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“You never do things the easy way, do you?" she said. 

"There's an easy way?" I asked.  

― Patrick Rothfuss, The Wise Man's Fear 

 

We are the reckless 

We are the wild youth 

Chasing visions of our futures 

One day we'll reveal the truth 

− Youth by Daughter
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Resumo  
 

O sistema Pt-FeOx tem mostrado excelente desempenho em diversas reações catalíticas que 

envolvem mecanismos bifuncionais. Neste trabalho, catalisadores bimetálicos com contato 

íntimo entre esses dois metais foram sintetizados a partir do método organometálico e testados 

nas reações selecionadas da cadeia de produção de hidrogênio. Duas rotas principais de 

síntese foram exploradas: a deposição de Pt no Fe utilizando complexos oligoméricos carbonil 

de Chini, [Pt3(μ2-CO)3(CO)3]n
2-; e também o reverso, utilizando reações controladas de 

superfície (CSR, do inglês controlled surface reactions) para depositar [Fe(ƞ4-C6H8)(CO)3] 

em nanopartículas de  Pt (Pt-NP, do inglês Pt nanoparticles). 

No primeiro método, o precursor de Pt foi ancorado em maguemita, γ-Fe2O3, gerando Pt-NPs 

com diâmetro médio em torno de 1.5 nm. Os catalisadores foram testados na oxidação 

preferencial de CO sob ambiente rico em hidrogênio (PROX-CO, do inglês preferential 

oxidation of CO under H2 rich atmosphere), aumentando a conversão de CO (CO%) em torno 

de 363 K (70% H2, 1% CO e 1% O2) em quase 3 vezes. Os catalisadores também foram ativos 

sem pré-tratamentos. Nas mesmas condições, o suporte Fe2O3 puro, assim como um 

catalisador preparado pela deposição dos clusteres em SiO2, apresentaram conversões de CO 

desprezíveis. A caracterização detalhada do sistema mostrou que o suporte passa por uma 

mudança de fase cristalina, de γ-Fe2O3 para Fe3O4, a temperaturas mais baixas devido à 

presença de Pt-NPs. Os resultados também indicaram que espécies Fe(II) são estabilizadas 

sob condições reacionais e contribuem para o desempenho do catalisador como um todo.  

No segundo método, os catalisadores de FePt foram preparados a partir de Pt-NPs pré-

formadas e pré-tratadas em H2. Os estudos mostraram que a carga de Fe depositada pode ser 

aumentada pela execução de múltiplos ciclos de CSR, e também que a eficiência do processo 

está ligada à renovação dos sítios de ancoramento em decorrência do pré-tratamento redutivo. 

A atividade catalítica dos catalisadores bimetálicos em reações de deslocamento gás d’água 

(WGSR, do inglês water gas shift reaction) pode ser aumentada em até 5x, o que é devido à 

promoção do ferro e está provavelmente ligado à ativação da H2O em espécies Fe(II)Ox 

próximas ou na superfície das Pt-NPs. 

Portanto, foi possível observar o efeito promotor das espécies FeOx em diferentes reações da 

cadeia de produção de hidrogênio. Em ambos os casos a modificação do comportamento 

catalítico do catalisador está ligado à presença de espécies Fe(II) que atuam como um 

segundo sítio catalítico no qual as moléculas oxigenadas são ativadas. 



Abstract 
 

Pt-FeOx catalysts have been showing excellent performance on several catalytic reactions 

involving bifunctional mechanism. Bimetallic catalysts with intimate contact between these 

two metals were synthesized exploring the organometallic approach and were tested on 

selected reactions of the hydrogen production chain. Two main synthesis pathways were 

explored: the deposition of Pt onto Fe using Chini’s carbonyl oligomers,  

[Pt3(μ2-CO)3(CO)3]n
2-

; and the reverse, using the controlled surface reactions (CSR) to deposit 

[Fe(ƞ4-C6H8)(CO)3] onto Pt nanoparticles (Pt-NP). 

For the first method, the precursor was anchored on maghemite, γ-Fe2O3, and the obtained Pt-

NPs diameter were in the range of 1.5 nm. The catalysts were applied on preferential 

oxidation of CO under H2 rich atmosphere (PROX-CO reaction) and improved the CO 

conversion (CO%) almost 3 times at low temperatures, around 363 K (70% H2, 1% CO e  

1% O2). The catalysts were also active without pretreatments. At the same conditions, the bare 

Fe2O3 support, as well as a catalyst prepared by depositing the same Chini’s carbonyl 

oligomers on SiO2, showed negligible activity. A detailed characterization was performed and 

showed that the support, due the presence of Pt-NPs, went through a phase transformation 

under reaction conditions, from γ-Fe2O3 to Fe3O4. The results indicate that Fe(II) species  

are stabilized under PROX-CO conditions and contribute to the overall performance  

of the catalyst.  

For the second method, FePt catalysts were prepared with Pt-NPs pretreated with hydrogen. 

The studies showed that the Fe loading could be increased by performing multiple CSR 

cycles, and the efficiency of this process was linked to the renewal of adsorption sites by a 

reducing pretreatment. The catalytic activity of these bimetallic catalysts for the water gas 

shift reaction (WGSR) was 5 times improved due to promotion by iron, which is likely linked 

to H2O activation on FeOx species at or near the Pt surface, mostly in the (II) oxidation state.  

We were able to see the promoting effects of FeOx species on different reactions of the 

hydrogen production chain. On both cases, the change on catalytic behavior is linked to the 

presence of Fe(II) species that acts as a second active site in which the oxygenated molecule 

is activated. 
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CHAPTER 1  

 

GENERAL INTRODUCTION 

 

1.1 MOTIVATION 
 

Nanoscience and nanotechnology are ubiquitous terms nowadays. Their industrial 

relevance and ever-growing environmental importance are seen on the rising number of 

publications on this topic that explore their unique properties.1 This also happens in catalysis, 

and the design of new and improved materials depends on how well a system is known 

because size and morphology of nano-structures can change completely their catalytic 

behavior. This is related to the reactivity of edge and vertex atoms; their electronic densities 

are categorically different from the bulk since they are coordinativelly unsaturated species 

(CUS). Then, due to the abundance of those atoms and their intrinsic dependency on 

geometry and size, a change in behavior is expected on very small particles (< 10 nm). CUS 

can be more than 80% of the exposed atoms and for big particles ( > 10 nm) it might be less 

than 20%, which is reflected on the overall behavior of the catalysts.2  

There are examples of changes in activity of several orders of magnitude from the 

bulk to cluster-like species, and the main challenge of non-ideal systems is to identify the 

contribution of very small particles to the catalytic activity.3 Many methods have been 

developed in which it is possible to get narrow sized systems, and one of them is the 

organometallic approach. 

Organometallic complexes are compounds with at least one organic carbon 

bonded to a metal, see examples in Figure 1.4 These compounds are often highly reactive 

towards air, moisture and light, in which oxides or hydroxides are produced from their 

degradation. In some cases, when the complex is electron rich, for example, 

[NBu4]2[Pt3(CO)6]5 and Fe2(CO)9, the products of decomposition may range from bulk metal 

to metallic nanoparticles (NP).5–10 

 



21 
 

 

Figure 1 - Examples of organometallic complexes: a) Hoveyda-Grubbs type catalyst, a 
ruthenium alkylidene complex; b) Iridium carbonyl cluster; c) and d) half sandwich (or piano 
stool) complexes of rhenium and molybdenum, respectively. 

 

The organometallic approach takes advantage of this facile degradation of 

complexes to synthesize monodisperse and composition controlled NPs. Exploring this 

method, particles can be formed at mild conditions, with treatments at lower temperatures and 

moderate reducing/oxidizing agents, avoiding aggregation of particles and phase changes of 

the support that may happen by using traditional methods. Furthermore, surface clean 

particles can be generated when using carbonyl, labile, or easy to burn ligands on the first 

coordination shell of the precursors.  

In this project we aim to explore the organometallic approach for the synthesis of 

bimetallic catalysts and study their behavior, including their catalytic activity in selected 

reactions of the hydrogen production chain. We chose Chini’s clusters (Scheme 1) and the 

Controlled Surface Reactions (CSR, Scheme 2) to produce the catalysts, and they are briefly 

introduced below. 

 

1.2 THE ORGANOMETALLIC APPROACH 
 

Catalysts are typically very complex, composed of particles with different sizes 

and even composition on multimetallic systems. On bimetallic systems, the presence of the 

second atom adds a new functionality, which is important for a broad group of reactions, such 

as the ones of the hydrogen production chain. The second metal may actively change the 

reaction pathway by changing the activation of molecules or even by supplying new 

adsorption sites.11 It may also modify the activity passively, in which the interaction of the 

second metal alters the band structure and electronic density of the particle and consequently 
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changes the bond strength of certain intermediates.12 On both cases, there is a need of close 

interaction between metals and there are several methodologies in the literature to achieve it. 

For example, it is possible to make surface clean supported NP by incipient wetness 

impregnation (IWI) or coprecipitation, they are the easiest and most straightforward methods 

but it is a challenge to obtain monodisperse systems.13 In some cases, it is really hard to 

reproduce IWI catalysts, because the depositions are highly dependent on the migration and 

diffusion of the metallic precursors through the support pore channels or surfaces.  

Another option is the adsorption of premade NPs onto the support.  The polyol 

method, for example, can lead to monodisperse particles in both size and composition.14 The 

experimental procedure, nonetheless, usually are  a step up on difficulty and reproducibility, 

when compared to IWI.  NPs made by this method are usually capped with alkylamines, 

and/or long chain organic acids, that are reasonably hard to burn without agglomeration of the 

NPs or segregation, – in the case of nanoalloys.15 To avoid these harsh pretreatments, there is 

the organometallic approach for the synthesis of supported catalysts. It offers unique 

possibilities that can involve the formation of NPs under very mild conditions and/or 

depending on the nature and reactivity of the precursor, it can promote the selective anchoring 

of a second metal. The particles made are usually surface clean and practically monodisperse 

in size and, in some cases, also in composition. This approach is not the most explored, due to 

its requirements. The easy formation of NPs – or the adsorption – is the result of the high 

reactivity/instability of precursors. They are usually prone to hydrolysis and, due to their low 

oxidation state, they are also air sensitive. Many complexes also show some degree of light 

sensitivity.16 These properties make them reasonably difficult to work with; air free 

techniques and advanced vacuum techniques must be employed, for example, Schlenck line 

techniques and glove boxes, extensive drying/purification of reagents and solvents, and the 

use of highly toxic gases are often needed – see Appendix I for a brief description of these 

techniques.  

However, once you have the expertise and the ability to perform these reactions, 

usually supported by a fully equipped organometallic lab, the organometallic approach for the 

synthesis or NPs lead to the synthesis of unique catalysts. For example, Fung et al.17 

supported [Re2Pt(CO)12] on Al2O3; Choplin et al.18 made Fe-Os, Fe-Ru and Fe-Co catalysts 

from following heteronuclear organometallic complexes: [FeOs3H2(CO)12], [FeRu3H2(CO)12],  

and [FeCo3H(CO)12]; Costa et al.19 were able to use organometallic complexes as precursor 

for well-defined Ni-Pd colloidal NPs. 
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In some cases, such as Pt, there are a series of Pt carbonyls clusters that could be 

used as precursors for the adsorption on solids and formation of NP supported on oxides.20 

For example, Small et al.21 deposited [Ir3Pt3(μ-CO)3(CO)3(η-C5Me5)3] onto γ-Al2O3 and 

obtained 10 wt% Ir-Pt catalysts with NP in the range of 1.7 + 0.5 nm and with almost 

composition homogeinity (53 + 5 atom%). Nashner et al.22 anchored [PtRu5C(CO)16] on 

carbon black and obtained similar results. Another class of Pt carbonyls called Chini’s 

clusters will be discussed on the next section and were extensively studied in this work. 

Furthermore, one approach for the synthesis of bimetallic catalysts will be 

addressed on section 1.2.2 Controlled Surface Reactions, in which a second metal is added 

through the deposition of an organometallic complex on top of premade NP. 

  

1.2.1 CHINI’S CLUSTERS 

 

Longoni and Chini synthesized and characterized a new class of platinum 

complexes at the beginning of the 1970’s. These complexes are based on the vertical stacking 

of triangular dianionic [Pt3(μ-CO)3(CO)3]2- units (see Figure 2).23,24 These clusters are 

composed by low oxidation state Pt atoms stabilized by retrodonation to multiple π* orbitals 

of bonded CO ligands. 

 

 

Figure 2 - Chini’s dianionic oligomers, [Pt3(CO)3(μ-CO)3]n2-, in which, n = 1, 2 and 5, 
respectively. 

 

These can be synthesized by several methods,23–26 such as the chemical reduction 

and the radiolitic reduction of Pt(IV) atoms in the presence of CO. The carbonilative 

reduction (see reactions 1 to 3) can be made in alkaline medium and the CO ligand acts as 
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Recently, Chini’s clusters were supported onto TiO2, Fe2O3, CeO2 and 

functionalized SiO2 and were applied in the oxidation of CO.25 These clusters were used to 

synthesize narrow sized NP and it was seen that Pt/Fe2O3 was the most active catalyst, with 

higher activities at lower temperatures. This study showed that the metal-support interaction 

might change the Pt-NP formation process and that the support nature has a drastic effect in 

the catalytic activity, but the catalytic system was not deeply studied. 

 

1.2.2 CONTROLLED SURFACE REACTIONS 

 

The controlled surface reactions (CSR) method is based on the idea of inducing a 

reaction at the surface of a preformed NP that would generate intermediates that can be 

further transformed in a well-defined interface, see Scheme 2. With that in mind, it is well 

known that after a reducing treatment of a metal surface, such as Pt, a hydride rich surface is 

formed and it is possible to have organometallic complex precursors reacting and anchoring 

directly at this surface. 

Dumesic and coworkers developed this method and were able to synthesize  

PtFe (this work),31,32 PtMo,33–35 RhMo,34,36 AuMo,37,38 CuZr39 and RhFeMn40 catalysts and 

successfully apply them on several reactions. Typically a half-sandwich (or piano stool) 

complex is used, see some examples in Figure 3, in which a low oxidation state metal is 

coordinated to a cyclic olefin and three CO atoms. 

In the first studies,35,36 rhenium and molybdenum compounds, Figure 3a and 

Figure 3d, were selectively deposited on the surface of Rh- and Pt-NP supported on carbon 

(Rh/C and Pt/C). On both experiments it has been showed that the deposition of the precursor 

on supported NP (Rh/C and Pt/C) improved chemical homogeneity and catalytic performance 

when compared to traditional synthesis. It was suggested that thermal treating the sample 

under H2 flow generates hydride species (Mδ+˗Hδ-) on the surface of NP which favor the 

interaction precursor/NP. Taking into consideration the first and best example, deposition of 

(cy-C7H8)Mo(CO)3 on Rh/C,35 there are many possibilities of interaction on the surface:  

1) the electron rich metal center in the precursor (Mo0, 18 electrons) can interact with partially 

positive metallic atoms on the surface of NP; 2) the abstraction of 1 hydrogen atom of the 

heptatriene ligand can occur, and generates a positive charged complex [(cy-C7H7)Mo(CO)3]+ 

facilitating the approximation to hydrides on NP; 3) hydride insertion on the alkene or 

hapticity change on the ligand generates electronic vacancies on d orbitals allowing the 
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which ideally should be lower from thermodynamic point of view, but these catalysts present 

low activity at that temperature range. Nevertheless, HTS catalysts are reasonably 

inexpensive, which is also why they are used as a protection to the LTS catalysts, since they 

trap sulfur and/or chlorine containing impurities and are not poisoned by them.48 At the HTS 

step, the [CO] is lowered to about 2-4%, which is close to the equilibrium. To further convert 

CO, another reaction step is performed at lower temperature.46 LTS catalysts are usually 

based on CuO/ZnO/Al2O3 and are held at around 473 K and lower the  

[CO] to 0.1-0.3%.46  

 

1.3.1.1.1 Mechanism 

 

The water-gas shift reaction mechanism can be classified in two major groups: 

Redox or Associative. In a simple way, the oxidation-reduction cycle (reactions 9 and 10) 

occurs directly at the surface of the metal in the redox mechanism. In the associative 

mechanism, both reactants adsorb on the surface, interact and then decompose forming H2 and 

CO2 (reaction 11).66,67 

 

H2O +  * ⇋ H2 + O*      step 1 of redox mechanism   (9) 

CO + O* ⇋ CO2 + *      step 3 of redox mechanism   (10) 

H2O* + CO* ⇋ (intermediate) ⇋ H2 + CO2 + 2* associative mechanism  (11) 

 

here * is the surface adsorption site and O*, H2O* and 

CO* are the respective molecule adsorbed. 

 

Related to the associative mechanism, there is still discussion in the literature 

which intermediate is formed and which ones are responsible for the hydrogen production. 

Formate (HCOO) and carboxyl (COOH) mechanisms are proposed.66 

 

1.3.1.2 Preferential Oxidation of CO under Hydrogen rich atmosphere (PROX-CO) 
 

1.3.1.2.1 Mechanism 

 

On the Platinum group metals (PGM) – that includes Rh, Pt, Ir and Pd – a similar 

mechanism for PROX-CO is observed. A high CO coverage is observed at low temperature 
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1.4 GENERAL OBJECTIVES 
 

The general objective of this project was the application of metallocarbonyl 

complexes in the synthesis of supported catalysts and their evaluation on reactions of the 

hydrogen production chain. The catalysts were synthesized by two main methods: the 

anchoring of Chini’s clusters onto supports and the selective deposition of cyclohexadiene 

iron(0) tricarbonyl onto Pt-NP by the CSR method. In both cases, the electronic and structural 

properties of the catalysts were studied and their catalytic activity was measured in   

PROX-CO and/or WGSR. 

 

1.4.1 SPECIFIC OBJECTIVES – DEPOSITION OF PT CLUSTERS ONTO FE2O3 

 

• Synthesize Chini’s oligomers with narrow size distribution 

• Anchor the Clusters onto Fe2O3 and SiO2. 

• Evaluate the catalysts under PROX-CO conditions 

• Study the catalyst properties by in situ and ex situ techniques 

 

1.4.2 SPECIFICS OBJECTIVES – DEPOSITION OF FE ONTO PT/SIO2 

 

• Synthesize Pt/SiO2 monometallic samples 

• Perform the CSR method to deposit Fe and characterize it 

• Evaluate the catalysts under PROX-CO and WGSR conditions 

• Study the catalyst properties by in situ and ex situ techniques 
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2.1 INTRODUCTION 
 

Catalyst development is key to advancing industrial processes toward more 

reliable and environmentally friendly processes. The organometallic approach for the 

synthesis of supported nanoparticles (NP) takes advantage of the high reactivity of the 

precursors and their degradation, which can yield well-dispersed supported NP at mild 

conditions.70 For example, some carbonyl complexes degrade forming metallic particles or 

their oxides depending on the conditions, generating surface clean supported NP.24,70,71  

This represents an attractive strategy, since conventional methods such as incipient wetness 

impregnation usually produce particles with broad size distributions. On the other hand the 

deposition of colloidal NP faces other challenges, such as the removal of ligands that may 

block the catalytic sites.  

Chini’s clusters − homometallic polinuclear carbonyl dianions composed by 

Pt3(μ-CO)3(CO)3 stacked units on a distorted triangular prismatic structure − are well suited 

for this approach24 and have been used for the synthesis of nanomaterials and  

catalysts.6–8,20,25,27,30,71–75 Chen et al.,25 for example, deposited these clusters onto several 

supports, such as SiO2, Fe2O3, TiO2 and CeO2, being able to generate monodispersed 2 nm 

NP. These catalysts achieved total conversion under CO oxidation conditions at different 

temperatures, in which the Fe2O3 supported one achieved it at room temperature. 

The oxidation of CO is a model reaction and is part of several steps in the 

hydrogen production chain, including preferential CO oxidation under H2  

rich stream (PROX-CO). When the final destination of the H2 stream is the energy production 

through the polymer-electrolyte membrane fuel cells (PEMFC), it is important to bring the 

CO concentrations bellow 10 ppm at temperatures below 393 K.76 Non-promoted platinum 

catalysts, such as those supported on SiO2 and Al2O3, are known to achieve mild selectivities 

at high conversions only above 473 K.64,77–81 It has been shown that the use of oxi-reductive 

oxides as support improves the activity at lower temperatures and might improve  

CO2 selectivity.64,82 In this aspect, the Fe(II, III) oxidation behavior of iron oxides can be 

exploited in favor of catalytic redox processes.11 Several examples of Au supported on Fe2O3 

catalysts can be found in the literature56,58,59 and, recently, examples of Pt multi-metallic 

catalysts applied in PROX-CO conditions showed higher activities when compared to its Pt 

monometallic counterparts.78–80,83 For example, Yin et al.78 have shown that Pt-Fe nanoalloy 

particles supported on Al2O3 improved the CO conversion around 5 times and lowered the 

temperature maximum when compared to its monometallic counterparts. In a similar way, 
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Zhang et al.83 have found that Pt supported on C promoted by Fe produced by wet 

impregnation showed 100% conversion at room temperature under the tested conditions, 

 (1% CO, 0.5% O2 and 50% H2 with space hourly velocity 80,000 mL g-1 h-1), while the 

monometallic catalyst (Pt/C) achieved only 20% CO conversion at 423 K. Targeting smaller 

particles and higher tuning and control, Qiao et al.84 have found that Pt clusters  

(and single atoms) supported on ferric oxide prepared by co-precipitation achieved excellent 

performance at low temperatures. Siani et al.85 showed that Pt-Fe heteronuclear clusters 

supported on SiO2 presents high activity, 373 K lower than the monometallic catalyst.  

Motivated by these promising results, we employed Chini’s clusters − exploring 

the organometallic approach − to produce small Pt-NP supported on iron oxide. We also took 

advantage of the support potential redox properties and studied the FePt system activity under 

PROX-CO conditions.  

 

2.2 OBJECTIVES  
 

To evaluate the literature procedures6,24 and set up the synthesis of Chini’s 

oligomers with a small size distribution. Then, anchor these Pt precursors onto SiO2 and 

Fe2O3 to obtain Pt supported catalysts, evaluate their PROX-CO activity and study the 

electronic and redox properties of the system through in situ and ex situ techniques. 

 

2.3 MATERIALS AND METHODS  
 

All synthetic procedures were performed under inert atmosphere employing 

standard Schlenck techniques unless noted otherwise. Acetone (Synth) and methanol (Synth) 

were distilled and stored over molecular sieve 3Ǻ (Sigma-Aldrich), while tetrahydrofuran 

(THF, Synth) was distilled and refluxed over Na/benzophenone. All solvents were degased 

before use by bubbling CO or Ar for at least 20 min. Na2PtCl6.6H2O, (C4H9)4NBr, 

CH3COONa (Sigma-Aldrich) and H2PtCl6.6H2O (Umicore) were used without further 

purification. γ-Fe2O3 (Nanoarc, Alfa Aesar, surface area of 30-60 m2 g-1) and SiO2 (Aerosil 

380, EVONIK, surface area of 380 m2 g-1) were treated overnight under vacuum (10-1 to 10-2 

mbar) at 373-383 K before use.  
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2.3.1 CATALYST SYNTHESIS 

Platinum carbonyl clusters, A2[Pt3(CO)6]n
 (A = (C4H9)4N+ or H+, and n = 4 to 6), 

were obtained following established procedures in the literature.6,24  

Briefly, [(n-C4H9)4N]2[Pt3(CO)6]n was obtained by carbonilative reduction of  

Na2PtCl6.6H2O (0.10 mmol, 0.0564 g) for 24 h at 323 K in a methanolic solution of  

AcONa (8 AcO : 1 Pt molar ratio in 20 mL) followed by crystallization with  

(C4H9)4NBr overnight.24 H2[Pt3(CO)6]n was synthesized from the carbonilative reduction of a 

solution containing 10.25 µmol L-1 of H2PtCl6 in water for 2 h, followed by the separation of 

a purple-ish solid formed by filtration, or centrifugation; the oligomers were formed by 

dispersing the solid in 10 mL of acetone and bubbling it with CO for 2 h.6  Details on the 

cluster synthesis and challenges faced are described on Appendix II. 

Supported samples, XPtCO/Fe2O3 and XPtCO/SiO2, in which X is the  

Pt wt% loading (2 or 4 wt%), were prepared by dispersing the oligomers  in 5 mL of acetone 

in the presence of 300 mg of support. After overnight stirring, the solids were dried under 

vacuum and exposed to air. The catalyst 4PtCO/Fe2O3 was prepared by impregnation of 

[(C4H9)4N]2[Pt3(CO)6]n clusters while the 2PtCO/Fe2O3 and 2PtCO/SiO2 were prepared by 

impregnation of the same batch of H2[Pt3(CO)6]n.  

 

2.3.2 CHARACTERIZATION 

 

2.3.2.1 ICP-OES 
Synthesis yield and metal loading were measured by inductive coupled plasma - 

optical emission spectroscopy (ICP-OES) using an Optima 8000 ICP-OES Spectrometer. 

Samples were digested at room temperature in aqua regia (3 HCl : 1 HNO3) overnight, 

diluted, and filtered (MilliUni, PVDF 0.45 μm) before analysis. 

 

2.3.2.2 UV-Vis 
Electronic spectra on the ultraviolet and visible range (UV-Vis) of the clusters 

were measured in an Agilent 8453 UV-Visible Spectroscopy System in conventional quartz 

cuvettes after dilution in dry and degassed solvent (THF or acetone). 

 

2.3.2.3 XRD 
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The crystalline structure of the catalyst was analyzed by X-ray diffraction (XRD) 

on a Shimadzu XDR7000 instrument, equipped with a crystal analyzer, operating with 

 Cu Kα radiation (1.5406 Ǻ), standard voltage of 40 kV and 30 mA. 

 

2.3.2.4 TEM 
Transmission electronic microscopy (TEM) images were acquired in a TEM-MSC 

(JEOL 2100) or a TEM-FEG (JEM 2100F) equipment, available at the Brazilian 

Nanotechnology National Laboratory (LNNano). Samples were prepared by dropwisely 

deposition of a hexane suspension of the sample on carbon covered copper grids. To better 

visualize the Pt-NP dispersion on the support, images in annular dark-field - scanning-

transmission mode (ADF-STEM) were taken.  

 

2.3.2.5 XAFS  
X-ray absorption fine structure spectroscopy (XAFS) at the Pt L3-edge (11564 eV) 

was performed at the XAFS2 beamline at the Brazilian Synchrotron Light Laboratory 

(LNLS), using a Si(111) double-crystal monochromator. Spectra were measured in triplicate 

on transmission mode for the standards, Pt and PtO2, and fluorescence mode for the 

4PtCO/Fe2O3 catalyst, using a Ge-15 SSD detector. All data were analyzed using Athena and 

Arthemis codes within the Demeter package following the standard procedures for alignment, 

normalization and background removal.86 

 

2.3.2.6 TPR 
Temperature programmed reduction was used to evaluate the catalyst reducibility 

as well as to evaluate its phase transitions. Two techniques were employed: a) TPR-TCD, in 

which H2 consumption was detected with a Temperature Conductivity Detector (TCD); and  

b) TPR-XANES, in which the iron species were evaluated using the X-ray absorption near-

edge structure spectra (XANES) measured at the Fe K-edge (7112 eV). 

 

2.3.2.6.1 TPR-TCD 
TPR profiles were acquired on a Micromeritics AutoChem 2920 instrument. 

Typically, 30 mg of catalyst was loaded in a U-shaped reactor and exposed to 30 mL min-1 of 

H2 5 % in He and heated to 1273 K at 5 K min-1. All samples were pretreated in situ at 473 K 

for 1 h under N2. H2 consumption was calculated using a calibration curve built with AgO. 

 

2.3.2.6.2 TPR-XANES 
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TPR-XANES at the Fe K-edge was acquired in situ at the XAFS1 beamline at 

LNLS using a homemade tubular furnace operating in transmission mode (100 mL min-1  

of 5 % H2/He, heating ramp to 1073 K at 5 K min-1). The XANES spectra were acquired 

every 7 min. The data were analyzed using the Demeter package following the standard 

procedures;86 linear combination analysis was performed over the range of -15 and +25 eV 

from the edge using γ-Fe2O3, Fe3O4, FeO, and Fe foil standards. 

 

2.3.3 CATALYSIS 

 

Catalytic activity measurements were performed in a tubular quartz reactor and 

analyzed online in a gas chromatograph equipped with a PLOT-Q capillary column and a 

Molecular Sieve column mounted in series, and a TCD detector. In a typical reaction,  

50 mg of catalyst (sieved to < 100 Mesh) diluted to 200 mg with quartz powder was exposed 

to the PROX-CO atmosphere (70-50% H2; 1-2% O2, 1% CO, 0-15% CO2, 0-5% H2O using 

He as balance to achieve a total flow of 100 mL min-1) for 30 min before the heat program 

started; CO and O2 consumption, as well as CO2 production, were measured during heating 

and cooling. A three segment temperature program was used as default, see Figure 5:  

1) heating from 303 K to 473 K; 2) isothermal at 473 K for 40 min, and 3) cooling  

until 333 K; after segment 3 the reaction could be stopped or a second/third/fourth cycle could 

be performed starting from segment 1 again. The stability test under PROX-CO was 

performed employing the following heat program: 1) heating ramp from 303 K to 363 K,  

2) isothermal 363 K for 4 h, 3) heating until 473 K, 4) isothermal for 40 min at 473 K,  

5) cooling down to 363 K, 6) isothermal for 2 h at 363 K, 7) cooling down to 303 K. All 

heating and cooling ramps were 1 K min-1. The first heating ramp is also referred as the 

activation step. We also point that CO2 was the only observed product. 
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Figure 6 - UV-Vis spectrum of Chini’s clusters in THF, which were used as precursor for the 
synthesis of the 4PtCO/Fe2O3 catalyst (4 wt%); 2PtCO/Fe2O3 and 2PtCO/SiO2 (2 wt% 
catalysts). The vertical lines mark the position of the absorption maximum for each Chini’s 
Oligomers - [Pt3(CO)6]n

2-, where (―) n= 6, (-----) n= 5, (·· · ·) n= 4 and (·-·-) n= 3.24,87  
 

During the deposition process, three main events are expected. Firstly, coulombic 

forces drive the negative charged clusters to the positive charged sites at the support surface – 

such as exposed Fe(II) Lewis sites. Secondly, surface hydroxyls at the support surface, or 

bridged oxygen, can interact with the clusters and act as anchoring points. Finally, due the 

support interaction, some degree of decarbonylation under vacuum is expected, and as, 

consequence, a stronger binding to the solid or cluster’s agglomeration might be observed due 

to the formation of coordinativelly unsaturated complexes. On the fresh material, just after the 

vacuum treatment, the anchored clusters are expected to be Pt(0) agglomerates and/or small 

metallic NP; they could also be slightly oxidized (O2 covered) depending on the support-NP 

interaction and size of the final particles.8,88 

To assess the Pt and the integrity of the support after deposition, powder XRD 

was performed. Figure 7 shows the results for the as synthesized 4PtCO/Fe2O3 and the bare 

support, γ-Fe2O3. XRD patterns of 2PtCO/Fe2O3 and 2PtCO/SiO2 are shown in Figure 8.  
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Figure 7 - XRD pattern of a) 4PtCO/Fe2O3 and b) -Fe2O3 (bare support). Insets show the 2 
range where the Pt phases main peaks would appear.89–91 Radiation: Cu Kα (1.5406 Ǻ). 
 

 
Figure 8 - XRD of a) -Fe2O3, b) 2PtCO/Fe2O3 and c) 2PtCO/SiO2. Insets show the 2 range 
where the Pt phases main peaks would appear.89–91

  
 

The XRD patterns show that the support, bare and after deposition, is mainly 

composed of the γ-Fe2O3 phase (maghemite), with a very small fraction of the-Fe2O3 phase 

(hematite). Therefore, there is no phase transition of the support during deposition.  

Peaks related to Pt and PtO2 are not present (see insets in Figure 7), which indicates that the 
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Figure 10 - XANES spectra at the Pt L3-edge of 4PtCO/Fe2O3, Pt(0) and PtO2 standards. 
Inset: XANES first derivative. 
 

2.4.2 CATALYSIS 

 

2.4.2.1 Stability and activation of the catalyst under PROX-CO 
 

The catalytic activity of 4PtCO/Fe2O3 measured on two consecutive 

heating/cooling cycles under PROX-CO conditions can be seen in Figure 11. The result 

obtained for -Fe2O3 during a heating ramp is also shown for comparison.  

During the activation step, which corresponds to the first heating ramp, a 

progressive increase of CO conversion is observed up to 403 K, when the conversion of 80% 

starts to drop and reaches the activity of the bare support at 473 K (Figure 11a). In the first 

cooling ramp, the maximum of CO conversion is shifted to lower temperatures, around 363 

K, following a similar volcano behavior, which is repeated for the subsequent heating and 

cooling ramps. This behavior is reproducible among different batches of catalysts and after 

storage for 52 days under air, Figure 12. 

Similarly, the O2 conversion (Figure 11b) during the cooling step and subsequent 

cycles also shifts to lower temperatures compared to the activation step; its maximum (100 %) 

shifts from 423 K to 373 K. Moreover, the SCO2 maximum increases from 66 to 86% and 

shifts to lower temperature as well (< 343 K). It is important to note that, even with the drastic 

change in temperature, similar SCO2 values are observed at the conversion maximum, as 

showed by the dashed lines in Figure 11. The CO conversion profile, achieving maximum 

values at 100 % O2 conversion, suggests that the loss in CO2 selectivity at high temperatures 

is due the competition with side reactions that consume O*, most likely the hydrogen 

oxidation reaction, since no methane was observed.  
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The XRD pattern of the fresh and used catalyst (after the 1st PROX-CO cycle) 

were measured and compared to the bare support one (Figure 13). For the used catalyst, all 

XRD peaks are shifted to lower 2θ values, which is assigned to a phase transformation of the 

γ-Fe2O3 to Fe3O4 (magnetite).94 Furthermore, the observed values for the full width at half 

maximum (FWHM), seen on Figure 13b, are very similar (only 3% of variation), indicating 

that, despite the phase transformation, the average crystallite size does not change during 

reaction. Moreover, the main peaks of either metallic Pt or PtO2 are still not visible  

(Figure 13c), which indicates the maintenance of highly dispersed Pt-NP. 
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Figure 13 - XRD pattern of 4PtCO/Fe2O3, before and after the 1st cycle under PROX-CO: a) 
comparison of the fresh and used catalyst with the bare support, Fe2O3; b) Detail of the 
(311) peak of the used catalyst in comparison with the fresh catalyst and the support (γ-Fe2O3) 
showing the shift that takes place after reaction does not change FWHM; c) Detail on the 
absence of Pt and PtO2 main diffraction peaks. All bars are the position of the peaks of the 
standards. In a), * SiO2 is the reaction diluent.  

 

The comparison between TPR-TCD of 4PtCO/Fe2O3 and Fe2O3, Figure 14, 

shows two main events for both samples: the first one, below ~ 673 K, corresponding to the 

reduction from maghemite, Fe(III) to magnetite, Fe(II,III); and the second one, above   

~ 673 K, corresponding to the reduction from magnetite to metallic iron, Fe(0), quickly 

passing through the wustite phase, Fe(II).95 It is clear that the presence of Pt-NP changes the 

support phase transformation, where the first transition occurs earlier in the 4PtCO/Fe2O3 
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compared to the Fe2O3 support (ΔT = 200 K), and the second one slightly drifts to lower 

temperatures. Hence, the phase transition observed on the iron oxide support after PROX-CO 

is a direct consequence of the presence of Pt-NP. 
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Figure 14 - TPR-TCD signal of a) 4PtCO/Fe2O3 catalyst and b) -Fe2O3 support. 
 

TPR-XANES at the Fe K-edge, Figure 15a and Figure 15c, confirms the 

modification in the oxidation state of the Fe2O3 phase. TPR-XANES spectra of the bare 

Fe2O3 support only shows evolution above 773 K, where the edge position is shifted to 

lower energies, the white line drops in intensity and the overall spectrum pattern is modified. 

All these changes are a consequence of the electronic and structural transformations that 

occurs during the reduction of Fe2O3 to Fe(0). Differently, on the 4PtCO/Fe2O3 spectra the 

first transition begin at 408 K and a second clear transition is observed at 633 K, both under 

773 K, which further shows the different redox behavior of the iron oxide in the presence of 

Pt-NP. The linear combination analysis of the TPR-XANES spectra, Figure 15b and 

 Figure 15d, confirms that both samples are Fe2O3 rich at room temperature, evolving to the 

Fe3O4 and then progressing to metallic Fe(0) after a brief appearance of the FeO phase. 
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Figure 15 - a) and c) TPR-XANES and b) and d) corresponding linear combination analysis 
of 4PtCO/Fe2O3 and the support (-Fe2O3), respectively. 

 

It is well known that the high H2 coverage, activation on the Pt-NP surface  

(2* + H2 → 2H*) and H* migration to the support facilitates the oxide reduction through the 

interface.96 This easier reduction has a drastic effect on the catalytic behavior under 

 PROX-CO conditions, as can be seen by the comparison with the Pt  

supported on SiO2, Figure 16. 

The catalyst prepared using an inert support, 2PtCO/SiO2, achieved high 

conversions only at elevated temperatures (Figure 16a). In addition, consecutive cycles did 

not significantly improve the CO maximum conversion (Figure 16b). The difference is even 

larger when the selectivity profile is analyzed (Figure 16a), in which the 2PtCO/SiO2 catalyst 

shows a steady SCO2 of about 50% for CO conversions above 20% (> 453 K), while for the 

2PtCO/Fe2O3 catalyst the SCO2 profile follows the CO conversion during cooling down to  

363 K, i.e., the activity and SCO2 increase. This difference between activity/selectivity profiles 

is well known and can be linked directly to the reaction mechanism that each catalyst 

follows.64,69 Typically, Pt supported on inert oxides follow a competitive Langmuir-

Hinshelwood mechanism, where all reactants compete for the same active site and the 

reactivity is ruled by the adsorption equilibrium of reactants on the surface of the NP. 

 Pt supported on reducible oxides, or promoted by oxophilic species, follow a non-
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lower CO conversion and good selectivity while in the second one, the CO conversion is 

improved, but selectivity decreases, indicating that H2 oxidation is also promoted. 
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Figure 18 - a) Stability test of the 4PtCO/Fe2O3 catalyst under PROX-CO. Conversion of (■) 
CO and (○) O2 as a function of time. The temperaure profile is shown (―). b) CO % as a 
function of O2 % during the (□) first and (■) second isotherm of the stability test under 
PROX-CO conditions. The gray lines indicates the relation for 1 O2 : 2 CO stoichiometry 
(· ·· · ·) and 1 O2 : 1 CO stoichiometry (-----).  

 

Finally, the TPR and catalytic results suggest that the supported Pt-NP prepared 

using the Chini’s clusters are at least partially reduced, given its activity in the first heating 

ramp without H2 pretreatment. The catalyst is stable under consecutive cycles and similar 

after the first heating ramp. Also, the presented results demonstrate that the support goes 

through a phase transformation, generating Fe(II) species that could either affect the 

interaction with the Pt-NP and its electronic properties and/or modify the reducibility and 

reactivity of the reactants at the interface.11 Our results are in good agreement with previous 

works on Fe promoted catalysts, where it was reported that the presence of Fe(II) species 

favors the O2 activation. For example, Liu et al.101 showed that Ir-Fe/SiO2 catalysts under 

PROX-CO go through a dealloying process, generating Fe(II) species and increasing the 

catalytic activity by 4 times at 373 K, and this correlation exemplifies the importance of this 
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species in the O2 activation. Kotobuki et al.102 also suggest that in Pt-Fe bimetallic systems, 

the activation of CO happens on the Pt surfaces and the Fe moieties are responsible for most 

of oxygen activation. These results further indicate that the improved reducibility and the 

phase transformation at lower temperatures in our samples are responsible for the increase in 

CO conversion, at expense of CO2 selectivity. 

 

2.5 CONCLUSIONS 
 

Chini’s clusters were successfully synthesized and used to produce Pt/Fe 

bimetallic catalysts using the organometallic approach and the PROX-CO was used as model 

to check the system activity. It was possible to state that this facile and high yield method may 

facilitate the studies of different systems, since the NP preparation is straightforward, occurs 

under mild conditions and can be translated to different supports. The results showed that the 

PtCO/Fe2O3 catalysts were active without pretreatments, and the overall catalytic activity in 

PROX-CO - in which high conversions with reasonable selectivity were achieved, and the 

catalysts were stable over longer reaction times, under the presence of H2O and CO2 - 

demonstrates the method potentiality. A deep understanding of this behavior could help on the 

design of future catalysts, and further studies are on the way. 
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3.1 INTRODUCTION 
 

The catalytic properties of bimetallic systems can present chemical and physical 

behaviors that are more than just a sum of their separate parts,103 leading to enhancement in 

activities and selectivities by orders of magnitude, when compared to their monometallic 

counteparts.104–106 However, the creation of a narrow distribution of surface sites represents a 

challenge for typical deposition methods, which often create a wide composition range, 

making it difficult to rationalize the system and elucidate the nature of the active sites. 

The synthesis of bimetallic catalyst systems has been explored in the literature 

using colloidal methods107 and heterometallic clusters9,17,18,21,70,108. Some of the limitations of 

these approaches include the presence of strongly bonded capping molecules, e.g., organic 

acids or amines, to the surface of the nanoparticles (NP), or atmosphere-sensitive reactions for 

the synthesis of precursors. A method employing controlled surface reactions (CSR) 

represents an alternative to overcome some of these issues by selectively depositing a 

commercial organometallic complex on a preformed surface of NP.33–36,38 The CSR method 

has been successfully applied to synthesize bimetallic systems, revealing promotion effects 

that can be several orders of magnitude higher than the monometallic unpromoted catalysts. 

In the case of carbon-supported MoPt catalysts made by the CSR approach, for example, there 

was a 4000-fold increase in activity for the water gas shift reaction (WGSR), raising the 

potentiality of the method.33 

One bimetallic system of particular interest where the CSR method could be 

successfully explored is FePt, which has shown excellent performance in several key 

reactions.84,109,110 For example, Zhang et al.109 studied the oxidation of CO in H2-rich gas 

mixtures (PROX-CO), and showed that Fe-decorated Pt-NP became more active at low 

temperatures due to the change in reaction mechanism. While Pt-NP follow a competitive 

Langmuir-Hinshelwood mechanism, the presence of Fe moieties leads to a non-competitive 

bi-functional mechanism, by preferentially activating the O2. This change in mechanism due 

to the oxophyllic properties of the FeOx moieties is ubiquitous11,97,102 and has also been shown 

on other Fe bimetallic systems.111,112 

For the WGSR, in which H2O activation is a rate limiting step for several systems, 

different bimetallic systems have already been studied113–119 aiming to improve selectivity and 

conversion.  In this chapter, we explore the CSR method to synthesize FePt catalysts for the 
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WGSR. In particular, a detailed study on the parameters that affect the Fe deposition was 

performed, shedding light on the requisites to selectively deposit the iron moieties on Pt-NP.  

 

3.2 OBJECTIVES  
 

To synthesize monometallic Pt/SiO2 catalysts by the incipient wetness 

impregnation (IWI) and deposit Fe moieties directly at the surface via the CSR method using 

organometallic precursors. Then, evaluate these catalysts under WGSR conditions and study 

their properties with in situ and ex situ techniques. 

 

3.3 MATERIALS AND METHODS 
 SiO2 (Davisil grade 646, Sigma-Aldrich) was used as support for the catalyst. It 

was crushed and sieved to 60-100 mesh (0.150−0.250 mm), then stirred with 20% HNO3  

for 3 h, vacuum filtered, washed until pH 7 with milliQ grade H2O, and dried overnight at 383 

K before use. Alumina (γ-Al2O3, CATALOX SBA-200) and Titania (TiO2, P25, Degussa) 

were used as received. (Cyclohexadiene)iron tricarbonyl (C6H8Fe(CO)3, Strem Chemicals, 

98%), and anhydrous n-pentane (Sigma-Aldrich) were used without further purification, 

handled and stored under inert gas inside a glovebox. Chloroplatinic acid hexahydrate 

(H2PtCl6.6H2O, Sigma-Aldrich, ≥37.50% Pt basis) and iron(III) nitrate  

nonahydrate (Fe(NO3)3.9H2O, Strem, 98+%) were used as precursors for 

 incipient wetness impregnation (IWI). 

3.3.1 SYNTHESIS 

A monometallic catalyst containing 5 wt% Pt, which will be refereed as 5Pt/SiO2, 

was synthesized by IWI, as described elsewhere.33 Briefly, 1.2 mL of a solution containing 

the desired amount of Pt precursor to achieve 5 wt% was added to each gram of SiO2.  

The solid was dried at 383 K for 3 h, and the final solid was reduced at 533 K (1 K min-1) for 

4 h under 100 mL min-1 of H2 (Industrial grade, Airgas) and passivated at room temperature 

under 100 mL min-1 of 1% O2/He, see Scheme 4. A Pt/C (5 wt%) monometallic catalyst was 

synthesized following the same procedure.  

The CSR method was used to prepare bimetallic catalysts.36 In a typical synthesis, 

using Schlenck line techniques and a glove box, 0.7 g of 5Pt/SiO2 catalyst was reduced at  

573 K for 4 h (1 K min-1) under 100 mL min-1 of H2. Then, 3.5 g of pentane solution 

containing 0.714 mg gcat-1 of (cyclohexadiene)iron tricarbonyl (equivalent to 0.05 Fe : 1 Pt, 
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3.3.2.3 X-Ray Diffraction 
Powder X-Ray Diffraction (XRD) patterns were acquired on a Bruker D8 

Discovery, operating with Cu-Kα micro x-ray source, with a Montel mirror, and a Vantec 500 

area detector. 

3.3.2.4 Atomic Emission Spectroscopy  
ICP-AES was performed with a Perkin-Elmer Plasma 400 ICP Emission 

Spectrometer. 50 mg of each sample was digested with 10 g of aqua regia overnight at 423 K 

in a reflux system, and then diluted with milliQ grade water and quantified. Calibration curves 

were made with commercial ICP standards - Pt and Fe in hydrochloric acid from 

TraceCERT®, Sigma-Aldrich.  

 

3.3.2.5 Electron Microscopy 
Samples were deposited on holey carbon Cu TEM grids by dropping an ethanol 

suspension of each sample on it, followed by plasma cleaned before analysis. A FEI Titan 

STEM with Cs probe aberration corrector operated at 200 kV with spatial resolution < 0.1 nm 

was used for scanning transmission electron microscopy (STEM) studies. High-angle annular 

dark-field (HAADF) images were collected with detector angle ranging from 54 to 270 mrad, 

probe convergence angle of 24.5 mrad, and probe current of approximately 25 pA.  

Energy dispersive x-ray spectroscopy (EDS) data were collected using the same microscope 

with an EDAX SiLi Detector. EDS point spectra were collected with a probe current ~200-

780 pA and spatial resolution ~0.5 nm. For each sample, approximately 50 NP were analyzed 

by placing the beam on individual particles and collecting EDS spectra. 

 

3.3.2.5.1 - Geometrical model  

To rationalize the EDS-STEM atom composition per particle a geometrical model 

was built and it is described below. 

The model considers the amount of platinum atoms in a perfect half-spherical  

Pt-NP of variable diameter - using the Pt metallic density and molar mass - and covering its 

surface with a monolayer of Fe atoms. To calculate the amount of Fe, the half-sphere surface 

area and the atomic radius of Fe were used; then the Fe atom% was obtained by comparing 

the amount of each atom on different particle sizes. The following constants were used:  

Pt density= ρPt = 21.09 g cm-3; Pt molar mass = MMPt = 195.09 g mol-1;  

Fe molar mass = MMFe = 55.845 g mol-1; Fe atomic radius = RFe = 156 pm;  

Avogadro constant = NA = 6.022 x 1023 mol−1
. 
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tubular furnace operating in transmission mode. EXAFS (Extended X-ray Absorption Fine 

Structure) spectra were collected before and after reduction (573 K, 2 K min-1 under 100 mL 

min-1 at 5% H2/He) at the Pt L3-edge at room temperature. The temperature programmed 

reduction profile of one of the samples was done by X-ray Absorption Near Edge Structure 

(TPR-XANES) at the Fe K-edge (100 mL min-1 of 5 % H2/He, heating ramp to 873 K at 10 K 

min-1
, scan time = 9 min). Spectra were collected under in situ WGSR conditions at both 

edges starting from the reduced catalysts, with CO:H2O equal to 1:3 (6.6 mL min-1 of  

5% CO in He, 0.99 mL min-1 of H2O, and He as balance), with total flow of 100 mL min-1.  

XAFS data were analyzed using DEMETER 0.9.25 package software following 

standard procedure.86 To evaluate the variation of the iron oxidation state, we applied the 

method proposed by Capehart et al.,120
 in which the average oxidation state is correlated to the 

absorption edge shift obtained by the integration of the vacant electronic sites above the Fermi 

level in comparison with the standards. 

 

3.3.3 REACTION KINETICS MEASUREMENTS  

The apparatus for studies of the WGSR was described elsewhere.33 Briefly, 0.1 to 

2.1 g of catalyst diluted to 2.1 g with crushed SiO2-chips were reduced under 75 mL min-1 of 

35% H2/He at 573 K (2 K min-1) for 2 h and then cooled to the reaction temperature  

(543 or 623 K). The reaction mixture consisted of 10 mol% CO, purified on a 523 K SiO2-

chips filled column, and 20 mol% H2O, fed with a syringe pump (Harvard Apparatus PHD 

Ultra), with a total flow rate of 100 mL min-1 balanced with He. The conversion was 

measured online with a Shimadzu GC-8A equipped with a thermal conductivity detector 

(TCD) and Alltech HayeSep DB column to quantify CO and CO2. Turnover frequencies 

(TOF) were determined for all reactions at conversions below 10% by normalizing the rate to 

the number of Pt sites determined by CO-chemisorption. If deactivation was observed, the 

TOF value reported was the TOF at zero time, obtained by plotting the ln(TOF) versus time 

and linearly extrapolating it to zero. 

 

 

3.4 RESULTS 

3.4.1 SYNTHESIS 

In the CSR method, the organometallic precursor can react (i) selectively, with 

 Pt-NP surface, which is the goal of the method, and/or (ii) unselectively, with hydroxyls from 







61 
 

 

Figure 22 - Amount of precursor adsorbed at each CSR cycle (standard pretreatment under H2 
at 573 K).  The results obtained with vacuum pretreatment are shown for comparison. 
 

Table 1 - Amount of precursor deposited per cycle as a function of pretreatment. 

Pretreatment Cycle 
Fe adsorbed 
(µmol g-1) a 

%adsorbed b 
Total Fe adsorbed 

(µmol g-1)c 

H2 

1 15.3 96 15.3 

2 16.1 94 31.4 

3 14.9 91 46.3 

4 11.5 69 57.8 

5 9.2 57 67.0 

6 5.3 34 72.3 
Vacuum 1 15.6 95 15.6 

2 9.2 64 24.8 
a -  µmol of the precursor per gram of catalyst in each cycle 

b - %adsorbed = ([Fe]before - [Fe]after)/[Fe]before * 100 

c - total amount the precursor (µmol) per gram of catalyst  
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Figure 23 - CO-Chemisorption of the catalysts made by CSR in comparison to the 
monometallic Pt/SiO2 and a blank CSR catalyst (Pt1Fe0/SiO2_1C), produced after one CSR 
cycle without the addition of iron precursor. 

 

 

Figure 24 - XRD before and after CO-Chemisorption analysis. 
 

In the third cycle, 95+% of the precursor was adsorbed as shown in Figure 22.  

In subsequent cycles, 4, 5 and 6, the deposition efficiency was reduced to approximately 70%, 

60% and 35%, respectively. Saturation of the Pt sites with Fe should be achieved between the 

3rd and 4th cycles when comparing the number of Pt sites available with the total amount of Fe 

deposited (Table 1). The total amount of Fe anchored after the 6th CSR cycle was  

72.3 µmol g-1, which corresponds to about 150% of the total metallic area. A control 
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experiment was performed by pretreating the passivated Pt/SiO2 catalyst under vacuum at 

room temperature to understand the mechanism of Fe deposition. The same amount of Fe 

deposition occurred on the first cycle, but the amount of Fe deposition dropped to half in the 

2nd cycle. No measurable Fe deposition occurred in the 3rd cycle. The total amount of Fe 

deposited during all three cycles corresponds to about half of the Pt sites. These observations 

suggest that the reductive treatment helps to renew the Pt sites available for the Fe deposition.  

Despite the increase in Fe loading achieved by multiple CSR cycles,  

CO chemisorption showed a much smaller effect, with minor changes in the Pt metallic area 

after the 1st cycle (Figure 23). Moreover, the sample Pt1Fe0.16/SiO2_1C prepared by a single 

cycle showed CO-chemisorption of 28.7 μmol g-1, close to the limit achieved by 

Pt1Fe0.1/SiO2_2C and Pt1Fe0.2/SiO2_4C, 29.6 and 27.3 μmol g-1, respectively. For comparison, 

a catalyst was prepared by wet impregnation, IWI-Pt1Fe0.2/SiO2 catalyst, and showed similar 

CO chemisorption value (Table 4). 

Quantitative analysis of the amount of Fe and Pt carried out by EDS-STEM 

measurements of individual NP, Figure 25 and Figure 26, showed good agreement between 

the average amount of Fe and the value measured by ICP-AES. The Fe/Pt ratio was dependent 

on the particle size, Figure 25, where small particles have a higher Fe/Pt ratio than larger 

particles. This is expected in view of the geometric dependency between volume and surface 

area. To better visualize this dependency, a geometrical model was built in which the surface 

of a half-spherical Pt-NP was covered with a monolayer of Fe atoms and the total Fe atom% 

was calculated (see section 3.3.2.5.1 - Geometrical model).  

 

Figure 25 - Fe atom% distribution histogram obtained by EDS-STEM analysis and its 
correlation with particles size for Pt1Fe0.2/SiO2_4C catalyst; the dashed line indicates the 
dependency of Fe/Pt ratio as a function of particle diameter (Pt core + Fe shell) at 100% 
surface coverage calculated through a geometric half-spherical model. 
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Figure 28 - a) XANES spectra of Pt1Fe0.2/SiO2_4C catalyst (before and after reduction) and 
integrated areas compared to metallic Fe standard; b) correlation between δE and oxidation 
state obtained by the Capehart method.120 

 

The TPR-XANES results, Figure 27c, show the reduction of the FeOx species at 

about 408 K, without further evolution up to 873 K. As expected, the final spectrum does not 

show a good match with any of the bulk standards (Figure 27b), with features resembling both 

FeO and Fe. Although the pre-edge region (~7112 eV) is shifted towards FeO, the white-line 

(~7128 eV) is significantly attenuated, as for metallic Fe. Studies of FePt showed in general 

the Fe is electron deficient due to charge transfer to the Pt atoms; the XANES spectrum has a 

pre-edge feature similar to the Fe foil but a shoulder around 7126 eV and a shift of the 

oscillations after the edge associated with the presence of Pt neighbors. The calculated 

oxidation state suggests a 1.9+ average final state attribute the presence of FeOx  

species and Fe-Pt.   

It is important to note that the Fe was re-oxidized to a state similar to the initial 

state when the catalyst was exposed at room temperature to 5% O2, as seen in Figure 29. This 

behavior shows that it is not possible to observe the actual species once the catalyst is 

passivated or briefly exposed to air. Furthermore, even with rigorous control of sample 

preparation for ex situ XANES measurements, under inert atmosphere and sealing, it was not 

possible to avoid oxidation of the iron (Figure 30). 
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Figure 29 - Fe K-edge XANES spectra of the Pt1Fe0.16/SiO2_1C catalyst:  fresh (blue line), 
reduced (red line) and after exposing to 5% O2 at room temperature (black line).The dashed 
line is a guide for the eyes. 
 

 

Figure 30 - XANES spectrum of the Pt1Fe0.2/SiO2_4C catalyst reduced ex situ and handled 
under inert atmosphere before analysis compared to the standards.  

 

The Pt L3-edge XANES before and after reduction can be seen in Figure 31. 

Before reduction, the monometallic Pt/SiO2 and Pt1Fe0.2/SiO2_4C catalysts both show similar 

profiles to the Pt foil, but with slightly higher white line, see Figure 31b, due to the 

nanometric size and passivation. After reduction, the profile is closer to the spectrum of the 

foil, with a slight tailing above the white line expected by the presence of adsorbed H2 on the 

surface.123 The first derivative of the spectra, Figure 31c, shows that the energy edge position 

did not change, independent of the sample or the pretreatment, indicating that Pt is mostly 

reduced. No significant modification was detected after re-oxidation treatment performed at 

room temperature with 5% O2/He, and the spectra resemble the initial state. These results 
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confirm that the Pt L3-edge spectrum was not sensitive to the presence of Fe. The qualitative 

information derived by XANES was confirmed by EXAFS analysis, Table 2. The first peak of 

the Fourier Transform (Figure 32) of the fresh catalyst has both Pt-O and Pt-Pt, while after 

reduction only the Pt-Pt phase is present. The EXAFS results were insensitive to the presence 

of Fe. All changes and observations for the Pt1Fe0.2/SiO2_4C catalysts were similar to the 

ones observed on the monometallic Pt/SiO2 catalyst, see Figure 33.   

 

 

Figure 31 - a) XANES spectra on the Pt L3-edge of the Pt1Fe0.2/SiO2_4C catalyst; b) zoomed 
in view of the absorption edge; and c) first derivative of the XANES spectra. 

 

Table 2 - EXAFS parameter at Pt L3-Edge of Pt1Fe0.2/SiO2_4C catalysts reduced in situ. 
Experimental and fitted curves can be seen on Figure 32. 

Sample Pt-X S0² N ΔE0 ss² /Ǻ2 R / Ǻ Rfactor 

Reduced Pt 0.9 10.8 + 0.5 7.1 + 0.6 0.0061 + 0.0002 2.7538 0.0038 

Fresh 
Pt 0.9 7.9 + 0.6 6.7 + 0.9 0.0063 + 0.0003 2.7555 

0.0056 
O 0.9 0.8 + 0.3 11.8 + 5 0.0031 + 0.0025 2.0084 

N is the coordination number; ss² is the debye-waller factor 
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Figure 32 - a,c) Pseudo radial distribution curves and b,d) Fourier Transform for the EXAFS 
analysis of the a,b) Fresh and c,d) reduced Pt1Fe0.2/SiO2_4C catalyst. 
 

 

Figure 33 - Comparison between the a) XANES spectra, b) the first derivative, and c) the 
pseudo-radial distribution curves on the Pt L3-edge of in situ reduced IWI-Pt1Fe0.2/SiO2, 
Pt1Fe0.2/SiO2_4C, and their correspondent monometallic Pt/SiO2. 

 

In situ XANES measurements at Fe K-edge and Pt L3-edge under WGSR, Figure 

31 and Figure 34, showed that the phase under reaction conditions is similar to the phases 

after reduction. These results indicate that Fe species formed during reduction are likely 

present under WGSR conditions. 
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Figure 34 - Fe K-edge XANES at 543 K under WGSR in comparison with its reduced 
XANES for the Pt1Fe0.16/SiO2_1C catalyst. 
 

3.4.2 REACTION KINETICS MEASUREMENTS  

Catalytic activities for the WGSR are summarized on Table 3. The addition of 

 Fe in consecutive cycles through the CSR method in the Pt/SiO2 catalyst increases the rate of 

CO2 production per active site (TOF). The promotion effect (rate of enhanced activity 

compared with Pt/SiO2 catalysts) increases with the Fe up to 4.6 times on Pt1Fe0.2/SiO2_4C. 

The Pt1Fe0.16/SiO2_1C catalyst showed similar performance to the Pt1Fe0.2/SiO2_4C catalyst. 

A Fe/SiO2 catalyst (made by CSR in a one-step deposition with Fe wt% similar to 

Pt1Fe0.2/SiO2_4C) did not have any activity under the studied conditions. A physical mixture 

of the monometallic counterparts, Pt/SiO2 and Fe/SiO2, had similar activity to the Pt/SiO2. 

These observations show that the promotion of Pt by Fe is caused by an intimate contact 

between FeOx species and Pt. 

To further quantify the promotion effect of the FeOx phase, a Pt/C catalyst was 

made. This catalyst did not have any measureable activity at 543 K under the same conditions 

as Pt/SiO2, even when 20 times more catalyst was used (2.1 g of Pt/C). The promotion of Fe 

increased the reactivity but its activity was lower than the silica supported catalysts. It was 

necessary to increase the reaction temperature to 623 K and increase the water content from 1 

CO : 2 H2O to 1 CO : 3 H2O to detect activity and avoid the formation of Fe-carbides, which 

catalyze CO hydrogenation reactions.124 At these conditions, the Fe1Pt0.2/C_1C was 33 times 

more active than its monometallic counterpart. These results confirm that the hydroxyls group 

on the SiO2 support play a key role in the WGSR, impacting also in the promotion effect by 

the FeOx species.  
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Table 3 - Characterization and catalytic activity of catalysts in WGSR reaction, 10% CO and 
20% H2O at 543 K. 

Catalyst 
CO uptake / 

μmol g-1 

CO2 production ratea /  

µmol gPt-1 min-1 

TOFb  

/ 10-3 s-1 

Fe/SiO2 - 0 0 

Pt/SiO2 49 659 10.4 

Physical 

mixturec 
- 511 7.2 

Pt1Fe0.06/SiO2_1C 32 590 15.3 

Pt1Fe0.1/SiO2_2C 30 839 25.8 

Pt1Fe0.2/SiO2_4C 27 1525 47.5 

Pt1Fe0.16/SiO2_1C 29 1503 48.9 

Pt/C 95 
0 

(170d) 

0 

(1.5d) 

Pt1Fe0.2/C_1C 76 
89 

(4455d) 

1.5 

(48.5d) 
a CO2 production rate in μmol of CO2 per g of Pt per minute; b Estimated from CO uptake, assuming 
1:1 CO:Pt stoichiometry; c Physical mixture of monometallic Pt and Fe catalysts, with the amount of Pt 
and Fe equivalent to Pt1Fe0.2/SiO2_4C (100 mg of 5wt% Pt/SiO2 + 100 mg of 0.29 wt% 
Fe/SiO2); d Reaction performed with 8% CO, 24% H2O, and He as balance to 100 mL min-1 at 623 K. 

 

3.5 DISCUSSION 

3.5.1 SYNTHESIS 

The basis of the controlled surface reaction (CSR) technique is to add a metallic 

precursor selectively on the surface of a previously deposited metallic NP through reaction. In 

previous work31,33–39 it was proposed that hydrogen pretreatment was necessary to clean the 

catalyst surface - degasing of oxygen and water - and also to cover the surface of the first 

metal with hydrogen, which could then react with a low-valence organometallic complex.  

The CSR method requires the precursor to react at the NP surface or near it, so carbonyl 

complexes containing alkene ligands are usually selected. 

For these complexes, the reaction at the surface could take place through the 

interaction of hydride-like species bonded to surface Pt atoms with the alkenes125,126 or by the 

abstraction of CO molecules by the NP. Both pathways generate coordinatively unsaturated 

species that could undergo decomposition pathways, depositing onto the NP. The 

organometallic precursor could also react directly with the hydroxyls of the support, even if 
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non-specific adsorption is observed when the pure support is subjected to the CSR process; in 

this case, OH groups near the Pt-NP could react with precursor species.  

Here, the (cyclohexadiene)iron tricarbonyl was chosen as the iron source based on 

previous work,31,33–39 in which organotransition complexes containing carbonyl groups and 

alkene ligands presents the proper combination of stability, due to the backbonding of the 

ligands, so it would not react with the support, and sufficient reactivity such that it interacts 

with the NP. Initial studies using (cyclooctatetraene)iron tricarbonyl and cyclopentadienyliron 

dicarbonyl dimer did not lead to selective deposition of Fe on the Pt surface. These results 

indicate that a complex such as (cyclohexadiene)iron tricarbonyl, with the half-

sandwich/piano stool geometry with an alkene with low degree of unsaturation, presents an 

effective compromise between reactivity and selectivity. Indeed, we could successfully 

produce FePt catalysts on SiO2 and C supports by CSR using this complex. Nevertheless, its 

use in other supports, such as Al2O3 and TiO2, did not succeed, suggesting that the 

acidity/strength of OH surface groups of the support may impose other requirements to the 

complex to inhibit its undesired decomposition on the support. This limitation is an important 

issue that has still to be better evaluated to allow the translation of the method to  

a broad set of supports. 

For the bare SiO2 support, no Fe deposition could be detected by UV-Vis, 

suggesting that in this case the OH groups on the support were inactive. However, the 

scenario was different in the presence of Pt-NP, and the results suggest that the OH surface 

groups near the Pt sites play an important role in the FePt system. The similar adsorption 

achieved in the first cycle by the Pt/SiO2 catalyst treated under vacuum or under H2 indicates 

that activation of the surface by H was not necessary in this first cycle. Since the OH groups 

on the support were inactive, this behavior suggests that the Fe precursor is mostly deposited 

onto hydroxyl groups at the Pt-SiO2 interface or at the Pt surface. When a simple half 

spherical geometrical model was applied, the percentage of the Pt atoms on the perimeter over 

the total amount of surface atoms was around 20 to 30% for NP in the range of 4 to 6 nm, and 

this value is of the order of the amount of Fe deposited on the first cycle (around 15 μmol g-1). 

In contrast, the hydrogen pretreatment had a crucial impact for the subsequent cycles. A rapid 

saturation was achieved in the second cycle when the Pt/SiO2 catalyst was pretreated under 

vacuum, corresponding to a final coverage of about of half of the available Pt sites. In general, 

however, the regeneration of the adsorption sites observed with the reductive pretreatment 

between cycles may occur in different ways. Since the reactivity depends on the local Pt 

coordination (interface, kinks, edges, etc) a reconstruction of the Pt surface at each cycle 
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cannot be ruled out. Nevertheless, the fact that it was possible to exceed the equivalent of one 

monolayer coverage after the 4th CSR cycle, while CO chemisorption showed that half of the 

Pt sites were site available, indicates a more complex mechanism. Another important piece of 

information to be considered is the similar results obtained by the CO chemisorption of 

multiple and single cycle CSR catalysts (Pt1Fe0.2/SiO2_4C and Pt1Fe0.16/SiO2_1C) as well as 

for the IWI catalyst (Table 4).  

 

Table 4 - Summary of the CO chemisorption results. 
Catalyst CO uptake / μmol g-1 
Pt/SiO2 49 

Pt1Fe0.6/SiO2_1C 32 
Pt1Fe0.1/SiO2_2C 30 
Pt1Fe0.2/SiO2_4C 27 

Pt/C 95 
Pt1Fe0.2/C_1C 76 

IWI-Pt1Fe0.2/SiO2 24 

 

Platinum is known to form bimetallic alloys with a large set of metal, including 

Fe.127 It has been shown in the literature that surface migration can happen in bimetallic 

system, where the topmost layer is terminated by the element with lower surface energy.128 

However, this equilibrium can be shifted in supported NP, due to the interaction with the 

support and the higher contribution that the surface energy term has in NP. In addition, when 

exposing the bimetallic catalyst to different atmospheres, the equilibrium is affected. In the 

case of the CoPt system, for example, exposure to different atmospheres and nanometer 

particle size effects leads to surface reconstruction, where under O2 the formation of CoOx 

species is favored and under H2 a Pt-rich surface is found.129 Surface studies on the Pt0.8Fe0.2 

(111) showed that Pt-Fe alloys exhibit a stronger tendency to form an ordered phase when 

compared to Pt-Co and Pt-Ni. Importantly, non-equivalent Pt sites are exposed at the surface 

due to the partially ordered alloy submonolayer.130 

A plausible mechanism for the effect of H2 pretreatment on the effectiveness of Fe 

deposition is that part of the Fe species migrate to the Pt sub-surface, regenerating the reactive 

Pt sites.131 Based on the in situ TPR-XANES results, however, part of the Fe species remains 

as FeOx species. These species are likely to be localized near the Pt/SiO2 interface and with 

the H2 pretreatment the hydroxyl groups could be regenerated.132 Both scenarios would be in 

agreement with the small decrease of the CO chemisorption after the first CSR cycle. Surface 

studies show that the FeO-Pt(111) system is characterized by a strong interaction.132  
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e.g., Grabow et al.135. In the second mechanism, a Mars-Van Krevelen mechanism is 

observed, in which a redox support is involved and the CO oxidation takes place with a O 

from the support lattice, which is regenerated by the H2O.136,137 Recently, an associative 

mechanism with redox regeneration of OH groups has also been suggested to be favored in 

Pt-CeO2 catalysts depending on the temperature.61,138 In the case of monometallic catalysts, 

Pt/SiO2 and Pt/C, the reaction takes place through the associative mechanism. It can be 

expected that the Pt/C catalysts behaves similar to metallic Pt, where H2O activation in the 

rate-controlling step;52,135,136,139 on the other hand, the better performance of Pt/SiO2 catalysts 

under the same reaction conditions shows the important participation of the  

OH groups at the Pt-SiO2 interface.   

The deposition of Fe species on the Pt-based catalysts by CSR enhanced the 

WGSR activity. The lower activity of the physical mixture of catalysts (Pt/SiO2 + Fe/SiO2), 

the low temperature of Fe partial reduction found by in situ TPR-XANES experiments, and 

the reversible conversion between different iron oxidation states under mild condition are 

strong evidence of the creation of a FeOx-Pt interface. 

In the literature, the Fe promoting role58,59,84,109,140–143 is often explained in terms 

of the redox properties of Fe, where Fe2+ can be oxidized to Fe3+ and be directly involved in 

the activation of water or oxygen. For example, CO oxidation studies on Pt and Au catalysts 

supported on different iron oxides phase, showed that the Fe2O3 phase led to better catalytic 

performance, which was associated with more facile conversion of the Fe3O4 phase and its 

redox properties;58 a similar conclusion was obtained for the system Au/Fe2O3 applied in 

WGSR.111 The role of the Fe3+ ⇋ Fe2+ pairs is similar to what is found in the Fe-based 

industrial high temperature shift (HTS) catalyst,65 where the Fe3O4 phase is the stable one 

under reaction conditions.  

Surface studies on the FeOx-Pt system have provided insights about the nature of 

the catalytic sites for CO oxidation. The FeOx-Pt system is characterized by a strong metal 

support interaction and the formation of a FeOx layer on Pt surface that enhances the CO 

oxidation by O2 through a redox mechanism.144,145 Knudsen et al.132 studied the reduction of 

FeO/Pt(111) surfaces and found that water is more easily activated in the FeOx reduced 

structure in contrast to pristine FeO film, that was inert. Fu et al.143 showed that 

coordinatively unsaturated ferrous (CUF) sites confined at Pt interface are active at room 

temperature for CO oxidation. Direct evidence of these sites was provided by in situ Scanning 

Tunneling Microscopy (STM) images.146 These coordinatively unsaturated cations, found at 

the boundary of FeOx nano-island deposits on the Pt surface, lead to a bifunctional 
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mechanism, decreasing the energy barriers for O2 activation and reaction with CO adsorbed in 

a nearby Pt site. It has been proposed that these sites are also highly active for H2O activation, 

forming FeCUF-OH species and Fe-OlatticeH, which can then react with CO through associative 

mechanism.147–149 Lambrou et al.150 also showed that the presence of Fe moieties in intimate 

contact with noble metals improves the CO surface coverage favoring its adsorption due to 

electronic changes and might also play a key role as donor of oxygen, promoting the 

oxidation reactions by surface diffusion of O*. 

Regardless of the dominant mechanism, in situ XANES analysis during WGSR 

suggest that the FeOx species remain highly dispersed and Fe is electron deficient (oxidation 

state < 2+). These results suggest that FeOx species are capable of activating H2O and 

promoting the reaction with CO adsorbed on a nearby Pt site. The weak impact of multiple 

CSR cycles on CO chemisorption but the almost linear increase of the TOF with Fe loading 

suggest that the FeOx species are located mostly near the Pt-SiO2 interface. Increasing the Fe 

loading likely modifies the vicinity of the Pt-NP by forming small FeOx clusters.  

 

3.6 CONCLUSIONS 
 

Controlled surface reactions were used to synthesize FePt catalysts with intimate 

contact between both metals, which were explored for the WGSR. We have studied the 

deposition mechanism by quantifying the effects of the acidity of the support, surface 

hydroxyl groups, and treatment atmosphere on the deposition of the Fe precursor compound, 

(cyclohexadiene)iron tricarbonyl. The nature of the deposition sites is suggested to be 

uncoordinated platinum atoms at edges and corners of the NP and/or activated hydroxyl 

groups close to the NP that can be renewed by hydrogen treatment.  

Under catalytic conditions for WGSR, the Fe promotion was highlighted. When 

Fe was added to the Pt based catalysts, the WGSR TOF increased 5 times for the silica 

supported catalysts and 33 times for the carbon supported one. This showed that although the 

Fe promotion has a more significant impact on inert supports for WGSR, such as carbon, it 

also takes place in active WGSR supports, such as SiO2, where the hydroxyl groups 

participate in the WGSR mechanism. This was confirmed by studies performed with this 

system on reactions, such as hydrogenation121 and CO oxidation32 (see section Appendix IV 

for a brief description of both papers) where the Fe promotion was several  

orders of magnitude higher.   
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CHAPTER 4 

 

OTHER RESULTS 

 

4.1 – INTRODUCTION 
 

On this chapter we would like to list some preliminary but interesting results. In 

the first case, we performed adsorption studies to evaluate the possibility of selective 

anchoring of Chini’s clusters on some materials. In the second case, we ran PROX-CO 

reactions on the catalysts made by the CSR method to tie these results with the catalysts made 

by Chini’s deposition on bulk iron oxide.  

 

4.2 CHINI’S CLUSTER ADSORPTION 
 

Chini’s adsorption process on different oxides could bring the possibility of 

achieving selective anchoring. Then, we performed a couple of adsorption studies on different 

oxides to evaluate the deposition of clusters and understand the process for further experiment 

and synthesis planning. 

 

4.2.1 – Material and Methods 

 

All procedures were carried using standard Schlenck techniques under Ar 

atmosphere. SiO2 (Aerosil 380, EVONIK, surface area of 380 m2 g-1), CeO2 (Sigma-Aldrich, 

nanopowder, <25 nm particle size (BET), surface area of 60 m2 g-1), Fe2O3,( Nanoarc, Alfa 

Aesar, surface area of 30-60 m2 g-1), TiO2, (AEROXIDE P25, EVONIK, surface area of 65 

m2 g-1) were pretreated under vacuum overnight on sealed Schlenck tubes at 383 K.  

Acetone (Synth) was used as received. H2[Pt3(CO)6]n was synthesized as described on section 

2.3.1 Catalyst synthesis. 
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4.2.1.1 Adsorption Experiments 
 

In a Schlenck tube, see Figure 35, under Ar atmosphere the selected mass of the 

pretreated support that corresponds to 19 m² of surface area − approximated values are listed 

on Table 5 − is subjected to 3 vacuum and Ar cycles, and one last vacuum and a refilling 

with pure CO. Then, 4 mL of CO saturated acetone is added to the flask and the solid is 

suspended under stirring for the addition of 50 μL of H2[Pt3(CO)6] in a 31 mg(of Pt) L-1 

concentration. The flask is sealed and left in the dark for 2 h. Then, the liquid is filtered, 

dried, digested with aqua regia and the amount of Pt in solution is measured by ICP-AES. 

For every experiment run, a blank of the original [Pt] is also measured for comparison, and a 

blank without solid is used to assure that there is no loss of Pt in the absence of supports.  

 

 

Figure 35 – Adsorption experiments of Chini’s clusters on SiO2 and Fe2O3. 
 

Table 5 – Support mass calculated to be used on the adsorption experiments 
Support Mass / mg 

SiO2 50 

Fe2O3 237.5 

TiO2 292.3 

CeO2 315 

 

The comparison between different oxides is not straightforward, since adsorption 

is also proportional to the surface area. Then, to rationalize the adsorption of the clusters and 

link it directly to the interaction with the support, the amount adsorbed was  

normalized as follows: 
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The isoelectric point (or point of zero charge, PZC) of the studied solids are SiO2 

(below 3, which is close to glass), γ-Fe2O3 (6 to 7; 6.9 is the one measured from alfa aesar), 

Ce2O3 (7 to 8), TiO2 (around 6).151,152 The PZC is the pH necessary to achieve zero charge in 

the surface, then, if the PZC is above 7 the surface is positively charged – and if it is  

below 7 the surface is negatively charged. Therefore, the better adsorption observed on titania 

cannot be explained solely by the surface charge and it might be due to strength of adsorption 

sites or other chemical affinities. If we look at the Lewis sites, the CUS Ti4+ on titania are the 

strongest of the oxides studied, then it might be a hint on what  

is affecting the deposition.153,154 

 

4.2.3 – CONCLUSIONS 

 

Taking the mg g-1 value and converting it into a wt% of Pt in each support the 

loadings achieved are on the range of 0.1 to 0.06 wt%. The obtained values in wt% of Pt per g 

of support are still too low and further experiments must be performed to verify the 

potentiality of the method. Blanks with [PtCl6]2- also need to be performed to check if the 

cluster adsorption is favored when compared to the commercially available precursor. Further 

experiments with ZnO (PZC of 9), 151,152 ZrO2 (PZC of 6.5) 151,152 and Al2O3 (PZC of 7 to 9, 

and higher strength of acid sites) 151,152,154 could be performed. 

 

4.3 PROX-CO ON CSR CATALYSTS 
 

The FePt materials synthesized on Chapter 3 by the CSR method showed 

promotion when compared to Pt/SiO2 in WGSR. Then, to evaluate these catalysts potentiality 

in another reaction of the hydrogen chain production, the PROX-CO, a couple of experiments 

were performed and are discussed below. 

 

4.3.1 – MATERIAL AND METHODS 

 

Catalysts were produced following the procedures and nomenclature detailed on 

section 3.3.1 Synthesis and PROX-CO reactions were ran following the description of section 



82 
 

2.3.3 Catalysis. The CO2 production rate was calculated based on the number of mols of CO2 

on each GC-run, the loop size, amount of Pt on each catalyst and the gas flow. 

 

4.3.2 – RESULTS AND DISCUSSION 

 

The PROX-CO results can be seen on Figure 37. Pt/SiO2 presents a typical 

unpromoted profile, with CO2 production rate of 45 mmol gPt
-1 min-1 at its highest conversion 

and the 1 Pt : x Fe mol CSR catalysts with 0.1 and 0.2  achieves 65 and 85 mmol gPt
-1 min-1, 

respectively. It is possible to see that the presence of Fe increases the catalysts rate and also 

brings the maximum of conversion to lower temperatures from 488 to 460 K, for Pt/SiO2 and 

Pt1Fe0.2/SiO2_4C, respectively. This behavior is similar to what was already observed in the 

catalysts prepared with bulk Fe2O3 support using Chini’s clusters (section 2.4.2 Catalysis), in 

which the maximum of conversion was shifted to around 363 K. The selectivity profiles 

plotted in Figure 38 shows that for all three catalysts the CO/O2 conversions are between the 1 

: 1 and 1 : 0.5, which indicates a reasonable preference for CO oxidation over H2. 

 

Figure 37 – CO2 production rate for a) Pt/SiO2, b) Pt1Fe0.1/SiO2_2C and c) Pt1Fe0.2/SiO2_4C 
catalysts under PROX-CO conditions. Arrows show the direction of the heat ramp for the 
reaction points of its respective color. 
 



83 
 

 

Figure 38 – CO % as a function of O2% for the CSR catalysts under PROX-CO. 
 

In Figure 39, it is possible to see a comparison of CSR catalysts and those made 

by the Chini’s clusters deposition. Both systems were run in different weight hourly space 

velocity (WHSV, weight of the gas flow over the weight of catalyst): 2PtCO/MOx  

(in which MOx are SiO2 and Fe2O3) were run at 20 h-1 (100 mL/min of 1% CO, 1% O2, 4% N2 

and 24% He with 50 mg of catalyst) and the CSR catalysts were run at 67 h-1 (100 mL/min of 

1% CO, 1% O2, 4% N2 and 24% He with 15 mg of catalyst) which is 3.3 times bigger. If we 

normalize it per mass of platinum we would get 1095 h-1 and 1398 h-1, respectively for 

2PtCO/MOx (1.8 wt%) and the CSR catalysts (4.7 wt%) which is only 1.2 times bigger, which 

makes the comparison valid. 

 

Figure 39 – Comparison of CO2 production rate under PROX-CO conditions using catalysts 
produced by CSR and deposition of Chini’s clusters on bulk supports. All points were 
acquired during cooling. 
 

It is important to note the CO2 production rate (which is also normalized by the Pt 

mass) for the Pt/SiO2 (IWI, 4.7 wt%) catalyst was higher than the value obtained for the 



84 
 

2PtCO/SiO2 (made from Chini’s clusters, 1.8 wt%), 22 and 45 mmol gPt
-1 min-1 at 485 K for 

2PtCO/SiO2 and Pt/SiO2, respectively. Since the monometallic catalysts were evaluated in 

different catalytic lines, we confirmed that this behavior was indeed due to intrinsic 

differences between the catalytic lines (called Saturno and Netuno), Figure 40. Nonetheless, 

even considering this difference between SiO2 based catalysts. it is clear that the CSR samples 

are more active than bulk Fe2O3 based catalyst (2PtCO/Fe2O3). At each of their maximum 

CO2 production, Pt1Fe0.2/SiO2_4C (at 460 K) is 8 times more active than the 2PtCO/Fe2O3  

(at 340 K). This difference could be linked to the competition of H2 oxidation, which 

overrides the CO oxidation on the bulk iron oxide. It also points that the addition of Fe 

promotes both reactions, but at low concentrations it preferentially  

promotes the CO oxidation. 

 

Figure 40 – Comparison between the catalytic activity of Pt/SiO2 and 2PtCO/SiO2 on two 
different catalytic lines under PROX-CO conditions. 
 

4.3.3 – CONCLUSIONS 

 

The addition of Fe also promotes the PROX-CO reaction. It was also possible to 

see that the competition with the oxidation of H2 can be tuned by adding small amount of Fe 

selectively to the surface of the NPs.  
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GENERAL CONCLUSIONS 
 

On this thesis, we explored the organometallic approach to synthesize bifunctional 

and bimetallic catalysts. The first strategy was the deposition of Chini’s clusters onto the iron 

oxide matrix to synthesize the PtCO/Fe2O3 bifunctional catalysts that showed good activity in 

PROX-CO reaction at temperatures below 373 K. The support phase transitions were shown 

to impact the temperature of maximum conversion and that was assigned to the redox 

properties of Fe(II) species that assists in the oxygen activation. A deep understanding of this 

behavior could help on the design of future catalysts. The loss of selectivity at higher 

temperatures, above 373 K, observed is related to the oxidation of H2 on the whole surface of 

the oxide, then, the selective deposition of Fe to the surface of the NP was proposed and was 

employing through the CSR method. 

These FePt catalysts with intimate contact between both metals made by the CSR 

method were explored for the WGSR. The adsorption mechanism was studied, and the 

initially understanding of the system proved to be more complex. The role of H2 during the Fe 

deposition preparation is not responsible for the direct reaction with the precursor and instead, 

regenerates the surface adsorption sites. The nature of the deposition sites is suggested to be 

uncoordinated platinum atoms at edges and corners of the NP and/or activated hydroxyl 

groups close to the NP that can be renewed by hydrogen treatment.  

Finally, it has been seen that the bimetallic/bifunctional Fe-Pt system is incredibly 

promising. Our results, in agreement with the literature, show the Fe promotion role in two 

reactions of the hydrogen production chain, and the promotion is probably due to the 

activation of oxygen and water.  

On the catalysts synthesis, both variations of the organometallic method employed 

showed their own advantages and drawbacks. On one side, Chini’s clusters derived NP were 

small and well-dispersed on the surface of “inert” and “unstable” (for example, Vanadium 

oxides that might change phases prematurely during the NP’s synthesis) supports, and the 

method is easy to translate; on the other side, a well-defined tuned interface can be 

synthesized to explore and avoid excess of metals that can improve catalytic activity. Both 

methods and their application on catalysis were shown to be promising and more studies 

should be made on this direction. 
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PERSPECTIVES 
 

The organometallic approach for the synthesis of supported catalysts as a broad 

technique is full of advantages. Specifically, the use of polymeric platinum carbonyl dianions, 

known as Chini’s clusters, successfully generated very small clean surface Pt-NP on a series 

of supports, including Fe2O3 and SiO2. The former is an oxide that would change crystalline 

phases if harsh reductive pretreatments were used while the latter is a rather inert oxide, in 

which is reasonably difficult to get small particles at high loadings. Then, this method can be 

explored and translated to different oxides and could be explored in different ways, see 4.2 

Chini’s cluster Adsorption. Additionally, similar carbonyl clusters such as RhCo3(CO)12 or 

[Fe3Pt3(CO)15]2- can be applied for the synthesis of heterometallic NP with narrow 

composition distribution.  

On the CSR side, the FePt catalysts can be explored in other reactions. However, 

both Pt and Fe have such high affinity that even IWI catalysts present a well-defined interface 

and our catalysts had no significant differences in activity on the WGSR. Then, the method 

would have to be translated to another metallic pair but this is not straightforward, and future 

work should be designed to understand the method and focus on the design of precursors. 

Spectroscopic and reaction assays should be employed with several precursors and metals to 

create a library of compounds and help to understand the adsorption process. On the pairs, Pt, 

Rh and Pd are promising due to their hydrogen adsorption properties and CO affinity, and 

oxophylic metals such as Co, Fe, Ni and Zn could also be good candidates. It mostly depends 

on the reaction of choice, of course. 

From the catalytic reaction perspective, studies must be carried on these catalysts 

so both WGSR and PROX-CO can be competitive with the materials already commercially 

available. From the chemist side, the focus of our approach (the organometallic method) helps 

the understanding of the catalytic system. 

Finally, from my point of view, if we take a deeper and a critical look into the 

potentiality of the uses of hydrogen as energy vector, it is possible to see that the market and 

scientists still face several challenges. The utopia in which all cars, industries, and homes are 

running on green energy still has tens of years to come, which is probably due to technology 

and costs bottlenecks. Also, because of the high energetic demand from industries, the use of 

petrol based fuels will not be ceased, even if an energy source is at least “as cheap”. This new 
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energy source would be aggregated and not substitute the current one. However, all is not lost. 

The energetic panorama would be greener, and even if that is not the final goal it is a start. 

 I personally do not think cars would ever be powered by compressed H2 tanks, but I do see 

future in cars being charged in green electricity produced from renewable energy sources, 

such as hydrogen fueled cells. 
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APPENDIX I 
 

This appendix is not an essential part of the discoveries and the research of this 

project, but I would like to register here part of the knowledge I acquired while working with 

air sensitive compounds. I hope this can be used as a guide for other desperate first year 

students. 

 

AI.1 INTRODUCTION 
 

AI.1.1 ESSENTIAL READS AND REFERENCES 

 

Air and moisture sensitive compounds are not very hard to handle, given you have 

experience and proper tools. Shriver and Drezdzon wrote a required read for those starting in 

this area, which is the “The manipulation of air-sensitive compounds”.1 I would also 

recommend watching the virtual lab videos provided by the Fakultät für Chemie of the 

Georg-August-Universität Göttingen (chemistry department of the University of Göttingen, 

informally known as Georgia Augusta),2 not only the advanced procedures but also the basic 

techniques. Keep in mind that those videos are indeed in German, but they kindly provide 

English captions for all videos. Youtube is also a powerful tool and many universities and 

groups provide demonstrations, and on that topic I would advise that these videos must be 

critically analyzed before being taken as truth or standard procedures. They are nonetheless 

useful.3 It is also important to read the recommendations and safety manuals of the vacuum 

pumps and gloveboxes. This could be easily found on the manufacturer website.4 Safe 

handling of liquid nitrogen and Dewars flasks also require reading and familiarization with 

this tools.5 

AI.2 TOXIC GASES 
 

Working with CO(g) has several requirements, and most of them are quite 

obvious as you are going to see below. First I would like to state that carbon monoxide as a 

pure gas in a compressed cylinder is one of those things that you should use only if you really 

need it. The deathly repercussions of exposure6,7 to this molecule should not be a surprise for 
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someone trying to work with it. Just in case you are not aware of that, you may find on Table 

A 1 the associated symptoms to the exposure of CO at different concentration levels. 

 

Table A 1 – CO poisoning symptoms. Modified from Goldstein et al.6 
[CO] / ppm Associated Symptoms 

< 35 Up to 8 hours with no adverse effects 

35 
Headache and dizziness within 6 to 8 h of 
constant exposure 

100 Slight headache in 2 to 3 h 

200 
Slight headache within 2 to 3 h; loss of 
judgment 

400 Frontal headache within 1 to 2 h 

800 
Dizziness, nausea, and convulsions within 
45 min; insensible within 2 h 

1600 
Headache, tachycardia, dizziness, and 
nausea within 20 min; death in less than 2 h 

3200 
Headache, dizziness, and nausea in 5 to 10 
min; death within 30 min 

6400 
Headache and dizziness in 1 to 2 min; 
convulsions, respiratory arrest, and death in 
less than 20 min 

12800 Death in less than 3 min 
 

Some experiments and synthesis do not require pure CO or does not need a large 

bubbling excess of it, on those cases you can generate it in situ by the decomposition of some 

commercially available carbonyl complexes such as W(CO)6 or Mo(CO)6, or even use this 

generation to fill a balloon. 

 

AI.2.1 – SAFETY WORKING WITH CO 

 

Since CO is a colorless and odorless gas most of its safe handling concerns its 

detection and prevention of leaks. The area of work should have CO detectors close to the 

cylinder at all times and also a portable one for the users working near by the whole system, 

then, because of that all staff and visitors should be aware of the existence of the cylinders 

and their location and must be instructed on how to proceed if one or more detectors go off. 

Ventilation is key on dealing with CO, and in any case of leaks there must be a safe and easy 

way of shutting down the cylinder, which might include self-shutting/safety valves,7 sealing 
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the cylinder inside ventilated cabinets, or at least have an easy way to access its main valve. 

There are also several sources of information about safe handling this gas.8 

AI.3 REFERENCES 
 

1. Shriver, D. F., & Drezdzon, M. A. (1986). The manipulation of air-sensitive 

compounds. (2nd ed.). New York: Wiley-VCH. Retrieved from 

https://www.wiley.com/en-

us/The+Manipulation+of+Air+Sensitive+Compounds%2C+2nd+Edition-p-

9780471867739 

 

2. Fakultät für Chemie of the Georg-August-Universität Göttingen. Virtual Lab. Retrieved 

January 22, 2018, from http://www.stalke.chemie.uni-

goettingen.de/virtuelles_labor/advanced/en.html 

 

3. For example:  

a. “How to Use a Schlenk Line” by Travis Osmond’s Youtube channel 

“Chemistryisthegame”. Retrieved 24/01/2018 from 

https://www.youtube.com/watch?v=my1YR35W7Co ; 

b.  “CHEM 437 UIUC Schlenk Technique” by Kami Hull’s Youtube channel. 

Retrieved 24/01/2018 from https://www.youtube.com/watch?v=dvuMam5UCCs ; 

c.  “Freeze, pump, thaw solvents on the Schlenk line” by McIndoe group chemistry 

lab’s Youtube Channel. Retrieved 24/01/2018 from 

https://www.youtube.com/watch?v=GpbXTk9VbBg ; 

d.   “Chemistry Tools: The Schlenk Line” by Sophia from the University of 

Washington and published on Pacific Science Center's Youtube channel “Current 

Science at Pacific Science Center”. Retrieved 24/01/2018 from 

https://www.youtube.com/watch?v=05BTHGiw6Hg ; 

e. “Schlenk Technik” by Franz-Josef Schmitt from Institut für Chemie of the 

Technische Universität Berlin published on Franz-Josef Schmitt’s Youtube channel.  

Retrieved 24/01/2018 from https://www.youtube.com/watch?v=fdYRufL7olI ; 

 

4. For example:  
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a. Edwards Vacuum. Retrieved 24/01/2018 from 

https://www.edwardsvacuum.com/uploadedFiles/Content/Pages/About_Us/Edwards

_Vacuum_Safety_Booklet.pdf 

b. Pfeiffer Vacuum. Retrieved 24/01/2018 from https://www.pfeiffer-

vacuum.com/filepool/File/Application-reports/Rotary-vane-pump-Duo-ATEX-

PD0058PEN.pdf;jsessionid=8E12A1ECE6E9D6DD6AD38D3F2F9B51A5-

n1?referer=2225&request_locale=en_US 

c. Stony Brook University. Retrieved 24/01/2018 from 

https://ehs.stonybrook.edu/programs/laboratory-safety/chemical-safety/glovebox-

safety 

 

5. For example:  

a. Tedpella. Retrieved 24/01/2018 from https://www.tedpella.com/cryo-

supplies_html/HandlingLiquidNitrogen.htm 

b. National Research Council (US) Committee on Prudent Practices in the Laboratory. 

(1995). Prudent Practices in the Laboratory. Washington, D.C.: National Academies 

Press. https://doi.org/10.17226/4911 

6. Goldstein, M. (2008). Carbon Monoxide Poisoning. Journal of Emergency Nursing, 
34(6), 538–542. https://doi.org/10.1016/j.jen.2007.11.014 

7. Struttmann, T., Scheerer, A., Prince, T. S., & Goldstein, L. A. (1998). Unintentional 
Carbon Monoxide Poisoning From an Unlikely Source. The Journal of the American 

Board of Family Medicine, 11(6), 481–484. https://doi.org/10.3122/jabfm.11.6.481 
8. For example: 

a.  Air Liquide. Retrieved 24/01/2018 from https://industry.airliquide.us/model-1-flow-

limit-safety-shutoff-valves; 

b. Praxair. Retrieved 24/01/2018 from https://www.praxairdirect.com/Specialty-Gas-

Information-Center/Gas-Handling-Equipment/Gas-Handling-Accessories/Excess-

Flow-Shut-off-Valves.html; 

c. Swagelok. Retrieved 24/01/2018 from 

https://www.swagelok.com/en/product/Valves/Excess-Flow 

9. For example: 

a. Air Products. Retrieved 24/01/2018 from  

http://www.airproducts.com/~/media/files/pdf/company/safetygram-19.pdf; 



104 
 

b.  BOC – a member of the Linde group. Retrieved 24/01/2018 from  http://www.boc-

gas.co.nz/internet.lg.lg.nzl/en/images/BOC%20Guidelines%20for%20Gas%20Cylin

der%20Safety-AU435_82369.pdf;  

c. Indian Institute of Technology Bombay. Retrieved 24/01/2018 from  

http://www.iitb.ac.in/safety/sites/default/files/Gas%20Cylinder%20Safety%20Manua

l.pdf; 
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APPENDIX II 
 

CHINI’S CLUSTER SYNTHESIS 
 
The triangular prismatic carbonyl clusters called Chini’s clusters can be 

synthesized through several routes,1-5 and the following sections explore the challenges faced 

when trying to reproduce the literature data, which required scaling down the published 

procedures and developing the right reactor shape and adapting the methodology. 

 

AII.1 MATERIALS AND METHODS 
 

All reagents cited bellow were lab grade chemicals used as received. The solvents 

were dried and degassed before use, unless noted differently.  

The classic synthesis1,2 asks for 1.97 g of the platinum salt (Na2PtCl6.6H2O) in a 

really small amount of methanol, 35 mL. Currently, a high purity salt costs around $750 BRL 

($92 USD),6 which is reasonably pricey for us, which makes the synthesis hard to reproduce 

under the exact same conditions. The scale down to around 200 mg of salt is difficult since 

the methanol volume gets really small (3.55 mL), the CO flow dries this amount of methanol 

under 30 min. Then, with reduced amounts the procedure was adapted as follows: the 

reductive carbonylation was performed with the Pt salt and anhydrous CH3COONa (or the 

trihydrated one) at 1 mol of Pt to 7.8 mol of alkali in dry and degassed methanol. CO gas was 

bubbled for 24 h, then it was isolated by precipitation with [NBu4]Cl and, after filtration, it 

was stored under inert atmosphere as [NBu4]2[Pt3(μ-CO)3(CO)3]n. These reactions were 

denominated Pt15 X, in which X is sequential descriptor of the synthesis. For example,  

Pt15 003 was made with 47 mg of the Pt salt with 55 mg of the anhydrous alkali in 2 mL of 

anhydrous grade methanol (bought from Sigma-Aldrich and stored inside a glovebox);  

Pt15 006 was made with 14 mg of the metallic precursor and 28 mg the trihydrated alkali in 3 

mL of an “in house” purified methanol (pre-dried in  CaSO4, distilled and stored over 3Å 

molecular sieves under inert atmosphere); the 1 bubble per second CO flow lead to solvent 

loss in some cases. 
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The final conditions used were 97.9 mg of Na2PtCl6.6H2O (8.7 mmol L-1) with 

197.74 mg of CH3COONa.3H2O in 20 mL of dry and degassed methanol at 323 K using a 

jacketed reactor (Figure A 1) and CO(g) at 1 bubble s-1 for 24 h. 250 mg of [NBu4]Cl in 1 mL 

of methanol is added for precipitation and after 24 h on the fridge the solid  is filtered and 

washed with 3 mL of cold methanol, is washed from the filter with 14 mL of dry and 

degassed acetone (refluxed with KMnO4, distilled and stored over 3Å molecular sieves under 

inert atmosphere). Finally, it is vacuum dried and dissolved in 3 mL of dried THF (pre-dried 

in KOH and distilled over Na(s)/benzophenone) for storage. UV-Vis and IR were used to 

confirm the cluster formation and ICP-OES and UV-Vis were used as quantification 

techniques. 

 

  

Figure A 1 – Jacketed 3-neck 125 mL round bottom flask. The left neck is sealed with a 
rubber septum or glass stopper, and is used for the addition of reagents; on the center neck, 
there is an adapted Graham condenser with an oil bubbler/argon path on top of it, which are 
used to maintain the inert atmosphere and avoid solvent loss; on the right neck, there is a glass 
bubbler connection to pass CO(g). a) is an overall view of the flask and b) is a zoom on the 
flask itself.  
 

AII.1.1 – UV-VIS 

 

Electronic spectra on the ultraviolet and visible range (UV-Vis) were acquired in a 

2.5 mL quartz cuvettes sealed with a Teflon stopper. Blanks were measured with CO 

saturated solvents. Equipment were described on section 2.3.2.2 UV-Vis. 

a) b) 
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AII.1.2 – IR 

 

Vibrational spectra on the infrared range (IR) were measured in a thin liquid film 

cell, Figure A 2. Blanks were measured with dried and degassed THF, samples were 

measured in an ABB-Bomem MB Series spectrometer. 

 

 

Figure A 2 – SpectraTech IR cell used for measurements with NaCl windows and Teflon 
spacers (not shown). 
 

AII.2 RESULTS AND DISCUSSION 

 

The solution CO saturation, as well as CO2 carrying, is achieved by bubbling CO 

during the carbonilative reduction, which occurs at RT for 24 h. The first challenge of this 

long procedure is the complete evaporation of solvent when using the values of the 

literature1,2 (~200 μL). This causes a degradation of the product and formation of an insoluble 

black precipitate (probably platinum black). To overcome this, a couple of experiment under 

static CO atmosphere (CO blanket), in which the bubbling was ceased after 4 h and the 

reaction was left overnight, but the results were not promising. In fact, the solution color did 

not change which indicates that there was no reaction or degradation of the 

hexachloroplatinate. Even with the addition of a cooled condenser it was still possible to see 

evaporation of the solvent, then, it was necessary to increase the methanol volume, which 

completely changes the Pt:CO ratio. 

Using the 1:7.8 Pt:alkali base and trying to synthesize pentamers (n = 5) the first 

samples were obtained.  Using a 25 mL Schlenck flask, after 24 h, the solution changed from 

yellow to a dark green color (see inset on Figure A 3). Increasing the nuclearity of the 

oligomers, i. e., increasing the number of Pt atoms, a change in electronic states and 
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properties is expected. These changes shift the UV-Vis bands, see Table A 2, because these 

absorptions are directly linked to the electronic transitions on the complex. On the clusters 

these transitions are very complex, they are based on the retrodonation of electrons on d states 

of the metal to antibonding pi orbitals of the bonded CO, and, since there are 12 π* for each 

Pt3(CO)6 unit, it generates many symmetry and energy allowed transitions. Hence, it is 

possible to say that the Cluster UV-Vis spectrum is due to many one electron transitions 

allowed by dipole on that energy range but it is not possible to pin point which transition.1 

Nonetheless, there is a clear difference on the 550-900 nm range that differentiate each cluster 

and can be used to confirm the synthesis, see Table A 2. 

 

Table A 2 - UV-Vis and IR of clusters used for the identification of the oligomers.1,5 
 [Pt3(CO)6]5

2- [Pt3(CO)6]4
2- [Pt3(CO)6]3

2- 

UV-Vis (THF, 

λmax/nm) 
706, 410, 342 and 271 620, 513 and 394 

562, 506, 422, 367 

and 247 

IRa  (THF,  

νCO cm-1) 

2057 (s), 1896 (w), 

1872 (m), 1845 (w) and 

1831 (w) 

2045 (s), 1880 (m), 

1860 (s) and 

1825(m) 

2030 (s), 1862 (m),  

1845 (s), 1832 (w) 

and 1812 (m) 
a (s) strong, (m) medium and (w) weak  

 

The UV-Vis spectra in THF of the isolated samples can be seen in Figure A 3, 

two well-defined bands can be seen, which is the typical profile for Chini’s clusters.  

On Pt15 003, the bands close to 700 nm are due to the presence of pentamers but tetramers 

bands at lower wavelengths can also be seen. Quantifying those oligomers in solution using 

the Lambert-Beer law and their molar absorptivity (ε) of 59000 and 42000 L mol-1
 cm-1 for 

the pentamer and tetramer, respectively, it is possible to see that latter is more abundant in 

solution. 
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distributions were obtained and can be used for the synthesis of supported Pt catalysts. 

Further experiments were run with Kochubei methodology,4 briefly described on section 2.3.1 

Catalyst synthesis, and we were able to make the same clusters with the same distribution on 

a third of the time and effort. This is the main reasoning on changing the synthetic method, 

which lead to 2 main batches of the catalysts used on Chapter 2: 4PtCO/ Fe2O3 made by 

Chini’s method; and 2PtCO/SiO2 and 2PtCO/Fe2O3 made by Kochubei’s method. 
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APPENDIX III 
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As noted below, as an author of the article permission is not required to use the 

data and even the full article on a thesis or dissertation. If any further reading is needed see 

the Copyright section of the Elsevier website (https://www.elsevier.com/about/our-

business/policies/copyright#Author-rights). 
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APPENDIX IV 

AIV.1 CO OXIDATION 

 

These results were published on the following paper: 

Ro, I., Aragao, I. B., Chada, J. P., Liu, Y., Rivera-Dones, K. R., Ball, M. R., Huber, G. 
W. (2018). The role of Pt-FexOy interfacial sites for CO oxidation. Journal of 

Catalysis, 358, 19–26. https://doi.org/10.1016/j.jcat.2017.11.021 

Copyright clearance for reproduction can be found on Appendix V. 

 
AIV.1.1 Abstract 
 

Supported Pt catalysts with different Fe/Pt atomic ratios were synthesized using controlled 
surface reactions to deposit (cyclohexadiene) iron tricarbonyl onto Pt/SiO2to create Pt-
FexOy interfacial sites. X-ray photoelectron spectroscopy measurements show that Pt and Fe 
species exist as metallic Pt and Fe oxides phases, respectively, after treatment in H2 at 573 K, 
whereas Fe becomes more oxidized under reaction conditions for CO oxidation at 313 K 
(CO:O2 = 1:1). The addition of Fe increases the turnover frequency of Pt1Fex/SiO2 at 313 K 
and atmospheric pressure by up to two orders of magnitude compared to Pt/SiO2. The reaction 
order with respect to the O2 partial pressure suggests that O2 adsorption on the surface is likely 
to be a rate controlling step for both Pt/SiO2 and Pt1Fe0.2/SiO2. The enhanced activity over 
Pt1Fex/SiO2 catalysts compared to Pt/SiO2 can be associated with a lower energy barrier for 
O2 adsorption and activation over Pt-FexOy interfacial sites. 
 

Graphical Abstract: 
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AIV.1.2 Main Results 
 

On this paper all the FePt catalysts were made following the CSR method 

described on section 3.3.1 Synthesis. Details can also be found on the 

published article. 

 

On the catalyst characterization side, the catalyst structure was further studied by 

X-ray photoelectron spectroscopy (XPS) and XAS, Figure A 6 and Figure A 7, respectively. 
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Figure A 6 - XPS spectra of Pt1Fe0.2/SiO2 catalyst after in situ reduction at 573 K (black) and 
followed by the introduction of  reactant gases (0.5% CO and 0.5% O2 balanced with He, red) 
at 313 K for (a) Pt 4f and (b) Fe 2p. 
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Figure A 7 - Characterization of Fe catalytic centers of Pt1Fe0.2/SiO2 before/after in situ 
reduction. (a) Normalized Fe K edge XANES spectra of Pt1Fe0.2/SiO2. Spectra of Fe foil, 
Fe2O3, and FeO are included in the figures for comparison. (b) The k3-weighted Fourier 
transform spectra of Pt1Fe0.2/SiO2. Fe foil spectrum is included for comparison.  
 

Figure A 6a shows the XPS spectra of Pt (4f5/2 and 4f7/2) and Fe (2p1/2 and 2p3/2) 

for the Pt1Fe0.2/SiO2 catalyst after in situ reduction at 573 K (black) and after exposure to the 

reactant gases (0.5% CO and 0.5% O2 balanced with He, red) at 313 K. In both spectra, the Pt 
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AIV.2 CARBONYL HYDROGENATION 

 

These results were published on the following paper: 

 

Insoo Ro, Isaias B. Aragao, Zachary J. Brentzel, Yifei Liu, Madelyn R. Ball, Joseph P. 

Chada, Daniela Zanchet, George W. Huber, James A. Dumesic (2018)  

Intrinsic Activity of Interfacial Sites for Pt-Fe and Pt-Mo Catalysts in the 

Hydrogenation of Carbonyl Applied Catalysis B:  Environmental 231, 182-190. 

https://doi.org/10.1016/j.apcatb.2018.02.058 

 

Copyright clearance for reproduction can be found on Appendix VI. 

 

AIV.2.1 Abstract 
 

Bimetallic PtFe/SiO2 and PtMo/SiO2 catalyts were prepared using controlled 
surface reactions (CSR) of cyclohexadiene iron tricarbonyl and cycloheptatriene molybdenum 
tricarbonyl on a Pt/SiO2 parent material. These catalysts were studied for the hydrogenation of 
ketone and aldehyde groups. Selective deposition of Fe and Mo onto Pt nanoparticles via the 
CSR method was evidenced by UV-vis absorption spectroscopy, scanning transmission 
electron microscopy, and inductively coupled plasma absorption emission spectroscopy. The 
oxidation states of the Pt and Fe species for PtFe catalysts were determined using X-ray 
photoelectron spectroscopy and X-ray absorption near edge structure measurements, showing 
that Pt was present in the metallic state while Fe was present in the metallic and +2 oxidation 
states. The turnover frequency (TOF) of a Pt site for acetone (ketone) hydrogenation at 353 K 
and atmospheric pressure is 0.9 min-1, whereas that of a Pt-FexOy and a Pt-MoOx site is 93 
and 76 min-1

, respectively. For the hydrogenation of 2-hydroxytetrahydropyran (2-HY-THP, 
aldehyde) at 393 K and 30 bar pressure, the TOF of a Pt site is 7.8 min-1, while that on a Pt-
FexOy and a Pt-MoOx site is 482 and 827 min-1, respectively. The order of magnitude 
enhancement of the TOF on the Pt-FexOy and Pt-MoOx interfacial sites compared to that of 
the Pt site suggests that the Pt-metal oxide interface created on Pt catalysts by selective 
addition of Fe and Mo are active sites for both acetone and 2-HY-THP hydrogenation 
reactions. In addition, Pt-FexOy and Pt-MoOx catalysts exhibit remarkable stability versus 
time on stream in the 2-HY-THP hydrogenation reaction.  

 

AIV.2.2 Main Results 
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APPENDIX V 
 

COPYRIGHT CLEARANCE 

 

As noted below, as an author of the article permission is not required to use the 

data and even the full article on a thesis or dissertation. If any further reading is needed see 

the Copyright section of the Elsevier website (https://www.elsevier.com/about/our-

business/policies/copyright#Author-rights). 
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