
UNIVERSIDADE ESTADUAL DE
CAMPINAS

Instituto de Matemática, Estatística e
Computação Científica

BIANCA BOEIRA DORNELAS

Co-Context-Free Groups

Grupos Co-Livres de Contexto

Campinas

2019

Bianca Boeira Dornelas

Co-Context-Free Groups

Grupos Co-Livres de Contexto

Dissertação apresentada ao Instituto de Mate-
mática, Estatística e Computação Científica
da Universidade Estadual de Campinas como
parte dos requisitos exigidos para a obtenção
do título de Mestra em Matemática.

Dissertation presented to the Institute of
Mathematics, Statistics and Scientific Compu-
ting of the University of Campinas in partial
fulfillment of the requirements for the degree
of Master in Mathematics.

Supervisora: Dessislava Hristova Kochloukova

Co-supervisor: Francesco Matucci

Este exemplar corresponde à versão
final da Dissertação defendida pela
aluna Bianca Boeira Dornelas e orien-
tada pela Profa. Dra. Dessislava Hris-
tova Kochloukova.

Campinas

2019

Ficha catalográfica

Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica

Ana Regina Machado - CRB 8/5467

 Dornelas, Bianca Boeira, 1996-

 D735c DorCo-context-free groups / Bianca Boeira Dornelas. – Campinas, SP : [s.n.],

2019.

 DorOrientador: Dessislava Hristova Kochloukova.

 DorCoorientador: Francesco Matucci.

 DorDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Matemática, Estatística e Computação Científica.

 Dor1. Teoria dos grupos. 2. Thompson, Grupos de. 3. Autômatos a estados

finitos. 4. Linguagens livres de contexto. 5. Grupos co-livres de contexto. I.

Kochloukova, Dessislava Hristova, 1970-. II. Matucci, Francesco, 1977-. III.

Universidade Estadual de Campinas. Instituto de Matemática, Estatística e

Computação Científica. IV. Título.

Informações para Biblioteca Digital

Título em outro idioma: Grupos co-livres de contexto

Palavras-chave em inglês:
Group theory

Thompson groups

Finite state automata

Context-free languages

Co-context-free groups

Área de concentração: Matemática

Titulação: Mestra em Matemática

Banca examinadora:
Dessislava Hristova Kochloukova [Orientador]

Adriano Adrega de Moura

Alex Carrazedo Dantas

Data de defesa: 23-09-2019

Programa de Pós-Graduação: Matemática

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-4827-4663

- Currículo Lattes do autor: http://lattes.cnpq.br/5087073027808281

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

Dissertação de Mestrado defendida em 23 de setembro de 2019 e aprovada

pela banca examinadora composta pelos Profs. Drs.

 Prof(a). Dr(a). DESSISLAVA HRISTOVA KOCHLOUKOVA

 Prof(a). Dr(a). ALEX CARRAZEDO DANTAS

 Prof(a). Dr(a). ADRIANO ADREGA DE MOURA

A Ata da Defesa, assinada pelos membros da Comissão Examinadora, consta no

SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria de Pós-Graduação do Instituto de

Matemática, Estatística e Computação Científica.

To my father Manoel Dornelas de Souza, to my mother Rita Carla Boeira and to my

brother Eric Boeira Dornelas. You are the ones responsible for the beginning of my love

for science.

Acknowledgements

First of all, I would like to thank my friends for all support during this dissertation.

It would not have been possible to finish this work without them. I am grateful to

Matheus Manzatto and Mateus Sangalli, for sharing experiences and thoughts about the

process of writing a dissertation. I am deeply grateful to Raissa Nouer for all her love and

support during these years. I am grateful to Marcelo Watanabe, Roberto Zurita, Danilo

Kanno, Lucas Campos, Davi de Alvarenga, Flávio Kajiwara, Fábio Meneghetti and Aline

D’Oliveira for all our random conversations, I would not have even a bachelor degree if not

for them. The same holds for everyone in the Unicamp Taekwondo Team, our trainings

where always the best place to let the stress melt away. Also, Altair Oliveira and Marcelo

Miranda were life savers when it came to dealing with our advisor departure and they

always gave me nice tips for life at IMECC. Laura Meirelles, Giovanna Bombonati, Maria

Carolina Lourenço and Naiara Godoi helped me in so many difficult decisions, I cannot

ever thank them enough. There is a huge list of friends names I would still like to include

here, but I will limit myself to identify only the groups where everyone is important to me

and helped me in some way or another to get through my undergraduate and graduate

studies, and they will know it: all my dear miadas, my dear friends of big 3rd and everyone

in the abelian group.

I would like to express my gratitude to my advisor Francesco Matucci for introducing

to me this area of Mathematics. I remember the first time he said something to me

about Galois Theory and got me enthusiastic about it. Ever since, it has been a constant

pleasure to work with him and I cannot express properly all my gratitude for his constant

support and patience while he directed me through these years and helped me with many

important decisions for my future career. It has been a great honor to work with him and

I could not be more happy about it.

I would like to thank as well professor Dessislava Kochloukova for being my formal

advisor in the last months before the graduation, for her great tips on how to deal with

bureaucracies and her support on absolutely any matter where we needed her.

I also want to thank Yury Popov for his help with an article which I could only find

in Russian.

I want to thank the faculty and staff of the IMECC, specially from the Department

of Mathematics and from the Secretary of Graduate Studies, they saved me lots of trouble

many times.

This study was financed by Fundação de Amparo à Pesquisa do Estado de São Paulo,

FAPESP, in part through the process 2017/24373-1, from 03/01/2018 to 11/30/2018,

and in part through the process 2018/24172-9, from 03/01/2019 to 09/30/2019. I thank

FAPESP and the people of São Paulo for that financial support.

Resumo

Na presente dissertação de mestrado, estudamos grupos do ponto de vista da ciência da

computação. O primeiro objetivo é entender a construção da Teoria de Chomsky em

Grupos através da construção dos teoremas de Anisimov [21] e de Muller & Schupp [10].

Depois disso, são estudadas propriedades gerais da próxima classe de grupos na Hierarquia,

os grupos co-livres de contexto, através de [15]. Finalizamos apresentando os grupos F, T

e V de Thompson e demonstrando, com as técnicas de [18], que V é um grupo co-livre de

contexto.

Palavras-Chave: Grupos de Thompson. Grupos que agem sobre árvores. Autômatos a

estados finitos. Hierarquia de grupos através de autômatos. Linguagens livres de contexto.

Abstract

In the present work we study groups from the point of view of scientific computation. The

first goal is to understand the construction of the Chomsky’s Hierarchy for Groups by

constructing Anisimov’s [21] and Muller & Schupp’s [10] theorems. After that, general

properties of the next class of groups in the Hierarchy, the co-context-free groups, are

studied using [15]. We end presenting the Thompson’s groups F, T and V and showing,

with the techniques from [18], that V is a co-context-free group.

Keywords: Thompson’s groups. Groups acting on trees. Finite state automata. Groups

hierarchy through automata. Context-free languages.

Contents

Introduction . 11

1 Preliminaries . 14

1.1 General Group Theory . 14

1.2 Graphs and Free Groups . 17

1.3 Group Presentations . 22

1.4 Languages and Dehn’s Problems . 23

2 Anisimov’s Theorem . 27

2.1 Finite State Automata . 27

2.2 Main Theorem . 31

3 Muller and Schupp’s Theorem . 33

3.1 Pushdown Automata . 33

3.1.1 Context-Free Languages . 33

3.1.2 One-Counter Languages . 50

3.2 The Theorem of Muller and Schupp . 51

3.2.1 Some Definitions . 51

3.2.2 Main Results . 54

4 Co-Context-Free Groups . 56

4.1 Finitely Generated Subgroups . 56

4.2 Finite Direct Products . 59

4.3 Finite Index Overgroups . 66

4.4 Wreath Products . 68

4.5 Other Properties . 71

5 Thompson Groups . 74

5.1 Thompson Groups . 74

5.2 Higman-Thompson Groups . 77

5.3 Houghton Groups . 81

6 Lehnert’s Conjecture . 85

Final Remarks . 94

BIBLIOGRAPHY . 95

11

Introduction

Our main goal in this dissertation is the study of the classification of groups according

to some formal language properties of its Language of the Word Problem. In particular,

we are interested in the study of co-context-free groups. For a group G generated by a

finite set S, one can consider the set WPpG, Sq of all the words in the free group with

generators in S, FpSq, which are equal to the identity as elements of G. This set is known

as the Language of the Word Problem of G (with respect to S).

It is possible to study properties of WPpG, Sq and obtain results about G, as Anisimov

showed when he completely classified the class of finite groups with respect to languages.

Theorem A (Anisimov, [1]). A group G generated by a finite set S is finite if, and only

if, its Language of the Word Problem WPpG, Sq is a regular language.

The property of WPpG, Sq being a regular language is studied by means of automata.

A finite state automaton is a graph with a finite number of vertices, called states, and

directed edges, called transitions, which, together with some more rules and components,

models a machine/computer. A very important component is the alphabet X with whose

letters the transitions are labelled. This guarantees that the automaton accepts words of

the free group FpXq, where accepting a word means that one can follow a path inside the

graph, obeying the rules given by the automaton, forming that same word.

If a language is accepted by a finite state automaton, then the language is regular.

There are other types of formal languages and there exists a hierarchy classifying them,

known as Chomsky’s Hierarchy.

Definition B (Chomsky’s Hierarchy, [9]). Chomsky’s Hierarchy classifies formal languages

in four classes, each of them containing the next one.

• Type 0: Recursively countable languages. (Accepted by Turing machines.)

• Type 1: Context-sensitive languages. (Accepted by linearly nondeterministic Turing

machines.)

• Type 2: Context-free languages. (Accepted by nondeterministic pushdown automata.)

• Type 3: Regular languages. (Accepted by deterministic finite state automata.)

For any language, to know properties of a generating grammar is the same as having

information about the language structure, however one needs to first discover a generating

Introduction 12

grammar and the question about how to choose such a grammar could not be answered,

in Chomsky’s view, before developing a general theory of the linguistic structure and

the formal properties of grammars. Although we present the full hierarchy, in respect of

Chomsky’s work, our work does not deal with the first two types of languages.

Anisimov’s theorem connects type 3 languages to finite groups, leading to the question

whether there is a relation between Chomsky’s Hierarchy for languages and a possible

hierarchy for finitely generated groups. Some years after the publication of Anisimov’s

result, Muller & Schupp’s result contributed constructing a further step in such a structure.

Theorem C (Muller, Schupp, [23, 22]). A group G generated by a finite set S is virtually

free if, and only if, its Language of the Word Problem WPpG, Sq is a context-free language.

Context-free languages are the ones accepted by a pushdown automaton. These

automata are a generalization of the finite state ones. As an intermediate step of the

hierarchy for groups, it is possible to define one-counter languages, leading to the result

by Herbst:

Theorem D (Herbst, [12]). A group G generated by a finite set S is virtually cyclic if,

and only if, its Language of the Word Problem WPpG, Sq is a one-counter language.

In [15], Derek, Rees, Röver and Thomas defined a new class of groups defined by

automata, the co-context-free groups, which is currently being regarded as the next class

to be classified. We will see many closure properties of this class of groups, such as closure

by taking finitely generated subgroups or closure by taking direct products.

It is still an open question to completely classify co-context-free groups, as was done

to the finite and the virtually cyclic groups. However, the following equivalent statement

of a conjecture by Lehnert aims to give such classification [17]:

Conjecture E (Lehnert, [17]). A group G generated by a finite set S is a subgroup of

Thompson’s group V if, and only if, its Language of the Co-word Problem, coWPpG, Sq,

is a co-context-free language.

We present the basic definitions and properties of geometric group theory that will

be required from the reader in Chapter 1.

Chapter 2 introduces automata theory, with the definition of finite state automata

and the statement of Anisimov’s result.

The pushdown and one-counter automata are studied in Chapter 3, where we also

state the results leading to Muller & Schupp’s theorem.

It remains to define co-context-free groups, studying their properties and proving

that V is co-context-free. We divide these topics as follows: In Chapter 4 we deal with

Introduction 13

co-context-free groups in general, passing through closure properties and seeing examples

of groups which are not co-context-free. In Chapter 5, we briefly introduce Thompson

groups F and T , giving more details about the group V . Their definitions and basic

properties are presented. After that, in Chapter 6, we follow [18] and show that V is a

co-context-free group, understanding the motivation to Lehnert’s conjecture.

14

1. Preliminaries

In this chapter, we present some preliminary definitions and results concerning

geometric group theory. The reader can consult one of the references [14, 19, 21] or any

other introductory book on geometric group theory for more details.

1.1 General Group Theory

The next definitions are standard and can be found in any group theory (for example,

see [25]).

Definition 1.1.1. Given two groups, pG, ¨q and pH, ‹q, a group homomorphism from pG, ¨q

to pH, ‹q is a function

φ : G Ñ H

such that for all g, h P G, φpg ¨ hq “ φpgq ‹ φphq.

We usually refer to a given group by its underlying set only, instead of writing the

pair set`operation.

Definition 1.1.2. Let G be a group and H Ď G a subgroup. Given g P G, the left coset

of g with respect to H is

gH “ tgh | h P Hu.

An analogous definition can be made for a right coset Hg.

Some well known facts of group theory are that two left cosets are either disjoint

or the same, thus the set of all left cosets is a partition of a group G; the left cosets are

the equivalence classes for the equivalence relation x ∼H y if and only if x “ yh for some

h P H; and that one can use the axiom of choice and choose representatives for each left

coset of H.

Definition 1.1.3. Given a group G and a subgroup H Ď G, a left transversal to H in G

is a set T with one representative, exactly, for each left coset of H. That is, T is such that

G “
ğ
˝

tPT

tH

and therefore any element g P G can be written as g “ th for some h P H. An analogous

definition can be made for a right transversal.

Chapter 1. Preliminaries 15

Henceforth, we use only transversal and coset to refer to the left transversals and

the left cosets, unless specified otherwise. It is clear that the cardinality of a transversal T

is the number of left cosets of H in G. That is the exact definition of index.

Definition 1.1.4. Let G be a group and H Ď G be a subgroup of G. Let T be a

transversal for H in G. The index of H in G is

|G : H| “ |T |

that is, the index of H in G is the cardinality of the collection of cosets of H in G.

Although there are several transversal sets for the same subgroup H, the index is

well defined because the cardinality of all the transversal sets are the same.

Definition 1.1.5. Given G a group and a subgroup H Ď G, H is said to be normal (in

G) if it satisfies one of the following equivalent statements:

1. gH “ Hg for all g P G.

2. g´1Hg “ H for all g P G.

3. g´1hg P H for all g P G, h P H.

Definition 1.1.6. Given N a normal subgroup of G a group, the quotient group (of G by

N) is the set of all left cosets,

G{N “ tgN | g P Gu

together with the operation

gN ¨ hN “ pghqN.

We also need the definition of rank of a group.

Definition 1.1.7. Let G be a group. The rank of G is

rankpGq “ mint|S| : S generates Gu.

We now give definitions related to the action of a group over some set.

Definition 1.1.8. Consider a non-empty set X. The symmetric group over X is

pSympXq, ¨q,

where

SympXq “ tφ : X ÝÑ X | φ is bijectiveu

and
¨ : SympXq ˆ SympXq ÝÑ SympXq

pφ, ϕq ÞÑ φ ˝ ϕ .

Chapter 1. Preliminaries 16

Definition 1.1.9. Consider a group G and a non-empty set X. A left action of G on X

is a map

ϕ : G ˆ X ÝÑ X

such that

1. e ¨ x “ x for all x P X; and

2. pghq ¨ x “ g ¨ ph ¨ xq for all g, h P G and x P X.

Equivalently, one can consider a group homomorphism from G to the group of

symmetries of X,

φ : G ÝÑ SympXq.

φ is called a representation of G.

We denote the action ϕ (the representation φ) of G on X by G ñϕ X (G ñφ X),

although often dropping ϕ (φ) from the notation when the function is clear from the

context. Right actions can be analogously defined.

Definition 1.1.10. Given a group G acting on a non-empty set X with representation φ,

the representation is faithful if the map is injective.

Definition 1.1.11. Given a group G acting on a non-empty set X and x P X, the

stabilizer of x is the subgroup (of G)

Stabpxq “ tg P G | g ¨ x “ xu.

Definition 1.1.12. Let G ñ X. If there is x P X such that Stabpxq “ teu, then x is

said to be moved freely by the action of G. The action is a free action if every x P X has

Stabpxq “ teu.

Definition 1.1.13. Let G ñ X. The orbit of x P X is the set

Orbpxq “ tg ¨ x | g P Gu.

Definition 1.1.14. Consider a group G. The center of G is the set

ZpGq “ tz P G | zg “ gz, @g P Gu,

which is always a normal subgroup of G.

Clearly, a group is abelian only if its center is the entire group.

Chapter 1. Preliminaries 17

1.2 Graphs and Free Groups

In this section we introduce basic definitions of graph theory and the theory of free

groups, which are needed for this work. All the results discussed below were studied

following [21].

Definition 1.2.1. A graph Γ is a set of vertices, V pΓq, together with a set of edges,

EpΓq. Each edge e is associated to a non-ordered pair of vertices by the map Endspeq “

tv, wu, v, w P V pΓq. The two vertices v and w are called the ends of the edge. Two vertices,

v, w P V pΓq, are said to be adjacent if there exists at least one edge e P EpΓq such that

Endspeq “ tv, wu.

Notice in the above definition that there could exist multiple edges between the same

pair of vertices. One can picture a graph as a set of points representing the vertices

and traces representing the edges. Their importance for this project comes from their

connection with the free groups, which we will see shortly, and their role as automata,

which will be fully presented in Chapter 2.

We now define some qualities that a graph can have.

Definition 1.2.2. A path (of edges) in a graph is a sequence that alternates vertices and

edges, starting and ending with vertices:

v0e1v1e2 ¨ ¨ ¨ vn´1envn, where Endspeiq “ tvi´1, viu, @ i P p0, ns.

The path beginning in v0 and ending in vn is called a geodesic path between v0 and vn

if the number of edges in the sequence is minimal.

Definition 1.2.3. A graph Γ is said to be connected if for any v, w P V pΓq, there is a

path between them.

Definition 1.2.4. A cycle, or closed path, is a nontrivial path which begins and ends at

the same vertex, v, being v the only vertex to repeat itself in the path. A loop is an edge

e which has Endspeq “ tv, vu for some vertex v.

Definition 1.2.5. A graph is called simple if it does not have loops or multiple edges, that

is, there are no e1, e2 P EpΓq such that Endspe1q “ tv, vu or such that Endspe1q “ Endspe2q.

Definition 1.2.6. A tree is a connected graph without loops and cycles.

Definition 1.2.7. A graph Γ is directed if each one of its edges has an ordered pair of

vertices associated to them. In other words, for each edge, one can identify the initial

vertex and the final one. When representing a graph with points and dashes, the directed

edges are represented by arrows, out of the first entry and into the second entry of the

ordered pair of vertices associated to them.

Chapter 1. Preliminaries 18

An important note on notation: many authors indicate a directed graph as a 4-uple,

Γ “ pV, E, s, tq. In this notation, V is the set of vertices, E is the set of edges and s and

t are functions s, t : E Ñ V . For each e P E, speq is then called the start of e and tpeq

the tail of e. It is clear that the association as ordered pair is
`
speq, tpeq

˘
. We use these

functions later on the text, so that the reader is advised to keep them in mind.

Definition 1.2.8. A graph Γ is labelled if each one of its edges has a label. When

representing a graph with points and dashes, the label is a symbol or a sequence of symbols

near the edges (dashes).

Definition 1.2.9. The degree of a vertex v P V pΓq is the number of times that v is an

end for some edge, i.e., degpvq “ #te P EpΓq | Endspeq “ tv, wu, v ‰ wu ` 2 ¨ #te P

EpΓq | Endspeq “ tv, vuu. If all vertices in Γ have finite degree, then Γ is locally finite.

Definition 1.2.10. A graph is finite if V and E are finite.

Note that it is possible to have a locally finite infinite graph.

As our goal is to introduce the free groups, we remember the definition of finitely

generated groups and afterwards we define the relationship between graphs and groups.

Definition 1.2.11. Take a group pG, ¨q and S Ď G. If for all g P G, g “ a1 ¨ a2 ¨ a3 ¨ ¨ ¨ an,

with ai P S or a´1

i P S, for any i, then S generates G. If S is finite, then G is finitely

generated.

Definition 1.2.12. Let G be a group and S Ď G be a finite generating set of G. Consider

the graph ΓG,S whose vertices are the elements of G and, for each g P G, s P S, there is a

directed edge from g to g ¨ s labeled by s. Those are the only vertices and edges and the

graph ΓG,S is called the Cayley graph of G with respect to S. The Cayley graph of G with

respect to S is therefore a directed, locally finite, connected and labelled (by elements of

S) graph.

The first connection between graphs and groups arises with Cayley’s theorem about

the symmetric group of a graph.

Definition 1.2.13. If Γ is a graph, we call a bijective function f : V pΓq Ñ V pΓq a

symmetry if f is such that for every v1, v2 adjacent vertices, we have that fpv1q, fpv2q are

also adjacent, that is, f preserves adjacency. We define as SympΓq the set of all possible

symmetries of Γ. SympΓq is a group when together with the operation composition of

functions and it is called the symmetric group of Γ.

Theorem 1.2.14 (Cayley). Every finitely generated group can be faithfully represented as

SympΓq for some connected, directed and locally finite graph Γ.

Chapter 1. Preliminaries 19

The next result shows that elements of a finitely generated group G can act on its

Cayley graph.

Proposition 1.2.15. Let G be a group with finite generating set S, then G – SympΓG,Sq.

We finish our introduction to graphs with an example.

Example 1.2.16. Take S3, the group of all permutations of t1, 2, 3u. One generating set

is tp12q, p123qu. The Cayley graph of S3 with respect to this generating set is as Figure

1.1a. Another generating set is tp12q, p23q, p13qu, being the correspondent Cayley graph

shown in Figure 1.1b.

p23q p13q

p12q

e

p123qp132q

Figure 1.1 - (a) Cayley Graph of S3 with respect to the generating set tp12q, p123qu.

In Figure 1.1a, the small edges represent the action of the generator p12q, while the

long arrows represent the action of the generator p123q. In Figure 1.1b, the blue, red and

black arrows are, respectively, associated to the generators p12q, p13q and p23q.

Chapter 1. Preliminaries 20

p123q p132q

p12q

e

p13qp23q

Figure 1.1 - (b) Cayley Graph of S3 with respect to the generating set
tp12q, p23q, p13qu.

After this introduction to graphs, we can go on to study free groups, which can be

intuitively understood as groups that can be presented without relations and such that

any other group is a quotient of one of them. Using symbols, if F is a free group generated

by S, then F is presented as xS | y.

Definition 1.2.17. Consider a set M and ‚ a binary operation ‚ : M ˆ M ÝÑ M . The

pair pM, ‚q is a monoid if it is a semigroup with identity, that is, if

1. for all a, b, c P M , associativity pa ‚ bq ‚ c “ a ‚ pb ‚ cq holds; and

2. there exists an identity element e P M such that for every a P M , a ‚ e “ e ‚ a “ a.

Definition 1.2.18. Let S be a set. A finite sequence of (not necessarily distinct) elements

of S is a word (in S). The set of all words in S (including the empty word), denoted by

S˚, together with the operation of concatenation, is the free monoid on S.

In the context of studying formal languages, any set S is called an alphabet. Being the

set of all words in an alphabet the underlying set of a monoid, we are interested in the

definition of monoid homomorphisms.

Definition 1.2.19. Consider two monoids M and M 1. A monoid homomorphism, also

called just monoid morphism, is a function φ : M ÝÑ M 1 such that

φpm1m2q “ φpm1qφpm2q for all m1, m2 P M

and

φpeM q “ eM 1 .

Chapter 1. Preliminaries 21

Clearly, the image of a monoid morphism is a submonoid of its range. When working

with monoid morphisms in Chapter 3, we may refer to them as morphisms only. Now we

go back to the free groups.

Definition 1.2.20. Consider S “ tx1, x2, ¨ ¨ ¨ , xnu, S Ď G a group. We denote S´1 as the

set of the inverse elements of S in G.

It is important to notice that we interpret elements of
`
S Y S´1

˘˚
in two different

manners: as elements of a group G (generated by S) and as words in the alphabet S Y S´1,

without any operation or inverses. Thus, if a, b P S, we have baa´1 “ b in G, but baa´1 ‰ b

in
`
S Y S´1

˘˚
.

Notation 1.2.21. We use baa´1 ”G b to denote that the equality holds when interpreting

b and baa´1 as elements of G.

Definition 1.2.22. Consider S “ tx1, x2, ¨ ¨ ¨ , xnu, S Ď G a group. A word w P`
S Y S´1

˘˚
is said to be freely reduced if it does not have any element a P tS Y S´1u

followed immediately by a´1. This means that w does not have a subword composed only

by a generator xi P S and its inverse x´1

i P S´1.

Notation 1.2.23. We denote by S the set S Y S´1.

Definition 1.2.24. G is a free group with basis S if S generates G and there is no

nontrivial freely reduced word w P S
˚

with w ”G 1.

Thus, the free group can also be understood as the set of all freely reduced words, with

the operation concatenation (followed by reduction if necessary) of words.

We now present a series of results about the free groups whose proofs can be found in

any basic literature in the subject of free groups, such as [21] or [25].

Theorem 1.2.25. There exists F a free group with rank n, for every n P N.

Theorem 1.2.26. Consider a group G, g1, g2, ¨ ¨ ¨ , gn P G and X “ tx1, x2, ¨ ¨ ¨ , xnu a

basis for F a free group (with rank n). Then there exists a group homomorphism φ : F Ñ G

with φpxiq “ gi for every 1 ď i ď n.

Notice that if tg1, g2, ¨ ¨ ¨ , gnu is a set of generators for G, then the map is actually

surjective because its image contains all the generators of G. This result can be expressed in

the form: for each map f : X Ñ G, there exists a unique group homomorphism φ : F Ñ G

such that φpxiq “ fpxiq for every xi P X. In other words, φ makes the following diagram

commute

F pSq
φ

// G

X
1 Q

bb

f

??

.

Chapter 1. Preliminaries 22

This form of expressing the result is commonly referred to as the universal property of

the free groups.

Corollary 1.2.27. Any two free groups F1 and F2 with same rank n are isomorphic.

This last result allows us to speak about the free group of rank n instead of a free

group with rank n. We denote by Fn the free group with rank n, for n P N. A free group

with infinite rank is denoted by F8.

Corollary 1.2.28. Consider a group G generated by S, with |S| “ n. Then, G – Fn{H,

where H “ N pφq is the kernel of the map φ as defined in Theorem 1.2.26, considering as

gi’s the elements of the generating set S.

We remember that the symbol – express the existence of an isomorphism.

Theorem 1.2.29. The Cayley graph with respect to any generator set of a free group is a

tree.

Theorem 1.2.30 (Nielsen-Schreier). Every subgroup of a free group is itself a free group.

Theorem 1.2.31 (Howson). If G is a free group and H1, H2, ¨ ¨ ¨ Hn is a finite number of

finitely generated subgroups of G, then
nč

i“1

Hi is a finitely generated free group.

Definition 1.2.32. Let G be a group and consider a group property P . If there is a finite

index subgroup of G, H, with property P , then G is said to be virtually P .

We use this last definition mostly for the virtually free groups, but it holds for any

other group property, such as being cyclic, abelian, nilpotent or solvable.

1.3 Group Presentations

Theorem 1.2.26 says that if G is a finitely generated group with generators S “

tg1, ¨ ¨ ¨ , gnu, then there is a homomorphism φ from Fn, which has basis X “ tx1, ¨ ¨ ¨ , xnu,

onto G such that φpxiq “ gi. Thus, given a word ω in Fn, it corresponds to some product

of generators and their inverses in G. If ω maps to the identity in G, then ω is called a

relation in G.

Definition 1.3.1. Consider G a group, φ : Fn Ñ G a surjective map and R Ď kerpφq.

A subset R of Fn is said to be a set of defining relations for G if the smallest normal

subgroup of Fn that contains R is kerpφq.

Note that, if R is a set of defining relations, then every element in the kernel of φ can

be expressed as a finite product of conjugates of the elements of R and their inverses.

Chapter 1. Preliminaries 23

With this in mind, we can define the finite group presentations.

Definition 1.3.2. A group G is said to be finitely presented if there exists a finite set of

generators S and a finite set of defining relations R for G. In that case, one writes

G “ xS | Ry “ xg1, ¨ ¨ ¨ , gn | ω1, ¨ ¨ ¨ , ωmy.

A group presentation is a choice of generating set and set of relations for a group as

above, without the restrictions that S or R be finite, but we will only be interested in

groups with finite presentations.

In general, it is not easy to prove that a group has a particular presentation and usually

there is no general procedure to prove that a given presentation is related to a given group.

Given an arbitrary presentation, it is hard even to determine if the group is infinite, finite

or trivial. We do not go very deep into presentation problems, but we will define some

groups by means of presentations.

1.4 Languages and Dehn’s Problems

We now define formal languages and introduce Dehn’s problems for groups.

Definition 1.4.1. Given an alphabet S “ tx1, x2, ¨ ¨ ¨ , xnu, any subset of words in the

free monoid
`
S Y S´1

˘˚
is a language.

We previously defined the inverse set S´1 of a given alphabet by means of a group

generated by S. Nevertheless, the inverse set may be defined without any relation to

groups.

Definition 1.4.2. Let S ‰ H be an alphabet and choose a set S´1 which has a bijection

to S and such that S X S´1 “ H. We denote the image of s P S under this bijection by

s´1.

Formal languages can be studied by means of automata or by means of grammars. We

use both of these approaches in this work. The languages can be classified according to

many properties they may have. We recall that our main interest lies in the classification of

formal languages according to the automata type related to them, that is, the classification

given by Chomsky’s Hierarchy, first defined by Chomsky in [9].

Definition 1.4.3 (Chomsky’s Hierarchy). Chomsky’s Hierarchy divides the formal lan-

guages in four classes, each of them containing the next one.

• Type 0: Recursively countable languages. (Accepted by Turing machines.)

Chapter 1. Preliminaries 24

• Type 1: Context-sensitive languages. (Accepted by linearly nondeterministic Turing

machines.)

• Type 2: Context-free languages. (Accepted by nondeterministic pushdown automata.)

• Type 3: Regular languages. (Accepted by deterministic finite state automata.)

Context-free and regular languages are our main interest and will be introduced in the

following chapters. Let us now define Dehn’s Problems for finitely generated groups.

In 1910, Max Dehn introduced some decision problems for groups while studying the

fundamental group of closed surface with genus greater than or equal to 2. Decision

problems are useful as a first test of how complex a group can be. Given a group G with

finite generating set S, Dehn’s problems ask if it is possible to algorithmically solve the

following questions:

(a) Given a word w in the alphabet S “ tS Y S´1u, can it be decided if it is the identity

element when viewed as an element of G? That is, is there an algorithm that

determines if, given w P tS Y S´1u*, one has w ”G eG? (Word Problem);

(b) Given w, w1 P S
˚
, can it be decided if they represent the same element of G? That

is, can it be decided whether w ”G w1? (Equality Problem);

(c) Given two words w1, w2 in the alphabet S, can it be decided if they are conjugate as

elements of G? That is, if w1 and w2 represent group elements g and h, respectively,

can it be decided if there is a z P G such that g “ zhz´1? (Conjugacy Problem);

(d) If G1 is another group, with generators S 1 and relations R1, can it be decided if the

groups G and G1 are isomorphic? (Isomorphism Problem).

The computability theory involved in the definition of what the existence of an algorithm

means is extensive and we do not focus on it. We consider the existence of an algorithm for

resolving a given decision problem A to mean the existence of a Turing machine (which are

a specific type of automata we do not explore) connected with a black box (usually called

an oracle) such that the system “machine ` oracle” is able to resolve the decision problem.

The oracle is supposed to be able to give a solution, not necessarily a computational one,

for some related decision problem. Thus, the desired algorithm exists if there is a Turing

machine that can reduce the main problem A to a problem B which is solvable by some

oracle.

It is possible to show that the Word Problem and the Equality Problem are equivalent.

The following results can be found in Chapter 5 of [21].

Chapter 1. Preliminaries 25

Proposition 1.4.4. Given a group G with finite generating set S, Dehn’s word problem

is solvable for G if and only if the equality problem is solvable for G.

However, these problems are not always decidable.

Theorem 1.4.5. There are finitely presented groups G such that there is no algorithm

determining if a given word in S represents (in the group G):

1. the identity;

2. an element in the center of G, ZpGq;

3. an element in the commutator subgroup;

4. a finite order element.

It is possible to relate a property of a Cayley graph of a group and its word problem.

Definition 1.4.6. Let Γ be a connected graph and v, w P V pΓq. The length of a path

between v and w is equal to the number of edges in such path. The distance between v

and w is equal to the lenght of the path of minimal length from v to w. We denote the

distance by dpv, wq.

Definition 1.4.7. Consider a connected graph Γ and v P V pΓq. The ball centered in v

with radius n, Bpv, nq, is the subgraph containing all paths beginning in v with length

lower or equal to n.

Definition 1.4.8. A Cayley graph ΓG,S “ pV, Eq is said to be constructible if there exists

a total order in its set of vertices, ď, so that given v P V zteGu, then there exists y P V

such that

1. y ă v,

2. y is adjacent to v; and

3. y is adjacent to w for any w P V which is adjacent to v such that w ă v.

This means that, given Bpe, nq for some n P N, it is possible to construct Bpe, n ` 1q

by adding vertices one by one in a finite amount of steps.

Proposition 1.4.9. A group G with finite generating set S has solvable Word Problem

if and only if it is possible to decide which words in S correspond to a closed path in the

Cayley graph ΓG,S.

We finish this chapter with the following result which shows the connection between

the Word Problem and group theoretic properties.

Chapter 1. Preliminaries 26

Theorem 1.4.10. A group G with finite generating set S has solvable Word Problem if,

and only if, the Cayley graph ΓG,S is constructible.

Further study of these problems is not within our goals, but the interested reader

may consult [21]. However, the Word Problem induces the definition of a language in the

alphabet S which is of extreme importance to our work. Later in our work we present

some interesting results concerning these problems.

27

2. Anisimov’s Theorem

Here we present the definition of a finite state automaton. After that, we see some

basic properties concerning both finite state automata and the languages that they accept,

that is, regular languages. Finally, we present the proof of Anisimov’s result. All the work

in this Chapter was done following [21].

2.1 Finite State Automata

Intuitively, an automaton is a directed graph M with an associated alphabet X and

such that:

1. There exists a subset of V pMq whose elements are called initial (or start) states.

2. There exists a subset of V pMq whose elements are called accepted states.

3. Directed edges are labelled by elements of X.

The name automaton comes from the fact that such a graph is constructed to simulate

the behavior of a computer. Intuitively, a finite state automaton is a finite directed graph

with decorated edges. Formally, however, these automata are an abstract 5-uple.

Definition 2.1.1. A nondeterministic finite state automaton is a quintuple M “ pQ, X, δ, I, F q,

where:

1. Q is a finite set, called the set of states of M;

2. X is a finite set, called the alphabet of M;

3. δ Ď pQ ˆ Xq ˆ Q is a finite set of transition relations;

4. I Ď Q is called the set of initial (or start) states of M;

5. F Ď Q and is called the set of final (or accepted) states of M.

Although the transition relations are defined as 3-uples, they can be written as a

multivalued function δ : pQ ˆ Xq ÝÑ Q. Transition relations follow the formation of words

accepted by the automaton. Let us picture a nondeterministic finite state automaton as

a graph: the vertices are the states; and for each pu, s, vq P δ, there is a directed edge

leaving the vertex u labeled by x and arriving at the vertex v. See Example 2.1.6.

Chapter 2. Anisimov’s Theorem 28

Definition 2.1.2. The language accepted by an automaton M is formed by all words

w P X* corresponding to directed paths in M, beginning in an initial state and ending in

an accepted state. We denote it by LpMq.

A finite state automaton can be deterministic or nondeterministic. The determinism

appears when the automaton has exactly one initial state and, picturing it as a graph,

there are no two edges beginning in the same vertex and having the same label.

Definition 2.1.3. A deterministic finite state automaton (DFA) is a quintuple M “

pQ, X, δ, q0, F q, where:

1. Q is a finite set, called the set of states of M;

2. X is a finite set, called the alphabet of M;

3. δ Ď pQ ˆ Xq ˆ Q is a finite set of transition relations such that

• for each q P Q and ω P X, there is at most one transition of the form
`
pq, ωq, ˚

˘
,

˚ P Q;

4. q0 P Q is called the initial (or start) state of M;

5. F Ď Q and is called the set of final (or accepted) states of M.

The name of the DFAs come from the fact that, given a word accepted by the automaton,

there is a unique path that must be followed in the automaton associated graph in order

to form that word.

Definition 2.1.4. The language accepted by a DFA is called a regular language.

Remark 2.1.5. For a language to be regular, it must be exactly the language accepted

by a DFA and not a subset of the language accepted by it.

Example 2.1.6. We briefly remind that the most common representation of a graph is

made by using points and lines. Thus, a directed edge (an edge that has an initial and a

final vertex) is an arrow, going from one point to the other. Labeling an edge is nothing

more than putting a symbol above or below the arrow.

‹
a a

a

Figure 2.1 – A deterministic automaton

Chapter 2. Anisimov’s Theorem 29

The graph in Figure 2.1 represents a deterministic automaton (the only start state is

denoted by ‹), which has only one accepted state (denoted by two circles). Note that the

accepted state can be the same as the start state (and it is in this example). The alphabet

considered could be any set S that contains a.

Consequently, the language accepted by the automaton presented here is ta3n | n P Nu.

And it is a regular language, since the automaton is deterministic.

Though it is not among our goals to prove it, there is an interesting result in [21],

Chapter 7, concerning the deterministic and nondeterministic automata:

Theorem 2.1.7. The set of languages accepted by nondeterministic finite state automata

is the same as the set of regular languages.

Using the above result, some closure properties for the regular languages can be proven.

Theorem 2.1.8. Let K and L be two regular languages on the same alphabet S. Then,

the following are regular languages:

1. The complementary language S˚zK.

2. The union, K Y L.

3. The intersection, K X L.

4. The concatenation, KL “ tωKωL | ωK P K and ωL P Lu.

5. The infinite union K Y KK Y KKK Y ¨ ¨ ¨ .

Before proving this result, we introduce a new definition.

Definition 2.1.9. We say that a finite state automaton with associated alphabet S is

complete if, for every vertex in the automaton, v P V, and for every a P S, there exists an

edge leaving v labelled by a.

We note that, in the above definition, there are no restrictions on the tails of the edges,

they may be loops or not.

Proof of Theorem 2.1.8. We first note that, given a DFA M1 with associated alphabet

S, we can construct a complete DFA that accepts the same language as M1. In order to

do that, we add, for each vertex v P V 1, as many edges as needed in order to have the

property that for all v P V, a P S, there exists an edge leaving v labelled by a. The new

added edges all leave v and go to a new vertex q R V 1, for each v P V 1. The vertex q have

one loop edge for each a P S, labelled by that same a, and is not an accepted state. Then,

Chapter 2. Anisimov’s Theorem 30

we have a complete DFA M with set of vertices V “ V 1 Y tqu that accepts the same

language as M1.

(1) Assume K is accepted by a DFA M1. We construct from M1 the complete automaton

M, which accepts the same language K. Consider the automaton Mc formed by taking

the complement of the set of accepted states of M as accepted states, but with same set

of edges and vertices. Since M is finite, so is Mc. The sets of accepted states and initial

states of Mc are both well-defined, since they were for M. Thus, Mc is a DFA. We need

only show that it accepts the language S˚zK.

First, we notice that the associated alphabet of Mc is still S, so that LpMcq Ď S˚.

Secondly, given that M is deterministic, for every word ω P LpMq, there is only one path

in M beginning in the start state and ending in an accepted state which form ω. In Mc,

this same path still form ω, but it ends in a non-accepted state. Since there is no change

in the set of initial states, then there is no other way of forming ω in Mc, otherwise

there would have to be a path in M labelled by ω but ending in a non-accepted state,

which is impossible because of the deterministic aspect of M. Thus, ω R LpMcq so that

LpMq X LpMcq “ H, which means that LpMcq Ď S˚zK.

Finally, take η P S˚zK. We have made no changes in edges when going from M to Mc,

so all the paths are exactly the same in both graphs. Now, because M is complete but

does not accepts η, there must be a path forming η in M which ends in a non-accepted

state. The deterministic aspect of M guarantees that such path is unique. Thus, when

changing all non-accepted states into accepted states, we change η into an accepted word.

Then, η P LpMcq and we have that Mc accepts the complementary language.

(2) Consider the DFAs ML and MK , which accepted the languages L and K, respectively.

Let us unite ML with MK in a disjoint manner (by simply considering both of them,

together, as one single automaton). The union is a nondeterministic finite state automaton,

because there are two start states. Then, we have a nondeterministic finite state automaton

that accepts the language K Y L. The previous theorem guarantee that this means K Y L

is a regular language.

(3) Write K X L “ S˚ztpS˚zKq Y pS˚zLqu. The result then follows from (1) and (2).

(4) Consider the DFAs ML and MK , which accept the languages L and K, respectively.

Let us unite ML with MK in a disjoint manner (by simply considering both of them,

together, as one single automaton). Now we declare that the only start state of this

new automaton M is the start state of MK . We then add an edge from each accepted

state in MK to the vertex that used to be the start state of ML, labelled by a symbol ǫ

outside our alphabet S. This transforms M into a finite state automaton, which could

be nondeterministic or not. Going through the new edge adds nothing to the word being

read by a path in the automaton, so that the language accepted by M is exactly KL.

Chapter 2. Anisimov’s Theorem 31

Since M is a finite state automaton, Theorem 2.1.7 finishes our proof regardless of the

determinism of M.

(5) Consider an automaton M constructed by starting with MK , the DFA accepting K,

and adding edges from each accepted state to the initial state of MK . We label these

edges by ǫ. As in the previous item, these edges add nothing to the words being read, but

they give a path from the end of a word to the beginning of another, thus the language

accepted is exactly K Y KK Y KKK Y ¨ ¨ ¨ . Again, since M is a nondeterministic finite

state automaton, the previous theorem finish our proof.

2.2 Main Theorem

As noted in Chapter 1, the Word Problem for groups induces the definition of a

language in the alphabet S which is fundamental for this work. Let us now define that

language.

Definition 2.2.1. Consider a group G generated by a finite set S. The set WPpG, Sq “

tw P tS Y S´1u* | w ”G eGu is defined as the language of the word problem of G with

respect to S. We often omit the letter S (and G) when it is clear which set of generators

(and group) is being considered.

The above definition makes solving Dehn’s word problem the same as discovering if

w P WPpG, Sq. The importance of this language for us lies in the classification of a class

of finitely generated groups.

Theorem 2.2.2 (Anisimov). Consider a group G with finite generating set S. Then

WPpG, Sq is a regular language if, and only if, G is finite.

Proof. Let us show first how to build a DFA accepting WPpG, Sq and then show the other

direction.

ð If G is finite, then the Cayley graph with respect to tS Y S´1u is finite. We now

regard the Cayley graph as a DFA, by declaring the identity element as the unique

initial state as well as the unique accepted state. The language accepted by this

DFA is WPpG, Sq.

ñ Conversely, suppose that WPpG, Sq is the language generated by a DFA M.

Without loss of generality, assume that every vertex in M is connected to an accepted

state by a directed path (otherwise, this vertex is not part of any accepted word and

can be removed from the automaton).

Let w and w1 be two words formed in the graph of M that have paths ending in

the same vertex z P M, which may or may not be an accepted state. By our previous

Chapter 2. Anisimov’s Theorem 32

assumption, there exists a path from z to an accepted state. Consider the word v

formed by such a path. Then both wv and w1v are accepted by M. By hypothesis,

this means that wv ” eG ” w1v as elements in G. Then, as G is a group, one can

apply right cancellation and obtain that w ” w1 in G.

We have obtained that, given two words described by paths ending at the same

vertex in the graph of M, then they represent the same element of G. This implies

that G has order less or equal to the number of states in the graph of M. But M

is a DFA, meaning that its graph has a finite number of states. Thus, G has finite

order.

33

3. Muller and Schupp’s Theorem

3.1 Pushdown Automata

3.1.1 Context-Free Languages

We now introduce the concept of pushdown automata. As we have briefly mentioned,

they are used to define the class of context-free languages, which is used to classify another

class of groups, that of virtually free groups. In this section, some closure properties are

presented, as well as a particular case leading to a less general, but interesting result

(Herbst’s Theorem) in the Hierarchy we are constructing for groups.

Definitions and properties can be found in more detail in [14] or, for more advanced

readers, in [3, 11]. Herbst’s intermediate result can be found in [12].

Informally speaking, a pushdown automaton is a nondeterministic finite state automa-

ton M with an associated alphabet S and such that:

• There exists a vertex v P V pMq which is called initial state.

• There exists a subset of V pMq whose elements are called accepted states.

• Directed edges are labelled by elements of S.

• It has two other related alphabets, the stack and the tape alphabet.

• It has a set of transition relations.

These automata cannot be pictured only as a graph, as was the case for the finite state

ones. The pushdown automata can be interpreted as a machine composed by three pieces:

a sequence of symbols, called the input tape; a finite graph dictating what the machine

does; and another sequence of symbols, called the stack.

Definition 3.1.1. A nondeterministic pushdown automaton is a 7-tuple

M “ pQ, X, Σ, δ, q0, $, F q,

where

1. Q is a finite set, called the set of states of M;

2. X is a finite set, called the tape alphabet of M;

Chapter 3. Muller and Schupp’s Theorem 34

3. Σ is a finite set, called the stack alphabet of M;

4. δ Ď
`
pQ Y tεuq ˆ pX Y tεuq ˆ pΣ Y tεuq

˘
ˆ pQ ˆ Σ˚q is a finite set of transition

relations;

5. q0 P Q is called the initial (or start) state;

6. $ P Σ is called the bottom of the stack;

7. F Ď Q is the set of accepted states.

As in the case of the finite state automata, the transition relations defined as 5-uples

can be written as if their set was a function, in order to improve the notation:

δ :
`
pQ Y tεuq ˆ pX Y tεuq ˆ pΣ Y tεuq

˘
ÝÑ pQ ˆ Σ˚q.

Notice, however, that δ is not truly well defined as a function, because of the nondeter-

minism.

The main difference between pushdown and finite state automata is given by the

existence of the stack, which works as a memory for the automaton. The stack is a storage

device represented by a one-sided pile with countably many empty spaces, as is the input

tape. The input tape is filled with a finite word over the tape alphabet X, which will give

instructions to the automaton, as it reads each letter of the word, about which transition

to follow. The stack begins with a given word or symbol at the top of the pile and has

two possible operations, which it does accordingly to the instructions on the transitions.

The possible operations are:

1. to replace symbols of the stack, reading its top letter, deleting it at the same time and

afterwards adding the word (possibly empty) given by the last followed transition;

and

2. to fill the stack, not deleting any of its symbols and adding the word (possibly empty)

given by the last followed transition.

We call the current symbol being read in the input tape the input letter. Thus,

pushdown automata have to consider the current state, the input letter and the top (last

symbol) of the stack before making a transition, while the finite state automata consider

only the current state.

It is natural to define, as was done with the DFA, the class of languages which are

accepted by pushdown automata:

Chapter 3. Muller and Schupp’s Theorem 35

Definition 3.1.2. A language L Ď X˚ is said to be accepted by a pushdown automaton

M “ pQ, X, Σ, δ, q0, $, F q, if M reaches an accepted state when it finishes reading ω from

the input tape, for any ω P L. The languages accepted by pushdown automata are called

context-free languages.

The easiest way to completely understand this concept is by means of an example.

Example 3.1.3. We usually represent an automaton as a graph whose vertices are the

states. We denote the start state by an arrow coming into it from nowhere and the

accepted states by two circles. The transition relations are represented by the directed and

labeled edges, being the labels of the form a, b Ñ c, with a P X Y tǫu and b, c P Σ Y tǫu.

We call the entries a, b and c by first, second and third positions of the relation (or of the

label), respectively.

q1 q2

q3q4

ε, ε Ñ $
0, ε Ñ 0

1, 0 Ñ ε

1, 0 Ñ ε
ε, $ Ñ ε

Figure 3.1 – A pushdown automaton.

The input tape consists of a sequence of letters on the tape alphabet X, which is given

to the automaton to read. The automaton reads the sequence and, together with the

transition relations, makes changes to the stack pile. The stack is a sequence of symbols

in Σ. We interpret this sequence as a pile of symbols and we call the last element in the

sequence the top of the stack (pile). The end of the pile is the first symbol in the sequence.

The automaton in Figure 3.1 represents a pushdown automaton

M “ ttq1, q2, q3, q4u, t0, 1u, t0u, δ, q1, $, tq1, q4uu ,

which accepts the language t0n1n | n ě 0u. To understand that, it is necessary to

comprehend the workings of the transition relations δ when pictured in the graph.

Writing "a, b Ñ c" means that, if on the input tape there is an a and on top of the

stack pile there is a b, then the automaton can follow that edge and it replaces b by c on

Chapter 3. Muller and Schupp’s Theorem 36

the stack. After that, the automaton goes to the next symbol on the input tape and obey

the transitions that begin in the state where it has arrived with the last change. When

there is an ε in the transition relation, it is understood that there is no symbol: If there is

an ε in the first position, the machine may make the transition without reading anything

from the input tape; in the second position, the machine does not need to read or replace

any symbol from the stack pile; in the third position, the automaton processes the element

it reads and erase it, but does not write any symbol on the stack. Thus, the mechanism

can eventually reach the $ symbol, which marks the end of the stack pile.

For a clearer explanation, let us give the automaton on Figure 3.1 the word 001 written

in the input tape and describe its behavior, see Table 1.

Chapter 3. Muller and Schupp’s Theorem 37

Table 1 – Computation Example with Input Word 001

STEP 1

q1 q2

q3q4

ε, ε Ñ $
0, ε Ñ 0

1, 0 Ñ ε

1, 0 Ñ ε
ε, $ Ñ ε

ε001

The automaton M begins at state q1. Leaving q1

there is only one edge, with ε in the first position
of the label, which is the same as requiring that
no symbol is read from the input tape. Thus, this
condition is automatically satisfied. M has yet
to verify if the second condition is satisfied, by
reading the symbol in the second position of the
edge label. The second position has an ε, which
means "independent of the stack’s contents". This
condition is trivially satisfied, therefore M can
indeed go through this edge and can apply the
correspondent changes to the stack.

STEP 2

q1 q2

q3q4

ε, ε Ñ $
0, ε Ñ 0

1, 0 Ñ ε

1, 0 Ñ ε
ε, $ Ñ ε

ε001

$

M followed the blue edge and arrived at state
q2. First, crossing the edge means applying some
change to the stack: the third entry of the transition
must be added to the stack, in this case a $. Now
M reads the next symbol on the input tape, which
is a "0". Thus the automaton has to look for some
edge with a "0" in the first position of the label.

Chapter 3. Muller and Schupp’s Theorem 38

STEP 3

q1 q2

q3q4

ε, ε Ñ $
0, ε Ñ 0

1, 0 Ñ ε

1, 0 Ñ ε
ε, $ Ñ ε

ε001

$

The only edge with 0 as first symbol in the label
is the now blue edge. The second symbol from the
label is an ε and therefore M can follow this edge
without worrying about the contents of the stack,
again because the ε in the second position means
"independence of the stack’s contents". The third
symbol in the label, 0, tells M that, once it follows
this edge, a "0" has to be added to the stack.

STEP 4

q1 q2

q3q4

ε, ε Ñ $
0, ε Ñ 0

1, 0 Ñ ε

1, 0 Ñ ε
ε, $ Ñ ε

ε001

0

$

M added a 0 to the stack, because the last followed
edge required that. Next, it goes on to the next
symbol in the input tape, which is again 0. Since
the blue edge, which M followed in last step, leads
it back to the state q2, the only possible edge satis-
fying the first transition condition (that is, having
first symbol equal to the current input symbol being
read) is again the blue edge. The second condition
for following that edge is trivial and therefore M

follows it.

Chapter 3. Muller and Schupp’s Theorem 39

STEP 5

q1 q2

q3q4

ε, ε Ñ $
0, ε Ñ 0

1, 0 Ñ ε

1, 0 Ñ ε
ε, $ Ñ ε

ε001

0

0

$

Again, M adds a 0 to the stack in the last step.
The next input symbol is now a 1, which means
the one possible choice of edge is the blue one. To
follow that edge, M has to read a 0 on the top of
the stack, because the edge label has a 0 in the
second position. But that is actually the case, as
stressed in green. Hence, M follows the blue edge
and has to erase the 0 it was reading on the top
of the stack. Why? Because the third entry in
the label of the blue edge is an ε, which in the
third position means "erase what was read from
the stack".

STEP 6

q1 q2

q3q4

ε, ε Ñ $
0, ε Ñ 0

1, 0 Ñ ε

1, 0 Ñ ε
ε, $ Ñ ε

ε001ε

0

$

M is now at the state q3 and is reading ε from the
input tape, because the input word has ended. This
means that the new blue edge is the one possible
choice. But, in order to follow the blue edge, M

has to be both reading ε from the input and $ on
the stack, which is not the case. As stressed in
green, the stack has a 0 on its reading position (the
top). Thus, the edge cannot be followed and the
automaton has finished reading the input word at
state q3, which is not an accepted state. Therefore,
the word 001 is not accepted by M.

Chapter 3. Muller and Schupp’s Theorem 40

If we gave as input word the word 0011 instead of 001, then there would be another step

between steps 5 and 6 in Table 1, where the loop edge from q3 to itself would be followed

and the second 0 would be erased from the stack. In that case, the blue edge of step 6

could be followed and the automaton would finish reading the input in an accepted state.

Therefore, 0011 is accepted by M. Finally, notice that the behavior of the automaton

will reject any word where there are 0s after a 1, because once the first 1 is read, the

automaton reaches state q3 and cannot read any other 0. From that and the computation

example, it becomes clear that the accepted language is indeed t0n1n | n ě 0u.

It is also natural to ask about the deterministic case. Deterministic pushdown automata

are defined below.

Definition 3.1.4. A deterministic pushdown automaton is a 7-tuple

M “ pQ, X, Σ, δ, q0, $, F q,

where

1. Q is a finite set, called the set of states of M;

2. X is a finite set, called the tape alphabet of M;

3. Σ is a finite set, called the stack alphabet of M;

4. δ Ď
`
pQ Y tεuq ˆ pX Y tεuq ˆ pΣ Y tεuq

˘
ˆ pQ ˆ Σ˚q is a finite set of transition

relations such that

‚ for every q P Q, x P X and a P Σ, at most one of the transitions
`
pq, x, aq, ˚

˘
,`

pq, x, εq, ˚
˘
,
`
pq, ε, aq, ˚

˘
,
`
pq, ε, εq, ˚

˘
exists, with ˚ P pQ ˆ Σ˚q;

5. q0 P Q is called the initial (or start) state;

6. $ P Σ is called the bottom of the stack;

7. F Ď Q is the set of accepted states.

The language accepted by a deterministic pushdown automaton is called a deterministic

context-free language.

Remark 3.1.5. The formal definition of transitions uses heavy notation. In order to

make it easier to visualize what the transitions are doing, we frequently use the notation

δpq, x, σq “ prq, rσq instead of
`
pq, x, σq, prq, rσq

˘
. Notice that contrary to the nondeterministic

case, in the deterministic case δ can be understood as a well defined function. When

represented inside automata, the transitions have yet another notation, as seen in the

automaton of Figure 3.1.

Chapter 3. Muller and Schupp’s Theorem 41

Remember that in the Chomsky’s Hierarchy, the regular languages were presented as

a subset of the context-free languages. Indeed, for any given regular language, consider

its generating finite state automaton with associated alphabet X. For each edge in that

automaton, take the label x P X and change it with x, ε ÞÑ ε, obtaining a new automaton,

where the set of states, the accepted states and the initial states are the same. This new

automaton is a pushdown automaton accepting the original regular language, which is

therefore context-free. Notice that the stack alphabet in such pushdown automaton could

be any set. But the set of context-free languages is strictly larger than the set of regular

languages. Take as example the language of Example 3.1.3, L “ t0n1n | n P Nu, which is

context-free, and observe that L is not a regular language. This can be easily proved using

the so-called Pumping Lemma for Regular languages, which the interested reader can find

in any formal languages theory book, such as [28] or [21]. We do not state the lemma or

the proof because they are extensive and the involved techniques are not necessary for the

main goal of this work.

In order to prove some results presented in Section 3.2, we need another definition of

context-free languages. For that, we construct context-free grammars.

Definition 3.1.6. A context-free grammar G “ pV, X, P q consists of:

• an alphabet X of terminal elements;

• an alphabet V of non-terminal elements, where V is disjoint of X;

• a finite set of productions, P Ă V ˆ pV Y Xq˚.

A production pα, βq P P is written in the form α Ñ β. Productions with same first

entry are put together as follows:

α Ñ β1,

α Ñ β2,
...

α Ñ βn

,
////.
////-

α Ñ tβ1, β2, ¨ ¨ ¨ , βnu.

Now we have to know which languages are generated by a grammar.

Definition 3.1.7. Given G “ pV, X, P q a context-free grammar and f, g P pV Y Xq˚, we

write

f
*

ÝÑ
G

g

Chapter 3. Muller and Schupp’s Theorem 42

if and only if there exist p ě 0, p P N, and f0, f1, ¨ ¨ ¨ , fp P pV YXq˚, such that f “ f0, g “ fp

and there are factorizations

fi´1 “ uiαivi, fi “ uiβivi

where αi P V , ui, βi, vi P pV Y Xq˚ and αi Ñ βi P P , for all i “ 1, 2, ¨ ¨ ¨ , p.

A language in X˚ generated in G by f P pV Y Xq˚, is of the form

LGpfq “ tω P X˚ | f
*

ÝÑ
G

ωu .

If a language in X˚ is generated in G by some f P pV Y Xq˚, then it is called a

context-free language.

The division of non-terminal and terminal elements, as well as the idea of productions,

is related to the fact that we want our grammar to construct a particular set of words.

The non-terminal elements behave like common states of the pushdown automata: one

can travel through them, but cannot end the reading of a word in one of them. The

terminal elements are the ones allowed to remain in the final word generated by the

grammar, so they behave like the accepted states. The productions play the part of

transitions: they are responsible for taking non-terminal elements into words composed

only by terminal elements. Although context-free grammars do not work as automata do,

there is a certain similarity in the intuitive idea of their behavior. The main difference

we encourage the reader to keep in mind is that the elements of a grammar, unlike the

states of an automaton, are already seen like letters, which are changed into other letters,

according to the productions, until arriving at a string of terminal (accepted) letters.

It is common that we deal with a grammar with the intention of studying only one

of its possible generated languages. In this case, it is usual to denote by S P pV Y Xq˚

the element which generates the wanted language and say that the grammar generates

only the language of words obtained beginning at S, i.e., the grammar generates only the

language of interest. The element S is then called the start symbol of the grammar.

Definitions 3.1.2 and 3.1.7 are equivalent, as shown in Chapter 2, Section 2 of [28]. We

do not present the proof, as it is too technical for our purposes, but we present an example

and a general construction to obtain a pushdown automaton from a context-free grammar.

We use both definitions in this work, choosing the more convenient one for each result.

Example 3.1.8. Let X “ tp, qu be the alphabet consisting of the symbols "(" and ")". The

language of all properly matched parentheses, known as the Dyck Language, is formally

defined as the language

L “ t ω P X˚ | the number of p in ω is the same as the number of q in ω; and any prefix

u of ω contains at most as many q as there are p in u u.

Chapter 3. Muller and Schupp’s Theorem 43

A generating context-free grammar for L is G “ ptSu, tp, qu, P q, where P is the set of

productions:

S Ñ tSS, pSq, εu,

with ε representing the empty string. The equivalent generating pushdown automaton is

presented in Figure 3.2.

q0 q1

ε, S Ñ SS

ε, S Ñ ε

ε, S Ñ pSq

ε, S Ñ ε

ε, ε Ñ S

Figure 3.2 – Pushdown automaton accepting the Dyck language.

The construction of a pushdown automaton equivalent to a given context-free grammar

can always be done following an algorithm: Given any context-free grammar G “ pV, X, P q,

construct a pushdown automaton with two states, q0 (the initial state) and q1 (the accepting

state), and with transition relations

(i) pq0, ε, ε, q1, Sq, where S P V is a special non-terminal symbol called the start symbol

of the grammar;

(ii) pq1, ε, A, q1, αq, for each production A Ñ α in G (called an expand transition);

(iii) pq1, a, a, q1, εq , for each terminal symbol a in G (called a match transition);

The stack alphabet is X YV , while the input alphabet is X. The first transition guarantees

that the stack begins with the symbol S (which acts as start symbol for the grammar)

written in it. The information about the start symbol of a context-free grammar is always

given together with the grammar, though it is conventional to assume that it is the symbol

S. Notice that the constructed pushdown automaton is not deterministic.

For the next results, let G “ pV, X, P q be a context-free grammar. The proofs are

either too simple or too technical to be of interest for this work, but can be found in

[3], chapter 2, or [28], chapter 2. If L and M are two languages, then LM denotes the

concatenation language, as defined in 2.1.8.

Proposition 3.1.9. For any f1, f2 P pV Y Xq˚, LGpf1f2q “ LGpf1qLGpf2q.

Chapter 3. Muller and Schupp’s Theorem 44

Proposition 3.1.10. Let β P V . Then

LGpβq “ LGptα P V | β
*

ÝÑ
G

αuq .

For introducing the main theorem about closure properties of context-free languages,

we first need a few definitions.

Definition 3.1.11. Let A, B be two alphabets and α : A˚ Ñ B˚ be a monoid morphism.

Then α is:

• alphabetic, if αpAq Ă B Y t1u;

• strictly alphabetic, if αpAq Ă B.

Definition 3.1.12. Let α : A˚ Ñ PpB˚q be a monoid morphism, where PpB˚q denotes

the power set of B˚, which is a monoid under the intersection of subsets. Then α is called

a substitution (from A˚ to B˚) and verifies:

• αpaq Ď B˚, for any a P A˚;

• αp1q “ t1u;

• αpuvq “ αpuqαpvq, for any u, v P A˚.

If, furthermore, α satisfies

• αpaq is a context-free language, for any a P A˚,

then α is a context-free substitution.

Theorem 3.1.13. Let L and M be two context-free languages, with alphabets X and rX,

respectively. Then the following are context-free languages:

1. L Y M ;

2. ΨpLq, for any Ψ: X˚ Ñ Y ˚ a morphism, being Y any alphabet;

3. L˚;

4. LM ;

5. L X M , if M is a regular language and rX “ X;

6. θpLq, being θ a context-free substitution;

7. Ψ´1pLq, for any Ψ: Y ˚ Ñ X˚ an alphabetic morphism.

Chapter 3. Muller and Schupp’s Theorem 45

We prove, due to length limitations, only the more interesting closure properties. The

other proofs can be found in Chapter 2 of [3].

Proof. (2). Consider G “ pV, X, P q the context-free grammar such that L “ LGpvq for

some v P pV Y Xq˚. Let Ψ : X˚ Ñ Y ˚ be a morphism. We extend it to

rΨ : pV Y Xq˚ Ñ pV Y Y q˚

by setting
rΨ : pV Y Xq˚ Ñ pV Y Y q˚

x P X˚ ÞÑ Ψpxq

v P V ÞÑ v

.

Take the set PΨ “ tv Ñ Ψpwq | v Ñ w P P u and define the grammar GΨ “ pV, Y, PΨq.

Then the language LGΨ
pvq is exactly the language obtained by applying Ψ to L “ LGpvq,

that is, the language ΨpLq:

LGΨ
pvq “ t rw P Y ˚ | v

*
ÝÑ
GΨ

rwu “ t rw P Y ˚ | v
*

ÝÑ
G

w, rw “ Ψpwqu “ tΨpwq | v
*

ÝÑ
G

wu “

“ tΨpwq | w P LGpvqu.

Thus, ΨpLq is a context-free language.

(5). Let K Ă X˚ be a regular language with associated deterministic finite state automaton

A “ pQ, X, δ, I “ tq0u, F q. Consider q P Q and t “ t1t2 ¨ ¨ ¨ tm, ti P X˚ for all i “ 1, ¨ ¨ ¨ , m.

We remember the interpretation of δ as a function and denote by q ¨ t the resultant vertex

of reading t starting at q (passing through the vertices qi):

q ¨ t “ δpq, tq “ δpqm, tmq ˝ δpqm´1, tm´1q ˝ ¨ ¨ ¨ ˝ δpq “ q1, t1q.

Let σ be a symbol that is not in either X, Q or V and G “ pV, X, P q be the context-free

grammar in which v P V generates L.

We define productions from tσu Y pQ ˆ V ˆ Qq to
`
ptσu Y pQ ˆ V ˆ Qqq Y X

˘˚
,

rP “ P1 Y P2,

P1 “ tσ Ñ pq0, u, qq | q P F u

and

P2 “ tpq, v, q1q Ñ u0pq1, η1, q1
1qu1pq2, η2, q1

2q ¨ ¨ ¨ uk´1pqk, ηk, q1
kquk | k ě 0, piq, piiq and piiiqu,

where

(i) v Ñ u0η1u1η2 ¨ ¨ ¨ ηkuk P P ;

(ii) v, ηi P V, u0, ui P X˚, q, q1, qi, q1
i P Q, for 1 ď i ď k;

Chapter 3. Muller and Schupp’s Theorem 46

(iii) q ¨ u0 “ q1, q1
i ¨ ui “ qi`1 for all 1 ď i ď k ´ 1 and q1

k ¨ uk “ q1.

Notice that P2 is finite because of the restriction of taking k’s such that

v Ñ u0η1u1η2 ¨ ¨ ¨ ηkuk P P

and P is finite. These productions allow us to define the context-free grammar

GK “ ptσu Y pQ ˆ V ˆ Qq, X, rP q,

such that LGK
pq, v, q1q “ LGpvq X tt P X˚ | q ¨ t “ q1u for any q, q1 P Q, v P V . Thus,

L X K “ LGK
pσq and it is a context-free language.

(7). Let Ψ : Y ˚ Ñ X˚ be an alphabetic morphism, which we extend to rΨ as we did in

item (2):
rΨ : pV Y Y q˚ Ñ pV Y Xq˚

x P Y ˚ ÞÑ Ψpxq

v P V ÞÑ v

.

Set Z “ ty P Y | Ψpyq “ 1u Ď Y and σ a new letter, σ R V Y X Y Y . We can define a

context-free grammar GΨ´1 “ ptσu Y V, Y, rP q, considering the productions rP “ P1 Y P2:

P1 “

#
σ Ñ 1 `

ÿ

zPZ

σz

+
,

where the sum is in the monoid Y and

P2 “ t v Ñ σy1σy2σ ¨ ¨ ¨ σykσ | k ě 0 and

v Ñ Ψpy1, y2, ¨ ¨ ¨ , ykq P P, v P V, y1, ¨ ¨ ¨ , yk P V Y Zcu.

Notice that P2 is finite because the restriction of Ψ to pV Y Zcq˚ is strictly alphabetic.

Then, GΨ´1 is well defined and we have Ψ´1LGpvq “ LG
Ψ´1

pvq for every v P V , meaning

LG
Ψ´1

pσq “ Z˚. Thus, Ψ´1pLq is a context-free language.

Though we do not prove it, it is interesting to note that any monoid morphism can

have its inverse factorized into an alphabetic morphism intersected with a regular language

followed by a morphism. Thus, the above theorem gives us that, in fact, context-free

languages are closed under the inverse of any monoid morphism.

Definition 3.1.14. A group G with finite generating set S is a context-free group if its

language of the word problem WPpG, Sq is context-free.

Remark 3.1.15. In the last definition, as well as on the statement of Anisimov’s theorem,

we have been neglecting the fact that the word problem language depends on the choice of

generating set. We present the proof that the choice of generating set does not change the

characteristic of WP being regular, context-free or co-context-free in Chapter 4, Theorem

4.1.3, so that everything we obtain for a specific set S actually holds for any generating

set.

Chapter 3. Muller and Schupp’s Theorem 47

Note in the above definition that we do not specify whether the pushdown automaton

accepting WPpG, Sq is deterministic. We will see, with Muller and Schupp’s result, 3.2.12,

that in the case of the Word Problem language, being context-free is the same as being

deterministic context-free. But this fact is not true for any context-free language. The

easiest counter-example makes use of the closure under complementation, which is a

property only of the deterministic context-free languages. The proof of this property was

taken from Chapter 2, Section 4 of [28].

Proposition 3.1.16. The class of deterministic context-free languages is closed under

complementation.

Proof. The idea is to do the same that we did in Theorem 2.1.8: invert the accepted

and non-accepted states and show that the new automaton accepts the complementary

language. The main difference is that a pushdown automaton can keep doing some moves

after ending the input string and this could imply accepting words which we do not want

to be accepted. We limit when a word is accepted to prevent that.

Consider a deterministic pushdown automaton M “ pQ, X, Σ, δ, q0, K, F q accepting

the language L. We first modify it into a new deterministic pushdown automaton which

always reads the entire input string. After that, we do some more changes and finally

invert the automaton.

Step 1 Modifying the automaton by adding new states.

i. a new start state qstart;

ii. a new accepted state qaccept;

iii. a new state qreject;

iv. for every q P Q, add a new accepted state qa.

Define F 1 as the set of old accepted states, F , together with all the new accepted states.

Next, we have to make some changes in the set of transitions.

i. for every q P Q, if δpq, ε, bq “ pr, yq, add a new transition δpqa, ε, bq “ pra, yq;

ii. for every q P Q and x P X, if δpq, x, bq “ pr, yq, add a new transition δpqa, x, bq “

pr, yq;

iii. for every q P F , change δpq, ε, bq “ pr, yq to δpq, ε, bq “ pra, yq;

iv. add a transition δpqstart, ε, εq “ pq0, $q;

v. for every x P X, add a transition δpqaccept, x, εq “ pqreject, εq;

Chapter 3. Muller and Schupp’s Theorem 48

vi. for every q R F 1 and x P X, add a transition δpq, x, $q “ pqreject, εq;

vii. for every q P F 1 and x P X, add a transition δpq, x, $q “ pqaccept, εq;

viii. for every x P X, add a transition δpqreject, x, εq “ pqreject, εq.

The transition in iv initializes the stack with a new special symbol. If this new symbol

is ever detected in a non-accepted state, the automaton goes to the reject state (transitions

in vi), where it finishes the reading of the input string (transitions in viii). If $ is detected

in an accepted state, the automaton enters the qaccept state (transitions in vii) and remains

there only if there are no more symbols to be read in the input string (transitions in v).

Lastly, we need to make sure that there are no endless sequences of moves preventing

the automaton from finishing the input string. Let us call pq, aq a looping situation if the

automaton enters a state q with a in the top of the stack and after that it never reads an

input symbol again, neither does it erase a. It could change states, however. If pq, aq is a

looping situation where the automaton eventually enters an accepting state, erase it and

add a transition δpq, ε, aq “ pqaccept, εq. If pq, aq is a looping situation where the automaton

never enters an accepting state, erase it and add a transition δpq, ε, aq “ pqreject, εq.

We now have a new automaton ĂM “ pQ1, X, Σ Y t$u, δ, qstart, $, F 1q which always read

the input tape to the end, but accepts the same language L. It also remains in accepted

states, once there, until it reads the next input symbol.

Step 2 Inverting ĂM so that it accepts the complementary language.

Before actually changing accepted states into non-accepted states and the opposite as

well, we need to identify the states which actually read something from the input string.

These are the only states we want as accepted states, in order to prevent the acceptance of

words of L. That is because the automaton ĂM could read a word ω and after the reading

still do some moves, before it finishes in an accepted state. If some of those moves passed

through a non-accepted state, which we now would change into an accepted one, the same

word ω would still be accepted by the new automaton.

We call reading states the states q for which the automaton reads something from the

input tape and does not erase or change anything in the stack, that is, the states such that

a transition δpq, x, εq “ pr, εq exists for some r P Q1. If there is a state reading the input

tape and also doing something to the stack, we need to check if the next reading depends

on what is in the stack or not. For that, let us divide such transitions in two steps: for

every x P X and a P Σ, if δpq, x, aq “ pr, yq, erase this transition, add a new state qx and

add the transitions δpq, ε, xq “ pqx, εq and δpqx, a, εq “ pr, yq. This makes all the qx into

reading states. If q P F 1, make qx also an accepted state, for any x P X for which it exists.

After that, make any accepting state which is not a reading state into a non-accepting

state, obtaining a new automaton, which we denote by xM and which also accepts L, but

Chapter 3. Muller and Schupp’s Theorem 49

only enters accepted states once for each input symbol, at the exact moment when it is

about to read the next input.

Finally, we can invert accepted states into non-accepted ones and non-accepted states

into accepted ones, obtaining Mc. The language accepted by Mc is Lc.

Step 3 Mc accepts Lc.

First, we notice that the input alphabet has never suffered any change, so that

LpMcq Ď X˚. Second, we notice that xM is deterministic: for every word ω P L, there is

only one path in xM beginning in the start state and ending in an accepted state which is

followed by reading ω. We furthermore removed the possibility to reach the accepted state

only after finishing to read the input string, or the possibility to leave it after there, so that

in Mc, this same path still is followed by the reading of ω, but it ends in a non-accepted

state. Since there is no change in the set of initial states, then there is no other way of

reading ω in Mc, otherwise there would have to be a path in xM which would have to be

followed by reading ω, but ending in a non-accepted state, which is impossible because of

the deterministic aspect of xM. Thus, ω R LpMcq so that L X LpMcq “ H, which means

that LpMcq Ď X˚zL.

Finally, take ω P X˚zL. We have built xM in such a way that it always finishes reading

the input string, so the question remains if by reading ω, it ends in a non-accepted state.

But that is clear, since ω P X˚zL. Thus, in Mc, this end state is an accepted state and ω

is accepted. Thus, X˚zL Ď LpMcq.

Let us now see an example of context-free language which does not have context-free

complement.

Example 3.1.17. Consider the language L “ tww | w P t0, 1u˚u. Using the so called

Pumping Lemma, it can be shown that L is not a context-free language. (For more on

this proof, see [28], Section 2.3.) The complement, M “ Lc “ t0, 1u˚zL, is however a

context-free language. The generating context-free grammar is G “ ptS, A, Bu, t0, 1u, P q,

where P is the set of productions:

S Ñ tA, B, AB, BAu,

A Ñ t0, 0A0, 0A1, 1A1, 1A0u,

B Ñ t1, 0B0, 0B1, 1B1, 1B0u.

So the language M is a context-free language with non-context-free complement, and

therefore it cannot be a deterministic context-free language, by the last proposition.

Thus, the class of context-free languages is in general strictly greater than the class of

deterministic context-free languages.

We finish this section with a partial characterization of context-free groups, a result

from [1] stating that abelian context-free groups are exactly the abelian groups with rank

Chapter 3. Muller and Schupp’s Theorem 50

less or equal 1. For that, let us remember that any finitely generated abelian group is

isomorphic to the direct product of a finite group by a finite number of copies of the

infinite cyclic group Z. We denote G – T ˆ Z
k, being Z

k the direct product of k copies of

the infinite cyclic group Z.

Theorem 3.1.18. A finitely generated abelian group G – T ˆ Z
k is a context-free group

if, and only if, k ď 1.

We now move on to the next class of languages, which is an intermediate one.

3.1.2 One-Counter Languages

In this section we present an intermediate result connected to the construction of

the Chomsky Hierarchy for groups. It consists of a particular case of the context-free

languages, which is thoroughly explored in [12].

Definition 3.1.19. A one-counter pushdown automaton is a 7-uple

M “ pQ, X, Σ, δ, q0, $, F q

where

1. Q is a finite set, called the set of states of M;

2. X is a finite set, called the tape alphabet of M;

3. Σ is a two-elements set, called the stack alphabet of M;

4. δ Ď
`
pQ Y tεuq ˆ pX Y tεuq ˆ pΣ Y tεuq

˘
ˆ pQ ˆ Σ˚q defines a finite number of

transition relations;

5. q0 P Q is the initial state;

6. $ P Σ is called the bottom of the stack;

7. F Ď Q is the set of accepted states.

The definition makes it clear that one-counter automata are particular cases of push-

down automata, where the stack alphabet has only two elements, the bottom symbol and

another one. It is natural to define one-counter groups.

Definition 3.1.20. A group G with finite generating set S is a one-counter group if its

language of the word problem, WPpG, Sq, is accepted by a one-counter automaton.

Let us now state an intermediate result in the classification of groups by automata.

Chapter 3. Muller and Schupp’s Theorem 51

Theorem 3.1.21 (Herbst, [12]). Consider a group G with finite generating set S. Then

WPpG, Sq is a one-counter language if, and only if, G is virtually cyclic.

The proof of this result needs some definitions and other results that are too far from

the main goal of this work. Thus, the interested reader is encouraged to consult [12].

3.2 The Theorem of Muller and Schupp

3.2.1 Some Definitions

The theorem by Muller and Schupp characterizing the context-free groups can be

obtained from a series of results that require additional definitions. We follow [4] and [10].

Definition 3.2.1. The involution function for a directed graph Γ “ pV, E, s, tq is a

function ¯ : E Ñ E on the directed edges so that for any e P E, we have

‚ e “ f P E,

‚ f ‰ e,

‚ speq “ tpfq and

‚ tpeq “ spfq.

Definition 3.2.2. A group G acts on a graph Γ “ pV, Eq if there is an action of G on V ,

denoted v ÞÑ g ¨ v and an action on E, denoted by e ÞÑ g ¨ e, such that spg ¨ eq “ g ¨ speq,

tpg ¨ eq “ g ¨ tpeq and g ¨ e “ g ¨ e for all g P G, e P E.

Definition 3.2.3. Let G be a group acting on a graph Γ “ pV, Eq. The quotient graph

G{Γ is a graph whose set of vertices is given by the orbits G ¨ v, for v P V and whose set

of edges is given by the orbits G ¨ e, for e P E.

Definition 3.2.4. Let G “ pV, X, P q be a context-free grammar and LGpαq be one of its

generated languages. Consider the grammar rG which generates LGpαq only, by adding a

start state for G: rG “ pV, X, P, αq. Adding a start state means that in the new grammar,

the only element from which one can begin the reading of a word, that is, the only element

where one can start reading the productions, is the element called start state. The grammar

is said to be in Chomsky normal form if:

i. the productions are either of the form u
*

ÝÑ
rG

vw, for u, v, w P V or of the form u
*

ÝÑ
rG

w

with u P V, w P X and |w| ď 1;

ii. given a production u
*

ÝÑ
rG

vw, then neither v nor w is α;

Chapter 3. Muller and Schupp’s Theorem 52

iii. given u P V , there exists a chain of productions such that α
*

ÝÑ
rG

u.

Definition 3.2.5. Given groups Gi, for i P I, generated respectively by Xi and such that

for i ‰ j, GizteGi
u X GjzteGj

u “ H, the free product of tGiuiPI is G “ ˚
iPI

Gi. G is a group

such that

i. xXiy “ Gi is a subgroup of G, for every i P I;

ii. for each group H with associated set of functions tθi : Xi Ñ HuiPI so that θi extends

to a group homomorphism rθi : Gi Ñ H for any i P I, there exists a unique group

homomorphism φ : G Ñ H respecting

φ|Xi
“ θi for all i P I

and that the following diagram must commute, for all i P I

Xi G

H .

f

D!φ
θi

Definition 3.2.6. Given a connected graph Γ “ pV, Eq, a spanning tree for Γ is a connected

subgraph T “ pVT , ET q such that

i. VT “ V and

ii. ET is the minimal set contained in E which makes the first condition possible.

Definition 3.2.7. A graph of groups is a pair G “ pG, Γq where

i. Γ “ pV, E, s, tq is a directed graph with involution function ¯ : E Ñ E.

ii. G “ pG1,G2q is a pair where

‚ G1 “ tGx | x P E Y V u is a set of groups, which is in bijection with the vertices

and edges of Γ,

‚ G2 “ tαe : Ge Ñ Gspeq | e P Eu is a set of group homomorphisms associating to

each edge group an injective homomorphism into the vertex group at the start

of the edge and

‚ Ge “ Ge for all e P E.

Chapter 3. Muller and Schupp’s Theorem 53

Definition 3.2.8. Given a graph of groups G “ pG, Γq, with Γ “ pV, E, s, tq, groups Gu,

u P V Y E and homomorphisms αe, e P E as in the definition, the fundamental group of

the graph of groups G is denoted by F.

F is defined as the fundamental group for Γ with respect to T a spanning tree. We

write F “ π1pΓ, T q and it is a quotient of the free product
´

˚
vPV

Gv

¯
˚
´

˚
ePE

Ge

¯
where the

following rules hold:

1. eαepgqe “ αepgq for every e P E, g P Ge;

2. ee “ ee “ 1 for all e P E and

3. e “ 1 for any e P E X T .

Since we consider connected graphs only, it can be shown that the fundamental groups

are isomorphic for all spanning trees, so that one can write π1pΓq instead of specifying the

considered spanning tree. Now we can define a decomposition over graphs of groups.

Definition 3.2.9. A splitting of a group G over a graph of groups G “ pG, Γq is an

isomorphism φ : G Ñ π1pΓq. If the edge groups Ge, e P E are of the class P of groups,

then the splitting is said to be P.

The last definitions needed before we can go on to the main theorem of this chapter

are the tree decomposition and the tree width of a graph.

Definition 3.2.10. A tree decomposition of a non-empty connected graph Γ “ pV, E, s, tq

is a pair pT, φq, where T “ pVT , ET , endsq is an undirected tree,

φ : VT Ñ PpV q

p ÞÑ Xp

is a map and the following conditions are satisfied:

1. |Xp| ă 8;

2. for every v P V , there is some p P VT such that v P Xp;

3. for every e P E, there is some p P VT such that tspeq, tpequ Ď Xp, and

4. if v P Xp X Xq for some v P V , then for all vertices r P VT which are on the geodesic

path from p to q, we have v P Xr.

Definition 3.2.11. Consider the notation for a tree decomposition introduced in Definition

3.2.10.

• The sets Xp are called the bags of the tree decomposition.

Chapter 3. Muller and Schupp’s Theorem 54

• The bagsize of a tree decomposition pT, φq is bspT q “ supt|Xp| | p P VT u.

• A connected graph Γ has finite tree width if there is some k P N for which there

exists a tree decomposition pT, φq with bspT q “ k.

• The tree width of a connected graph Γ is p “ inftbspT q | T is in a tree decomposition

of Γu ´ 1.

3.2.2 Main Results

Theorem 3.2.12 (Muller-Schupp, [22, 23]). Consider a group G with finite generating

set S. The following statements are equivalent:

1. G is virtually free;

2. WPpG, Sq is a context-free language;

3. WPpG, Sq is a deterministic context-free language.

A recent proof of this theorem can be found in [10]. An annotated version of this proof

can be found in [4].

We only state the main results that, put together, prove the previous theorem. Before

that, however, we must first make one important note on something we have been neglecting

so far. What happens if one changes the generating set S for the group G? If rS is another

generating set, then is the condition that WPpG, Sq is context-free enough to assure that

WPpG, rSq is also context-free? If these assertions were false, then the context-free groups

would not even be well defined, so the next result is of much importance.

Theorem 3.2.13. Let F be a family of languages and G be a group generated by a finite

set S such that WPpG, Sq P F . If F is closed under inverse (monoid) homomorphisms,

then WPpG, Kq P F for every finite generating set K of G.

We present the proof of a more general version of Theorem 3.2.13 later in Theorem

4.1.3. Thus, since closure under inverse homomorphisms was proven for the context-free

languages in 3.1.13 and its following observation, we can proceed without worries. The

same type of closure holds for regular languages as well.

Theorem 3.2.14. Suppose G “ xS | Ry is a finitely generated group whose language of the

word problem WPpG, Sq is context-free. Then G has a locally finite Cayley graph ΓpG, Sq

of finite tree width.

Theorem 3.2.15. Suppose G “ xS | Ry is a finitely generated group whose Cayley graph

ΓpG, Sq is locally finite and is of finite tree width. Then G splits over a graph of groups

with finite vertex groups and finite edge groups.

Chapter 3. Muller and Schupp’s Theorem 55

Theorem 3.2.16. Suppose G “ pG, Γq is a graph of groups, where Γ is connected and

every vertex group is finite. If T is a spanning tree in Γ, then π1pG, T q “ π1pΓ, T q is a

virtually free group.

The last three results imply the more difficult direction of the claim in 3.2.12. The

other direction can be shown directly, but we omit the proof.

56

4. Co-Context-Free Groups

In this chapter we introduce co-context-free groups, which are investigated as the

possible next step in Chomsky’s Hierarchy for groups in [15]. We go through some closure

properties and mention other interesting known properties of this class of groups.

The definitions and results presented in the sections are all taken from [11] and [15].

4.1 Finitely Generated Subgroups

Definition 4.1.1. Consider a group G with finite generating set S. The language of the

co-word problem for G is coWPpG, Sq “ WPpG, Sqc Ď pS Y S´1q˚, which is the set of

nontrivial elements of G.

This definition was not made in the case of regular languages because if L is a regular

language in the alphabet S, then so is Lc Ď S
˚
, so that the study of WPpG, Sq suffices to

obtain interesting results.

Definition 4.1.2. A group is called co-context-free if its co-word problem language is a

context-free language.

We should worry about the fact that the co-word problem is defined in dependence of

the generating set, so let us prove Theorem 3.2.13 and extend it.

Theorem 4.1.3. Given F a family of languages closed under inverse (monoid) homo-

morphisms and G a finitely generated group, then

1. if S is a generating set such that WPpG, Sq P F , then WPpG, Kq P F for every

finite generating set K of G.

2. if S is a generating set such that coWPpG, Sq P F , then coWPpG, Kq P F for every

finite generating set K of G.

Proof. Let S, K be two finite generating sets for G. There is a natural homomorphism

φ : pS Y S´1q˚ Ñ pK Y K´1q˚

where each word ω P pS Y S´1q˚ is taken into a word rω P pK Y K´1q˚ that represents the

same element g P G represented by ω. We induce this homomorphism by first expressing

Chapter 4. Co-Context-Free Groups 57

s P S Y S´1 as an element of G and finding a corresponding word in pK Y K´1q˚. That is,

if

f1 : pS Y S´1q˚ Ñ G

f2 : pK Y K´1q˚ Ñ G

are the natural defined functions given by the universal property between the set of words

on the generating sets and the group (which is a free monoid, therefore having universal

property), then for ω P pS Y S´1q˚ with f1pωq “ g, we have that f2 ˝ φpωq “ g and the

following diagram commutes

pS Y S´1q˚ pK Y K´1q˚

G .

f1 f2

φ

1. We have that WPpG, Sq “ φ´1 pWPpG, Kqq, so that if the property of being F is

closed under inverse homomorphism (as it is) and WPpG, Sq is F , WPpG, Kq is also

F .

2. We have that coWPpG, Sq “ φ´1 pcoWPpG, Kqq, so that if being a F language is

closed under inverse homomorphism (as it is) and coWPpG, Sq is F , coWPpG, Kq is

also F .

Theorem 4.1.3 guarantees that all of the so far discussed results and definitions were

well defined, even if we have neglected the dependency on the generating set of the

definition of the word problem language of a finitely generated group. Let us make some

notation conventions.

Notation 4.1.4.

i. Given an alphabet S, we continue using notation 1.2.23 and denote by S the set

pS Y S´1q.

ii. Given a finitely generated group G, we say that G is a F-group if WPpG, Sq has

property F for all finite generating sets S.

iii. Given a finitely generated group G, we say that G is a co-F-group if coWPpG, Sq

has property F for all finite generating sets S.

iv. Given a group G, its identity element e “ eG is also denoted by 1G.

Chapter 4. Co-Context-Free Groups 58

Before proving some closure properties for co-context-free groups, we should understand

why they are considered to be the next class in the construction of Chomsky’s hierarchy

for groups.

Theorem 4.1.5. Let G be a context-free group. Then G is co-context-free.

The proof is immediate, putting together results 3.1.16 and 3.2.12. This fact makes it

clear that co-context-free groups are a larger (or equal) class than the class of context-free

groups. However, the Muller & Schupp theorem, together with the closure under finite

direct product, which is proved in Corollary 4.2.10 of Section 4.2, ensures the existence of

groups which are co-context-free but not context-free. As an example, take any finitely

generated non-cyclic free abelian group G, which is a finite direct product of infinite cyclic

groups. By Theorems 3.1.21 and 4.1.5, G is the finite direct product of co-context-free

groups and is therefore a co-context-free group. But G is not context-free, since it violates

Muller & Schupp’s result by not being virtually free.

We go on for the closure properties, keeping in mind the results from Theorem 3.1.13.

Theorem 4.1.6 (Holt-Rees-Röver-Thomas, [15]). Let F be a class of languages closed

under inverse homomorphisms and intersection with regular sets. Then F-groups and

co-F-groups are closed under taking finitely generated subgroups.

Proof. Take a finitely generated group G and a finitely generated subgroup of G, H.

Choose SH a finite generating set of H and extend it to a finite generating set S of G.

Note that this can always be done, since one could simply take any finite generating set

K of G and consider S “ K Y SH .

We have that WPpH, SHq “ SH
˚

X WPpG, Sq:

Ď Take ω P WPpH, SHq, ω “ a1 ¨ ¨ ¨ an, ai P SH for any 1 ď i ď n. Now, ω “

eH “ eG because H is a subgroup. Then, since SH Ď S, ω “ a1 ¨ ¨ ¨ an, ai P S

for any 1 ď i ď n, and ω P WPpG, Sq. Besides that, WPpH, SHq Ď SH
˚
. Thus,

ω P SH
˚

X WPpG, Sq.

Ě Take ω P SH
˚

X WPpG, Sq. Since ω P WPpG, Sq, we have ω “ ba ¨ ¨ ¨ bm “ eG,

with bi P S. But ω P SH too, so that ω “ a1 ¨ ¨ ¨ an, ai P SH for any 1 ď i ď n. Then,

we have a1 ¨ ¨ ¨ an “ eG “ eH and ω P WPpH, SHq, by definition.

Analogously, coWPpH, SHq “ SH
˚

X coWPpG, sq. If we prove that SH
˚

is a regular

language in S
˚
, then we have that WPpH, SHq (respectively, coWPpH, SHq) is the inter-

section of a F language with a regular one, thus being also a F language, by hypothesis.

The closure under inverse homomorphisms completes the proof for independence of chosen

finite generating set.

Chapter 4. Co-Context-Free Groups 59

But SH
˚

is trivially a regular language, as is any "all-strings" set on finite alphabets.

Let us show that by constructing a deterministic finite state automaton that accepts SH
˚
,

see Figure 4.1. Since SH is finite, we can write SH “ ts1, s2, . . . , snu. Consider two circles

in a state to identify it as an accepting state and a star ‹ inside a state to identify it as

the start state. We use the star in order to have no confusion with the set of generators S

of G, although in literature the start state is usually denoted with a S inside it.

‹
s1

...

sn

s1

...
sn

Figure 4.1 – Automaton accepting SH
˚
.

The automaton above accepts SH
˚

and is a finite state (deterministic) automaton, so

that the language is regular as we desired.

4.2 Finite Direct Products

Let us define the shuffle of two languages. Intuitively, it is a set obtained by interwining

the elements of two other sets. We define that set and after that show how to obtain it

from automata. These definitions are helpful for the proof of closure under taking direct

products.

Definition 4.2.1. Consider two languages L1 Ď Σ˚ and L2 Ď ∆˚. The shuffle of L1 with

L2 is

L1 Ø L2 “ tx1y1 ¨ ¨ ¨ xnyn | x1x2 ¨ ¨ ¨ xn P L1, y1y2 ¨ ¨ ¨ yn P L2, xi P Σ˚, yi P ∆˚u.

Definition 4.2.2. A generalised sequential machine (gsm) is a 6-tuple M “ pQ, X, Σ, δ, λ, q0q,

where

1. Q is the finite non-empty set of states;

2. X is the alphabet of inputs;

3. Σ is the alphabet of outputs;

4. δ : pQ ˆ Xq Ñ Q is the next-state function;

5. λ : pQ ˆ Xq Ñ Σ˚ is the output function and

Chapter 4. Co-Context-Free Groups 60

6. q0 P Q is the start state.

M is said to be a complete sequential machine if λ : pQ ˆ Xq Ñ Σ.

The generalised sequential machines, instead of accepting/generating languages as

we have been seeing until here, generate functions, called generalised sequential machine

mappings. Particularly, if one of the languages L1 or L2 is regular, say L2, then the shuffle

is the image of L1 under a generalised sequential machine mapping.

Definition 4.2.3. Consider a generalised sequential machine M “ pQ, X, Σ, δ, λ, q0q.

Extend the functions δ and λ to Q ˆ X˚ by induction with

‚ δpq, ǫq “ q,

‚ λpq, ǫq “ ǫ,

‚ δpq, xyq “ δrδpq, xq, ys and

‚ λpq, xyq “ λpq, xqλrδpq, xq, ys,

where q P Q, x P X˚ and y P X. Then the operation defined by Mpxq “ λpq0, xq, for each

x P X˚, is called a generalised sequential machine mapping.

Example 4.2.4. In order to help us understand what the function generated by M is, let

us represent it as an automaton, where we write a|b over an edge to indicate that the input

symbol being a allows movement along this edge and the output string is then added of b.

The states correspond to Q. We use accepted states to confirm the validity of the input,

although it is important to remember we do not generate languages: the gsm generates

a function, defining both its domain and image. The domain is the set of words which

are accepted by the automaton. The image of each element in the domain is given by the

output string. Notice that the existence of edges is related to the definition of δ and the

labels are correlated to the definition of λ.

Thus, the automaton in Figure 4.2 is a generalised sequential machine whose map

takes any word ω P ta, bu˚ to a word xn, being n the number of a’s in ω.

S
#

a|x

b|ǫ

Figure 4.2 – A Generalised Sequential Machine

Chapter 4. Co-Context-Free Groups 61

The symbol # is what the machine interprets as reading when the input word is

finished.

Theorem 4.2.5 (Holt-Rees-Röver-Thomas, [15]). Let F be a class of languages closed

under shuffle with regular languages and closed under finite union. Then the class of

co-F-groups is closed under taking finite direct products.

Proof. Consider finitely generated groups G1 and G2, generated respectively by S1 and S2.

Assume coWPpGi, Siq P F , for i “ 1, 2 and F as in the statement of the theorem. The direct

product is G “ G1 ˆ G2, which is most certainly generated by S “ pS1 ˆ t1uq Y pt1u ˆ S2q.

We identify S1 with S1 ˆ t1u and S2 with t1u ˆ S2 in G. Now, if

coWPpG, Sq “
`
coWPpG1, S1q Ø S2

˚˘
Y
`
coWPpG2, S2q Ø S1

˚˘
,

then we have finished the proof by our hypotheses. Let us prove this equality.

First, we need to rewrite an element of G, pg1, g2q P G, as a word in S
˚
. For that, write

g1 and g2 in terms of the corresponding generating sets and take the rule of interwining the

entries: pg1, g2q “ pa1 ¨ ¨ ¨ an, b1 ¨ ¨ ¨ bmq, with ai P S1 and bj P S2 for 1 ď i ď n, 1 ď j ď m,

n ď m, becomes pg1, g2q “ a1b1a2b2 ¨ ¨ ¨ anbnbn`1 ¨ ¨ ¨ bm. If n ě m, just add the extra terms

of the first group at the end of the word, exactly as done in the formula above for the case

m ě n.

Ď Take ω P coWPpG, Sq. This means, if ω “ pω1, ω2q, that either ω1 ‰ 1G1
or

ω2 ‰ 1G2
. Without loss of generality, let us assume ω1 ‰ 1G1

. As explained above,

we can write ω “ a1b1a2b2 ¨ ¨ ¨ anbnbn`1 ¨ ¨ ¨ bm, where we could change the extra bj’s

for extra ai’s if ω1 happens to be written with more terms than ω2. Since this change

would need a completely analogous proof, we consider the case n ď m only.

That means we have ω “ a1b1a2b2 ¨ ¨ ¨ anbn ¨ bn`1s ¨ s´1bn`2s ¨ s´1 ¨ ¨ ¨ bm, for some

s P S1, meaning that s ¨ s´1 P S1

˚
. Thus, since ω1 ‰ 1G1

, we have

ω1 ¨ ss´1ss´1 ¨ ¨ ¨ ss´1 ‰ 1G1

and then

ω P
`
coWPpG1, S1q Ø S2

˚˘
Ď
`
coWPpG1, S1q Ø S2

˚˘
Y
`
coWPpG2, S2q Ø S1

˚˘
.

Note that bn`1bn`2 ¨ ¨ ¨ bm could be equal the identity in G2, but in that case, we

could pick l P S1 and write ω “ a1b1a2b2 ¨ ¨ ¨ anbnl ¨ l´1bn`1 ¨ bn`2s ¨ s´1 ¨ ¨ ¨ bms ¨ s´1,

such that bn`2 ¨ ¨ ¨ bm ‰ 1G2
.

Ě Given

ω P
`
coWPpG1, S1q Ø S2

˚˘
Y
`
coWPpG2, S2q Ø S1

˚˘
,

Chapter 4. Co-Context-Free Groups 62

consider ω P
`
coWPpG1, S1q Ø S2

˚˘
without loss of generality. Then,

ω “ a1b1 ¨ ¨ ¨ anbn,

with ai P coWPpG1, S1q and bj P S2

˚
, 1 ď i, j ď n. Since, by construction, ω is the

element pa1 ¨ ¨ ¨ an, b1 ¨ ¨ ¨ bnq “ g P G and a1 ¨ ¨ ¨ an ‰ 1G1
, then g ‰ p1G1

, 1G2
q and

g P coWPpG, Sq. Since g “ ω, the proof is done.

It remains to be seen that the context-free languages are closed under shuffles, which is

the same as being closed under generalised sequential machines mappings. From here on,

we abbreviate generalised sequential machines as gsm. Let us first introduce an auxiliary

automaton.

Definition 4.2.6. A sequential transducer is a 5-uple M “ pQ, X, Σ, H, q0q, where

1. Q is the finite non-empty set of states;

2. X is the alphabet of inputs;

3. Σ is the alphabet of outputs;

4. H Ď Q ˆ X˚ ˆ Σ˚ ˆ Q is the next-state finite set and

5. q0 P Q is the start state.

An element pp, u, v, qq P H denotes that the input word u at the state p results in an

output word v and that the next state is q. One could think of H as a compression of the

gsm functions δ and λ into only one item.

Definition 4.2.7. Given a sequential transducer M “ pQ, X, Σ, H, q0q, for each u P X˚,

define

Mpuq “ t v“v1 ¨ ¨ ¨ vk | vi P Σ˚, D tuiu
k
i“1 Ď X˚, tqiu

k
i“1 Ď Q such that pqi´1, ui, vi, qiq P H

for 1 ď i ď k and u“u1 ¨ ¨ ¨ uku.

Then the function M such that MpUq “ Y
uPU

Mpuq is a sequential transducer mapping for

each U Ď X˚.

Theorem 4.2.8. Consider a gsm N “ pQ, X, Σ, δ, λ, q0q. Then the gsm mappings arising

from N preserve context-free languages.

Proof. Step 1 We first need to notice that each gsm mapping (Definition 4.2.3) is equiva-

lent to a sequential transducer mapping. Thus, we can prove the result for sequential trans-

ducer mappings and it holds for the gsm mappings. Our gsm N is the sequential transducer

M “ pQ, X, Σ, H, q0q, being H the set tpp, a, a, pq | p P QuYt
`
p, u, λpp, uq, δpp, uq

˘
| pp, uq P

Chapter 4. Co-Context-Free Groups 63

Q ˆ Xu. Notice that the first set in the union takes into account the first two conditions

in the definition of gsm’s and the second set in the union refers to the last two conditions

in the definition of gsm’s. Therefore, we just change the way in which the automaton

processes the word, while preserving the actions regarding inputs and outputs, so that

both machines are truly generating the same maps.

Step 2 Take L a context-free language. Since we want to take its image under the

gsm mapping, we have to consider L Ď X˚. We construct a morphism θ and a set B

such that θpBq “ N pLq “ MpLq. Then, it remains to be proved that B is a context-free

language, because we already know that morphisms preserve context-free languages from

Theorem 3.1.13.

Consider a sequential transducer M1 “ pQ1, X, Σ1, H 1, q0q, where Σ1 “ Σ Y tz0u, z0 R Σ

being a new symbol; H 1 consists of all the 4-uples in one of the forms:

i. pp, u, v, qq P H with |u| ď 1 or

ii. pp, u1, z0, tr
1q, ptr

1, u2, z0, tr
2q ¨ ¨ ¨ , ptr

kprq´2, ukprq´1, z0, tr
kprq´1q and ptr

kprq´1, ukprq, v, qq , for

each r “ pp, u, v, qq P H such that u “ u1 ¨ ¨ ¨ ukprq P X˚ and kprq “ |u|, being

tr
1, ¨ ¨ ¨ , tr

kprq abstract symbols;

and Q Y ttr
jurPH,1ďjďkprq Ď Q1.

We can now consider the set A Ď H 1˚ consisting of all words of the form

pq0, ω1, y1, q1qpq1, ω2, y2, q2q ¨ ¨ ¨ pqn´1, ωn, yn, qnq

with each pqi´1, ωi, yi, qiq P H 1, 1 ď i ď n, and yn ‰ z0. We need only yn to be different

from z0, because the transitions should give outputs in the original alphabet. That is the

reason why we defined H 1 to give as outputs only words that the previous transducer

produced.

We can also consider the set AL, for each L Ď X˚,

AL“tpq0, ω1, y1, q1q ¨ ¨ ¨ pqm´1, ωm, ym, qmq | pqi´1, ωi, yi, qiq P H 1 and ωi P L for 1 ď i ď mu.

Notice that the set AL can be constructed for any language in the alphabet of the gsm,

but since we want to preserve context-free languages, we have by hypothesis that L is a

context-free language for all our further work in this proof.

Take B “ AL X A. Construct the morphism

θ : H 1˚ Ñ Σ1˚

pp, ω, y ‰ z0, qq ÞÑ y

pp, ω, z0, qq ÞÑ ǫ .

Chapter 4. Co-Context-Free Groups 64

For each fixed L, we have that θpBq “ MpLq by construction. Also, θ is a substitution.

(In fact, it is a semigroup homomorphism, but we do not need that.)

Step 3 To finish this proof, we need to show that B is a context-free language. After

that, the result come from the closure under morphisms of the context-free languages,

Theorem 3.1.13.

What we do is define a substitution, which preserves context-free languages, such that

its image, maybe united with some set, intersected to the set A is exactly B. Then, if we

can prove that A is regular, since context-free languages are closed under intersection with

regular languages, we have finished the proof.

Define the substitution φ : X Ñ H 1˚ by

φpuq “tχ1pp, ω, y, qqχ2 | χ1, χ2 P tpp, ǫ, y, qqu˚ Ď H 1˚ and pp, ω, y, qq P H 1u.

Consider a word in B. It has to be of the form

pq0, ω1, y1, q1q ¨ ¨ ¨ pqm´1, ωm, ym, qmq, each pqi´1, ωi, yi, qiq P H 1, ωi P L and yn ‰ z0. (4.1)

If L does not contain ǫ, then ν P φpLq X A has exactly the form (4.1). Hence,

B “ φpLq X A.

If L contains ǫ, then ν P B with form (4.1) and it is in

RL “
`
φpLq Y tpp, ǫ, y, qq | pp, ǫ, y, qq P H 1u˚

˘
X A.

Notice that φpLq and tpp, ǫ, y, qq | pp, ǫ, y, qq P H 1u˚ are context-free, the first because of

Theorem 2.1.8 and because each φpuq is the concatenation of H
1˚ with H 1H

1˚; and the

second because the set of all words is regular (see the proof of Theorem 4.1.6) and therefore

context-free. Thus we have the intersection of a context-free language with A. Hence,

B “ D X A, with D context-free.

Now, consider the set Ac “ H 1˚zA. By construction of A, we have that Ac is the union

of all sets having one of the forms:

i. tǫu;

ii. pp, ω, y, qqχ, where pp, ω, y, qq P H 1, p ‰ q0 and χ P H 1˚;

iii. χ1pp, ω, y, qqpq1, ω1, y1, q2qχ2, where pp, ω, y, qq, pq1, ω1, y1, q2q P H 1, q ‰ q1 and χ1, χ2 P

H 1˚; and

iv. χpp, ω, z0, qq, being χ P H 1˚.

Chapter 4. Co-Context-Free Groups 65

But all these sets are regular, by Theorem 2.1.8, and finite union of regular sets

is still a regular set. Hence, Ac is regular. Since regular languages are closed under

complementation, then A is regular. Thus, since φpLq is context-free, B “ φpLq X A is

context-free, and so is B “ D X A.

In fact, the context-free languages are also preserved by inverse gsm mappings.

Corollary 4.2.9. Given a gsm M “ pQ, X, Σ, δ, λ, q0q, if M´1 is the operation taking

each A Ď Σ˚ into M´1 “ tω | Mpωq P Au, then M´1 preserves context-free languages.

Proof. Consider a sequential transducer N “ pQ, Σ, X, H, q0q where H consists of all

4-uples in one of the forms:

i. pp, ǫ, ǫ, pq, for all p P Q;

ii.
`
p, λpp, xq, x, δpp, xq

˘
, for all pp, xq P Q ˆ X.

Let us show that M´1pLq “ N pLq, for every L Ď Σ˚, so that the result follows from

the previous proof.

Ď Take L Ď Σ˚ and x P M´1pLq Ď X˚. That means that there is a u P L

such that Mpxq “ λpq0, xq “ u. We want x to be in N pLq. Take the 4-uple`
q0, λpq0, xq, x, δpq0, xq

˘
“ h and observe that, by construction, h P H. That means

that

x P tv |
`
q, λpq, vq, v, δpq, vq

˘
P H, q P Qu Ď tv “ v1 ¨ ¨ ¨ vk | vi P X˚, Dtuiu

k
i“1 Ď Σ˚,

tqiu
k
i“1 Ď Q such that pqi´1, ui, vi, qiq P H, 1 ď i ď k and l “ u1 ¨ ¨ ¨ uku “

“ N plq Ď N pLq, for some l P L.

Ě Take L Ď Σ˚ and x P N pLq Ď X˚. This means that

x P tv |
`
q, λpq, vq, v, δpq, vq

˘
P H, q P Qu Ď

Ď tv“v1 ¨ ¨ ¨ vk | vi P X˚, Dtuiu
k
i“1 Ď Σ˚, tqiu

k
i“1 Ď Q such that pqi´1, ui, vi, qiq P H,

1 ď i ď k and l “ u1 ¨ ¨ ¨ uku

for some l P L. Now, since the 4-uples in H are specific, we have that either

pqi´1, ui, xi, qiq “ pq, ǫ, ǫ, qq or pqi´1, ui, xi, qiq “
`
q, λpq, pq, p, δpq, pq

˘
, where we have

already changed v for x.

In the first case, x “ ǫ, which implies x P M´1pLq, as any language must have

the empty word.

Chapter 4. Co-Context-Free Groups 66

In the second case, we have xi “ p and then λpqi´1, xiq “ ui and δpqi´1, xiq “ qi.

Remembering the extension of λ and δ to Q ˆ X˚, we have

λpq0, xq “ λpq0, x1 ¨ ¨ ¨ xkq “ λpq0, x1qλrδpq0, x1q, x2 ¨ ¨ ¨ xks

“ u1λpq1, x2 ¨ ¨ ¨ xkq “ ¨ ¨ ¨ “ u1u2 ¨ ¨ ¨ uk “ l P L.

Thus, Mpxq “ λpq0, xq P L, meaning that x P M´1pLq.

Finally, the next corollary follows from Theorems 4.2.5 and 4.2.8.

Corollary 4.2.10. The class of co-context-free groups is closed under taking finite direct

products.

4.3 Finite Index Overgroups

Definition 4.3.1. Let G be a group and H Ď G be a finite index subgroup of G. We say

that G is a finite index overgroup of H.

Theorem 4.3.2 (Holt-Rees-Röver-Thomas, [15]). Let F be a family of languages closed

under union with regular sets and inverse generalised sequential machine mappings. Then

the class of F-groups and the class of co-F-groups are closed under passing to finite index

overgroups.

Before proving the result, let us notice that, since every regular language is a context-

free language, context-free languages are, indeed, closed under union with regular languages.

This fact, together with Corollary 4.2.9 in the previous section, guarantees that Theorem

4.3.2 applies to context-free languages.

Proof. Let G be a finitely generated group and H be a finite index subgroup of G so that

H is a (co-)F -group. Consider a right transversal T for H in G, with 1 P T , so that every

element g P G can be written as g “ ht, for some h P H. Take a finite generating set X

for H and consider Y “ X Y pT zt1uq. Clearly, Y is a finite generating set for G, because

both X and T are finite and G “ Y
tPT

Ht.

We define, for each y P Y (remember Notation 1.2.23) and t P T , the word hty P X
˚

such that ty “G htyt1 for some t1 P T . We can then construct a generalised sequential

machine M “ pT Y tqu, Y , X, δ, λ, 1 P T q, where

1. q R T ;

2. δpt, yq “ t1, δpt, #q “ q and δpt1, #q “ q, being # the symbol for the end of the input

and t, t1 P T ; and

Chapter 4. Co-Context-Free Groups 67

3. λpt, yq “ hty, λpt1, #q “ t1 and λpt, #q “ t, being # the symbol for the end of the

input and t, t1 P T .

In order to help us understand what the function generated by M is, let us represent

it as an automaton with start state 1 P T :

t t’

q
.

y|hty

#|t #|t1

Looking at the automaton, it is easy to see what our gsm mapping does: given ω P Y
˚
,

it returns the output word ω1t with t P T , ω1 P X
˚

such that ω “G ω1t. In order to make

it perfectly clear, let us take an example word ω “ y1y2y3 with yi P Y . We start in the

state 1, by construction. In the figure, this is the same as being in the state t, chosing

t “ 1. Hence, we have to add h1y1
to our output, and travel to the state t1. Note that,

since t1 P T and we are not at the end of the input string, it is as if we were in the state t

of the figure, only now labeled with t1. We read the input y2, so that we have to add ht1y2

to the output and travel to the state t2 such that t1y2 “G ht1y2
t2. Again we do the same

with y3 and our output becomes h1y1
ht1y2

ht2y3
t3. Hence, we have ω1 “ h1y1

ht1y2
ht2y3

P X
˚

and t “ t3 P T , with

ω1t “ h1y1
ht1y2

ht2y3
t3 “G h1y1

ht1y2
t2y3 “G h1y1

t1y2y3

“ 1y1y2y3 “ ω.

We end the proof by showing that

WPpG, Y q “ φ´1
`

WPpH, Xq
˘

and

coWPpG, Y q “ φ´1
`

coWPpH, Xq Y A
˘
,

where φ is the gsm mapping we constructed and A “

ωt | ω P X

˚
, t P T zt1u

(
. These

equalities finish the proof because we have F-closure under union with regular sets

and inverse gsm mappings by hypothesis, and A is a regular set by 2.1.8, as it is the

concatenation of a set of all strings (which is regular) and a set with finite number of

elements (which is also regular).

WPpG, Y q “ φ´1
`

WPpH, Xq
˘

Ď Take ω P WPpG, Y q. We have that 1G “ ω “G φpωq “ ω1t. That implies

ω1t “H 1H , which in turn implies ω1 “ t´1. But, by construction, ω1 P X
˚
, which

Chapter 4. Co-Context-Free Groups 68

means ω1 P H. Since H is a group, this implies t P H and since 1 P T , we have t “ 1.

Thus, φpωq “ ω1 “H 1H .

Ě Take ω P φ´1
`

WPpH, Xq
˘
, then there exists rω P WPpH, Xq such that φpωq “ rω.

But we know that φpωq “ ω1t, with ω1 P X
˚

and t P T . We have 1 “H rω “ ω1t,

ω1 P H, ω1t P Ht. Since we have 1 P T and 1 P Ht, t P T , t must be 1. (If t ‰ 1,

then there is h P H such that ht “ 1, because 1 P Ht. But then we have 1 P Ht

and 1 P H “ H1, so that both t and 1 are elements for the same coset in the

same transversal, which contradicts the definition of transversals.) Hence, we have

ω “G ω1t “ ω1 “ 1H “ 1G.

coWPpG, Y q “ φ´1
`

coWPpH, Xq Y A
˘

Ď Take ω P coWPpG, Y q. We have 1G ‰ ω “G φpωq “ ω1t for some ω1 P X
˚
, t P T .

Thus, 1H “H 1G ‰ ω1t. If t “ 1, it follows immediately that ω1 P coWPpH, Xq and

since ω1 “ φpωq, we have ω P φ´1pcoWPpH, Xq Y Aq.

If t ‰ 1,we have by definition of A that ω1t P A, and then

ω P φ´1pcoWPpH, Xq Y Aq.

Ě Take ω P φ´1
`

coWPpH, XqYA
˘
. This means that φpωq “ rω P coWPpH, XqYA.

If rω P coWPpH, Xq, we have ω “G φpωq “ rω ‰ 1H “G 1g. Thus, ω ‰G 1G.

If rω P A, we have ω “G φpωq “ rω “ ω1t. Now, suppose ω “G 1G. Then, we have

1G “ 1H “ ω1t, implying ω1 “ t´1. But ω1 P H by construction, so that t´1 P H and

therefore t P H, meaning t “ 1 (because 1, t P T), contradicting the fact that A is

constructed in T zt1u. Then, ω ‰G 1G.

Note that we have proved in 4.1.6 the regularity of any set with all strings (finitely

generated) and that any finite set ta1, ¨ ¨ ¨ , amu is a regular language, as shown by the

following finite state automaton.

S

a1

...

am

Figure 4.3 – Finite sets are regular languages.

4.4 Wreath Products

Definition 4.4.1. Given two groups G and H and a group homomorphism φ : H Ñ

AutpGq, the semidirect product of G and H with respect to φ is the group G ¸φ H “

Chapter 4. Co-Context-Free Groups 69

pG ˆ H, ¨q, where

¨ : pG ¸φ Hq ˆ pG ¸φ Hq Ñ G ¸φ H

pg1, h1q ¨ pg2, h2q ÞÑ pg1φph1qpg2q, h1h2q

so that the identity element is p1G, 1Hq and the inverse of pg, hq is
`
φph´1qpg´1q, h´1

˘
.

Definition 4.4.2. Given two groups G and H, the restricted standard wreath product of

G with H is the group

G ≀ H “

˜
à
hPH

G

¸
¸φ H

where φ : H Ñ Aut

˜
à
hPH

G

¸
take elements of H into permutations: φphqptlqlPH “ pthlqlPH ,

being the product of the indexes in H. The group

˜
à
hPH

G

¸
is called the base of the

wreath product.

Theorem 4.4.3 (Holt-Rees-Röver-Thomas, [15]). Take G a co-context-free group and H

a context-free group. Then G ≀ H is a co-context-free group.

Proof. Assume that G and H are generated, respectively, by S and Y . Then G ≀ H is

generated by S Y Y and the base group is, by definition, the direct sum of copies Gh,

h P H, of G. We can understand the base group B as the set of all functions b : H Ñ G

such that bphq “ 1G, except for finitely many h P H. The group H acts on B, where the

action of h P H on b P B is given by

h ˝ bph1q “ bph1h´1q.

Such action defines the semidirect product which is equal to G ≀ H. Let us identify G

with the subgroup of B for which the elements such that bphq is trivial are all nontrivial

h P H. With this identification, any element w P G ≀ H is of the form bh, for b P B and

h P H, being w ‰ 1G≀H if and only if h ‰ 1H or bph1q ‰ 1G for some h1 P H.

Before going on, let us consider w “ w1w2 ¨ ¨ ¨ wl P
`
S Y S´1 Y Y Y Y ´1

˘˚
, where

wi P
`
S Y S´1 Y Y Y Y ´1

˘
for any i “ 1, 2, ¨ ¨ ¨ , l. We define wpiq as the prefix of length i

of w and w as the word obtained from w by deleting all letters in the alphabet S YS´1. As

previously stated, w ”G≀H bh for some b P B and h P H. Thus, w ”H h. Fix some h1 P H

and let J be the subset ti1, i2, ¨ ¨ ¨ , iku “ J of t1, 2, ¨ ¨ ¨ , lu such that ij ă ij`1 for 1 ď j ă k

and such that wpiq ”H h
1´1, wi P S Y S´1 for any i P J . Then bph1q ”G wi1

wi2
¨ ¨ ¨ wik

. This

is the main fact that we use in the next steps of the proof.

Let us describe a nondeterministic pushdown automaton M which accepts coWPpG≀Hq.

First, being nondeterministic, it has two paths, one for checking if h is nontrivial, for a

given w P G ≀ H, and the other to check if b maps some h1 P H to a nontrivial element.

Chapter 4. Co-Context-Free Groups 70

In order to test if h is trivial, all we need is to start at the bottom of the stack and then

write on the stack any element from Y Y Y ´1 we read in w, erasing it if it is the case that

two consecutive elements on the stack would be the inverse of each other. Letters from w

in S Y S´1 are ignored by doing nothing to the stack. If at the end of the input string the

stack is not at the bottom symbol, then h was not trivial and w must be accepted. This

behavior of the automaton is given by states q0, q1 and q2 in Figure 4.5.

In order to test if there is some h1 P H for which bph1q is not trivial, our automaton

must add nondeterministicaly a word v P
`
Y Y Y ´1

˘˚
to the stack, on top of the bottom

symbol $ (see Figure 4.4), representing the element h1 P H.

ε, ε Ñ y

ε, ε Ñ y

Figure 4.4 – I (one transition for each y P Y Y Y ´1)

After that, it starts reading the given w. Its behavior is:

i. ignore any letter in S Y S´1 and read letters in Y Y Y ´1, doing the same as it did on

the other part (add the elements to the stack, unless they could be canceled, then

erase the top of the stack element) until it reaches the bottom of the stack symbol.

ii. Once the bottom symbol is seen, the automaton tests if the next letter is in S Y S´1.

If so, the letter is written at the end of the input string of the pushdown automaton

N which accepts the language of the co-word-problem of G (remember that G is

co-context-free by hypothesis) and the automaton tests the next letter. This process

keeps being repeated until the first letter in Y Y Y ´1 is read.

iii. Once a letter in Y Y Y ´1 is read, the automaton writes it on the stack and then

goes back to step i.

The automaton keeps going on with this behavior until it finishes reading the input

word. Once the end of the input string symbol # is reached (we add this symbol to the

string alphabet before beginning), the automaton finishes by telling N to start reading

what is in its input string. N then gives an answer of accepted if bph1q ‰ 1G, which our

automaton returns to us as w nontrivial.

Notice that what this last part does is: step i tests for which i P t1, 2, ¨ ¨ ¨ , lu the

equality wpiq ”H h
1´1 holds; step ii then writes the wi with i P J in the input tape of N ;

and step iii merely works as intermediate step in between the finding of two different of

Chapter 4. Co-Context-Free Groups 71

the desired i’s. Thus, what is written in the input tape of N when it starts working is

exactly wi1
wi2

¨ ¨ ¨ wik
”G bph1q. The whole automaton is shown in Figure 4.5, together

with Figure 4.4.

q0

q1 q2

I q3

`

Activates N

q4

ε, ε
Ñ

$

ε, ε
Ñ

$

#, ‰ $ Ñ ε

y, ‰ y
´1 Ñ add y

y, y
´1 Ñ ε

s, y Ñ y

ε, ε Ñ ε

#
, ε

Ñ
ε

ε,
$

Ñ
$

y, y
´1 Ñ ε

y, ‰ py´1
or $q Ñ add y

y, $
Ñ

y s, $ Ñ $

and write s in N

If
N

ac
ce

pt
s

th
e

in
pu

t.

Figure 4.5 – M

In the transitions, b Ñ add c means that we add something to the top of the stack

without erasing anything from it. Furthermore, the transitions hold for y P Y Y Y ´1 and

s P S Y S´1: we have written several transitions (one for each s and y) as only one, in the

figure, for easier visualization.

4.5 Other Properties

In this section we make a compendium of interesting results we came across concerning

the co-context-free groups. The proofs are left for the interested reader to go after, since

they either are too technical to be of interest or require too much background that it is

not within our purposes to introduce. The results may be found in [15].

Proposition 4.5.1. Every co-context-free group has solvable word problem. Furthermore,

the problem is solvable in cubic time with respect to the length of the input word.

Chapter 4. Co-Context-Free Groups 72

We also introduce two new problems and obtain results about them.

Question 4.5.2.

(a) Given H a subgroup of the group G, is it possible to decide whether, given g P G,

g P H? (Generalised Word Problem)

(b) Given a finitely generated group G and g P G, is it possible to decide if g has finite

order? (Order Problem)

Proposition 4.5.3. There exist co-context-free groups with unsolvable conjugacy and

generalised word problems.

Proposition 4.5.4. Every co-context-free group has solvable order problem. Moreover, if

the order is finite, then it can be determined.

The next result is actually about one-counter languages, but it was put here because

they are only a particular case of context-free languages.

Proposition 4.5.5. Given G a finite group and H a virtually cyclic group, the group

G ≀ H has one-counter co-word problem.

We end this section, and this chapter, presenting groups which are not co-context-free

groups, as well as some which are.

Theorem 4.5.6. Given a finitely generated nilpotent group G, it is a co-context-free group

if, and only if, it is virtually abelian.

Corollary 4.5.7. The Heisenberg group H “ xA, B, C | rA, Bs “ C, rA, Cs “ rB, Cs “ 1y,

where rA, Bs “ A´1B´1AB is the commutator, is not a co-context-free group.

Definition 4.5.8. A Baumslag-Solitar group is a group with presentation in the form

xa, b | b´1amb “ any, where m, n P Zzt0u.

Theorem 4.5.9. A Baumslag-Solitar group is co-context-free if, and only if, it is virtually

abelian.

Definition 4.5.10. A group G is said to be polycyclic if it is solvable and every subgroup

is finitely generated.

All polycyclic groups have finite presentations, so that it makes sense to talk about

their word-problem language.

Theorem 4.5.11. A polycyclic group has context-free co-word problem language if, and

only if, it is virtually abelian.

Chapter 4. Co-Context-Free Groups 73

We finish this chapter stating some open questions about the co-context-free groups.

Question 4.5.12.

(i) Is the property of being co-context-free closed under taking free products? For example,

is Z ˚ Z2 co-context-free? [15]

(ii) Is Grigorchuk’s group co-context-free? [5]

Question piiq is relevant in relation to Lehnert’s conjecture, see Chapter 6, while

question piq deals with another possible closure property.

74

5. Thompson Groups

Thompson’s groups are relevant in group theory because they are counter-examples

to many conjectures, as they present many unusual properties. The most cited ones

are the original ones: F, T and V , which are related to each other by containment, that

is, F Ă T Ă V . In this chapter, we begin by introducing Thompson groups and a few

known results about them. After that, we define one of their generalizations, the so called

Higman-Thompson groups. The chapter ends with the introduction of the Houghton

groups, which are subgroups of the Higman-Thompson groups. We introduce these groups

in order to prove, in the next chapter, that they are all co-context-free.

5.1 Thompson Groups

The Group F

Here we present some properties of F , such as not containing non-abelian free subgroups.

It is also known that F does not satisfy any nontrivial identity and that it has exponential

growth. All these properties are briefly introduced only as interesting facts, but are not

demonstrated, as our main goal is not related to them. The interested reader may consult

[8] and [27], chapter 5. Let us begin by defining F . There are many equivalent definitions,

being one or another more convenient according to what is needed to prove. However, we

present only the definition which is of interest to us, the one that can be generalized in

order to define T and V.

Definition 5.1.1. F is the group with all continuous increasing and piecewise linear

functions f : r0, 1s Ñ r0, 1s such that

(i) f is a homeomorphism;

(ii) numbers of the form
a

2b
, a, b P N are taken into numbers of the same form;

(iii) the number of linear pieces is finite, each of them having slope 2k, for some k P Z;

and

(iv) the derivative is non-continuous only at points of the form
a

2b
, a, b P N.

The operation is the composition of functions.

Chapter 5. Thompson Groups 75

F can be said to be a 2-dimensional analogous for free groups. But the first property

we present says that F is actually far from being free.

Theorem 5.1.2. Every subgroup of F is either abelian or has subgroup isomorphic to

Z ≀Z, thus being infinitely generated, abelian and free. Hence, F does not have non-abelian

free subgroups.

We finish the introduction of F by stating Abért’s criterion, which can be used to

obtain an interesting result.[27]

Definition 5.1.3. Let G be a group acting (on the right) on an infinite set X. We say

that G separates X if for any subset Y Ď X, the set GY “ tg P G | y ¨ g “ y for all y P Y u

does not fix any point outside Y , that is, for every y R Y , there exists g P GY such that

y ¨ g ‰ y.

Theorem 5.1.4 (Abért). Given a group G and an infinite set X, if G separates X, then

G does not satisfy any nontrivial group identity.

The next result follows from Abért’s criterion.

Theorem 5.1.5. F does not satisfy nontrivial group identities.

The Group T

The easiest way of defining T is through homeomorphisms of the unit circle that follow

some rules. Let us so define it.

Definition 5.1.6. Let S1 be the unit circle obtained from I “ r0, 1s by identifying

the endpoints. Thompson’s group T is the set of all piecewise linear homeomorphisms

f : S1 Ñ S1 such that

(i) f maps images in S1 of numbers of the form
a

2b
, a, b P N to images of numbers of

the same form;

(ii) f is differentiable except at a finite number of points that are images of numbers of

the form
a

2b
, a, b P N; and

(iii) in the differentiable intervals, the slope is 2k, for some k P Z;

together with the group operation composition of functions.

It is possible to show that the following functions, A and B, generate a group isomorphic

to F .

Chapter 5. Thompson Groups 76

Apxq “

$
’’’’’’&
’’’’’’%

x

2
, 0 ď x ď

1

2

x ´
1

4
,

1

2
ď x ď

3

4

2x ´ 1,
3

4
ď x ď 1 .

Bpxq “

$
’’’’’’’’’’&
’’’’’’’’’’%

x, 0 ď x ď
1

2

x

2
`

1

4
,

1

2
ď x ď

3

4

x ´
1

8
,

3

4
ď x ď

7

8

2x ´ 1,
7

8
ď x ď 1 .

One can induce elements rA and rB of T using A, B and the identification of S1 with

the unity interval I “ r0, 1s. Then, defining the function

Cpxq “

$
’’’’’’&
’’’’’’%

x

2
`

3

4
, 0 ď x ď

1

2

2x ´ 1,
1

2
ď x ď

3

4

x ´
1

4
,

3

4
ď x ď 1

and inducing a function rC in S1 as well, we have that rA, rB and rC generate T and rA and
rB generate a subgroup of T which is isomorphic to F .

The Group V

Definition 5.1.7. Consider the unit circle S1. Thompson’s group V is the set of all

right-continuous bijective functions f : S1 Ñ S1 such that

(i) f maps images of numbers of the form
a

2b
, a, b P N to images of numbers of the same

form;

(ii) f is differentiable except at a finite number of points which are images of numbers

of the form
a

2b
, a, b P N; and

(iii) on every maximal interval of differentiability, the slope is 2k, for some k P Z;

together with the group operation composition of functions.

Chapter 5. Thompson Groups 77

We use the identification of S1 as the quotient of r0, 1s in order to define a new function

π0.

π0pxq “

$
’’’’’’&
’’’’’’%

x

2
`

1

2
, 0 ď x ă

1

2

2x ´ 1,
1

2
ď x ă

3

4

x,
3

4
ď x ă 1 .

It is then possible to prove that the previous functions rA, rB and rC, together with the

function π0 (all seen as maps induced on S1), generate V.

Before going on to the introduction of the Higman-Thompson groups, we give some

more results and interesting facts about the Thompson groups. If nothing else is indicated,

the results are in [8].

• The groups rF, F s, T and V are simple.

• F , T and V have exponential word growth.

• Every proper quotient of F is abelian.

• The groups F, T and V have solvable conjugacy problem. Several different proofs

have now been found (see the reference list in [7] for more detailed references to such

proofs).

• F has been thought as a potential counter-example for the von Neumann-Day

Conjecture, which states that a group is non-amenable if and only if it contains a

free group with two generators as subgroup. Nevertheless, the amenability of F is

still an open question and the conjecture was disproved by Ol’shanskii through the

Tarski monster groups, as one can find out in 5.8.5.2 from [27].

From here on, we will let F , T and V always denote the Thompson groups.

5.2 Higman-Thompson Groups

The Higman-Thompson Groups are defined as bijections on infinite sequences. They

are of interest for us because V is one of them.

Definition 5.2.1. Take two fixed integers, n ě 2 and r ě 1, and two finite alphabets,

Q “ tq1, ¨ ¨ ¨ , qru and Σ “ tσ1, ¨ ¨ ¨ , σnu. Let Ω “ QΣN be the set of infinite sequences

starting with an element of Q followed by elements of Σ. A subset B Ă QΣ˚ is called a

Chapter 5. Thompson Groups 78

barrier if for any ω P Ω, there is exactly one b P B with ω P bΣN, that is, b is the unique

prefix in B of ω.

Example 5.2.2. Barriers can easily be visualized using trees. In Figure 5.1, we have

a tree picturing the set Ω for Q “ tq1, q2u and Σ “ tσ1, σ2, σ3, σ4u: each infinite path

followed from the root of the tree is a sequence in Ω. In the figure, we omit the arrows

coming out from some of the vertices for easier visualization, but it should be clear from

the context where there are supposed to be arrows, since the tree is infinite.

ε

q1

σ1

...
...

...
...

σ2σ3σ4

¨ ¨ ¨

q2

σ1σ2σ3σ4

...
...

...
...

Figure 5.1 – Ω pictured as a tree.

In this case, a barrier is any finite subtree which has at least one path beginning with

qi, for each qi P Q. The uniqueness required in the definition is automatically given by the

fact that the trees have no cycles and therefore it is not possible to build two distinct finite

paths beginning in the root and finishing in the same vertex (if we do not chose paths

finishing in a lower level of the tree where there is already a path finishing in a higher

level). In Figure 5.2 we present two possible barriers for Ω as defined in this example.

ε

q1

σ1

...
...

...
...

σ2σ3σ4

¨ ¨ ¨

b1

q2

σ1σ2σ3σ4

...
...

...
...

b
2

(a) A barrier B “ tb1 “ q1, b2 “ q2u.

Figure 5.2 – Examples of barriers for Ω.

Chapter 5. Thompson Groups 79

ε

q1

σ1

...
...

...
...

σ2σ3σ4

¨ ¨ ¨

b1

q2

σ1

b3

σ2σ3

b
4

σ4

...
...

...
...

b
5

b
2

(b) A barrier B “ tb1 “ q1, b2 “ q2σ2, b3 “ q2σ1, b4 “ q2σ3, b5 “ q2σ4u.

Figure 5.2 – Examples of barriers for Ω. (cont.)

Given two fixed integers and their two associated alphabets, Q and Σ, we denote by

Bc the set of all barriers of cardinality c.

Definition 5.2.3. Fix n ě 2 and r ě 1, integers. The Higman-Thompson group Gn,r is

the group pGn,r, ¨q of functions defined as follows: given two barriers (for the same finite

sets Q and Σ) of same cardinality c ă 8, B1 and B2; and a bijection φ : B1 Ñ B2, there

exists an induced bijection gφ : Ω Ñ Ω, which replaces the prefixes. Gn,r is the the of all

such induced bijections, that is

Gn,r “
ď

cPN

tgφ | φ : B1 Ñ B2 is a bijectionuB1,B2PBc
,

with operation given by composition.

Some results about the Higman-Thompson groups:

• Gn,r is finitely presented. [24]

• Gn,r and Gn,s are isomorphic if r ” s modpn ´ 1q. [13]

• Let G`
n,r be the commutator subgroup of Gn,r. Then G`

n,r and G`
m,s are isomorphic

if, and only if, m “ n and gcdpn ´ 1, rq “gcdpn ´ 1, sq. [24]

• Gn,r is simple if n is even and has a simple subgroup of index 2 if n is odd. [13]

• Gn,r has solvable conjugacy and power conjugacy problems. [2].

• The group Gn,r is the automorphism group of the free Cantor algebra Cnrrs of type

n on r generators. [13]

• V is G2,1. [13]

Chapter 5. Thompson Groups 80

The last result, about V being isomorphic to G2,1, can be easily visualized using the

action of V in the tree of standard dyadic intervals. First, remember from Example 5.2.2

that the barriers can be defined as subtrees of infinite trees in a natural way. Second,

consider trees of the form in Figure 5.3. It is easy to notice, intuitively, that there must

be a canonical bijection between the set of functions used to define the groups Gn,r and

the set of functions acting in these trees. This can in fact be shown and it is therefore

possible to understand Gn,r as a group acting in the tree in Figure 5.3.

ε

q1

σ1

σ1

...¨ ¨ ¨...

¨ ¨ ¨σn

...¨ ¨ ¨...

¨ ¨ ¨σn

q2¨ ¨ ¨qr´1qr

σ1¨ ¨ ¨σn

σ1

...¨ ¨ ¨...

¨ ¨ ¨σn

...¨ ¨ ¨...

...
...

...
...¨ ¨ ¨

¨ ¨ ¨

Figure 5.3 – A n, r tree.

We now recall that we gave the definition of functions rA, rB, rC and π0 (all seen as

maps induced on S1), which generate V, see subsection The Group V . There is also a

canonical bijection between the standard dyadic partitions used to define these functions

(and V) and an infinite binary tree, which is then called a tree of standard dyadic intervals,

see [8] for more on that topic. Using this bijection, it is possible to picture the functions
rA, rB, rC and π0 by their reduced tree diagrams, as in Figures 5.4, 5.5, 5.6 and 5.7.

1

23

rA
ÝÑ

12

3

Figure 5.4 – Reduced tree diagram for rA.

Chapter 5. Thompson Groups 81

1

2

34

rB
ÝÑ

1

23

4

Figure 5.5 – Reduced tree diagram for rB.

1

23

C
ÝÑ

2

31

Figure 5.6 – Reduced tree diagram for rC.

1

23

π0ÝÑ
2

13

Figure 5.7 – Reduced tree diagram for π0.

Finally, it is easy to see that the action on a 2, 1 tree and the action on a binary tree

(as the tree of standard dyadic intervals is) are equivalent: in the 2, 1 tree, use the only

first level vertex q1 as the root for the binary tree upon which we apply the action. These

actions on trees picture the relation between G2,1 and V for an intuitive understanding of

their isomorphism.

5.3 Houghton Groups

Let us now define Houghton Groups, groups of quasi-automorphisms which shift points

in a disjoint union of copies of an infinite graph.

Definition 5.3.1. Given Γ “ pV, Eq a locally finite graph, a quasi-automorphism of Γ is

a bijection φ : V Ñ V such that, except at finitely many vertices, if there is an edge e P E

with speq “ u, tpeq “ v, then there is an edge f P E such that spfq “ φpuq, tpfq “ φpvq.

Chapter 5. Thompson Groups 82

Thus, a quasi-isomorphism of a graph is a permutation of its vertices, preserving all

but a finite number of adjacencies. The set of all quasi-automorphisms of a graph Γ is

denoted QAutpΓq.

We notice that, if Γ is finite, then QAutpΓq “ SympV q, being SympV q the symmetric

group which acts on V . Also, adding or removing a finite number of edges to Γ does not,

up to isomorphism, alter QAutpΓq.

Definition 5.3.2. Take N0, the graph with vertices associated to non-negative integers

and edges e P E such that
`
speq, tpeq

˘
“ pi, jq for all i “ j ˘ 1. We define the n-star, ˚n

0 as

the disjoint union of n copies of N0. A point pk, lq P ˚n
0 is the vertex k of the lth copy of

N0.

Figure 5.8 shows a piece of ˚3

0.

Figure 5.8 – ˚3

0

Now, for each quasi-automorphism of ˚n
0 , one can choose a sufficiently large r ą 0 and

n integer numbers s1, ¨ ¨ ¨ , sn such that, for some permutation of n elements, the effect

of applying the function to a point greater than r is translating it by one of the chosen

integers si and “rotating” it to another copy of N0. The copy of N0 where the point will

be taken to is the one corresponding to the image of the copy containing the original point

Chapter 5. Thompson Groups 83

under the chosen permutation of n elements. That is, points are shifted along a semi-line

and then entire semi-lines are permuted in the complement of a sufficiently large subgraph.

Notice that the shifts along the semi-lines must balance each other, otherwise there will

be points left in the subgraph of points lower than r which will be left without image.

Putting it into symbols, we have: for each φ P QAutp˚n
0 q, there exist r ą 0, s1, ¨ ¨ ¨ , sn P Z

and ϕ P Sn such that for all k ą r, φpk, lq “
`
k ` sl, ϕplq

˘
and s1 ` ¨ ¨ ¨ ` sn “ 0.

This can always be done because every quasi-automorphism is a permutation of the

vertices in itself.

Definition 5.3.3. The nth Houghton group, Hn, is the group of all φ P QAutp˚n
0 q such

that ϕ, as defined above, is the identity in Sn.

The Houghton groups were first introduced in [16], for the purpose of studying the first

cohomology of groups with permutation module coefficients.

From the order of Sn, we get that Hn is a subgroup of finite index in QAutp˚n
0 q, because

any φ P QAutp˚n
0 q is obtained from composing the ϕ of the element from Hn that has

the same integers s1, ¨ ¨ ¨ , sn and the same r ą 0 with some σ P Sn. So, the number of

cosets is equal to |Sn| “ n!. Thus, from Theorem 4.3.2, we immediately obtain that Hn is

co-context-free if, and only if, QAutp˚n
0 q is co-context-free.

Theorem 5.3.4 (Brown, [6]). For n ą 1, Hn is finitely generated.

Better than just stating this fact, we can actually define the generators for Hn and they

are exactly the shifts si, which we introduced above, for n ě 3. We collapse all vertices

with a 0 coordinate in ˚n
0 to only one point, which we can do since n is finite and adding

a finite number of edges, say between all the p0, lq, does not alter QAutp˚n
0 q. Then, we

obtain as result ˚n, as exemplified in Figure 5.9. In ˚n, the vertices are denoted by pk, lq

for all k P N and l “ 1, 2, ¨ ¨ ¨ , n and we denote only by 0 the vertex where we collapsed

the p0, lq vertices of ˚n
0 .

Chapter 5. Thompson Groups 84

Figure 5.9 – ˚3

Notice that the shifts si P Hn are different for ˚n and for ˚n
0 . Let us work with the

shifts si acting on ˚n, as done in [18]. The action is, with the copies l modulo n:

sipk, lq “

$
’’’’&
’’’’%

pk, lq for i ‰ l ‰ i ` 1,

pk ´ 1, lq for l “ i, k ě 2,

0 for l “ i, k “ 1,

pk ` 1, lq for l “ i ` 1,

and sip0q “ p1, i ` 1q. Then, for n ě 3, the commutator rsi, si`1s acts as the transposition

of 0 and p1, iq and the group generated by all shifts contains all finite permutations, that is,

is equal to Hn. For H2, we can consider X “ tt, τu as generating set, being t “ pi ÞÑ i ` 1q

and τ “ 0 Ø 1. Notice that t moves the vertices for the next one in a shift and τ can get

out of a ray, going to zero, from where one could go into the other ray.

Röver showed in his PhD thesis that all Houghton groups embed into Thompson’s

group V (Proposition 2.6 in [26]).

Theorem 5.3.5 (Röver, [26]). For m ě 1, Hm is a subgroup of any Gn,r.

85

6. Lehnert’s Conjecture

In order to prove the main result studied in this work, that is, that the Thompson’s

group V is co-context-free, we need the following lemma.

Lemma 6.1. Let L be a context-free language and L˝ be the set of all cyclic permutations

of words in L, that is, L˝ “ tyx | x, y P
`
S Y S´1

˘˚
and xy P Lu, being S the alphabet for

L. Then, L˝ is a context-free language.

The proof is omitted, but can be found in [20].

Theorem 6.2 (Lehnert-Schweitzer, [18]). The Higman-Thompson groups Gn,r are co-

context-free.

Proof. It is proved in [13] that Gn,r is finitely presented, so that we can consider a finite

set of generators, X. We use the notations as presented in the definitions of Chapter 5, so

that Σ “ tσ1, ¨ ¨ ¨ , σnu and Q “ tq1, ¨ ¨ ¨ , qru are finite sets and Ω “ QΣN. Our goal is to

construct a context-free language L such that L˝ is coWPpGn,rq, in order to apply Lemma

6.1 and obtain the desired result.

Step 1 Construction of the language L.

Take τ P Gn,r. By construction, we have that τ change the prefixes of every word

ω P Ω, by taking the prefix in the barrier Bτ
1 into the prefix in the barrier Bτ

2 . Notice

that we added the index τ to the barriers, only to make it clear that we consider the two

barriers which induce τ . There exists a constant kτ P N such that for all ω P Ω, the prefix

u P Bτ
1 of ω is of length lgpuq ď kτ , because the barrier is finite by definition.

Consider these constants kτ for all the elements in the generating set and take their

maximum, that is, take k “ max
xPXYX´1

kx. We then define the set of all infinite sequences

with σ1 in all entries of index greater than k ` 1,

M “ tqrωσ1σ1 ¨ ¨ ¨ | q P Q, rω P Σku.

Notice that the cardinality of M is |M | “ rnk, because these are the only entries with

possible variation, so that M is finite. We consider L as the set of words in pX Y X´1q˚

which are not the identity on M , that is, for every element g P L, there is at least one

sequence in M that g does not fix. So,

L “ tν P pX Y X´1q˚ | ν|M ‰ Id|M u.

Chapter 6. Lehnert’s Conjecture 86

Step 2 L is context-free.

Given ω P M , we show that the language Lω of all words in pX Y X´1q˚ which do not

fix ω is context-free. After that, since L “
ď

ωPM

Lω and M is finite, we have that L is a

finite union of context-free languages and, therefore, is context-free.

First notice that when we defined pushdown automata, the transitions were allowed to

read at most one element of the stack and to write a word of any length. We could, instead

of that, define transitions which read a word of length at most k P N from the stack.

This new definition allows the construction of a new type of automaton, but there is a

correspondence between this new type of automata and pushdown automata, in the sense

that for any context-free language, one can build automata of both types accepting the

language. Moreover, for any automaton of the new type, there is a pushdown automaton

accepting the same language. It is not difficult to prove that these automata are equivalent,

we show in Figure 6.1 an example of how one transition of the automaton with access

depth k ą 1 is equivalent to a pushdown automaton with k transitions and viceversa.

q0 q1 q2

qk´1qk

ε, a1 Ñ ε ε, a2 Ñ ε

...

ε, ak Ñ ω

q0 q1

ε, a1a2 ¨ ¨ ¨ ak Ñ ω

Figure 6.1 – Automata without and with access depth.

Thus, we can work with an automaton which has access depth k into the stack.

Our automaton then has tape alphabet equal to X Y X´1 and stack alphabet tqu Y Σ,

where ω “ qrωσ1σ1 ¨ ¨ ¨ . Given ν P Lω Ă pX Y X´1q˚, ν is a word in the elements of the

tape alphabet and therefore the input to the automaton is some word in pX Y X´1q˚. We

begin with qrωσl
1 written in the stack, q in the top, for some fixed non-negative l P Z.

Let us describe how the automaton acts letter by letter when reading the input word.

The transitions read τ P X Y X´1 from the tape and act on the stack by changing the

prefix u into u1, according to the action of τ . Notice that, by construction of k, we are

assured that τ has enough letters (to properly detect and change the prefix) in the stack

if there are k or more symbols written there. If there are not enough symbols, let us say

there are rk ă k symbols forming the word a, the transition reads ε from the tape and

change a into aσk´rk
1 . After that, the transitions go back to reading some τ from the tape

and acting as the change of prefix. Thus, our transitions are of the form:

Chapter 6. Lehnert’s Conjecture 87

τ, a ÞÑ b, where τ P X Y X´1 and τpaσ1σ1 ¨ ¨ ¨ q “ τpuvσ1σ1 ¨ ¨ ¨ q “

“ u1vσ1σ1 ¨ ¨ ¨ “ bσ1σ1 ¨ ¨ ¨

and

ε, a ÞÑ aσ1σ1 ¨ ¨ ¨ σ1.

After reading the entire input word, the automaton checks what is on the stack. If the

word written on the stack is qrωσm
1 for some m P N Y t0u, then the input word g acted as

gpωq “ gpqrωσl
1σ

8
1 q “ qrωσm

1 σ8
1 “ ω and it has fixed ω, being therefore not accepted. In

any other case, the input word can be accepted.

Step 3 Finally, let us verify if L˝ “ coWPpGn,rq.

Ď Consider λ P L˝, λ “ vu such that uv P L. By construction, we have that

uvpqrωσ1σ1 ¨ ¨ ¨ q ‰ qrωσ1σ1 ¨ ¨ ¨

for some qrωσ1σ1 ¨ ¨ ¨ P M . Consider the element p “ vpqrωσ1σ1 ¨ ¨ ¨ q P Σ. Let us apply

vu to p and verify that vuppq ‰ p:

vuppq “ vu
`
vpqrωσ1σ1 ¨ ¨ ¨ q

˘
“ v

`
uvpqrωσ1σ1 ¨ ¨ ¨ q

˘
‰ vpqrωσ1σ1 ¨ ¨ ¨ q “ p.

Then, we have found p such that vuppq ‰ p and therefore vu “ λ P coWPpGn,rq

and L˝ Ď coWPpGn,rq.

Ě First notice that X YX´1 Ď LXL˝ X coWPpGn,rq by construction of M , thus we

need only to study the case z P coWPpGn,rqzXYX´1. Take z P coWPpGn,rqzXYX´1.

We want to show that z “ yx, where at least one of x and y is an element of length

ě 2 and that there exists ω P M such that xypωq ‰ ω, implying xy P L and then

z P L˝. It suffices to show that there exists pω with yxppωq ‰ pω and xppωq “ ω P M ,

because then we have

pω ‰ yxppωq “ ypωq ñ

xypωq ‰ xppωq “ ω.

For any z P coWPpGn,rq, there is at least one non-fixed sequence rz “ qσi1
σi2

¨ ¨ ¨ .

Take mmin as the minimal number such that no suffix of z induces a map sending

the string qσi1
σi2

¨ ¨ ¨ σimmin
into a string of length less than k. As the sequence

qσi1
σi2

¨ ¨ ¨ is infinite, it is always possible to take a sufficiently large prefix from it,

in order to guarantee that the suffixes of z will map that suffix into a string of great

enough length. Hence, the number mmin exists. Define m “ maxtmmin, ku.

We want to ensure the existence of a suffix x of z or of z´1 which maps

qσi1
σi2

¨ ¨ ¨ σim
to a string of length exactly k. After that, we conclude that ei-

Chapter 6. Lehnert’s Conjecture 88

ther z or z´1 is in L˝ and if necessary we use the fact that L˝ is closed under taking

inverses to finish the proof.

Given z P coWPpGn,rq, z is a sequence of elements in the generating set or its

inverses. Each letter of z can have one of the following effects on rz: change the prefix

to a prefix of same length, change the prefix to a prefix of greater length or change

the prefix to a prefix of smaller length. Considering the effect of all elements of z, we

have a general behavior of z to shorten, increase or preserve the length of a prefix of

rz. In the case that z decreases the length of such prefix, we have that m “ mmin

and the length of qσi1
σi2

¨ ¨ ¨ σim
is decreased by z. Because qσi1

σi2
¨ ¨ ¨ σim

cannot be

taken into a prefix of length ă k by construction, then we have that m “ mmin ą k.

For the case where m “ mmin, without loss of generality, we write z for both

z or z´1, accordingly to the case. Let us see that the minimality of m ensure the

existence of a suffix x of z which maps qσi1
σi2

¨ ¨ ¨ σim
to a string of length exactly k.

Being m minimal, there is x which takes qσi1
σi2

¨ ¨ ¨ σim´1
into a string of length l ă k.

Applying x to qσi1
σi2

¨ ¨ ¨ σim
then results in a string of length l ` 1 ě k, because of

the definition of m and because the addition of one more symbol at the end of the

sequence does not change its prefix in the barrier, therefore it can not change the

resulting image of x except by the addition of another symbol if σim
is part of the

barrier prefix. But l and k are integers, thus l ă k together with l ` 1 ě k implies

l ` 1 “ k and x “ x is the desired suffix of z.

In the case that z increases the length of a prefix of rz, consider z´1 instead of z.

As z does not fix rz, z´1 does not fix it either and because z has general behavior of

increasing the prefix, z´1 have general behavior of decreasing the length. Thus, we

can use for z´1 the same arguments which we use for a z which decreases the length.

In this case, we prove that z´1 P L˝ and the closure under taking inverses guarantee

that z P L˝.

Let us prove that L˝ is closed under taking inverses.

Consider z´1 “ a´1

n a´1

n´1 ¨ ¨ ¨ a´1

2 a´1

1 P L˝. By definition of L˝, at least one

of the following holds:

z´1

1 “ a´1

1 pa´1

n a´1

n´1 ¨ ¨ ¨ a´1

2 q P L

z´1

2 “ a´1

2 a´1

1 pa´1

n a´1

n´1 ¨ ¨ ¨ a´1

3 q P L

z´1

3 “ a´1

3 a´1

2 a´1

1 pa´1

n a´1

n´1 ¨ ¨ ¨ a´1

4 q P L

...

z´1

n´1 “ pa´1

n´1 ¨ ¨ ¨ a´1

1 qa´1

n P L.

Chapter 6. Lehnert’s Conjecture 89

Being a language of elements which do not fix elements of M , L is closed

under taking inverses, because the inverse of an element which does not fix

some ω will not fix ω either. Thus, we have that for some 1 ď i ă n, zi “

ai`1ai`2 ¨ ¨ ¨ ana1a2 ¨ ¨ ¨ ai P L. Then, z “ pa1a2 ¨ ¨ ¨ aiqpai`1ai`2 ¨ ¨ ¨ anq P L˝

and L˝ is closed under taking inverses.

Finally, in the case that z preserves the length of a prefix of rz, we have m “ k,

because mmin ď k in that case, being the value of mmin equal to the least length

that a prefix of rz need to have in order for the action of the first element of z to

be well defined. In this case, it is trivial that there exists a suffix of z which maps

qσi1
σi2

¨ ¨ ¨ σim
to a string of length exactly k, because x “ z will always be such a

suffix.

Now notice that all sequences with prefix qσi1
σi2

. . . σim
are mapped to a sequence

with the same prefix as zprzq. That is true by the construction of k as the greatest

possible length of prefixes in the barrier and by the definition of m. All the changes

made by z in a sequence beginning with qσi1
σi2

. . . σim
change only this prefix and

nothing on the subsequent elements of the sequence. And rz is a non-fixed sequence,

meaning that the action of z in qσi1
σi2

. . . σim
is not the identity and so all the

sequences starting with qσi1
σi2

. . . σim
are non-fixed sequences.

Take pω “ qσi1
σi2

. . . σim
σ1σ1σ1 ¨ ¨ ¨ . The prefix qσi1

σi2
. . . σim

is taken by x to a

prefix of length exactly k by choice of x, thus xppωq “ ω P M . And it is a non-

fixed sequence, so that zppωq “ yxppωq ‰ pω. Thus, xy P L and z P L˝, meaning

coWPpGn,rq Ď L˝.

Therefore, coWPpGn,rq “ L˝ and we have finished the proof.

Remark 6.3. We use left actions. This means a word is read from right to left when

acting as a function and from left to right when it is just a sequence. If one were to use

right actions, the proof would not be changed in essence, but attention should be paid to

the fact that the suffixes would become prefixes.

As an immediate corollary of Theorem 6.2 we get the main result of this chapter.

Corollary 6.4 (Lehnert-Schweitzer, [18]). Thompson’s group V is co-context-free.

The result follows since the group G2,1 is Thompson’s group V . During the studies

leading to that theorem, Lehnert formulated a statement that is equivalent to the following

conjecture, which is nowadays the main open question in the construction of the Chomsky

Hierarchy for groups. The statement was first presented in his PhD thesis, [17].

Conjecture 6.5 (Lehnert, [17]). Let G be a finitely generated group. G is co-context-free

if, and only if, it is a subgroup of Thompson’s group V .

Chapter 6. Lehnert’s Conjecture 90

This is not the original statement of the conjecture. Let T2,c be the infinite rooted

2-edge-coloured binary tree, that is, an infinite rooted binary tree where we paint the

vertices originated from left edges with colour 1 and the vertices originated from right

edges with another colour 2. The original conjecture asked if all co-context-free groups

were finitely generated subgroups of the group QAutpT2,cq of all bijections on the vertices

of T2,c which respect the edge and colour relationships, except for at possibly finitely many

locations. It was proved in [5] that such group embeds in V and viceversa, so that the

conjecture as stated here is equivalent.

We notice that a positive answer to piiq of Question 4.5.12 would imply that Lehnert’s

conjecture is false, because Grigorchuk’s group cannot be embedded in Thompson’s group

V .

By combining together Theorems 5.3.4, 5.3.5 and 4.1.6, we immediately see that for

n ě 2 every Houghton group Hn is co-context-free.

To conclude this chapter, we provide a direct proof of this statement as it is another

illustration of the techniques developed in Theorem 6.2.

Corollary 6.6 (Lehnert-Schweitzer, [18]). Let n ě 2. Then the Houghton group Hn is

co-context-free.

Proof. Consider S “ ts1, s´1

1 , s2, s´1

2 , ¨ ¨ ¨ , sn, s´1

n u, being si the generators of Hn, as defined

in Chapter 5, for n ě 3. Let L “ tω P S˚ | ωp0q ‰ 0u be the set of words for which 0 is

not a fixed point. We prove that L is context-free and that L˝ is the co-word problem for

Hn, so that Lemma 6.1 ends the proof.

Step 1 L is context-free.

We in fact show that L is a one-counter language, with stack alphabet Σ “ t$, 1u. In

order to make the notation clear, let us denote the word

1 1 ¨ ¨ ¨ 1looomooon
m times

P Σ˚

as m P Σ˚. Then, we can denote a word ω P t1u˚ which is shorter by 3 terms than m by

m ´ 3 and so on, meaning that we consider a bijection from t1u˚ to N. (Analogously, one

could instead define the transition relations to be

δ Ď
`
pQ Y tεuq ˆ pX Y tεuq ˆ pΣ˚q

˘
ˆ pQ ˆ Σ˚q,

while in the original definition of pushdown automata they were

δ Ď
`
pQ Y tεuq ˆ pX Y tεuq ˆ pΣ Y tεuq

˘
ˆ pQ ˆ Σ˚q,

with the third element being now possibly a whole word instead of just a letter. See Figure

6.1 for more on this equivalence.)

Chapter 6. Lehnert’s Conjecture 91

Now, the inverse functions of the shifts si are given by

s´1

i pk, lq “

$
’’’’&
’’’’%

pk, lq for i ‰ l ‰ i ` 1,

pk ` 1, lq for l “ i,

0 for l “ i ` 1, k “ 1,

pk ´ 1, lq for l “ i ` 1, k ě 2

and s´1

1 p0q “ p1, iq. Then, we construct the one-counter (pushdown) automaton

M “ pQ, X, Σ, δ, q0, $, F q

where

1. Q “ t0, 1, 2, ¨ ¨ ¨ , n, ‹u, 0 being the initial state;

2. X “ S;

3. Σ “ t1, $u is the stack alphabet, $ being the bottom symbol;

4. δ is as in the Figure 6.2;

5. F “ t‹u is the set of accepted states.

0 l ‹

s
´1

l , $ ÞÑ 1

sl´1, $ ÞÑ 1

sl, 1 ÞÑ $

s
´1

l´1
, 1 ÞÑ $

ε, k ÞÑ $

sl or s
´1

l´1
, k ‰ 1 ÞÑ k ´ 1

sl´1 or s
´1

l , k ÞÑ k ` 1

s
˘1

i‰l,l´1
, k ÞÑ k

Figure 6.2 – M

Thus, the given automaton receives words ω P S˚ and apply them to 0, accepting them

only if they end in some vertex other than 0. That means the automaton accepts exactly

L and so L is context-free.

Step 2 L˝ “ coWPpHnq.

We will show the equality without paying attention to the generating set because we

have already proved that being context-free is a property independent of generating set,

so we can carry out this proof using S.

Chapter 6. Lehnert’s Conjecture 92

Ď Take a word yx P L˝, implying ω “ xy P L. Then, ω is not the identity (otherwise,

ωp0q “ 0) and is therefore in the set coWPpHn, Sq. We have:

xy ‰ Id ñ y ‰ x´1 ñ yx ‰ x´1x ñ yx ‰ Id.

Thus, yx P coWPpHn, Sq.

Ě Consider ω P coWPpHn, Sq. Then, there is at least one point p P ˚n such that

ωppq ‰ p. We show that there exists a suffix x such that ω “ yx and xppq “ 0. With

this result, we have that

xppq “ 0

xyp0q “ xy
`
xppq

˘
“ x

`
yxppq

˘

yxppq ‰ p

,
/.
/-

ñ xyp0q ‰ 0.

Hence xy P L and yx “ ω P L˝. It remains to be proved that such a suffix x does

exist.

If the non-fixed point is q “ pq1, q2q, we have two cases. Case 1: there exists x

a suffix for ω such that xpqq “ 0 and we have finished. Case 2: there is no such a

suffix x for ω with xpqq “ 0. In this case, we remember that there is r large enough

with ωpk, q2q acting as a shift for k ą rq2
, from the construction of Hn. Thus, there

also exists a ray p¨, zjq on which ω acts as an outbound shift for pk, zjq, k ą rzj
, for

some 1 ď j ď n. This means that there is at least one point p “ pp1, p2q, p2 ‰ zj,

whose image is on the ray p¨, zjq, because our function ought to be a bijection. Thus,

there exists some suffix x of ω with xppq “ 0, as desired.

Now it remains to be seen that H2 is co-context-free. For this, we make use of the fact

that H2 – S8 ¸ Z, where S8 is the symmetric group of N, so that each element g P H2

can be written as pσ, sq, σ P S8 and s P Z. Thus, for g to be nontrivial, we need it to

have s ‰ 0 or σ non trivial. Let us build a pushdown automaton ĂM which recognizes

coWPpH2q.

For that, we need a new symbol # meaning the end of the input string and a somewhat

different notation for the transitions: we are able to add a symbol to the top of the stack

without erasing the previous symbol by writing b Ñ add c. Our automaton reads g as a

string in the alphabet of generators X “ tt, τu. We use H2 – S8 ¸ Z only to understand

how the automaton should work. Thus, to test if s “ 0, the automaton needs to check

what the sum of the exponents of t in g is. It is 0 if and only if s “ 0. If s ‰ 0 it is clear

that g is nontrivial and should be accepted.

Chapter 6. Lehnert’s Conjecture 93

q0

q1 q3

q2

`

´

q4

ε, ε
Ñ

0

ε, ε
Ñ

$

#, i ‰ 0 Ñ ε

t, i Ñ i ` 1

t
´1

, i Ñ i ´ 1

τ
˘1

, i Ñ i

τ
˘1 , A

Ñ
ε

τ ˘
1

, C
or $ Ñ

add C

τ ˘
1

, D
Ñ

ε

#, C or D Ñ ε

I

ε, A Ñ add A
ε, C Ñ ε

ε, D or $ Ñ add D

ε, ε Ñ add A

I “

$
’’’’’’’’’&
’’’’’’’’’%

τ ˘1, B Ñ B

t, B Ñ ε

t, ‰ B Ñ add A

t´1, A Ñ ε

t´1, ‰ A Ñ add B

#, A or B Ñ ε

,
/////////.
/////////-

Figure 6.3 – ĂM

Notice that the automaton in Figure 6.3 is a nondeterministic one, with q0 as starting

state. The stack alphabet is Σ “ tA, B, C, D, 1, $u, where we can interpret A as `1, B as

´1, C as 0 ÞÑ 1, D as 1 ÞÑ 0 and we use an analogous bijection to the one between t1u˚

and N used in step 1 (now the bijection is with Z).

The piece of the automaton that is composed by the states q0, q1 and q3 is accountable

for the verification if s ‰ 0 or not, accepting the word as nontrivial immediately if it is

the case.

The piece composed by the states q0, q2, `, ´ and q4 checks if σ is nontrivial, regardless

of what is happening with s. The idea is that the automaton remembers the number of

τ ˘1 which have effect by adding C for right moves or D for left moves only when the stack

contains at most one A and no B. C’s and D’s will cancel each other (as A’s and B’s

will) and if there is any C or D left, that means σ was not trivial. The A’s and B’s are

there as consequence of reading t and t´1, respectively, and the ` and ´ states are just

auxiliary in order to act with depth in the stack.

94

Final Remarks

In this master thesis, we present the construction of Chomsky’s Hierarchy for groups.

We develop it step by step, presenting briefly the historical background of each result. We

give closure properties on each type of groups or languages that we construct. We end by

constructing the most recent result in the field and stating the main open question regarding

the hierarchy. Let us recall the topics presented in the chapters of this dissertation.

In Chapter 2, we present the first result hinting at a possible connection between

Chomsky’s Hierarchy for languages and an analogous classification of groups, Anisimov’s

theorem. In Chapter 3, we introduce the second step in the classification of groups through

their language of the Word Problem, the result by Muller & Schupp. We also explore the

context-free languages and their properties, from both an automata and a grammar point

of view.

We have also studied the proofs leading to Muller & Schupp’s result, but unfortunately,

due to time constraints, it was not possible to include all proofs in the present thesis, since

they would need a whole new body of theory to be clearly presented.

In Chapter 4, we define the co-context-free groups and prove the main known closure

properties, such as closure under taking direct products and wreath products. In chapter

5 we present definitions and properties of Thompson groups F , T and V , as well as those

of Houghton groups and of Higman-Thompson groups.

Finally, in Chapter 6, we present the proof that Thompson’s group V is co-context-free,

which hints at the motivation for Lehnert’s conjecture about the complete classification of

the co-context-free groups.

As a perspective for the future, this work may lead to a PhD thesis exploring possible

counter-examples for Lehnert’s conjecture (or providing new interesting examples of

co-context-free groups).

95

Bibliography

[1] An̄ıs̄ımov, A. V. The group languages. Kibernetika (Kiev), 4 (1971), 18–24.

[2] Barker, N., Duncan, A. J., and Robertson, D. M. The power conjugacy

problem in Higman-Thompson groups. Internat. J. Algebra Comput. 26, 2 (2016),

309–374.

[3] Berstel, J. Transductions and context-free languages, vol. 38 of Leitfäden der Ange-

wandten Mathematik und Mechanik [Guides to Applied Mathematics and Mechanics].

B. G. Teubner, Stuttgart, 1979.

[4] Bleak, C. Topics in groups course notes. , 2016. [Online; accessed 19-December-

2018].

[5] Bleak, C., Matucci, F., and Neunhöffer, M. Embeddings into Thompson’s

group V and coCF groups. J. Lond. Math. Soc. (2) 94, 2 (2016), 583–597.

[6] Brown, K. S. Finiteness properties of groups. In Proceedings of the Northwestern

conference on cohomology of groups (Evanston, Ill., 1985) (1987), vol. 44, pp. 45–75.

[7] Burillo, J., Matucci, F., and Ventura, E. The conjugacy problem in extensions

of Thompson’s group F . Israel J. Math. 216, 1 (2016), 15–59.

[8] Cannon, J. W., Floyd, W. J., and Parry, W. R. Introductory notes on

Richard Thompson’s groups. Enseign. Math. (2) 42, 3-4 (1996), 215–256.

[9] Chomsky, N. Three models for the description of language. IRE Transactions on

information theory 2, 3 (1956), 113–124.

[10] Diekert, V., and Weiß, A. Context-free groups and their structure trees. Internat.

J. Algebra Comput. 23, 3 (2013), 611–642.

[11] Ginsburg, S. The mathematical theory of context-free languages. McGraw-Hill Book

Co., New York-London-Sydney, 1966.

[12] Herbst, T. On a subclass of context-free groups. RAIRO Inform. Théor. Appl. 25,

3 (1991), 255–272.

[13] Higman, G. Finitely presented infinite simple groups. Department of Pure Mathe-

matics, Department of Mathematics, I.A.S. Australian National University, Canberra,

1974. Notes on Pure Mathematics, No. 8 (1974).

Bibliography 96

[14] Holt, D. F., Rees, S., and Röver, C. E. Groups, languages and automata,

vol. 88 of London Mathematical Society Student Texts. Cambridge University Press,

Cambridge, 2017.

[15] Holt, D. F., Rees, S., Röver, C. E., and Thomas, R. M. Groups with

context-free co-word problem. J. London Math. Soc. (2) 71, 3 (2005), 643–657.

[16] Houghton, C. The first cohomology of a group with permutation module coefficients.

Archiv der Mathematik 31, 1 (1978), 254–258.

[17] Lehnert, J. Gruppen von quasi-Automorphismen. PhD thesis, Johann Wolfgang

Goethe-Universität, 2008.

[18] Lehnert, J., and Schweitzer, P. The co-word problem for the higman-thompson

group is context-free. Bull. London Math. Soc. 39, 2 (2007), 235–241.

[19] Löh, C. Geometric group theory. Universitext. Springer, Cham, 2017. An introduc-

tion.

[20] Maslov, A. N. The cyclic shift of languages. (Russian). Problemy Peredači

Informacii 9, 4 (1973), 81–87.

[21] Meier, J. Groups, graphs and trees, vol. 73 of London Mathematical Society Student

Texts. Cambridge University Press, Cambridge, 2008. An introduction to the geometry

of infinite groups.

[22] Muller, D. E., and Schupp, P. E. The theory of ends, pushdown automata, and

second-order logic. Theoret. Comput. Sci. 37, 1 (1985), 51–75.

[23] Muller, D. E., and Schupp, P. E. a. Groups, the theory of ends, and context-free

languages. J. Comput. System Sci. 26, 3 (1983), 295–310.

[24] Pardo, E. The isomorphism problem for Higman-Thompson groups. J. Algebra 344

(2011), 172–183.

[25] Robinson, D. J. S. A course in the theory of groups, second ed., vol. 80 of Graduate

Texts in Mathematics. Springer-Verlag, New York, 1996.

[26] Röver, C. H. Subgroups of Finitely Presented Simple Groups. PhD thesis, Pembroke

College, University of Oxford, 1999.

[27] Sapir, M. V. Combinatorial algebra: syntax and semantics. Springer Monographs

in Mathematics. Springer, Cham, 2014. With contributions by Victor S. Guba and

Mikhail V. Volkov.

[28] Sipser, M. Introduction to the Theory of Computation, 3rd ed. Cengage Learning,

2013.

	First page
	Title page
	Catalographic data
	Approval
	Dedication
	Acknowledgements
	Resumo
	Abstract
	Contents
	Introduction
	Preliminaries
	General Group Theory
	Graphs and Free Groups
	Group Presentations
	Languages and Dehn’s Problems

	Anisimov's Theorem
	Finite State Automata
	Main Theorem

	Muller and Schupp's Theorem
	Pushdown Automata
	Context-Free Languages
	One-Counter Languages

	The Theorem of Muller and Schupp
	Some Definitions
	Main Results

	Co-Context-Free Groups
	Finitely Generated Subgroups
	Finite Direct Products
	Finite Index Overgroups
	Wreath Products
	Other Properties

	Thompson Groups
	Thompson Groups
	Higman-Thompson Groups
	Houghton Groups

	Lehnert's Conjecture
	Final Remarks
	Bibliography

