)	3,47	4,00	5,46
	AmProS	335,38	337,01	340,39
T topo (K)	Aspen	331,40	332,70	335,40
	ER (%)	1,20	1,30	1,49
	AmProS	383,89	383,87	383,80
T fundo (K)	Aspen	383,10	383,10	383,00
	ER (%)	0,21	0,20	0,21
	AmProS	45,04	46,60	50,17
D (mol/h)	Aspen	45,14	46,83	50,69
	ER (%)	0,22	0,49	1,03
	AmProS	54,96	53,40	49,83
B (mol/h)	Aspen	54,86	53,17	49,31
	ER (%)	0,18	0,43	1,05
	AmProS	8,69	7,75	6,74
Nmin	Aspen	8,93	7,81	6,60
	ER (%)	2,75	0,83	2,03
	AmProS	12,75	11,47	10,22
N estágios	Aspen	13,62	12,09	10,61
	ER (%)	6,39	5,17	3,61
Entéria da	AmProS	6,89	5,54	4,43
Estagio de	Aspen	6,82	5,24	3,94
Annentação	ER (%)	1,01	5,75	12,52

Tabela B7. Teste alterando a recuperação do componente chave-pesada no fundo para o casoA, aplicando o método SRK

	Tipo de	Recupe	eração Chave-Pesada	
PR	Software	95%	90%	80%
	AmProS	1,74	1,57	1,22
Rm	Aspen	1,74	1,57	1,23
	ER (%)	0,06	0,32	1,22
	AmProS	335,38	337,01	340,39
T topo (K)	Aspen	331,90	333,00	335,50
	ER (%)	1,05	1,20	1,46
	AmProS	383,89	383,87	383,80
T fundo (K)	Aspen	383,50	383,50	383,50
	ER (%)	0,10	0,10	0,08
	AmProS	45,04	46,60	50,17
D (mol/h)	Aspen	45,03	46,57	50,11
	ER (%)	0,02	0,06	0,12
	AmProS	54,96	53,40	49,83
B (mol/h)	Aspen	54,97	53,43	49,89
	ER (%)	0,02	0,06	0,12
	AmProS	8,69	7,75	6,74
Nmin	Aspen	9,31	8,14	6,88
	ER (%)	6,72	4,85	2,06
	AmProS	12,76	11,48	10,24
N estágios	Aspen	14,15	12,55	10,96
	ER (%)	9,81	8,48	6,55
Estágia da	AmProS	6,89	5,54	4,44
Estagio de	Aspen	7,09	5,44	4,08
Anmentaçao	ER (%)	2,71	1,93	8,75

Tabela B8. Teste alterando a recuperação do componente chave-pesada no fundo para o casoA, aplicando o método PR

SRK						
	Tipo de	Te	Temperatura (°C)			
SRK	Software	75	85	95		
	AmProS	1,77	1,76	2,17		
Rm	Aspen	1,69	1,70	2,08		
	ER (%)	4,86	3,47	4,13		
	AmProS	323,18	335,38	343,09		
T topo (K)	Aspen	319,20	331,40	338,00		
	ER (%)	1,25	1,20	1,51		
	AmProS	370,12	383,89	391,45		
T fundo (K)	Aspen	369,70	383,10	390,40		
	ER (%)	0,11	0,21	0,27		
	AmProS	45,02	45,04	45,05		
D (mol/h)	Aspen	45,14	45,14	45,15		
	ER (%)	0,27	0,22	0,22		
	AmProS	54,98	54,96	54,95		
B (mol/h)	Aspen	54,86	54,86	54,85		
	ER (%)	0,22	0,18	0,18		
	AmProS	8,35	8,69	8,88		
Nmin	Aspen	8,16	8,93	9,49		
	ER (%)	2,29	2,75	6,48		
	AmProS	12,24	12,75	12,81		
N estágios	Aspen	12,49	13,62	14,19		
	ER (%)	1,98	6,39	9,70		
Estácia da	AmProS	6,63	6,89	6,92		
Alimentação	Aspen	6,25	6,82	7,10		
Alimentação	ER (%)	6,08	1,01	2,56		

Tabela B9. Teste alterando a temperatura de alimentação para o caso A, aplicando o método

PR						
	Tipo de	Te	Temperatura (°C)			
PR	Software	75	85	95		
	AmProS	1,78	1,74	2,18		
Rm	Aspen	1,75	1,74	2,14		
	ER (%)	1,71	0,06	1,78		
	AmProS	322,74	335,38	341,54		
T topo (K)	Aspen	319,30	331,90	338,10		
	ER (%)	1,08	1,05	1,02		
	AmProS	369,63	383,89	390,84		
T fundo (K)	Aspen	369,60	383,50	390,40		
	ER (%)	0,01	0,10	0,11		
	AmProS	45,02	45,04	45,05		
D (mol/h)	Aspen	45,01	45,03	45,04		
	ER (%)	0,02	0,02	0,02		
	AmProS	54,98	54,96	54,95		
B (mol/h)	Aspen	54,99	54,97	54,96		
	ER (%)	0,02	0,02	0,02		
	AmProS	8,33	8,69	8,86		
Nmin	Aspen	8,53	9,31	9,84		
	ER (%)	2,34	6,72	9,91		
	AmProS	12,21	12,76	12,79		
N estágios	Aspen	12,99	14,15	14,66		
	ER (%)	5,99	9,81	12,76		
Estánio de	AmProS	6,62	6,89	6,91		
Alimentação	Aspen	6,51	7,09	7,34		
Annonayao	ER (%)	1,74	2,71	5,90		

Tabela B10. Teste alterando a temperatura de alimentação para o caso A, aplicando o método

SRK				
	Tipo de		R/Rm	
SRK	Software	1,5	2	10
	AmProS	0,47	0,47	0,47
Rm	Aspen	0,49	0,49	0,49
	ER(%)	4,10	4,10	4,10
	AmProS	345,11	345,11	345,11
T topo (K)	Aspen	342,10	342,10	342,10
	ER(%)	0,88	0,88	0,88
	AmProS	383,59	383,59	383,59
T fundo (K)	Aspen	384,10	384,10	384,10
	ER(%)	0,13	0,13	0,13
	AmProS	819,44	819,44	819,44
D (mol/h)	Aspen	819,50	819,50	819,50
	ER(%)	0,01	0,01	0,01
	AmProS	180,56	180,56	180,56
B (mol/h)	Aspen	180,50	180,50	180,50
	ER(%)	0,03	0,03	0,03
	AmProS	7,58	7,58	7,58
Nmin	Aspen	7,32	7,32	7,32
	ER(%)	3,68	3,68	3,68
	AmProS	15,70	13,21	8,61
N estágios	Aspen	15,05	12,65	8,28
	ER(%)	4,31	4,43	3,95
Estécia da	AmProS	10,07	8,54	5,70
Alimentação	Aspen	9,67	8,19	5,59
Annientação	ER(%)	4,14	4,26	1,82

Tabela B11. Teste alterando a taxa de razão de refluxo para o caso B, aplicando o método

	Tipo de		R/Rm	
PR	Sofware	1,5	2	10
	AmProS	0,49	0,49	0,49
Rm	Aspen	0,51	0,51	0,51
	ER(%)	3,52	3,52	3,52
	AmProS	345,11	345,11	345,11
T topo (K)	Aspen	341,50	341,50	341,50
	ER(%)	1,06	1,06	1,06
	AmProS	382,39	382,39	382,39
T fundo (K)	Aspen	383,60	383,60	383,60
	ER(%)	0,32	0,32	0,32
	AmProS	819,44	819,44	819,44
D (mol/h)	Aspen	819,50	819,50	819,50
	ER(%)	0,01	0,01	0,01
	AmProS	180,56	180,56	180,56
B (mol/h)	Aspen	180,50	180,50	180,50
	ER(%)	0,03	0,03	0,03
	AmProS	7,58	7,58	7,58
Nmin	Aspen	7,41	7,41	7,41
	ER(%)	2,31	2,31	2,31
	AmProS	15,57	13,09	8,58
N estágios	Aspen	15,13	12,72	8,36
	ER(%)	2,92	2,96	2,57
Estácia da	AmProS	9,99	8,46	5,68
Alimentação	Aspen	9,72	8,23	5,54
Annentação	ER(%)	2,85	2,87	2,44

Tabela B12. Teste alterando a taxa de razão de refluxo para o caso B, aplicando o método PR

	Tipo de	Pressão (kPa)		
SRK	Software	Porv	50	Pbol
	AmProS	0,64	0,47	0,38
Rm	Aspen	0,64	0,49	0,41
	ER(%)	0,16	4,10	8,03
	AmProS	337,67	345,11	351,61
T topo (K)	Aspen	334,80	342,10	348,50
	ER(%)	0,86	0,88	0,89
	AmProS	375,33	383,59	390,78
T fundo (K)	Aspen	376,10	384,10	391,10
	ER(%)	0,20	0,13	0,08
	AmProS	819,44	819,44	819,44
D (mol/h)	Aspen	819,40	819,50	819,40
	ER(%)	0,00	0,01	0,00
	AmProS	180,56	180,56	180,56
B (mol/h)	Aspen	180,60	180,50	180,60
	ER(%)	0,02	0,03	0,02
	AmProS	7,37	7,58	7,77
Nmin	Aspen	7,15	7,32	7,47
	ER(%)	3,08	3,63	4,06
	AmProS	12,19	13,21	14,07
N estágios	Aspen	11,83	12,66	13,32
	ER(%)	3,04	4,39	5,64
Estácia da	AmProS	7,90	8,54	9,06
Limentação	Aspen	7,78	8,19	8,60
Annentação	ER(%)	1,58	4,17	5,41

Tabela B13. Teste alterando a pressão da coluna para o caso B, aplicando o método SRK

	Tipo de	Pressão (kPa)		
PR	Software	Porv	50	Pbol
	AmProS	0,65	0,49	0,39
Rm	Aspen	0,65	0,51	0,42
	ER(%)	0,00	3,52	7,55
	AmProS	338,48	345,11	352,10
T topo (K)	Aspen	334,90	341,50	348,50
	ER(%)	1,07	1,06	1,03
	AmProS	376,23	382,39	391,33
T fundo (K)	Aspen	376,40	383,60	391,30
	ER(%)	0,05	0,32	0,01
	AmProS	819,44	819,44	819,44
D (mol/h)	Aspen	819,50	819,50	819,50
	ER(%)	0,01	0,01	0,01
	AmProS	180,56	180,56	180,56
B (mol/h)	Aspen	180,50	180,50	180,50
	ER(%)	0,03	0,03	0,03
	AmProS	7,39	7,58	7,79
Nmin	Aspen	7,26	7,41	7,58
	ER(%)	1,86	2,31	2,73
	AmProS	12,19	13,09	14,00
N estágios	Aspen	11,99	12,72	13,44
	ER(%)	1,64	2,96	4,19
Estácia da	AmProS	7,91	8,46	9,02
Alimontação	Aspen	7,74	8,23	8,67
Annentação	ER(%)	2,17	2,87	4,05

Tabela B14. Teste alterando a pressão da coluna para o caso B, aplicando o método PR

	1			
	Tipo de	Recuperação Chave-Leve		
SRK	Software	95%	90%	80%
	AmProS	0,47	0,46	0,44
Rm	Aspen	0,49	0,47	0,45
	ER(%)	4,10	3,59	2,47
	AmProS	345,11	344,75	343,97
T topo (K)	Aspen	342,10	341,80	341,10
	ER(%)	0,88	0,86	0,84
	AmProS	383,59	380,48	375,96
T fundo (K)	Aspen	384,10	380,90	376,20
	ER(%)	0,13	0,11	0,06
	AmProS	819,44	800,24	761,15
D (mol/h)	Aspen	819,50	800,20	760,80
	ER(%)	0,01	0,00	0,05
	AmProS	180,56	199,76	238,85
B (mol/h)	Aspen	180,50	199,80	239,20
	ER(%)	0,03	0,02	0,15
	AmProS	7,58	6,71	5,76
Nmin	Aspen	7,32	6,49	5,58
	ER(%)	3,63	3,37	3,22
N estágios	AmProS	13,21	11,74	10,17
	Aspen	12,66	11,28	9,91
	ER(%)	4,39	4,01	2,61
	AmProS	8,54	8,26	7,66
Estagio de	Aspen	8,19	7,96	7,39
Anmentação	ER(%)	4,17	3,85	3,56

Tabela B15. Teste alterando a recuperação do componente chave-leve no topo para o caso B,aplicando o método SRK

	1				
	Tipo de	Recup	Recuperação Chave-Leve		
PR	Software	95%	90%	80%	
	AmProS	0,49	0,48	0,46	
Rm	Aspen	0,51	0,50	0,47	
	ER(%)	3,52	2,82	1,92	
	AmProS	345,11	344,75	343,97	
T topo (K)	Aspen	341,50	341,20	340,50	
	ER(%)	1,06	1,04	1,02	
	AmProS	382,39	380,48	375,96	
T fundo (K)	Aspen	383,60	380,50	375,80	
	ER(%)	0,32	0,01	0,04	
	AmProS	819,44	800,24	761,15	
D (mol/h)	Aspen	819,50	800,20	761,10	
	ER(%)	0,01	0,00	0,01	
	AmProS	180,56	199,76	238,85	
B (mol/h)	Aspen	180,50	199,80	238,90	
	ER(%)	0,03	0,02	0,02	
	AmProS	7,58	6,71	5,76	
Nmin	Aspen	7,41	6,58	5,66	
	ER(%)	2,31	2,02	1,78	
	AmProS	13,09	11,63	10,07	
N estágios	Aspen	12,72	11,35	9,86	
	ER(%)	2,96	2,50	2,15	
	AmProS	8,46	8,19	7,59	
Estagio de	Aspen	8,23	8,00	7,43	
Anmentação	ER(%)	2,87	2,39	2,14	

Tabela B16. Teste alterando a recuperação do componente chave-leve no topo para o caso B,aplicando o método PR

	Tipo de	Recupe	eração Chave	-Pesada
SRK	Software	95%	90%	80%
	AmProS	0,468	0,408	0,292
Rm	Aspen	0,488	0,428	0,31
	ER(%)	4,09836	4,6729	5,80645
	AmProS	345,11	345,55	346,4
T topo (K)	Aspen	342,1	342,3	342,8
	ER(%)	0,87986	0,94946	1,05018
	AmProS	383,59	383,35	382,78
T fundo (K)	Aspen	384,1	383,8	383,2
	ER(%)	0,13278	0,11725	0,1096
	AmProS	819,44	827,88	844,72
D (mol/h)	Aspen	819,5	827,8	844,7
	ER(%)	0,00732	0,00966	0,00237
	AmProS	180,56	172,12	155,28
B (mol/h)	Aspen	180,5	172,2	155,3
	ER(%)	0,03324	0,04646	0,01288
	AmProS	7,584	6,758	5,682
Nmin	Aspen	7,318	6,518	5,645
	ER(%)	3,63487	3,68211	0,65545
	AmProS	13,211	12,062	11,147
N estágios	Aspen	12,656	11,533	10,606
	ER(%)	4,38527	4,58684	5,10089
Estánia da	AmProS	8,535	7,092	5,93
Estagio de	Aspen	8,193	6,803	5,665
Anmentação	ER(%)	4,1743	4,24813	4,67785

Tabela B17. Teste alterando a recuperação do componente chave-pesada no fundo para ocaso B, aplicando o método SRK

	Tipo de	Recupe	eração Chave	-Pesada
PR	Software	95%	90%	80%
	AmProS	0,493	0,434	0,32
Rm	Aspen	0,511	0,452	0,336
	ER(%)	3,5225	3,9823	4,7619
	AmProS	345,11	345,55	346,4
T topo (K)	Aspen	341,5	341,7	342,2
	ER(%)	1,0571	1,12672	1,22735
	AmProS	382,39	383,35	382,78
T fundo (K)	Aspen	383,6	383,4	382,8
	ER(%)	0,31543	0,01304	0,00522
	AmProS	819,44	827,88	844,72
D (mol/h)	Aspen	819,5	827,8	844,7
	ER(%)	0,00732	0,00966	0,00237
	AmProS	180,56	172,12	155,28
B (mol/h)	Aspen	180,5	172,2	155,3
	ER(%)	0,03324	0,04646	0,01288
	AmProS	7,584	6,578	5,862
Nmin	Aspen	7,413	6,603	5,716
	ER(%)	2,30676	0,37862	2,55423
	AmProS	13,092	11,927	10,947
N estágios	Aspen	12,716	11,57	10,578
	ER(%)	2,9569	3,08557	3,48837
Estásia da	AmProS	8,462	7,018	5,833
Estagio de	Aspen	8,226	6,823	5,652
Anmentação	ER(%)	2,86895	2,85798	3,20241

Tabela B18. Teste alterando a recuperação do componente chave-pesada no fundo para ocaso B, aplicando o método PR

	Tipo de	T	omneratura (°	$\overline{\mathbf{C}}$
CDV	S of two re	70		00
SKK	Software	/0	80	90
	AmProS	0,425	0,468	0,506
Rm	Aspen	0,444	0,488	0,528
	ER(%)	4,27928	4,09836	4,16667
	AmProS	335,54	345,11	355,09
T topo (K)	Aspen	332,5	342,1	352,2
	ER(%)	0,91429	0,87986	0,82056
	AmProS	372,97	383,59	394,63
T fundo (K)	Aspen	373,6	384,1	395,1
	ER(%)	0,16863	0,13278	0,11896
	AmProS	819,44	819,44	819,44
D (mol/h)	Aspen	819,5	819,5	819,5
	ER(%)	0,00732	0,00732	0,00732
	AmProS	180,56	180,56	180,56
B (mol/h)	Aspen	180,5	180,5	180,5
	ER(%)	0,03324	0,03324	0,03324
	AmProS	7,311	7,584	7,874
Nmin	Aspen	7,001	7,318	7,655
	ER(%)	4,42794	3,63487	2,86088
	AmProS	12,952	13,211	13,53
N estágios	Aspen	12,305	12,656	13,061
	ER(%)	5,25803	4,38527	3,59084
	AmProS	8,375	8,535	8,732
Estágio de	Aspen	7,973	8,193	8,439
Alimentação	ER(%)	5,04202	4,1743	3,47198

 Tabela B19. Teste alterando a temperatura de alimentação para o caso B, , aplicando o método SRK

	Tipo de	Te	C)	
PR	Software	70	80	90
	AmProS	0,439	0,493	0,521
Rm	Aspen	0,463	0,511	0,542
	ER(%)	5,18359	3,5225	3,87454
	AmProS	336,29	345,11	355,58
T topo (K)	Aspen	332,1	341,5	352,2
	ER(%)	1,26167	1,0571	0,95968
	AmProS	373,81	382,39	395,17
T fundo (K)	Aspen	373,4	383,6	395,3
	ER(%)	0,1098	0,31543	0,03289
	AmProS	819,44	819,44	819,44
D (mol/h)	Aspen	819,5	819,5	819,5
	ER(%)	0,00732	0,00732	0,00732
	AmProS	180,56	180,56	180,56
B (mol/h)	Aspen	180,5	180,5	180,5
	ER(%)	0,03324	0,03324	0,03324
	AmProS	7,332	7,584	7,888
Nmin	Aspen	7,104	7,413	7,767
	ER(%)	3,20946	2,30676	1,55787
	AmProS	12,915	13,092	13,49
N estágios	Aspen	12,395	12,716	13,193
	ER(%)	4,19524	2,9569	2,25119
	AmProS	8,353	8,462	8,708
A limontação	Aspen	8,028	8,226	8,52
Annentação	ER(%)	4,04833	2,86895	2,20657

 Tabela B20. Teste alterando a temperatura de alimentação para o caso B, , aplicando o método PR

SKK				
	Tipo de		R/Rm	
SRK	Software	1,5	2	10
	AmProS	7,387	7,387	7,387
Rm	Aspen	6,893	6,893	6,893
	ER(%)	7,16669	7,16669	7,16669
	AmProS	312,9	312,9	312,9
T topo (K)	Aspen	311,1	311,1	311,1
	ER(%)	0,57859	0,57859	0,57859
	AmProS	351,54	351,54	351,54
T fundo (K)	Aspen	353,9	353,9	353,9
	ER(%)	0,66686	0,66686	0,66686
	AmProS	415,35	415,35	415,35
D (mol/h)	Aspen	415,3	415,3	415,3
	ER(%)	0,01204	0,01204	0,01204
	AmProS	884,65	884,65	884,65
B (mol/h)	Aspen	884,7	884,7	884,7
	ER(%)	0,00565	0,00565	0,00565
	AmProS	19,884	19,884	19,884
Nmin	Aspen	22,427	22,427	22,427
	ER(%)	11,339	11,339	11,339
	AmProS	31,901	27,171	20,923
N estágios	Aspen	36,66	31,086	23,66
	ER(%)	12,9909	12,5941	11,5718
Estácia de	AmProS	14,904	12,776	9,965
Estagio de	Aspen	16,504	13,985	10,651
Annentação	ER(%)	9,69462	8,64498	6,44071

Tabela B21. Teste alterando a taxa de razão de refluxo para o caso C, , aplicando o método

	Tipo de		R/Rm	
PR	Sofware	1,5	2	10
	AmProS	7,504	7,504	7,504
Rm	Aspen	7,036	7,036	7,036
	ER(%)	6,65151	6,65151	6,65151
	AmProS	312,9	312,9	312,9
T topo (K)	Aspen	311,6	311,6	311,6
	ER(%)	0,4172	0,4172	0,4172
	AmProS	351,54	351,54	351,54
T fundo (K)	Aspen	354,5	354,5	354,5
	ER(%)	0,83498	0,83498	0,83498
	AmProS	415,35	415,35	415,35
D (mol/h)	Aspen	415,31	415,31	415,31
	ER(%)	0,00963	0,00963	0,00963
	AmProS	884,65	884,65	884,65
B (mol/h)	Aspen	884,69	884,69	884,69
	ER(%)	0,00452	0,00452	0,00452
	AmProS	19,884	19,884	19,884
Nmin	Aspen	22,914	22,914	22,914
	ER(%)	13,2234	13,2234	13,2234
	AmProS	26,16	27,16	20,921
N estágios	Aspen	37,612	31,718	24,171
	ER(%)	30,4477	14,3704	13,4459
Estácia da	AmProS	14,897	12,771	9,964
Alimentação	Aspen	16,931	14,278	10,88
Annientação	ER(%)	12,0135	10,5547	8,41912

Tabela B22. Teste alterando a taxa de razão de refluxo para o caso C, aplicando o método PR

	Tipo de	Pressão (kPa)		
SRK	Software	Porv	552	Pbol
	AmProS	7,905	7,387	7,056
Rm	Aspen	5,836	6,893	7,053
	ER(%)	35,4524	7,16669	0,04254
	AmProS	255,6	312,9	330,35
T topo (K)	Aspen	254,1	311,1	328,3
	ER(%)	0,59032	0,57859	0,62443
	AmProS	283,96	351,54	372,4
T fundo (K)	Aspen	284,8	353,9	375,8
	ER(%)	0,29494	0,66686	0,90474
	AmProS	415,35	415,35	415,35
D (mol/h)	Aspen	415,3	415,3	415,3
	ER(%)	0,01204	0,01204	0,01204
	AmProS	884,65	884,65	884,65
B (mol/h)	Aspen	884,7	884,7	884,7
	ER(%)	0,00565	0,00565	0,00565
	AmProS	14,741	19,884	21,334
Nmin	Aspen	15,796	22,427	25,409
	ER(%)	6,67891	11,339	16,0376
	AmProS	20,11	27,171	29,186
N estágios	Aspen	22,101	31,086	35,128
	ER(%)	9,00864	12,5941	16,9153
Estágio do	AmProS	9,599	12,776	13,683
Alimentação	Aspen	9,949	13,985	15,813
Annentação	ER(%)	3,51794	8,64498	13,4699

Tabela B23. Teste alterando a pressão da coluna para o caso C, aplicando o método SRK

	Tipo de	Pressão (kPa)		
PR	Software	Porv	552	Pbol
	AmProS	8,055	7,504	7,148
Rm	Aspen	6	7,036	7,163
	ER(%)	34,25	6,65151	0,20941
	AmProS	256,23	312,9	329,77
T topo (K)	Aspen	254,5	311,6	328,3
	ER(%)	0,67976	0,4172	0,44776
	AmProS	284,7	351,54	371,71
T fundo (K)	Aspen	285,3	354,5	375,7
	ER(%)	0,2103	0,83498	1,06202
	AmProS	415,35	415,35	415,35
D (mol/h)	Aspen	415,3	415,31	415,3
	ER(%)	0,01204	0,00963	0,01204
	AmProS	884,65	884,65	884,65
B (mol/h)	Aspen	884,7	884,69	884,7
	ER(%)	0,00565	0,00452	0,00565
	AmProS	14,8	19,884	21,288
Nmin	Aspen	16,324	22,914	25,757
	ER(%)	9,33595	13,2234	17,3506
	AmProS	20,182	27,16	29,112
N estágios	Aspen	22,807	31,718	35,587
	ER(%)	11,5096	14,3704	18,1948
Estácia da	AmProS	9,631	12,771	13,649
Limontação	Aspen	10,266	14,278	16,019
Annenaçao	ER(%)	6,18547	10,5547	14,7949

Tabela B24. Teste alterando a pressão da coluna para o caso C, , aplicando o método PR

Tipo de	Recup	eração Chave	e-Leve
Software			
Soliwale	95%	90%	80%
AmProS	7,387	7,313	7,142
Aspen	6,893	6,804	6,612
ER(%)	7,16669	7,48089	8,01573
AmProS	312,9	312,81	312,59
Aspen	311,1	310,9	310,6
ER(%)	0,57859	0,61435	0,6407
AmProS	351,54	350,29	348,03
Aspen	353,9	352,6	350,2
ER(%)	0,66686	0,65513	0,61965
AmProS	415,35	396,35	358,35
Aspen	415,3	396,3	358,4
ER(%)	0,01204	0,01262	0,01395
AmProS	884,65	903,65	941,65
Aspen	884,7	903,7	941,6
ER(%)	0,00565	0,00553	0,00531
AmProS	19,884	17,452	14,8
Aspen	22,427	19,526	16,375
ER(%)	11,339	10,6217	9,61832
AmProS	27,171	23,853	20,241
Aspen	31,086	27,108	22,811
ER(%)	12,5941	12,0075	11,2665
AmProS	12,776	12,83	12,18
Aspen	13,985	14,035	13,253
ER(%)	8,64498	8,58568	8,09628
	AmProS Aspen ER(%) AmProS Aspen ER(%) AmProS Aspen ER(%) AmProS Aspen ER(%) AmProS Aspen ER(%) AmProS Aspen ER(%) AmProS Aspen ER(%) AmProS Aspen ER(%) AmProS Aspen ER(%)	AmProS7,387Aspen6,893ER(%)7,16669AmProS312,9Aspen311,1ER(%)0,57859AmProS351,54Aspen353,9ER(%)0,66686AmProS415,35Aspen415,3ER(%)0,01204AmProS884,65Aspen884,7ER(%)0,00565AmProS19,884Aspen22,427ER(%)11,339AmProS27,171Aspen31,086ER(%)12,5941AmProS12,776Aspen13,985ER(%)8,64498	AmProS7,3877,313Aspen6,8936,804ER(%)7,166697,48089AmProS312,9312,81Aspen311,1310,9ER(%)0,578590,61435AmProS351,54350,29Aspen353,9352,6ER(%)0,666860,65513AmProS415,35396,35Aspen415,3396,3ER(%)0,012040,01262AmProS884,65903,65Aspen884,7903,7ER(%)0,005650,00553AmProS19,88417,452Aspen22,42719,526ER(%)11,33910,6217AmProS27,17123,853Aspen31,08627,108ER(%)12,594112,0075AmProS12,77612,83Aspen13,98514,035ER(%)8,644988,58568

Tabela B25. Teste alterando a recuperação do componente chave-leve no topo para o caso C,aplicando o método SRK

Tino de	Recur	eração Chave	-Leve
Software	95%	90%	80%
AmProS	7,504	7,429	7,255
Aspen	7,036	6,947	6,75
ER(%)	6,65151	6,93825	7,48148
AmProS	312,9	312,81	312,59
Aspen	311,6	311,4	311,1
ER(%)	0,4172	0,45279	0,47895
AmProS	351,54	350,29	348,03
Aspen	354,5	353,2	350,8
ER(%)	0,83498	0,8239	0,78962
AmProS	415,35	396,35	358,35
Aspen	415,31	396,3	358,4
ER(%)	0,00963	0,01262	0,01395
AmProS	884,65	903,65	941,65
Aspen	884,69	903,7	941,6
ER(%)	0,00452	0,00553	0,00531
AmProS	19,884	17,454	14,8
Aspen	22,914	19,952	16,734
ER(%)	13,2234	12,52	11,5573
AmProS	27,16	23,843	20,233
Aspen	31,718	27,674	23,289
ER(%)	14,3704	13,8433	13,1221
AmProS	12,771	12,825	12,175
Aspen	14,278	14,328	13,532
ER(%)	10,5547	10,4899	10,0281
	Tipo deSoftwareAmProSAspenER(%)AmProSAspenER(%)AmProSAspenER(%)AmProSAspenER(%)AmProSAspenER(%)AmProSAspenER(%)AmProSAspenER(%)AmProSAspenER(%)AmProSAspenER(%)AmProSAspenER(%)AmProSAspenER(%)AmProSAspenER(%)AmProSAspenER(%)AmProSAspenER(%)AmProSAspenER(%)AmProSAspenER(%)AmProSAspenER(%)	Tipo de Recup Software 95% AmProS 7,504 Aspen 7,036 ER(%) 6,65151 AmProS 312,9 Aspen 311,6 ER(%) 0,4172 AmProS 351,54 Aspen 354,5 ER(%) 0,83498 AmProS 415,35 Aspen 415,31 ER(%) 0,00963 AmProS 884,65 Aspen 884,65 Aspen 22,914 ER(%) 13,2234 AmProS 27,16 Aspen 31,718 ER(%) 14,3704 AmProS 12,771 Aspen 12,771 Aspen 14,278 ER(%) 10,5547	Tipo deRecuperação ChaveSoftware95%90%AmProS7,5047,429Aspen7,0366,947ER(%)6,651516,93825AmProS312,9312,81Aspen311,6311,4ER(%)0,41720,45279AmProS351,54350,29Aspen354,5353,2ER(%)0,834980,8239AmProS415,35396,35Aspen415,31396,3ER(%)0,009630,01262AmProS884,65903,65Aspen884,69903,7ER(%)0,004520,00553AmProS19,88417,454Aspen22,91419,952ER(%)13,223412,52AmProS27,1623,843Aspen31,71827,674ER(%)14,370413,8433AmProS12,77112,825Aspen14,27814,328ER(%)10,554710,4899

 Tabela B26. Teste alterando a recuperação do componente chave-leve no topo para o caso C,

 aplicando o método PR

	Tipo do	Docupo	ração Chava	Decede
	Tipo de	Kecupe		-resaua
SRK	Software	95%	90%	80%
	AmProS	7,387	6,576	5,189
Rm	Aspen	6,893	6,147	4,872
	ER(%)	7,16669	6,97901	6,50657
	AmProS	312,9	313,7	315,05
T topo (K)	Aspen	311,1	311,8	313,1
	ER(%)	0,57859	0,60936	0,6228
	AmProS	351,54	352,48	354,62
T fundo (K)	Aspen	353,9	355	357,4
	ER(%)	0,66686	0,70986	0,77784
D (mol/h)	AmProS	415,35	439	486,3
D (mol/h)	Aspen	415,3	438,9	486,2
	ER(%)	0,01204	0,02278	0,02057
	AmProS	884,65	861	813,7
B (mol/h)	Aspen	884,7	861,1	813,8
	ER(%)	0,00565	0,01161	0,01229
	AmProS	19,884	17,55	15,04
Nmin	Aspen	22,427	19,623	16,606
	ER(%)	11,339	10,5641	9,43033
	AmProS	27,171	24,055	20,765
N estágios	Aspen	31,086	27,322	23,362
	ER(%)	12,5941	11,9574	11,1163
	AmProS	12,776	9,87	7,461
Estagio de	Aspen	13,985	10,517	7,645
Alimentação	ER(%)	8,64498	6,15194	2,4068

Tabela B27. Teste alterando a recuperação do componente chave-pesada no fundo para ocaso C, aplicando o método SRK

-	Tipo de	Recupe	eração Chave	-Pesada
PR	Software	95%	90%	80%
	AmProS	7,504	6,679	5,27
Rm	Aspen	7,036	6,275	4,972
	ER(%)	6,65151	6,43825	5,99356
	AmProS	312,9	313,7	315,05
T topo (K)	Aspen	311,6	312,3	313,6
	ER(%)	0,4172	0,44829	0,46237
	AmProS	351,54	352,48	354,62
T fundo (K)	Aspen	354,5	355,6	358
	ER(%)	0,83498	0,87739	0,94413
	AmProS	415,35	439	486,3
D (mol/h)	Aspen	415,31	438,9	486,2
	ER(%)	0,00963	0,02278	0,02057
	AmProS	884,65	861	813,7
B (mol/h)	Aspen	884,69	861,1	813,8
	ER(%)	0,00452	0,01161	0,01229
	AmProS	19,884	17,55	15,04
Nmin	Aspen	22,914	20,049	16,966
	ER(%)	13,2234	12,4645	11,3521
	AmProS	27,16	24,045	20,754
N estágios	Aspen	31,718	27,888	23,841
	ER(%)	14,3704	13,7801	12,9483
Datánia da	AmProS	12,771	9,866	7,457
Estagio de	Aspen	14,278	10,735	7,799
Anmentação	ER(%)	10,5547	8,09502	4,38518

Tabela B28. Teste alterando a recuperação do componente chave-pesada no fundo para ocaso C, aplicando o método PR

	51	KK (K		
	Tipo de	Te	emperatura (°	'F)
SRK	Software	170	180	190
	AmProS	7,158	7,387	7,714
Rm	Aspen	6,051	6,893	7,018
	ER(%)	18,2945	7,16669	9,91736
	AmProS	302,21	312,9	310,94
T topo (K)	Aspen	300,4	311,1	309,1
	ER(%)	0,60253	0,57859	0,59528
	AmProS	338,82	351,54	349,2
T fundo (K)	Aspen	340,6	353,9	351,4
	ER(%)	0,52261	0,66686	0,62607
	AmProS	415,35	415,35	415,35
D (mol/h)	Aspen	415,3	415,3	415,3
	ER(%)	0,01204	0,01204	0,01204
	AmProS	884,65	884,65	884,65
B (mol/h)	Aspen	884,7	884,7	884,7
	ER(%)	0,00565	0,00565	0,00565
	AmProS	18,964	19,884	19,717
Nmin	Aspen	20,731	22,427	22,322
	ER(%)	8,52347	11,339	11,6701
	AmProS	25,934	27,171	26,914
N estágios	Aspen	28,795	31,086	30,909
	ER(%)	9,93575	12,5941	12,925
Estánia da	AmProS	12,219	12,776	12,66
Estagio de	Aspen	12,962	13,985	13,913
Anmentaçao	ER(%)	5,73214	8,64498	9,00597

Tabela B29. Teste alterando a temperatura de alimentação para o caso C, aplicando o método

	Р	R		
	Tipo de	Te	emperatura (°	F)
PR	Software	170	180	190
-	AmProS	7,287	7,504	7,842
Rm	Aspen	6,644	7,036	7,156
	ER(%)	9,6779	6,65151	9,58636
	AmProS	301,84	312,9	310,57
T topo (K)	Aspen	300,4	311,6	309,2
	ER(%)	0,47936	0,4172	0,44308
	AmProS	338,38	351,54	348,77
T fundo (K)	Aspen	340,7	354,5	351,5
	ER(%)	0,68095	0,83498	0,77667
	AmProS	415,35	415,35	415,35
D (mol/h)	Aspen	415,31	415,31	415,31
	ER(%)	0,00963	0,00963	0,00963
	AmProS	884,65	884,65	884,65
B (mol/h)	Aspen	884,69	884,69	884,69
	ER(%)	0,00452	0,00452	0,00452
	AmProS	18,931	19,884	19,685
Nmin	Aspen	21,176	22,914	22,751
	ER(%)	10,6016	13,2234	13,4763
	AmProS	25,877	27,16	26,861
N estágios	Aspen	29,381	31,718	31,575
	ER(%)	11,9261	14,3704	14,9295
Estácio do	AmProS	12,194	12,771	12,636
Alimentação	Aspen	13,226	14,278	14,213
Annenaçau	ER(%)	7,80281	10,5547	11,0955

Tabela B30. Teste alterando a temperatura de alimentação para o caso C, aplicando o método

SRK		AmProS			Aspen Hys	ys	ER(%)		
Estágio	Tj(K)	Vj(mol/h)	Lj(mol/h)	Tj(K)	Vj(mol/h)	Lj(mol/h)	Tj	Vj	Lj
1	331,85	0,00	158,64	331,84	0,00	158,63	0,00	0,00	0,00
2	338,87	203,68	156,59	338,80	203,68	155,40	0,02	0,00	0,77
3	344,13	201,63	154,29	344,26	200,44	151,02	0,04	0,59	2,17
4	349,12	199,33	151,88	349,59	196,06	146,64	0,14	1,67	3,57
5	354,13	196,92	149,77	354,86	191,68	143,35	0,21	2,73	4,48
6	358,76	194,81	148,30	359,53	188,39	141,39	0,21	3,41	4,88
7	363,25	193,34	227,24	363,17	186,44	221,99	0,02	3,70	2,37
8	367,75	172,28	226,53	367,68	167,03	222,61	0,02	3,15	1,76
9	371,88	171,57	226,00	371,74	167,65	223,41	0,04	2,34	1,16
10	375,51	171,04	225,67	375,26	168,45	224,41	0,07	1,54	0,56
11	378,56	170,71	225,50	378,17	169,46	225,48	0,10	0,74	0,01
12	380,99	170,54	225,41	380,47	170,53	226,44	0,14	0,01	0,46
13	382,91	170,45	54,96	382,23	171,48	54,96	0,18	0,60	0,00

Apêndice C – Tabelas de Resultados Método Rigoroso

Tabela C1. Teste do Caso Base A, aplicando o método SRK

Tabela C2. Teste do Caso Base A, aplicando o método PR

PR		Ampros		Aspen Hysys]	ER(%)		
Estágio	Tj(K)	Vj(mol/h)	Lj(mol/h)	Tj(K)	Vj(mol/h)	Lj(mol/h)	Tj	Vj	Lj	
1	331,88	0,00	157,01	332,48	0,00	157,02	0,18	0,00	0,00	
2	338,92	202,05	154,93	339,44	202,06	154,00	0,15	0,00	0,60	
3	344,20	199,97	152,66	344,82	199,05	149,96	0,18	0,46	1,80	
4	349,20	197,70	150,30	349,98	195,00	145,87	0,22	1,39	3,04	
5	354,23	195,34	148,22	355,06	190,91	142,70	0,23	2,32	3,87	
6	358,88	193,26	146,75	359,59	187,75	140,72	0,20	2,94	4,28	
7	363,26	191,79	228,89	363,19	185,77	224,07	0,02	3,24	2,15	
8	367,68	173,93	228,14	367,60	169,11	224,62	0,02	2,85	1,57	
9	371,75	173,18	227,54	371,62	169,66	225,32	0,03	2,07	0,99	
10	375,36	172,58	227,15	375,18	170,36	226,23	0,05	1,30	0,41	
11	378,42	172,19	226,92	378,18	171,28	227,23	0,06	0,53	0,13	
12	380,89	171,96	226,77	380,59	172,27	228,12	0,08	0,18	0,59	
13	382,83	171,81	54,96	382,48	173,16	54,96	0,09	0,78	0,00	

SRK		Ampros			Aspen Hys	<i>sys</i>	ER(%)		
Estágio	Tj(K)	Vj(mol/h)	Lj(mol/h)	Tj(K)	Vj(mol/h)	Lj(mol/h)	Тj	Vj	Lj
1	341,64	0,00	767,00	342,03	0,00	766,99	0,11	0,00	0,00
2	348,64	1586,44	755,04	348,80	1586,43	750,42	0,05	0,00	0,62
3	351,93	1574,48	750,53	352,03	1569,86	743,60	0,03	0,29	0,93
4	353,45	1569,97	747,88	353,58	1563,04	737,55	0,04	0,44	1,40
5	354,48	1567,32	745,23	354,69	1556,99	730,22	0,06	0,66	2,06
6	355,57	1564,67	742,03	355,85	1549,66	721,46	0,08	0,97	2,85
7	356,87	1561,47	738,24	357,18	1540,90	711,98	0,09	1,34	3,69
8	358,37	1557,68	734,42	358,63	1531,42	702,87	0,07	1,71	4,49
9	363,44	1553,86	1186,49	360,05	1522,31	1149,12	0,94	2,07	3,25
10	369,04	1005,93	1177,39	367,17	968,56	1137,08	0,51	3,86	3,54
11	374,00	996,83	1168,74	373,25	956,52	1126,83	0,20	4,21	3,72
12	378,50	988,18	1161,74	378,38	946,26	1120,28	0,03	4,43	3,70
13	382,15	981,18	1157,18	382,38	939,72	1117,94	0,06	4,41	3,51
14	384,72	976,62	180,56	385,12	937,38	180,56	0,10	4,19	0,00

Tabela C3. Teste do Caso Base B, aplicando o método SRK

Tabela C4. Teste do Caso Base B, aplicando o método PR

PR		Ampros			Aspen Hys	ER(%)			
Estágio	Tj(K)	Vj(mol/h)	Lj(mol/h)	Tj(K)	Vj(mol/h)	Lj(mol/h)	Tj	Vj	Lj
1	341,65	0,00	807,97	341,44	0,00	807,96	0,06	0,00	0,00
2	348,57	1627,41	795,26	348,17	1627,39	790,48	0,11	0,00	0,61
3	351,89	1614,70	790,31	351,48	1609,91	783,24	0,12	0,30	0,90
4	353,42	1609,75	787,48	353,08	1602,67	776,91	0,10	0,44	1,36
5	354,44	1606,92	784,74	354,23	1596,35	769,23	0,06	0,66	2,02
6	355,50	1604,18	781,48	355,42	1588,67	759,97	0,02	0,98	2,83
7	356,76	1600,92	777,64	356,79	1579,40	749,82	0,01	1,36	3,71
8	358,22	1597,08	773,78	358,30	1569,26	739,99	0,02	1,77	4,57
9	363,55	1593,22	1181,58	359,79	1559,42	1144,40	1,04	2,17	3,25
10	369,12	1001,02	1172,00	366,89	963,83	1132,58	0,61	3,86	3,48
11	374,06	991,44	1163,06	372,93	952,01	1122,56	0,30	4,14	3,61
12	378,52	982,50	1155,85	378,01	941,99	1116,07	0,14	4,30	3,56
13	382,14	975,29	1151,08	381,95	935,51	1113,60	0,05	4,25	3,37
14	384,69	970,52	180,56	384,66	933,03	180,56	0,01	4,02	0,00

SRK		Ampros			Aspen Hys	ys		ER (%)
Estágio	Tj(K)	Vj(mol/h)	Lj(mol/h)	Tj(K)	Vj(mol/h)	Lj(mol/h)	Tj	Vj	Lj
1	311,38	0,00	6136,39	311,15	0,00	6134,48	0,07	0,00	0,03
2	313,86	6551,74	6126,57	313,46	6549,81	6145,28	0,13	0,03	0,30
3	315,18	6541,92	6117,57	314,69	6560,62	6143,89	0,16	0,28	0,43
4	315,96	6532,92	6107,53	315,44	6559,22	6134,35	0,17	0,40	0,44
5	316,53	6522,88	6096,14	316,00	6549,68	6119,90	0,17	0,41	0,39
6	317,05	6511,49	6083,48	316,52	6535,23	6102,40	0,17	0,36	0,31
7	317,56	6498,83	6069,70	317,04	6517,73	6082,90	0,16	0,29	0,22
8	318,09	6485,05	6055,03	317,59	6498,24	6062,15	0,16	0,20	0,12
9	318,65	6470,38	6039,69	318,17	6477,48	6040,62	0,15	0,11	0,02
10	319,24	6455,04	6023,72	318,78	6455,95	6018,33	0,14	0,01	0,09
11	319,87	6439,07	6005,74	319,42	6433,66	5991,94	0,14	0,08	0,23
12	320,74	6421,09	5959,94	320,18	6407,28	5864,42	0,18	0,22	1,63
13	323,48	6375,29	6582,58	323,59	6279,76	6266,29	0,03	1,52	5,05
14	324,01	5697,93	6572,65	324,14	5381,63	6259,44	0,04	5,88	5,00
15	324,52	5688,00	6562,15	324,65	5374,77	6251,23	0,04	5,83	4,97
16	325,04	5677,50	6551,32	325,15	5366,57	6242,60	0,04	5,79	4,95
17	325,56	5666,67	6540,41	325,65	5357,93	6234,05	0,03	5,76	4,91
18	326,08	5655,76	6529,61	326,14	5349,38	6225,90	0,02	5,73	4,88
19	326,58	5644,96	6519,11	326,62	5341,24	6218,36	0,01	5,69	4,84
20	327,07	5634,46	6509,01	327,07	5333,70	6211,51	0,00	5,64	4,79
21	327,53	5624,36	6499,36	327,51	5326,84	6205,33	0,01	5,59	4,74
22	327,97	5614,71	6490,11	327,91	5320,67	6199,66	0,02	5,53	4,68
23	328,38	5605,46	6481,07	328,28	5314,99	6194,00	0,03	5,47	4,63
24	328,77	5596,42	6471,73	328,65	5309,33	6187,03	0,04	5,41	4,60
25	329,20	5587,08	6460,66	329,05	5302,36	6173,60	0,05	5,37	4,65
26	329,79	5576,01	6440,15	329,66	5288,94	6108,22	0,04	5,43	5,43
27	331,64	5555,50	6299,78	331,96	5223,55	5473,86	0,10	6,35	15,09
28	351,42	5415,13	884,65	353,83	4589,19	884,65	0,68	18,00	0,00

Tabela C5. Teste do Caso Base C, aplicando o método SRK

PR		Ampros			Aspen Hys	ys		ER(%))
Estágio	Tj(K)	Vj(mol/h)	Lj(mol/h)	Tj(K)	Vj(mol/h)	Lj(mol/h)	Тj	Vj	Lj
1	311,40	0,00	6233,58	311,70	0,00	6231,34	0,10	0,00	0,04
2	313,88	6648,93	6221,88	314,03	6646,54	6241,45	0,05	0,04	0,31
3	315,20	6637,23	6211,90	315,27	6656,65	6239,80	0,02	0,29	0,45
4	316,00	6627,25	6201,29	316,02	6655,00	6230,20	0,01	0,42	0,46
5	316,58	6616,64	6189,53	316,58	6645,41	6215,84	0,00	0,43	0,42
6	317,10	6604,88	6176,54	317,09	6631,05	6198,53	0,00	0,39	0,35
7	317,62	6591,89	6162,44	317,61	6613,73	6179,31	0,00	0,33	0,27
8	318,17	6577,79	6147,42	318,15	6594,52	6158,89	0,01	0,25	0,19
9	318,74	6562,77	6131,69	318,72	6574,09	6137,71	0,01	0,17	0,10
10	319,34	6547,04	6115,28	319,32	6552,91	6115,79	0,01	0,09	0,01
11	319,99	6530,63	6096,73	319,95	6530,99	6089,67	0,01	0,01	0,12
12	320,89	6512,08	6049,46	320,69	6504,88	5962,13	0,06	0,11	1,46
13	323,72	6464,81	6668,23	324,06	6377,33	6384,54	0,10	1,37	4,44
14	324,22	5783,58	6659,06	324,59	5499,74	6378,79	0,12	5,16	4,39
15	324,71	5774,41	6649,39	325,09	5493,99	6371,49	0,12	5,10	4,36
16	325,20	5764,74	6639,45	325,58	5486,70	6363,53	0,12	5,07	4,34
17	325,69	5754,80	6629,43	326,07	5478,73	6355,43	0,12	5,04	4,31
18	326,18	5744,78	6619,55	326,55	5470,63	6347,54	0,11	5,01	4,29
19	326,67	5734,90	6609,96	327,02	5462,74	6340,10	0,11	4,98	4,26
20	327,14	5725,31	6600,79	327,47	5455,30	6333,25	0,10	4,95	4,22
21	327,58	5716,14	6592,12	327,89	5448,45	6327,04	0,10	4,91	4,19
22	328,00	5707,47	6583,93	328,29	5442,25	6321,35	0,09	4,87	4,15
23	328,39	5699,28	6576,04	328,67	5436,55	6315,74	0,09	4,83	4,12
24	328,78	5691,39	6567,99	329,04	5430,94	6308,93	0,08	4,80	4,11
25	329,19	5683,34	6558,38	329,45	5424,13	6295,72	0,08	4,78	4,17
26	329,77	5673,73	6539,38	330,07	5410,92	6228,38	0,09	4,86	4,99
27	331,64	5654,73	6400,61	332,42	5343,58	5572,66	0,23	5,82	14,86
28	351,40	5515,96	884,65	354,40	4687,86	884,65	0,85	17,66	0,00

Tabela C6. Teste do Caso Base C, aplicando o método PR

Anexo A – Propriedades dos Componentes

N°	Composto	Fórmula	M.M.	Temperatura de Ebulição (K)	Temperatura Crítica (K)	Pressão Crítica (bar)	Zc	Omega (ω)
1	Metano	CH4	16,043	111,66	190,56	45,99	0,286	0,011
2	Eteno	C2H4	28,054	169,42	282,34	50,41	0,282	0,087
3	Etino (Acetileno)	C2H2	26,038	188,4	308,3	61,14	0,268	0,189
4	Etano	C2H6	30,07	184,55	305,32	48,72	0,279	0,099
5	Propino	C3H4	40,065	250,12	402,4	56,3	0,275	0,219
6	Propadieno	C3H4	40,065	238,77	394	52,5	0,279	0,122
7	Propeno	C3H6	42,081	225,46	364,9	46	0,28	0,142
8	Ciclopropano	C3H6	42,081	240,34	398,25	55,75	0,274	0,13
9	Propano	C3H8	44,097	231,02	369,83	42,48	0,276	0,152
10	1-Butino	C4H6	54,092	281,21	440	46	0,262	0,245
11	1,3-Butadieno	C4H6	54,092	268,62	425	43,2	0,27	0,195
12	Ciclobutano	C4H8	56,108	285,64	460	49,9	0,275	0,185
13	1-Buteno	C4H8	56,108	266,92	419,5	40,2	0,278	0,194
14	Trans-2-Buteno	C4H8	56,108	274,03	428,6	41	0,276	0,218
15	Cis-2-Buteno	C4H8	56,108	276,87	435,5	42,1	0,269	0,203
16	2-Metil-Propeno	C4H8	56,108	266,24	417,9	40	0,275	0,199

 Tabela A1
 Tabela de constantes básicas dos componentes

144

continua
N°	Composto	Fórmula	M.M.	Temperatura de Ebulição (K)	Temperatura Crítica (K)	Pressão Crítica (bar)	Zc	Omega (ω)
17	Butano	C4H10	58,123	272,66	425,12	37,96	0,274	0,2
18	2-Metil-Propano (Isobutano)	C4H10	58,123	261,34	407,85	36,4	0,278	0,186
19	1-Pentino	C5H8	68,119	313,38	470	41,7	0,296	0,394
20	Ciclopentano	C5H10	70,134	322,38	511,6	45,08	0,276	0,197
21	1-Penteno	C5H10	70,134	303,11	464,8	35,6	0,275	0,237
22	Cis-2-Penteno	C5H10	70,134	310,07	475	36,9	0,273	0,253
23	2-Metil-2-Buteno	C5H10	70,134	311,7	470	38,6	0,288	0,339
24	3-Metil-1-Buteno	C5H10	70,134	293,21	452,7	35,5	0,288	0,211
25	Pentano	C5H12	72,15	309,22	469,7	33,7	0,268	0,252
26	2-Metil-Butano	C5H12	72,15	300,99	460,39	33,81	0,272	0,229
27	2,2-Dimetil-Propano	C5H12	72,15	282,65	433,75	31,99	0,269	0,197
28	Benzeno	C6H6	78,114	353,24	562,05	48,95	0,268	0,21
29	Ciclohexano	C6H12	84,161	353,93	553,5	40,73	0,273	0,211
30	Metilciclopentano	C6H12	84,161	344,98	532,79	37,84	0,272	0,227
31	1-Hexeno	C6H12	84,161	336,63	504	31,43	0,266	0,281
32	4-MetilPent-1-eno	C6H12	84,161	326,82	495	32,9	0,286	0,257
33	Hexano	C6H14	86,177	341,88	507,6	30,25	0,264	0,3
34	2-Metilpentano	C6H14	86,177	333,4	497,5	30,1	0,267	0,278

 Tabela A1 (continuação). Tabela de constantes básicas dos componentes

N°	Composto	Fórmula	M.M.	Temperatura de Ebulição (K)	Temperatura Crítica (K)	Pressão Crítica (bar)	Zc	Omega (ω)
35	3-Metilpentano	C6H14	86,177	366,4	504,4	31,2	0,273	0,273
36	2,2-Dimetilbutano	C6H14	86,177	322,87	488,7	30,8	0,272	0,233
37	2,3-Dimetilbutano	C6H14	86,177	331,12	499,9	31,3	0,269	0,248
38	Tolueno	C7H8	92,141	383,79	591,75	41,08	0,264	0,264
39	Cicloheptano	C7H14	98,188	391,95	604,3	38,4	0,274	0,242
40	Metilciclohexano	C7H14	98,188	374,09	572,19	34,71	0,268	0,235
41	Etilciclopentano	C7H14	98,188	376,59	569,5	33,97	0,269	0,27
42	Cis-1,3-dimetilciclopentano	C7H14	98,188	364,71	551	34	0,277	0,276
43	Trans-1,3,dimetilciclopentano	C7H14	98,188	363,9	553	34	0,277	0,276
44	1-Hepteno	C7H14	98,188	366,79	537,3	29,2	0,267	0,343
45	Heptano	C7H16	100,204	371,57	540,2	27,4	0,261	0,35
46	2-Metilhexano	C7H16	100,204	363,18	530,1	27,3	0,261	0,331
47	3-Etilpentano	C7H16	100,204	366,63	540,5	28,9	0,267	0,311
48	2,2-Dimetilpentano	C7H16	100,204	352,32	520,4	27,7	0,266	0,287
49	2,3-Dimetilpentano	C7H16	100,204	362,91	537,3	29,1	0,256	0,297
50	2,4-Dimetilpentano	C7H16	100,204	353,62	519,7	27,4	0,265	0,304
51	3,3-Dimetilpentano	C7H16	100,204	359,19	536,3	29,5	0,274	0,269
52	2,2,3-Trimetilbutano	C7H16	100,204	354,01	531,1	29,5	0,266	0,25

 Tabela A1 (continuação). Tabela de constantes básicas dos componentes

N°	Composto	Fórmula	M.M.	Temperatura de Ebulição (K)	Temperatura Crítica (K)	Pressão Crítica (bar)	Zc	Omega (ω)
53	Etil Benzeno	C8H10	106,167	409,36	617,15	36,09	0,263	0,304
54	1,2-Dimetilbenzeno (o-Xileno)	C8H10	106,167	417,59	630,3	37,32	0,263	0,312
55	1,3-Dimetilbenzeno (m-Xileno)	C8H10	106,167	412,34	617	35,41	0,259	0,327
56	1,4-Dimetilbenzeno (p-Xileno)	C8H10	106,167	411,53	616,2	35,11	0,259	0,322
57	Ciclooctano	C8H16	112,215	424,31	647,2	35,7	0,271	0,254
58	1-Octeno	C8H16	112,215	394,44	567	26,8	0,266	0,393
59	Octano	C8H18	114,231	398,82	568,7	24,9	0,259	0,399
60	2-Metil-Heptano	C8H18	114,231	390,8	559,6	24,8	0,26	0,378
61	3-Metil-Heptano	C8H18	114,231	392,08	563,6	25,5	0,253	0,371
62	4-Metil-Heptano	C8H18	114,231	390,86	561,7	25,4	0,259	0,371
63	3-Etilhexano	C8H18	114,231	391,69	565,4	26,1	0,253	0,362
64	2,2-Dimetil-Hexano	C8H18	114,231	379,99	549,8	25,3	0,265	0,336
65	2,3-Dimetil-Hexano	C8H18	114,231	388,76	563,4	26,3	0,263	0,347
66	2,4-Dimetil-Hexano	C8H18	114,231	382,58	553,5	25,6	0,263	0,344
67	2,5-Dimetil-Hexano	C8H18	114,231	382,26	550	24,9	0,262	0,357
68	3,3-Dimetil-Hexano	C8H18	114,231	385,12	562	26,5	0,251	0,32
69	3,4-Dimetil-Hexano	C8H18	114,231	390,88	568,8	26,9	0,265	0,338
70	3-Etil-2-MetilPentano	C8H18	114,231	388,81	567	27	0,254	0,331

 Tabela A1 (continuação). Tabela de constantes básicas dos componentes

N°	Composto	Fórmula	M.M.	Temperatura de Ebulição (K)	Temperatura Crítica (K)	Pressão Crítica (bar)	Zc	Omega (ω)
71	3-Etil-3-MetilPentano	C8H18	114,231	391,42	576,5	28,1	0,267	0,305
72	2,2,3-Trimetilpentano	C8H18	114,231	382,99	563,4	27,3	0,254	0,298
73	2,2,4-Trimetilpentano (Iso-octano)	C8H18	114,231	382,99	563,4	27,3	0,254	0,298
74	2,3,3-Trimetilpentano	C8H18	114,231	387,92	573,5	28,2	0,269	0,291
75	2,2,3,3-Tetrametilbutano	C8H18	114,231	386,62	566,3	27,3	0,267	0,316
76	Propilbenzeno	C9H12	120,194	432,35	638,35	32	0,265	0,345
77	1-Metil-etil-benzeno (Cumeno)	C9H12	120,194	425,52	631	32,09	0,261	0,326
78	1-Etil-4-Metilbenzeno	C9H12	120,194	435,13	640,2	32,3	0,259	0,364
79	1,2,3-Trimetilbenzeno	C9H12	120,194	449,23	664,5	34,54	0,267	0,367
80	1,2,4-Trimetilbenzeno	C9H12	120,194	442,49	649,1	32,32	0,256	0,377
81	1,3,5-Trimetilbenzeno (Mesitileno)	C9H12	120,194	437,9	637,3	31,27	0,252	0,399
82	1-Noneno	C9H18	126,242	420,03	594	23,3	0,248	0,411
83	Nonano	C9H20	128,258	423,97	594,6	22,9	0,257	0,445
84	2-Metiloctano	C9H20	128,258	416,44	587	23,1	0,25	0,423
85	2,2,3,3-Tetrametilpentano	C9H20	128,258	413,44	607,6	27,4	0,269	0,304
86	2,2,3,4-Tetrametilpentano	C9H20	128,258	406,18	592,7	25,3	0,258	0,301
87	2,2,4,4-Tetrametilpentano	C9H20	128,258	395,44	574,6	24,9		0,314
88	2,3,3,4-Tetrametilpentano	C9H20	128,258	414,71	607,1	26,7	0,261	0,309

 Tabela A1 (continuação). Tabela de constantes básicas dos componentes

N°	Composto	Fórmula	M.M.	Temperatura de Ebulição (K)	Temperatura Crítica (K)	Pressão Crítica (bar)	Zc	Omega (ω)
89	Naftaleno	C10H8	128,174	491,16	748,4	40,5	0,265	0,304
90	Butilbenzeno	C10H14	134,221	456,42	660,5	28,9	0,262	0,393
91	1,4-Dietilbenzeno	C10H14	134,221	456,9	657,9	28,03	0,247	0,403
92	1,2,4,5-Tetrametilbenzeno (Durene)	C10H14	134,221	470	676	29	0,249	0,423
93	Cis-biciclo[4.4.0]decano (cis-decalin)	C10H18	138,253	468,92	703,6	32	0,265	0,276
94	Trans-biciclo[4.4.0]decano (trans-decalin)	C10H18	138,253	460,42	687	32	0,272	0,303
95	Decano	C10H22	142,285	447,3	617,7	21,1	0,256	0,49
96	2,2,5-Trimetilheptano	C10H23	143,285	423,9	598,9	22,4	0,256	0,398
97	3,3,5-Trimetilheptano	C10H24	144,285	428,83	609,6	23,2	0,258	0,383
98	2,2,3,3-Tetrametilhexano	C10H25	145,285	433,46	623	25,1		0,366
99	2,2,5,5-Tetrametilhexano	C10H26	146,285	410,61	581,4	21,9		0,377
100	1-Metilnaftaleno	C11H10	142,2	517,84	772	36	0,259	0,348
101	2-Metilnaftaleno	C11H10	142,2	514,2	761	35,4	0,258	0,374
102	Fenilbenzeno (Bifenil)	C12H10	154,211	528,23	773	33,8	0,261	0,404
103	Dodecano	C12H26	170,338	489,48	658	18,2	0,251	0,576
104	Tridecano	C12H28	184,365	508,63	675	16,8	0,246	0,618
105	Fenantreno	C14H10	178,233	611,55	869	28,7	0,22	0,479
106	Antraceno	C14H10	178,233	614,39	869,3	28,7	0,22	0,501

 Tabela A1 (continuação). Tabela de constantes básicas dos componentes

N°	Composto	Fórmula	M.M.	Temperatura de Ebulição (K)	Temperatura Crítica (K)	Pressão Crítica (bar)	Zc	Omega (ω)
107	Tetradecano	C14H30	198,392	526,76	693	15,7	0,244	0,644
108	Pentadecano	C15H32	212,419	543,83	708	14,8	0,243	0,685
109	Hexadecano	C16H34	226,446	559,98	723	14	0,241	0,718
110	Heptadecano	C17H36	240,473	574,56	736	13,4	0,242	0,753
111	Octadecano	C18H38	254,5	588,3	747	12,9	0,247	0,8
112	Nonadecano	C19H40	268,527	602,34	755	11,6		0,845
113	Eicosano	C20H42	282,554	616,84	768	10,7		0,865

 Tabela A1 (continuação). Tabela de constantes básicas dos componentes

N°	Composto	Fórmula	a_0	a ₁ (*10 ³)	$a_2(*10^5)$	$a_3(*10^8)$	a4(*10 ¹¹)	C 0	c ₁	c ₂
1	Metano	CH4	4,568	8,975	3,631	3,407	1,091	3,7687	395,744	266,681
2	Eteno	C2H4	4,221	-8,782	5,795	-6,729	2,511	3,91382	596,526	256,37
3	Etino (Acetileno)	C2H2	2,41	10,926	-0,255	-0,79	0,524	3,67374	528,67	228,79
4	Etano	C2H6	4,178	-4,427	5,66	-6,651	2,487	5,33675	1648,22	230,918
5	Propino	C3H4	3,158	12,21	1,167	-2,316	1,002	4,24555	935,09	243,58
6	Propadieno	C3H4	3,403	6,271	3,388	-5,113	2,161	2,8386	458,06	196,07
7	Propeno	C3H6	3,834	3,893	4,688	-6,013	2,283	3,95606	789,624	247,58
8	Ciclopropano	C3H6	4,493	-18,097	12,744	-16,049	6,426	4,030584	866,15	248
9	Propano	C3H8	3,847	5,131	6,011	-7,893	3,079	3,92828	803,997	247,04
10	1-Butino	C4H6	2,995	20,8	1,56	-3,462	1,524	4,16676	1014,45	235,74
11	1,3-Butadieno	C4H6	3,607	5,085	8,253	-12,371	5,321	3,9554	927,21	238,63
12	Ciclobutano	C4H8	4,739	-16,423	14,488	-18,041	7,089	4,04436	1025,5	241,43
13	1-Buteno	C4H8	4,389	7,984	6,143	-8,197	3,165	3,9178	908,8	238,54
14	Trans-2-Buteno	C4H8	5,584	-4,89	9,133	-10,975	4,085	4,00827	967,5	240,84
15	Cis-2-Buteno	C4H8	3,689	19,184	2,23	-3,426	1,256	4,00958	967,32	237,873
16	2-Metil-Propeno	C4H8	3,231	20,949	2,313	-3,949	1,566	3,80956	866,25	234,64
17	Butano	C4H10	5,547	5,536	8,057	-10,571	4,134	3,93266	935,773	238,789
18	2-Metil-Propano (Isobutano)	C4H10	3,351	17,883	5,477	-8,099	3,243	4,00272	947,54	248,87

Tabela A2. Tabela de capacidade calorífica do gás ideal e constantes de Antoine

 $\frac{C_P^0}{R} = a_0 + T_1 \times T + a_2 \times T^2 + a_3 \times T^3 + a_4 \times T^4$, T em Kelvin e C_P⁰ na mesma unidade que o R

 $\log P^{vap} = c_0 - \frac{c_1}{T + c_2 - 273, 15}$, T em Kelvin e P em bar

N°	Composto	Fórmula	\mathbf{a}_0	$a_1(*10^3)$	$a_2(*10^5)$	a ₃ (*10 ⁸)	a4(*10 ¹¹)	C 0	C 1	c ₂
19	1-Pentino	C5H8	3,382	31,688	0,79	-3,109	1,417	4,0026	1068,1	227
20	Ciclopentano	C5H10	5,019	-19,734	17,917	-21,696	8,215	4,06783	1152,574	234,51
21	1-Penteno	C5H10	5,079	11,979	7,838	-10,962	4,381	3,96914	1044,01	233,45
22	Cis-2-Penteno	C5H10	2,901	31,785	1,842	-3,953	1,609	3,96798	1052,44	228,693
23	2-Metil-2-Buteno	C5H10	1,24	39,303	0,27	-2,5	1,12	4,09148	1124,33	236,63
24	3-Metil-1-Buteno	C5H10	2,108	41,912	-0,416	-1,937	0,954	3,94945	1012,37	236,647
25	Pentano	C5H12	7,554	-0,368	11,846	-14,939	5,753	3,99786	1064,84	232,014
26	2-Metil-Butano	C5H12	1,959	38,191	2,434	-5,175	2,165	3,92023	1022,88	233,46
27	2,2-Dimetil-Propano	C5H12	-11,428	156,037	-33,383	40,127	-17,806	3,83916	938,234	235,249
28	Benzeno	C6H6	3,551	-6,184	14,365	-19,807	8,234	3,98523	1184,24	217,572
29	Ciclohexano	C6H12	4,035	-4,433	16,834	-20,775	7,746	3,93002	1182,774	220,618
30	Metilciclopentano	C6H12	5,379	-8,258	17,293	-21,646	8,263	4,18199	1295,543	238,39
31	1-Hexeno	C6H12	6,303	12,352	10,258	-14,272	5,708	3,9826	1148,62	225,34
32	4-MetilPent-1-eno	C6H12	-1,326	65,625	-3,56	0,514	0,176	3,96019	1121,302	229,687
33	Hexano	C6H14	8,831	-0,166	14,302	-18,314	7,124	4,00139	1170,875	224,317
34	2-Metilpentano	C6H14	2,096	46,419	3,124	-6,829	2,902	3,98332	1145,8	227,815
35	3-Metilpentano	C6H14	0,433	11,143	0,73	-1,612	0,69	3,99283	1162,37	228,286
36	2,2-Dimetilbutano	C6H14	3,007	39,059	4,851	-8,243	3,367	3,8959	1090,16	230,517
37	2,3-Dimetilbutano	C6H14	-2,214	74,352	-3,697	0,273	0,308	3,93486	1127,4	228,966
38	Tolueno	C7H8	3,866	3,558	13,356	-18,659	7,69	4,05043	327,62	217,625
39	Cicloheptano	C7H14	2,288	32,86	6,877	-8,683	2,737	3,9633	1322,21997	215,297

Tabela A2 (continuação). Tabela de capacidade calorífica do gás ideal e constantes de Antoine

N°	Composto	Fórmula	a_0	$a_1(*10^3)$	$a_2(*10^5)$	a ₃ (*10 ⁸)	a4(*10 ¹¹)	C 0	c ₁	c ₂
40	Metilciclohexano	C7H14	3,148	18,438	13,624	-18,793	7,364	3,98232	1290,968	223,701
41	Etilciclopentano	C7H14	5,847	-0,048	17,507	-22,495	8,656	4,00408	1293,712	220,12
42	Cis-1,3-dimetilciclopentano	C7H14	-2,522	60,538	2,703	-7,572	3,361	4,00405	1259,821	220,12
43	Trans-1,3,dimetilciclopentano	C7H14	-2,522	60,538	2,703	-7,572	3,361	3,95279	1232,161	221,42
44	1-Hepteno	C7H14	7,52	12,824	12,67	-17,578	7,035	4,02677	1258,34	219,3
45	Heptano	C7H16	9,634	4,156	15,494	-20,066	7,77	4,02023	1263,909	216,432
46	2-Metilhexano	C7H16	3,452	46,373	5,446	-9,875	4,089	3,99739	1235,52	219,497
47	3-Etilpentano	C7H16	7,598	19,547	11,641	-16,107	6,378	4,00449	1254,055	220,136
48	2,2-Dimetilpentano	C7H16	1,315	60,462	2,813	-7,62	3,434	3,94392	1191,959	223,498
49	2,3-Dimetilpentano	C7H16	-4,314	96,708	-6,454	2,227	-0,313	3,98066	1238,986	221,942
50	2,4-Dimetilpentano	C7H16	-3,133	97,923	-6,912	2,424	-0,25	3,95442	1193,612	221,807
51	3,3-Dimetilpentano	C7H16	-0,48	73,415	-0,74	-3,562	1,822	3,94912	1227,02	225,121
52	2,2,3-Trimetilbutano	C7H16	-0,711	73,562	-1,007	-3,018	1,583	3,91555	1199,397	225,908
53	Etil Benzeno	C8H10	4,544	10,578	13,644	-19,276	7,885	4,06861	1415,77	212,3
54	1,2-Dimetilbenzeno (o-Xileno)	C8H10	3,289	34,144	4,989	-8,335	3,338	4,09789	1458,706	212,041
55	1,3-Dimetilbenzeno (m-Xileno)	C8H10	4,002	17,537	10,59	-15,037	6,008	4,14051	1468,703	216,12
56	1,4-Dimetilbenzeno (p-Xileno)	C8H10	4,113	14,909	11,81	-16,724	6,736	4,10494	1446,832	214,627
57	Ciclooctano	C8H16	4,236	13,119	16,313	-21,072	7,987	3,98125	1434,67	209,712
58	1-Octeno	C8H16	8,745	13,24	15,096	-20,895	8,366	4,05985	1355,46	213,05
59	Octano	C8H18	10,824	4,983	17,751	-23,137	8,98	4,05075	1356,36	209,635
60	2-Metil-Heptano	C8H18	5,257	41,188	9,739	-15,692	6,57	4,03877	1335,22	213,415

Tabela A2(continuação). Tabela de capacidade calorífica do gás ideal e constantes de Antoine

N°	Composto	Fórmula	a_0	$a_1(*10^3)$	$a_2(*10^5)$	$a_3(*10^8)$	a4(*10 ¹¹)	c ₀	c ₁	c ₂
62	4-Metil-Heptano	C8H18	2,182	62,828	4,419	-10,021	4,358	4,02214	1325,704	212,367
63	3-Etilhexano	C8H18	7,178	33,72	10,365	-15,312	6,088	4,01533	1327,93	212,645
64	2,2-Dimetil-Hexano	C8H18	3,452	55,222	6,066	-11,271	4,732	3,95748	1272,18	214,83
65	2,3-Dimetil-Hexano	C8H18	-3,594	100,983	-4,88	-0,342	0,789	3,99236	1314,29	214,059
66	2,4-Dimetil-Hexano	C8H18	-3,372	108,645	-7,267	2,176	-0,103	3,97399	1285,85	214,6
67	2,5-Dimetil-Hexano	C8H18	-1,367	87,285	-1,799	-3,343	1,857	3,98112	1285,47	214,248
68	3,3-Dimetil-Hexano	C8H18	-2,093	94,48	-2,808	-2,811	1,816	3,97403	1306,96	217,376
69	3,4-Dimetil-Hexano	C8H18	-6,148	116,522	-8,351	2,961	-0,344	4,0031	1327,4	214,836
70	3-Etil-2-MetilPentano	C8H18	-0,873	95,193	-5,319	1,18	0	3,9861	1317,05	215,229
71	3-Etil-3-MetilPentano	C8H18	-1,35	88,584	-1,961	-3,139	1,789	3,9895	1345,92	219,584
72	2,2,3-Trimetilpentano	C8H18	-4,49	108,022	-6,486	1,441	0,142	3,94826	1293,94	218,355
73	2,2,4-Trimetilpentano (Iso-octano)	C8H18	0,384	77,059	0,665	-5,565	2,619	3,93646	1257,85	220,767
74	2,3,3-Trimetilpentano	C8H18	-5,726	117,939	-8,94	4,012	-0,816	3,96421	1325,81	220,161
75	2,2,3,3-Tetrametilbutano	C8H18	0,768	72,95	1,659	-6,322	2,886	3,9042	1270,1	219,5
76	Propilbenzeno	C9H12	4,759	23,956	11,859	-17,393	7,064	4,07664	1491,8	207,25
77	1-Metil-etil-benzeno (Cumeno)	C9H12	2,985	34,196	11,938	-20,152	8,923	4,06112	1460,766	207,83
78	1-Etil-4-Metilbenzeno	C9H12	5,097	17,385	16,6	-19,288	7,817	4,10862	1517,577	207,9
79	1,2,3-Trimetilbenzeno	C9H12	4,042	31,152	10,185	-16,262	6,922	4,1711	1598,241	207,62
80	1,2,4-Trimetilbenzeno	C9H12	5,319	20,074	12,034	-16,873	6,687	4,17692	1579,353	209,29
81	1,3,5-Trimetilbenzeno (Mesitileno)	C9H12	5,305	20,039	11,606	-16,317	6,503	4,22541	1581,36	210,01
82	1-Noneno	C9H18	9,963	13,704	17,511	-24,203	9,694	4,0792	1436,2	205,69

Tabela A2 (continuação). Tabela de capacidade calorífica do gás ideal e constantes de Antoine

N°	Composto	Fórmula	a_0	$a_1(*10^3)$	a ₂ *10 ⁵)	$a_3(*10^8)$	a4(*10 ¹¹)	C 0	c ₁	C ₂
83	Nonano	C9H20	12,152	4,575	20,416	-26,777	10,465	4,07356	1438,03	202,694
84	2-Metiloctano	C9H20	5,914	47,039	10,387	-16,686	6,852	4,0366	1399,9	204
85	2,2,3,3-Tetrametilpentano	C9H20	-6,019	131,511	-9,916	4,52	-0,934	3,95319	1397,69	213,78
86	2,2,3,4-Tetrametilpentano	C9H20	-5,422	123,507	-8,031	2,59	-0,261	3,95552	1373,79	214,78
87	2,2,4,4-Tetrametilpentano	C9H20	3,621	67,875	4,875	-10,109	4,292	3,92055	1324,65	216,08
88	2,3,3,4-Tetrametilpentano	C9H20	-9,189	161,921	-17,927	12,689	-3,869	3,99105	1422,03	215,256
89	Naftaleno	C10H8	2,889	14,306	15,978	-23,93	10,173	4,13555	1733,71	201,859
90	Butilbenzeno	C10H14	6,49	19,08	15,665	-22,059	8,887	4,10345	1575,47	201,2
91	1,4-Dietilbenzeno	C10H14	-0,359	75,371	0,442	-5,736	2,783	4,12958	1592,59	202,44
92	1,2,4,5-Tetrametilbenzeno (Durene)	C10H14	3,352	67,376	0,527	-4,883	2,29	4,18329	1660,56	200,64
93	Cis-biciclo[4.4.0]decano (cis-decalin)	C10H18	-5,445	80,068	5,065	-11,756	5,088	4,00019	1594,46	203,392
94	Trans-biciclo[4.4.0]decano (trans-decalin)	C10H18	-2,155	53,852	12,61	-20,981	9,066	3,98171	1564,683	206,259
95	Decano	C10H22	13,467	4,139	23,127	-30,477	11,97	4,06853	1495,17	193,858
96	2,2,5-Trimetilheptano	C10H23	-0,961	100,294	0,237	-6,883	3,357	4,00345	1417,4	203,8
97	3,3,5-Trimetilheptano	C10H24	-2,999	118,108	-4,182	-2,362	1,717	3,98014	1435,43	205,49
98	2,2,3,3-Tetrametilhexano	C10H25	-7,678	153,766	-12,616	6,171	-1,323	3,96928	1464,03	209,06
99	2,2,5,5-Tetrametilhexano	C10H26	0,8	87,376	3,168	-9,35	4,141	4,00614	1377,98	207
100	1-Metilnaftaleno	C11H10	-5,637	98,625	-4,956	-1,033	1,281	4,16082	1826,948	195,002
101	2-Metilnaftaleno	C11H10	-4,671	93,882	-4,334	-1,331	1,317	4,1934	184,268	198,395
102	Fenilbenzeno (Bifenil)	C12H10	-0,843	61,392	6,352	-13,754	6,169	4,1887	1841,48	185,15
103	Dodecano	C12H26	17,229	-7,242	31,922	-42,332	17,022	4,12285	1639,27	181,84

Tabela A2 (continuação). Tabela de capacidade calorífica do gás ideal e constantes de Antoine

N°	Composto	Fórmula	a ₀	$a_1(*10^3)$	$a_2(*10^5)$	$a_3(*10^8)$	a4(*10 ¹¹)	c ₀	C ₁	C2
104	Tridecano	C12H28	18,546	-7,636	34,604	-45,978	18,509	4,13246	1690,67	174,22
105	Fenantreno	C14H10	2,374	38,372	16,471	-26,813	11,64	4,37081	2329,54	195,28
106	Antraceno	C14H10	2,577	31,826	18,811	-29,722	12,84	4,79891	2819,63	247,02
107	Tetradecano	C14H30	18,375	6,585	32,307	-42,663	16,59	4,1379	1740,88	167,72
108	Pentadecano	C15H32	21,18	-8,424	39,969	-53,29	21,482	4,14849	1789,95	161,38
109	Hexadecano	C16H34	39,747	-206,152	114,814	-155,548	67,537	4,15357	1830,51	154,45
110	Heptadecano	C17H36	23,813	-9,21	45,333	-60,601	24,455	4,1392	1865,1	149,2
111	Octadecano	C18H38	25,13	-9,603	48,015	-64,256	25,942	4,1271	1894,3	143,3
112	Nonadecano	C19H40	26,447	-9,998	50,697	-67,912	27,428	4,1402	1932,8	137,6
113	Eicosano	C20H42	27,764	-10,389	53,379	-71,567	28,914	4,2771	2032,7	132,1

Tabela A2 (continuação). Tabela de capacidade calorífica do gás ideal e constantes de Antoine