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Resumo

Consideramos problemas nas teorias de grupos discretos, álgebras de Lie e grupos pro-p.

Apresentamos resultados relacionados sobretudo a propriedades homológicas de finitude

de tais estruturas algébricas.

Primeiramente, discutimos Σ-invariantes de produtos entrelaçados de grupos discretos.

Descrevemos completamente o invariante Σ1, relacionado à herança por subgrupos da

propriedade de ser finitamente gerado, e descrevemos parcialmente o invariante Σ2, re-

lacionado à herança por subgrupos da propriedade de admitir uma apresentação finita.

Aplicamos tais resultados ao estudo de números de Reidemeister de isomorfismos de certos

produtos entrelaçados.

Na sequência definimos e estudamos uma versão da construção de comutatividade fraca de

Sidki na categoria de álgebras de Lie sobre um corpo de característica diferente de dois. Tal

construção pode ser vista como um funtor que recebe uma álgebra de Lie g e retorna um

certo quociente χ(g) da soma livre de duas cópias isomorfas de g. Demonstramos resultados

sobre a preservação de certas propriedades algébricas por tal funtor e mostramos que o

multiplicador de Schur de g é um subquociente de χ(g). Mostramos em particular que,

para uma álgebra de Lie livre g de posto ao menos três, χ(g) é finitamente apresentável

mas não é de tipo FP3, e tem dimensão cohomológica infinita.

Por fim, consideramos também uma versão da construção de comutatividade fraca na

categoria de grupos pro-p para um número primo fixado p. Mostramos que tal construção

também preserva diversas propriedades algébricas, como ocorre nos casos de grupos

discretos e álgebras de Lie. Para tanto estudamos também produtos subdiretos de grupos

pro-p; em particular demonstramos uma versão do Teorema (n− 1)− n− (n+ 1).

Palavras-chave: teoria dos grupos, álgebra de Lie, grupos profinitos.



Abstract

We consider problems in the theories of discrete groups, Lie algebras, and pro-p groups.

We present results related mainly to homological finiteness properties of such algebraic

structures.

First, we discuss Σ-invariants of wreath products of discrete groups. We give a complete

description of the Σ1-invariant, which is related to the inheritance of the property of being

finitely generated by subgroups. We also describe partially the invariant Σ2, which is

related to the inheritance of finite presentability by subgroups. We apply such results in

the study of Reidemeister numbers of isomorphisms of certain wreath products.

Then we define and study a version of Sidki’s weak commutativity construction in the

category of Lie algebras over a field whose characteristic is not two. Such construction can

be seen as a functor that receives a Lie algebra g and returns a certain quotient χ(g) of

the free sum of two isomorphic copies of g. We prove some results on the preservation of

certain algebraic properties by this functor, and we show that the Schur multiplier of g is

a subquotient of χ(g). We show in particular that, for a free Lie algebra g with at least

three free generators, χ(g) is finitely presentable but not of type FP3, and has infinite

cohomological dimension.

Finally, we also consider a version of the weak commutativity construction in the category

of pro-p groups for a fixed prime number p. We show that such construction also preserves

several algebraic properties, as occurs in the cases of discrete groups and Lie algebras.

To this end, we also study subdirect products of pro-p groups. In particular we prove a

version of the (n− 1)− n− (n+ 1) Theorem.

Keywords: group theory, Lie algebras, profinite groups.
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Introduction

In this thesis we deal with problems in the theories of discrete groups, Lie

algebras over a field and pro-p groups, for a prime integer p. The unifying principle is that

we study (mostly homological) finiteness properties of these algebraic structures, which

will usually be given by a presentation, that is, by generators and relators.

Some of the finiteness properties that we are interested are well known: we will

discuss finitely generated and finitely presented groups (Lie algebras, pro-p groups). Other

finiteness properties are of homological nature. Concretely, a module A over a unitary

associative ring R is of type FPm if there is a projective resolution

P : . . .→ Pn → Pn−1 → . . .→ P1 → P0 → A→ 0

with Pj finitely generated for all j ≤ m. This defines a sequence of finiteness properties

for the module A. We can then specialize it to the algebraic structures that we want to

study by taking R and A to be:

1. R = ZG the group ring, A = Z the trivial module for any discrete group G;

2. R = U(g) the universal enveloping algebra, A = K the trivial module for any Lie

algebra g over the field K;

3. R = Zp[[H]] the completed group algebra, A = Zp the trivial module, where H is

any pro-p group and Zp is the ring of p-adic integers.

Thus a discrete group G is of type FPm if Z is of type FPm over ZG, and similarly in the

other cases.

In the part of this thesis in which we deal with discrete groups, we actually

study the inheritance of finiteness properties by subgroups. This falls into the world of

Σ-invariants. These are some geometric invariants of groups, containing information on

these inheritance problems, whose definitions and most general results appeared in a series

of papers by Bieri, Neumann, Strebel, Renz ([13, 14, 15]) and others. In what follows we

describe briefly the theory.

Let Γ be a finitely generated group. The character sphere S(Γ) is the set of

non-zero homomorphisms χ : Γ→ R (these homomorphisms are called characters) modulo

the equivalence relation given by χ1 ∼ χ2 if there is some r ∈ R>0 such that χ2 = rχ1. The

class of χ will be denoted by [χ]. The character sphere may be seen as the (n− 1)-sphere

in the vector space Hom(Γ,R) ≃ Rn, where n is the torsion-free rank of the abelianization

of Γ.
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The Σ-invariants are defined as certain subsets of S(Γ). The first of them is

denoted by Σ1(Γ) and can be defined as follows. For any finite generating set X ⊂ Γ

we can associate the Cayley graph Cay(Γ;X). Recall that its vertex set is Γ and two

vertices γ1, γ2 ∈ Γ are connected by an edge if γ2 = γ1x for some x ∈ X. Any non-trivial

homomorphism χ : Γ→ R defines a submonoid

Γχ = {γ ∈ Γ | χ(γ) ≥ 0}.

We may consider then the full subgraph Cay(Γ;X)χ ⊂ Cay(Γ;X) determined by the

vertex set Γχ, as defined above. We put:

[χ] ∈ Σ1(Γ)⇔ Cay(Γ;X)χ is connected.

This is the invariant that appears (with a different language) in [13], which is also called

the BNS-invariant or Bieri-Neumann-Strebel invariant of Γ.

The invariant Σ2 is defined similarly. If Γ is finitely presented and 〈X |R〉 is

a finite presentation, we consider the Cayley complex Cay(Γ; 〈X |R〉). This complex is

obtained from the Cayley graph by gluing 2-dimension cells with boundary determined by

the loops defined by the relators r ∈ R, for each base point in Γ. The resulting complex is

always 1-connected. Again we define Cay(Γ; 〈X |R〉)χ to be the full subcomplex spanned

by Γχ. The 1-connectedness of this complex depends on the choice of the presentation. We

define Σ2(Γ) as the subset of S(Γ) containing exactly all the classes [χ] of characters such

that Cay(Γ; 〈X |R〉)χ is 1-connected for some finite presentation 〈X |R〉, depending on χ,

of Γ. More details on these definitions may be found in [60].

The main feature of these invariants is that they classify the related finiteness

properties for subgroups containing the derived subgroup: for a finitely generated group Γ,

a subgroup N ⊆ Γ such that [Γ,Γ] ⊆ N is finitely generated if and only if

Σ1(Γ) ⊇ {[χ] ∈ S(Γ) | χ|N= 0} =: S(Γ;N).

Similarly, if we assume further that Γ is finitely presented, then N is finitely presented if

and only if Σ2(Γ) ⊇ S(Γ;N) ([13, 67]).

There are also some homological invariants that can be defined in terms of

the monoid ring ZΓχ. This is of course the subring of ZΓ containing exactly all elements
∑

aγγ ∈ ZΓ such that aγ 6= 0 only if γ ∈ Γχ. We put

Σm(Γ;Z) = {[χ] ∈ S(Γ) | Z is of type FPm over ZΓχ}.

A version of the result connecting the inheritance of the type FPm for subgroups above

the derived subgroup and the invariant Σm(Γ;Z) also holds ([14]).

All these invariants are in general hard to describe for specific groups, and this

has been done only for a few classes of groups. For right-angled Artin groups (RAAGs),
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they are completely described in the work of Meier, Meinert and VanWyk [56, 58]. By

definition the right-angled Artin group defined by a finite graph ∆ is the group A∆ with

presentation

A∆ = 〈x ∈ V (∆) | [x, y] = 1 if x and y are connected by an edge in ∆〉,

where V (∆) is the vertex set of ∆. These groups have attracted great attention in modern

group theory, see for instance [25]. The description of their Σ-invariants is connected with

the existence of subgroups of these groups having a wide variety of finiteness properties,

as shown by Bestvina and Brady [9].

There is also substancial work on the more general class of Artin groups (not-

necessarily right-angled) by the same Meier, Meinert and VanWyk [57] and by Almeida

and Kochloukova [1, 2, 3, 4]. Another line of generalization was followed by Meinert, who

computed the invariants Σ1 of graph products [59].

Another interesting group for which the invariants are known is Thompson’s

group F . Both homological and homotopical invariants have been computed in all dimen-

sions by Bieri, Geoghegan and Kochloukova [12]. The Σ2-invariants of the generalized

Thompson groups Fn,∞ were then computed by Kochloukova [44] and recently Zaremsky

extended it to higher dimensions [82].

The Σ1-invariants of groups of basis conjugating automorphisms of free groups

were computed by Orlandi-Korner [66], and then generalized by Koban and Piggott [41]

for the class of groups of pure symmetric automorphisms of RAAGs.

This last result shows that the Σ-theory has applications outside the world of

finiteness properties. The groups that Koban and Piggott studied are the groups of all

automorphisms ϕ of a fixed RAAG AΓ such that ϕ(v) = vg for some g ∈ AΓ and for all v a

vertex of Γ (recall that AΓ is generated by the set of vertices of the graph Γ). It turns out

that the group of automorphisms with this property can be another RAAG under some

conditions on the graph Γ and, by looking at the Σ1-invariant of these groups, Koban and

Piggott were able to tell exactly when this is the case. Day and Wade then did the same

with respect to the group of pure symmetric outer automorphisms of a RAAG [30].

Our work is about the invariants for the class of permutational wreath products

of groups. Recall that given H and G groups and a G-set X, the wreath product H ≀X G

is defined as the semi-direct product M ¸ G, where M = ⊕x∈XHx is the direct sum (that

is, the restricted direct product) of copies of H indexed by X and G acts by permuting

these copies according to its action on X. The finiteness properties of these groups were

studied by Cornulier [26] (finite generation and finite presentability) and more recently by

Bartholdi, Cornulier and Kochloukova [5] (properties FPm).

Our first result is the full description of Σ1.
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Theorem A1. Let Γ = H ≀X G be a finitely generated wreath product and let χ : Γ→ R

be a non-trivial character. Set M = ⊕x∈XHx ⊆ Γ.

1. If χ|M= 0, then [χ] ∈ Σ1(Γ) if and only if [χ|G] ∈ Σ1(G) and χ|stabG(x) 6= 0 for all

x ∈ X.

2. If χ|M 6= 0, then [χ] ∈ Σ1(Γ) if and only if at least one of the following conditions

holds:

(a) There exist x, y ∈ X with x 6= y, χ|Hx 6= 0 and χ|Hy 6= 0;

(b) There exists x ∈ X with χ|Hx 6= 0 and [χ|Hx ] ∈ Σ1(H) or

(c) χ|G 6= 0.

Part 1 of the theorem above generalizes [5, Thm. 8.1] in dimension 1, where H

has infinite abelianization by hypothesis. For regular wreath products, that is, Γ = H ≀GG,

the action being by multiplication on the left, the Σ1-invariant was already computed by

Strebel in [76, Prop. C1.18].

For the invariant Σ2 we consider two cases, the same as in the theorem above.

For characters χ : H ≀X G→ R such that χ|M 6= 0 the criteria developed by Renz [68] are

especially powerful, and have allowed us to prove part 2 of Theorem A1 and a similar

result for Σ2.

Theorem A2. Let Γ = H ≀X G be a finitely presented wreath product and let χ : Γ→ R

be a non-trivial character. If the set

T = {x ∈ X | χ|Hx 6= 0}

has at least 3 elements, then [χ] ∈ Σ2(Γ).

The cases where T is non-empty but has less than 3 elements can be dealt with

using the direct product formula (see Theorem 2.8) and the results on the Σ1-invariant

(see Theorem 2.28 and the comment right before it).

For the characters χ : Γ → R with χ|M= 0 we were not able to obtain a

complete result, by lack of a general method to study necessary conditions for [χ] ∈ Σ2(Γ).

By the results of Bartholdi, Cornulier and Kochloukova on homological invariants, the most

general theorem we can prove is the following, where stabG(x, y) denotes the stabilizer

subgroup associated to an element (x, y) of X2, which is equipped with the diagonal

G-action.

Theorem A3. Let Γ = H ≀X G be a finitely presented wreath product and let χ : Γ→ R be

a non-zero character such that χ|M= 0. Then [χ] ∈ Σ2(Γ) if all three conditions below hold
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1. [χ|G] ∈ Σ2(G);

2. [χ|stabG(x)] ∈ Σ1(stabG(x)) for all x ∈ X and

3. χ|stabG(x,y) 6= 0 for all (x, y) ∈ X2.

In general, conditions 1 and 3 are necessary for [χ] ∈ Σ2(Γ). If we assume further that the

abelianization of H is infinite, then condition 2 is necessary as well.

Restrictions on the abelianization of the basis group H have been recurrent in

the study of finiteness properties of wreath products and related constructions. Besides

appearing in the work of Bartholdi, Cornulier and Kochloukova [5], they also pop up in the

paper by Kropholler and Martino [50], which deals with the wider class of graph-wreath

products (see Section 2.4) from a more homotopical point of view.

The results that we obtained also say something about the homological invari-

ants Σ1(Γ;Z) and Σ2(Γ;Z). First, Σ1(Γ;Z) = Σ1(Γ) for any finitely generated groups. Also,

Theorem A3 holds for Σ2(Γ;Z) by [5]. Finally, Σ2(Γ) ⊆ Σ2(Γ;Z) for any finitely presentable

group, which can be applied under the conditions of Theorem A2. We conjecture that

such theorem holds for Σ2(Γ;Z) if we assume only that Γ is of homological type FP2, but

we cannot give a proof at the moment.

We also considered some applications to twisted conjugacy. Recall that given

an automorphism ϕ of a group G, the Reidemeister number R(ϕ) is defined as the number

of orbits of the twisted conjugacy action, which is given by g · h := ghϕ(g−1), for g, h ∈ G.

Exploring the connections between Σ-theory and Reidemeister numbers, as

found out by Koban and Wong [42] and Gonçalves and Kochloukova [34], we obtain some

results about the Reidemeister numbers of automorphisms contained in some subgroups

of finite index of Aut(H ≀X G), under some relatively strong restrictions. For precise

statements, see Corollaries 2.39 and 2.41.

Theorems A1, A2 and A3 are the main results of Chapter 2 in this thesis,

and have already been published in [61]. Chapter 3 is about Lie algebras. Its motivation,

however, comes from some work on discrete groups that we summarize below.

The weak commutativity construction was first defined for groups by Sidki [75]

and goes as follows: for a group G, we define X(G) as the quotient of the free product

G ∗Gψ of two isomorphic copies of G by the normal subgroup generated by the elements

[g, gψ] for all g ∈ G. We think of this as a functor that receives the group G and returns

the group with weak commutativity X(G).

In a series of papers, many group theoretic properties were shown to be

preserved by this functor. For instance, it preserves finiteness and solvability [75] and finite
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presentability [24]. Moreover, if G is finitely generated nilpotent, polycyclic-by-finite or

solvable of type FP∞, then X(G) has the same property [37, 49, 53].

The group X(G) has a chain of normal subgroups with some nice properties,

which allows some of the proofs of the results cited above to be carried on. We write this

series as R(G) ⊆ W (G) ⊆ L(G) (or R ⊆ W ⊆ L if G is understood) and we observe the

following: W is always abelian and X(G)/W is isomorphic to a subdirect product living

inside G×G×G; the subquotient W/R is isomorphic to the Schur multiplier of G [70];

and X(G) is a split extension of L by G.

Chapter 3 is an analysis from the scratch of an analogue of this construction in

the category of Lie algebras over a field. We fix once and for all a field K with char(K) 6= 2,

and we only consider Lie algebras over K. For any Lie algebra g, let gψ be an isomorphic

copy, with isomorphism written as x 7→ xψ. We define

χ(g) = 〈g, gψ | [x, xψ] = 0 for all x ∈ g〉.

This must be understood as the quotient of the free sum of g and gψ by the ideal generated

by the relators [x, xψ] for all x ∈ g.

We show that χ(g) has a chain of ideals

R(g) ⊆ W (g) ⊆ L(g) ⊆ χ(g)

satisfying the analogous properties as the chain of normal subgroups in the group case.

We can define L(g) as the kernel of the homomorphism α : χ(g) → g such that α(x) =

α(xψ) = x for all x ∈ g. Similarly, W (g) is defined as the kernel of ρ : χ(g)→ g⊕ g⊕ g

such that

ρ(x) = (x, x, 0) and ρ(xψ) = (0, x, x)

for all x ∈ g. Finally, R(g) is defined as [g, [L(g), gψ]].

Again, we write only R, W and L if there is no risk of confusion. As in the

case of groups, it turns out that W is an abelian ideal, χ(g)/W is a subdirect sum living

inside g⊕ g⊕ g, and χ(g) is a split extension of L by g.

We denote by U(g) the universal enveloping algebra of g. Recall that g is of

homological type FPm if the trivial U(g)-module K if of type FPm. A Lie algebra is finitely

generated if and only if it is of type FP1, and it is of type FP2 if it is finitely presentable.

It is plausible that there are Lie algebras of type FP2 that are not finitely presentable,

but the problem of finding an example remains open.

In the case of groups, much is known about finiteness properties of subdirect

products. For finite presentability and related homotopical finiteness properties, see

[8, 20, 21, 22, 55] to cite a few. Some homological counterparts of the results in these

papers were treated in [51] and [45].
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For Lie algebras, the only tools available come from some work of Kochloukova

and Martínez-Pérez [46], which contains versions of the group-theoretic results from

the articles cited above. Using this, we showed that χ(g)/W is of type FP2 or finitely

presentable if and only if g has the same property. This, together with the exactness of

W ֌ χ(g) ։ χ(g)/W , could be used to deduce finiteness properties for χ(g) when W is

finite dimensional. In the same spirit of Theorem B in [49], we give a sufficient condition

for that.

Theorem B1. If g is of type FP2 and g′/g′′ is finite dimensional, then W (g) is finite

dimensional.

In [49] the authors show that the group-theoretic weak commutativity construc-

tion preserves the property of being solvable of type FP∞. The analogous result also holds

for Lie algebras, but for a much simpler reason. By [36, Thm. 1], if g is solvable of type

FP∞, then it is finite dimensional. In this case of course g′/g′′ is also finite dimensional,

and then so is W , by the theorem above. Moreover, χ(g)/W is clearly finite dimensional

and solvable, being a Lie subalgebra of g⊕ g⊕ g. Thus we have the following corollary.

Corollary B2. If g is solvable of type FP∞, then so is χ(g).

The same reasoning above can be used if we assume at first that g is finite

dimensional.

Corollary B3. If g is finite dimensional, then so is χ(g).

The condition g′/g′′ is finite dimensional is strong and does not apply, for

instance, to free non-abelian Lie algebras. The following theorem shows that we actually

do not need that restriction to study finite presentability.

Theorem B4. Let g be a Lie algebra. Then χ(g) is finitely presentable (resp. of type FP2)

if and only if g is finitely presentable (resp. of type FP2). If f is a free non-abelian Lie

algebra, then χ(f) is not of type FP3.

The proof of the analogous results for discrete groups in [24] is of geometric

nature, and it uses concepts that only make sense for groups. We had to find completely

algebraic proofs, and we implicitly used the construction of HNN-extensions for Lie

algebras, as defined by Wasserman [79].

We have also proved the analogous result on the Schur multiplier. To prove our

version, we used the description of the Schur multiplier of Lie algebras given by Ellis [32].

Theorem B5. For all g we have W (g)/R(g) ≃ H2(g;K) as vector spaces over K.
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Theorem B1 raises the question of whether W can be of infinite dimension.

From the theorem above we see that this can be the case for some even finitely generated

Lie algebras. If we assume that g is finitely presentable, which implies that H2(g;K) is

finite dimensional, we fall into the same question with respect to R(g).

We have analyzed R(g) for some specific Lie algebras. It turns out that R(g) is

trivial whenever g is abelian, in contrast with the case of groups: R(G) 6= 1 when G is any

elementary abelian 2-group of order at least 8 ([53, Prop. 4.5]). A naive explanation for

this is that those groups are 2-torsion, and here we exclude the characteristic 2 case. We

also showed that R(g) is zero if g is perfect or 2-generated.

In any of these cases (that is, when R(g) = 0) and for m ≥ 2, we have that

χ(g) is of type FPm if and only if χ(g)/W (g) is of type FPm. This is because under each

of these hypotheses g is of type FP2 (being a retract of both χ(g) and χ(g)/W (g)), thus

the Schur multiplier H2(g;K) is finite dimensional. This is especially interesting because

χ(g)/W (g) has a more concrete description as a subdirect sum living inside g⊕ g⊕ g.

In order to obtain some information about R(g) in other cases, we investigated

the structure of L(g). By definition L(g) is the kernel of the homomorphism α : χ(g)→ g

defined by

α(x) = x, α(xψ) = x

for all x ∈ g. It can be shown that L(g) is generated as a Lie subalgebra of χ(g) by the

elements x− xψ, for all x ∈ g.

We started by describing a finite generating set for it as a Lie algebra, for any

finitely generated Lie algebra g. We wrote then a presentation for L(g) in terms of these

generators. This is Theorem 3.32 and the remarks following it. We do not state it here

completely because that would require introducing a lot of notation. The set of generators

is

{x− xψ, [x, y]− [x, y]ψ}x,y,

where x and y run through a generating set for g, and all defining relations come from

some manipulation of the identity

[x− xψ, [y − yψ, z − zψ]] = [x, [y, z]]− [xψ, [yψ, zψ]], (1)

which holds for all x, y, z ∈ g.

There is no counterpart of this in the case of discrete groups, that is, no

presentation for L(G) is known in that case. This lead to slightly different results in what

follows.

Even if g is finitely presented, our presentation will be in general infinite. This

is expected: L(g) is not finitely presented if g is free of rank at least 2 (see Proposition

3.33).
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What makes this presentation interesting is that it helps us to perform compu-

tations on L(g), and since χ(g) ≃ L ¸ g, this allows us to obtain results on the structure

of χ(g). We used this to study the question of nilpotency.

Theorem B6. Suppose that g is nilpotent of class c.

1. If c is odd, then χ(g) is nilpotent of class at most c+ 1.

2. If c is even, then χ(g) is nilpotent of class at most c+ 2.

This should be compared with the article of Gupta, Rocco and Sidki [37], where

the nilpotency of the group-theoretic construction is studied. There it is shown that if a

group G is nilpotent of class c, then X(G) is nilpotent of class at most max{c+ 2, d(G)},

where d(G) is the minimal number of generators of G. Here the number of generators play

no role.

Another consequence is that we could obtain concrete descriptions of χ(nm,c),

where nm,c is the free nilpotent Lie algebra of class c and rank m, for c = 2 or 3. In

particular, we obtained

dimR(nm,2) =
1
24

(3m4 − 2m3 − 15m2 + 14m),

which grows with m and is non-zero for m ≥ 3. Interestingly enough, we have

dimR(nm,2) = dimR(nm,3)

for all m.

This should not be interpreted as a clue that dimR(nm,c) is constant on c ≥ 2.

In fact, the same principle that gives better bound for the nilpotency class of χ(g) when

g is nilpotent of odd class (which is basically the fact that (1) is an identity involving

brackets of odd length) makes it not that surprising that R(nm,3) does not have “new”

non-trivial elements with respect to R(nm,2).

The presentation we wrote for L(g) is also suitable for the application of

methods of Gröbner-Shirshov bases. These are some techniques that allow us to decide

in some cases if a given element w of a free Lie algebra f lies or not in some ideal I ⊆ f.

Equivalently, we may decide if the image of such element w is non-trivial in the quotient

f/I. See for instance [16, 17, 73].

We did not solve such problem for L(g) in the generality mentioned above, but

we argued enough to obtain the following.

Theorem B7. If g is free non-abelian of rank at least 3, then R(g) is infinite dimensional.
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We can obtain from the theorem above the first example of a finitely presentable

Lie algebra g such that W (g) is of infinite dimension. A proof that the analogue of

Theorem B7 also holds for groups has been announced by Bridson and Kochloukova (see

[24, Question 5.3]).

Recall that the cohomological dimension cd(h) of a Lie algebra h is the smallest

positive integer n such that K admits a projective resolution

P : 0→ Pn → . . .→ P1 → P0 → K → 0

over U(h). If there is no such resolution, we say that h is of infinite cohomological dimension.

An infinite dimensional abelian Lie algebra, for instance, has infinite cohomological

dimension. Thus we can obtain the following corollary of Theorem B7.

Corollary B8. If g is free non-abelian of rank at least 3, then χ(g) is of infinite cohomo-

logical dimension.

This ends the contents of Chapter 3, which also appear in [62] and [63]. In

Chapter 4 we talk again about weak commutativity, but now in the category of pro-p

groups for a fixed prime p. The results are similar to those we obtained for Lie algebras.

The methods, however, are a little bit different: the main strategy to prove the results

is to reduce somehow the problem to the same problem in the discrete case, using the

inverse limit properties or pro-p completions. The material in Chapter 4 was developed

and submitted for publication in joint work with Kochloukova [47].

The theory of homological finiteness properties of pro-p groups is in some sense

simpler when compared to the other categories that we have discussed. For instance a

pro-p group G is of type FPm if and only if Hi(G;Zp) is a finitely generated pro-p group

for all i ≤ m, which in turn is equivalent with Hi(G;Fp) being a finite p-group for all

i ≤ m [39]. In the cases of discrete groups and Lie algebras, the analogous assertion about

homologies would be only necessary in general. Furthermore, finitely presentability is

equivalent to the property FP2 for pro-p groups. We know that this is not true for discrete

groups by the work and Bestvina and Brady [9], and for Lie algebras the question is open.

Let G be a pro-p group. We define Xp(G) by the pro-p presentation

Xp(G) = 〈G,Gψ | [g, gψ] = 1 for all g ∈ G〉p,

where Gψ is an isomorphic copy of G via g 7→ gψ and 〈− | −〉p denotes presentation by

generators and relators in the category of pro-p groups.

The structural theory of Xp(G) is deduced similarly to the cases of discrete

groups and Lie algebras. Thus we defined by analogy the normal subgroups Lp(G), Wp(G)

and Rp(G) of Xp(G).
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Again Xp(G)/Wp(G) is a subdirect product of G × G × G, but the theory

for finiteness properties of subdirect products that we needed was not developed in this

case, though some results for subdirect products of free pro-p or Demushkin groups were

obtained by Kochloukova and Short [48].

First, we obtained a version of the (n − 1) − n − (n + 1) Theorem for pro-p

groups.

Theorem C1. Let p1 : G1 → Q and p2 : G2 → Q be surjective homomorphisms of pro-p

groups. Suppose that ker(p1) is of type FPn−1, both G1 and G2 are of type FPn and Q is

of type FPn+1. Then the fiber product

G = {(g1, g2) ∈ G1 ×G2 | p1(g1) = p2(g2)}

is of type FPn.

Versions of this were considered for discrete groups in [7, 20, 45, 51], but it was

not proved in the general case. Here we build on the work of Kuckuck [51], which leads to

stronger results in the category of pro-p groups.

As a corollary we deduced the following result.

Corollary C2. Let G1, . . . , Gn be pro-p groups of type FPk for some n ≥ 1. Denote

by pi1,...,ik the projection G1 × . . . × Gn ։ Gi1 × . . . × Gik for 1 ≤ i1 < . . . < ik ≤ n.

Let H ⊆ G1 × . . . × Gn be a closed subgroup such that pi1,...,ik(H) is of finite index in

Gi1 × . . .×Gik for all 1 ≤ i1 < . . . < ik ≤ n. Then H is of type FPk.

We used the corollary above, for instance, to show that Xp(G)/Wp(G) is finitely

presented if and only if G has the same property. In the following theorem we compile

some of the main results that we obtained for Xp(G). We denote by X(H) the original

weak commutativity construction for discrete groups.

Theorem C3. Let G be a pro-p group. Then

1. If G is a finite p-group, then X(G) ≃ Xp(G);

2. If P is one of the following classes of pro-p groups: solvable; finitely generated

nilpotent; finitely presented; poly-procyclic; analytic pro-p and G ∈ P, then Xp(G) ∈

P;

3. If G is a free non-procyclic finitely generated pro-p group, then Xp(G) is not of

homological type FP3.

In some of the proofs above we used two important connections between the

weak commutativity construction for pro-p groups and the discrete one. The first is that if
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a given pro-p group G is the inverse limit G = lim←−Gi, where each Gi is a finite p-group,

then Xp(G) is the inverse limit of the system {X(Gi)}i of finite p-groups. The second is

the completion: if pH is the pro-p completion of the discrete group H, then Xp( pH) is the

pro-p completion of X(H). Both these facts allow us to use the results that we already

know that hold for discrete groups in order to deduce the analogues in the pro-p case.

Theorem C4. H2(G;Zp) ≃ Wp(G)/Rp(G) for all pro-p groups G.

Here we used the notion of non-abelian tensor product of pro-p groups developed

by Moravec in [65].

In item 3 of Theorem C3, we considered the case of p-adic analytic pro-p groups.

These are the pro-p groups that admit an analytic structure of Lie group over the ring

Qp of p-adic numbers [52]. We consider here however a pure group theoretic approach

developed by Lubotzky, Mann, du Sautoy and Segal [31]. Concretely, a pro-p group is

p-adic analytic if there is a universal bound on the number of (topological) generators of

its closed subgroups.

The thesis is structured as follows: in Chapter 1 we introduce the notation

and discuss some background material. Chapters 2, 3 and 4 contains our results about

discrete groups, Lie algebras and pro-p groups, respectively. These three chapters can be

read independently, though Chapter 4 makes reference from time to time to Chapter 3 for

motivation or comparison.
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1 Preliminaries

In this chapter we review some of the theory that we will be using in the thesis.

First, we recall some facts about modules of type FPm over any associative unitary ring,

and then we specialize it to discrete groups, Lie algebras and pro-p groups in separate

sections. We also introduce the theory of Gröbner-Shirshov bases of Lie algebras, which

we apply in Section 3.9. Most of the content here is based on [10] and [80].

1.1 Generalities

Let R be an associative ring with unity. Let A be a (left or right) R-module.

For an integer m ≥ 0, we say that A is of homological type FPm if there is a free resolution

P : . . .→ Pn → Pn−1 → . . .→ P1 → P0 → A→ 0

with Pj finitely generated for all 0 ≤ j ≤ m.

It is clear that the properties FP0 and FP1 are equivalent to finite generation

and finite presentability of modules, respectively. We think of the type FPm for m ≥ 2 as

successive generalizations of these well known finiteness properties. We say that A is of

type FP∞ if it is of type FPm for all m ≥ 0.

Suppose for instance that R is a (left) noetherian ring and let A be a finitely

generated (left) R-module. Then there is an epimorphism d0 : F0 → A, where F0 is a free

R-module of finite rank. By noetherianity the kernel ker(d0) is finitely generated as an

R-module, so we can again find an epimorphism d̃1 : F1 → ker(d0), with F1 free of finite

rank. By composing d̃1 with the inclusion inc : ker(d0)→ F0 we obtain d1 : F1 → F0, and

the following sequence is exact:

F1 → F0 → A→ 0.

We can continue with this reasoning: ker(d1) is finitely generated, so we can find an

epimorphism d̃2 : F2 → ker(d1) with F2 free of finite rank and so on. This procedure

results in a free resolution for A as an R-module with finitely generated free modules in

each step, so A is of type FP∞.

The FPm properties can be characterized in terms of the derived functors Tor

and Ext and how they relate with direct products and direct limits of R-modules, as

follows.

Theorem 1.1. [10, Theorem 1.3] Let B be a left R-module and let m ≥ 1 be a positive

integer. The following assertions are equivalent:
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1. B is of type FPm;

2. For any direct system {Ai}i∈I of left R-modules over the directed set I with lim−→Ai = 0,

one has lim−→ExtkR(B,Ai) = 0 for all k ≤ m;

3. B is finitely presented and for any direct product
∏

λ

R of copies of R, we have

TorRk (
∏

λ

R,B) = 0 for all 1 ≤ k < m.

With this in hand, one may prove some useful criteria that make these finiteness

properties more treatable.

Lemma 1.2. [10, Prop. 1.4] Let A֌ B ։ C be an exact sequence of R-modules. Then:

1. If A and C are of type FPm, then so is B;

2. If A is of type FPm and B is of type FPm+1, then C is of type FPm+1;

3. If B is of type FPm and C is of type FPm+1, then A is of type FPm.

1.2 Discrete groups

For a discrete group G, we denote by ZG its group ring. By definition this is

the free abelian group with basis G, and the multiplication is induced by the operation of

G:

(
∑

g∈G

agg)(
∑

g∈G

bgg) =
∑

g,h∈G

agbhgh,

where ag, bg ∈ Z for all g ∈ G. The augmentation map ǫ : ZG → Z is the ring homo-

morphism defined by ǫ(g) = 1 for all g ∈ G. Its kernel, denoted by Aug(ZG), is the

augmentation ideal of ZG.

We say that G is of type FPm if the trivial ZG-module Z is of type FPm. It is

clear that any group is of type FP0. For m = 1 and m = 2 we have the following.

Proposition 1.3. For any group G we have:

1. G is type FP1 if and only if it is finitely generated;

2. If G is finitely presentable, then it is of type FP2.

Proof. See [10], Propositions 2.1 and 2.2.

The question of whether all groups of type FP2 were finitely presentable

remained open for a long time, but it was answered in the negative by Bestvina and Brady

[9].
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Some other important facts about the property FPm for groups are collected

below.

Proposition 1.4. Let G be any group and H ⊆ G a subgroup.

1. If H is of finite index in G, then G is of type FPm if and only if H is of type FPm;

2. If H is a retract of G and G is of type FPm, then H is of type FPm too;

3. If H is normal in G and H is of type FP∞, then G is of type FPm if and only if

G/H is of type FPm.

Proof. See [10], Section 2 of Chapter I.

Example 1.5. Many well known groups are of type FP∞, that is, of type FPm for all m.

This includes all finite groups, all right-angled Artin groups (including free groups of finite

rank), polycyclic groups and Thompson’s groups F , T and V .

Example 1.6. We can distinguish the sequence {FPm}m of finiteness properties of groups

by looking at subgroups of direct products of free groups. Concretely, if F is free of finite

rank and G = F × · · · × F = Fm, then the subgroup S ⊆ G containing exactly the tuples

(g1, . . . , gm) such that g1 · · · gm ∈ [F, F ] is of type FPm−1, but it is not of type FPm. This

can be proved, for instance, with methods of Σ-theory.

The example above illustrates that the property FPm is not in general inherited

by subgroups. The study of this situation is mostly done via Σ-invariants, which we treat

in Chapter 2.

1.2.1 Wreath products

Recall that the (permutational restricted) wreath product H ≀X G is the semi-

direct product

Γ = H ≀X G = (⊕x∈XHx) ¸ G,

where each Hx is a copy of H and G acts by permuting the copies of H with respect some

fixed G-action on X. To avoid trivialities, we assume that X 6= ∅ and H 6= 1.

A famous case is when H = C2 is the cyclic group of order two and G = Z,

which acts on itself by left multiplication. The wreath product C2 ≀Z Z is known as the

Lamplighter group. More generally, if X = G and G acts on X be left multiplication, we

say that H ≀G G =: H ≀G is a regular wreath product.

It was shown by G. Baumslag [6] that regular wreath products are rarely finitely

presentable. Namely, he showed that if this is the case, then the base group H is trivial or

the top group G is finite.
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In the more general case of permutational wreath products, Cornulier showed

in [26] that the situation is more complicated. Recall that given an action of a group G on

a set X, the diagonal action of G on X2 is defined by g · (x, y) = (g · x, g · y).

Theorem 1.7. [26] Let Γ = H ≀X G be a wreath product. Then:

1. Γ is finitely generated if and only if G and H are finitely generated and G acts with

finitely many orbits on X;

2. Γ is finitely presentable if and only if G and H are finitely presentable, G acts

(diagonally) with finitely many orbits on X2 and the stabilizers stabG(x) are finitely

generated for all x ∈ X.

It will be useful to see how a finite presentation for Γ = H ≀X G (when possible)

was obtained by Cornulier. By definition Γ is generated by one copy of Hx of H for each

x ∈ X, together with G, and has relations of the following types:

[Hx, Hy] = 1

if x 6= y and
ghx = hg·x

for all g ∈ G and h ∈ H, where hx denotes the image of the element h ∈ H in Hx. Of

course we must also add the relations of G and Hx, for all x.

Now suppose that X is the disjoint union of the orbits of G · xi, for 1 ≤ i ≤ n.

By writing each Hx in terms of some Hxi , we obtain

Γ = 〈Hx1
, . . . , Hxn , G|[

gHxi , Hxj ] = 1, [stabG(xi), Hxi ] = 1 for all 1 ≤ i, j ≤ n, g ∈ Ji,j〉,

where Ji,j ⊂ G is a set of representatives for the non-trivial double cosets of the pair

(Hxi , Hxj) in G. It can be shown that all Ji,j are finite exactly when G acts with finitely

many orbits on X2. By choosing finite presentations for G and H and finite generating

sets for stabG(xi) for all i, we can finally write down a presentation of Γ.

A version of Theorem 1.7 for the FPm properties was obtained by Bartholdi,

Cornulier and Kochloukova. Recall that if G acts on X, then the diagonal action of G on

Xn is defined by g · (x1, . . . , xn) = (g · x1, . . . , g · xn).

Theorem 1.8. [5] Let Γ = H ≀X G be a wreath product. Suppose that H/[H,H] is infinite.

Then Γ is of type FPm if and only if the following conditions hold:

1. G and H are of type FPm;

2. G acts (diagonally) with finitely many orbits on Xm;
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3. All the stabilizers of the action G on Xk are of type FPm−k for all 1 ≤ k ≤ m.

Remark 1.9. For m ≤ 2 the hypothesis on H/[H,H] is not necessary by Theorem 1.7

and [5, Lemma 5.1].

1.3 Lie algebras

Let K be a field and let g be a Lie algebra over K. For any subset S ⊂ g, we

denote by 〈S〉 and by 〈〈S〉〉 the subalgebra and the ideal, respectively, of g generated by S.

We denote by U(g) the universal enveloping algebra of g. This is the quotient

of the tensor algebra T (g) defined on the vector space g by the ideal generated by the

elements x⊗ y − y ⊗ x− [x, y], for all x, y ∈ g. The Poincaré-Birkhoff-Witt Theorem tells

us that the canonical map i : g→ U(g) is injective.

Let g be a free Lie algebra of rank n. Denote by γk(g) the k-th term of the

lower central series, that is, γ1(g) = g and γk+1(g) = [g, γk(g)] for all k. Witt’s dimension

formula ([18], Théorème 3 of II.3.3) tells us the dimension of the successive quotients of

this series:

dim(γk(g)/γk+1(g)) =
1
k

(
∑

d|k

µ(d)nk/d), (1.1)

where µ is the Möbius function. Recall that µ : N→ N is defined by

µ(n) =























1, if n is square-free and has an even number prime divisors

−1, if n is square-free and has an odd number prime divisors

0, otherwise.

Notice that we can use formula (1.1) to compute the dimension of the free nilpotent Lie

algebra of class c on n generators.

The field K has a structure of U(g)-module defined by x · λ = 0 for all x ∈ g

and λ ∈ K (here x ∈ g is identified with its image in U(g)). In this case we say that K

is the trivial U(g)-module. The module structure of K can also be seen as the one that

comes from the K-algebra homomorphism ǫ : U(g)→ K defined by ǫ(x) = 0 for all x ∈ g.

We call this homomorphism the augmentation map, and its kernel ker(ǫ) = Aug(U(g)) is

the augmentation ideal of U(g).

The homology of g is defined in terms of its universal enveloping algebra.

Namely, for A a U(g)-module, we put

Hi(g;A) := Tor
U(g)
i (K,A)

for any i ≥ 0. In low homological degree we have:

H0(g;A) = Ag := A/〈x · a | x ∈ g, a ∈ A〉
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and

H1(g;K) = gab := g/[g, g].

Example 1.10. If g = Kn is an abelian Lie algebra of dimension n, then U(g) is a

polynomial K-algebra on n variables. In particular, Hi(g;K) ≃
i

∧

g ≃ Kpniq.

For any extension h ֌ g ։ q of Lie algebras and a U(g)-module A, one can

consider the Lyndon-Hochschild-Serre (LHS) spectral sequence, which has the following

term on its second page:

E2
p,q = Hp(q;Hq(h;A))⇒ Hp+q(g;A).

The arrow above indicates the convergence. The differential dr of the r-th page has bidegree

(−r, r + 1). Furthermore, the associated 5-term exact sequence is written as

H2(g;A)→ H2(q;H0(h;A))→ H0(q;H1(h;A))→ H1(g;A)→ H1(q;H0(h;A))→ 0.

This can be applied for instance to an extension r→ f→ g with f free, which gives the

familiar Hopf formula:

Proposition 1.11. Let g = f/r, where f is a free Lie algebra. Then

H2(g;K) ≃
[f, f] ∩ r

[f, r]
.

Another particular case that we will use often is when A = K is the trivial

U(g)-module and h is a central ideal of g. Then the sequence is:

H2(g;K)→ H2(q;K)→ h→ gab → qab → 0,

where q = g/h.

We say that a Lie algebra g is of type FPm if K, with the trivial module

structure, is of type FPm over U(g). If g is of type FPm for all m, we say that g is of type

FP∞. It is clear that all Lie algebras are of type FP0.

Example 1.12. If g is a free Lie algebra with free basis {x1, . . . , xn}, then Aug(U(g)) is

a free U(g)-module with basis {x1, . . . , xn}. In particular, K admits the free resolution

0→ ⊕nj=1U(g)→ U(g)→ K → 0,

so g is of type FP∞.

Example 1.13. If g is finite dimensional, then U(g) is both left and right noetherian (see

[38], Theorem 6 in Section 3, Chapter V). The trivial U(g)-module K is finitely generated,

so it admits a free resolution that is finitely generated in each step, that is, g is of type

FP∞.
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The same argument used in the case of groups gives the following proposition.

Proposition 1.14. Let g be a Lie algebra over K. Then

1. g is of type FP1 if and only if it is finitely generated;

2. If g is finitely presentable, then it is of type FP2.

We note that, unlike in the case of groups, there are no known examples of Lie

algebras of type FP2 that are not finitely presentable. These two finiteness properties can

however be related by the following result.

Proposition 1.15. A Lie algebra g is of type FP2 if and only if it is the quotient of a

finitely presented Lie algebra h by an ideal I that is a perfect Lie algebra, that is, I = [I, I].

Proof. First we note that a finitely generated Lie algebra g is of type FP2 if and only if its

relation module is finitely generated, that is, if g = F/R with F free, then Rab = R/[R,R]

is finitely generated as a U(F )-module via the adjoint action. This can be proved exactly

as in the group case [10, Prop. 2.2].

Suppose that g is of type FP2. Write g = F/R, where F is finitely generated

free and Rab is finitely generated over U(F ). Choose a finite set S = {s1, . . . , sn} ⊂ R

whose image in Rab is a generating set. Let N be the ideal of F generated by S. Then the

Lie algebra h = F/N is finitely presented and the natural map π : h→ g has kernel R/N .

The choice of S implies that any element of R is congruent modulo N to some element of

[R,R], that is, R/N is perfect.

Conversely, if g = F/R is the quotient of the finitely presented Lie algebra

h = F/N and the kernel R/N is perfect, then the image in Rab of any finite generating

set of N is a generating set for Rab over U(F ). Thus g is of type FP2.

Recall that h is a split quotient of a Lie algebra g if there are homomorphisms

π : g→ h and σ : h→ g such that π ◦ σ = idh.

Proposition 1.16. If g is finitely presentable (resp. of type FPm), then any split quotient

of g is also finitely presentable (resp. of type FPm).

Proof. This is well-known for finite presentability. For the FPm properties we consider

split homomorphisms π : g→ h and σ : h→ g (with π ◦ σ = id). If A is any U(g)-module,

then by functoriality we obtain homomorphisms

π∗ : Hk(g;A)→ Hk(h;A) and σ∗ : Hk(h;A)→ Hk(g;A)

with π∗ ◦ σ∗ = (π ◦ σ)∗ = 0 for any k. By taking A to be any product of copies of U(g), we

see that if the condition 3 of Theorem 1.1 holds for g, then it also holds for h.
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The following technical result from the work of Kochloukova and Martínez-Pérez

[46] concerns the homology of free Lie algebras. We will need it in Section 3.3.3.

Lemma 1.17. [46, Lemma 3.1] Let f be a free Lie algebra and let A be a U(f)-module.

Suppose that H1(f;A) is finite dimensional over K. Suppose further that c ·A is also finite

dimensional over K for some c ∈ U(f) r {0}. Then A is itself finite dimensional over K.

The article we mentioned above is actually devoted to subdirect sums of Lie

algebras. Recall that a subalgebra h ⊆ g1 ⊕ · · · ⊕ gn of a direct sum is a subdirect sum if

pi(h) = gi for all i, where pi : g1 ⊕ · · · ⊕ gn ։ gi is the canonical projection. We can also

consider the image of h by the projections pi,j : g1 ⊕ · · · ⊕ gn ։ gi ⊕ gj for i 6= j. These

homomorphisms play a role in the following criterion for finiteness properties of subdirect

sums.

Theorem 1.18. [46, Cor. D1, Cor. F1] Let h ⊆ g1 ⊕ · · · ⊕ gn be a subdirect sum with

h ∩ gi 6= 0 for all i. Suppose that gi is finitely presentable (resp. of type FP2) for all i.

Suppose further that pi,j(h) = gi ⊕ gj for all i 6= j. Then h is finitely presentable (resp. of

type FP2).

1.3.1 Gröbner-Shirshov bases

We recall here briefly the theory of Gröbner-Shirshov bases, following the

exposition in [17]. The original arguments are due to Shirshov [73], and the modern

approach was initiated by Bokut [16].

Let g be the free Lie algebra with free basis X = {x1, . . . , xn}. Consider in the

set of associative words with letters in X the lexicographic order, with x1 > · · · > xn and

u > v if u is a initial subword of v. One of such words w is regular (or a Lyndon-Shirshov

associative word) if w = uv implies uv >lex vu, for non-trivial subwords u, v.

Example 1.19. If X = {x1, x2, x3}, then w = x1x3x2 is regular, but u = x1x3x1x2 is not,

since u <lex x1x2x1x3.

A non-associative word [w] is an associative word w endowed with some

bracketing. A non-associative word [w] is regular (or a Lyndon-Shirshov non-associative

word) if the associative word w obtained by removing all brackets is associative regular

and:

1. If [w] = [u][v], then both [u] and [v] are non-associative regular, and

2. If [w] = [[u1][u2]][v], then u2 ≤lex v.
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For any regular associative word w there is a unique bracketing (w) that is non-associative

regular, and the set of all non-associative regular words is a basis of the free Lie algebra

[72]. For short we will also call these words monomials.

Remark 1.20. The unique bracketing (w) for a regular word w can be obtained inductively

as follows: if v is the longest proper regular suffix of w, with w = uv, then (w) = (u)(v).

Example 1.21. If w = x1x3x2, then x2 is the longest proper regular suffix, thus (w) =

(x1x3)(x2). In the usual bracketing notation, this is (w) = [[x1, x3], x2].

Example 1.22. If w = x1x2x1x3, the word x1x3 is the longest proper regular suffix. Then

(w) = (x1x2)(x1x3), or simply (w) = [[x1, x2], [x1, x3]].

Let d : X → N = {1, 2, . . .} be any function. For any regular associative word

w = xi1 · · ·xim , we put:

d(w) = d(xi1 · · ·xim) := d(xi1) + . . .+ d(xim).

We say that d(w) is the degree of w. We consider the weight lexicographic ordering, with

respect to d, on the set of associative regular words: w1 � w2 if d(w1) < d(w2), or if

d(w1) = d(w2) but w1 ≤lex w2. The degree function and the associated ordering can be

considered also for non-associative regular words via the bijection given by the unique

bracketing.

Any f ∈ g r {0} may be written as a linear combination of regular non-

associative words. We denote by f the highest (with respect to the weight lexicographic

ordering) corresponding regular associative word appearing with non-zero coefficient. We

say that f is the associative carrier of f . If the coefficient of f in f is 1 ∈ K, we say that

f is monic.

Lemma 1.23. [17, Lemma 2.11.15] Let w be a regular associative word and suppose that

u is subword of w that is also regular. Let [u] be an arbitrary bracketing of u. Then there

is a bracketing [w] of w that extends the bracketing [u] and such that [w] = w.

Example 1.24. Let w = x1x2x3x2 and u = x2x3. The only bracketing we can consider

for u is [u] = (u) = [x2, x3]. Then the bracketing [[x1, [x2, x3]], x2] of w satisfies what

is required in the lemma. The bracketing [w]′ = [x1, [[x2, x3], x2]] also extends [u], but

[w]′ = x1x2x2x3 6= w.

Suppose that f, g ∈ g are monic and satisfy f = ab and g = bc for some

associative words a, b, c. Let u = abc. Notice that u is regular. By Lemma 1.23, we

can consider two bracketings [u]1 and [u]2 for the word u such that [u]1 extends the

regular bracketing (f) of f and [u]2 extends the regular bracketing (g) of g, and such that

[u]1 = [u]2 = u.
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Let u1 and u2 be the elements of g obtained from [u]1 and [u]2 by substituting

(f) and (g) with f and g, respectively. The first-order composition (f, g)Iu of f and g with

respect to u is defined as

(f, g)Iu = u1 − u2.

Remark 1.25. The “substitution” above can be formalized by writing [u]1, say, as the

image of some right-normed bracket δ = [y1, . . . , ym] of a free Lie algebra h with free basis

{y1, . . . , ym} by some homomorphism

ϕ : h→ g

with ϕ(ym) = (f). Then u1 is ϕ′(δ), where ϕ′ : h → g is defined by ϕ′(ym) = f and

ϕ′(yi) = ϕ(yi) for i < m.

Remark 1.26. The composition depends on the choice of the bracketings of u. This will

not be a problem: we will only need to use any composition for a given pair of elements

f, g ∈ g such that f and g share a subword as above.

Example 1.27. Let f = [x1, x2] + x4 and g = [[x2, x3], x3] + 2[x1, x2]. Then f = x1x2 and

g = x2x3x3. The composition of f and g is defined with respect to

u = x1x2x3x3 = fx3x3 = x1g.

We can take [u]1 = [[[x1, x2], x3], x3] and [u]2 = [x1, [[x2, x3], x3]]. Thus

u1 = [[f, x3], x3] = [x1, [[x2, x3], x3]] + [[[x1, x3], x3], x2] + 2[[x1, x3], [x2, x3]] + [[x4, x3], x3]

and

u2 = [x1, g] = [x1, [[x2, x3], x3]] + 2[x1, [x1, x2]].

Finally, subtracting u2 from u1 we get:

(f, g)Iu = [[[x1, x3], x3], x2] + 2[[x1, x3], [x2, x3]] + [x3, [x3, x4]]− 2[x1, [x1, x2]].

Similarly, suppose that g is a subword of f for some monic elements f, g ∈ g.

Again by Lemma 1.23 we can find a bracketing [u] of u = f that extends the regular

bracketing (g) of g, and such that [u] = u. By substituting (g) with g in [u] we obtain an

element f∗ of g. The second-order composition (f, g)IIu of f and g is

(f, g)IIu = f − f∗.

A subset S ⊂ g is reduced if all its elements are monic and if no second-order

composition can be formed between two of its elements (that is, for any s1, s2 ∈ S, s1 is

not a subword of s2).
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Finally, a Gröbner-Shirshov basis of an ideal I ⊂ g is a reduced set S ⊂ g such

that I = 〈〈S〉〉 and such that if f, g ∈ S define a first-order composition with respect to

some word u, then

(f, g)Iu =
m

∑

i=1

fi,

where each fi lies in 〈〈si〉〉 for some si ∈ S and f i ≺ u for 1 ≤ i ≤ m.

Remark 1.28. As we remarked before, for each f , g and u, we only need to write one

choice of composition (f, g)Iu as a sum as above.

Theorem 1.29. [17, Lemma 3.2.7] Let S be a Gröbner-Shirshov basis of the ideal I ⊂ g

and let f ∈ g. If f ∈ I, then f contains s as a subword for some s ∈ S.

Remark 1.30. In [17] (and in Shirshov’s article [73]) it is assumed that the monomial

ordering is the usual deg-lex, that is, d(xi) = 1 for all i. The proofs, however, carry to our

setting because the weight lexicographic ordering is admissible, i.e. u � v implies aub � avb

for all a, b, and has the descending chain condition.

If S ⊂ g is a finite homogeneous set (in the sense of the degree function d

defined above), then we can decide if a certain fixed element f ∈ g belongs to the ideal

generated by S as follows. First, multiplying by elements of K we can assume that S is

monic. Then we reduce S, that is, if s1, s2 ∈ S and s1 is a subword of s2, then we can find

some s0 ∈ 〈〈s1〉〉 with s0 = s2 and then substitute s2 with s2 − s0 in S. Now, s2 − s0 is

smaller than s2 in the weight lexicographic ordering, so by repeating this process finitely

many times, we reach a reduced set S ′ that generates the same ideal as S.

Now we complete S ′ in the following sense: we take all compositions between

elements of S ′, add them to the generating set, and then reduce again as in the previous

paragraph. We repeat this process until we reach a reduced set S(n) such that all composi-

tions between elements of S(n) are either an element of S(n), or of degree greater than the

degree of f . It is essencial here that S is homogeneous, so that compositions between two

elements f, g ∈ S are either trivial, or have degree strictly greater than the degrees of f

and g.

If f does not contain s as a subword for any s ∈ S(n), then f /∈ 〈〈S(n)〉〉.

Otherwise we can find some f2 ∈ 〈〈S
(n)〉〉 such that f 2 = f , and the problem is reduced to

deciding if f − f2 (which is smaller with respect to the weight lexicographic ordering) lies

in this ideal.

1.4 Profinite groups

Most of this section can be found in [69].



Chapter 1. Preliminaries 33

A profinite group is a topological group G given by the inverse limit of a system

of finite groups {Gi}i, each of those equipped with the discrete topology. The topology

of G is the subspace topology inherited by G in its realization as a subgroup of
∏

i

Gi. If

each of the Gi is a finite p-group for a fixed prime p, we say that G is a pro-p group.

A homomorphism of profinite (pro-p) groups is a group homomorphism that is

also continuous. We will mostly talk about closed subgroups of a profinite group, but we

will use the notation H to denote the closure of a subset (subgroup) of a profinite group.

Any finite group G is profinite: it is the inverse limit of the constant system

{Gi}i where Gi = G for all i. A less trivial example is the group of p-adic integers:

Zp = lim←−
n

Z/pnZ,

where the homomorphisms Z/pnZ→ Z/pmZ are the natural maps for n > m. This is a

pro-p group.

Completions give another way of building profinite groups. The pro-p completion
pG of a discrete group G is defined as

pG = lim←−G/U

where U runs through all normal subgroups U ⊳ G such that G/U is a finite p-group. It

has the following universal property: there is a group homomorphism i : G→ pG such that

i(G) is dense in pG and for every homomorphism ϕ : G→ H, where H is a finite p-group,

there is a continuous homomorphism of pro-p groups pϕ : pG→ H such that pϕ ◦ i = ϕ.

Let us define free pro-p groups. Suppose that X is a profinite space, that is,

X is the inverse limit of an inverse system {Xi}i of finite sets endowed with the discrete

topology. Of course, X has the topology of a subspace of the cartesian product
∏

Xi.

Equivalently, X is a topological space that is Hausdorff, compact and totally disconnected

(see [69, Thm. 1.1.12])

Let F be a pro-p group and suppose that i : X → F is a continuous map such

that F = 〈i(X)〉. We say that the pair (F, i) is a free pro-p group on X if the following

universal property holds:

(⋆) For any pro-p group G and ϕ : X → G a continuous map, there exists a

unique continuous homomorphism φ : F → G such that φ ◦ i = ϕ.

In particular, we can take X to be any finite set. In this case the free pro-p

group with basis X can be realized as the pro-p completion {F (X), where F (X) is the free

discrete group with free basis X. In general, it can be shown that for any profinite space

X there is a (unique) free pro-p group on X ([69, Prop. 3.3.2]).

Let ϕ : F → G be a surjective homomorphism of pro-p groups, where F is a

free pro-p group on the profinite set X. Let R ⊂ F be a set of topological generators of
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ker(ϕ) as a normal subgroup of F . In this case, we write G = 〈X|R〉p, and we say that

this is a presentation of G in the category of pro-p groups. The usual notions of finite

generation and finite presentability now make sense also for pro-p groups.

A profinite ring is a topological ring given by the inverse limit of finite rings

equipped with the discrete topology. For instance, using the ring structure of Z/pnZ we

see that Zp is actually a profinite ring.

Fix R a profinite ring. A left profinite R-module is an abelian profinite group

A together with a continuous map ϕ : R× A→ A satisfying the usual properties of the

action of a ring on an abelian group. As usual, we will denote ϕ(r, a) by r · a or simply ra.

The definition of a right profinite R-module is analogous.

The familiar notions of free and projective modules make sense here too. In

particular, for any profinite space X there exists a unique free profinite module R[[X]]

with free basis X [69, Prop. 5.2.2].

In order to talk about homological properties of pro-p groups, we need to define

the appropriate ring over which we can apply the concepts of homological algebra. This

is the completed group algebra, which is defined as follows. Let G = lim←−G/U be a pro-p

group, where each U is a normal subgroup of G and G/U is a finite p-group. The completed

group algebra of G is defined as

Zp[[G]] = lim←−Zp[G/U ],

where the homomorphisms Zp[G/U1] → Zp[G/U2] are induced by the corresponding

homomorphisms G/U1 → G/U2.

If A is right pro-p Zp[[G]]-module and B is a left pro-p Zp[[G]]-module, the

complete tensor product A p⊗Zp[[G]]B is defined as

Ap⊗Zp[[G]]B = lim←−Ai ⊗Zp[[G]] Bj

where {Ai} and {Bj} are the systems of (right or left) finite Zp[[G]]-modules such that

A = lim←−Ai and B = lim←−Bj.

We now have a homology theory for pro-p groups. By definition for a left pro-p

Zp[[G]]-module A the (continuous) homology group Hn(G;A) is the n-th homology of the

complex P p⊗Zp[[G]]A, where P is a projective resolution of Zp as a Zp[[G]]-module. As usual,

we have H1(G;Zp) ≃ G/[G,G].

As in the other cases, the tool we can use to study homology of groups given by

extensions is a spectral sequence. For G be pro-p group, N ⊆ G a closed normal subgroup

and A a pro-p Zp[[G]]-module, the associated Lyndon-Hochschild-Serre (LHS) spectral

sequence is

E2
i,j = Hi(G/N ;Hj(N ;A))⇒ Hi+j(G;A).
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The facts about convergence, bidegree and 5-term exact sequence in the Lie algebra case

hold here as well.

Remark 1.31. The cohomology theory that makes sense here has coefficients in discrete

modules (rather than profinite). We will not describe it here, since we only make use of

homology. Details may be found in [69, Chapter 6].

A pro-p group G has homological type FPm if the trivial Zp[[G]]-module Zp has

a free resolution with all free modules finitely generated up to degree m. Of course we

assume that the differentials between the free modules in such resolution are continuous

maps. The theory of pro-p groups of type FPm is simpler than the cases of discrete groups

and Lie algebras.

Lemma 1.32. [39] Let G be a pro-p group. The following conditions are equivalent:

1. G is of type FPm;

2. Hi(G;Fp) is finite for all i ≤ m;

3. Hi(G;Zp) is finitely generated as a pro-p group for all i ≤ m.

In particular, G is finitely presentable if and only it is of type FP2.

Other resuls of niceness of the FPm properties hold similarly to the other

categories that we considered.

Lemma 1.33. Let G be a pro-p group and let m be a positive integer. Then:

1. If G is of type FPm and H ≤ G is a retract, then H is of type FPm;

2. If H ≤ G is a closed subgroup of finite index, then G is of type FPm if and only if

H is of type FPm.

Proof. Item 1 can be proved exactly as in Lemma 1.16 for Lie algebras. Suppose that

H ≤ G is of finite index. By Shapiro’s Lemma ([69, Thm. 6.10.8]), there is a a natural

isomorphism

Hn(G;Fp) ≃ Hn(H;Zp[[G]]p⊗Zp[[H]]Fp) ≃ Hn(H;Fp[G/H]),

where G/H is the set of cosets. Notice that Fp[G/H] is a finite abelian p-group. In

particular, Hn(H;Fp[G/H]) is finite if and only if Hn(H;Fp) is finite, thus G is of type

FPm if and only if H is of type FPm by Lemma 1.32.

Example 1.34. Finitely generated free and abelian pro-p group are of type FPm for all

m.
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A nice class of pro-p groups with good homological finiteness properties are the

analytic groups, defined as follows. For a pro-p group G, we denote by d(G) the cardinality

of a minimal (topological) generating set of G. The rank of G is defined as

rk(G) = sup{d(H) | H is a closed subgroup of G}.

A pro-p group is p-adic analytic if rk(G) < ∞. Equivalently, G is p-adic analytic if it

admits a strucure of analytic manifold over Qp (the field of p-adic numbers) where the

group product and inversion are analytic maps [54].

If G is p-adic analytic, then the completed group algebra Zp[[G]] is noetherian

[52]. In particular, G is of type FPm for all m.
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2 Σ-invariants of wreath products

In this chapter we deal with discrete groups. More specifically, we describe our

work on the Σ-invariants of permutational wreath products of groups. We develop the

theory, prove Theorems A1, A2 and A3, and discuss their consequences. Most of what is

found here was published in [61].

2.1 Background on the Σ-invariants

Let us start by recalling the definition of the invariant Σ1. For a finitely

generated group Γ and a finite generating set X ⊂ Γ, we consider the Cayley graph

Cay(Γ;X ). Its vertex set is Γ and two vertices γ1 and γ2 are connected by an edge if and

only if there is some x ∈ X±1 such that γ2 = γ1x. With this definition, Cay(Γ;X ) admits

a left action by Γ which is induced by left multiplication in the group. An important fact

here is that this graph is always connected: any γ ∈ Γ can be written as a word on the

elements of X , and this defines a label for a path connecting 1 and γ in Cay(Γ;X ).

Recall that the character sphere S(Γ) is the set of classes non-zero homo-

morphisms χ : Γ → R modulo the equivalence relation χ1 ∼ χ2 if χ1 = rχ2 for some

r ∈ R>0.

For a fixed non-zero homomorphism (character) χ : Γ→ R we can define the

submonoid

Γχ = {γ ∈ Γ | χ(γ) ≥ 0}.

Notice that Γχ1
= Γχ2

if and only if χ1 and χ2 represent the same class in the charac-

ter sphere S(Γ). The full subgraph of Cay(Γ;X ) spanned by Γχ, which we denote by

Cay(Γ;X )χ, may not be connected. We put:

Σ1(Γ) = {[χ] ∈ S(Γ) | Cay(Γ;X )χ is connected}.

It can be shown that this definition does not depend on the (finite) generating set X . This

invariant is known as the Bieri-Neumann-Strebel invariant (or simply BNS-invariant) of

G, in reference to the authors who studied it first [13].

The invariant Σ2 is defined similarly. If Γ is finitely presented and 〈X |R〉 is

a finite presentation, we consider the Cayley complex Cay(Γ; 〈X |R〉). This complex is

obtained from the Cayley graph by gluing 2-dimension cells with boundary determined

by the loops defined by the relators r ∈ R, for each base point in Γ. The resulting

complex is always 1-connected. Again for χ : Γ→ R a non-zero homomorphism, we define

Cay(Γ; 〈X |R〉)χ to be the full subcomplex spanned by Γχ. The 1-connectedness of this
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complex depends on the choice of the presentation. We define Σ2(Γ) as the subset of S(Γ)

containing exactly all the classes [χ] of characters such that Cay(Γ; 〈X |R〉)χ is 1-connected

for some finite presentation 〈X |R〉 of Γ. More details on these definitions may be found in

[60].

The following theorem is the main reason why we study these invariants.

Theorem 2.1 ([13], [67]). Suppose that Γ is finitely generated and let N ⊆ Γ be a subgroup

such that [Γ,Γ] ⊆ N . Then N is finitely generated if and only if

Σ1(Γ) ⊇ {[χ] ∈ S(Γ) | χ|N= 0}.

Similarly, if Γ is further finitely presented, then N is finitely presented if and only if

Σ2(Γ) ⊇ {[χ] ∈ S(Γ) | χ|N= 0}.

Remark 2.2. Notice that any subgroup N as above is automatically normal in Γ and

Γ/N is a finitely generated abelian group. The proof of the theorem involves reducing

somehow to the case where Γ/N ≃ Zn ⊆ Rn and then studying the connectedness (resp.

1-connectedness) of pre-images in Cayley graphs (resp. Cayley complexes) of open balls in

Rn via the maps Γ→ Rn.

The invariants that we have defined so far will be referred to as homotopical

invariants, in contrast with the homological ones that we will define now. For a finitely

generated group Γ and χ : Γ→ R a non-zero homomorphism, consider the monoid ring

ZΓχ. This is by definition the subring of ZΓ containing exactly all elements
∑

aγγ ∈ ZΓ

such that aγ 6= 0 only if γ ∈ Γχ. We put

Σm(Γ;Z) = {[χ] ∈ S(Γ) | Z is of type FPm over ZΓχ}.

As observed by Bieri and Renz in [14], if Σm(Γ;Z) 6= ∅, then Γ is of type FPm. It can be

verified that invariants Σ1(Γ) and Σ1(Γ;Z) coincide [14, Prop. 6.4].

Remark 2.3. Proposition 6.4 in [14] actually establishes that Σ1(Γ) (as defined in [13])

and Σ1(Γ;Z) are antipodal sets in S(Γ), but they do coincide if the actions of Γ (on Cayley

graphs and on modules) are chosen consistently on the left (or on the right).

It is clear by the definition that we have a chain

S(G) ⊃ Σ1(Γ) = Σ1(Γ;Z) ⊃ Σ2(Γ;Z) ⊃ Σ3(Γ;Z) ⊃ . . .

Moreover, Σ2(Γ) ⊆ Σ2(Γ;Z) whenever Γ is finitely presented. Details may be found in [14]

and [67]. Of course, the analogous version of Theorem 2.1 holds.
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Theorem 2.4 ([14]). Suppose that Γ is of type FPm and let N ⊆ Γ be a subgroup such

that [Γ,Γ] ⊆ N . Then N is of type FPm if and only if

Σm(Γ;Z) ⊇ {[χ] ∈ S(Γ) | χ|N= 0}.

Example 2.5. It can be deduced from Theorems 2.1 and 2.4 that Σ1(Γ) = Σ2(Γ) =

Σm(Γ;Z) = S(Γ) for all m if Γ is a finitely generated abelian group (or, more generally,

polycyclic-by-finite).

Example 2.6. If F is a free non-abelian group of finite rank, then Σ1(F ) = ∅. Indeed,

for any non-zero character χ : F → R we can assume that χ(x) > 0 and χ(y) < 0 for

some distinct elements x and y of a free basis X of F . Then χ(yxn) ≥ 0 for some n ∈ N.

Now, Cay(F ;X) is a tree, thus the unique path joining 1 and yxn passes through y. Thus

Cay(F ;X)χ is not connected. From this also follows that Σ2(F ) = Σm(F ;Z) = ∅ for all

m.

We will give more complex examples in the sequence, after we establish some

general results.

Lemma 2.7. Let G be a finitely generated group and let N ⊆ G be a normal subgroup.

Let χ : G → R be a non-zero character such that χ(N) = 0. If [χ] ∈ Σ1(G), then

[χ̄] ∈ Σ1(G/N), where χ̄ : G/N → R is the induced character.

Proof. Let X ⊂ G be a finite generating set. Denote Q = G/N and let π : G → Q be

the canonical projection. If q ∈ Qχ̄, then q = π(g) for some g ∈ Gχ. By hypothesis the

elements 1 and g are connected in Cay(G;X )χ. By applying π we obtain a path connecting

1 and q in Cay(Q; π(X ))χ̄, so Cay(Q; π(X ))χ̄ is connected.

The lemma above does not hold for the higher Σ-invariants. Some of the other

results that we will need about these invariants concern direct products of groups.

Theorem 2.8 (Direct product formulas, [33]). Let G1 and G2 be finitely generated groups

and let χ = (χ1, χ2) : G1 ×G2 → R be a non-zero character. Then [χ] ∈ Σ1(G1 ×G2) if

and only if at least one of the following conditions holds:

1. χi 6= 0 for i = 1, 2 or

2. [χi] ∈ Σ1(Gi) for some i ∈ {1, 2}.

Similarly, if G1 and G2 are finitely presented (resp. of type FP2), then [χ] ∈ Σ2(G1 ×G2)

(resp. [χ] ∈ Σ2(G1 ×G2;Z)) if and only if at least one of the following conditions holds:

1. [χ1] ∈ Σ1(G1) and χ2 6= 0;
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2. [χ2] ∈ Σ1(G2) and χ1 6= 0 or

3. [χi] ∈ Σ2(Gi) (resp. [χi] ∈ Σ2(Gi;Z)) for some i ∈ {1, 2}.

Theorem 2.8 has versions for Σn(G1×G2;Z) with n ≤ 3. There was a conjecture

suggesting how to compute the higher Σ-invariants of direct products, but it turned out

to be false. Counterexamples were found by Meier, Meinert and VanWyk [57] and Schütz

[71]. For precise statements see [11], which also brings a proof of the conjecture for the

homological invariants if coefficients are taken in a field (rather than Z).

Example 2.9. If F is free non-abelian of finite rank, then Σ1(F × F ) is the set of classes

characters [χ], where χ = (χ1, χ2) and both χ1 and χ2 are non-zero characters of F .

Furthermore, Σ2(F × F ) = Σm(F × F ;Z) = ∅ for all m.

Similarly to what happens in the study of finiteness properties of groups,the

Σ-invariants behave well with respect to the notions of subgroups of finite index and

retracts.

Theorem 2.10 ([56, 60]). Let G be a finitely presentable group and let H ď G be a

subgroup of finite index. Let χ : G → R be a non-zero character. Then [χ] ∈ Σ2(G) if

and only if [χ|H ] ∈ Σ2(H). The same holds for G a group of type FPm with respect to the

invariant Σm(−;Z).

Theorem 2.11 (Retracts, [60]). Let G be a finitely presented group and suppose that

H is a retract, that is, there are homomorphisms p : G → H and j : H → G such that

p ◦ j = idH . Suppose that χ : H → R is a non-zero character. Then

[χ ◦ p] ∈ Σ2(G)⇒ [χ] ∈ Σ2(H).

The same holds for G a group of type FPm with respect to the invariant Σm(−;Z).

The following theorem is more specific, but it will be essential for our work on

wreath products.

Theorem 2.12. [43, Thm. C] Let G be a finitely generated group and suppose that N is

a normal subgroup of G that is locally nilpotent-by-finite.

1. If G is of type FPm, then

{[χ] ∈ S(G) | χ(N) 6= 0} ⊆ Σm(G;Z).

2. If G is finitely presentable, then

{[χ] ∈ S(G) | χ(N) 6= 0} ⊆ Σ2(G).
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The result in [43] is stated for N locally polycyclic-by-finite, but actually the

proof works for nilpotent-by-finite. We will use it with N being abelian. The case m = 1,

with N abelian, can also be found as Lemma C1.20 in Strebel’s notes [76].

2.2 The Σ1-invariant of wreath products

We will now compute the Σ1-invariant of an arbitrary finitely generated wreath

product.

Fix Γ = H ≀X G and denote M = ⊕x∈XHx ⊆ Γ. We will start working with

the characters χ : Γ→ R such that χ|M= 0, for which there are some partial results by

Bartholdi, Cornulier and Kochloukova. We quote their result in its most general form,

which deals with the higher homological invariants.

Theorem 2.13 ([5], Theorem 8.1). Let Γ = H ≀X G be a wreath product of type FPm and

let M = ⊕x∈XHx ⊆ Γ. Let χ : Γ → R be a non-zero character such that χ|M= 0. The

following conditions are sufficient for [χ] ∈ Σm(Γ;Z):

1. [χ|G] ∈ Σm(G;Z);

2. [χ|stabG(x̄)] ∈ Σm−i(stabG(x̄);Z) for all stabilizers stabG(x̄) of the diagonal action of

G on X i and for all 1 ≤ i ≤ m.

Moreover, if the abelianization of H is infinite, then such conditions are also necessary.

Notice that item 2 contains a statement about invariants in degree 0. By

convention we put Σ0(V ;Z) = S(V ) for any finitely generated group V . In other words,

the condition [χ] ∈ Σ0(V ;Z) means that χ : V → R is a non-zero homomorphism.

Recall that the homological and homotopical invariants coincide in degree 1,

that is, Σ1(V ;Z) = Σ1(V ) whenever V is a finitely generated group . We can now extract

from Theorem 2.13 a set of sufficient conditions for [χ] ∈ Σ1(Γ).

Proposition 2.14. Let Γ = H ≀XG be a finitely generated wreath product and let χ : Γ→ R

be a non-zero character such that χ|M= 0. If [χ|G] ∈ Σ1(G) and if χ|stabG(x) 6= 0 for all

stabilizers stabG(x) of the action of G on X, then [χ] ∈ Σ1(Γ).

Remark 2.15. This result could also be obtained by considering an action of Γ on a nice

complex. We shall apply this reasoning in the study of the invariant Σ2(H ≀X G).

This set of conditions is in fact necessary. First, if χ : Γ→ R and M ⊆ ker(χ),

then

[χ] ∈ Σ1(Γ)⇒ [χ|G] ∈ Σ1(G)
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by Lemma 2.7, since χ|G coincides with the character χ̄ induced on the quotient Γ/M ≃ G.

It suffices then to analyze the restriction of χ to the stabilizer subgroups under the

hypothesis that [χ] ∈ Σ1(Γ).

Proposition 2.16. If [χ] ∈ Σ1(Γ) and χ|M= 0, then χ|stabG(x) 6= 0 for all x ∈ X.

Proof. Recall that by Theorem 1.7, G acts with finitely many orbits on X and both G

and H are finitely generated. Let X = G · x1 ⊔ . . . ⊔G · xn. We only need to show that

χ|stabG(xi) 6= 0 for all i. By taking the quotient by M ′ =
⊕

x∈XrG·xi

Hx, we may assume that

n = 1, that is, we consider a wreath product of the form Γ = H ≀X G with X = G · x1.

Let Y and Z be finite generating sets for H and G, respectively. Since X = G·x1

it is clear that Y ∪Z is a finite generating set for Γ (we see Y as a subset of the copy Hx1
).

Then Cay(Γ;Y ∪ Z)χ must be connected, since [χ] ∈ Σ1(Γ) by hypothesis.

First, we show that M can be generated by the left conjugates of elements

of Y ±1 by elements of Gχ. Indeed if m ∈ M , then there is a path in Cay(Γ;Y ∪ Z)χ
connecting 1 to m, since m ∈ M ⊆ ker(χ) ⊆ Γχ. Such a path has as label a word with

letters in Y ±1 ∪ Z±1, so we can write:

m = w1v1w2v2 · · ·wkvk,

where each wj is a word in Y ±1 and each vj is a word in Z±1 (possibly trivial). We rewrite:

m = w1(v1w2)(v1v2w3) · · · (v1···vk−1wk)(v1 · · · vk).

Now, w1(v1w2)(v1v2w3) · · · (v1···vk−1wk) ∈ M and v1 · · · vk ∈ G. But m ∈ M and Γ is the

semi-direct product M ¸ G, so v1 · · · vk = 1G. Moreover, since χ|M= 0, it is clear that

χ(v1 · · · vj) ≥ 0 for all 1 ≤ j ≤ k, so:

m = w1(v1w2)(v1v2w3) · · · (v1···vk−1wk) ∈ 〈Gχ(Y ±1)〉,

as we wanted.

But then

M = 〈Gχ(Y )〉 ⊆ 〈Gχ(Hx1
)〉 =

⊕

x∈Gχ·x1

Hx1
,

that is, X = Gχ · x1. Finally, as χ|G 6= 0, there is some g1 ∈ G such that χ(g1) < 0. On

the other hand, there must be some g0 ∈ Gχ such that g0 · x1 = g1 · x1. It follows that

g−1
1 g0 ∈ stabG(x1), with χ(g−1

1 g0) = −χ(g1) + χ(g0) > 0, hence χ|stabG(x1) 6= 0.

We obtain part 1 of Theorem A1 by combining Propositions 2.14 and 2.16.
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2.3 The Σ1-invariant and Renz’s criterion

We shall use the combinatorial criterion described by Renz [68] to consider the

characters χ : H ≀X G→ R such that χ|M 6= 0. We recall here the theory.

Let Γ be any finitely generated group and let X ⊆ Γ be a finite generating set.

For a non-zero character χ : Γ → R and for any word w = x1 · · ·xn, with xi ∈ X
±1, we

denote:

vχ(w) := min{χ(x1 · · ·xj) | 0 ≤ j ≤ n}.

We say that vχ(w) is the χ-valuation of w.

Theorem 2.17 ([68], Theorem 1). With the notations above, [χ] ∈ Σ1(Γ) if and only if

there exists t ∈ X±1 with χ(t) > 0 and such that for all x ∈ X±1 r {t, t−1} the conjugate

t−1xt can be represented by a word wx in X±1 such that

vχ(t−1xt) < vχ(wx).

The theorem is stated as above by Renz, but the proof actually shows that the

statement holds for any t ∈ X±1 with χ(t) > 0

Example 2.18. Suppose that z ∈ Γ is a central element and let χ : Γ→ R be a character

such that χ(z) > 0. Then [χ] ∈ Σ1(Γ): it suffices to choose a generating set X containing

z and apply the theorem with t = z and wx = x for all x ∈ X±1.

The example above suggests that, given χ : Γ→ R, finding an element t ∈ Γ

that commutes with many elements of a generating set of Γ and such that χ(t) > 0 might

be a good start. In the case of a wreath product Γ = H ≀X G, we may use for instance an

element of M = ⊕x∈XHx, keeping in mind that any two copies of H commute in Γ.

Proposition 2.19. Let Γ = H ≀XG be a finitely generated wreath product and let [χ] ∈ S(Γ).

Suppose that there is some x1 ∈ X such that G ·x1 6= {x1} and χ|Hx1
6= 0. Then [χ] ∈ Σ1(Γ).

Proof. Let Y and Z be finite generating sets for H and G, respectively, and choose

x1, . . . , xn ∈ X such that X =
n

⊔

j=1

G · xj (the element x1 is already chosen to satisfy the

hypotheses). For each 1 ≤ j ≤ n let Yj be a copy of Y inside Hxj . It is clear that Γ is

generated by Y1 ∪ . . . ∪ Yn ∪ Z.

Now, since G · x1 6= {x1} we can choose g1 ∈ G such that g1 · x1 6= x1.

Furthermore, since χ|Hx1
6= 0, we can choose a generator h ∈ Y1 such that χ(h) 6= 0. We

may assume without loss of generality that χ(h) > 0. Define t := g1h ∈ Hg1·x1
. We take

X = Y1 ∪ . . . ∪ Yn ∪ Z ∪ {t} as a generating set for Γ and we show that the conditions of

Theorem 2.17 are satisfied.
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If y ∈ (Y1 ∪ . . .∪ Yn)±1, then t and y commute in Γ, hence wy := y is word that

represents t−1yt. Also, vχ(wy) = min{0, χ(y)} and

vχ(t−1yt) = min{−χ(t), χ(y)− χ(t)} = vχ(wy)− χ(t) < vχ(wy)

so the words wy satisfy what is required in the theorem.

If z ∈ Z±1, there are two cases: z ∈ stabG(g1 · x1) or z /∈ stabG(g1 · x1). In

the first case z and t commute in Γ, so we may proceed as in the previous paragraph:

we take the word wz := z, which represents t−1zt and satisfies vχ(t−1zt) < vχ(wz). If

z /∈ stabG(g1 · x1) notice that zt and t−1 lie in different copies of H in Γ, therefore they

commute, so:

t−1zt = t−1(zt)z = (zt)t−1z = ztz−1t−1z.

In this case define wz := ztz−1t−1z. Observe that vχ(wz) = min{0, χ(z)}. If this minimum

is 0, then χ(z) ≥ 0, and so vχ(t−1zt) = −χ(t) < 0. Otherwise vχ(wz) = χ(z) < 0 and so

vχ(t−1zt) ≤ χ(t−1z) = χ(z)− χ(t) < χ(z). In both cases vχ(t−1zt) < vχ(wz).

Thus [χ] ∈ Σ1(Γ) by Theorem 2.17.

In order to complete the proof of Theorem A1, we only need to consider the

cases where the restriction of χ to the copies of H is non-zero only for copies associated

to orbits that are composed by only one element. This is done using the direct product

formula, as follows.

Theorem 2.20. Let Γ = H ≀X G be a finitely generated wreath product and let M =

⊕x∈XHx ⊆ Γ. Let χ : Γ→ R be a character such that χ|M 6= 0. Then [χ] ∈ Σ1(Γ) if and

only if at least one the following conditions holds:

1. The set T = {x ∈ X | χ|Hx 6= 0} has at least two elements;

2. T = {x1} and χ|G 6= 0;

3. T = {x1} and [χ|Hx1
] ∈ Σ1(H).

Proof. By Proposition 2.19 it is enough to consider the case where G · x = {x} for all

x ∈ T . Notice that in this case T must be finite, since each of its elements is an entire

orbit of the action of G on X, and there are finitely many of those. Let P =
∏

x∈T

Hx and

X ′ = X r T . Then

Γ = H ≀X G ≃ P × (H ≀X′ G).

If T has at least two elements, then [χ|P ] ∈ Σ1(P ) and hence [χ] ∈ Σ1(Γ), by two

applications of Theorem 2.8. If T = {x1}, the same theorem gives us exactly that

[χ] ∈ Σ1(Γ) if and only if one of conditions 2 or 3 holds, since χ|G 6= 0 if and only if

χ|H≀X′G 6= 0.
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Example 2.21. When Γ = H ≀G is a regular wreath product, the stabilizers of the action

are always trivial, thus Σ1(Γ) = {[χ] ∈ S(Γ)|χ(M) 6= 0}. This was obtained before by

Strebel [76, Prop. C1.18]. In particular, if Γ = Z ≀ Z, then S(Γ) = S1 and Σ1(Γ) is

everything but two antipodal points.

2.4 Graph-wreath products

We now digress a bit and obtain a generalization of the results of Section 2.2

to a wider class of groups. Besides being interesting in its own right, this will be useful in

the analysis of the Σ2-invariants of wreath products.

Recall that given a graph K and a family H = {Hk}k∈V (K) of groups indexed

by the vertex set V (K) of K, the graph-product H〈K〉 is the quotient of the free product

∗k∈V (K)Hk by the normal subgroup generated by [Hk1
, Hk2

] whenever k1 and k2 are vertices

of K that are connected by an edge.

Given two groups G and H and K a G-graph, the graph-wreath product H∞ KG

is defined by Kropholler and Martino [50] as the semi-direct product H〈K〉 ¸ G, where

Hk = H for all k ∈ K. The action of G is given by permutation of the copies of H

according to the G-action on the vertex set of K. When K is the complete graph, H ∞ K G

is simply H ≀X G, where X is the vertex set of K.

Kropholler and Martino showed that H ∞ K G is finitely generated if and only

if G and H are finitely generated and G acts with finitely many orbits of vertices on K,

that is, H ∞ K G is finitely generated under the same conditions as H ≀X G is, where X is

the vertex set of K.

In what follows we fix Γ = H ∞ K G and M = H〈K〉 ⊆ Γ. We assume that Γ

is finitely generated and we decompose X = V (K) in orbits as X = G · x1 ⊔ . . . ⊔G · xn.

Moreover, we choose finite generating sets Z for G and Yi for Hxi for all i = 1, . . . , n and

we denote X = (∪ni=1Yi) ∪ Z, which is seen as a generating set for Γ.

Theorem 2.22. Let χ : H ∞ K G→ R be a non-zero character such that χ|M= 0. Then

[χ] ∈ Σ1(H ∞ K G) if and only if [χ|G] ∈ Σ1(G) and χ|stabG(x) 6= 0 for all x ∈ X.

Proof. Let NK be the kernel of the obvious homomorphism M ։ ⊕x∈XHx. Note that

NK ⊆ ker(χ) and that Γ̄ := Γ/NK ≃ H ≀X G. It follows that χ induces a character

χ̄ : Γ̄→ R. For an element γ ∈ Γ, we denote by γ̄ its image in Γ̄.

If [χ] ∈ Σ1(Γ), then [χ̄] ∈ Σ1(Γ̄) by Lemma 2.7. Thus [χ|G] ∈ Σ1(G) and

χ|stabG(x) 6= 0 for all x ∈ X by Theorem A1.

Conversely, suppose that [χ|G] ∈ Σ1(G) and that χ|stabG(x) 6= 0 for all x ∈ X.

Then [χ̄] ∈ Σ1(Γ̄). We will show that this implies that Cay(Γ;X )χ is connected.
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We need to show that for all γ ∈ Γχ, there is a path in Cay(Γ;X )χ connecting

1 and γ. Given such a γ, notice that γ̄ ∈ Γ̄χ̄, so there must be a path from 1 to γ̄ in

Cay(Γ̄; X̄ )χ̄. Its obvious lift to Cay(Γ;X ) with 1 as initial vertex is a path in Cay(Γ;X )χ
that ends at an element of the form γn, with n ∈ NK . If we can connect γ to γn inside

Cay(Γ;X )χ we are done. For that it suffices to find a path in Cay(Γ;X )χ connecting 1

and n, and then act with γ on the left.

Since NK ⊆M , each n ∈ NK can be written as:

n = (g1h1)(g2h2) · · · (gkhk), (2.1)

with hj ∈ ∪
n
i=1Y

±1
i and gj ∈ G for all j. Even more, we may assume that each χ(gj) ≥ 0.

Indeed, since χ|stabG(x) 6= 0 for all x, we can always pick tj ∈ G such that χ(tj) > 0 and
tjhj = hj. Then we may change gj for gjt

kj
j in (2.1), where kj is some integer such that

kjχ(tj) ≥ −χ(gj).

But if χ(gj) ≥ 0, then gj ∈ Gχ|G , and since [χ|G] ∈ Σ1(G), we can choose words

wj in Z±1 representing gj and such that vχ(wj) ≥ 0. Finally, the word

w = (w1h1w
−1
1 )(w2h2w

−1
2 ) · · · (wkhkw−1

k )

is the label for a path connecting 1 and n in Cay(Γ;X )χ, by the choice of each wj together

with the fact that χ(hj) = 0 for all j by hypothesis.

The above result will be needed only in a special case, namely when K is a

graph without edges, so that Γ ≃ (∗x∈XHx) ¸ G.

2.5 The Σ2-invariant

Renz’s paper [68] also brings a criterion for the invariant Σ2. In order to state

it, we need to introduce the concept of a diagram over a group presentation, for which we

follow [19]. Fix an orientation on R2. Define a diagram to be a subset M ⊆ R2 endowed

with the structure of a finite combinatorial 2-complex. Thus to each 1-cell of M correspond

two opposite directed edges. If 〈X |R〉 is a presentation for a group Γ, a labeled diagram

over 〈X |R〉 is a diagram M endowed with an edge labeling satisfying:

1. The edges of M are labeled by elements of X±1;

2. If an edge e has label x, then its opposite edge has label x−1;

3. The boundary of each face of M , read as a word in X±1, beginning at any vertex and

proceeding with either orientation, is either a cyclic permutation of some r ∈ R±1,

or a word of the form tt−1t−1t for some t ∈ X±1.
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A labeled diagram M is said to be simple if it is connected and simply connected.

Remark 2.23. This is a weakening of the definition of the usual van Kampen diagrams.

In fact, a simple diagram M , with a vertex chosen as a base point, differs from a van

Kampen diagram only by the fact that it can have what we call trivial faces, that is, those

labeled by tt−1t−1t for some t ∈ X±1. This weakening has the effect of simplifying the

drawing of some diagrams that we will consider in the sequence (see [68], Subsection 3.3).

Suppose that we are given a simple diagram M with a base point u (a vertex

in the boundary of M) and an element γ ∈ Γ. Then to each vertex u′ of M corresponds

a unique element of Γ, given by γη, where η is the image in Γ of the label of any path

connecting u and u′ inside M . In particular, the given group element γ corresponds to the

base point u. For any character χ : Γ → R we define the χ-valuation of M with respect

to u and γ, denoted by vχ(M), to be the minimum value of χ(g) when g runs over the

elements of Γ corresponding to the vertices of M .

Now, suppose that Γ is finitely presented, with 〈X |R〉 a finite presentation, and

assume that [χ] ∈ Σ1(Γ). Then we can distinguish an element t ∈ X±1 with χ(t) > 0 with

which we can apply Renz’s criterion for Σ1: for each x ∈ X±1 r {t, t−1} we can associate a

word wx in X±1 that represents t−1xt and for which vχ(t−1xt) < vχ(wx). Additionally, we

put wt := t and wt−1 := t−1. If r = x1 · · ·xn ∈ R
±1, we define:

r̂ := wx1
· · ·wxn .

Notice that r̂ is a relator too. We are now ready to state the criterion for Σ2.

Theorem 2.24 ([68], Theorem 3). Let Γ, X and t be as above. Suppose that the set R of

defining relators contains some cyclic permutation of the words t−1xtw−1
x , for all x ∈ X±1.

Then [χ] ∈ Σ2(Γ) if and only if for each r ∈ R±1 there exist a simple diagram Mr̂ and

vertex u in its boundary, such that both the following conditions hold:

1. The boundary path of Mr̂, read from u, has as label the word r̂;

2. vχ(r) < vχ(Mr̂), where the valuation of Mr̂ is taken with respect to the base point u

and the element t ∈ Γ.

Intuitively, the criterion works as follows. If ρ is a closed path in Cay(Γ; 〈X |R〉)χ
with base point 1, the we can always find a simple diagram D over 〈X |R〉 whose boundary

is exactly ρ (this is the 1-connectedness of the Cayley complex). It may happen that

vχ(D) ≥ 0, in which case ρ is nullhomotopic in Cay(Γ; 〈X |R〉)χ. Otherwise, the theorem

provides a way of changing internal cells of D by diagrams with greater valuation (we

substitute cells er, associated to the relator r, with Mr, which is composed by Mr̂ and

some cells associated to relators t−1xtw−1
x ).
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Example 2.25. As before, if z ∈ Γ is central and χ(z) > 0, then [χ] ∈ Σ2(Γ). Indeed, for

each r ∈ R, the diagram with the single 2-cell associated to r is a choice for Mr̂.

Recall that a wreath product H ≀XG is finitely presented if and only if G and H

are finitely presented, G acts diagonally on X2 with finitely many orbits and the stabilizers

of the G-action on X are finitely generated (Theorem 1.7).

We will apply Theorem 2.24 to show that if Γ = H ≀X G is finitely presented

and if χ : Γ → R is a character such that χ|Hx1
6= 0 for some x1 ∈ X with |G · x1|= ∞,

then [χ] ∈ Σ2(Γ).

We start by assuming that G acts transitively on X, with X = G ·x1. We think

of Γ = H ≀X G with a presentation obtained as in Section 1.2.

Let 〈Y |R〉 and 〈Z|S〉 be finite presentations for H and G, respectively. We

assume that Z contains a generating set E for the stabilizer subgroup stabG(x1) and a set

J of representatives for the non-trivial double cosets of (stabG(x1), stabG(x1)) in G. So Γ

is generated by the set Y ∪ Z, subject to the following defining relators:

(1) r, for all r ∈ R (defining relators for H);

(2) s, for all s ∈ S (defining relators for G);

(3) [gy1, y2], for g ∈ J , y1, y2 ∈ Y ;

(4) [e, y], for e ∈ E and y ∈ Y .

Let us adapt a bit this presentation. We are under the hypothesis that χ|Hx1
6= 0 and

|G · x1|= ∞. We may assume without loss of generality that χ(h) > 0 for some h ∈ Y .

Choose gi ∈ Z, for 1 ≤ i ≤ 5, such that {x1} ∪ {gi · x1 | 1 ≤ i ≤ 5} is a set with exactly

six elements (of course we may assume that Z contains elements gi with this property).

Define

ti := gih,

for i = 1, . . . , 5. Then Γ is generated by Y ∪ Z ∪ {ti | 1 ≤ i ≤ 5}, subject to the following

defining relators:

(1) r, for all r ∈ R (defining relators for H);

(2) s, for all s ∈ S (defining relators for G);

(3) [gy1,
g′

y2], for all y1, y2 ∈ Y ∪ {ti | 1 ≤ i ≤ 5} and g, g′ ∈ Z ∪ {1} whenever the

commutator [gy1,
g′

y2] is indeed a relator in Γ;

(4) [e, y], for e ∈ E and y ∈ Y and

[z, t1], for z ∈ Z ∩ stabG(g1 · x1);
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(5) gihg
−1
i t−1

i , for 1 ≤ i ≤ 5.

Remark 2.26. We could write the conditions of item (3) in a more precise way, but it

would require writing many cases. If y1 ∈ Y and y2 = t1, for example, then [gy1,
g′

y2] is a

defining relator if g · x1 6= (g′g1) · x1.

Note that we have added a few relators of the types (3) and (4), but clearly

they are consequences of the others. Furthermore, the set of relators is clearly still finite.

Set t = t1. We will continue using the notation of Proposition 2.19. Thus for

y ∈ Y ±1 we have chosen wy = y. If z ∈ Z±1, then wz = z if z ∈ stabG(g1 · x1) and

wz = ztz−1t−1z otherwise. Moreover, since ti and t commute in Γ for all 1 ≤ i ≤ 5, we can

define wti := ti and wt−1

i
:= t−1

i .

Let us check that the chosen presentation satisfies the conditions of Theorem

2.24. First, the set of defining relators contains the relators t−1xtw−1
x . Indeed if y ∈

Y ±1 ∪ {ti | 1 < i ≤ 5}±1, then t−1ytw−1
y is a relator of type (3), since wy = y. If

z ∈ Z±1 ∩ stabG(g1 · x1), then wz = z and t−1ztz−1 is a relator of type (4). Finally, if

z ∈ Z±1 but z /∈ stabG(g1 · x1), then wz = ztz−1t−1z and

t−1ztw−1
z = t−1ztz−1tzt−1z−1 = t−1(zt)t(zt)−1,

which is a cyclic permutation of [zt, t], a relator of type (3).

According to Theorem 2.24, now we need to apply the transformation r 7→ r̂ to

each defining relator and then find a simple diagram Mr̂ satisfying the stated conditions.

The following subsections are devoted to the verification of the existence of these diagrams.

Observe that we do not need to consider the inverses of defining relators, since any simple

diagram for r̂ is a simple diagram for the inverse of r̂ if we read its boundary backwards.

2.5.1 Relations of type (1)

Note that the relators of type (1) involve only generators in Y ±1. But wy = y

for all y ∈ Y ±1, so r̂ = r whenever r is a relator of type (1). Thus the one-faced diagram

M that represents the relator r, with base point corresponding to t, is already a choice for

Mr̂, since its χ-valuation is increased by χ(t) > 0.

In Figure 1 we represent the diagram Mr̂, for r = r̂ = y1y2y3y4, as the internal

square of the figure. The external boundary represents the path beginning at the base

point 1 ∈ Γ and with label the original relator r. The edges labeled by t indicate that r̂ is

obtained from r by conjugation by t.
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to it by an edge with label u), then the χ-valuation of the interior points (including p) is

increased by χ(u) > 0, so that either vχ(M2) = vχ(M1) + χ(t), or vχ(M2) is attained at

the boundary. In the latter case, M2 satisfies the conditions of the theorem. Otherwise we

repeat the process now starting with M2 in place of M1. After finitely many repetitions,

we eventually obtain a simple diagram Mn whose boundary is labeled by r̂ and vχ(Mn) is

attained at the boundary, thus it satisfies the conditions of the theorem. This will occur

for the smallest integer n such that vχ(M1) + (n− 1)χ(t) ≥ vχ(r̂).

We record what we have proved in the following proposition.

Proposition 2.27. Let Γ = H ≀X G be a finitely presented wreath product and let M =

⊕x∈XHx ⊆ Γ. Suppose that G acts transitively on the infinite set X. If χ : Γ → R is a

character with χ|M 6= 0, then [χ] ∈ Σ2(Γ).

The arguments above essentially contain what we need when G · x is infinite

for some x ∈ X such that χ|Hx 6= 0 (but the G-action on X is not necessarily transitive),

so we will only indicate in the proof of the following theorem how to deal with this case.

Recall that we denote by T the set of elements x ∈ X such that χ|Hx 6= 0.

Notice that if T = {x1}, then Γ is a direct product

Γ ≃ Hx1
× (H ≀X′ G),

where X ′ = Xr{x1}. Then the direct product formulas and the results on the Σ1-invariants

of wreath products already contain all the information we need. The remaining cases are

all part of the following theorem, which includes Theorem A2.

Theorem 2.28. Let Γ = H ≀X G be a finitely presented wreath product and let M =

⊕x∈XHx ⊆ Γ. Suppose that the set

T = {x ∈ X | χ|Hx 6= 0}.

has at least two elements. Then [χ] ∈ Σ2(Γ) if and only if at least one of the following

conditions holds:

(1) [χ|Hx ] ∈ Σ1(H) for some x ∈ T ;

(2) χ|G 6= 0;

(3) T has at least three elements.

Proof. Suppose first that T is a finite set and consider the subgroup B = ∩x∈T stabG(x) ď G.

It is of finite index in G, so Γ1 = H ≀X B is of finite index in Γ. Notice that

Γ1 ≃ (
∏

x∈T

Hx)× (H ≀X′ B).
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Denote P =
∏

x∈T

Hx and Q = H ≀X′ B. The fact that T has at least two elements implies

that [χ|P ] ∈ Σ1(P ), by Theorem 2.8. By applying the theorem again, now to the product

Γ1 = P × Q, we get that [χ|Γ1
] ∈ Σ2(Γ1) if and only if [χ|P ] ∈ Σ2(P ) or χ|Q 6= 0. The

former happens if and only if at least one of conditions (1) or (3) is satisfied (once again,

by the direct product formula), while the latter clearly happens if and only if χ|B 6= 0,

which in turn is equivalent with χ|G 6= 0, since B is a subgroup of finite index. Finally,

since the index of Γ1 in Γ is finite, we are done by Theorem 2.10.

We are left with the case where T is infinite and we want to show that

[χ] ∈ Σ2(Γ). Since G acts on X with finitely many orbits, there must be some x1 ∈ T

such that |G · x1|=∞. We adapt the proof of Proposition 2.27 putting the orbit of x1 in a

distinguished position.

Choose x2, . . ., xn ∈ X such that X =
n

⊔

j=1

G · xj. For each j choose a finite

generating set Ej for the stabilizer subgroup stabG(xj). For each pair par (i, j), with

1 ≤ i, j ≤ n, choose a finite set Ji,j of representatives of the non-trivial double cosets of

(stabG(xi), stabG(xj)) in G. Finally, choose finite presentations 〈Y |R〉 and 〈Z|S〉 for H

and G respectively. We may assume that Z contains Ej and Ji,j for all 1 ≤ i, j ≤ n.

A finite presentation for Γ, adapted from the presentation given by Cornulier

[26], can be given as follows. For each 1 ≤ i ≤ n we associate a copy 〈Yi|Ri〉 of the

presentation for H and, as before, we define ti := gih for some gi ∈ Z and h ∈ Y1

with χ(h) > 0 and |{x1} ∪ {gi · x1|1 ≤ i ≤ 5}|= 6. We think of Γ as generated by

(
n

⋃

i=1

Yi) ∪ Z ∪ {ti | 1 ≤ i ≤ 5} and subject to the defining relators given by:

(1) r, for all r ∈
n

⋃

i=1

Ri (defining relators for the copies of H);

(2) s, for all s ∈ S (defining relators for G);

(3) [gy1,
g′

y2], for y1, y2 ∈ (
n

⋃

i=1

Yi)∪{ti | 1 ≤ i ≤ 5} and g, g′ ∈ Z∪{1} whenever [gy1,
g′

y2]

is indeed a relator in Γ;

(4) [ei, yi], for all ei ∈ Ei, yi ∈ Yi and 1 ≤ i ≤ n and

[z, t1], for all z ∈ Z ∩ stabG(g1 · x1);

(5) gihg
−1
i t−1

i , for 1 ≤ i ≤ 5.

Set t = t1. We use again the notation of Proposition 2.19. So we use the same

words wz if z ∈ Z±1, and wy = y for all other generators y. It is clear that the set of

defining relators above still satisfies the hypothesis of Theorem 2.24. The construction of

the diagrams associated to each defining relator can be done exactly as in the case where
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the action is transitive, as we will argue below. The key fact is that the generators coming

from copies of H associated to all other orbits of G (other than G · x1) commute with

t = t1.

First, notice that the construction of the diagrams associated to the relators of

types (1) or (4) in the case of a transitive action depends only on the fact that [t, y] is a

defining relator for all y ∈ Y = Y1. But t1 commutes also with all elements of Y2 ∪ . . .∪ Yn,

so the construction can be carried out in the same way. For the case of relators of type (3),

it was only necessary that for any generators g, g′ ∈ Z ∪ {1} and y, y′ ∈ Y1, we could find

some u ∈ {h, t2, . . . , t5} that commutes with all the following elements: t, gt, g
′

t, gy and
g′

y′. If we allow y to be an element of Y2∪ . . .∪Yn, then any u that commutes with t, gt, g
′

t

and g′

y′ will do it, since gy commutes any choice of u. Thus the five options for u, coming

from different copies of H, are enough to let us repeat the argument. Similar considerations

cover the cases where either only y′, or both y and y′ are elements of Y2 ∪ . . . ∪ Yn.

This is all we needed to check, since relators of types (2) and (5) do not involve

any of the new generators.

2.6 Some observations about Σ2

Let Γ be a finitely presented group and let [χ] ∈ S(Γ). Let 〈X |R〉 be a finite

presentation for Γ. Denote by C = Cay(Γ; 〈X |R〉) the associated Cayley complex and by

Cχ the full subcomplex of C spanned by Γχ. The canonical action of Γ on C restricts to

an action by the monoid Γχ on Cχ.

Remark 2.29. If a monoid K acts on some set X we still say that the sets K ·x are orbits.

By “K has finitely many orbits on X” we mean that there are elements x1, . . . , xn ∈ X

such that X =
n

⋃

j=1

K · xj.

The following lemma can be found in Renz’s thesis [67].

Lemma 2.30. Cχ has finitely many Γχ-orbits of k-cells for k ≤ 2.

Proof. Denote by D and Dχ the sets of k-cells of C and Cχ, respectively (for a fixed k ≤ 2).

We know that Γ acts on D with finitely many orbits. Choose representatives d1, . . . , dn for

these orbits so that dj ∈ Dχ but γ · dj /∈ Dχ for all j and for all γ ∈ Γ with χ(γ) < 0. For

this it suffices to take any representatives d̃1, . . . , d̃n and then put dj := γ−1
j · d̃j, where

γj ∈ Γ is the vertex of d̃j with lowest χ-value. Thus if d ∈ Dχ, then d = γ · dj for some j

and, by choice of dj, we have that χ(γ) ≥ 0. So Dχ =
n

⋃

j=1

Γχ · dj.
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Denote by F (X , χ) the submonoid of F (X ) consisting of the classes of reduced

words w with vχ(w) ≥ 0. Note that F (X , χ) is indeed closed under the product, since

w1, w2 ∈ F (X , χ) implies vχ(w1w2) ≥ 0, and this property is preserved by elementary

reductions (that is, canceling out terms of the form xx−1 or x−1x). Let R(χ) be the

subgroup of F (X ) consisting of the classes of reduced words w that represent relators (that

is w ∈ 〈R〉F (X )) and such that vχ(w) ≥ 0. Observe that R(χ) ⊆ F (X , χ) and notice that

R(χ) is indeed a subgroup, since vχ(w) ≥ 0 implies vχ(w−1) ≥ 0 whenever w is a relator.

Finally, observe that R(χ) admits an action by the monoid F (X , χ) via left conjugation.

Now, let r be a reduced word in X±1 representing a relator in Γ, that is,

r ∈ 〈R〉F (X ). Suppose that M is a van Kampen diagram over 〈X |R〉 whose boundary, read

in some orientation from some base point p, is exactly r. Then it holds in F (X ) that

r = w1r1 · · ·
wnrn, (2.4)

where each ri is a word read on the boundary of some face of M and wi is the label for

a path in M connecting p to a base point of the face associated to ri. Both the facts

that such a diagram exists and that r can be written as above are consequences of van

Kampen’s lemma (see Proposition 4.1.2 and Theorem 4.2.2 in [19], for instance).

Lemma 2.31. If χ : Γ→ R is a character such that Cχ = Cay(G, 〈X |R〉)χ is 1-connected,

then R(χ) is finitely generated over F (X , χ).

Remark 2.32. By “R(χ) is finitely generated over F (X , χ)” we mean that every element

of R(χ) can be written as a product of elements of the form ws, where w ∈ F (X , χ) and

s ∈ S for some finite set S ⊆ R(χ).

Proof. Let r ∈ R(χ) and consider the path ρ in C beginning at 1 and with label r. Notice

that this path runs inside Cχ, since vχ(r) ≥ 0. Also, ρ is clearly a loop and it must be

nullhomotopic in Cχ, since Cχ is 1-connected. A homotopy from ρ to the trivial path can

then be realized by a van Kampen diagram M with vχ(M) ≥ 0 (the valuation is taken

with respect to 1, seen both as base point in C and group element). This is made precise

by Theorem 2 in [68].

Write r as in (2.4). Thus r is a product of relators corresponding to the faces

of M conjugated on the left by elements of F (X , χ). Since vχ(M) ≥ 0, such faces are faces

of Cχ, so by Lemma 2.30 and using that every element of Γχ can be written as a word

in F (X , χ), each wjrj can be rewritten as ujsj where uj ∈ F (X , χ) and each sj is a word

read on the boundary of a face in a finite set S of representatives of Γχ-orbits of faces of

Cχ. It follows that S is a finite generating set for R(χ) modulo the action of F (X , χ).
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2.7 Σ2 for characters with χ|M= 0

Recall that for a group G, a K(G, 1)-complex (or Eilenberg-MacLane space for

G) is a connected CW-complex Y such that π1(Y ) = G and πi(Y ) = 1 for all i ≥ 2. If

G = 〈X |R〉, then we can build a K(G, 1)-complex Y as follows. To start with, Y will have

exactly one 0-cell v. For each x ∈ X , we associate a 1-cell ex both whose endpoints are v.

For each r ∈ R, we glue a 2-cell cr along the boundary that we can read for r as word

in the letters X . This already gives a connected CW -complex with fundamental group

G. Then we keep adding cells of higher dimensions to ensure that the higher homotopy

groups are trivial.

If G is finitely presentable, the procedure above gives a K(G, 1)-complex with

finitely many cells of dimension at most 2.

We get back to a finitely presented wreath product Γ = H ≀X G = M ¸ G. We

consider now the non-zero characters χ : Γ→ R such that χ|M= 0.

In order to find sufficient conditions for [χ] ∈ Σ2(Γ), we consider a nice action

of Γ on a complex. We will briefly describe the construction in the proof of Theorem A in

[50], with the simplifications allowed by the fact that our situation is less general than

what is considered in that paper.

We are assuming that Γ = H ≀X G is finitely presented, so H is also finitely

presented. Choose a K(H, 1)-complex Y , with base point ∗, having a single 0-cell and

finitely many 1-cells and 2-cells. Let Z = ⊕x∈XYx be the finitary product of copies of

Y indexed by X, that is, Z is the subset of the cartesian product
∏

x∈X

Yx consisting on

the families (yx)x∈X such that yx is not the base point ∗ only for finitely many indices

x ∈ X. It follows from the results in [28] and [29] that Z is an Eilenberg-MacLane space

for M = ⊕x∈XHx. Notice that Z has a natural cell structure. There is a single 0-cell, given

by the family (yx)x∈X with yx = ∗ for all x. For n ≥ 1, the n-cells can be identified with

products c1 × · · · × ck of cells of Y , supported by some tuple (x1, . . . , xk) ∈ Xk, such that

dim(c1) + . . .+ dim(ck) = n.

There is an obvious action of G on Z. On the other hand, M acts freely on

the universal cover E of Z. By putting together these two actions, we get an action of

Γ = M ¸ G on E. Notice that, since we are assuming that Γ is finitely presented (in

particular G acts on X2 with finitely many orbits by Cornulier’s results), the 2-skeleton of

E has finitely many Γ-orbits of cells. Moreover, since the action of M is free, the stabilizer

subgroups are all conjugate to subgroups of G, and can be described as follows:

1. The stabilizer subgroup of any 0-cell is a conjugate of G;

2. For n ≥ 1, the stabilizer subgroup of each n-cell contains a conjugate of the stabilizer
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stabG(x̄) of some x̄ = (x1, . . . , xn) ∈ Xn as a finite index subgroup.

We make stabilizers of n-cells correspond to stabilizers of n-tuples (rather than k-tuples,

for k ≤ n) by repeating some indices if necessary. The reason why we need to pass to a

finite index subgroup is that cells of Z written as products of cells of Y may contain some

repetition. For instance, a cell of Z that arises as a product c× c, supported by (x1, x2),

is also fixed by elements of G that interchange x1 and x2. This will also happen in the

Γ-action on the universal cover E.

For groups admitting sufficiently nice actions on complexes, there is a criterion

for the Σ-invariants.

Theorem 2.33 ([60], Theorem B). Let E ′ be a 2-dimensional 1-connected complex. Suppose

that a group Γ acts on E ′ with finitely many orbits of cells. If χ : Γ→ R is a character

such that [χ|stabΓ(c)] ∈ Σ2−dim(c)(stabΓ(c)) for all cells c in E ′, then [χ] ∈ Σ2(Γ).

We apply the theorem above with E ′ being the 2-skeleton of E. We obtain:

Proposition 2.34. Suppose that Γ = H ≀X G is finitely presented and let χ : Γ→ R be a

non-zero character such that χ|M= 0. Suppose also that all properties below hold:

(1) [χ|G] ∈ Σ2(G);

(2) [χ|stabG(x)] ∈ Σ1(stabG(x)) for all x ∈ X and

(3) χ|stabG(x,y) 6= 0 for all (x, y) ∈ X2.

Then [χ] ∈ Σ2(Γ).

The fact that we can state the proposition above with reference only to the

stabilizers contained in G follows from the invariance of the Σ1-invariants under isomor-

phisms ([76, Prop. B1.5]). It is also clear that item (3) is equivalent with asking that the

restriction of χ to the actual stabilizers is non zero.

By Theorem 2.11, if [χ] ∈ Σ2(Γ) and χ|M= 0, then [χ|G] ∈ Σ2(G). We can also

show that condition (3) of Proposition 2.34 is necessary.

Lemma 2.35. If χ|stabG(x,y)= 0, then the monoid Gχ can not have finitely many orbits on

G · (x, y).

Proof. Suppose that G · (x, y) =
n

⋃

j=1

Gχ · (xj, yj) and choose g1, . . . , gn ∈ G such that

(xj, yj) = gj · (x, y). Choose g ∈ G such that

χ(g) < min{χ(gj) | 1 ≤ j ≤ n}.
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Since g · (x, y) ∈
n

⋃

j=1

Gχ · (xj, yj), there must be some g0 ∈ Gχ and 1 ≤ j ≤ n such that

g · (x, y) = g0 · (xj, yj) = g0gj(x, y). But then g−1g0gj ∈ stabG(x, y), with:

χ(g−1g0gj) = χ(g0) + (χ(gj)− χ(g)) > 0,

so χ|stabG(x,y) 6= 0.

Proposition 2.36. Let Γ = H ≀XG be a finitely presented wreath product and let χ : Γ→ R

be a non-zero character. Let M = ⊕x∈XHx ⊆ Γ and suppose that χ|M= 0. If χ|stabG(x,y)= 0

for some (x, y) ∈ X2, then [χ] /∈ Σ2(Γ).

Proof. We may assume that [χ] ∈ Σ1(Γ), otherwise there is nothing to do. Thus [χ|G] ∈

Σ1(G) and χ|stabG(x) 6= 0 for all x ∈ X by Proposition 2.16.

Let Γ0 = (∗x∈XHx) ¸ G and let X ⊆ Γ0 be a finite generating set. Note that Γ

is a quotient of Γ0, so we can consider the following diagram:

F (X ) Γ0

Γ

π0

π

The homomorphism π defines presentations for Γ with generating set X . We

first show that for finite presentations of type Γ = 〈X |R〉 (with ker(π) = 〈R〉F (X )) the

complex Cay(Γ; 〈X |R〉)χ can not be 1-connected.

Fix 〈X |R〉 such a presentation. We use the notations F (X , χ) and R(χ) defined

in Section 2.6. We want to show that R(χ) is not finitely generated over F (X , χ), from

what follows that Cay(Γ; 〈X |R〉)χ is not 1-connected by Lemma 2.31.

If χ|stabG(x,y)= 0, then by Lemma 2.35 we can build a strictly increasing sequence

I1 Ĺ I2 Ĺ . . . Ĺ Ij Ĺ . . .

of Gχ-invariant subsets of X2 such that X2 =
⋃

j

Ij.

Let N be the normal subgroup of ∗x∈XHx such that M = (∗x∈XHx)/N . Note

that N admits an action by (∗x∈XHx)¸G (which defines the wreath product H ≀XG). Let Nj

be the normal subgroup of ∗x∈xHx generated by the commutators [Hx, Hy] with (x, y) ∈ Ij.

Note that N1 Ĺ N2 Ĺ . . ., that N =
⋃

j

Nj and that each Nj is (∗x∈XHx) ¸ Gχ-invariant.

Put

Γj,χ =
∗x∈XHx

Nj

¸ Gχ.
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This is a well defined monoid under the operation we use to define the semi-direct product.

This defines a sequence {Γj,χ}j of monoids that converges to Γχ.

Now, remember we have chosen X so that the projection π0 : F (X ) ։ Γ0 is

well defined. Passing to monoids, we obtain a homomorphism

p0 : F (X , χ)→ (Γ0)χ0
,

where χ0 is the obvious lift of χ to Γ0. From p0 we define

pj : F (X , χ)→ Γj,χ

for each j ≥ 1. Let

Rj = p−1
j ({1}).

Notice that Rj Ĺ R(χ) for all j. Indeed, it is clear that χ0 and χ restrict to the same

homomorphisms on G and stabG(x), for all x ∈ X. Also, χ0 restricts to zero on ∗x∈XHx by

construction. So it follows from Theorem 2.22 that [χ0] ∈ Σ1(Γ0), since we are assuming

that [χ] ∈ Σ1(Γ). Thus p0 is surjective and any n ∈ NrNj defines an element in R(χ)rRj.

Observe further that each that Rj is actually a F (X , χ)-invariant subgroup of R(χ) and

that
⋃

j

Rj = R(χ). The existence of the sequence {Rj}j implies that R(χ) can not be

finitely generated over F (X , χ).

For the general case, let 〈X |R〉 be any finite presentation for Γ and suppose by

contradiction that Cay(Γ; 〈X |R〉)χ is 1-connected. From 〈X |R〉 we build another finite

presentation 〈X ′|R′〉 for Γ with X ⊆ X ′, R ⊆ R′ and satisfying the previous hypothesis

(that is, X ′ is actually a generating set for Γ0). For this, it suffices to add the necessary

generators and include the relators that define them in Γ in terms of the previous generating

set X . It may be the case that Cay(Γ; 〈X ′|R′〉)χ is not 1-connected anymore, but by [68,

Lemma 3], we can always enlarge R′ to a (still finite) set R′′ so that Cay(Γ; 〈X ′|R′′〉)χ
is indeed 1-connected. This is done by adding the relators of the form t−1xtw−1

x , as in

Theorem 2.24. We arrive at a contradiction with the first part of the proof, since X ′

satisfies the previous hypothesis, that is, X ′ can be lifted to a generating set for Γ0.

The above proposition completes the proof of Theorem A3 as stated in the

introduction, since its last assertion (when we assume that H has infinite abelianization)

follows from Theorem 2.13.

2.8 Applications to twisted conjugacy

We now derive some consequences of the previous results to twisted conjugacy,

more specifically to the study of Reidemeister numbers of automorphisms of wreath

products. For this we start by considering the Koban invariant Ω1.
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Given a finitely generated group Γ, endow Hom(Γ,R) with an inner product

structure, so that it makes sense to talk about angles in S(Γ). Denote by Nπ/2([χ]) the

open neighborhood of angle π/2 and centered at [χ] ∈ S(Γ). Following Koban [40], we can

define the invariant Ω1(Γ) in terms of Σ1(Γ):

Ω1(Γ) = {[χ] ∈ S(Γ) | Nπ/2([χ]) ⊆ Σ1(Γ)}.

A proof of the fact that this does not depend on the inner product can be found in the

above-mentioned paper, which contains the original definition of the invariant.

Let Γ = H ≀X G be a finitely generated wreath product. With some restrictions

on the action by G on X, we can obtain nice descriptions of Ω1(Γ). Notice that, since the

invariant does not depend on the choice of inner product, we can assume that characters

[χ], [η] ∈ S(Γ) such that χ|G= 0 and η|M= 0 are always orthogonal, and this will be done

in the proposition below.

Proposition 2.37. Let Γ = H ≀X G be a finitely generated wreath product. Suppose that

Σ1(Γ) = {[χ] ∈ S(Γ) | χ|M 6= 0},

where M = ⊕x∈xHx ⊆ Γ. Then

Ω1(Γ) = {[χ] ∈ S(Γ) | χ|G= 0}.

Proof. Let [χ] ∈ S(Γ) with χ|G= 0. Clearly χ|M 6= 0, so [χ] ∈ Σ1(Γ). Furthermore, if

[η] ∈ Nπ/2([χ]), then η|M 6= 0, otherwise χ and η would be orthogonal. So Nπ/2([χ]) ⊆ Σ1(Γ)

whenever χ|G= 0. On the other hand, if there were some [χ] ∈ Ω1(Γ) with χ|G 6= 0, then

by taking η : Γ→ R defined by η|M= 0 and η|G= χ|G, we would have that [η] ∈ Nπ/2([χ]),

but [η] /∈ Σ1(Γ).

For any group V , we denote by V ab its abelianization. By Theorem A1, if

the G-action on X does not contain orbits composed by only one element, then many

conditions imply the hypothesis on the description of Σ1(Γ), such as:

1. (stabG(x))ab is finite for some x ∈ X, or

2. The set {[χ] ∈ Σ1(G) | χ|stabG(x) 6= 0} is empty for some x ∈ X.

This includes the cases where the G-action is free (in particular the regular wreath products

Γ = H ≀G) and the case where Σ1(G) = ∅ .

Given a group isomorphism ϕ : V → V , the ϕ-twisted conjugacy action of V

on itself is defined by

v1 · v2 = v1v2ϕ(v1)−1
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for all v1, v2 ∈ V . The Reidemeister number R(ϕ) of ϕ is defined as the number of orbits of

this action. Finally, a group V is of type R∞ if R(ϕ) =∞ for all isomorphisms ϕ : V → V .

A connection between the invariant Ω1 and Reidemeister numbers was studied

by Koban and Wong [42]. Recall that a character χ is discrete if its image is infinite cyclic.

Theorem 2.38. [42, Thm. 4.3] Let G be a finitely generated group and suppose that

Ω1(G) contains only discrete characters.

(1) If Ω1(G) contains only one element, then G is of type R∞;

(2) If Ω1(G) has exactly two elements, then there is a subgroup N ⊆ Aut(G), with

[Aut(G) : N ] = 2, such that R(ϕ) =∞ for all ϕ ∈ N .

Corollary 2.39. Let Γ = H ≀X G be a finitely generated wreath product and suppose that

the G-action on X is transitive. Suppose further that Σ1(Γ) is as described in Proposition

2.37 and that Hab has torsion-free rank 1. Then there is a subgroup N ⊆ Aut(Γ), with

[Aut(Γ) : N ] = 2, such that R(ϕ) =∞ for all ϕ ∈ N .

Proof. By the hypothesis on Hab we have that

Ω1(Γ) = {[ν1], [ν2]},

where νj(G) = 0, ν1(h) = 1 and ν2(h) = −1 for some lift h ∈ H of a generator for the

infinite cyclic factor of Hab. It suffices then to apply part (2) of Theorem 2.38.

The applications that we keep in mind are the finitely generated regular wreath

products of the form Z ≀G.

Gonçalves and Kochloukova [34] exhibited other connections between the Σ-

theory and the property R∞. Below we denote by Σ1(G)c the complement of Σ1(G) in

S(G), that is, Σ1(G)c = S(G) r Σ1(G).

Theorem 2.40. [34, Cor. 3.4] Let G be a finitely generated group and suppose that

Σ1(G)c = {[χ1], . . . , [χn]},

where n ≥ 1 and each χj is a discrete character. Then there is a subgroup of finite index

N ⊆ Aut(G) such that R(ϕ) =∞ for all ϕ ∈ N .

Corollary 2.41. Let Γ = H ≀XG be a finitely generated wreath product. Once again, suppose

that Σ1(Γ) is as described in Proposition 2.37. Suppose further that Gab has torsion-free

rank 1. Then there is a subgroup of finite index N ⊆ Aut(Γ) such that R(ϕ) =∞ for all

ϕ ∈ N .
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Proof. Under the hypothesis above, we have

Σ1(Γ)c = {[χ1], [χ2]},

where χj|M= 0 and χ1(g) = 1 and χ2(g) = −1 for some g ∈ G whose image in Gab is a

generator of the infinite cyclic factor. Then Theorem 2.40 applies.

This time we can take as an example the regular wreath product Γ = H ≀ Z.

We note that Gonçalves and Wong [35] and Taback and Wong [78] had already

obtained some results about the property R∞ for regular wreath products of the form

H ≀Z, with H abelian or finite. Our results complement theirs in the sense that it considers

other basis groups H and non-regular actions, but here we were limited to talk about

Reidemeister numbers of automorphisms contained in subgroups of finite index in the

automorphism group. In the above-mentioned papers, on the other hand, the authors were

able to determine positively the property R∞ for some choices of H.
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3 Weak commutativity for Lie algebras

In this chapter we discuss the weak commutativity construction in the category

of Lie algebras over a field K with char(K) 6= 2. We fix K once and for all. All Lie algebras

in this chapter are Lie algebras over K.

We will discuss the definition of χ(g), the series of ideals R ⊆ W ⊆ L ⊆ χ(g),

and we will establish the results announced in the introduction. The results of this chapter

are the content of the articles [62, 63].

3.1 The weak commutativity construction

Let g be any Lie algebra and let gψ be an isomorphic copy. For any x ∈ g, we

denote by xψ its image in gψ. We define χ(g) by the presentation

χ(g) = 〈g, gψ | [x, xψ] = 0 ∀x ∈ g〉.

This must be understood as the quotient of the free Lie sum of g and gψ by the ideal

generated by the elements [x, xψ], for all x ∈ g.

The only case in which we can immediately understand χ(g) from the definition

is g = K, when clearly χ(g) ≃ K⊕K. Non-trivial concrete examples will appear in Section

3.5, after we establish some structural theory of χ(−). We will try now to understand χ(g)

via some ideals and the associated quotients.

Let L = L(g) be the ideal of χ(g) generated by the elements of the form x−xψ,

for all x ∈ g. Equivalently, L is the kernel of the homomorphism α : χ(g) → g defined

by α(x) = α(xψ) = x for all x ∈ g. It is clear that this homomorphism is split, that is,

χ(g) ≃ L ¸ g.

Lemma 3.1. Let g be any Lie algebra. Then:

1. [x, yψ] = [xψ, y] as elements of χ(g);

2. L is generated as a Lie subalgebra by the elements x− xψ, for all x ∈ g.

Proof. By the relations that define χ(g) we have that [x+ y, (x+ y)ψ] = 0 for all x, y ∈ g,

so

0 = [x+ y, (x+ y)ψ] = [x, xψ] + [x, yψ] + [y, xψ] + [y, yψ] = [x, yψ] + [y, xψ].

Thus [x, yψ] = [xψ, y] for all x, y ∈ g.
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Denote by A the Lie subalgebra of χ(g) generated by the elements y−yψ, for all

y ∈ g. We want to show that A = L, and for that it is enough to show that [x, y− yψ] ∈ A

and [xψ, y − yψ] ∈ A for all x, y ∈ g. Even more, as

[x, y − yψ]− [xψ, y − yψ] = [x− xψ, y − yψ] ∈ A,

it suffices to show that one of these brackets is an element of A.

Now

a1 := [x− xψ, y − yψ] = [x, y]− 2[x, yψ] + [xψ, yψ] ∈ A

and

a2 := [x, y]− [x, y]ψ = [x, y]− [xψ, yψ] ∈ A.

But then

2[x, y − yψ] = a1 + a2 ∈ A,

which proves that [x, y − yψ] ∈ A provided that char(K) 6= 2.

Similarly, let D = D(g) be the ideal of χ(g) generated by the elements of

the form [x, yψ] for all x, y ∈ g. It can be seen as the kernel of the homomorphism

β : χ(g)→ g⊕ g defined by β(x) = (x, 0) and β(xψ) = (0, x) for all x ∈ g.

Lemma 3.2. For all g, we have [D,L] = 0.

Proof. By Lemma 3.1, the ideal L is generated as a Lie algebra by the elements x− xψ,

for x ∈ g. Thus it is enough to show that

[[y, zψ], x− xψ] = 0

for all x, y, z ∈ g. We will make repeated use of the fact that [x, yψ] = [xψ, y] for all

x, y ∈ g.

Consider the element [[x, y], zψ] ∈ χ(g), for some x, y, z ∈ g. By the Jacobi

identity we have

[[x, y], zψ] = [[x, zψ], y] + [x, [y, zψ]]. (3.1)

On the other hand, as [[x, y], zψ] = [[x, y]ψ, z] = [[xψ, yψ], z], we have

[[x, y], zψ] = [[xψ, z], yψ] + [xψ, [yψ, z]]. (3.2)

By subtracting (3.2) from (3.1) we obtain

0 = [[x, zψ], y − yψ] + [x− xψ, [y, zψ]],

and then

[[x, zψ], y − yψ] = [[y, zψ], x− xψ] (3.3)
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for all x, y, z ∈ g.

Now
[[x, zψ], y − yψ] = [[xψ, z], y − yψ]

= −[[z, xψ], y − yψ]

= −[[y, xψ], z − zψ].

by (3.3). If we apply once again this reasoning we get

[[x, zψ], y − yψ] = −[[y, xψ], z − zψ]

= [[x, yψ], z − zψ]

= [[z, yψ], x− xψ].

The equality above, together with (3.3), gives us that

[[y, zψ], x− xψ] = −[[y, zψ], x− xψ]

for all x, y, z ∈ g, which completes the proof, since char(K) 6= 2.

The lemma above tell us that the intersection L∩D is an abelian ideal of χ(g).

Let

W = W (g) = L(g) ∩D(g).

We can easily cook a homomorphism defined on χ(g) that has W as its kernel. Define

ρ : χ(g)→ g⊕ g⊕ g

with ρ(x) = (x, x, 0) and ρ(xψ) = (0, x, x) for all x ∈ g. Notice that

ρ(z) = (β1(z), α(z), β2(z))

for all z ∈ χ(g), where β1 and β2 are the two components of β. Then clearly ker(ρ) =

ker(α) ∩ ker(β), that is, W = L ∩D.

Remark 3.3. The constructions above show that χ(g) is an extension of an abelian Lie

algebra by a certain subalgebra of g⊕g⊕g. This fact will be essential in the proof of almost

anything in this chapter. Notice that this already makes use of the fact that char(K) 6= 2.

See Section 3.10 for some comments about the characteristic 2 case.

The first property that we can show that χ(−) preserves is solvability.

Proposition 3.4. If g is solvable of derived length n, then χ(g) is solvable of derived

length at most n+ 1.

Proof. In this case the subalgebra Im(ρ) ⊆ g ⊕ g ⊕ g also has derived length n. The

conclusion is clear, since χ(g)/W ≃ Im(ρ) and W is abelian.
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Now we analyze the quotient χ(g)/W or, equivalently, the image Im(ρ). It

admits a quite concrete description:

Im(ρ) = {(x, y, z) ∈ g⊕ g⊕ g | x− y + z ∈ g′.} (3.4)

Indeed, one inclusion is direct by the definition of ρ. On the other hand, for any x, y, z ∈ g

we have

(x− y + z, 0, 0) = (x, y, z)− (0, z, z)− (y − z, y − z, 0) = (x, y, z)− ρ(zψ)− ρ(y − z)

thus (x, y, z) ∈ Im(ρ) if and only if (x− y+ z, 0, 0) ∈ Im(ρ). But for any x, y ∈ g, we have

([x, y], 0, 0) = [(x, x, 0), (0, y, y)] = [ρ(x), ρ(yψ)] ∈ Im(ρ),

thus (g′, 0, 0) ⊆ Im(ρ). This shows the other inclusion.

Denote by p1, p2 and p3 the projections of g⊕ g⊕ g onto its first, second and

third coordinate, respectively. For any x ∈ g we have

x = p1(ρ(x)) = p2(ρ(x)) = p3(ρ(xψ)),

thus the image Im(ρ) is a subdirect sum in g⊕ g⊕ g. This puts us in the context of the

work of Kochloukova and Martínez-Pérez [46].

Proposition 3.5. If g is finitely presentable (resp. of type FP2), then Im(ρ) is finitely

presented (resp. of type FP2) as well.

Proof. For convenience, in this proof we denote by g1 ⊕ g2 ⊕ g3 the range of ρ. Denote by

p(i,j) : g1 ⊕ g2 ⊕ g3 ։ gi ⊕ gj the projection for (i, j) ∈ {(1, 2), (1, 3), (2, 3)}. It is clear by

the description (3.4) that p(i,j)(Im(ρ)) = gi ⊕ gj for all i, j. It follows from Theorem 1.18

that Im(ρ) will be finitely presented (resp. of type FP2) as soon as Im(ρ) ∩ gi 6= 0 for

i = 1, 2, 3 (where gi is seen as a subalgebra of g1 ⊕ g2 ⊕ g3).

Notice that, again by (3.4), the image Im(ρ) contains g′
i for all i. Thus if g′

is non-trivial, Theorem 1.18 is applicable and we are done. Otherwise it is easily seen

that Im(ρ) is abelian. But it is also finitely generated, because χ(g) is, so Im(ρ) is again

finitely presented (resp. of type FP2) in this case.

Notice that g is a split quotient of Im(ρ), so the converse to the proposition

above also holds by Proposition 1.16.

One could hope to use this result to study the finite presentability of χ(g) by

means of the short exact sequence W (g) ֌ χ(g) ։ Im(ρ). The problem is that, though

W is abelian, we do not know if it is of finite dimension in general. We study this question

in the next section.
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3.2 A condition that forces W to be finite dimensional

We fix g and we study W = W (g) by means of the extension W ֌ L։ ρ(L).

Since W is central in L, the associated 5-term exact sequence can be written as

H2(L;K)→ H2(ρ(L);K)→ W → H1(L;K)→ H1(ρ(L);K)→ 0.

It follows that W is finite dimensional if both H2(ρ(L);K) and H1(L;K) ≃ L/L′ are.

3.2.1 Bounding the dimension of H2(ρ(L);K)

Notice that ρ(L) is the subalgebra of g⊕ g⊕ g generated by the elements of

the form

ρ(x− xψ) = (x, x, 0)− (0, x, x) = (x, 0,−x)

for x ∈ g. The same argument we used in the previous section shows that we can identify

it with the following subalgebra of g⊕ g:

ρ(L) ≃ S := {(x, y) ∈ g⊕ g | x+ y ∈ g′}. (3.5)

It is clear that S is a subdirect sum in g⊕ g, but it is not in general of type

FP2 (which would imply that H2(S;K) is finite dimensional). For instance, this is not the

case if g is free non-abelian by [46, Thm. A]. We need to impose some restrictions.

Lemma 3.6. If g is of type FP2 and g′/g′′ is finite dimensional, then H2(S;K) is finite

dimensional as well.

Proof. Notice that S/(g′ ⊕ g′) ≃ g/g′, and an isomorphism can be given by projection on

the first coordinate. Consider the Lyndon-Hochschild-Serre spectral sequence associated

to this quotient:

E2
p,q = Hp(g/g′;Hq(g′ ⊕ g′;K))⇒ Hp+q(S;K).

If we want to show that H2(S;K) is finite dimensional, it is enough to show that E2
p,q is

finite dimensional for all p, q ≥ 0 with p+ q = 2.

First consider (p, q) = (2, 0). Clearly H0(g′⊕g′;K) ≃ K, so E2
2,0 ≃ H2(g/g′;K).

But g/g′ is finite dimensional, hence of type FP2, so H2(g/g′;K) is finite dimensional.

Let (p, q) = (1, 1). First of all, H1(g′⊕g′;K) ≃ g′/g′′⊕g′/g′′. The action of g/g′

on H1(g′⊕ g′;K) is then converted in an action by g/g′ on g′/g′′⊕ g′/g′′, which is induced

by the adjoint action on the first coordinate and the same on the second coordinate, but

with opposite sign.

Now, g′/g′′ is clearly finitely generated as a g/g′-module, and since g/g′ is of

finite dimension, U(g/g′) is noetherian. This implies that g′/g′′ ⊕ g′/g′′ is actually of type
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FP∞ as a U(g/g′)-module. Thus H1(g/g′;H1(g′⊕g′;K)) ≃ H1(g/g′; g′/g′′⊕g′/g′′) is finite

dimensional.

Finally, let (p, q) = (0, 2). Now we want to show that H0(g/g′;H2(g′ ⊕ g′;K))

is finite dimensional. By the Künneth formula [80, Ex. 7.3.8] we have

H2(g′ ⊕ g′;K) ≃ ⊕0≤i≤2(Hi(g′;K)⊗K H2−i(g′;K)).

Clearly it is enough to show that each of the components of the direct sum above is finitely

generated as a g/g′-module.

One of the components is

H1(g′;K)⊗K H1(g′;K) ≃ g′/g′′ ⊗K g′/g′′,

which is clearly finitely generated, since g′/g′′ is of finite dimension.

The other two components are isomorphic and we have

H2(g′;K)⊗K H0(g′;K) ≃ H2(g′;K)⊗K K ≃ H2(g′;K).

Consider a projective resolution

P : . . .→ Pn → Pn−1 → . . .→ P2 → P1 → P0 → K → 0

of K as a U(g)-module, with Pj finitely generated for j ≤ 2. By applying the functor

K⊗U(g′)−, we get a complex of U(g/g′)-modules, and the modules are still finitely generated

up to degree 2. As U(g/g′) is noetherian, the homologies of this complex are also finitely

generated up to degree 2. But

Hi(K ⊗U(g′) P) ≃ Hi(g′;K).

Thus H2(g′;K) is finitely generated as a U(g/g′)-module, as we wanted.

3.2.2 Bounding the dimension of L/L′

Lima and Oliveira proved in [53] that, in the group-theoretic case, the quotient

L/L′ is finitely generated as soon as the original group G is finitely generated. The idea

was to realize L/L′ as a certain quotient of the augmentation ideal Aug(ZG), where a

finite generating set could be detected more easily. We could adapt their argument (this

was done in [62, Section 4.2]), but here we follow a simpler route, which actually says

more about the structure of L.

Lemma 3.7. Let g be any Lie algebra and let x, y, z ∈ g. Then:

[x− xψ, [y − yψ, z − zψ]] = [x, [y, z]]− [x, [y, z]]ψ.
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Proof. Since x− xψ ∈ L and [y, zψ] = [yψ, z] ∈ D, and these two ideals commute, we have

[x− xψ, [y − yψ, z − zψ]] = [x− xψ, [y, z]− [yψ, zψ]].

But [x, [yψ, zψ]] = [x, [y, z]ψ] = [xψ, [y, z]]. By expanding the right-hand side of the equation

above we obtain the result.

Proposition 3.8. If g is a finitely generated Lie algebra, then L is finitely generated. In

particular, L/L′ is finite dimensional.

Proof. By Proposition 3.1 L is generated as a Lie algebra by x − xψ, for all x ∈ g. If

x1, . . . , xn is a generating set for g, then by linearity L is actually generated by the elements

u− uψ, where u = [xi1 , . . . , xim ] is a right-normed bracket involving these generators. But

by Lemma 3.7 we only need brackets of length 1 and 2. Indeed, it follows from that lemma

that

u− uψ =











[xi1 − x
ψ
i1 , . . . , xim − x

ψ
im ] if n is odd,

[xi1 − x
ψ
i1 , . . . , xim−2

− xψim−2
, [xim−1

, xim ]− [xim−1
, xim ]ψ] otherwise.

.

Thus xi − x
ψ
i and [xi, xj]− [xi, xj]ψ, for 1 ≤ i < j ≤ n, generate L.

By putting together Lemma 3.6, Proposition 3.8 and the comments in the

beginning of Section 3.2, we obtain the following result.

Theorem 3.9. Suppose that g is a Lie algebra of type FP2 such that g′/g′′ is finite

dimensional. Then W (g) is finite dimensional.

This is Theorem B1 in the introduction. The condition “g′/g′′ is finite dimen-

sional” is very restrictive, but we can deduce some nice consequences of this theorem. For

instance, we have:

Corollary 3.10. If g is finite dimensional, then so is χ(g).

Proof. Clearly g′/g′′ is also finite dimensional and g is of type FP2, so W (g) is finite

dimensional. On the other hand χ(g)/W (g) ≃ Im(ρ) is a subalgebra of g⊕ g⊕ g, which

is also clearly finite dimensional. Thus χ(g) itself is of finite dimension.

We do not have any bounds for the dimension of χ(g) in terms of the dimension

of g in the general case.

Similarly to the group-theoretic case in [49], the weak commutativity construc-

tion for Lie algebras preserves the property FP∞ for solvable Lie algebras. Indeed, by [36,

Thm. 1], if g is solvable of type FP∞, then it is finite dimensional. In this case of course

g′/g′′ is also finite dimensional, and then so is W , by Theorem 3.9. Moreover, χ(g)/W is

clearly finite dimensional and solvable, being a Lie subalgebra of g⊕ g⊕ g.
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Corollary 3.11. If g is solvable of type FP∞, then χ(g) has the same property.

Remark 3.12. The converse of Theorem 3.9 does not hold as it will become clear later. For

instance, if g is the free Lie algebra on two generators, then g′/g′′ is infinite dimensional,

but W (g) is actually trivial (see Theorem 3.19 and Proposition 3.24).

3.3 Finiteness properties of χ(g)

In the last section we showed that χ(−) takes a finite dimensional Lie algebra

into a another Lie algebra of finite dimension. It is also clear χ(g) is finitely generated

if g is. Now we will consider other finiteness properties of Lie algebras, such as finite

presentability and the homological types FPm, that is, we will prove Theorem B4. We will

make use of the results about W , L and D that we have already deduced.

3.3.1 Finite presentability

The first step towards a proof of the first part of Theorem B4 is to establish it

for free Lie algebras.

Proposition 3.13. If f is a free Lie algebra of finite rank, then χ(f) is finitely presented.

Proof. Recall that χ(f) ≃ L ¸ f. Let {x1, . . . , xm} be a free basis for f. By Proposition

3.8 L is finitely generated, say L = 〈ℓ1, . . . , ℓn〉. Notice that the quotient χ(f)/D ≃ f⊕ f

is finitely presented, so D is finitely generated as an ideal. Put D = 〈〈d1, . . . , ds〉〉. Each

di can be written as a sum of brackets involving the generators ℓ1, . . . , ℓn, x1, . . . , xm; we

denote by δi one of such sums.

Similarly, χ(f)/W ≃ Im(ρ) is finitely presented by Proposition 3.5, thus we

can write

Im(ρ) = 〈ℓ1, . . . , ℓn, x1, . . . , xm | τ1, . . . , τk〉

for some τi’s. If we denote by F the free lie algebra on {ℓ1, . . . , ℓn, x1, . . . , xm}, then

the obvious homomorphism F ։ Im(ρ) is injective on the subalgebra generated by

{x1, . . . , xm}, as f is free on this set. It follows that each τi is an element of the ideal of F

generated by {ℓ1, . . . , ℓn}.

Finally, since L is an ideal, we can choose words µi,j in ℓ1, . . . , ℓn representing

[xi, ℓj], for each i, j.

Let Γ be the Lie algebra generated by the symbols ℓi, xi, di, wj, where i runs

through the appropriate indices and 1 ≤ j ≤ k, subject to the following defining relations:

1. di = δi for 1 ≤ i ≤ s;
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2. wi = τi for 1 ≤ i ≤ k;

3. [xi, ℓj] = µi,j for 1 ≤ i ≤ m and 1 ≤ j ≤ n;

4. [di, ℓj] = 0 for 1 ≤ i ≤ s and 1 ≤ j ≤ n;

5. [wi, ℓj] = 0 for 1 ≤ i ≤ k and 1 ≤ j ≤ n.

Denote by L0 the subalgebra of Γ generated by {ℓi|1 ≤ i ≤ n}, by D0 the ideal

generated by {di|1 ≤ i ≤ s} and by W0 the ideal generated by {wi|1 ≤ i ≤ k}. Notice

that L0 is actually an ideal of Γ, by the relations of types 3, 4 and 5, together with the

definition of the words µi,j. The relations of type 4 imply that [D0, L0] = 0. From the

relations of type 5 we conclude that W0 commutes with L0, while the relations of the

types 2, 3 and 4 imply that W0 is commutes with D0, since each wi represents an element

of the ideal generated by ℓ1, . . . , ℓn, that is, the subalgebra L0 ⊆ Γ, which commutes with

D0. So W0 is central in L0 +D0, and in particular it is an abelian ideal of Γ.

It is clear that there is a well-defined surjective homomorphism φ : Γ→ χ(f)

that takes the generators of Γ to the corresponding elements in χ(f). The choice of

τ1, . . . , τk implies that φ induces an isomorphism Γ/W0 ≃ χ(f)/W . Thus ker(φ) ⊆ W0.

Also φ(L0) = L and φ(D0) = D, and since W0 ⊆ L0 +D0, we have

Γ
L0 +D0

≃
χ(f)
L+D

≃
f

f′
.

Now W0 is a module over the universal enveloping algebra of Γ/(L0 +D0) ≃ f/f′,

and it is generated by w1, . . . , wk. The fact that U(f/f′) is noetherian implies that ker(φ),

being a submodule of W0, is finitely generated too. But then χ(f) ≃ Γ/ker(φ) is finitely

presented.

Corollary 3.14. If g is finitely presented, then so is χ(g).

Proof. Let g = f/〈〈R〉〉, where f is a free Lie algebra of finite rank and R is a finite set. By

Proposition 3.13 we know that χ(f) is finitely presented. But then

χ(g) ≃ χ(f)/〈〈r, rψ; for r ∈ R〉〉

is also finitely presented.

The converse to the corollary is clearly also true since g is a split quotient of

χ(g).
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3.3.2 Property FP2

The version of this result for the property FP2 can be obtained from the lemmas

in Section 1.3.

Proposition 3.15. If g is of type FP2, then so is χ(g).

Proof. By Proposition 1.15, there is a finitely presented Lie algebra h and an ideal r ⊆ h

such that g ≃ h/r and r = [r, r]. Now, χ(h) is finitely presented by Corollary 3.14, and

clearly χ(g) ≃ χ(h)/I, where I is the ideal generated by x and xψ, for all x ∈ r. This ideal

is perfect, since r = [r, r] ⊆ [I, I], and the same holds for rψ. Thus χ(g) is of type FP2 by

Proposition 1.15.

Again, the converse is true by the Proposition 1.16.

3.3.3 χ(−) does not preserve FP3

Fix f a non-abelian free Lie algebra of finite rank. Recall that subalgebras of a

free Lie algebra are again free (see for instance [74]).

Lemma 3.16. Let S = 〈{(x,−x) | x ∈ f}〉 ⊆ f⊕ f. Then H2(S;K) is infinite dimensional.

Proof. Let π : f⊕f→ f be the projection onto the second coordinate and let N = ker(π)∩S.

Notice that N = f′ ⊕ 0 (by (3.5), for instance). The sequence N ֌ S ։ f is exact, so

there is a spectral sequence

E2
p,q = Hp(f, Hq(N ;K))⇒ Hp+q(S;K).

The fact that f is free implies that E2
p,q = 0 for all p ≥ 2, so E2 = E∞.

Suppose that H2(S;K) is actually finite dimensional. Then the subquotient

E2
1,1 is also finite dimensional, and

E2
1,1 = H1(f;H1(N ;K)) ≃ H1(f;N/N ′).

Now fix any c ∈ f′ r {0}. Notice that c acts trivially on N/N ′, so dimK(c · N/N ′) = 0,

where c is identified with its image in U(f). It follows from Lemma 1.17 that N/N ′ itself is

finite dimensional. This is a contradiction, since N ≃ f′ is an infinitely generated free Lie

algebra.

Lemma 3.17. If χ(f) is of type FP3, then H2(L;K) is of finite dimension.

Proof. The short exact sequence L֌ χ(f) ։ f gives rise to a spectral sequence:

E2
p,q = Hp(f;Hq(L;K))⇒ Hp+q(χ(f);K).
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Notice that, as in the proof of Lemma 3.16, the fact that f is free implies that E2 = E∞.

Now H3(χ(f);K) is finite dimensional, thus E2
p,q = E∞

p,q is finite dimensional as well

whenever p+ q = 3. In particular, E2
1,2 = H1(f;H2(L;K)) is finite dimensional.

Now for any x, y ∈ f the element [x, y] acts trivially on L, since it is the image

of the element [x, yψ] ∈ D ⊆ χ(f), and [D,L] = 0. It follows that [x, y] acts trivially on

H2(L;K) as well. Finally since f is non-abelian, [x, y] can be taken to be non-trivial, so

Lemma 1.17 applies again: H2(L;K) is finite dimensional.

Proposition 3.18. χ(f) is not of type FP3.

Proof. Suppose on the contrary that χ(f) is of type FP3. Consider the spectral sequence

associated to W ֌ L։ S:

E2
p,q = Hp(S;Hq(W ;K))⇒ Hp+q(L;K).

Since S ⊆ f⊕ f, it follows that E2
p,q = 0 for all p ≥ 3. Consider the term E2

1,1. Recall that

the bidegree of the differential map of the spectral sequence {Er} is (−r, r − 1). Thus the

differential maps that involve E2
1,1 are

d2
1,1 : E2

1,1 → E2
−1,2

and

d2
3,0 : E2

3,0 → E2
1,1.

Note that E2
−1,2 = 0 = E2

3,0, so E2
1,1 = E3

1,1. The fact that E3 is non-trivial only on the

columns p = 0, 1, 2, together with the knowledge of the bidegree implies that dr is trivial

for r ≥ 3. Thus E3 = E∞. It follows that E2
1,1 = E∞

1,1 is a subquotient of H2(L;K), which

is finite dimensional by Lemma 3.17.

On the other hand

E2
1,1 = H1(S;H1(W ;K)) = H1(S;W ).

Notice that S acts trivially on W , so H1(S;W ) ≃ S/S ′ ⊗K W . Thus W must be finite

dimensional, since S/S ′ is not trivial (S projects onto f/f′).

Finally, the 5-term exact sequence associated to W ֌ L։ S can be written

as:

H2(L;K)→ H2(S;K)→ W → H1(L;K)→ H1(S;K)→ 0.

But H2(L;K) and W are both finite dimensional, so H2(S;K) is finite dimensional as

well. This contradicts Lemma 3.16.
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3.4 Stem extensions and the Schur multiplier

Given any Lie algebra g, denote

R = R(g) := [g, L, gψ] ⊆ χ(g).

This is the subalgebra of χ(g) generated by the triple brackets [x, [ℓ, yψ]], for all x, y ∈ g

and ℓ ∈ L = L(g). It follows from the facts that L is an ideal and [L,D] = 0 that R is

actually an ideal of χ(g). Notice also that R ⊆ W = W (g). Our goal here is to prove the

following theorem.

Theorem 3.19. For any Lie algebra g, we have W (g)/R(g) ≃ H2(g;K).

Recall that D is the ideal of χ(g) generated by the elements [y, zψ]. In general

it is not generated by these elements as a Lie subalgebra, but it will be modulo R. Indeed,

notice that for x, y, z ∈ g we have

[x, [y − yψ, zψ]] = [x, [y, zψ]]− [x, [yψ, zψ]] = [x, [y, zψ]]− [x, [y, z]ψ]

Since [x, [y − yψ, zψ]] ∈ R, it follows that [x, [y, zψ]] is congruent to [x, [y, z]ψ]. The same

holds for [xψ, [y, zψ]]. Thus D/R is actually generated as an algebra by the image of the

brackets [x, yψ], for x, y ∈ g.

Now we consider the quotient W/R. Since W ⊆ D, it follows from the comments

above that the elements of W/R are of the form:

w +R =
∑

α

λα[[xα,1, y
ψ
α,1], . . . , [xα,nα , y

ψ
α,nα ]] +R, (3.6)

with λα ∈ K and xα,j, yα,j ∈ g. Also, as W ⊆ L, it must be true as well that

∑

α

λα[[xα,1, yα,1], . . . , [xα,nα , yα,nα ]] = 0, (3.7)

and this describes completely the elements of W/R.

3.4.1 W/R is a quotient of H2(g;K)

Following Ellis [32], we consider the non-abelian exterior product g ∧ g. It is

defined as the Lie algebra generated by the symbols x ∧ y, with x, y ∈ g, subject to the

following defining relations:

1. (x1 + x2) ∧ y = x1 ∧ y + x2 ∧ y;

2. x ∧ (y1 + y2) = x ∧ y1 + x ∧ y2;

3. λ(x ∧ y) = (λx) ∧ y = x ∧ (λy);
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4. x ∧ x = 0;

5. [x1, x2] ∧ y = [x1, y] ∧ x2 + x1 ∧ [x2, y];

6. x ∧ [y1, y2] = [x, y1] ∧ y2 + y1 ∧ [x, y2];

7. [x1 ∧ y1, x2 ∧ y2] = [x1, y1] ∧ [x2, y2];

for all x, x1, x2, y, y1, y2 ∈ g and λ ∈ K.

Let φ : g∧g→ g be the Lie algebra homomorphism defined by φ(x∧y) = [x, y].

The main result in [32] is that ker(φ) is isomorphic to the Schur multiplier H2(g;K).

Notice that an element in ker(φ) is written as

∑

α

λα[xα,1 ∧ yα,1, . . . , xα,nα ∧ yα,nα ], (3.8)

with λα ∈ K and xα,j, yα,j ∈ g such that

∑

α

λα[[xα,1, yα,1], . . . , [xα,nα , yα,nα ]] = 0 (3.9)

in g. Consider the homomorphism θ : g ∧ g→ χ(g)/R defined by

θ(x ∧ y) = [x, yψ] +R.

It is not hard to see that θ is well defined. Moreover, it follows from (3.6), (3.7), (3.8) and

(3.9) that θ induces a surjective homomorphism

θ1 : ker(φ)→ W/R,

thus W/R is a quotient of H2(g;K).

3.4.2 H2(g;K) is a quotient of W/R

Now we adapt the arguments in [75], Section 4.1. Suppose that

0→ Z → h→ g→ 0 (3.10)

is a stem extension of Lie algebras, that is, (3.10) is an exact sequence, Z is a central ideal

of h and Z ⊆ h′. Consider

P = 〈{(x, x, 0), (0, x, x) | x ∈ h}〉 ⊆ h⊕ h⊕ h.

In other words, P is the image of ρh : χ(h)→ h⊕ h⊕ h. Recall that P can be described

also as

P = {(x, y, z) ∈ h⊕ h⊕ h | x− y + z ∈ h′}.
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Define

B = {(z, z + z′, z′) | z, z′ ∈ Z} ⊆ P. (3.11)

Notice that B is a central subalgebra of P , since Z is central in h. It follows that

P/B is a quotient of χ(h), by means of the homomorphism ν : χ(h) → P/B such that

ν(x) = (x, x, 0) + B and ν(xψ) = (0, x, x) + B. Since ν(z) = ν(zψ) = 0 for all z ∈ Z,

it follows that ν factors through a homomorphism λ : χ(g) → P/B, thus making the

following diagram commutative:

χ(h) P/B

χ(g)

ν

λ

Lemma 3.20. We have:

1. R(g) ⊆ ker(λ) ⊆ W (g),

2. λ(W (g)) ≃ Z.

Proof. The first inclusion in item 1 is clear, since R(g) is the image of R(h), and R(h) ⊆

ker(ν). The second inclusion is also clear, since ρ(χ(g)) ≃ P/(Z ⊕ Z ⊕ Z), which clearly

is a quotient of P/B, and ρ can be written as the composite

χ(g)→ P/B ։ ρ(χ(g))

where the second map is the canonical projection.

As to item 2, notice that since λ(W (g)) ⊆ ker(P/B ։ ρ(χ(g))), every element

of λ(W (g)) is of the form (z1, z2, z3) +B, with zi ∈ Z. Such elements are clearly equivalent

to elements of the form (0, z, 0) +B in P/B for some z ∈ Z. Conversely, any such element

must be in the image of λ, and actually it must be the image of some element of W (g),

since it projects to 0 in ρ(χ(g)).

Thus λ(W (g)) = {(0, z, 0) + B | z ∈ Z} ⊆ P/B. The homomorphism Z →

λ(W (g)) that takes z to (0, z, 0) + B is clearly well defined and surjective, and it also

injective, by the description of B in (3.11). Thus λ(W (g)) ≃ Z.

By the lemma above we see that W/R = W (g)/R(g) has Z as quotient for

every Z that occurs as the kernel of some stem extension of g. Now we show that H2(g;K)

is one of such kernels, from what follows that H2(g;K) is a quotient of W/R.

Lemma 3.21. Any Lie algebra g fits into a stem extension written as

0→ H2(g;K)→ h→ g→ 0.
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Proof. Write g = f/n, where f is a free Lie algebra. Then by the Hopf formula

H2(g;K) =
[f, f] ∩ n

[f, n]
.

Thus we can see H2(g;K) as a subalgebra of the abelian Lie algebra n/[f, n]. It follows that

H2(g;K) admits a complement, that is, there is some a ⊆ n, with [f, n] ⊆ a, such that

n

[f, n]
≃ H2(g;K)⊕

a

[f, n]
. (3.12)

Notice that [f, a] ⊆ [f, n] ⊆ a, so a is an ideal of f. Consider the exact sequence:

0→ n/a→ f/a→ f/n→ 0. (3.13)

The choice of a implies that n/a ≃ H2(g;K). Since [f, n] ⊆ a, the extension is central.

By the direct sum description (3.12), any element of n is equivalent modulo a to some

w ∈ [f, f], so n/a ⊆ [f/a, f/a]. Thus (3.13) is a stem extension.

Let λ2 : W (g)/R(g)→ H2(g;K) be the homomorphism induced by the homo-

morphism arising in Lemma 3.20 when we take Z to be H2(g;K). By thinking of H2(g;K)

given by the Hopf formula for a fixed presentation of g, as in Lemma 3.21, we can write

explicit expressions for λ2 and for the isomorphism α : H2(g;K) → ker(φ) of [32]. It is

not hard to see then that the composition

H2(g;K)→ ker(φ)→ W (g)/R(g)→ H2(g;K)

of the maps that we defined is the identity. So W (g)/R(g) ≃ H2(g;K), as we wanted.

3.5 Examples

In this section we finally consider some examples. This is mostly done by

restricting our attention to W (g) and R(g) under some particular hypotheses, so that we

can understand χ(g) in terms of Im(ρ) by means of the short exact sequences

0→ W (g)→ χ(g)→ Im(ρ)→ 0

and

0→ R(g)→ W (g)→ H2(g;K)→ 0.

This section was delayed to this point of the chapter because we will make heavy use of

Theorem 3.19.
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3.5.1 Abelian Lie algebras

Let g be a finite dimensional abelian Lie algebra and let x1, . . . , xn be a basis.

Then χ(g) is generated by the symbols x1, . . . , xn and xψ1 , . . . , x
ψ
n with defining relations

given by:

1. [xi, xj] = 0 for all i > j;

2. [xψi , x
ψ
j ] = 0 for all i > j;

3. [xi, x
ψ
i ] = 0 for all i;

4. [xi, x
ψ
j ] = [xψi , xj] for all i > j.

Notice that the elements [xi, x
ψ
j ] are central. Indeed

[xi, x
ψ
j ] = −

1
2

[xi − x
ψ
i , xj − x

ψ
j ],

and by the Jacobi identity, together with the fact that D and L commute, we get that

[[xi − x
ψ
i , xj − x

ψ
j ], xk] = 0 for all k. Similarly, we have [[xi − x

ψ
i , xj − x

ψ
j ], xψk ] = 0 for all k.

Proposition 3.22. If g is an abelian Lie algebra of dimension n, then χ(g) is a Lie

algebra of dimension 2n+
ˆ
n

2

˙
. More specifically, W = D is a central ideal of dimension

ˆ
n

2

˙
, with χ(g)/W ≃ K2n. Finally, R = 0.

Proof. The remarks above the proposition imply that D is linearly generated by [xi, x
ψ
j ],

for i > j. Each of these elements is clearly in the kernel of ρ, that is, in W , so D = W .

Now D/R ≃ W/R ≃ H2(g;K) ≃
2

∧

(g) (see Example 1.10), thus dim(D) ≥
ˆ
n

2

˙
. But

then the elements [xi, x
ψ
j ] with 1 ≤ j < i ≤ n must be linearly independent and R = 0.

Finally, it is clear by (3.4) that Im(ρ) ≃ g⊕ g.

3.5.2 Perfect Lie algebras

Let g be perfect, that is, g = g′. Notice that in this case Im(ρ) = g ⊕ g ⊕ g.

Moreover, W is a central ideal of χ(g). In fact, for x, y ∈ g ⊆ χ(g) and w ∈ W , we have

[[x, y], w] = [[x,w], y] + [x, [y, w]] = [[x,w], yψ] + [x, [yψ, w]] = [[x, yψ], w] = 0.

The first and the third equalities are instances of the Jacobi identity; the second and

the fourth are consequences of [L,D] = 0. Thus W commutes with g′ = g ⊆ χ(g), and

similarly with gψ. In this case R(g) = [g, [L, gψ]] = 0. Indeed:

R(g) = [g, [L, gψ]] = [g′, [L, gψ]] ⊆ [g, [g, [L, gψ]]] = 0,
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since [g, [L, gψ]] ⊆ W .

We conclude that χ(g) is a central (in fact stem) extension of H2(g;K) by

g⊕ g⊕ g. In particular, if g is superperfect, that is, g is perfect and H2(g;K) = 0, then

χ(g) ≃ g⊕ g⊕ g.

3.5.3 Lie algebras generated by two elements

We will show that R(f) = 0 if f is free of rank 2.

Remark 3.23. We will use repeatedly that for any d ∈ D and [x1, . . . , xi, . . . , xn] an

arbitrarily arranged bracket of elements xi ∈ f ∪ fψ, we have

[[x1, . . . , xi, . . . , xn], d] = [[x1, . . . , x
ψ
i , . . . , xn], d]

for any i, as a consequence of [D,L] = 0. If xi is already an element of fψ, we interpret ψ

as an automorphism of order 2, that is, xi = yψ ∈ fψ and xψi = (yψ)ψ = y ∈ f.

Let {x, y} be a free basis of f and let M be the set of monomials in these

generators. We want to show that R(f) = [f, [L, fψ]] = 0. Clearly it is enough to show that

R(g, ℓ, h) := [g, [ℓ, hψ]] = 0 (3.14)

for all g, h ∈ f and ℓ ∈ L. By linearity, it suffices to consider g, h ∈M . We will show that

actually it is enough to consider indecomposable monomials, that is, g, h ∈ {x, y}. For

this, it suffices to show that if g or h can be written as a non-trivial bracket, then (3.14)

follows from the identities with respect to each of the terms of the bracket.

First, if we have

[[g1, g2], [ℓ, hψ]] = [g1, [g2, [ℓ, hψ]]]− [g2, [g1, [ℓ, hψ]]].

So if R(gi, ℓ, h) = 0 for i = 1, 2, then R([g1, g2], ℓ, h) = 0 as well.

Similarly, suppose h = [h1, h2]. By the Jacobi identity we have:

[g, [ℓ, [h1, h2]ψ]] = [[ℓ, hψ1 ], [g, hψ2 ]] + [[g, [ℓ, hψ1 ]], hψ2 ]− [[g, [ℓ, hψ2 ]], hψ1 ]− [[ℓ, hψ2 ], [g, hψ1 ]].

The first and the fourth terms in the right-hand side of the equation above vanish because

[D,L] = 0. The second and the third terms vanish if we assume that R(g, ℓ, h1) =

R(g, ℓ, h2) = 0.

Now we want to do the same with respect to ℓ. We will show that is enough to

consider the elements ℓ = m−mψ, with m ∈ {x, y}.

Clearly it is enough to let ℓ run through a linear spanning set for L. We know

that L is generated as an algebra by the elements m−mψ with m ∈M . Thus a spanning

set for L can be obtained by considering the long brackets involving these elements.
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Now recall that given m,n, p ∈M , we have by Lemma 3.7:

[m−mψ, [n− nψ, p− pψ]] = [m, [n, p]]− [m, [n, p]]ψ.

From this follows that L is linearly spanned by elements of the form m − mψ and

[m−mψ, n− nψ] with m,n ∈M . Now:

[g, [[m−mψ, n− nψ], hψ]] = [g, [[m−mψ, hψ], n− nψ]] + [g, [m−mψ, [n− nψ, hψ]]] = (∗)

If R(n,m−mψ, h) = R(m,n− nψ, h) = 0, then:

(∗) = −[g, [[m−mψ, hψ], nψ]]− [g, [mψ, [n− nψ, hψ]]]

Then by the Jacobi identity, together with [D,L] = 0, we have:

(∗) = −[[g, [m−mψ, hψ]], nψ]− [mψ, [g, [n− nψ, hψ]]],

so R(g, [m − mψ, n − nψ], h) = 0 if we also assume that R(g,m − mψ, h) = 0 and

R(g, n− nψ, h) = 0.

We are down to: if R(g,m−mψ, h) = 0 for all g, h ∈ {x, y} and m ∈M , then

R(f) = 0.

Finally, it is enough to consider m ∈ {x, y}. In fact, if m = [u, v], then

[g, [[u, v], hψ]] = [[g, [u, hψ]], v] + [[u, hψ], [g, v]] + [[g, u], [v, hψ]] + [u, [g, [v, hψ]]].

To see that R(g, [u, v]− [u, v]ψ, h) = 0, we need to show that we can change any instance

of u (resp. v) for uψ (resp. vψ) in the right-hand side of the equation above. For the first

term we use that R(g, u − uψ, h) = 0 and then Remark 3.23 (to change v for vψ). The

fourth term is analogous, but we use that R(g, v − vψ, h) = 0. For the second and third

terms we apply Remark 3.23 twice.

By the arguments above, for R(f) = 0, it is enough that R(g,m−mψ, h) = 0

with g, h,m ∈ {x, y}. But this can verified directly, being consequence of the relations

[x, xψ] = 0, [y, yψ] = 0 and [D,L] = 0. Thus:

Proposition 3.24. If g can be generated by two elements, then R(g) = 0.

Proof. We have proved for f free of rank two. In general, if g is generated by two elements,

then there is a surjective homomorphism ϕ : f→ g, which induces ϕ∗ : χ(f)→ χ(g). It is

clear that ϕ∗(R(f)) = R(g), so the result follows.

Remark 3.25. Observe that the proof above does not work for a free Lie algebra of rank

greater than 2, since we can not guarantee the base step: [xψ, [y − yψ, z]] will not be trivial

if x, y and z are three independent generators.

Thus, in general, if g is generated by two elements, then χ(g) is an extension

of H2(g;K) by Im(ρ). In particular, if f is the free Lie algebra on two generators, then

χ(f) ≃ Im(ρ).
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3.6 A presentation for L(g)

At this point we have some non-trivial examples of concrete descriptions of

χ(g), but they all rely in showing somehow that R(g) = 0. In this section we develop

a new approach that consists in writing down a presentation for L(f), where f is a free

Lie algebra. Besides being interesting on its own right, this allows us to understand very

well the structure of L(g) for some nilpotent Lie algebras of small class. We will find in

particular the first examples where R(g) 6= 0.

Recall that our convention is that unspecified brackets denote right-normed

brackets, that is:

[x1, x2, . . . , xn−1, xn] = [x1, [x2, . . . , [xn−1, xn] . . .]]

for any elements x1, . . . , xn of a Lie algebra.

Let f be the free Lie algebra with free basis x1, . . . , xm. Recall that by the proof

of Proposition 3.8, L = L(f) is generated as a subalgebra by the elements xi − x
ψ
i and

[xi, xj]− [xi, xj]ψ, for 1 ≤ i < j ≤ m.

We introduce the notation:

ãi := xi − x
ψ
i

for 1 ≤ i ≤ m and

b̃i,j := [xi, xj]− [xi, xj]ψ

for 1 ≤ i < j ≤ m. For convenience we set b̃i,i = 0 and b̃i,j = −b̃j,i for all 1 ≤ j < i ≤ m.

In the next two lemmas we deduce some relations between these generators.

They all come from suitable interpretations of the identity of Lemma 3.7. We will show

later that they actually form a full set of relations for L with the generators that we chose.

Lemma 3.26. For any i, j, k, l, we have:

[ãi, ãj, b̃k,l] = [ãi, b̃j,k, ãl] + [ãi, ãk, b̃j,l]

Proof. We use Lemma 3.7, the Jacobi identity and then Lemma 3.7 again:

[ãi, ãj, b̃k,l] = [xi − x
ψ
i , xj − x

ψ
j , [xk, xl]− [xk, xl]ψ]

= [xi, xj, xk, xl]− [xi, xj, xk, xl]ψ

= [xi, [xj, xk], xl]− [xi, [xj, xk], xl]ψ + [xi, xk, xj, xl]− [xi, xk, xj, xl]ψ

= [ãi, b̃j,k, ãl] + [ãi, ãk, b̃j,l],

as we wanted.
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Lemma 3.27. Let n > 1 be an odd integer and let ui be either some ãj or some b̃j,j′, for

all i. Then:

[u1, . . . , b̃j,j′ , . . . , b̃k,k′ , . . . , un] = [u1, . . . , [ãj, ãj′ ], . . . , [ãk, ãk′ ], . . . , un]

and

[u1, . . . , b̃j,j′ , . . . , un−2, ãn−1, ãn] = [u1, . . . , [ãj, ãj′ ], . . . , un−2, b̃n−1,n].

Proof. Notice that Lemma 3.7 actually gives a way of writing any right-normed bracket of

odd length involving elements of the form v − vψ as a single element of this same form. It

suffices then to apply this reasoning to each of the brackets in the statement of the lemma

and verify that the two sides of each equation actually coincide.

Define L as the Lie algebra generated by the symbols ai and bi,j, for 1 ≤ i <

j ≤ m, subject to the relators as in Lemmas 3.26 and 3.27 (without the tildes), that is,

r = [ai, aj, bk,l]− [ai, bj,k, al]− [ai, ak, bj,l] (3.15)

for all i, j, k, l,

r = [u1, . . . , bj,j′ , . . . , bk,k′ , . . . , un]− [u1, . . . , [aj, aj′ ], . . . , [ak, ak′ ], . . . , un] (3.16)

for all ui ∈ {at, bs,t}s,t, all indices and n ≥ 3 an odd integer and

r = [u1, . . . , bj,j′ , . . . , un−2, an−1, an]− [u1, . . . , [aj, aj′ ], . . . , un−2, bn−1,n], (3.17)

for all ui ∈ {at, bs,t}s,t, all indices and n ≥ 3 an odd integer. Again we are using the

convention that bi,j = −bj,i and bi,i = 0, so that all expressions above make sense. We will

show that L ≃ L(g).

Lemma 3.28. The following formulas define an action of f on L:

xs · ai =
1
2

([as, ai] + bs,i)

and

xs · bi,j =
1
2

([as, bi,j] + [as, ai, aj]),

for all s, i, j.

Proof. Let F be the free Lie algebra on ai, bi,j, for 1 ≤ i < j ≤ m. It is clear that

the formulas above give well-defined derivations Ds : F → F . To see that they induce

derivations Ds : L → L we need to verify that the relations are respected.

First notice that

Ds([ai, aj, bk,l]) =
1
2

([as, ai, aj, bk,l] + [bs,i, aj, bk,l] + [ai, bs,j, bk,l] + [ai, aj, as, ak, al]).
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Modulo relators of type (3.16) we have

[bs,i, aj, bk,l] = [[as, ai], aj, ak, al]

and

[ai, bs,j, bk,l] = [ai, [as, aj], ak, al],

thus

Ds([ai, aj, bk,l]) =
1
2

([as, ai, aj, bk,l] + [as, ai, aj, ak, al]).

It becomes clear from this expression that for

r = [ai, aj, bk,l]− [ai, bj,k, al]− [ai, ak, bj,l] ∈ F,

the image Ds(r) is a consequence of the defining relators of L.

Now let

r21 = [u1, . . . , bj,j′ , . . . , bk,k′ , . . . , un]

r22 = [u1, . . . , [aj, aj′ ], . . . , [ak, ak′ ], . . . , un],

with n > 1 odd. We need to verify that Ds(r21 − r22) is a consequence of the defining

relators of L. We compute each Ds(r2i) by applying the derivation property. Notice that

Ds(r21)−
1
2

[as, r21] =
1
2

([u1, . . . , [as, aj, aj′], . . . , bk,k′ , . . . , un]

+ [u1, . . . , bj,j′ , . . . , [as, ak, ak′ ], . . . , un] + A),

where A is the sum of the terms

[u1, . . . , Ds(ui)− [as, ui], . . . , bj,j′ , . . . , bk,k′ , . . . , un]

with i 6= j, k. Similarly we have:

Ds(r22)−
1
2

[as, r22] =
1
2

([u1, . . . , [bs,j, aj′] + [aj, bs,j′], . . . , [ak, a′
k], . . . , un]

+ [u1, . . . , [aj, aj′ ], . . . , [bs,k, ak′] + [ak, bs,k′], . . . , un] +B),

where B is the sum of the terms

[u1, . . . , Ds(ui)− [as, ui], . . . [aj, aj′ ], . . . , [ak, ak′ ], . . . , un]

with i 6= j, k.

Now notice that each of the terms of Ds(r22)−
1
2

[as, r22] can be transformed

into the respective term of Ds(r21)−
1
2

[as, r21] modulo a relator of type (3.16) or (3.17)

(or that after an application of the Jacobi identity). We recall that n is an odd integer
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to begin with, so all brackets have length n or n+ 2 and the application of the defining

relators is licit. Thus

Ds(r21 − r22) ≡
1
2

[as, r21 − r22] ≡ 0,

where the congruence is taken modulo the defining relators of L. The proof for a relator of

type (3.17) is completely analogous, so we omit.

Finally, since each Ds : L → L is a well defined derivation and g is free, the

association xs 7→ Ds defines a Lie algebra homomorphism g→ Der(L), that is, an action

of g on L.

We will abandon the notation Ds for these derivations; we will simply write

xs · ℓ to denote the action of Ds on some ℓ ∈ L. We may consider the semi-direct product

L¸ f defined with respect to this action, so that xs · ℓ is identified with [xs, ℓ] for all ℓ ∈ L.

In order to prove that L ≃ L(f), we first deduce some formulas for the action

of f on L. For instance, we have this nice formula for the action of long right-normed

brackets involving the generators of f on the generators of L.

Lemma 3.29. For all n ≥ 2 and for any u ∈ {ai, bi,j} we have:

[xi1 , . . . , xin ] · u = −
1
2

([u, ai1 , . . . , ain ] + [u, ai1 , . . . , ain−2
, bin−1,in ])

Proof. This can be proved by induction on n. The formulas are easily verified for n = 2.

For n > 2 we use the following fact: if α and β are derivations of a Lie algebra L, and

β(x) = [x, b] for some b ∈ L and for all x ∈ L (that is, β is inner), then [α, β](x) = [x, α(b)]

for all x ∈ L.

In order to use the induction hypothesis, we write

[xi1 , . . . , xin ] = [xi1 , [xi2 , . . . , xin ]].

The derivation associated to [xi2 , . . . , xin ] is inner and the multiplying element is given by

the statement. Thus

[xi1 , . . . , xin ] · u = −
1
2

([u, xi1 · ([ai2 , . . . , ain ] + [ai2 , . . . , ain−2
, bin−1,in ])])

for all u.

By computing via the derivation property, we actually obtain

xi1 · ([ai2 , . . . , ain ] + [ai2 , . . . , ain−2
, bin−1,in ]) = [ai1 , . . . , ain ] + [ai1 , . . . , ain−2

, bin−1,in ] + s

modulo the defining relators of L, where s in an element such that [u, s] is a defining relator

of L for all u ∈ {ai, bi,j} (in other words, s is central). This gives the desired result.
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Analogously to Lemma 3.7, we have a nice way of writing some long brackets

of L.

Lemma 3.30. We have:

[xi1 − ai1 , . . . , xin − ain ] =











[xi1 , . . . , xin ]− [ai1 , . . . , ain ] if n is odd,

[xi1 , . . . , xin ]− [ai1 , . . . , ain−2
, bin−1,in ] otherwise.

Proof. We prove it by induction of n. If n = 1 this is clear. If n > 1 is even, then by

induction hypothesis we have

[xi1 − ai1 , . . . , xin − ain ] = [xi1 − ai1 , [xi2 , . . . , xin ]− [ai2 , . . . , ain ]].

By Lemma 3.29 we have

−[ai1 , [xi2 , . . . , xin ]] = −
1
2

([ai1 , . . . , ain ] + [ai1 , . . . , ain−2
, bin−1,in ]). (3.18)

Also:

−[xi1 , [ai2 , . . . , ain ]] = −
1
2

([ai1 , . . . , ain ] +
n

∑

j=2

[ai2 , . . . , bi1,ij , . . . , ain ]). (3.19)

By relations 3.15 and 3.17 it follows that
n

∑

j=2

[ai2 , . . . , bi1,ikj, . . . , ain ] = [ai1 , ai2 , . . . , ain−2
, bin−1,in ].

Finally, by summing (3.18) and (3.19), we get

[xi1 − ai1 , . . . , xin − ain ] = [xi1 , . . . , xin ]− [ai1 , . . . , ain−2
, bin−1,in ],

as we wanted.

If n is odd we have similarly

[xi1 − ai1 , . . . , xin − ain ] = [xi1 − ai1 , [xi2 , . . . , xin ]− [ai2 , . . . , ain−2
, bin−1,in ]].

This time we have:

(3.20)
−[xi1 , [ai2 , . . . , ain−2

, bin−1,in]] = −
1
2

([ai1 , . . . , ain−2
, bin−1,in]

+
n−2
∑

j=1

[ai2 , . . . , bi1,ij , . . . ain−2
, bin−1,in]

+ [ai2 , . . . , ain−2
, ai1 , ain−1

, ain])

Now, by relations (3.16) we get

n−2
∑

j=1

[ai2 , . . . , bi1,ij , . . . ain−2
, bin−1,in ] + [ai2 , . . . , ain−2

, ai1 , ain−1
, ain ] = [ai1 , . . . , ain ].

Thus by (3.18) and (3.20) we get the result. The proof is complete.
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Let M be the set of right-normed brackets involving x1, . . . , xm. For u =

[xi1 , . . . , xin ] ∈M, with n ≥ 2, denote

µ(u) =











[ai1 , . . . , ain ] if n is odd,

[ai1 , . . . , ain−2
, bin−1,in ] otherwise.

Similarly, let:

ξ(u) =











[ai1 , . . . , ain−2
, bin−1,in ] if n is odd,

[ai1 , . . . , ain ] otherwise.

By Lemma 3.29, for u = [xi1 , . . . , xin ] with n ≥ 2, we have:

u · ℓ = −
1
2

[ℓ, µ(u) + ξ(u)]

for all ℓ ∈ L.

Remark 3.31. Notice that if f is free on x1, . . . , xm, then a full set of relations for χ(f),

with generating set x1, . . . xm, x
ψ
1 , . . . , x

ψ
m, is given by:

[u, vψ] = [uψ, v]

for all right-normed brackets u, v involving the generators x1, . . . , xm (including the case

u = v).

Theorem 3.32. Let f be free on the set {x1, . . . , xm}. Then χ(f) ≃ L¸ f.

Proof. Define

σ : L¸ f→ χ(f)

by

σ(xi) = xi, σ(ai) = xi − x
ψ
i , σ(bi,j) = [xi, xj]− [xi, xj]ψ.

By choice, this is a well-defined surjective homomorphism of Lie algebras.

Similarly, define

θ : χ(f)→ L¸ f

by

θ(xi) = xi, θ(x
ψ
i ) = xi − ai.

We need show that θ is well-defined. We will verify that the relations as in Remark 3.31

are preserved.

Let u, v ∈ M. If u and v have length 1, say u = xi and v = xj, we can see

directly by the definition of the action of f on L that [xi, aj] = −[ai, xj], which implies

that [θ(u), θ(vψ)] = [θ(uψ), θ(v)].
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So suppose that v has length at least 2. By Lemma 3.30 we have

[θ(u), θ(vψ)] = [u, v − µ(v)] = [u, v]− [u, µ(v)].

If u = xt has length 1, this reduces to [xt, v]− [xt, µ(v)] and we have on the other hand:

[θ(uψ), θ(v)] = [xt − at, v] = [xt, v]− [at, v].

Now write v = [xi1 , . . . , xin ]. If n is odd, we have:

[xt, µ(v)] = [xt, [ai1 , . . . , ain ]] =
1
2

n
∑

j=1

[ai1 , . . . , [at, aij ] + bt,ij , . . . , ain ].

For 1 ≤ j ≤ n− 2, as a consequence of relation (3.17) we have

[ai1 , . . . , bt,ij , . . . , ain ] = [ai1 , . . . , [at, aij ], . . . , ain−2
, bin−1,in ].

Also, by relation (3.15) we have:

[ai1 , . . . , ain−2
, bt,in−1

, ain ] + [ai1 , . . . , ain−2
, ain−1

, bt,in ] = [ai1 , . . . , ain−2
, at, bin−1,in ]

Thus:

[xt, µ(v)] =
1
2

([at, ai1 , . . . , ain ] + [at, ai1 , . . . , ain−2
.bin−1,in ]) =

1
2

[at, µ(v) + ξ(v)]

This coincides with the formula given on Lemma 3.29 for [at, v], so we have [θ(xi), θ(vψ)] =

[θ(xψi ), θ(v)]. The same reasoning gives the result if n is even, but we use the relations

(3.16).

Finally, suppose that both u and v have length at least two. Since µ(v) ∈ L,

we have by the comment above the theorem:

[θ(u), θ(v)ψ] = [u, v]− [u, µ(v)] = [u, v] +
1
2

[µ(v), µ(u) + ξ(u)].

By looking similarly at [θ(uψ), θ(v)], we see that in order to show that the relation

[u, vψ] = [uψ, v] is preserved by θ, we need only to verify that

[µ(u), ξ(v)] = [ξ(u), µ(v)]

for all u, v. But this is an instance of relation (3.17), after opening up the brackets as

right-normed ones (note that [µ(u), ξ(v)] is always a bracket of odd length).

Thus θ is well defined and clearly σ ◦ θ = id and θ ◦ σ = id, that is, θ is an

isomorphism of Lie algebras.

By restriction we get an isomorphism L(f) ≃ L.

In general, if g = f/N , where N ⊆ f is an ideal, then χ(g) is the quotient of

L¸ f by the ideal generated by θ(N ∪Nψ), where θ is the homomorphism defined in the
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proof of the theorem. Clearly θ(N) generates a copy of N inside f. On the other hand, if

r ∈ N , then

θ(rψ) = r − µ(r),

where µ is extended by linearity (or µ : f → L ¸ f is defined as µ = inc − θ|fψ , where

inc : f→ L¸ f is the obvious inclusion). It follows that χ(g) = L/J ¸ g, where J is the

ideal of χ(f) generated by µ(r), for all r ∈ N . This gives a presentation for L(g) as well.

The presentation of L(f) that we obtained is of course infinite. For a non-abelian

free Lie algebra f in fact L(f) does not admit a finite presentation, as we can show using

arguments similar to those in Section 3.3.3.

Proposition 3.33. If f is free non-abelian, then L(f) does not admit a finite presentation.

Proof. It suffices to show that H2(L(f);K) is infinite dimensional. Suppose, on the contrary,

that it is of finite dimension. Recall that W/R ≃ H2(f;K). In particular W = R if f is

free. By analyzing R in terms of the generators of L, it becomes clear that R ⊆ [L,L]. In

particular, Lab ≃ ρ(L)ab. Now, the 5-term exact sequence associated to the LHS spectral

sequence arising from R ֌ L։ ρ(L) reduces to

H2(L;K)→ H2(ρ(L);K)→ R→ 0.

By Lemma 3.16, the homology H2(ρ(L);K) is infinite dimensional. Thus W = R is infinite

dimensional (we are under the hypothesis that H2(L;K) is finite dimensional).

Now, consider the spectral sequence itself

E2
p,q = Hp(ρ(L);Hq(W ;K))⇒ Hp+q(L;K).

Notice that E2
1,1 = E∞

1,1. Indeed, the differentials involved are d1,1 : E2
1,1 → E2

−1,2 and

d1,1 : E2
3,0 → E2

1,1. Clearly E2
−1,2 = 0, but also E2

3,0 = H3(ρ(L);K) = 0, since ρ(L) ⊆ g⊕ g.

Then E2
1,1 = E3

1,1 = E∞
1,1. But:

E2
1,1 = H1(ρ(L);H1(W ;K)) ≃ ρ(L)ab ⊗K W,

since ρ(L) acts trivialy on W . Thus, if W is infinite dimensional, then so is E∞
1,1, and

finally so is H2(L;K). This is a contradiction.

Remark 3.34. Notice that if f is free of rank 2 the conclusion was more immediate:

W = R = 0, so L ≃ ρ(L), and we already knew that H2(ρ(L);K) was infinite dimensional.

3.7 Nilpotent Lie algebras

For g an abelian Lie algebra, χ(g) is completely described in Proposition 3.22.

We consider here nilpotent Lie algebras of class c ≥ 2. We will show that if g is nilpotent

of class c, then χ(g) is nilpotent of class at most c+ 2.
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Denote by nm,c the free nilpotent Lie algebra of rank m and class c. By the

comments in the previous section, we can obtain L(nm,c) by taking the quotient of L ≃ L(g)

(where g is free of rank m) by the ideal generated by the elements µ(u), for brackets u of

length at least c+ 1 involving the generators of g.

Consider the generators ai, bi,j of L. Define

d(ai) := 1, d(bi,j) := 2,

for all i < j. For a right-normed bracket ℓ = [ℓ1, . . . , ℓn] involving some of these generators,

we define the degree d(ℓ) of ℓ as

d(ℓ) =
n

∑

j=1

d(ℓj).

Now we are ready to determine the (class of) nilpotency of χ(g).

Theorem 3.35. Suppose that h is nilpotent of class c. Then χ(h) is nilpotent and its

nilpotency class is bounded by the smallest even integer greater than c.

Proof. Clearly we can assume that h is free nilpotent of class c, so that all the comments

above the theorem make sense. Suppose that we want to show that χ(h) is nilpotent of

class n, where n may be c+ 1 or c+ 2 depending on the parity of c. Let x1, . . . , xm be a

set of generators for h. It is enough then to show that

w = [xθn+1

in+1
, . . . , xθ2

i2 , x
θ1

i1 ] = 0

for all 1 ≤ ij ≤ m and θj ∈ {id, ψ}. Clearly if θi = id for all i, then w = 0. Similarly,

w = 0 if θi = ψ for all i. We can assume without loss of generality that θ1 = id. Let

k = min{j|θj 6= id}. Since [xψik , xik−1
, . . . , xi1 ] ∈ D and [D,L] = 0, we have

w = [xin+1
, . . . , xik+1

, xψik , xik−1
, . . . , xi2 , xi1 ].

It follows by induction on k that w is a linear combination of terms of the form

[xjn+1
, . . . , xj2 , x

ψ
j1 ], for some 1 ≤ jt ≤ m. Indeed, this is clear if k = 2. If k > 2, by

the Jacobi identity we have:

(3.21)w = [xin+1
, . . . , xik+1

, xik−1
, xψik , xik−2

, . . . , xi2 , xi1 ]

+ [xin+1
, . . . , xik+1

, [xψik , xik−1
], xik−2

, . . . , xi2 , xi1 ].

By induction hypothesis we can rewrite the first term on the right-hand side of the equation

above in the form we want. By antisymmetry the second term is

[xin+1
, . . . , xik+1

, [xik−2
, . . . , xi2 , xi1 ], [xik−1

, xψik ]],
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which can be rewritten by the Jacobi identity as a linear combination of terms of the form

[xin+1
, . . . , xik+1

, xσ(ik−2), . . . , xσ(i2), xσ(i1), xik−1
, xψik ]

for some permutations σ ∈ Sk−2. All of this means that χ(h) is nilpotent of class n if

w = [xin+1
, . . . , xi2 , x

ψ
i1 ] = 0

for all 1 ≤ i ≤ m.

Now we interpret this in terms of the isomorphism θ : χ(h) → L/J ¸ h. We

have:

θ(w) = θ([xin+1
, . . . , xi2 , x

ψ
i1 ]) = [xin+1

, . . . , xi2 , xi1 − ai1 ] = −[xin+1
, . . . , xi2 , ai1 ],

since [xin+1
, . . . , xi2 , xi1 ] = 0. By induction we see that −[xin+1

, . . . , xi2 , ai1 ] is a linear

combination of brackets ℓ = [ℓ1, . . . , ℓk], involving the generators of L, with d(ℓ) = n+ 1.

Finally, we consider the parity of c. If c is odd, we are trying to prove that

χ(g) is nilpotent of class c + 1, that is, n = c + 1. Given a bracket ℓ = [ℓ1, . . . , ℓk] with

d(ℓ) = c+ 2, we can use the defining relations of L to rewrite it as a linear combination of

elements of the forms

[ai1 , . . . , aic+2
]

and

[ai1 , . . . , aic , bic+1,ic+2
].

Notice that it essential the fact that c+ 2 is an odd integer, otherwise we would not be

able to get rid of brackets of the form

[bi1,i2 , ai3 , . . . , aic , bic+1,ic+2
].

Now, as observed before, µ(u) is trivial in L for any u a bracket involving

the generators of g with length at least c + 1. In particular, for u = [xi1 , . . . , xic+2
] and

v = [xi2 , . . . , xic+2
] we get

µ(u) = [ai1 , . . . , aic+1
, aic+2

]

and

µ(v) = [ai2 , . . . , aic , bic+1,ic+2
].

Clearly µ(u) = 0 and µ(v) = 0 for all u and v of those forms implies that ℓ = 0. Thus χ(g)

is nilpotent of class at most c+ 1.

Similarly, suppose that c is even. Now we want to show that χ(g) is nilpotent

of class at most n = c + 2. Once again n + 1 = c + 3 is an odd integer, so as before we

only need to show that brackets of the forms

[ai1 , . . . , aic+3
]
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and

[ai1 , . . . , aic+1
, bic+2,ic+3

].

The same argument works: the fact that µ([xi1 , . . . , xic+1
]) and µ([xi1 , . . . , xic+2

]) must be

trivial in L is enough to guarantee what we want. In this case the proof works to show

that g must be nilpotent of class at most n = c+ 2, as we wanted.

These bounds are sharp in the generality of the statement of the theorem, as

we will see in the next section. We can, however, obtain a sharper result for 2-generated

Lie algebras by a very simple argument.

Proposition 3.36. If g is 2-generated and nilpotent of class c, then χ(g) is nilpotent of

class c+ 1.

Proof. As in the proof of Theorem 3.35, it is enough to show that right-normed brackets

of the form

w = [xi1 , . . . , xic+1
, xψic+2

]

are trivial. Now, by Proposition 3.24 we know that R(g) = [g, L(g), gψ] = 0 whenever g is

2-generated. In particular,

[u, v, wψ] = [u, vψ, wψ]

for all u, v, w ∈ g. But then, by induction, we have:

w = [xi1 , . . . , xic , x
ψ
ic+1

, xψic+2
] = . . . = [xi1 , x

ψ
i2 , . . . , x

ψ
ic+1

, xψic+2
] = 0,

since [xψi2 , . . . , x
ψ
ic+1

, xψic+2
] is trivial in gψ.

3.8 More examples

For the classes of nilpotency c ≤ 3, we can actually get from the proofs in the

previous sections a concrete description of χ(nm,c).

3.8.1 Free nilpotent of class 2

Proposition 3.37. If h = nm,2, then L(h) is free nilpotent of rank m+
ˆ
m

2

˙
and class 2.

In particular, we have

dim(χ(h)) = 2k +
ˆ
k

2

˙
,

where k = m+
ˆ
m

2

˙
. Finally, if m ≥ 3, then χ(h) is nilpotent of class at exactly 4.
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Proof. By the previous section, µ(u) is trivial if u has length at least 3. Thus:

µ([xi1 , xi2 , xi3 ]) = [ai1 , ai2 , ai3 ] = 0 (3.22)

and

µ([xi1 , xi2 , xi3 , xi4 ]) = [ai1 , ai2 , bi3,i4 ] = 0 (3.23)

for all ij. It is clear then that any [ai, aj] is a central element in L. Moreover, by relation

(3.16) we have

[bi1,i2 , ai3 , bi4,i5 ] = [[ai1 , ai2 ], ai3 , ai4 , ai5 ]

and

[bi1,i2 , bi3,i4 , bi5,i6 ] = [[ai1 , ai2 ], [ai3 , ai4 ], ai5 , ai6 ]

which also become trivial by (3.22). This is enough to conclude that both [ai, bj,k] and

[bi,j, bk,l] are also central in L. Finally, it is clear that the original relations of L and all

µ(u), with u a bracket of length greater than 4, are actually consequences of (3.22) and

(3.23). Thus L(h) is free nilpotent of class 2 with basis ai and bi,j, for all 1 ≤ i < j ≤ m.

The formula for the dimension follows clearly from the fact that χ(h) ≃ L(h)¸h.

Finally, if m ≥ 3, then we can consider the element

[[x1, a2], [x1, a3]] =
1
4

[b1,2, b1,3] 6= 0,

which is clearly a non-trivial element of γ4(χ(h)).

Putting the dimension of χ(nm,2) in terms of m, it is not hard to see that

dim(χ(nm,2)) =
1
8

(m4 + 2m3 + 7m2 + 6m). (3.24)

In order to compute the formula for the dimension of R(nm,2) it suffices to subtract from

the dimension of χ(nm,2) the dimensions of Im(ρ) and H2(nm,2;K). The former can be

computed by observing that

Im(ρ) = {(x, y, z) ∈ (nm,2)3| x− y + z ∈ n′
m,2},

so dim(Im(ρ)) = 2dim(nm,2) + dim(n′
m,2). Thus

dim(Im(ρ) = 2(m+
ˆ
m

2

˙
) +

ˆ
m

2

˙
=

1
2

(3m2 +m). (3.25)

Regarding the other term, we have:

H2(nm,2;K) ≃ γ3/γ4

where the γi are the terms of the lower central series of F (the free Lie algebra on m

generators). By Witt’s dimension formula the dimension of γ3/γ4 is
1
3

(m3 −m). By (3.24)

and (3.25) we have:

dim(R) =
1
24

(3m4 − 2m3 − 15m2 + 14m)

as stated in the introduction.
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3.8.2 Heisenberg algebras

Let hn be the Heisenberg Lie algebra of dimension 2n + 1, that is, hn is the

nilpotent of class 2 Lie algebra generated by the symbols x1, . . . , x2n, subject to the

relations

[xi, xn+i] = [xj, xn+j]

for all 1 ≤ i, j ≤ n and

[xi, xj] = 0

for 1 ≤ i < j ≤ 2n such that j 6= n+ i, as well as

[xi, xj, xk] = 0

for any i, j, k. We can compute L(hn) from the case L(n2n,2). In fact it suffices to include

the relations

µ([xi, xn+i]− [xj, xn+j]) = bi,n+i − bj,n+j = 0,

for 1 ≤ i, j ≤ n, and

µ([xi, xj]) = bi,j = 0

if 1 ≤ i < j ≤ 2n such that j 6= n+ i. Then clearly L(hn) is free nilpotent of class 2 on

the generators a1, . . . , a2n, b1,n+1. As in the free nilpotent case, we can then easily compute

the dimensions of χ(hn) and its ideals.

3.8.3 Free nilpotent of class 3

Proposition 3.38. If h = nm,3, then L(h) is a central extension of Kt, where t = m

ˆ
m

2

˙
,

by nm,4 ⊕ npm2 q,2.

Proof. Once again we must have:

µ([xi1 , . . . , xi4 ]) = [ai1 , ai2 , bi3,i4 ] = 0 (3.26)

and

µ([xi1 , . . . , xi5 ]) = [ai1 , . . . , ai5 ] = 0. (3.27)

Also, by the defining relation (3.16) we have

[bi1,i2 , ai3 , bi4,i5 ] = [[ai1 , ai2 ], ai3 , ai4 , ai5 ]

Thus, imposing (3.26) and (3.27) as relators, we get that [ai, bl,k] is central and that the

Lie algebra generated by the ai’s is nilpotent of class 4. Furthermore, again by (3.16) we

have

[bi1,i2 , bi3,i4 , bi5,i6 ] = [[ai1 , ai2 ], [ai3 , ai4 ], ai5 , ai6 ] = 0,
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so the Lie algebra generated by the bi,j’s is nilpotent of class 3. It is clear that the relations

of L become trivial in the presence of the relations described in the assumption of the

proposition, and also clearly no relations of smaller degree involving the ai can exist.

Remark 3.39. It is immediate in this case that χ(h) is nilpotent of class 4, since L(h)

contains a copy of nm,4.

Corollary 3.40. dimR(nm,2) = dimR(nm,3) for all m.

Proof. We can proceed as in the previous subsection and compute the exact dimension of

R(nm,3) in terms of m. Here we use Witt’s dimension formula to compute both dim(nm,3)

and dimH2(nm,3;K) ≃ dimγ4/γ5.

For c ≥ 4 the situation is more complicated and we cannot expect to describe

χ(h) as nicely as in the cases above. The reason for this is that the expression of type

µ(u) = 0 for u of length at least 5 will not trivialize the defining relator (3.15) of L, since

the elements [ai, bj,k] will not be central in general.

3.9 The ideal R

Let g be free with generators x1, x2, x3. Consider the presentation L(g) = 〈X|S〉

described in Section 3.6, where X = {ai, bi,j}i,j. So the relators s ∈ S are those defined in

(3.15), (3.16) and (3.17). We will assume that relators which are already trivial (in the

free Lie algebra with free basis X) are not elements of S. For instance, for a relator of

type (3.15):

s = [ai, aj, bk,l]− [ai, bj,k, al]− [ai, ak, bj,l],

we assume that j, k and l are distinct indices.

For an even integer n ≥ 2, consider the element

fn = [b1,2, a2, . . . , a2, a3]− [[a1, a2], a2, . . . , a2, b2,3], (3.28)

where a2 appears n times in each bracket. By applying the homomorphism ρ we deduce

that each fn lies in R(g) (recall that R(g) = W (g) = ker(ρ), since g is free).

Proposition 3.41. The element fn is non-trivial in L(g) for every even integer n ≥ 2.

Proof. Define d : X → N by d(ai) = 1 and d(bi,j) = 2. Then clearly the set S is

homogeneous with respect to the degree function (in the sense of Section 1.3.1) extending

d.

Let Sm be the set of elements in S with degree at most m. Clearly it suffices to

show that fn does not lie in the ideal generated by Sm with m = d(fn) = n+ 3, because it

cannot be a consequence of relators of degree higher than itself.
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Consider the weight lexicographic ordering on the associative words with letters

in X, where

b1,2 > b1,3 > b2,3 > a1 > a2 > a3

and the degrees are defined by the function d.

The set Sm is finite and homogeneous, so we are in the situation described in

the end of Section 1.3.1. Let xSm be the resulting reduced set with the property that any

composition between two of its elements either lies in xSm or has degree greater than fn.

This set inherits the following property from Sm: if s ∈ xSm, then no monomial involved in

the expression of s can have only a single ocurrence of b1,2 and some occurrences of a2

as letters. Indeed, if g, h ∈ xSm, then any monomial involved in a composition of g and h

contains all the letters (counting multiplicity) of some monomial involved in g or h, and

similarly with reduction. The fact that Sm actually has such property to begin with can

be verified directly by inspection of (3.15), (3.16) and (3.17).

The same reasoning implies that no monomial involved in the expression of

any s ∈ xSm can have only a2 and a single occurrence of a3 as letters (that is, if all letters

of the monomial are a2 and a3, then a3 must appear at least twice).

Notice that fn = b1,2a
n
2a3, since the term [b1,2, a2, . . . , a2, a3] is the unique

regular bracketing of the regular associative word b1,2a
n
2a3 and the other term of fn does

not involve b1,2, which is the highest letter in the lexicographic ordering. Suppose that, for

some s ∈ xSm, the associative word s is a subword fn = b1,2a
n
2a3. Clearly s cannot be of

type ak2. It cannot be neither s = b1,2a
k
2 nor s = ak2a3 as well, by the previous paragraph.

The last thing we must check is that there is no element s ∈ xSm with s =

fn = b1,2a
n
2a3. If such an element existed, it would not be an element of Sm, because all

elements s0 ∈ Sm result in a word s0 of odd length. Thus s should be the result of some

composition or some reduction. In any case in we conclude that there is some g ∈ xSm of

lower degree and a monomial u that has non-zero coefficient in the expression of g and

such that all letters of u are letters of fn, with at most the same number of occurrences.

First notice that u must involve a3, otherwise we would a have a monomial

of some element of xSm involving only b1,2 and a2, which we already argued that cannot

happen. Similarly, it must involve b1,2, otherwise u would a be a monomial with letters a2

and a single occurrence of a3.

So u involves all letters of fn. The only possibilities for u to be regular are

u = b1,2a
i
2a3a

j
2 for some i, j with i+ j < n. The bracketing of such a word is of the form

u = [. . . [[b1,2, a2, . . . , a2, a3], a2], . . . , a2]

where a2 appears i times to the left of a3, and j times to the right. It follows that the

monomial corresponding to fn in s is obtained in the composition or reduction process by
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taking brackets of u with x2 on the right or on the left. In any case the resulting monomial

is up to sign the regular bracketing of the word b1,2a
i
2a3a

k
2 for some k > j, so u = b1,2a

n
2a3

can never be achieved. Thus fn cannot actually be the associative carrier of a monomial

involved in some composition or reduction of elements of xSm.

By Theorem 1.29 it follows that fn does not lie in the ideal generated by Sm,

and consequently fn /∈ 〈〈S〉〉. Thus fn, as an element of L(g), is non-trivial.

Theorem 3.42. If f is free non-abelian of rank at least 3, then R(g) is infinite dimensional.

Proof. For a free Lie algebra g of rank 3, Proposition 3.41 says that none of the fn defined

in (3.28) are trivial. Furthermore, they are all of different degree with respect to the

function d defined in the proof of the proposition, so they make up an infinite linearly

independent set inside R(g). In general, if f is free of rank more than 3, then there is

an epimorphism φ : f → g and the induced homomorphism φ∗ : χ(f) → χ(g) satisfies

φ∗(R(f)) = R(g), thus R(f) is of infinite dimension as well.

Corollary 3.43. If g is free non-abelian of rank at least 3, then χ(g) is of infinite

cohomological dimension.

Proof. This is clear, since χ(g) contains an abelian subalgebra of infinite dimension.

Remark 3.44. It is clear by the proofs that Theorem 3.42 and its corollary hold if we

assume only that the free Lie algebra of rank 3 is a quotient of g.

3.10 Remarks about the characteristic 2 case

We will show that the conclusion of part 2 of Lemma 3.1, which is essential for

the development of the results of this chapter, fails almost always in characteristic 2. That

is, if χ(g) is defined in the same way as it was done for char(K) 6= 2, then the version of

Lemma 3.1 does not hold in general.

Proposition 3.45. Suppose that char(K) = 2. Then the ideal L is generated by {x− xψ |

x ∈ g} as a subalgebra if and only if g is abelian and χ(g) ≃ g⊕ g.

Proof. The “if” direction is clear. Denote by A the subalgebra of χ(g) generated by the

elements x− xψ and suppose L = A.

First notice that ρ(A) is generated by the elements ρ(x− xψ) = (x, 0,−x) for

x ∈ g. In characteristic 2 the set of these elements is closed by the bracket, as well as sum

and multiplication by scalar:

[(x, 0,−x), (y, 0,−y)] = ([x, y], 0, [x, y]) = ([x, y], 0,−[x, y]).
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It follows that ρ(A) = {(x, 0, x) | x ∈ g}. Now let x, y ∈ g. Then [x, y − yψ] ∈ L = A. But

ρ([x, y − yψ]) = [(x, x, 0), (y, 0,−y)] = ([x, y], 0, 0) ∈ ρ(A),

therefore [x, y] = 0, that is, g is abelian.

Now define σ : χ(g)→ g by σ(x) = x and σ(xψ) = 0. It is clear that σ(A) = g.

Notice that [x, yψ] = [xψ, y] still holds. Then:

[x− xψ, y − yψ] = [x, y]− [x, yψ]− [xψ, y] + [x, y]ψ = 2[x, yψ] = 0.

The inverse for σ|A is then well defined. Now for any x, y ∈ g, we have [x, yψ] = [x, y−yψ] ∈

L = A. But σ([x, yψ]) = 0, so [x, yψ] = 0. Thus [g, gψ] = 0 in χ(g), as we wanted.
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4 Weak commutativity for pro-p groups

In this chapter we consider a version of the weak commutativity construction

in the category of pro-p groups for a fixed prime p. In the first section we deduce some

results about subdirect products of pro-p groups that we shall need in the sequence. The

results of the other sections are analogous to those of Chapter 3. The work in this chapter

is joint with D. H. Kochloukova and has been submitted for publication [47].

4.1 Pro-p fiber and subdirect products

We deduce here some results of subdirect products of pro-p groups which are

analogous to those of Kochloukova and Martínez-Pérez [46] that we used in Chapter 3 in

the case of Lie algebras. We are guided here by the work of Kuckuck [51], who discussed

the case of discrete groups.

In his work, Kuckuck used the notion of weak FPm type for discrete groups:

H is weak FPm if for every subgroup H0 of finite index in H the homologies Hi(H0;Z)

are finitely generated for all i ≤ m. In the case of pro-p groups the analogous notion turns

out to be equivalent with the usual type FPm by Lemmas 1.32 and 1.33. For this reason,

the methods of Kuckuck lead to stronger results for pro-p groups.

Lemma 4.1. Let N → Γ→ Q be a short exact sequence of pro-p groups, where N is of

type FPn−1 and Q is of type FPn+1. Then Γ is of type FPn if and only if H0(Q;Hn(N ;Fp))

is finite.

Proof. This is proved with the aid of the associated LHS spectral sequence

E2
i,j = Hi(Q;Hj(N ;Fp))⇒ Hi+j(Γ;Fp).

Notice that E2
0,n = H0(Q;Hn(N ;Fp)). The hypotheses on N and Q, together with Lemma

1.32, give that E2
i,j and thus Ek

i,j and E∞
i,j are finite whenever i ≤ n + 1 and j < n, for

all k. Indeed, for any j < n, the Zp[[Q]]-module Hj(N ;Fp) is finite, thus it admits a

filtration where each quotient Ws is a simple Zp[[Q]]-module. Any simple Zp[[Q]]-module

is isomorphic to the trivial Zp[[Q]]-module Fp. Finally, since Q is of type FPn+1 we see

that Hi(Q;Fp) is finite for i ≤ n+ 1, so Hi(Q;Hj(N ;Fp)) itself is finite.

By looking at all differentials involving Ek
0,n, we see that E∞

0,n is finite if and

only if E2
0,n is. Indeed, all the differentials either take or assume values in a finite p-group

for all k, by the previous paragraph. It is clear then that Hk(Γ;Fp) is finite for all k ≤ m+1

if and only if E∞
i,j is finite whenever i+ j ≤ n+ 1. We conclude by applying Lemma 1.32

to Γ.
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Let p1 : G1 → Q and p2 : G2 → Q be surjective homomorphisms of pro-p

groups. The fiber product of p1 and p2 is the pro-p group

G = {(g1, g2) ∈ G1 ×G2 | p1(g1) = p2(g2)}.

The following theorem is a pro-p version of what has been called the (n− 1)− n− (n+ 1)

Theorem.

Theorem 4.2. Let p1 : G1 → Q and p2 : G2 → Q be surjective homomorphisms of pro-p

groups. Suppose that ker(p1) is of type FPn−1, both G1 and G2 are of type FPn and Q is

of type FPn+1. Then the fiber product of p1 and p2 is of type FPn.

Proof. Denote by G the fiber product of p1 and p2 and consider the short exact sequence

ker(p1)→ G→ G2

where G → G2 is the projection onto the second coordinate. The corresponding LHS

spectral sequence is

E2
i,j = Hi(G2;Hj(ker(p1);Fp))⇒ Hi+j(G;Fp).

By hypothesis ker(p1) is of type FPn−1 and G2 is of type FPn, so we can argue as in

Lemma 4.1 to deduce that E2
i,j is finite for i ≤ n and j ≤ n− 1.

Notice also that

E2
0,n = H0(G2;Hn(ker(p1);Fp)) = H0(Q;Hn(ker(p1);Fp)),

since both Q and G2 act on Hn(ker(p1);Fp) via conjugation by elements G1 (that is,

both modules above are the module of coinvariants of the natural action of G1 on

Hn(ker(p1);Fp)). By applying Lemma 4.1 to the exact sequence ker(p1) → G1 → Q

we deduce that E2
0,n is also finite. By the convergence of the spectral sequence, we get that

Hk(G;Fp) is finite for k ≤ n, so G is of type FPn by Lemma 1.32.

We record the following particular case in order to use it in the sequence of the

text.

Corollary 4.3. Let H be a finitely presented pro-p group and let

S = 〈(h, h−1) | h ∈ H〉 = {(h1, h2) ∈ H ×H | h1h2 ∈ H
′} ⊂ H ×H.

Suppose that H ′ is finitely generated as a pro-p group. Then S is a finitely presented pro-p

group.

Proof. Let p1 : H → Q = H/H ′ be the canonical projection and p2 = σ ◦ p1, where

σ : Q→ Q is the antipodal homomorphism sending g to g−1.Then S is the fiber product

of the maps p1 and p2. It follows from Theorem 4.2 that S is of type FP2, which is the

same as finite presentability.
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Let G1, . . . , Gn be pro-p groups for some n ≥ 2. Denote by

πi : G1 × · · · ×Gn → Gi

the canonical projections for 1 ≤ i ≤ n. A subdirect product of G1, . . . Gn is a closed

subgroup P ≤ G1 × · · · ×Gn such that πi(P ) = Gi for all 1 ≤ i ≤ n.

Let I = {i1, . . . , ik} be a subset of {1, . . . , n} with exactly k elements. Denote

by πI the projection

πI : G1 × · · · ×Gn → Gi1 × · · · ×Gik .

We say that a subgroup P ≤ G1 × · · · × Gn is virtually k-surjective if pI(P ) is of finite

index in Gi1 × · · · ×Gik for all possible I.

Lemma 4.4. Suppose that P ≤ G1 × · · · ×Gn is a virtually k-surjective subdirect product

for some k ≥ 2. Denote by Ni the intersection P ∩Gi, where Gi is identified with its image

in the direct product G1 × · · · ×Gn. Then Gi/Ni is virtually nilpotent for all i.

Proof. First notice that Ni is indeed normal in Gi, since for any x ∈ Ni and g ∈ Gi, we

can find some γ ∈ P such that πi(γ) = g, and in this case xg = xγ.

By symmetry it is enough to prove the lemma for i = 1. Let I1, . . . , Im be all

the subsets of {1, . . . , n} with exactly k elements and 1 ∈ Ij. By hypothesis the following

subgroup has finite index in G1:

S1 :=
m
⋂

j=1

(πIj(P ) ∩G1) ≤ G1.

Notice that N1 ⊆ S1, since 1 ∈ Ij for all j.

Let g1, . . . , gm ∈ S1. Choose γ1, . . . , γm ∈ P such that π1(γj) = gj and πi(γj) = 1

for all i ∈ Ij r {1}. This is possible by the definition of S1. Then

[g1, [g2, · · · [gm−1, gm] · · ·]] = π1([γ1, [γ2 · · · [γm−1, γm] · · ·]]).

Let c = [γ1, [γ2 · · · [γm−1, γm] · · ·]]. Notice that πi(c) = 1 for all i 6= 1, since any

such i lies in some Ij, thus πi(γj) = 1. Thus c = π1(c) ∈ G1 ∩ P = N1. This proves that

S1/N1 is nilpotent of class at most m− 1.

Lemma 4.5. Let G1, . . . , Gn be finitely generated pro-p groups for some n ≥ 1. Let

P ≤ G1×· · ·×Gn be a subgroup such that πi(P ) has finite index in Gi and πi(P )/(P ∩Gi)

is virtually nilpotent for all i. Then P is finitely generated.

Proof. By substituting Gi with πi(P ) for all i, we can assume that P is actually a subdirect

product of G1 × · · · ×Gn.
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Let T = π{1,...,n−1}(P ) ⊆ G1 × · · · × Gn−1. Notice that now P is subdirect

product of T ×Gn. In fact, it is the fiber product of the homomorphisms p1 : T → Q and

p2 : Gn → Q for

Q := Gn/Nn ≃ P/(N ′ ×Nn) ≃ T/N ′,

where Nn = P ∩Gn and N ′ = P ∩ T .

We will prove the lemma by induction on n. For n = 1 there is nothing to do.

For n > 1, the last paragraph gives a decomposition of P as a fiber product of p1 : T → Q

and p2 : Gn → Q, where T is a subdirect product of G1 × · · · ×Gn−1. We can apply the

induction hypothesis to T , since Gi/(T ∩Gi), being a quotient of the virtually nilpotent

group Gi/(P ∩Gi), is virtually nilpotent. Thus T is finitely generated.

Now, Q = Gn/(P ∩Gn) is finitely generated and virtually nilpotent, thus it is

finitely presented and the kernel Nn = P ∩Gn = ker(p2) is finitely generated as a normal

subgroup of Gn. It clear that Nn must be finitely generated also as a normal subgroup of P .

Thus P , which fits into the short exact sequence Nn ֌ P ։ T , is finitely generated.

The result that we will really need is the following corollary. This is Corollary

5.5 in [51] in the case of discrete groups (keeping in mind that here we do not distinguish

between “weak FPm” and FPm, as discussed in the beginning of this section).

Corollary 4.6. Let G1, . . . , Gn be pro-p groups of type FPk for some n ≥ 1. Suppose that

P ≤ G1 × · · · ×Gn is a virtually k-surjective subgroup for some k ≥ 2. Then P is of type

FPk.

Proof. Again we can assume that P is a subdirect product of G1× · · ·×Gn. We will prove

the result by induction on k + n. The base cases are covered by Lemma 4.5 (using also

Lemma 4.4).

If k ≥ n, then P is a subgroup of finite index in G1 × · · · × Gn and there is

nothing to do. Let 1 < k < n. As in the proof of Lemma 4.5, we can write P as a fiber

product of p1 : T → Q and p2 : Gn → Q, where T is a subdirect product of G1×· · ·×Gn−1.

In this case, T is again virtually k-surjective, but the number of factors in the direct

product has decreased. By induction T is of type FPk.

On the other hand, it is not hard to see that N ′ = P ∩ T is a subgroup of

G1 × · · · ×Gn−1 that is virtually (k − 1)-surjective. To see this, it suffices to consider for

any subset I ⊆ {1, . . . , n − 1} with exactly k − 1 elements the k-surjectivity of P with

respect to I ∪{n}. Thus we can also assume by induction that N ′ is of type FPk−1. Finally,

Q = Gn/Nn is finitely generated and virtually nilpotent (by Lemma 4.4), so it is of type

FPm for all m. Thus Theorem 4.2 implies that P is of type FPk.
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4.2 Weak commutativity: finite presentability and completions

Let G be a pro-p group. As in the cases of discrete groups and Lie algebras, we

define the weak commutativity construction Xp(G) by the pro-p presentation

Xp(G) = 〈G,Gψ | [g, gψ] = 1 for all g ∈ G〉p,

where Gψ is an isomorphic copy of G via g 7→ gψ.

We use the subscript p to distinguish the pro-p construction Xp(−) from the

discrete construction X(−), originally defined by Sidki. Recall that for a discrete group H,

we have by definition

X(H) = 〈H,Hψ | [h, hψ] = 1 for all h ∈ H〉,

where Hψ is an isomorphic copy of H via h 7→ hψ , and here 〈−|−〉 denotes a presentation

by generators and relators in the category of discrete groups.

The distinction between the two constructions could be necessary when they

can be considered at the same time for a single object, that is, for finite p-groups. We

show in the following lemma that actually the constructions coincide in this case.

Lemma 4.7. For a finite p-group P we have X(P ) ≃ Xp(P ).

Proof. The construction X(G) for a discrete group G is characterized by the following

property: for any discrete group Γ and two homomorphisms σ, τ : G → Γ such that

[σ(g), τ(g)] = 1 for all g ∈ G, there exists a unique homomorphism ϕ : X(G) → Γ such

that ϕ|G= σ and ψ ◦ (ϕ|Gψ) = τ . The pro-p construction has the analogous property

where “discrete” is substituted with “pro-p”, and “homomorphism” with “continuous

homomorphism”. This, together with the fact that X(P ) is a finite p-group ([75, Thm. C]),

allows us to construct the obvious maps between X(P ) and Xp(P ), in both directions,

whose compositions are the identity maps and whose restriction on P ∪ Pψ is the identity

map.

In principle a pro-p group is determined by all its finite quotients. The weak

commutativity pro-p group Xp(G) is actually determined by its finite quotients of type

X(Q), where Q is a finite quotient of G.

Lemma 4.8. Let G be a pro-p group. Then Xp(G) ≃ lim←−X(G/U), where the inverse limit

runs over all finite quotients G/U of G.

Proof. Let U be a closed normal subgroup of G such that G/U is a finite p-group. Then

the epimorphism G→ G/U induces an epimorphism Xp(G)→ Xp(G/U) and we identify

Xp(G/U) with X(G/U). This induces an epimorphism

Xp(G)→ lim←−X(G/U).
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To show that this map is an isomorphism it suffices to show that every finite p-group V

that is a quotient of Xp(G) is a quotient of suitable X(G/U). Let µ : Xp(G)→ V be the

quotient map and U1 = ker(µ) ∩G and U2 = ker(µ)ψ ∩G. Set U = U1 ∩ U2. Notice that

that since V is a finite p-group, the groups G/U1, G/U2 and thus G/U are finite p-groups.

By construction there is an epimorphism Xp(G/U)→ V . Finally, Xp(G/U) ≃ X(G/U) by

Lemma 4.7, which completes the proof.

Recall that for a discrete group H, we denote by pH its pro-p completion.

Proposition 4.9. For any discrete group H, we have

Xp( pH) ≃{X(H).

Proof. Let H = 〈X | R〉 be a presentation of H as a discrete group. Notice that X(H) is

the discrete group generated by X ∪Xψ, with {[h, hψ]|h ∈ H} ∪R ∪Rψ as a set defining

relators. Clearly {X(H) is the group with this same presentation in the category of pro-p

groups, that is:

{X(H) = 〈X,Xψ | R,Rψ, [h, hψ] for h ∈ i(H) ⊂ pH〉p,

where i : H → pH is the canonical map. The group Xp( pH), on the other hand, has by

definition a presentation with the same set of generators, but with defining relators [h, hψ]

for all h ∈ pH (rather that only h ∈ i(H)). Thus there is a continuous epimorphism
{X(H) ։ Xp( pH).

To show that this is an isomorphism it suffices to show that any finite p-group

that is a quotient of {X(H) is also a quotient of Xp( pH). Let V be such a quotient. Notice

that the composite µ = π ◦ j of the canonical homomorphisms π : {X(H) ։ V and

j : X(H)→{X(H) is also surjective, since the image of j is dense in {X(H).

Let U1 = ker(µ) ∩H, U2 = ker(µ)ψ ∩H and U = U1 ∩ U2. Define P = H/U .

Then clearly P is a finite p-group and X(P ) ≃ Xp(P ) is quotient of Xp( pH). But also V is

a quotient of X(P ) by choice, which gives the result.

Corollary 4.10. If G is a finitely presented pro-p group, then so is Xp(G).

Proof. Let F be a finitely generated free discrete group and let pF be its pro-p completion.

We can see pF as the free pro-p group with the same free basis as F . By Proposition 4.9

Xp( pF ) is the pro-p completion of X(F ), which is finitely presented as a discrete group by

Theorem A in [24]. Thus Xp( pF ) also admits a finite presentation (as a pro-p group).

In general, if G ≃ pF/R, where R ≤ pF is the normal closure of the closed

subgroup generated by a finite set {r1, . . . , rn} ⊂ R, then Xp(G) is the quotient of Xp( pF )

by the normal closure of the closed subgroup generated by {r1, . . . , rn, r
ψ
1 , . . . , r

ψ
n}. Thus

Xp(G) is also finitely presented as a pro-p group.
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In the case of discrete groups, it was shown by Gupta, Rocco and Sidki [37]

that if H is a nilpotent and finitely generated group, then X(H) is also nilpotent. Their

proof involves long commutator calculations. We give here a pro-p version of this result as

a corollary of the fact that it holds for discrete groups.

Proposition 4.11. Let G be a finitely generated nilpotent pro-p group. Then Xp(G) is a

nilpotent pro-p group.

Proof. Let X be a finite generating set of G as a pro-p group and let H be the discrete

subgroup of G generated by X. Clearly the closure H of H is G. It follows that there is an

epimorphism of pro-p groups pH → H = G, which in turn induces an epimorphism of pro-p

groups Xp( pH)→ Xp(G). Since G is nilpotent, H is nilpotent and hence X(H) is nilpotent

too. Then Xp( pH) ≃{X(H) and its quotient Xp(G) are nilpotent pro-p groups.

4.3 Some structural results

Recall that in the discrete case L(H) ≤ X(H) denotes the subgroup generated

by the elements h−1hψ for all h ∈ H. It can also be described as the kernel of the

homomorphism α : X(H)→ H defined by α(h) = α(hψ) = h for all h ∈ H.

For a pro-p group G, let α : Xp(G)→ G be the homomorphism of pro-p groups

defined by α(g) = α(gψ) = g for all g ∈ G. We define

Lp = Lp(G) := ker(α) ⊂ Xp(G),

in analogy with the discrete case.

Lemma 4.12. Let G be a pro-p group. Then Lp(G) is the closed subgroup generated by

the elements g−1gψ, for all g ∈ G.

Proof. Denote by A(G) the closed subgroup of Xp(G) generated by the elements g−1gψ

for g ∈ G. Note that A(Q) = Lp(Q) for a finite p-group Q. Clearly A(G) ⊆ ker(α).

Let π0 : G ։ Q be a continuous epimorphism onto a finite p-group Q. Then we have a

commutative diagram:

Xp(G) X(Q)

G Q

π

α αQ

π0

where π is induced by π0. If follows that π(Lp(G)) = ker(αQ) = Lp(Q) = A(Q) = π(A(G)).
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Thus Lp(G) and A(G) cannot be distinguished by the epimorphisms π :

Xp(G)→ X(Q) with Q a finite quotient of G. Since Xp(G) is actually the inverse limit of the

system of images of all these epimorphisms (Lemma 4.8), it follows that Lp(G) = A(G).

Proposition 4.13. If G is a finitely generated pro-p group, then Lp(G) is a finitely

generated pro-p group.

Proof. Let F be a finitely generated free discrete group and let pF be its pro-p completion,

that is, the free pro-p group with the same free basis. We already know that Xp( pF ) ≃ zX(F ).

By [24, Prop. 2.3] we know that L(F ) ⊆ X(F ) is a finitely generated discrete group. If

Y ⊆ L(F ) is a finite generating set, then its image i(Y ) in Xp( pF ), where i : X(F ) →
zX(F ) ≃ Xp( pF ) is the canonical map, is a generating set for Lp( pF ) as a pro-p group. Indeed,

it suffices to verify that the image of i(Y ) in each quotient of zX(F ) of the type X(P ),

where P is a finite p-group, is a generating set for L(P ). This follows from the fact that

L(P ) is the image of L(F ) by the homomorphism X(F ) ։ X(P ) induced by the projection

F ։ P .

Thus Lp( pF ) is a finitely generated pro-p group. In general, if G is a quotient of
pF , then Lp(G) is a quotient of Lp( pF ), thus it is finitely generated as a pro-p group too.

Similarly, we define

Dp = Dp(G) := ker(β) ⊂ Xp(G),

where β : Xp(G)→ G×G is the homomorphism of pro-p groups defined by β(g) = (g, 1)

and β(gψ) = (1, g) for all g ∈ G. Arguing as in Lemma 4.12, we obtain:

Lemma 4.14. Let G be a pro-p group. Then Dp(G) is generated by [g, hψ], for g, h ∈ G,

as normal closed subgroup of Xp(G).

Proposition 4.15. Let G be a pro-p group. Then [Lp(G), Dp(G)] = 1.

Proof. As in [75, Lemma 4.1.6], for any g1, g2, g3 ∈ G, the relation

[g−1
1 gψ1 , [g2, g

ψ
3 ]] = 1

can be obtained as a consequence of the defining relations [h, hψ] = 1 for h runs through the

set of products of two or three elements in {g1, g2, g2}. Thus the (topological) generators

of Lp commute with the (topological) generators of Dp as a normal subgroup of Xp(G), so

[Lp, Dp] = 1.

Finally, let

ρp : Xp(G)→ G×G×G

be the homomorphism of pro-p groups defined by ρp(g) = (g, g, 1) and ρp(gψ) = (1, g, g).
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We give another description of ρp. Denote by β1, β2 : Xp(G)→ G be components

of β, that is, β1 and β2 are the unique maps such that β(z) = (β1(z), β2(z)) ∈ G×G for

all z ∈ Xp(G). Then

ρp(z) = (β1(z), α(z), β2(z)) ∈ G×G×G

for all z ∈ Xp(G). In particular ker(ρp) = Dp(G) ∩ Lp(G).

We set

Wp = Wp(G) := ker(ρp) = Dp(G) ∩ Lp(G).

This is a normal subgroup of Xp(G) which is central in Dp(G)Lp(G) by Proposition 4.15.

In particular, Wp(G) is abelian. Furthermore, analogously to the Lie algebra case, we can

show that the image of ρp can be written as

Im(ρp) = {(g1, g2, g3) ∈ G×G×G | g1g
−1
2 g3 ∈ [G,G]}. (4.1)

Proposition 4.16. If G is solvable, then so is Xp(G).

Proof. This is clear, since Wp is abelian and Xp(G)/Wp is a subgroup of G × G × G,

therefore is solvable.

It is clear by (4.1) that Im(ρp) is a subdirect product of G×G×G, that is, it

maps surjectively on each copy of G in the direct product.

Corollary 4.17. If G is a finitely presented pro-p group, then Xp(G)/Wp(G) ≃ Im(ρp) is

a finitely presented pro-p group.

Proof. Recall that a pro-p group is finitely presented if and only if it is FP2. It is clear by

(4.1) that

π1,2(Im(ρp)) = π1,3(Im(ρp)) = π2,3(Im(ρp)) = G×G.

Thus Corollary 4.6 applies for k = 2.

Proposition 4.18. If G is a finitely presented pro-p group such that [G,G] is a finitely

generated pro-p group, then Wp(G) is a finitely generated pro-p group.

Proof. Consider the beginning of the 5-term exact sequence associated to the LHS spectral

sequence arising from the central extension of pro-p groups Wp ֌ Lp ։ ρp(Lp):

H2(ρp(Lp);Zp)→ Wp → H1(Lp;Zp)→ H1(ρp(Lp);Zp)→ 0.

Clearly Wp is finitely generated as a pro-p group if H2(ρp(Lp);Zp) and H1(Lp;Zp) ≃

Lp/[Lp, Lp] are finitely generated.
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Note that by Proposition 4.13 Lp is a finitely generated pro-p group, thus so

is H1(Lp;Zp). It remains to prove that H2(ρp(Lp);Zp) is a finitely generated pro-p group.

Now

ρp(Lp) ≃ 〈{(g−1, 1, g) | g ∈ G}〉 ≃ {(g1, g2) ∈ G×G | g1g2 ∈ [G,G]}.

This is exactly the group S considered in Corollary 4.3. So ρp(Lp) is finitely presented and

thus H2(ρp(Lp);Zp) is finitely generated, as we wanted.

4.4 The Schur multiplier

4.4.1 The non-abelian exterior square

In [65] Moravec defined the non-abelian tensor square Gp⊗G of a pro-p group

G as the pro-p group generated (topologically) by the symbols g⊗̂h, for g, h ∈ G, subject

to the defining relations

(g1g)⊗̂h = (gg1⊗̂h
g)(g⊗̂h) (4.2)

and

g⊗̂(h1h) = (g⊗̂h)(gh⊗̂hh1) (4.3)

for all g, g1, h, h1 ∈ G. Furthermore the non-abelian exterior square Gp∧G of G is

Gp∧G = Gp⊗G/∆(G),

where ∆(G) is the normal (closed) subgroup generated by g⊗̂g, for all g ∈ G. We denote

by g∧̂h the image of g⊗̂h in Gp∧G.

Let

µG : Gp∧G→ [G,G]

be the homomorphism of pro-p groups defined by

µG(g∧̂h) = [g, h] for all g, h ∈ G.

Proposition 4.19 ([64]; [65], Proposition 2.2). For any pro-p group G we have

H2(G;Zp) ≃ ker(µG).

4.4.2 The subgroup Rp(G)

Consider the pro-p group

Rp = Rp(G) = [G, [Lp(G), Gψ]] ⊆ Xp(G).

As in the discrete case, it is immediate that Rp(G) ⊆ Wp(G), thus it is an abelian subgroup

of Xp(G). Also, we can show that Rp is actually normal in Xp(G), as a consequence of the

fact that Dp and Lp commute.
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Lemma 4.20. Let G be a pro-p group and let g, h, k ∈ G. Then:

1. [g, hψ] = [gψ, h] in Xp(G);

2. [[g, hψ], k]Rp = [[g, h], kψ]Rp in Xp(G)/Rp(G).

Proof. Item 1 is is proved in the discrete case ([75, Lemma 4.1.6]) using the commutator

formulas

[ab, c] = [a, c]b.[b, c] and [a, bc] = [a, c].[a, b]c. (4.4)

The same proof applies here.

By applying item 1 we obtain

[[g, h], kψ] = [[gψ, hψ], k] = [[g(g−1gψ), hψ], k] = [[g, hψ]g
−1gψ .[g−1gψ, hψ], k] =: α.

Also, by Lemma 4.15, we have [[g, hψ], g−1gψ] = 1 and [[[g, hψ], k], [g−1gψ, hψ]] = 1, so

α = [[g, hψ][g−1gψ, hψ], k] = [[g, hψ], k][g
−1gψ ,hψ ].[[g−1gψ, hψ], k],

which proves that α ∈ [[g, hψ], k]Rp.

Proposition 4.21. There is an epimorphism of pro-p groups H2(G;Zp) ։ Wp/Rp.

Proof. Consider the homomorphism of pro-p groups

φ : Gp∧G→ Xp(G)/Rp

defined by φ(g∧̂h) = [g, hψ]Rp for g, h ∈ G. The fact that φ is well-defined follows from

(4.2), (4.3) and (4.4). Recall that α : Xp(G) → G is the homomorphism defined by

α(x) = α(xψ) = x and Lp = ker(α). Now, consider the commutative diagram:

Gp∧G [G,G]

Xp(G)/Rp G

µG

φ inc

α

where inc : [G,G]→ G is the inclusion map and the homomorphism α is induced by α. It

follows that φ(ker(µG)) ⊆ ker(α) = ker(α)/Rp = Lp/Rp. Since φ clearly takes values in

Dp/Rp, we have φ(ker(µG)) ⊆ (Lp ∩Dp)/Rp = Wp/Rp. Thus φ induces

φ̄ : H2(G;Zp) ≃ ker(µG)→ Wp/Rp. (4.5)
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To see that φ̄ is surjective, we only need to observe that Im(φ) generates Dp modulo Rp.

Indeed, Dp is generated as a normal closed subgroup by the elements [g, hψ], with g, h ∈ G,

but modulo Rp we have

[g, hψ]k ≡ [g, hψ][[g, h], kψ] for all g, h, k ∈ G.

This follows from Lemma 4.20 and [g, hψ]k = [g, hψ][[g, hψ], k].

We conclude that the image of {[g, hψ]; g, h ∈ G} generates (topologically) the

quotient Dp/Rp. Thus for any w ∈ Wp, there is some ξ ∈ Gp∧G such that φ(ξ) = wRp ⊆

Wp/Rp ⊆ Lp/Rp = ker(α) and, by the commutativity of the diagram, ξ ∈ ker(µG).

Theorem 4.22. For any pro-p group G we have H2(G;Zp) ≃ Wp(G)/Rp(G).

Proof. In order to construct an inverse map Wp/Rp ։ H2(G;Zp) we can proceed as in

Section 3.4.2, where we studied the case of Lie algebras. An outline of the procedure is as

follows. We start by building a stem extension of pro-p groups

1→ H2(G;Zp) =: M →֒ H → G→ 1. (4.6)

This can be done by considering a free presentation G = F/N and taking H = F/A,

where A is a pro-p subgroup of N that contains [F,N ] such that A/[F,N ] is a complement

of H2(G;Zp) ≃ ([F, F ] ∩N)/[F,N ] inside N/[F,N ]. This complement exists because

N/(N ∩ [F, F ]) ⊆ F/[F, F ] is free abelian pro-p and N/[F,N ] is a pro-p abelian group.

We are using implicitly that subgroups of free abelian pro-p groups are again free abelian,

which follows for instance from [69, Thm. 4.3.4].

Consider the map ρHp : Xp(H) → H ×H ×H. The superscript H is used to

distinguish from G, the group in the statement of the theorem. By composing it with the

projection onto the quotient T = Im(ρHp )/B, where B is defined by

B = {(x, xy, y) | x, y ∈M},

we obtain a map θ that factors through Xp(G):

Xp(H) T

Xp(G)

θ

π
λ

where π is induced by the epimorphism γ : H ։ G with kernel M . It is not hard then to

verify Rp(G) ⊆ ker(λ) and

λ(Wp(G)) = {(1,m, 1)B | m ∈M} ≃M.
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Indeed

1) ρHp (Rp(H)) ⊆ ρHp (Wp(H)) = 1, hence θ(Rp(H)) = 1. And since π(Rp(H)) =

Rp(G) we conclude that λ(Rp(G)) = θ(Rp(H)) = 1.

2) Let q : T → Im(ρGp ) be the quotient map. Notice that ρGp = q ◦ λ. If

w ∈ Wp(G), then clearly q ◦ λ(w) = ρGp (w) = 1, thus λ(w) ∈ ker(p). It follows that

λ(w) = (x, y, z)B for some x, y, z ∈M , and thus λ = (0,m, 0)B for some m ∈M by the

definition of B. Finally, since λ is surjective, we have

λ(Wp(G)) = {(1,m, 1)B | m ∈M} ≃M,

as we wanted.

Thus λ induces a map

λ̄ : Wp(G)/Rp(G)→M ≃ H2(G;Zp).

If we realize both the homomorphism (4.5) and the stem extension (4.6) by means of the

Hopf formula for a fixed free presentation G = F/N , it is not hard to see that we have

actually constructed maps that are inverse to each other.

Note that Theorem 4.22 is consistent with the discrete case: if G is a finite

p-group, then the isomorphism Xp(G) → X(G) identifies Wp(G) with W (G) and Rp(G)

with R(G), but also H2(G;Zp) ≃ H2(G;Z) (the first homology is continuous, the second

discrete).

4.5 Pro-p analytic groups

Recall that for a pro-p group G, we denote by d(G) the cardinality of a minimal

(topological) generating set. The rank of G is

rk(G) = sup{d(H) | H is a closed subgroup of G},

and G is p-adic analytic if and only if rk(G) < ∞. From now on we write analytic for

p-adic analytic.

Recall also that a procyclic pro-p group is an inverse limit of finite cyclic p-

groups. A pro-p group is poly-procyclic if it can be build as an (iterated) extension of

procyclic pro-p groups.

Proposition 4.23. Let G be a pro-p group. Then Xp(G) is analytic (resp. poly-procyclic)

if and only if G is analytic (resp. poly-procyclic).

Proof. The property of being analytic behaves well with respect to extensions, that is, if

N ֌ G։ Q is an exact sequence of pro-p groups, then G is analytic if and only if both
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N and Q are ([54, Corollary 2.4]). Thus one implication of the proposition is immediate,

since G is a quotient of Xp(G).

Suppose that G is analytic. Then G is of type FP∞ (see [39] or [77] for instance)

and [G,G] is finitely generated as a pro-p group. Thus Proposition 4.18 applies and Wp(G)

is a finitely generated abelian pro-p group. In particular, Wp(G) is also analytic. But

Xp(G)/Wp(G) ≃ Im(ρp) must be analytic as well, being a closed subgroup of G×G×G.

Thus Xp(G) is analytic.

The result for poly-(procyclic) pro-p groups follows from the observation that

these groups are exactly the solvable pro-p groups of finite rank ([81, Proposition 8.2.2]).

Thus we only need to combine the first part of the proof with Proposition 4.16.

Corollary 4.24. Suppose that G is solvable pro-p group of type FP∞. Suppose further

that G is torsion-free or metabelian. Then Xp(G) is a solvable pro-p group of type FP∞.

Proof. Notice that Xp(G) must be solvable, since G is solvable. Assume first that G is

torsion-free. Then G is analytic by the main result of Corob Cook in [27]. By Proposition

4.23 we know that Xp(G) is analytic, so in particular it is of type FP∞.

Suppose now that G is metabelian. Then it fits into an exact sequence of pro-p

groups

1→ A→ G→ Q→ 1,

where A is abelian and Q has finite rank (and in our case is abelian). By a result of

King ([39, Theorem 6.2]), we know that if G is of type FP∞, then G is actually of finite

rank, that is, analytic. Then we can apply again Proposition 4.23 to deduce that Xp(G) is

analytic and thus of type FP∞.

It is plausible that Corob Cook’s result from [27] holds for pro-p groups that

are not torsion-free, but this is still an open problem. If that is the case, then the condition

that G is torsion-free in Corollary 4.24 is redundant.

4.6 Xp does not preserve FP3

We begin by proving an auxiliary result about Rp(G), which may be of inde-

pendent interest.

Proposition 4.25. If G is a 2-generated pro-p group, then Rp(G) = 1.

This can be obtained as a corollary of the analogous result for discrete groups,

which is a consequence of Lemma 4.26. The discrete case of Proposition 4.25 was first

proved with different methods by Bridson and Kochloukova [23]. We write y−ψ for (yψ)−1.
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Lemma 4.26. Let G be a discrete group and let X ⊂ G be a generating set. Suppose

that X is symmetric (with respect to inversion). Then R(G) = [G, [L,Gψ]] is the normal

subgroup of X(G) generated by the set

Z = {[x1, [yy−ψ, xψ2 ]] | x1, x2, y ∈ X}.

Proof. The proof relies on commutator calculations that use the following commutator

identities

[a, bc] = [a, c].[a, b]c and [ab, c] = [a, c]b.[b, c].

Recall that R(G) is generated as a subgroup by the elements of the form r = [g, [ℓ, hψ]],

with g, h ∈ G and ℓ ∈ L = L(G). If g = g1g2, then r is a consequence of [g1, [ℓ, hψ]] and

[g2, [ℓ, hψ]]. The analogous claim holds “in the other variable”, that is, for h = h1h2. Indeed

[g, [ℓ, (h1h2)ψ]] is a consequence of [g, [ℓ, hψ2 ]] and

r1 = [g, [ℓ, hψ1 ]h
ψ
2 ] = [g[g, h−ψ

2 ], [ℓ, hψ1 ]]h
ψ
2 = [g, [ℓ, hψ1 ]][g,h

−ψ
2

]hψ
2 ,

where the last equality follows from the fact that [[g, h−ψ
2 ], [ℓ, hψ1 ]] ∈ [D,L] = 1, where

D = D(G).

If ℓ = ℓ1ℓ2, with ℓ2 = yy−ψ, then by applying the commutator formulas we

obtain that r is a consequence of [g, [yy−ψ, hψ]] and r2 = [g, [ℓ1, h
ψ]yy

−ψ

]. But

r2 = [g, ([ℓ1, h
ψ][[ℓ1, h

ψ], y])y
−ψ

],

thus r2 is a consequence of [y, [ℓ1, h
ψ]] and r3 = [g, [ℓ1, h

ψ]y
−ψ

]. Again

r3 = [g[g, yψ], [ℓ1, h
ψ]]y

−ψ

= [g, [ℓ1, h
ψ]][g,y

ψ ]y−ψ

,

where the last equality follows from the fact that [[g, yψ], [ℓ1, h
ψ]] ∈ [D,L] = 1. A similar

argument works for ℓ = ℓ1ℓ2, with ℓ2 = (yy−ψ)−1.

Finally, if r = [g, [bb−ψ, hψ]] for some b = uv ∈ G, then

r = [g, [(vv−ψu−ψu)u
−1

, hψ]] = [g′, [vv−ψuu−ψ, (hψ)u]]u
−1

for g′ = gu. But

[vv−ψuu−ψ, (hψ)u] = [vv−ψuu−ψ, [u, h−ψ]hψ] = [vv−ψuu−ψ, hψ],

since [vv−ψuu−ψ, [u, h−ψ]] ∈ [L,D] = 1. Thus r is a consequence of [g′, [vv−ψuu−ψ, hψ]], and

we fall in the previous case, that is, r is a consequence of [g′, [vv−ψ, hψ]] and [g′, [uu−ψ, hψ]].

The arguments above imply that any r = [g, [ℓ, hψ]] is an element of the normal

subgroup of X(G) generated by Z.

Lemma 4.27. If G is a discrete group generated by {x, y}, then R(G) = 1.
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Proof. It is enough to show that all elements of Z as in Lemma 4.26 are trivial for

X = {x, y, x−1, y−1}. Consider r = [x, [yy−ψ, xψ]]. By the standard commutator identities

we have

r = [x, [y−ψ, xψ]][x, [y, xψ]y
−ψ

][y
−ψ ,xψ ]. (4.7)

Using the identity [x, yψ] = [xψ, y] we deduce that [x, [y, xψ]y
−ψ

] = [x, [yψ, x]y
−ψ

]. Fur-

thermore since x−1xψ ∈ L we have [y−ψ, xψ] ∈ [y−ψ, x]L. Then since [D,L] = 1 and

[x, [yψ, x]y
−ψ

] ∈ D, we can reduce the second term of the above product in (4.7) to

[x, [yψ, x]y
−ψ

][y
−ψ ,x].

Applying the Hall-Witt identity, we can see that the first term of the above

product in (4.7) reduces to [x, [y−ψ, x]]. Indeed

1 = [[y−ψ, xψ], x]x
−ψ

[[x−ψ, x−1], y−ψ]x[[x, yψ], x−ψ]y
−ψ

,

so

[x, [y−ψ, xψ]] = ([[y−ψ, xψ], x])−1 = [[x, yψ], x−ψ]y
−ψxψ .

Now using twice that [D,L] = 1 we have

[x, [y−ψ, xψ]] = [[x, yψ], x−ψ]y
−ψxψ = [[x, yψ], x−1]y

−ψxψ = [[x, yψ], x−1]y
−ψx.

Similarly, the Hall-Witt identity gives

[x, [y−ψ, x]] = ([[y−ψ, x], x])−1 = [[x, yψ], x−1]y
−ψx,

so [x, [y−ψ, xψ]] = [x, [y−ψ, x]] and by (4.7) we get

r = [x, [y−ψ, x]].[x, [yψ, x]y
−ψ

][y
−ψ ,x] (4.8)

Using the commutator formulas and (4.8) we obtain

1 = [x, [yψy−ψ, x]] = [x, [yψ, x]y
−ψ

.[y−ψ, x]] = [x, [y−ψ, x]].[x, [yψ, x]y
−ψ

][y
−ψ ,x] = r

All the other generators of R(G), given by Lemma 4.26, are either immediately trivial or

can be shown to be trivial exactly as above. So R(G) = 1.

Let pF be the free pro-p group on two generators. Then we can write Xp( pF ) as

an inverse limit of the quotients X(P ), where each P is a 2-generated p-group. If follows by

Lemma 4.27 that R(P ) = 1. Clearly R(P ) is the image of Rp( pF ) by the homomorphism

Xp( pF ) ։ X(P ) induced by the epimorphism pF ։ P . Then it follows that Rp( pF ) must be

trivial as well. In general, if G is a 2-generated pro-p group, then Rp(G) is a quotient of

Rp( pF ), so Rp(G) = 1. This completes the proof of Proposition 4.25.

Proposition 4.28. If G is a non-abelian free pro-p group, then Xp(G) is not of type FP3.
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Proof. Let pF be the free pro-p group of rank 2. Then Rp( pF ) = 1, which combined with

Theorem 4.22 and H2( pF ;Zp) = 0 implies that Wp( pF ) = 1 and hence Xp( pF ) ≃ Im(ρ
pF
p ).

Note that Im(ρ
pF
p ) is a subdirect product of pF × pF × pF which is clearly not of type FP3 (by

Theorem A in [48], for instance), but it is of type FP2 by Corollary 4.6. Then Hi(Xp( pF );Fp)

is finite for i ≤ 2 and is infinite for i = 3.

More generally, if G is any non-abelian free pro-p group, then the epimorphism

π : Xp(G) → Xp( pF ) induced by any epimorphism γ : G ։
pF splits, that is, there is a

homomorphism σ : Xp( pF )→ Xp(G) such that π ◦ σ = id and σ is induced by a splitting

of γ. The same holds for the induced homomorphisms on the homologies. In particular

π∗ : H3(Xp(G);Fp) → H3(Xp( pF );Fp) is surjective, thus H3(Xp(G);Fp) is not finite if

H3(Xp( pF );Fp) is not. Thus Xp(G) cannot be of type FP3 either.
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