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Resumo

Nesta tese estudamos dois tépicos, o espago de deformacao de subvariedades associativas
e fluxos de Go—estruturas co-fechadas invariantes. No primeiro tépico, encontramos uma
formula de Weitzenbock para o operador de Fueter-Dirac, o qual controla as deformacoes
infinitesimais de uma subvariedade associativa em uma 7—variedade com uma Go—estrutura.
Como aplicagoes, construimos duas subvariedades associativas rigidas e demos uma prova
diferente da rigidez da 3-esfera na 7-esfera redonda, o qual foi feito por Kawai [Kaw13,
Kaw17]. No segundo tépico, aplicamos a técnica geral proposta por Lauret [Laul6] para
o co-fluxo laplaciano e o co-fluxo laplaciano modificado de Go-estruturas co-fechadas
invariantes em um grupo de Lie. Como resultado, para cada um dos fluxos encontramos

um soliton explicito em uma 7-variedade quase abeliana particular.

Palavras-chave: Gs-estrutura, subvariedade associativa, Go-fluxo, grupo de Lie.



Abstract

In this thesis we deal with two topics, the deformation space of associative submanifolds
and flows of invariant co-closed Gao—structures. For the first one, we find a Weitzenbock
formula for the Fueter-Dirac operator which controls infinitesimal deformations of an
associative submanifold in a 7-manifold with a Go—structure. As applications, we construct
two rigid associative submanifolds and we find a different proof of rigidity for associative
3-sphere in the round 7-sphere from those given by Kawai [Kaw13, Kaw17]. For the second
one, we apply the general Ansatz proposed by Lauret [Laul6] for the Laplacian co-flow
and the modified Laplacian co-flow of invariant co-closed Go—structures on a Lie group. As

result, for each flow we find an explicit soliton on a particular almost abelian 7-manifold.

Keywords: Go—structure, associative submanifold, Go—flow, Lie group.
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Introduction

This thesis is concerned with Go-geometry, more specifically about associative

submanifolds and flows of co-closed Go—structures.

Associative submanifolds were introduced by Harvey and Lawson [HL82] as
particular case of calibrated submanifold. Afterwards, R. McLean in his seminal paper
[McL98] addressed the question of deformability of calibrated submanifolds as a gen-
eralisation of Kodaira’s work on deformation of complex submanifolds [Kod62]. In two
particular calibrated geometries, namely, the special Lagrangian and the coassociative
geometries, the normal bundles are intrinsic, so, the existence of calibrated deformations
of a calibrated submanifold is reduced to topological questions of the submanifold itself.
Meanwhile, in the other two calibrated geometries, specifically, the three dimensional
associative submanifolds and the four dimensional Cayley submanifolds the normal bundle
are not intrinsic, but rather they are twisted spin bundles of extrinsic vector bundles.
In this thesis is discussed the case of associative submanifold Y, which only occur when
the ambient manifold M has real dimension 7, and the calibration is a 3-form . In fact,
(M, ) is a manifold with Go-structure, in [McL98], McLean proved that a class in the
moduli space of associative deformations corresponds to a harmonic spinor of a twisted
Dirac operator, under the torsion-free hypothesis T'= Vi = 0. Then, Akbulut and Salur
[ASO8a, ASO8b| generalised McLean’s theorem for a general Gy-structure identifying the

tangent space at an associative submanifold Y in (M”, ) with the kernel of
Dy Y, NY) — Q°Y,NY) (1)
where A = Ay + a, for Ay the induced connection on NY and some a € Q'(Y,ad(NY)).

The first purpose of this thesis is to obtain a Weitzenbock formula for the operator (1),
that is, a relation between the second-order elliptic square I A2 and the trace Laplacian
V*V of the induced Levi-Civita connection on NY. Under suitable positivity assumptions
on curvature, this implies rigidity, i.e., that Y has “essentially” no infinitesimal associative
deformations, in the following sense. Denote by G := Stab(yp) C Aut(M) the group of

global automorphisms preserving ¢. The infinitesimal associative deformations of Y consist

of:

(i) trivial deformations given by the action of G on Y (see [Kawl7] and [Morl6]);

(ii) non-trivial deformations, which depend intrinsically on the geometry of the associative

submanifold.

For instance, in [Kawl7], an associative submanifold is considered rigid if all infinitesimal

associative deformations are trivial; in the particular case of the homogeneous space
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M = S7, the symmetry group of ¢ is G = Spin(7). On the other hand, Gayet [Gay14]
and McLean [McL98| consider a generic Go—structure, i.e., without symmetries. So, G is

O—dimensional and Y is rigid if the space of nontrivial infinitesimal deformation vanishes.

The exposition is organised as follows: Chapter 1 is proactive background review
in Go—geometry, in order to fix the notation and the sign convention of some important
tensors arising from the Go—structure. We then deduce Lemma 5, a Leibniz rule for the
Levi-Civita connection and the Riemann curvature tensor with respect to the cross product.
After that, we collect ¢;j,-identities for SU(3)-structure, it will be a key computational
tool in Chapter 3. Finally, we concluded by recalling some results from 4-dimensional spin

geometry to explain the explicit identification
NY @g C= St ®c S,

between the normal bundle of Y and a spinor bundle S = ST @& S~ — Y, in order to

describe the Fueter-Dirac operator in detail.

In Chapter 2, we deal with deformation of associative submanifold following
the general framework proposed by Akbulut and Salur [AS08a, ASO8b]. We then obtain
the following Weitzenbock formula, which generalise the previous formula obtained by
Gayet [Gayl4].

Theorem 1. The Weitzenbick formula for (1) is

lDA2(U) — V*VU—FR(O')—’]TJ‘(vZ ei X T (eir1,0,€i, ei+1)) +HxB(o)+(tr Sy)H — A(o)
=2 T (T(ej, ) % Sale;) + mHT(B(0),)F) + Pi0) + Po(0) + P3(0). (2)

J=1

Where P;, P, and Pj are first order differential operators on NY, involving the
torsion of the Go-structure, B is a 0™"-order operator defined by the shape operator S, on

the normal section o

B(o) := ;ej X S,(€j).

H is the mean curvature vector field of the immersed associative submanifold, A(o) =

St o S(0), is a symmetric positive 0™ -order operator determined by the shape operator,
3

R(o) = WLZR(Q‘,U)BZ’ is a partial Ricci operator, T (e;11,0,€;,€41) is a 0™ —order
=1

involving the torsion tensor, the Hodge dual 4-form ¢ and its covariant derivative, and

V*V is the connection Laplacian
V'Vn==3 Vi Vin—-Vg,n

in a global frame {e;} on the associative submanifold Y.
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As application, in Section 2.1, we specialise to the nearly parallel case, in which
dyp and v are collinear and the formula (2) simplifies significantly. For a generic nearly
parallel Go—structure, we obtain a vanishing theorem to conclude rigidity under suitable

intrinsic geometric conditions on Y.

Theorem 2. Let (M, ) be a T-manifold with a nearly parallel Go—structure. If Y C M s
a closed associative submanifold such that the operator R — A is non-negative, then Y 1is

rigid.

As immediate applications, we propose an alternative proof of rigidity for the
known case of an associative SU(2)—orbit 3-sphere for Lotay’s cocalibrated Go—structure
on S studied by Kawai [Lot12, Kaw13, Kaw17].

Corollary 1. The 3-sphere in S” is rigid as an associative submanifold.

In sections 2.2 and 2.3, we construct rigid associative submanifolds (Corollaries
7 and 8), respectively. The first one associative submanifold lies in a compact manifold S
with locally conformal calibrated Gy—structure obtained from the 3-dimensional complex
Heisenberg group by Fernandez-Fino-Raffero [FR16] and the second one associative sub-
manifold lies in a seven dimensional nilmanifold with closed Gy—structure obtained from

the seven dimensional 2-step nilpotent Lie algebra ny [FR17, Laul7, Nic18]

The second purpose of this thesis is to study the Laplacian co-flow (LC) and
the modified Laplacian co-flow (MLC)
0
ot
of co-closed Go—structures, introduced by Karigiannis et al. [KT12] and Grigorian [Gril3],

we) Ly, = A, (MLO) gtwt — Ayt +2d((C — trT))

respectively. The co-closed Gao—structure condition diy) = 0 is weaker than the torsion
free condition and even than the closed condition dp = 0. Also, any Go-structure can
be deformed to become co-closed, for a closed Go—structure it does not necessarily true
[CN15], thus, in some sense, consider co-closed Go—structures is more natural than closed
ones. However, the Laplacian co-flow does not have a nice behaviour, namely, (LC) is not
weakly parabolic, in fact, the symbol of the linearised equation has not sign-definite. For
that reason, the modified Laplacian co-flow arises to fixing the non parabolicity of the
Laplacian co-flow in the direction of the co-closed forms.

The flows (LC) and (MLC) have been studied in [KT12, Gril6] for two explicit examples
of co-closed Go—structures with symmetry, namely for warped products of an interval, or
a circle, with a compact 6-manifold N which is taken to be either a nearly Kéahler or a
Calabi-Yau manifold and recently, in [BF17] Bagaglini et al. studied both flows for the
7-dimensional Heisenberg group and in [BF18] they showed long time-existence for a class

of seven dimensional almost-abelian Lie group for (LC).
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In Chapter 3, our main focus is when M” = G is a Lie group, we propose to
study these flows from the perspective introduced by Lauret [Laul6] in the general context
of geometric flows on homogeneous spaces. In section 3.5, we gathered useful identities for
co-closed Go—structures on almost abelian Lie groups, namely, we calculated the remained

torsion forms,

Proposition 1. The torsion forms g and 13 for an almost abelian Lie group (G a, ) with

co-closed Go—structure are

1 1
S A~ A 3 0
0 S u(J4)

2
To = §tr(JA) and  Top =

The full torsion tensor,

Corollary 2. The full torsion tensor T of an almost abelian Lie group (G a, ) with an

invariant co-closed Gq—structure is

T:1<[J,A] 0 )
2\ 0 [u(JA)

And the Laplacian of 1,

Proposition 2. If (G4, ) is co-closed, we have:

i) For the Hodge Laplacian of

Ayth = 0(Ric(g) — ;T ol — (tr T)T) = 0(Qa)

1
Furthermore, Q4 = Ric(g) — (tr T)T — §T oT is a symmetric operator and it is

[ @10
QA-( 0 q)7

1 1 1
Q= 5[147 A+ 55.4 o6 54 and q= —5 tr(Sa)?

given by

where
1(t JA)?
5 (tr .
it) For the modified Laplacian

Ayth +24((C — trT)p) = 8( Ric(g) — ;T oT — (20 — 1 T)T) = 6(P)

where
b (P
A 0 )
11 1 1 ,
where Py = i[A,A] + 55,4 og Sa — (C’ - 5trJA>[J,A] and p = _§tr<SA) +

1
Z(t]r JA)?? — Ctr JA.
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Where the matrix A € sp(6,R) encode the constant structures of the almost
abelian Lie algebra g = Lie(G).
As an application of these formulae, we apply a natural Ansatz to construct examples of
invariant self-similar solution, or soliton, of both co-flows in the Subsections 3.5.1 and
3.5.2. Solitons are Go—structures which, under the flow, simply scale monotonically and
move by diffeomorphisms. In particular, they provide potential models for singularities
of the flow, as well as means for desingularising certain singular Go—structures, both of
which are key aspects of any geometric flow.
In section 3.6, we address a motivational example of a soliton for the Laplacian flow of
closed Go—structures following the framework developed by Lauret [Laul6]. Here, we study
the behaviour of the associative submanifold from Example 8 along the Laplacian flow
with initial Go-structure given in (2.28).

Ultimately, we formulate two questions for future work.
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1 Preliminary: Go—Geometry

We first present some algebraic and geometric proprieties of Gy—geometry
related with Gao—structures and associative submanifolds, these can be found e.g. in
[HL82, Kar09, CP15].

1.1 Linear algebra of dimension 8,7, 6

The octonions O = H @ H = R® are an 8-dimensional, non-associative, division
algebra. For the basis {1g = eg,€1,...,e7} we adopt the following convention for the

octonionic product:

€1 €2 €3 €4 €5 €6 €7
€1 -1 €3 —€9 €5 —€4 €7 —€g
ey | —e3 | =1 | e eg | —er | —eq | €5
€3 €9 —e€1 —1 —€7 | —€4 €5 €4
ea | —6€5 | —eg| er | =1 | e ey | —es
es | ey er eg | —e1 | =1 | —eg | —ey
€g | —€7 €4 —€5 | —€9 €3 -1 €1
er| eg | —es | —es | e3 ey | —ep | —1

By the product above follows that u € Im(Q) if and only u* = u - u is real but u in not.

Definition 1. The group of automorphism of O is Go := Aut(Q).

For vy € Gy and u € Im(0), y(u) ¢ R and y(u?) = v(u)?is real, so y(u) € Im(Q).
Therefore, Go is a subgroup of the group of automorphism of Im(Q) preserving the
octonionic product on Im(Q). On the imaginary part Im(Q) = R, the cross product is
given by (e.g. [HL82, Appendix IV.A])
x « RTxR" — R’

(u,v) ;(uv —vu) = Im(uv). (1.1)

Notice that, (uxv)?* = —go(u, u)go(v,v) € R and u x v is not real, where gy is the standard
inner product in R”. Hence, x is well defined and also is preserved by the action of Gy i.e.
v(u x v) = y(u) x y(v) for all ¥ € Gy. On the other hand, the inner product in R can be
defined in terms of the octonionic product (e.g. [HL82, Appendix IV.A])

1
go(u,v) = —§(uv +vu) = Re(uv) for u,v € R, (1.2)
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from the above, follows that Gy lies in O(7), the orthogonal transformations of R”. Notice
that, the algebra structure of @ = R & Im(Q) can be recovered from the vector product
(1.1) and the inner product (1.2) by

(a,u) - (b,v) = (ab— go(u,v),av +bu+u xv) for a,be€R u,veIm(O),

So, for v € GI(7) preserving the cross and the inner product, we have that v(a,u) :=
(a,7v(u)) lies in Aut(Q). So, we get

Gy = {7 € GI(7) : y(u) xy(v) =uxv and go(y(u),7(v)) = go(w,v)}.  (1.3)
From gy and x we can define the trilinear alternating form

po(u,v,w) = go(u x v,w) € A*(RT)",
choosing the basis ey, ..., e; orthonormal with respect to (1.2) we can write
0o = 1B 4 5 | 16T 4 (26 _ 25T _ AT _ 356 (1.4)

where €% = ¢! A e/ A €. Notice that the octonionic multiplication can be recovered from
the 3-form ¢ by
€; €5 = 900(61', €5, €k)€k,

hence, for v in the stabiliser of g, Stab(yg) C GI(7)
() - v(e) = wolv(e),v(e), en)er = wolei e, 7 (en))y (v ew)) = (e - ).
Therefore, we can give a second definition for Go following [Joy00, Definition 10.1.1].

Definition 2. The subgroup of GI(7) preserving the 3-form g is the exceptional Lie group

Gs. It is compact, connected, simply connected, semisimple and 14-dimensional.

By direct inspection on basis elements of R” we get the relation

(ei,00) A (€5,0) A 0o = 6go(es, e)e" T, (1.5)

notice that, the inner product and the volume form can be recovered from g, so by

equation (1.5) the elements of G, also preserve the orientation of R” and the 4-form

wo = %@y = 64567 + 62367 4 62345 + 61357 _ 61346 . 61256 . 61247. (16)

We can use 1y and the inner product to obtain an alternating vector valued 3-form
Yo : RT x R" x R” — R7 defined by
Yo(u, v, w, z) = *po(u, v,w, 2) = go(xo(u,v,w),z) for w,v,w,zecR. (1.7)

Notice that, g is not a triple cross-product since there exist orthonormal triples u, v, w
7

such that xo(u,v,w) = 0. Thus xo = — Y _(e;,%0) ® €;, can be expressed in terms of the
i=1

cross product (c.f. [HL82]),

Xo(u,v,w) = —u X (v X w) — go(u, v)w + go(u, w)v, (1.8)
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Remark 1. Regarding orientation conventions, some authors adopt the model 3-form to
be

Qbo — 6567 4 6125 4 6136 4 6246 + 6147 . 6345 o 6237,

(cf. [McL98, Chapters 4 and 5]), which relates to (1.4) by the orientation-reversing auto-

morphism of R”

I3
100
010
0 01
000 —1
In this case, relation (1.5) becomes
(u,¢0) A (v,¢0) N po = —6go(u, v) voly, . (1.9)

And the alternating vector valued 3-form (1.8) by
X(u,v,w) =u x (vxw)+ (u,v)w — (u, w)v.
Unless otherwise stated, we adopt throughout the convention (1.4).

Next, we want to define a Go—structure on a 7-dimensional real vector space.
This arise from the general notion of G-structure which is related with the reduction of
the structure group of a principal bundle and the existence of a global section in a specific
associated bundle, to more details see [Joy00, Sec. 2.6 and 10.1] and [Hus66, Ch. 6, Sec. 2.

Definition 3. Let V be a T—dimensional real vector space. We call ¢ € AV* a Go—
structure if there is a linear isomorphism V = R identifying ¢ with o. The 3-form with

. . .. .- . 3 1% 31 %
this property is call positive and the set o positive 3-forms is denoted by ATV™ C A°V™.

The orbit GI(7) - ¢ has dimension 35 = dim G1(7) — dim Gy, therefore A% V*
is open in A*V*. Also by Hodge duals of forms, the orbit GI(V) - is open in A*V*.

Since the stabiliser of the basis element e; € S® C R7 is isomorphic to SU(3)
[CP15, Proposition 2.3 (b)], there exist a natural SU(3)-structure arisen from the Go—
structure ¢. The orthogonal complement e% with respect to the inner product (1.2) can
be identified with C* by taking a complex basis w, = e; — ieg, Wy = €9 + ie5, w3 = e3 + iey.

Now, from the Gy—structure (1.4), we have

3
i
—e7,pp0 = —e'® + e + e = 5(2 w® A w*) = wy
k=1

123 145 246 356
PolerL =€ + e + e = =py

er 4y = 12 — 135 _ 236 (456 _ )
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1

1
where p, = g(p +p), p- = —=(p—p) and p = w' Aw? Aw? is a decomposable complex

3-form. Notice that the pair (p,wy) satisfies the relations

3

1 w
woApr =wygAp_ =0 and 1p+/\p_:3—?.

The pair (p,wp) defines a SU(3)-structure on C* and notice that py = —wy Ae’ + py. The
following example illustrates a natural construction of Go—structures on a 7-dimensional

Lie algebra, for some key examples, it will be a model to follow.

Example 1. Consider a 6-dimensional real Lie algebra by endowed with a SU(3)—-structure

(p,w) and consider the semi-direct product g = b x, R with Lie bracket
[(u,7), (v, 8)] = ([u, v]y + v(r)v = v(s)u,0)
where v : R — Der(h). Then the induced Gy—structure on g has the form
p=wA e’ + P+
And similarly, the Hodge dual 1 of ¢ has the form

1
¢:§w2+p_/\e7.

1.2 Associative 3-planes

Fix (V7 (-,-)) an inner product space. A k-form a € A*V* is a calibration if,
for every oriented k-plane 7 in V', we have a|,< vol(7) and when the equality is attained

we say that 7 is calibrated.

Lemma 1. [CP15, Lemma 2.17]

i) The 3-form o defined in (1.4) is a calibration on (R”, go).

i) If u,v,w is an orthonormal triple of vectors in R”, the po(u,v,w) = 1 if and only if

w=uX"0.

Definition 4. An oriented 3-plane 7 in R” calibrated by @q is called an associative plane.

It follows from equation (1.8) and Lemma 1 ii), that xo|,= 0 for an associative
plane. The following example provides a construction of associative planes arisen from
other calibrations (see [CP15, Lemma 2.24]).

Example 2. Let (g, ) from Example 1:
1. Let € C b be a 2-dimensional Lie subalgebra. Then £ X, R is associative in g if and

only if € is calibrated by w, namely, € is a complex line for some complex coordinates

on b.
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2. Let m C b be a 3-dimensional Lie subalgebra. Then m is associative in g if and only

if m s calibrated by py, namely, m is special Lagrangian.

1.3 Gy—manifolds and associative submanifolds

Here the framework are oriented Riemannian manifolds. Particularly, an ori-

ented, spin 7-manifold and an oriented immersed 3—-submanifold.

Definition 5. Let M be a smooth oriented T-manifold. A Go—structure is a 3—form
@ € Q3(M) such that, around every p € M, there exists a local section f of the oriented
frame bundle Pso(M) such that

¥p = (fp)*SDO-

The relation (1.5) holds for a Go—structure from the above definition. Conse-
quently, ¢ induces a Hodge star operator *, and the Levi-Civita connection V¥, though

for simplicity we omit henceforth the subscripts in g := g, * := *, and V := V¥,

Definition 6. A Gy-structure is torsion free if Vi = 0.

It follows by the definition that the holonomy group Hol(g) C G, for (M, ¢, g)

if and only if ¢ is torsion free.

Theorem 3. [FG82, Férnandez-Gray,1982] A Go—structure ¢ is torsion free if and only
if dp =0 (closed) and dip =0 (co-closed).

Moreover, the model cross-product on R” induces the bilinear map on vector

fields
P:QYTM) x QYTM) — QYTM)

(w,v) — P(u,v) =1uxv. (1.10)

Definition 7. Let (M, @) be a T-manifold with Go—structure. A 3—dimensional submanifold
Y C M is called associative if p|y= vol(Y).

For an associative subamnifold Y2 also holds Lemma 1 in the sense that there
exist an orthonormal frame e, es, e3 of tangent bundle TY satisfying e; x ey = ez for
each point of Y. Hence, we have that Y? is associative if and only x|ry= 0, where
x € Q*(M,TM) is a section from the vector bundle A*(TM)* ® (T M) induced by 1.

Lemma 2. If Y is an associative submanifold, then there is a natural identification

TY = A2(NY).
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Proof. Fix local orthonormal frames ey, es, e3 and 14, 05,16, N7 of TY and NY', respectively,

about a point p € Y:

©Op = 6123 +€1(7745 +7767) _|_€2(n46 +7775) _ 63(7747+7756) (1.11>
and
erp =B 4y 1yt
ea,p = 10 4 g5,
eg.p = 12 — T — .
Denote wy = (e1,9)|n,v, w2 = (€2,9)|n,v, ws = —(e3,9)|n,v and define on each fibre the
isomorphism e; € T,Y — w; € Ai(NpY), which obviously varies smoothly with p. H

1.4 Go—decomposition of the space of differential k-forms

We will briefly review the intrinsic torsion forms of a Go—structure and define
the full torsion tensor 7;;, using local coordinates, following [Kar09, Bry06]. As before, let
(M, ) be a smooth 7-manifold with Go—structure. In a local coordinate system (1, ..., x7),
a differential k—form o on M will be written as

1 S
o= Hail...ikdx”"'““
where the sum is taken over all ordered subsets {iy ---i;} C {1,...,7} and ay,...;, is skew-
symmetric in all indices, i.e. a;,..;, = a(e;, ..., €;, ). So, the interior product of a k—form is
given by
1 i1 lg—1
ejJO[ = majlllkfldx .
A Riemannian metric g on M induces on Q* := Q¥(M) the metric g(da’, dz’) := ¢" | where

(g"7) denotes the inverse of the matrix (g;;), then for decomposable k—forms we have
gi1j1 - giljk
g(dx™ ™ da?'IR) = det
gikjl .. gikjk

- Z Sgn((j)g“]ff(l) e glk]o'(k)

og€ESy

1 S
With this convention, the inner product of two k—forms a = Hail...ikd:v““'“" and [ =
| !

Eﬁjl...jkdle“'j’“ is given by
1 11J5(1) Lo (k)
901 8) = Gz 3 sEn(o)g 0 g
: oc€ESy
1
TR

Y~ DU S § U ) % |
azln-zkﬁ]p-]kg g )
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notice that the last equality follows by the skew-symmetry of 5, 5;,,.j, ., = sgn(a) By ... -
A Go—structure ¢ splits 2° into orthogonal irreducible Gy representations, with respect to

its Go—metric g. In particular,

P=02pQ?, and P=LaoBael, (1.12)
where QF € QF denotes (fibrewise) an irreducible Gy-submodule of dimension [, with an
explicit description:

0 = {X, 0, X € QUTM)} = {B € Wy x(p A B) = 28}
O ={B € Q% BAY =0} ={B€Qx(pAB)=—p}
0 = {f; f € C(M)} (1.13)
07 = {X, 1, X € Q(TM)}
D3y = {hijg"'dx’ A (e1), 03 hig = hys trg(hyg) = g7 hyy = 0}
Remark 2. The definitions above for Q2 and €23, correspond to the convention 1.5. In

the convention 1.9, the eigenvalues of the operator B — (o A ) are —2 and 1 instead of
+2 and —1, respectively.

The analogous decompositions of Q% and Q° are obtained from the above by
the Hodge isomorphism *, : QOF — Q"*. Studying the symmetries of torsion one finds
that Vo € Q' ® Q32 so that tensor lies in a bundle of rank 49 [Kar09, Lemma 2.24]. Notice
also that Q2 = Q' so, contracting the dual 4-form 1) = *,¢ by a frame of TM, then using

the Riemannian metric, one has
Q? @ SHT'M) = Q' @ Q2 2 End(TM) = s0(TM) @ sym(TM).

Here S*(T*M) denotes the symmetric bilinear forms and sym(7'M) the symmetric en-
domorphisms of T'M. Both of the above splittings are Go—invariant, so, comparing the
Gy-irreducible decomposition s0(7) = g, @ [R7] and (1.12), we get the following identifica-

tion between Go—irreducible summands
R =02 and g, =02,

For S*(T*M) 2 sym(T'M), Bryant defines maps 7 : S*(T*M) — Q% and j : Q* — S*(T*M)
by

: Lo y :

i(h) = Shag™ mjrda’™ and - j(n)(u,v) = #((w,@) A (v,p) An), (1.14)

notice that i(h) = hyg'™dx’ A (e, ) and i(g) = 3. We list the following proprierties (see
[Kar09, Propositions 2.14 and 2.17]).

Lemma 3. Suppose that h is a symmetric tensor then holds:
. 1 TR
xi(h) :(Z try(h)gi; — hi) ¢ dz’ A (e, ).
j(i(R)) =2tx,(R)g + 4h.
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From the above relation follows j(¢) = 6g, while j(Q2) = 0. The map i is
injective [Kar09, Corollary 2.16] and, by the Go—decomposition S*(T*M) = Rg,, ®S3(T*M),
it identifies

Rg, 2 QF and SH(T*M) = Q3.
Accordingly, we have a decomposition for the torsion components dp € Q* and dip € Q°
given by (see [Bry06, Kar09])

dp=100+3nn ANp+x*13 and dy =41 A+ T A =411 A1) — %79, (1.15)
where 79 € Q°, 7 € Q') 7 € QF, and 73 € Q3. are called the torsion forms.

Remark 3. The constants are chosen for convenience. A slightly different convention for

torsion components is used in [Gril3]
dp =41y — 3 AN —3xi(me7) and dip = —41; ANp — 2 % T4,

accordingly with our notation, Ty corresponds to 47y, 71 corresponds to —T7, T3 corresponds

to —3i(17) and 1o corresponds to —274.

The torsion forms are completely encoded in the full torsion tensor T', defined

in coordinates by
Vlgoabc = Emgmnwnabca (116>

which is expressed in terms of the irreducible Go—decomposition of End(TM) = Wy &
W1 @D WQ @D W3 where W() = QO, W1 = Q?, W2 = 9%4 and W3 = 937

Proposition 3. [Kar09, Theorem 2.27] The full torsion tensor T = Ty, is
i 1
T= Zogga — Tar — (1)F 0 — 3T

where T3 = i(Ty7) and * : Q' — X (M) the musical isomorphism induced by the Go-metric.

Remark 4. (i) For the Go—structure convention (1.9), the full torsion tensor is

T0 1
T'="9—ma+t (1)f.p — 372
(i) Notice that, in light of the convention 3, the full torsion tensor is expressed as

T = Tlg+ (T7>ﬁJQ0+T14+TQ7

In [Kar09, Lemmata A.8-A.10], Karigiannis compiles several useful identities

among the tensors g, ¢ and :
SDiijOabcgkC =Gia9jb — JibGja + Vijab
(pijkwabcdgkd = =~ GiaPjbc — GibPajc — GicPabj
wrstuwabcdgranggtCQUd =168

(1.17)
(1.18)
+ GajPibe 1 GbjPaic T YejPabi (1.19)
(1.20)
Yrstutbabeag™'9' 9" =24gra (1.21)
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Differentiating (1.20) and (1.21), one obtains

vlwrstuwabcdgTanggtCQUd 0 (122>
Vl¢rstu¢abcd95b tc vl = ¢T5tuvl¢abcd95b9tCQUd ( 1 23)

Lemma 4. For any vector field X, the 4-form ¥V x lies in the subspace Qi of Q*.

Proof. Tt is enough to prove that Vxy 1 Qf @ Q5,. Considering X = ¢; and applying
(1.22), we have

1
g(Vl'QD, ?/)) = ﬂVl¢rstu¢abcdgra98bgtCQUd 0

so Vi L QF. To see that Vb L Q5. consider some 1 € Q3. in local form,

1,1

=53

trg(h)gi; — Zj)g ¢labcdwac

and take the inner product with V;i:

1
g(vld)) 77) vl¢7‘stu< trg(h) )@Z)labcgmgsagtbguc

:Evﬂ/}rstU(trg(h) W labe9™" g tb " =0,

sa tb uc i

using that, trg(h)g” — 4h™ is a symmetric (0,2)-tensor, while V9, sutianeg**9™g
skew-symmetric in r and [, by (1.23). O]

Using Lemma 4 above and the identity (X 1)) = o AX” ( X € Q°(M) ), where
X" is the 1-form defined by X’(Y') = g(X,Y), one has:

Corollary 3. [Kar09, Remark 2.29] With the above notation,

vﬂ/}rstu = _Ergostu + Es(prtu - Et%prsu + Eu(prst-

For a torsion-free Go—structure, the cross-product (1.10) is parallel, so it satisfies

the Leibniz rule
V(uxv)=Vuxv+ux Vv, Yu,veQ'(TM).

In general, the action of V on the cross product can be expressed in terms of the total

torsion tensor:

Lemma 5. For the vector fields u,v,w,z € Q°(TM), we have

7
(i) Vi(uxv)=Vauxv+uxVyo+ Y T(zen)x(em,u,v).

m=1
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(i) R(w,2)(u xv)=R(w,z)uxv+ux Rw,z)v+T(w,z u,v), where

7

T(w,z,u,v) = > T(z,em)(Vuh)(em, u, v, V= T(w, ep) (V) (e, u, v, -)F

m=1

+ (Vo) (2, em) — (V.T)(w, €)X (€m, 1, v)
(1.24)

in an orthonormal local frame {eq,...,ez} of TM.
(iii) IfY is an associative submanifold of M, for u,v,z € Q°(TY) and n € Q°(NY), then
VIiiuxv)=Viuxv+uxViv

3
Viluxn) =Viuxn+uxVon+ Y T(z en)x(em u,n)
m=1
where e1,e3,e3 = €1 X ey 1s a local frame of TY , VI =V =V is the orthogonal

projection of V to TY and V* the normal connection on NY .

Proof. (i) Consider normal coordinates x, ..., z7 about a given p € M, (i.e. V,e; =0 at

p) and an orthonormal frame ey, ..., e;. At the point p, we have:

7

V.((uxv,e)e;) = Z V. (p(u, v, e:)e;)

i=1

I
M\]

V. (u x v)

<.
Il
—

Il
.M"

s
Il
R

Z(QO(U, v, ei))ei + QD(U, v, ei)vzei

(go(Vzu, v,e;) + p(u, Vv, e) + o(u,v,V,e;) + (Vo) (u,v, ei))ei

Il
.M\‘

@
Il
A

7 7
— Z(@(Vzu, v,e;) +o(u, Vv, e) + Z T(z, em)(em, u,v, ei)>ei

=1 m=1

7
=Voauxv+uXx Vo4 Y T(zen)x(€m, u,v).

m=1
Notice that we used (Vje;), = 0 in the third and fourth equalities, also the fact that
V.p=T(z,en)em,b € Q2.
(ii) Using the first part, we have

VuoV.(uxv) = V,Viuxv+V,uxVyv+ VyuxVoo+uxV,V,u

7
+ > (T(w,em)(w(em,vzu,v,ei) + Y(em, u, V10, €;))

i,m=1
+((VuT) (2, em) + T(Viwz, em))th(em, u, v, €;)
—|—T(Z, em) (¢(em; un, v, 62-) + 1/J<em7 u, va, ei)

+(Vu)(em, u, v, ei))) e;.
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Using the symmetries of the curvature tensor R(w, z) = V,,V, = V.V, — V|, . and

the fact that V is torsion-free, one has [w, z] = V,2 — V,w, and we compute

R(w,z)(u xv) = R(w, z)u X v+4ux R(w, z)v
+ Z ( 2, em) (V) (em, u, v, ;)

+ ((VwT)(z, em) — (V.T)(w, em))w(em, U, v, €;)
— T(w, en) (V) (em, u, v, ei))ei

(iii) Now, if u and v are in TY', consider ey, €9, e3 = €1 X €3 an orthonormal frame of TY',

then we have
7 3

(Voux o) = (Z(p(vzu,v,ei)ei)T => " o(V.u,v,e)e; = V] ux .

i=1 =1

Notice that we used the T'Y-invariance of the x i.e. T,Y x T,Y C T,Y. Then,
VI(uxv) =(V.(uxv))'

7
=V uxv+ux Vot (Y T(zen)x em,u,v))T
1

m=
7
=V]uxv+ux V] o+ Y T(zen)x(em u,v)’

m=1

The first equation follows by the relations N, Y x N,)Y C T,Y and T,Y x N,,Y C N,Y.
So, x(em,u,v)" € T,Y if and only if m € {1,2,3} and by the associative of ¥
X(em,u,v)" = 0.

For the second relation we have

Vi(uxn) =V.(uxn) — V] (uxn) =V.(uxn) —(V.(uxn)'

7 7
=VIiuxn+uxVyn+ Y T(z em)X(€m u,n) = Y T(z,em)X(€m, u,n)"
1

m=1 m=

-3

7
=VIiuxn+ux Vin+ S T(z en)x(€m,u,n) — > T(2, em)X(em,u, 7).

m=1 =4

[]

1.4.1 SU(3)—decompositions of the space of differential k-forms

By the relation between Go—geometry and SU(3)—geometry mentioned in Section
1.1, in this section we collect some facts about k—differential forms on a 6-manifold. It will
be a useful computational tool for the Chapter 3.
Let (V,w, p1) be an oriented, Riemannian 6-manifold. An SU(3)-structure is a reduction
of the oriented frame bundle Pgo(N) to an SU(3)-principal subbundle [Joy00, Section 6.1].

The required SU(3) reduction is related to the existence of:
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An almost complex structure J, i.e. A smooth map J : Q°(TN) — Q°TN) such
that J? = —1Id.

A Riemannian metric h with respect to which J is orthogonal i.e. h(X,Y) =
h(JX,JY) for any X,Y € Q°(TN).

And a nowhere vanishing smooth complex valued 3-form p of type (3,0) i.e. Near
to each point of N we can find a local unitary coframe of complex-valued 1-forms
(dz*,dz*, dz?) for which p = dz' A dz* A d2°.

From the natural SU(3)-action on Q°*(T'N) we have the irreducible representation [BVO07]

Q*(TN) =Q}(TN) ® QF(TN) ® Qi (TN)

(1.25)
QNTN) = (TN) @} (TN) @ Qy(TN) & Q3,(TN),

similar to the Gy—decomposition, QF(TN) C Q(TN) denotes (fibrewise) an irreducible

SU(3)-submodule of dimension [, with an explicit description:

o QI(TN) = {fw; f € C*(N)}.

e O2(TN)={a€Q*TN); J'a=-a}.

Q(TN) ={a € Q*(TN); J'a=a and aAw’=0}.

Qo(TN) = {fps: f € C*(N)} and Q5 (TN) = {fp-: f € C*(N)}.

OUTN) = {8 Aw; e Q(TN)}.

Q(TN) ={y € ®*(TN); yAw=0,7Apy =7 Ap_ =0}

Similarly to the Go—identities from [Kar09, Appendix A and B], for the SU(3)—

structure
w= ;wijdxij, pr = plpda’® and  p_ = ppdat
the following properties hold [BV07, Section 2.2]
PipWab = 0, Wipwp; = —0ij,  PiipWpk = Pijis
PijpWpk = _ngk’ pzzroqp;pq = dwij, pz,qupq = 494 = PipePine (1.26)
PiipPhip = —Wikdj1 + Wikdit + wadjr — wirdix,
P:;'pPle = —wipwji + wiWjk + 0ikdj — 0r0i = PijpPhip-

1.5 Description of the normal bundle of an associative submanifold

We conclude this chapter applying results from 4-dimensional spin geometry to

describe the normal bundle of an associative submanifold in terms of a spinor bundle.
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1.5.1 Spin group of 4-dimensional vector space

Here we recall some background and fix the notation, following [Sal00, Chapter
2] and [DK90, Chapter 3].

On an inner product space (V" (-,-)), the Clifford algebra ClL(V') is a 2"-
dimensional associative algebra with unit 1, generated by the elements of some orthonormal

basis ey, ..., e, of V with relations

A basis for C1(V') is given by
eo=1, e =e¢€;- "¢
where [ = {iy,...,ix} C {1,...,n} for iy <--- < i, and Cl(V') admits a natural involution
a:ClV) = ClV)
defined by a(x) =7 := Z errrer, where ey := (—1)’“(’““)/2 and x; € R are the components

T
of = in the basis {e;}. Denote by deg(e;) := |I| the degree of an element e; € Cl(V'), by
Cl,(V) the subset of elements of degree k, and by C1°(V) and C1'(V) the subspaces of

elements of even and odd degree, respectively.

Example 3. On V = R* with the Euclidean inner product, we have CI(V) = My(H), the
2 x 2 matrices with entries in the quaternions H = (i, j, k). The elements of C1(V') are 1,

ei, {€ie;}icj, {€iejerticick and ereseseq, with i,j,k =1,2,3,4, with generators

0 1 0 4 0 j 0 k
e] = , €9 = , €3 = and ey =
-1 0 i 0 7 0 k0

and the involution a(A) = A* is the transpose conjugation.

Denote the set of units of C1(V') by CI* (V). Considering the twisted adjoint
representation Ad : C1* (V) — GI(C1(V)) given by

Ad(z)y = ((2)° — ()",

where (2)° € C1°(V) and (z)* € CI'(V) are the even and odd parts of z, respectively. We
define the Spin group of V:

Spin(V) := {z € CI°(V)| ;{\El(x)V =V, xx = 1}.

For dim V' > 3, Spin(V) is a compact, connected and simply connected Lie group, fitting

in a short exact sequence [Sal00, Lemma 4.25]
0 — Zs — Spin(V) — SO(V) — 1.

In particular, the following results hold in dimensions 3 and 4:
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Lemma 6. [Sal00, Lemma 4.4] For every x € Sp(1), there is a unique orthogonal matriz
&o(w) € SO(3), such that &(x)y = xyT, for ally € Im(H) = R?, and the map & : Sp(1) —
SO(3) is a surjective homomorphism with kernel {1}, hence

SO(3) = Sp(1)/Zs and Spin(3) = Sp(1).

Lemma 7. [Sal00, Lemma 4.6] For every z,y € Sp(1l), there is a unique orthogonal
matriz ny(x,y) € SO(4), such that ny(x,y)z = xzy, for all z € R* = H, and the map
no = Sp(1) x Sp(1) — SO(4) is a surjective homomorphism with kernel {+(1,1)}, hence

SO(4) = Sp(1) x Sp(1)/Zy and  Spin(4) = Sp(1) x Sp(1)

The last lemma provides two natural surjective homomorphisms p* : SO(4) —

SO(3) and, therefore, two exact sequences
1 - Sp(1) 55 SO(4) 25 SO(3) — 1

where 1 (v) = no([v,1]) and ¢~ (v) = no([1, v]), interpreting 1y as the induced homomor-
phism on the quotient Sp(1) xz, Sp(1). Those sequences are related to the SO(4)-action on

the spaces of self-dual and anti-self-dual 2-forms of a 4-dimensional inner-product space.

An element ¢ € H in the canonical basis ¢ = t+xi+yj+zk = (t+zi)+(y+2i)j

can be identified with the 2 x 2 complex matrix
; _— .
ao (e ),
y+zt t—a

det A=t +2° +y* + 2% = |q>.

with

Since A*A = (det A)I, every q € Sp(1) = S? is identified with a unitary matrix with
determinant 1, that is, SU(2) = Sp(1).

Definition 8. Let V' be a real inner product space of dimension 2n = 2,4 mod 8 or
2n +1 =3 mod 8. A Spin structure on V is a quadruple (S,I,J,T), where S is a 2"-
dimensional real inner product space, I and J are two anti-commuting orthogonal complex
structure

I"'=r'=—1, Jl'=J"=—-J IJ=-JI,

and T': V — End(S) is a real linear map with the following properties:
L) +T(w) =0, T(v)T()=v*ld, T(v)I=IT(v), T'(v)J=JT(v), YveV.

Example 4. For a vector space V' of real dimension 4, using the identification V = H
and defining S = H & H, we have the maps I' : H — End(H® H), I,J - HeoH - Ho H
defined for v,x,y € H by

L(v)(z,y) = (vy, —vx), I(z,y) = (zi,yi), J(z,y)= (2],9])
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It is interesting to note that

where v : H — End(H) also satisfies

(@) +9(v) =0, (v)*y(v) = [v]’ld, VveH,

Given a Spin structure on a 4-dimensional space V', consider S = ST @ S~
where ST and S~ are copies of C* with standard Hermitian metric (-,-). The associated
symplectic form compatible with the almost complex structure I : S — S* is defined
by w(z,y) := (x,Iy). Now, consider the (real) 4-dimensional space Hom;(S*,S™) =
Re(Hom(S™*,S7)) of linear maps over the quaternions, where Hom(S™, S™) are complex
linear maps. Unitary elements of Hom;(S™*, S™) preserve the Hermitian and symplectic

structures, and 7 : V' — Hom;(S™, S7) defined above acts on the standard basis by

10 i 0 0 -1 0 i
y(er) = <0 1>, 7(e2) = <0 _Z.>7 7(es) = (1 0) Y(es) = <Z o)'

Up to isomorphism, the above generate SU(2) = Spin(3), since the symmetry group
SU(2)" x SU(2)~ of (S*,S7) is connected. Thus + fixes the orientation of V' and, using
the sympletic form to identify S with its dual, we have

VerCstees . (1.27)

Moreover, given v € V, consider the Hermitian adjoint v(v)* : S~ — ST of the map
y(v) : ST — S~. Then, for orthonormal vectors v,v" € V', the map ~y(v)*y(v') defines an

endomorphism of ST which satisfies
Y()(v) =1 and 5(v)"y (V') +7"()y(v) = 0.
In particular, we have a natural action p of A*(V) on S* defined by

p(v Av')s = —y(v)*y(v')s for se ST.

Now, with respect to the Euclidean metric, the 2-forms split as A*(V) =
A% (V)@ A% (V), where A% (V) and A% (V) denote the self-dual and anti-self-dual forms,
respectively:
AL(V) = {B € A(V) | B = £B}.

We observe that A (V) acts trivially on S*, by direct inspection on basis elements:

A* (V) =Span{e; Aey —es Aeg, e Aey —ea Aes, e Aes — ey Aes)
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pler Ney —es Neg) = —y(er) v(ez) + y(es) y(es)

(66

pler AN ez —eq Nez) = —v(er) y(es) + v(es) y(e2)

-1 0 0 -1 0 —i v 0
— + = 0.
0 -1 1 0 - 0 0 —
Thus we get the isomorphisms A% (V) — su(ST) and A% (V) — su(S™).

1.5.2 The twisted Dirac operator

Let (M, ) be a smooth 7-manifold with Go—structure and Y an associative
submanifold of M. The oriented orthonormal frame of TY has the form {e;, e, €3 = €1 X ea}.

So, with respect to the splitting TM|y=TY @& NY, the cross product induces maps

QUTY) x QUTY) — QYTY),
QUTY) x Q°(NY) — Q°(NY), (1.28)
QUNY) x QUNY) = QUTY).

In particular, the map v : Q°(TY) x Q°(NY) — Q°(NY) endows NY with a Clifford
bundle structure.
Since the Levi-Civita connection of (M, ¢) induces metric connections on the bundles 7Y

and NY, the composition
QOUNY) 2% Q(TY) @ Q°(NY) s QO(NY) (1.29)

defines a natural Fueter-Dirac operator 1P ,,(c) := v(V a,(0)), where Ay € Q'(Y,50(4))
denotes the connection induced on NY by the Levi-Civita connection V¥ of the Go—metric
of (M, ). To simplify the notation, the twisted Dirac operator induced by the normal
connection A, will be denoted just by ID.

The normal bundle NY of an associative submanifold is trivial [CP15, Lemma
5.1, arXiv version: 1207.4470v3]. In particular, the second Stiefel-Whitney class wy(NY)
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vanishes, so there exists a spin structure on NY [LM16, Theorem 1.7]. This is equivalent
to the existence of a map I' : NY — End(95) such that

[(e)+T(0) =0 T(0)T(0)={o,0)Id o€ Q' (NY),

where S is a vector bundle of (real) rank 8 and it splits into I'eigenbundles S* and S~ of

rank 4. We saw in the last Section that the Spin structure induces an isomorphism
D A2 +
p+ : AL(NY) — su(S™),

so, by Lemma 2, the Spin structure I’y : TY — End(S™) on TY coincides with the Spin
structure on NY via the projection Spin(4) = Spin(3) x Spin(3). Defining the Clifford
multiplication

7:=Ty®Idg-:TY — End(S* ® S7)

and using the Spin connection V on ST ® S,
Viewe)=Vioxet+oaV e,

we form the Dirac operator D : Q°(Y, ST ® S7) — Q°(Y, ST ® S7) by

D(c®e) =Y 7(e;)Vi(o @e).

i=1

Proposition 4. Under the isomorphism (1.27), we have NY ®@r C = ST ®@c S~, the Spin
connection ¥ and the Clifford multiplication T agree with the induced connection V* on

NY and v, respectively.

~Y

Proof. In fact, each section c®e of ST®¢S™ induces a section v = 0*®e on Hom(S™,S7)
(ST)* ® S~ such that v(o) = 0*(0) ® € = ¢, then

Vv =V(o*®¢)
= (VH)'o*®e+0*®@V e,
where Vv is a section on 7Y ® Hom(S™,S™), so, for each o section on S*
(Vv)(o) = (Vo (0)@ec+ 0" (0) @ Ve
= [do* (o) — " (Vo) ®@e+0*(0) @ Ve
= —v(V*'o)+ V (v(0)).
On the other hand, the Spin connection V is compatible with the induced connection V*,

that is,
V (['(n)o) =T(V+n)o +T(n)V'e,
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where I' : NY — Hom;(S",S7) is the isomorphism induced by (1.27), then for each

section n of NY and o of ST,
[(Vtn)=-T(n)V'o 4+ V (I'(n)o).

Therefore, V* agrees with the Spin connection V via the isomorphism I'. Finally, with

respect to the Clifford multiplications we have

®Tdg, 45—
TY —° 5 End(S*) — =22 End(ST ®c S7)
P u
End(NY ®g C)
and by Schur’s lemma + and 7 are the same. O]

In conclusion, (1.29) defines a twisted Dirac operator.
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2 Deformation of associative submanifolds

We now address the general framework proposed by Akbulut and Salur [AS08a,
ASO8b], in which the role of torsion in the associative deformation theory is captured
by a twisted Fueter-Dirac operator. Given an associative submanifold Y in (M, ¢), the
Go—structure induces connections on the bundles NY and TY. Moreover, Proposition 4
gives an identification NY = Re(S™ ®c S7), with the respective reductions AZ(NY) &
su(S*) = ad(ST). We will refer to elements in the kernel ker ) of the Dirac operator (1.29)

as harmonic spinors twisted by S, or simply, twisted harmonic spinors.

Denote by A(S*) the space of connections on each spinor bundle S*, and let
Ag € Q'(Y,50(4)) be the induced connection on NY, so that the isomorphism so(4) =
50(3) @ s0(3) gives a decomposition Ay = AT @ Ay, with AT € A(SF). Fixing these
reference connections, each A(S¥) is an affine space modelled on Q'(Y,ad(S¥)), so a
connection A* € A(SF) is of the form

AT = A7 +a* for aF € QN(Y,ad(S)).
Thus a connection on NY has the form
A=Aj+a= (AT +a") @ (Ay +a”) for aeQ'(Y,ad(NY)).

Now, using the Clifford multiplication (indeed the cross-product), we define the twisted

Dirac operator
3
Dp:=> e xV, : QNY)— Q(NY)
j=1

where V := V4 is given by a connection on NY and the normal sections in ker(D,)

are called harmonic spinors twisted by (S™, A). The following Definition is adopted from
[AS08a]:

Definition 9. Let Y be an associative submanifold of (M, ). The Fueter-Dirac operator

associated with Y is

Dao:=> e xVio—e xale) o), (2.1)

i=1
where a € QY (Y,ad(NY)) defined by a(e;)(0) = (Vy(e;))*" is the normal component of

V.(e;), and V is the Levi-Civita connection on M.

We know from [AS08a, Theorem 6] that the linearisation of the deformation
problem for an associative submanifold Y of (M, ) at Y is identified with ker ID,, so this

space is called the infinitesimal deformation space of Y. Our motivation is precisely the
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expectation that a Weitzenbock formula for (2.1), in favourable cases at least, can give

information about the deformation space ker .

Lemma 8. Let {ey,es,e3} and {ny,...,n7} be orthonormal frames of the vector bundles
TY and NY, respectively. Then

3 7
Dpo= Zei X veli o — Z(Va¢)(ﬁk; €1, €2, €3)1. (2.2)
i1

k=4

Proof. Since Ay is the connection induced on NY by the Levi-Civita connection on M
given by the Gy—metric g,, we have V4, = V+. Now, for each o € Q°(NY),

3
D e xale)(o) =er x (Vyer)' +ea X (Voea)™ + €3 x (Voez) "
i=1

= (eg X e3) X (Voe1)T + (e3 x 1) x (Voea)™ + (e1 X €3) x (Vges)t

= X((Voer)", ea,e3) + x((Voea) T, es,e1) + x((Voes) ™, €1, €2)
= (©).

Since Y is associative exactly when x|ry= 0, this implies
X((Voei)J_v €5, ek) - X(v06i7 €;, ek)'

Furthermore, the section x(V,(e;), €j, ex) lies on the normal component, so

|
M~

(<) ((X(Vo(er), e, e3),mr) + (x(e1, Vo (e2), e3), mk) + (x(e1, €2, Vo (e3)), nr))

i
S

|
M~

(—=(Votb)(er, e2,e3,m1) + o(¥(er, ea, e3,m)) — Ve, €2, €3, Vo(ni))) Mk

i
S

|
M~

((VU¢) (nk7 €1, €2, 63)7714-

i
N

To obtain the second equality we used the covariant derivative of :

(VU¢)(€17 €2, €3, Uk) = U(w(eb €2, 63777k>> - ?/J(Voela €2, 63777k) — 1/1(61, €2, €3, Voﬁk)

and equation (1.7), and for the last one we used the skew-symmetry of V,1 and the

associativity condition x(ey, e, e3) = 0. O

Remark 5. If the Go—structure is choosen with the convention (1.9), then the operator

D, is expressed as

3 7
Dyo = —Zei X V:O"FZ(vg¢)<nk,€1,€2,€3)nk. (2.3)
i=1 k=4
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Fix p € Y and choose local orthonormal frames {ey, es, e3} and {n4, ns, 76, 77}
of TY and NY, respectively, such that

(Veei)p = (Vee)p = (Vyni)p = 0 (2.4)

for all i, = 1,2,3 and k,l = 4,5,6,7. Observe that, for any sections o,n € Q*(TM|y),
one has
V(1) € QUTM|y) = QTY) ® Q°(NY), (2.5)

so both tangent and normal components of (2.4) vanish at p. Then the following holds at

p:

3 7
Dalo=3 e x Vi(e; x Vo) =3 e, x VH(V,0) (m, e1, €0, e3)m}

,7=1 i=11=4
7
o Z Z €5 XVL Qﬂ Nk €1, €2, 63 Tk + Z Vow)(m,e1,ez,es)mw) (Uk, €1, €2, 63)77k
J=lk=4 k=4
3 3 7
= Z €; X (ej X Vf_ vj_ U) + Z Z T(6i761)¢<€l,6j, Vj_ g, nm)el X M
ij=1 i,j,l=1 m=4
. - (- -

~r-

~r-
) (1)

3 7
_Z Z 90<€j7vj_ Uﬂ7n)(vnn¢)(77ka61762763)77/%

j=1kmn=4

~ ~ -
(I11)

3 7

=Y > ei(Vath(m, €1, e, €3))e; X g

=1 1=4

. ~~ -

Iv)
7
+ Z (Vo) (m, €1, €2, €3) (V1) (ks €1, €2, €3) 1 -

ke l=4
~r i
V)

(2.6)

To obtain (I) and (II) we used Lemma 5 (i) and the property (V;e;), = 0, whereas (IV)
follows from the Leibniz rule for V* and (V;n;), = 0.

Remark 6. In [Gay14], Gayet obtains a Weitzenbick-type formula when the Go—structure

is torsion-free:
P =V'V+R- A (2.7)

The term R(o) = =7t ZR ei,0)e; can be seen as a partial Ricci operator, where R is the

curvature tensor ofg on M and ©* is the orthogonal projection to NY', and

A:QYNY) — QY(Sym(TY)),
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defined by A(c) = S' o S(0), is a symmetric positive 0""—order operator determined by
the shape operator S(o)(X) = —(Vxo)". With these data, Gayet formulates a vanishing
theorem for a compact associative submanifold Y of a Go—manifold and proves that 'Y
is rigid when the spectrum of the operator R — A is positive. The advantage of formula
(2.7) lies in the relation between the intrinsic and extrinsic geometries of the associative

submanifold, because R — A is obtained from a curvature term

~ Y (e % ¢)) x R (er,e5)on (2.8)

i<j
While one cannot entirely apply his proof to the general case (because the full torsion tensor

is non-zero), we are able to adapt some of its steps.

Given o € Q°(NY), we define operator B : Q°(NY) — Q°(TY) by
3
o)=Y e; x S,(e). (2.9)
=1

We recall the mean curvature vector field H of a immersed submanifold by

3 3 7 3 7
S (Vie)m =D (Vies mime = — Y > eq, Vi)
=1 i=1 k=4 i=1 k=4
3 7 3 7
Z 61, znk Z Z 62, Nk 67,
i=1 k=4 i=1 k=4
7
=>_tr(Sy)m = H
k=4

Lemma 9. Denotmg by V*V the Laplacian of the connection V*, by R the partial Ricci
operator R(c) = 7+ Z R(e;,0)ei, and by B the 0™-order operator defined in (2.9), for a

normal vector ﬁeld a to an associative submanifold Y one has

(I) =V*'Vo + R(O’) — WL(Z e; X T(€i+1,0', €;, €i+1))

iE€EZL3

H x B(o) = 3" (T(es, ) x Sales) + (tr Sp)H — A(o) + 7 (T(B(o), )

Jj=1

where T is defined in (1.24) by

T(CR €m)(vi+1¢>(€m, €i, €it+1, ')ﬁ - ﬂ'+1m(va¢)(ema €i, €it1, ,)ﬂ

M=~

T(€ir1,0,€i,€i41) =
1

+{((VirT)(0, em) = (VoT) (i1, €m)) X(€m, €1, €i1)-

m

Proof. In terms of an orthonormal frame {ey, e, €3} of TY,

3 3
=Y eix(e;x Vi Vio)+ D e x(e;x Vi Vjo)
i=1 ij=1
i#]



Chapter 2. Deformation of associative submanifolds 38

==Y Vi Vio—> (e xej) XVija
i i#]
= —ZVZL vzj_O' — Vé;eia — Z(ez X 6]‘) X (VZJ_ Vj_ —Vj_ Vl V[e e]])

1<j

=V*Vo — (e; x ej) x R (e, e;)0.

i<j
Here R+ € Q°(A*T*Y ® End(NY)) is the normal curvature of Y
R*(ei,ej)0 = (Vi Vi =V Vi =V, )0 (2.10)
To obtain the second equality, we used (1.8) in each term of the form
x (e; x VI Vi o) =—x(ei, e, Vi Vi o) — (e, ) Vi Vi o+ (e;, Vi Vi o)e;
=-ViVio
Moreover, for ¢ # j,
e; X (ej X Vf VjL o) =—x(e, ej, Vf VjL o) — (e, e;) Vf VjL o+ (e, VZ-L Vj o)e;
=—X(ViVioe,e)=ViViox(exe)
— (e; X €j) X VijLU

Now, expanding the summands in the frame {ny,...,n;} and using anti-

symmetry of the mixed product and the Ricci equation, we have

3 7
—Z(ez X ej) X RJ—(ei,ej)O' = Z €; X e] X Rl(eiaej)a7 77k>77k

3
i<j 2 j=1
1 3 7 N
) D D (R(ese5)a, (e: X €5) X i)
ij=1 k=4
1 3 7
=5 2 D (Rleie5), (e x ) X i)y
ij=1 k=4
<[S¢7’ S (esxej )Xnk]€“ e]>77k
1 3
= —§7TL > (e; X €j) X R(e;, e5)0
ij=1
~ ~ -
()
1 3 7
+ 5 Z Z SmSelXeJ Xnk]€l7€j>nk
ij=1 k=4
~ ~ -~
(%)
Applying the Bianchi identity R(e;,ej)0 = —R(0,e;)e; — R(ej,0)e; to the first term,

expanding the sum and using Lemma 5, we have:

(x) =7 Y (e; x ej) x R(ej,0)e;

i,j=1
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= 1 (e3 x R(ey,0)e; — ey x R(es,a)e; — ez X R(ey, 0)es +e; x R(es,o)es
+ ey X R(ey,0)es —e; X R(ey, 0)es)
= 1 (—ey X [R(eg,0)e; X e3 + ey X R(ey,0)eq +T (ea,0,e1,€3)]

~ -

~~

@)
—eg X [R(es,0)ex X e3 + es X R(es,0)es +T (e3,0, ez, e3)]

-~ ~ - -
(1)
—e3 X [R(e1,0)es X e; +e3 X R(ey,0)er +T (e1,0, €3, ¢€1)]
- ~ -
(111)

+ e3 X R(eg,0)e1 +e1 X R(es,0)es + ea X R(ey,0)es).
Using the identity u X (v X w) +v X (u X w) = (u, w)v + (v, w)u — 2{u, v)w, we check that

(D

(H) = -6 X R(e37 0)62 - (63, 0, €g, 63)62 + 2(637 0, €, 62)63 + R(GS, 0’)63

—e3 X R(eg,0)e; — (e9,0,€1,e3)e; + 2(ea, 0,e1,€1)ea + R(ea, 0)eg

(III) = —e€9 X R(el,a)eg - (61,0’, 63,61)63 + 2(61,0’, 63,63)61 + R(el,a)el,

where (e1,0,e3,e1) := (R(e1,0)es, e1). Cancelling terms and taking the orthogonal projec-
tion on (I) + (II) + (III), we find (x) = R(0) — 7= (D_ & x T(eir1,0, €, €541)).

Finally, by the symmetry of S, and S(e,xe;)xn,, the second term is

1) = 5 50 3 (Sl €01 S0(e0)) = (S500): St ens () )

1,j=1 k=4

23: 27:( Steixes)xm (€3), So(ej»)??k = (kx%).

1,j=1 k=4

Using Lemma 5 i), we compute

7 T
Steoxerenn(es) = = (Viles X e) X+ (€3 % ) X Vi + Y TomX{em, €5 % €5,70))

m=1
7

= — ((Vzel X ej) X M —+ (61' X VZ@]‘) X Mg + Z,I;IX(@,Q‘, ej) X M
=1

7 T
+ (e; x ;) x Vimi, + Z TimX(€m, €; X 6jﬂ7k))
m=1
= — ((VZ€Z>L X ej) X Nk — (62' X (Viej)L) X M
7
— (e x 6]) ﬂ}k Z Tim (X (em; €5, €j)L X M+ X(em, €; X €j777k)T)

((Vzel) X ej) X My — (ei X (Viej)L) X Mg + (e; X ;) X Sy, (€;)

7
Z T (X (M €3, )" X 0+ X (s €3 X €5,m) T
=4
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Notice that, we used the cross product properties (1.28) in the third line and the associative
condition x|ry= 0 in the last one. Moreover, using the Levi-Civita conection symmetry

and the relation e3 = e; X ey, we have for each j =1,2,3
doei x (Vieg)t =) e x (Vjer)"
=ey x (Vjer)™ + ey x (Vjen)t

7
+e3 X ((Vjel)L X ey +e1 X (Vj@Q)J_ + Z ijx(nm,el, 62))

m=4
=e1 X (Vjel)L + e9 X (Vj@g)l — (V»el)L(eg X 62) — (63 X 61) X (Vj@g)L
7
- Z ijeg X (nm (61 X 62 Z gmTm
m=4

Note that, we used the triality cross product property between eq, s, €3 and the definition
(1.8) of x.

37
(k) =D 3 —(((Vie))" x €5) X M, So(e;) )i

ij=1 k=4

.

+
M\]

Ty (1 X s Sole))e) + (e % €5) Sy (e3), So(e))me

3
Il
b

M\]

Tim X (N, €, €5) X Mt + X (M €5 X €5, M%), S (€5)) Mk

I
W~

3 7
(Vier)™ x e5) X Syles) =3 D" Timnm X Sqej)+

j=1m=4

(S (ei), €i) (€5, So(€5)) e — (S, (€:), €5) (e, So(€5)) Mk

I
+ + M.
*M“ :M“ H/tj 3
M- L0

S
<
Il

-
S
I

—

X

Tim (X (N €35 €5) X Sx(€5) + X (1m, €i X €5, 55(€;)))

1 m=4

-
&
Il

I
m

3
Z T(ej,-)?) x Sole) + (tr Sp)H — A(0) +m(T(B(0), )
To obtain the last line we computed

> XUl €3, €5) X Solej) —Z—(nk x (e: % €5)) % Sy(e;)
j —Z —X(S5(€7); Thms €i X €5) + (Ss(€;), €; X ;)
:Zj: ej X Sq(e;), ey = (B(o), €)1k
O

The correction terms (I1),...,(V) can be conveniently organised into three 1%

order differential operators Py, P», P3 on sections of NY'.
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Lemma 10.
3
(II) Pl Z EZGJ X V g — jiej X VZLO' -2 Z Cij Vé a,
L=t (i,,k) €59

where SY are the even permutations in Ss, Tj; is the full torsion tensor and Cy; the

anti-symmetric part of T;;.
Proof. By Lemma 1.16, we have
307
Z Z T(€i7 Gn)¢(€n, €j, Vj_ g, 77/6)6% XN = (*)
ijyn=1k=4

Since x(en, €;, le o) € Q°(NY), then using (1.8) we have

3
T(e;, en)e; X X(VjL g, en,€5) = Z —T (e, en)e; X (Vja X (en X €5))

3
(¥)= >
ijn=1 ijn=1
3
>
Jn=

T(ei,en)x(ei,vjL g, e, X €;) — (€, e, X €;) Vj‘O'

I
NES
S

(650 ea) (V3 0 (€5 % (en X 7)) = pleis e 5) T 0)

ijn=1
Using relations e; X e; = ez and e; X (e, X €;) = —x(€;, e,,€;) — (e, en)e; + (e, €j)e,. The
first term of the sum is equal to
3

Z Eiej X VjLa—Tjiej X Vzla

ij=1
Moreover, since (e, €2, e3) = 1, the second term becomes

3
-2 Y Oy Vi (2.11)
(i.5,k)€S3

where 2C;; = T;; — Tj;. ]

Lemma 11. With the above notation

7
D (Vo) (s €1, €2, €3)m = ZTnkT]k (2.12)
k=4
Proof. Since Y is associative, Corollary 3 gives V,,¥r123 = —Tys. ]

Denote the following two operators on NY', involving the full torsion tensor

3 7
=Y "> ((ViT)(o,m) + T (Vi o,m))e; x m,

i=1[=4

3

Py(o) =Y (T(U’ m) + Y e, Vi o, 77l)>le7]k~

k=4 i=1

With this notation, we arrive at one of our main theorems:
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Theorem 4. The Weitzenbick formula for (2.1) is

P2(0) = v*vng(a)_?e(z e X T(eip1, 0, €, eiﬂ)) +H % B(o)+(tr S, H — A(0)
=Y 7 (T (ej,)*) x So(ej) + (T (B(0),)") + Pi(0) + Pa(0) + Py(o) (2.13)

J=1

Proof. We examine the five components of 10, as on page 36. Components (I) and (II)

have been studied in Lemmata 9 and 10. Now, applying Lemma 11, we have

3 7
(1) = >~ > oles, Vimo,m) Ty

i=1k,l=4
As to (IV), for each i = 1,2,3 and | = 4,5,6,7, we use Lemma 11 to find
(Vo) (s 1, 9, €3)) = —ei(T(0,m)) = —(ViT)(o,m) = T(Vi a,m).

Then, indeed,

37
ZZ (VD) (o, m) +T(Vio,m))e; x g = Py(o).

i=1[=4
7
Finally, a simple calculation gives (V Z (o, m)Tynk, and
7 3
(V) +(IIm) = > (T(07 m) + Y ¢le, Vio, 77!))le77k = Ps(0) U
k,l=4 i=1

Notice that for a Gy-manifold the 1% order differential operators P, P, P;
vanish because T' = 0. Also, an associative submanifold is a minimal submanifold hence
H = 0. Thus, from formula (2.13) we get:

Corollary 4. Let (M, ) be a Gy-manifold. Then,

Py =P =V'V+R-A

2.1 The nearly parallel case and applications

The torsion-free condition for a Go-structure is highly overdetermined, so
examples are difficult to construct and seldom known explicitly. In terms of the Ferndndez-
Gray classification recalled in Section 1.4, the next natural ‘least-torsion’ case consists of
the so-called nearly parallel structures, for which the torsion forms 7, 75, 73 vanish and

the remaining torsion is just a constant:



Chapter 2. Deformation of associative submanifolds 43

Definition 10. Let (M, ) a manifold with a Gy—structure, ¢ is called nearly parallel if

ng = 7—01/}7

with 9 # 0 constant.

Regarding the deformations of associative submanifolds, our approach unifies
previously known results by means of a Bochner-type vanishing theorem. This technique
requires a certain ‘positivity’ of curvature, which can in practice be found in cases of

interest studied by several authors.

2.1.1 Proof of the vanishing theorem

Following Proposition 3, the full torsion tensor in the nearly parallel case is

a
given by T;; = Zogij, thus, the covariant derivatives V¢ and Vi simplifies.

Lemma 12. Let (M, ) a manifold with a nearly parallel Go—structure, then we hold the

following propierties:
, T
(i) Vo=7v.
(17) Vu¢———u A @ for any u € Q°(TM).
(iii) u,Vo =0 for any u € Q°(TM).

Proof. The propierties (i) and (ii) follow by equations (1.16) and Corollary 3, respectively.
And (iii) follows by the skew-symmetry of (i). O

Lemma 13. Let Y an associative submanifold of (M, ¢), then'Y is a minimal submanifold.

Proof. We will show that the mean vector field curvature H of Y vanishes, for each p € Y

3 7

p>:zg< s = — 3 > (Villk, €)

i=1 k=4 i=1 k=4
Using the relation e3 = e; X eg, for each k we have

3

D (Vink, ei) =p(e2, €3, Vink) + @(es, ex, Vo) + (e, €2, Van)
i=1

=e1(p(es e3,7m)) — (Vip)(ez, e3,mk) — p(Viez, es,mi) — (e, Vies, ni)
+ e2(p(es, e1,m1)) — (Vaw)(es, er,me) — o(Vaes, e1,mk) — @(es, Vaer, ni)
+ e3(pler, e2,m)) — (Vap)(er, ea,m) — o(Vser, e2,m) — @ler, Vaea, ni)
= —(e1, €2, €3,Mk) — P(ea, €3, 1, m1) — Y(es, €1, €2, M)

= <X(61, €2, 63) + X(€27 €3, 61) + X(€3, €1, 62), 77k> = 0.
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Notice that in the third equality we used the symmetry of the connection V (i.e. V;e; =
V,ei), the orthogonal property ¢(e;, e;,nx) =0 for any 4,j = 1,2,3 and k =4, ..., 7, and
Lemma 12 (i). And the last line follows by the associative condition x(ej,esz,e3) =0. O

Now , we move on to the Weitzenbock formula (2.13) for the nearly parallel

case, we see that (2.13) is drastically simplified:

Proposition 5. The Weitzenbick formula for the Fueter-Dirac operator (2.1) in the nearly
parallel case is

3

D2 (0) = V*Vo +R(0) — A(o) + 1o (o) + S (2.14)

Proof. By Lemma 13 the terms H x B(c) and (tr S,)H in (2.13) vanish, as well for
(T (ej,)h), 7=(T(B(c), -)*) since {e1, €2, 3,74, ..., 7} is an orthonormal frame. It suffices
to prove that the last three terms in (2.13) satisfy

2 3 )

(PL+ P+ P3)(0) =10 D(o )—1—% o and T(o)= T

o

At a point p € Y, for P;, we have C;; = 0, because 71 and 7 are zero, then

37()26] ><V o — TOZGJ ><VL

ZTHeJXVU Tiie; x Vi o=7

4,j=1 j=1 j=1
1
= 57'0 (o).
For P,
3 7 3 7
Y (Vi) (o,m) + T(Vio,m))es X = ZZQ (Vio,m)e: x
i=1 =4 i=1 1=4
3
= e; X Vi G—TOZD(J).
4 =1
And, for Ps,

7 3 7 3

> (T(cn m)+ > ple, Vi o, m))Tumk = % > (%9(0, m) + ; (e, Vio, m))g(m i)

k=4 i=1
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And finally

7
T(0) = e x T(eis1,0,€:,€11) Z Z (9(0, em) (Vis1¥) (€m, €5, €41, €0)

i€Zs €73

- 9(€i+17 em)( U¢) <€m7 €i, €i+1, el) €; X €
Z Z( Vi) (o, e, i1, €1)
ZEZ3l 1

— (Vo) (€it1, €, €141, el))ei X €]

7
Z Z ( H—lw g, elaez+17€l))ei X €

ZEZg =1
7

T
- Z ZT(eiHaez‘H)@(U, €, €1)e; X €
i€Z3 l=1
2
16 Z g 61,-‘,—1,62_)'_1)61 X (0‘ X 61)
i€ZLs3

3
=— — 10

16 °

Here we used the skew-symmetry of V, 1 for the third equality and Corollary 3 for the
fourth one. [

Theorem 5. Let (M, ) be a T-manifold with a nearly parallel Go—structure. If Y C M is
a closed associative submanifold such that the operator R — A is non-negative, then Y is

rigid.
Proof. Let o be a section of NY,
Alo* = Z€i€i<07 o) = 22361'(ViL 0,0)
=2 Z(VZL Vio,0)+(Vio,Vio)
—2(V*Vo,0) + 2|V*o|?
—2(1DA2(0), o) +2(R(0),0) — 2(A(0),0) + 2r0(IP(0), o) + 7_23|0|2+2|VL al?

Taking o € ker ID,, equation (2.2) gives

<E(U)70> = ;(Vﬂw)(mﬁel’e%e3)<77k70> = _];T(Ua nk)<77k70> = —kaz_:<o” 777€>2'

By Stokes’ theorem, it follows that

2 7

0 :/Y((R(a) — A(0),0) — %0 S (o) + Tfyowvl a\Z)dmy

k=4

:/Y((m(a) — A(0),0) + |V oP)dvoly .
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By assumption, (R(c) — A(c),0) > 0, so V- o = 0 and this implies [)(¢) = 0. Notice

from Lemma 11 that the Fueter-Dirac operator is
Da=D+7 with 7 #0.

Then, from D5 (c) = 0 it follows that o = 0, i.e. ker P, = {0}. O

2.1.2  An associative submanifold of the 7-sphere

In [Lot12], Lotay defines a natural Go-structure ¢ on S, writing R® \ {0} =

C(S™) =Rt x S where C(S”) denotes the Riemannian cone and a 4-form
Dol ()= 1dr A plptrt x ),

where 7 the radial coordinate on R™,  the Hodge star on S7 induced by the round metric.
and ® is the Spin(7)-structure of R®, choosing an orthonormal basis of R®, ®, can be

written by

(I)() — 60123 + 60145 + e0167 + 60246 . e0257 . 60347 . 60356

1357 1346 1256 1247

€ €

4567 + e

2367 2345
+ e 4

€ e (& €

Since P is closed, it follows that dp = 4 % ¢ i.e. ¢ is a nearly parallel Go—structure.
Consider the totally geodesic submanifold S* C S7, given by
S? = 8% x {0} = {(20, 21, 72, 75,0,0,0,0) € R® : 23 + 2% + 23 + 23 = 1}

If we think the 7-sphere as the homogeneous space Spin(7)/G2 and hence Spin(7) as the
G frame bundle over S”. So, the associative submanifold S* arise as the SU(2)-orbit

through the point py = (1,0,0,0) € C* given by the action

Z1 azy + ng
—bz, +a b
2lectart o | T2 et o [ “ 7)) esU (2.15)
23 azsz + bzy —-b a
Z4 —623 + C_lZ4

For the associative submanifold S* € S” the Weitzenbock formula 2.14 is
Da’(0) = V'Vo + R(o) = Alo) +41(0),
or, in terms of the operator lD,
P’ =V*Vo +R(c) — Alo) + 2 P(o) + 30, (2.16)

which coincides with the formula given by Kawai [Kaw17]. As the induced metric on S,
from the round metric on S”, coincides with the round metric of constant curvature 1, the

following results of [Bar96] can be adapted to our case.
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Lemma 14. The normal bundle NS can be trivialized by parallel sections oy, ..., 04 of

the connection V.

Proof. Tt suffices to show that the curvature operator R+ vanishes (c.f. (2.10)). Let u,v

be tangent vector fields of S, and o a section of N.S3, then the Ricci equation gives

<RL(U7 U)Uv nk’>77k

M~

R (u,v)o =

Eond
Il
b

I
M~

((R(uv U)U7 77k> + <[Sm Snk]uv U))Wk

Eond
Il
W~

I
M~

({w, @) (v, ) = (v, ) {w, me) ) = 0.

Eond
Il
W~

At the third equality we used the well-known facts that the metric on S7 has constant
sectional curvature equal to 1 and that S® C S7 is a totally geodesic immersed submanifold.
O

The following Weitzenbéck formula relates the operator D = I) —Id with the

Laplacian of the connection V+ on NS2.

Lemma 15. On the normal bundle NS, the following formula holds:

D*=V*'V +1d. (2.17)
Proof. In a local orthonormal frame ey, s, e5 around p € S, we compute

D*(0) = P*(0) —2D(0) + o
=V'Vo +R(0)+ 4o
. <U, 6i>€i — <6i,€i>0')J_ -+ 4o

= V*Vo + (

1

=V*Vo + 0. O]

Consider a basis 1 = fy, f1, f2,... of L*(S* R), consisting of eigenfunctions of

the Laplace operator:
Afi= Aifi.

The next lemma describes a natural eigenbasis for the operator D? on sections of N S°.

Lemma 16. D*(f;o;) = (A + 1)(fiow).

Proof. This follows directly from Lemma 14 and (2.17). ]
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Since the metric on S® has constant curvature 1, the eigenvalues of the Laplace

operator on S® are

Ae=k(k+2) k>0,
with multiplicities my = (k + 1)* [SA87, Proposition 22.2 and Corollary 22.1]. Together

with Lemma 16, this gives:

Corollary 5. D? has eigenvalues (k + 1)* with multiplicities 4(k + 1)%, k > 0.

In general, for an operator T and a vector u such that T%u = p?u, if

vE = (T + p)u # 0

+

then v™ is an eigenvector of T" with eigenvalue +u. Let us apply this principle to T'= D,

with p; = (k+1)? and uy, = fyoy, for j =1,...,4.

Let us first look at the case k = 0, in which fy =1 and Ay = 0, so up = o, and

,u(z) =1, ie.,

vE = (D + po)o; = Doj + 0.
Now, ]Daj = 0 by Lemma 14, so Do; = —o; and therefore v = 0 and v~ = —20;.
Accordingly, v~ is an eigenvector of D with eigenvalue —p9 = —1. Since v~ = —20j,
for j = 1,...,4, the multiplicity of —py = —1 is at least 4, but the multiplicity of

(—po)? = pa = 1 is already 4, by Corollary 5, therefore the multiplicity of —pug = —1 is
exactly 4.
Now, for k > 1, we take u, = fro; and p, = k + 1, and use the trivial fact that e; x o;

and o; are linearly independent for all 4, j:
Uljf =(D % p)ur, = Dy — (1 F pon)u

3
:Zei(.fk)ei Xo;—(1F ) fe o5#0.
i=1 N
40 #0
Thus v,:f is an eigenvector of D with eigenvalue £/, and it follows that v™ is an eigenvector
of I) with eigenvalue 1 4 py, such that m(1 + pg) + m(1 — pg) = 4(k + 1)*. It remains
to determine the multiplicities of the eigenvalues 1 £ (k + 1). We introduce the following

notation:
1 + . _ T T
fo :=1—po=0, pf =1+p=~k+2, and p’p:=1—p=-k k>1

From Corollary 5, multiplicities of opposite index add up as m(u}) +m(ut,) = 4(k + 1)%

Alternatively, in the sign convention of Remark 1, we denote the eigenvalues of ) by
Ho =0, :u:k:_k_za and [I’I;:k7 ]’CZL

and again we know m(uy ) +m(u”,) = 4(k+1)*. The multiplicities in both sign conventions

satisfy the following relations:
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Lemma 17.
m(uty) =muy) =2k +1)(k+2), k>0.

and
m(pd) =m(p=,) =2k(k+1), k>1.

3
Proof. From the above, the operator I —5 has eigenvalues

3 3 3
aa“:—§, a;:kﬂ—i—l and afk:—k;—i.
Let a; := —a’,. Since p;, = —puF,, we have m(ai) = m(u), for all k € Z, and so

m(aif) +m(a®,) = 4(k + 1)
Now the claim clearly holds for £ = 0 and, by induction on k£ > 1, we have
(N (k-+1) ) m(oz+ (k+1) ) =4k + 2) (O‘&H))
=4k +2)* —m(ag) = 4(k* + 4k +4) — 2(k + 1)(k +2)
=2(k+2)(k+3).
To obtain the second equality we used the relation
3 _
Ay = (K +1) +5 - 1=0ay,

and for the last one we used the induction hypothesis on ay, . O

The group Aut(S”, ) = Spin(7) of automorphisms of S” which fix the Gy
structure induces trivial associative deformations, and the associative 3—sphere is invariant
by the action of the embedded subgroup K = SU(2) x SU(2) x SU(2)/Z, C Spin(7),
where Z, is generated by (—1,—1, —1) [HL82, Theorem IV 1.38]. Therefore the space of

infinitesimal associative deformations of S* has dimension at least dim(Spin(7)/K) = 12.

Corollary 6. The 3-sphere in S” is rigid as an associative submanifold.

Proof. Since pt, is the eigenvalue corresponding to the space of infinitesimal associative
deformations, then, by Lemma 17, dim(ker D) = m(u™,) = 12. O

2.2 Locally conformal calibrated case and applications

As an application of the Fueter-Dirac Weitzenbock formula (2.13), we focus
on locally conformal calibrated Go—structures, whose associated metric is (at least locally)
conformal to a metric induced by a calibrated Go—structure. We provide a novel example
of a rigid associative submanifold, inside a compact manifold S with a locally conformal
calibrated Go-structure, studied by Fernandez, Fino and Raffero [FR16].
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Definition 11. A Gy—structure is locally conformal calibrated if it has vanishing torsion

components 1o =0 and 3 =0, so

de =31 N\ p,
dp =41 AN Y+ T2 A .

A SU(3)-structure on a 6-manifold N is a pair (w, ¢;) € Q*(N) x Q*(N) such
1 _

that ¢, = =(Q+Q), where Q € Q°(A3(T*N ® C)) is a decomposable complex 3-form and
2

w3 1 _

WAGr =0 and = éQ AQ = im Ao with doi=(Q-Q).  (218)
The SU(3)-structure (w, ¢, ) is said to be coupled if dw = c¢, with ¢ a non-zero real
number. So, the product manifold N x S! has a natural locally conformal calibrated
Go—structure defined by

p=wAdt+ ¢y,
with 7o =0, 3 =0 and 7, = —gdt.
Example 5. [FR16, Example 3.3] Consider the 6-dimensional Lie algebra nag, and
let {e1,...,es} be a SU(3)-basis. With respect to the dual basis {e', ..., "}, the structure

equations of nog are

(0,0,0,0,e" — e** e + *), (2.19)
and we denote its components by de' == 0, fori =1,...,4, de® := e'® — e** and de® :=
el + €. The pair

w=e2 1M gpd p, = 130 _ M5 235 206 (2.20)

defines a coupled SU(3)—structure on neg with dw = —¢,. Denote by G the 3-dimensional

complex Heisenberg group with Lie algebra Lie(G) = nog given by

1 Z1 23
G:{ 0 1 =z|1; 21,22,Z3€C}.
0 0 1

The structure equations (2.19) can be rewritten as
dzy = et +ie?, dzy =€ +iet  dzg+ 21dzy = €5 + ieb.

By [Mal49, Theorem 7], G admits a uniform discrete subgroup I' C G, i.e., a discrete
subgroup such that I'\G is compact, the elements of which have zy, 2,23 € Z[i]. The
left-invariant forms w and ¢, on G are well defined in the quotient T\G. Consider the
automorphism v : G — G defined by

1 2z 23 1 iz 23
01 |50 1 —izxnl,
0 0 1 0 O 1
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and denote by Diff, := ((p,t) — (v(p),t + 1)) the infinite cyclic subgroup of diffeomor-
phisms of (T\G) x R. The manifold

S = (("\G) x R) /Diff,

is endowed with a locally conformal calibrated Go—structure as follows: for the left-invariant

coframe given in (2.19), we have
v'(e1) = —eq, v(eg) = e, v(e3) = ey, V(eq) = —es, V(e5) = e5, Vv (eg) = €.

Hence viw = w and V"¢, = ¢, for (w, o) defined in (2.20). Denoting by p; : (I'\G) X
R — I\G the projection onto the first factor, the forms piw € Q*((I'\G) x R) and
pio, € Q*((I\G) x R) are invariant under ~,. Therefore, we have differential forms
&€ Q*(9) and $+ € Q3(S) satisfying the same relations as (w, ¢4) from (2.20). In this
set-up, the 3-form

F=one + ¢, (2.21)
defines a locally conformal calibrated Go—structure on S. Here e’ denotes the pullback of

the canonical closed 1-form on R by the projection py : (I'\G) x R — R. The torsion forms

of ¢ are
1 4
T = 567, Ty =0a where o= —3 (612 + e + 2656>
and, by Proposition 3, the full torsion tensor is

T:B, with B = e 4 e3* + %,

The 7-manifold from Example 5 contains an associative submanifold, corre-

sponding to a particular Lie subalgebra:

Example 6. Consider the abelian subalgebra n/28 = Span(es, eg) C nog and its respective
Lie group G = G,G] = exp(n,%) C G, which is generated by the commutator [g,h] =
ghg™*h™t. Since G’ is obtained as the mazimal integral submanifold of G given by the

left-invariant distribution
A(g) = (dLg)ings  for g€ G,

i.e. (Lp)+(A(g)) € A(hg) (c.f. [SM16, Theorem 6.5]), we get an integral distribution A on
I'\G. Representing G’ by

10 zZ3
G’:{ 01 0]; z;»,E(C},
00 1

we see that, for each p = I'q" € T\G', we have T,(T'\G') = A(T'¢'), and so T\G' is a
compact embedded submanifold of T\G. Now v|e:= Id and the quotient map (I'\G) xR — S

is a local diffeomorphism, so

Y = ((F\G’) X R) /Diff, = (I\G') x S
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is a compact embedded submanifold of S. Moreover,
TppY = T,(N\G") @ TR = njs O R,
and indeed &\prz vol(es, e, e7). Hence, Y is a closed associative submanifold of S.

Now, we assess formula (2.13) for Example 6. The first correction term is

Pl(U) = —T5665 X Vé'U — T65€6 X Véa — 2T56V%'0'
= —(e7 X eg) X Vgo — (e7 x e5) x Voo — 2V7o

=e; x [P(0) — V7o.

Here, to obtain the second equality we used the associative relation e5 x e = —e; and for
the last one we used the identity (u X v) X w = —u X (v X w), for mutually orthonormal

u,v,w. To calculate P,, we need the covariant derivative of the total torsion tensor T'
ViTkl = 62'(Tkl) - F?;Tml - F?Tkm = —F%Tml - F;?Tkm (222)
Since S is locally isometric to G x R, the Christoffel symbols of the Go—metric on S are

defined by the structure constants of the Lie algebra nog (cf. [Mil76]):

1 .
FZ = 5( ijk — Oéj]m‘ + akij) with aijk = <[€i; ej], €k>.

Applying this to Example 5, we find
1
Fi)s = Fg:s = Fgﬁ = FZQ = 1%3 = Féz = _5
1
Ftla4 - F§5 = Fés - leua - Fé4 = Fés - _5
1
lelG = Fg4 = Fgl = Fgl = Fél = Fgl = +§
1
[, =I5 =05 =03 =0, =03 = +§

Ffj = 0, otherwise.

Using the cross product defined by (2.21) and the above Christoffel symbols, we have:

i

) e6_i X e for i=0,1 and [=1,2,3,4. (2.23)

2

Vieirs = Vigse =
Notice that the full torsion tensor of the Go—structure (2.21) can be written as

T(u,v) = —(er x u',v") + (er x ut,vt) for w,v € QTS|y) = QUTY) @ Q°(NY),
(2.24)
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where v and ul are the tangent and normal components of u, respectively. Combining
these facts with Lemma 5 (i), we have

7
Vu(v x w) = Vo xw+vx Vyw+ > T(u,en)x(em, v, w)
i=1 (2.25)
= Vo xw+vx Vew—x(er xu',v,w) + x(er x u,v,w).

Now, for P, we obtain:

7 k=1
’ L ( 1)’

:Z x Vi-(e7 x o) ZZe7xaek 5 ~——ei5 X (e6_i X €g)
i=5 i=0,1 k=1

(=1)’
2

7
= € x (er x Vio) —e x x(er X e, e7,0) — > eirs X (e6_; X (e7 X 0))

=5 1=0,1

(;W(ei“, X eg-i) X (e7 X 0)

— > eirs X x(er X eiy5,€7,0) + 5

i=0,1
~ ~r

(x)

-~

= —e; x IP(0) —2V70 — 30

For the third equality, we used (2.24) in the first term and (2.23) in the second one. The

fourth equality follows from (2.25) and, finally, a short calculation gives:

(=1)
T(€i+5 X eg_i) X (e7 X 0)

<_21)Z(€i+5 X eg-i) X (e7 % 0)

(%) = ‘_2021 —eiys X ((e7 X eiy5) X (e7 X 7)) +

= Z —((ei45 X €7) X €iy5) X (e7 X 0) +
i=0,1

1
= —((es X e7) X e5) X (e7 X 0) + 5(65 X eg) X (e7 X o)
— ((eg x e7) X €g) X (e7 X 0) — 5(66 X e5) X (e7 X o)
—otiototio=3
=0 20’ o 2O'— 0.

Finally, for P;, we have

Pg(O’) =

M)~

(T(0, er) +

Plei, Vio,er))Tue

@
Il
o

- T1-

7
(<e7 X o, ep) + Y (e x Vio, ek))e7 X ey,
i=5

=
Il
—

er X (e7 X o) +er X (o) = —0 + e7 x (o)
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Now, writing the curvature tensor as
7
R(ei,ej)e =y (DT —TLI0 — (T = TL)TR ) em

Il,m=1

and using the last expression, we have

7 4
R(es,o)es = Y > o (TiI — TLT0 — (T, — T )T e
7

Im=1 j=1
4

= IZI Zl o’ (F§'5F757)€m
ym=17j=

_ 1p3 7l 214 T2 311 13 412 T4
=o I';I55e1 + 0151560 + 075565 + 0" ;504 = —

And,
L ! ! l !
R(es,0)eq = Z Z (FJG 61 F66 il (Fﬁg F]6) m)
I,m=1j=1
74 l
= (Fjﬁ m)
I,m=1j=1
= 01F‘116F(15461 + 02F§’6F§362 + 03F§6F2263 + J4F}LGF§164 =
Therefore,
1 1 1
R(o) = (R(e5, o)es + R(eg, 0)es + R(er, 0)67) = —ZO' — 10 +0

= ——o0.
2

Now, we assess the operator T defined in equation (1.24) for a pair e;,e; € Q°(TY) and
o€ Q(NY):

7
T(eja g, €4, e]) = Z T<0-7 em)Vj'QZ)(em, €i, €54, )ti - T(ej7 em)vd¢<€m7 €i, €54, )ﬁ

m=1\ P’ < "

~~ ~r

(1) (D)
+ (VjT(U, €m) — VJT(GJ', em))X(ema €, ej) :

S

~~ -

(I11)

We will use throughout the proof both the expression of Vi in terms of 7" and ¢ from
Corollary 3 and the expression for T given in (2.24). For the first term,

7
(I) = Z er X 0,em)V(em, €, €;, -)jj = V,(er X 0,¢;,¢€;j, ')ﬁ

m=1
= —T(e;,er x 0)p(e;, ej, ~)ﬁ + T'(ej,e;)pler X o,€j, ~)ﬁ —T(ej,e;)p(er x o,e;, -)jj
+ T(ey, -)ﬁg0(67 X 0, e;)

—(er X ej,€)(er X o) X e; = (e7 X €j,¢;)(er X €;) X 0.
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Here we used the vanishings T'(e;,er X o) = 0, again by (2.24), T'(e;,e;) = 0, by skew-
symmetry, and p(er X 0,¢e;,¢€;) = (e; X e;,er X 0) = 0, by orthogonality.

For the second term,

7
Z er X 6]76777, U¢(€m76i76j7 )ﬁ = Va¢(€7 X €j,€i, €5, )ﬁ

m=1
—T(0,er x €j)p(e;, e, -)ﬁ + T (o,e;)p(er x ej, €, -)ti —T(o,e;)p(er X e}, e, -)ti
+ T'(o, ) pler X e, €, €5)

= — (e X 0, ->ﬁ<(e7 X e;) X e;,e;) =—((er X e;) X €;,€j)er X 0.

Again the vanishings T'(o,e7 X €;) = T(0,¢;) = T(0,e;) = 0 follow from (2.24).

For the third term, we use expression (2.22) for the derivatives of the torsion tensor:

M~

(IT) = — (T(a, Viem) —T(e;, Vgem))x(em, €, €;)

1

3
[

M~

((67 x 0,Vjen) + (e7 X €j>vo€m>)X(em7€m€j)~

m=1

We now apply (I), (II) and (IIT) for i = 5 and j = 6:
T(@G,O', 65,66) = <€7 X €g, 65>(€7 X 66) X o+ <(67 X 66> X 65,€6>67 X O

- Z ((67 x 0, Veenm) + (e7 X 667Va€m>)X(€m>€5,€6)

7
1
=€ X0 — Z (— §<€7 X 0,65 X €mp) + <€5,Va€m>)X(€m765766)
m=1
1
=e5 X 0 — Z (§<65 X (e7 X 0),em) + o(es, ) — <Vae5,em>)x(em, es, €6)
m=1
! 1 1
=€5 X0 — Z (_ §<€6 X 0, €m> - §<€6 X0, em>)X(em7€5766)
m=1

=e5 X 0+ x(eg X 0,e5,66) = €5 X 0 — (€6 X 0) X (€5 X €g)
=e5 X0+ (€5 X 0) X €7
= 2ey X 0.
Here we used repeatedly that es x e = —e7 and e; X (e; X 0) = —e; X (e; x 0) for i # j.

At the second and fourth lines we applied again (2.23), and at the third line we used the

compatibility of the Riemannian connection.

For j =7 and ¢ = 6, we have trivially

T(€7, g, €, 67) = 0.
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Finally, for j = 5 and ¢ = 7, we have
T(65,0', er, 65) = <€7 X 65,67)(67 X 65) X o+ <<€7 X 65) X 67,65>67 X o

7
— > ({er X 0, Vsem) + (€7 X €5, Voen) ) X(em, €7, €5)
m=1

7
1
= (eg,e7)e6 X 0 — (g X e7,€e5)€7 X 0 — Z (*(67 X 0,66 X €m)
m=1
- <€67 va€m>)X(em7 €7, 65>
7
=er X0 — Z (— —(eg X (e7 X 0), ) — 0{€g, €m)

2

m=1

+ <v0'€67 €m>)X(€m, €7, 65)
7

1
=e7r X0 — § (— §<€5 X 0,€m) — §<€5 X 0, @m>)X(€m7€7a€5)
m=1

=e; X0+ x(es X 0,e7,e5) =er X 0 — (e5 X 0) X (€7 X e5)

=e; X0+ (e5 X 0) X eg = 2e7 X 0.

Therefore,

1
(Z €irs X T (€ite, 0, €iys, €i+6)) = —4o.
1€EZL3

Following the notation of [CP15, §5.3], we define an operator
D(0) == e5 x Véa + e x Vgo,

and recall that the cross-product by e7 defines an almost complex structure on 7'(I'\G)
denoted by J(o) := e; x 0. Then (2.2) becomes

Da(o) = Do)+ J(6) + J(0),

where ¢ := Vi 0. To simplify notation, let ||-|| and ((-,-)) denote the L*norm and inner
product of sections, respectively (the integral of the corresponding pointwise quantity
over the associative submanifold). The next Lemma gathers some relations between the
operators Ip, J and V; although some of them will not be used in this article, we state

them anyway as a curiosity.

Lemma 18. With the above notation, we have the following properties:

(i) D oJ(o) = —Jo (o) + 20.
(ii) ((D°(a),m)) = (o, B"(n))) + 2((o, T (m))).
(iii) ((P"(0),J())) =0.
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(iv) {(,0)) =0 and ((P"(0), J(0))) < 0.
Proof. (i) Using Lemma 5 (i), we have,

DPod(o) = —JoD (o) — Tsses % (e5 x (e7 x 7)) — Trges x (eg X (e7 X 0))
= —Jo (o) + 2Tx6(es x €6) X (e7 X 0)
= —Jol)(o)+2-0.

(i)

(Do), myy = —> AVio,eixn),=— ;{a@ e X 1) — (0, Vi(e; X n)}p

=5

6
= div(o x 1)+ =D (0,6 x Vi'n — x(er X e5,:,m))

— div(o X n)y + (0, B () + 200, er X 1)y

Here we used the Leibniz rule (2.25), then the following trivial calculation:

x(er X e, e5,m) =x(n, €7 X €;,€;) = —1n X ((67 X €;) X ei)

:—nx(eix(eixe7)):—e7xn.

(iii) Using (i) and (ii), one has ((I)°(c), J(¢))) = ({(J (o), P°(5))), and, by the vanishing of
the normal curvature tensor R*(e;, e7)o = 0 for i = 5,6, we have V;- Vo = VZVio.
Using Lemma 5 (i) and the compatibility of V* with the induced metric in NYwe

have

(D(0), J(@)y = D _{J(0).es x VZVia),

5

i

|
M~

(J(0), V7 (ei x Vio))y

Vi (J(0)), B(0))p + ex(J(0), P*(0)),
J(6), D°(0))y + div((J (o), P (0))er),-

<.
Il

I
—~ —/

(iv) Again by compatibility of V* with the metric on NY, we have 2(¢, 0) = 2(V7+ 0,0) =

er|o|?. Now Stokes’ Theorem gives
1 1
({(,0)) = f/ er|o|?dvoly = f/ div(|o|*er)d voly = 0. (2.26)
2J)y 2Jy
Computing the L?*-norm for ) (o), we have
2 c 2 . c . c .
|Bato)| =[P @)| + lI6]7 + ol + 2B (0), J(6))) + 2((B"(0), T (0))) + 2((5, o)),
and from Lemma 18(iii) and equation (2.26) it follows that

[Ba)]” = [|2°)| + 1612 + llol? + 28" (), T(@)))-
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Therefore, by the triangle inequality,

((P*(0), J(a))) < 0.

Corollary 7. The submanifold Y of Example 6 is rigid.

Proof. We recall the full torsion tensor is T = e'? + €** + ¢, from it follows that
(T (ej,-)") = m-(T(B(o),-)*) = 0 for any j = 5,6,7 and o € Q°(NY). Now, notice that
the operator A and the mean curvature vector field H vanish on Y, as can be seen from

A(o) = > > (Se.(ei),e5)(ei, Sole;))en

i,j=5 k=1

(Vier, ej)(ei, So(ej))en

I
J:M\]
M*

-
<
Il
3
=
Il
—

F{k<€i» So(ej))er =0,

-
Il
—

I

|
||‘M*'
M’“

since, ka =0fori,j=5,6,7and k=1,...,4. As well

7 4
H = ZZ ek e’L ez

=5 k=1

> (Vv

4
k=1
4
Z iwek =

Applying equation (2.13), Lemma 5 and the previous calculation, we obtain the Weitzenbock

i€k, e’L

|| M“‘ ILM\' i

formula

1
ZDAQ(O') = V*Vo +e; x P(o) —3Vio — 50

Taking the inner product with ¢ and integrating over Y,
/(]ZAQ(J),UMVOIY :/ (V*Vo, J)dvoly+/ (e7 x ]ﬁ(a),a)dvoly—/ 3(Vzo,o)dvoly
Y Y Y Y
1
— / —(0,0)dvoly
Yy 2

Z/}/<67 x (o), 0)dvoly —3/Y<c'r,a>dvoly—/ ;(a, oydvoly .

Y
From Lemma 18 (iv), we conclude that

1
/ (D,2(0), o)dvoly > / (er % D(),0)dvoly — / (o,0)dvoly .  (2.27)
1% Y Y
So, for o € ker [P, we have I)(0) = —e; x o and, replacing that in (2.27), we get the
inequality

1 1
0> —/ (e7 X (e7 x 0),0)dvoly —7/ (o,0)dvoly = 7/ (o, 0)dvoly .
Y 2 Jy 2

Y
Then o = 0 and therefore Y is rigid. O
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2.3 Calibrated case

Consider a 6-dimensional Lie algebra h endowed with a SU(3)-structure (w, ¢) €
A%(h)* x A*(h)* satisfying the compatibility and normalized condition (2.18) such that both
w and ¢, are closed, in this case the pair (w, ¢ ) is a symplectic half-flat SU(3)-structure.
Thus, for the product Lie algebra g = h @ R has a closed Go—structure given by

p=wAe + oy,
where R = Span(er).
Example 7. Consider the nilpotent Lie algebra bt with constant structures given by
b=g51®R=1(0,0,0,0,e"¢").
With respect to the SU(3)-basis {e1,...,es} the symplectic half-flat SU(3)-structure is

given by

W = 614 4 626 4 635 and ¢+ — e123 4 e156 4 6245 o 6346

Hence, the 7-dimensional Lie algebra g = h SR = g5, @ R? has a closed Go—structure
given by

o= wAel 4y = eMT 4 27 4 3T 4 o128 | G156 | 25 316 (2.28)
Its dual 4-form
b = }w2 L AT = 20 1315 _ 1246 | 56T 2347 _ 1367 4 1257

2

An straightforward calculation shows
dip = —e"10 1 BB and 7 = —e* 4+ e € A2 (h)*,
therefore, the full torsion tensor is given by
1 1
T = -e* + —¢*. 2.29
5¢ + 5¢ (2.29)

By [Mal49, Theorem 7], the corresponding connected and simply connected nilpotent Lie
group G admits a uniform discrete subgroup I' C G given by

[ = exp(Ziey, ..., e7)).

So, the compact manifold M = T'\G has a G-invariant closed Go—structure

The 7-manifold from Example 7 contains an associative submanifold corre-

sponding to a particular Lie subalgebra:
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Example 8. Consider the abelian subalgebra a = Span(ey, es, eg), note that the restriction
156
pla=e

subgroup A with Lie algebra a is obtained as integral submanifold of G given by the

, S0 a is an associative 3-plane. Since the connected and simply connected Lie

left-invariant distribution
A(g) = (dLy)a  for g€ G,

we get an integral distribution A on M = T\G. For each p = Ta € (I'\A) we have

T,(IT\A) = A(Ta) and so Y =T\A is a compact embedded submanifold of M. Moreover,
Y =,
hence, Y is an associative submanifold of M.

Fix ey, ..., e7 an orthonormal frame of T'M induced by left invariant vector fields
on (&, such that the restriction on Y makes ey, e5, e an orthonormal frame of TY and
es, €3, €4, 7 an orthonormal frame of NY'. Notice that, the Lie algebra g contains an abelian
ideal u = Span(ey, ..., e7) of codimension 1. Let L : u — u be the linear transformation

L(u) = [e1,u]. The Riemannian connection V on G is completely determined by L.
Lemma 19. [Mil76, Lemma 5.5] For each u,v € u, the covariant derivative satisfies
Vier =0, Viu :;(L — LY,

Ve = — ;(L + L), Vo =((L + L")u,v)ey,

where L' denotes the transpose of L.

Using the above Lemma we have

1 1

Vieg = — Vae; = —565 Vies =Vise = 562
1 1
Vies = — Vge; = _566 Vieg =Vger = 563
1
Vaes =Vises = Vieg = Vges = —561 V,e; =0 otherwise.

T

Notice that, the normal connection Vie; = V;e; — (V,e;) T vanishes, since (Vie;)" = Ve,

for:=1,5,6 and j = 2,3,4,7.

Lemma 20. The normal bundle NY for the submanifold 8 can be trivialized by parallel

sections es, €3, eq, €7 of the connection V.

Now, from Corollary 3 we have that V¢y156 = =1 for k,l = 2,3,4,7, and by

equation (2.29) we get T'|nyxny= 0. Therefore, it follows:

Lemma 21. For the associative submanifold Y of Example 8:
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(1) The Fueter operator (2.1) is

Dalo)=D(0) =e; x Vio+es x Vio+esx Vgo
(ii) The operators Py, Py, Py defined in Theorem j vanishes.

Applying Lemmata 20 and 21 we obtain that es, es, €4, e € ker J) . However,
each vector field e is induced by the one parameter subgroup of diffeomorphism f; =
Rexp(te,) C Diff(M), indeed, the left-invariant vector field ej on G is induced by the flow
given by the right-translation Rexpe,) : G — G. So, define

Rexptey) : I'g € M — T'(gexp(te)) € M,
notice that this map is well defined, for I'g; = I'gy (i.e. g1g;* € I'), then
Rexpiier) (Tg1) = Tgrexp(ter) = Tg19; " g2 exp(ter) = Tgzexp(ter) = Rexp(tes) (I'g2)-

Since the Lie group G is nilpotent, the exponential map exp : g — G is a diffeomorphism,
then, using the Baker-Campbell-Hausdorff formula the structure group of G is

1 1
gh = (x14y1, a+Y2, T3+Ys, Ta+Ya, 1’54—3/54—5(902% —21Y2), x6+y6+§(x391 —21Y3), T74+Y7),

where g = (z1,...,27),h = (y1, ..., y7) € G = R, the identity element is the vector 0 and

the inverse g~! = (—x1, ..., —27). So, the differential of the left and right-translation are
1 1 \
1 1
1 1
ALy = T x ! o Al = Ty T !

m—— 0 1 L

i 02 “g ) 3 Ty

2 2 2 2

0 0 0 0 1 0 0O 0 0 1 )

Notice that dR, = dL,-1, in fact this follows by the fact that A is a normal subgroup of
G, since a is an ideal of g. Thus, the restriction {f;, = Rexp(tey) - Y = M } induces trivial
deformations for each k = 2,3,4, 7.

Lemma 22. For the associative submanifold Y of Fxample § we have
R(0) — WL(Z ei X T(eir1, 0, €, em)) 4 H x B(o) + (tr S,)H
iE€EZL3

— A(0) = 37 (T(ej,)f) x Sy(e5) + (T (B(o), ) = 0

J=1
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Proof. By Lemma 20 we have that RT = 0 and using the calculation from the proof of

Lemma 9

3
=Y (eixej)x Rt (ei, e)0 = R(O‘)—WL<Z eixT(eir1,0, €, ei+1)> +HxB(o)+(tr S, )H

1<j 1€EZL3

= A(0) = Y7 (T(ej,)*) % Sole;) + 7 (T(B(),)?),

j=1

the result follows. O

Now, the Weitzenbock formula (2.13) simplify drastically and we obtain the

following result.

Corollary 8. All infinitesimal associative deformation of the associative submanifold Y

of Example 8 come from trivial deformations, Y is rigid.

Proof. Using Lemmata 21 and 22 we have ]DAQ(U) = V*V(0), where

A o’
A

ViV (o) = R Z

A o

where o = o%ey + 0’es + o'ey +07er € Q°(NY) and A = —e? — eZ — ef is the Laplacian

of functions on Y. If ¢ € ker D, then cach ¢ is a harmonic function on Y for each

k =2,3,4,7, hence by the compactness of Y each ¢* is a constant function.
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3 Co-closed Go—flows

Geometric flows in Go—geometry were first outlined by the seminal works of
Bryant [Bry06] and Hitchin [Hit08], and have since been studied by several authors, e.g.
[Bryll, BF18, Gril3, KT12, Laul6, Laul7]. These so-called Gy—flows arise as a tool in
the search for ultimately torsion-free Go—structures, by varying a non-degenerate 3-form
on an oriented and spin 7-manifold M towards some ¢ € Q° := Q*(M) such that the
torsion V9% vanishes. Such pairs (M7, ¢) solving the non-linear PDE problem V% ¢ = 0
are called Go-manifolds and are very difficult to construct, especially when M is required
to be compact. To this date, all known solutions stem from elaborate constructions in
geometric analysis [Joy96, CP15, JK17].

When M7 = G is a Lie group, we propose to study the Laplacian co-flow

[KT12]
Iy
— =-A 3.1
ot wt,lvbt ( )
and the modified Laplacian co-flow [Gril3]
My
yrie Ay +2d((C —trT)p) for C  a constant, (3.2)

from the perspective introduced by Lauret [Laul6] in the general context of
geometric flows on homogeneous spaces. As a proof of principle, we apply a natural Ansatz
to construct an example of invariant self-similar solution, or soliton, of the Laplacian

co-flow.

3.1 Geometric flow of (G-invariant structures

Let us briefly survey Lauret’s approach to geometric flows on homogeneous
spaces [Laul6]. Consider the action of a Lie group G on a manifold M. A (r, s)-tensor =y

on M is G-invariant if g*y = =, for each g € G, where

g*/y(le B X7“7 Ay -eny as) = ’Y(g*le ES) g*XTa (g_l)*ala S (g_l)*as)7

for Xq,..., X, € I(TM) and ay,...,as € T'(T"M). In particular, when M = G/H is a

reductive homogeneous space, i.e.
g=h®m suchthat Ad(h)m Cm, Vh € H,

any G-invariant tensor 7 is completely determined by its value 7,, at the point xy = [1¢] €
G/H, where 7,, is an Ad(H )-invariant tensor at m = T, M, i.e. (Ad(h))" Ve, = Va, for
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each h € H. Given x = [gxo] € G/H, clearly 7, = (¢7')*y4,. Consider now a geometric

flow on M of the general form
0
57 = a(0), (3.3)

where 7, is one-parameter family of tensor fields attached to a family of geometric structures
on M [Hus66, Ch. 6, Sec. 2] and ¢ : v — ¢(7) is an assignment of a tensor field on M of
the same type of v such that for any diffeomorphism of M

q(f*y) = f*q(y) for f € Diff(M). (3.4)

Then, if M = G/H, requiring G-invariance of -, for all ¢, the diffeomorphism invariance
(3.4) reduces the flow to an ODE for a one-parameter family v, of Ad(H )-invariant tensors

on the vector space m:
d

a% = C](’Yt%

thus, short-time existence and uniqueness among the G-invariant solution are guaranteed.

Now, suppose that for a fixed geometric structure, the orbit
Gl(m) - v (3.5)

is open in the vector space T of all tensor of the same type as ~, and it is parametrised by

the homogeneous space Gl(m)/G.,, where
Gy ={heGl(m); h-v=1}

is the stabilizer of v within Gl(m). Consider 6 : gl(m) — End(%) the infinitesimal
representation given by the action (3.5) defined by

d
0(A)y = 2 li=o(e™ - 7).
Using the reductive decomposition gl(m) = g, @ g, from (3.5), we have
0(dy)y = <. (3.6)

In particular, for ¢(y) there exist a unique linear operator @), € q,, such that ¢(v) = 6(Q,)7.

3.2 Invariant Go—structures on Lie groups

At this point, we fix (M7 = G, ¢) a connected and simply connected Lie group
with Lie algebra g and ¢ a left-invariant Gy—structure. We consider v = ¢/ the dual 4-form
of the Go—structure, which is left-invariant too. Now, we address the geometric flow (3.3)
for the cases (3.1) and (3.2), i.e. ¢ := —Ay and ¢ := Ay + 2d(C — trT)x*,, respectively.
Accordingly with this, we also denote by ¢ € A*(g)* which lift to G' by left-translation.
The Gl(g)-orbit (see Definition 3)

Gl(g) - v C A'(g)* (3.7)
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is open under the natural action
h-v:=(hY=uvht - h A7), h e Gl(g).
So, the infinitesimal representation 6 : gl(g) — End(A*(g)*) at 1 is given by

Q(A)w — _1/}<A., o ) — e — 77[)(’ o A)7
following (3.6) we have
0(gl(g))v = A'(g)", (3.8)
The Lie algebra of the stabilizer subgroup G2(¢) := Gl(g)y = Ga X Zy is given by

g2(¢) = {A e gl(g) ; 0(A)¢ =0} = g>.

From (1.4) we get the polar decomposition gl(g) = so(g) @ sym(g), we consider the
orthogonal complement subspace q7(¢) C so(g) of ga(¢) relative to the induced inner
product from gl(g) (i.e. tr(AB")). In the other hand, the Gy—decomposition of sym(g)
into q1(v)) = RI, the one dimensional trivial representation and q27(¢)) = symg(g) the
fundamental representation of traceless symmetric matrices which has dimension 27.
Moreover, by comparing with the reductive decomposition gl(g) = g2(v) @ q(v) it follows

the Go—invariant decomposition

() = q1(¢) @ a7 (¢) B 927 (1)),

and the faithful representation

0(a(v))y = A*(g)*. (3.9)

In particular, for the Laplacian Ay, there exists a unique @)y, € q(¢) such that (Qy)Y =
Aytp. Now, for any other ¢ = h -9 € Gl(g) - ¢,

Gl(g)y = Gl(g)nv, = h™'Ga(¥)h and  gl(g)y = gl(g)ny = Ad(h™")ga (1)),
where Ad : Gl(g) — Gl(gl(g)). Moreover, we have the following relations.

Lemma 23. Let i) = h - for h € Gl(g), denote * the Hodge star and A the Laplacian
operator of 1, then
=Y xh* and h*oA=Aoh*

where x and A are the Hodge star and the Laplacian operator of 1, respectively.

1)*
g
and g = h*g, respectively, where g is the inner product induced by ¢. So, for o € A¥(g)*

Proof. The inner products on g and g* induced by a Go—structure p = h-p are g = (h~
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we have

a A xa =g(a, a)vol

=(h"g)(a, a)(h™")" vol
(R 1)*(g(h*a, h*ax) vol)
=a A (h™1)* x h*a

which gives the first claimed relation. In particular,

Fp = (WY kB = () s =h-p =@,

Applying again the first relation to the operator d* = (—1)™ % dx, we have d* = (h™1)* o
d* o h*, which yields the claim because d commutes with the pull-back h*. m

As consequence of the above Lemma, we can relate Q) € q(¢) to Qy € q(¢):

0(Qp)v =Dy = Ag((h™1)') = (h7)* (AW)
=(h1)"0(Qu)¥ = (h~ )*G(sz)

() S () o—-ff<< e ) )

d

=L (8999) )] o= BAA(R) Q)

since go(1)) N q(x) = 0. Therefore,

Qp = Ad(h)Qy. (3.10)

In particular, a G-invariant solution of the Laplacian co-flow (3.1) is given by

a l-parameter family in g solving

d
=D, (3.11)

Writing ¢y =: h;' -1 for hy € Gl(g), we have
d
%wt :¢(h£a ht'7ht'7 ht) + w(ht'a h:t'7ht'7 ht) + w(ht'a ht'7h;5'7 ht) + w(ht'a ht'7ht'7 h;)
:d;t( 1h; e ) 4 wt(',hflhé‘; . ) + wt(', . h;lh;', ) + wt(.7 - hflhé')
= ( ;lh;)wta

thus the evolution of h; under the flow (3.11) is given by

d
The = Q. (3.12)

Remark 7. If we identify sym(g) with the symmetric 2-tensor S*(g) using the map
i:sym(g) — A*(g)* from (1.14) and applying Lemma 3 we have

4i(Q) = 0@ — § Q1) (313)
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We adapt the following proposition to our convention (1.15) instead of the

Grigorian convention for the torsion forms (See Remark 3).

Proposition 6. [Gril3, Proposition 2.3] Suppose we have a co-closed Go-structure on a
manifold M with 3-form @. Let &€ = i(h) € Q* with h a symmetric tensor, then the exterior

derivative d§ is given by

1
d¢ == (trTtrh — (T, h))y — (Virh —divh)’ Ay

2 . . . (3.14)
+ *i(CUI‘l h(ab) + iT @) hab + (Th)ab - i(tl‘ h)Tab - i(tl‘ T)hab)

where (div h), = V°hy, denotes the divergence of a symmetric 2-tensor, (curl R)ar) =

(curl h)gp + (curl h)pe = (Vinhan) oy + (Vihe,) o™ is the symmetrized curl operator and

a

(T o h)ab = PamnPopg ™" TP a product of 2-tensors.

Lemma 24. For a co-closed Go—structure ¢ we have:

(i) For any vector field v holds 0(A,) = 30" A ¢ where Ay(w) = v X w is the skew-

symmetric matriz given by the cross product.

(ii) dp = —0(T)v, where T is the full torsion tensor.
10 1
(ii) Aytp = e(ﬁAdivT — (curl ') (ap) — §(T 0 T)ap — (T?%)ab)¥-

For a G-invariant solution of the modified Laplacian co-flow (3.2) is given by a

one-parameter family in g solving

jtwt = Ay 4+ 2(C — tr(Ty))dpy  for C  a constant, (3.15)

notice, by the G-invariance of 7y for any ¢, then tr(7}) is just time-dependent. Thus,
writing 1, =: h; ' -4 for h, € Gl(g), we have that the evolution of h, under the flow (3.15)

is given by
d
%ht = —hQ: +2(C —tr(T})) Iy for C a constant. (3.16)

3.2.1 Proof of Lemma 24

Before the proof of Lemma 24, we collect the following properties for an invariant

co-closed Gy—structure.
1
Lemma 25. (i) divry = ?V(trT) —divT.
(i) (curl 7o7)(apy = —(curl T') qpy and tr((curl T')p)) = 0.

(iii) (T o Toy7) = ;((tr T)Yg— (trT)T) —ToT and tr(T o T) = (trT)* — |T|?.
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1
Proof. (i) It is enough to apply the div to 797 = §(tr T)g—T.

(ii) Again, we apply curl to 797, it remains to proof the traceless property

(curl T)abg“b = (Vi Ton)p™™ = 0.

(iii)

1
(T © TQ?)ab = TmnT;?QDmpagpnqb :7()51" T)Tmngpmpagpnqbgpq - (T o T)ab

7
1

:?(tl‘ T)Tmn(gmngab — 9mbYan + wmanb) - (T o T)ab
1 1

:?(tr T)?Gap — ?(tr Tl — (T oT)a

For the trace we have

(T o T)abgab :TmnquSOmpaSanbgab
=7Tmnrd (gmngpq — 9mqYpn + ¢mpnq>
=(tr T)* = T;'T}

O

Proof of Lemma 24. (i) Let v = v'e; be a vector field, then the skew-symmetric matrix
A, is given by (A,) i = vigoijk, thus we have

1
H(Av)¢ = - a(Av)fzwbcddxade

1

P bed
=— gvz%al/%cddﬂ “

1 7
:gv (_gibgpacd - gz‘cSObad - gidgpbca

+ gabgpzcd + gac(pbzd + gad(pbcz>dxab0d

3 7 ac
:gv gibgpacddxb ¢ = va A .

(ii) Using the equation (3.13) we have
(7o 70 .
Tot) = *i (§]> = 0( - Zf)w and x5 = xi(Ta7) = 0(T27)0.

.
By the co-closed condition the torsion tensor is 17" = ZOI — To7, thus 7 = - tr(T)

1
and 7oy = = tr(7) — T, therefore

dp = Toth + #73 = 9( _ %1 n m)w — —0(T)y.



Chapter 3. Co-closed Go—flows 69

(iii) For a co-closed Go—structure, the Laplacian of 1) is
Aw:d*dgo:dTg/\go—i—Tgw—i—To*Tg—i—dTg.

Now, we apply Lemma 6 to drs3 = di(727), thus, we get

2 L ..
drs = — ?<T, Tor ) — §(d1V To7)’0
_ 1
+ i ((curl To7) (ab) + §(T o To7)ab + (T'T27)ab
1 1

— i(tl" T)(To7)ar — — (T, Tz7>gab)

14
Thus, the Laplacian of v is

) 1
A = ( d(trT) — *(le To7) ) A @+ *z((curl To7) (ab) + §(T o Tor)ab + (T'To7)ab

1 16 1
—(trT)(T27)ap + —= (41 T)* gap — 6<T’ 727>9ab)-

14 147

1
Now, replacing 77 = §(tr T)g — T and using the identity divT = VtrT, we get

10 1
Ay =—(VrT) A+ *z( ~ (el T)wy = 5(T 0 Ty = (T*)ap
1 2 1 2
+ é(tf T)"gap + 6|T| gab)
10 1
7d(tr T)N @+ 0(—(curl T) ) — §(T 0T )y — (T2)ab)¢

Since
1 2 1 2 1 2 4 2 2
tr(—(curl T)(ab) - §(T © T)ab - (T )ab + g(tl" T) Gab + 6|T| gab) = 6((tr T) + |T| )

]

3.3 Lie bracket flow

The Lie bracket flow is a dynamical system defined on the variety of Lie
algebras, corresponding to an invariant geometric flow under a natural change of variables.
It is introduced in [Laul6] as a tool for the study of regularity and long-time behaviour of

solutions.

For each h € Gl(g), consider the following Lie bracket in g:
p=1[,Jn:=h-[]=nr" AL (3.17)

Indeed, (g, [,"]) LN (g, 1) defines a Lie algebra isomorphism, and consequently an equivari-

ant equivalence between invariant structures

n: (Gawu) - (wa)a
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where G, is the 1-connected Lie group with Lie algebra (g, 1), 7 is an automorphism such
that dn, = h and ¢, = n"¢. In particular, by Lemma 23, A 1, = 7" Ay, or, equivalently,
Q. = hQuh™", by equation (3.10).

Lemma 26. [Laul6, §4.1] Let {h;} C Gl(g) be:

(i) a solution of (3.12), then the bracket p; := [-,-]n, evolves under the flow
d
ol = =0, (Qu)- (3.18)
(7i) a solution of (3.16), then the bracket p; = |-, |, evolves under the flow
d
Etﬂt = 0, (Que — 2(C — tr T)T,,,), (3.19)

in which 8, : End(g) — A*(g)* ® g is the infinitesimal representation of the Gl(g)-action
(3.17), defined by

Proof. (i) Setting Q,, := h:Q;h; ', we compute:

d

Jp =P B (Y B 4l (B
=hihe (o) = (B ) = e Bihe )

== 6ut(h;ht_1) = _5Mt (ththt_l) = _6Mt(QMt)7
since (h; ') = —h; 'hih; .
(ii) Similarly, setting T}, = h,Tih; ', we compute:

d

%Mt :5Ht (h;h;1>

=0 (heQehy " = 2(C = te(T,)) i Tihi )
:5% (Qm - 2(0 - trTDTut)v

Remark. Notice that, if {h;} C Gl(g) solves

d d
%ht = Q#tht7 or %ht = _Q,utht + 2(0 — tr E)Tptht

then uy solves the bracket flow (3.18) or (3.19).



Chapter 3. Co-closed Go—flows 71

3.4 Self Similar Solutions

We say that a 4-form v flows self-similarly along the flow (3.11) if the solution
1y starting at ¢ has the form v, = b, f ¢, for some one-parameter families {f;} C Diff(G)

and time-dependent non-vanishing functions {b;}. This is equivalent to the relation

for some constant A € R, X a complete vector field and ¢ denotes either minus the Hodge
Laplace operator Ay or the modified Laplace operator Ay, + 2d(C — tr T')#,. Suppose that
the infinitesimal operator defined by ¢(v¢)) = 6(Q,) had the particular form

Qup=cl+D for ceR and D € Der(g). (3.20)

Then we have

d *
0(Qy)Y = —4e +0(D)yp = —4eyp — %((ew) w) |i=0
=—dcy — Lx, 0,
where Xp is a vector field on g defined by the 1-parameter group of automorphisms
e’ € Aut(g).

In that case, (G,) is a soliton for the Laplacian co-flow or for the modified Laplacian

co-flow with
q<¢) = —4010 - ﬁanv

where Xp also denotes the invariant vector field on GG defined by the 1-parameter subgroup
B, in Aut(G) such that d(5;); = e’ € Aut(g).

A Gy—structure whose underlying 4-form ¢ satisfies (3.20) is called an algebraic soliton,
and we say that it is expanding, steady, or shrinking if )\ is positive, zero, or negative,

respectively.

Lemma 27. Given 1y = ¢y with ¢ € R*, then:
(1) The Laplacian operator satisfies the scaling property
Agthy = ? Ay (3.21)
(ii) The torsion forms have the scaling property
(70)2 = ¢ Y4(1)1 and  (73)s = c/*(13)1.

In particular, try, Ty = A trg, Th.
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Proof. Notice that cipy = (¢/*)*y, then g = ¢3/*py, g, = ¢'/?g; and vol, = ¢/*vol,. For

a k-form o we have

1 . .
a A koo :92(04, 04) voly = Eail ..... i1,k (92)11]1 T (gz)wk voly
1 . .
:C7/4_k/2gai1 ..... i X1, (91)“31 T (gl)lk]k vol; = C7/4_k/291(04 Oé) voly
=T/ R 20 N *10Q0.

L
So, for a k-form ssar = 17729 4, o

(i) For the Hodge Laplacian operator we have

A2¢2 :d*Qd*leg—*Qd*Qdeg :Cd*gd*gwl —C*Qd*gdlpl
203/4d *9 d *1 77[)1 — 61/4 *9 d *q d¢1
=c'2d %, d #, P — 2 %1 d %, di, = 01/2A1¢1.

(ii) For the scalar torsion form, we have

3/2 3/20—7/4

1 C
(T0)2 = = *2 (P2 Adpa) = — 2 (01 Adipr) = e x1 (01 A dypy) = 0_1/4(70)1.

7 7

Finally, since 1) is co-closed, using the relation (73)s = *odps — (79)2p2 the result

(7'3)2 = 1/2(7'3)1 follows.

Lemma 28. If 1 is an algebraic soliton with QQ, = cI+D, then ¥, = bhi1) is a self-similar

solution for the Laplacian co-flow (3.11), with

1
by = (2ct +1)2 and  hy=e"P, for s = ~ 90 log(2ct + 1). (3.22)
c

Moreover,

Q= 0,"Qy.
Proof. Applying Lemmata 23 and 27, we have
Ay = b by A = b, h0(Qy )¢
= bht (— 4t + 6(D)Y)

= —4cb R + 0(b i DRy R,

On the other hand,

d /7 % * /
*@Ut :btht@b + bt(ht@/))

dt
=b;hy1p + b,0(hy  h)hiy

]
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Replacing the above expressions in (3.11) and comparing terms we obtain the ODE system
b, = 4cby’?, b(0) = 1
b, = —b/2Dh,, h(0) =1

the solutions of which are as claimed.

Finally, we have
B(Qu)e = Aty = by hi A = 0 0(Qu )Y
= 0,200 Quhi) i) = 0(b b Quhe)r,
so Q¢ = b, Y 2ht_ 'Qyhs, which yields the second claim, since Quh; = hiQ,. O

In terms of the bracket flow, we have Q,,, = hQ:h; V=, 1 2Q¢. Then, replacing
in (3.18) the Ansatz

e = (c(lt)[) =[] for e(t)#0 and ¢(0) =1, (3.23)

. ~1/2 . . .
we obtain ¢, = cb, / ¢, which has solution ¢; = e“*, with s; as above.

Lemma 29. If ¢ is an algebraic soliton with Py = Qy, — 2(C' —trT)T = ¢l + D, then
Wy = bihiv) is a self-similar solution for the modified Laplacian co-flow (3.15), with

by = (—2ct +1)? (3.24)
and
1 1 1
ht _ est(D—l—QC’T)—ZCTzT7 f07’ Sy = _? 10g(—20t —+ 1)’ and ry = *(—2625 + 1)—1/2 _ -
c c c

Moreover,

P=b,"?P,—20(b; " — b, ') Ad(hy T

Proof. Applying Lemmata 23 and 27, we have

Ay + 2(C — tr Ty)dg, = by hi A + 2(C — tr T, b/ 4R dy
= b2 hi0(Qu) — 2CH hiO(T ) + 2tx T *h;6(T))
= b,*h6(Qy — 2(C = wT)T)p — 2C(1" — b 6(T )
= bR (= dey + O(D)) — 206" — b h:0(T)
= —dcb PR + (b hi (D + 20T — 2Cb*T)hy)hiap.
On the other hand, we know from the proof of Lemma 28 that 1, = bh;) +b,0(h; *h}) ki,

then replacing the above expressions in (3.15) and comparing terms we obtain the ODE

system

bhl = b3 (D + 2CT — 2Cb*T)hy, h(0) =1
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the solutions of which are as claimed.

Finally, we have

G(Pt)wt = Atwt -+ 2(0 — trt T)ngt
= b 2R A + 2(C — tr T )b hide
= b2 hi0(Py) — 200" — b/*)h;0(T )
= 0(b, *h; Pyhy — 200 = b7 2V Thy )b,

so P, = b, *hi Pyhy — 2C(b; " = b;1)h Y Thy, which yields the second claim, since

Indeed, there is an equivalence between the time-dependent Lie bracket given

in (3.23) and the corresponding soliton given in Lemma 28:

Theorem 6. [Laul6, Theorem 6] Let (G, ) be a 1-connected Lie group with an invariant

Go—structure. The following conditions are equivalent:

(i) The bracket flow solution starting at |-, -] is given by

1
py = (%1) ] for e(t) > 0,¢(0) = 1.

(ii) The operator Q) € qy C End(g), such that Ay = 0(Qy )1, satisfies

Qu=cl+D, for ceR and D € Der(g).

3.5 Almost abelian Lie groups

In this section we address a class of solvable Lie group named the almost
abelian,to exposed some basic notions about this we will follow [Laul7, Section 5]. Let
(G, ) be a connected and simply connected Lie group with an invariant G-structure ¢,
if the corresponding Lie algebra g has an abelian ideal h of codimension 1, we say that
G is an almost abelian Lie group and g is an almost abelian Lie algebra. For dim G =7
there exist an orthonormal basis {ei, ...,e7} of g such that h = Span{ey,...,es} and the

left invariant Go—structure is determined by

0 =w A 67 —I—p+ — e127 + 6347 + 6567 + 6135 o 6146 o e245 o e236 (325>

where

w=e2 M 15 and p, =¥ 146 245 236

1
are the canonical SU(3)-structure of R® = b. an the dual 4-form ¢ = 50.12 +p_ A e’ where

po = Jpy = —e*0 4 €23 4 M5 4 136 and J is the canonical almost structure on R®
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defined by w := (J-, -). Notice that the Lie algebra structure of g is completely determined
by a real 6 x 6 matrix A := ad(er)|s. So, following the notation of [Laul7], ua will denote
the Lie bracket and G4 the corresponding connected and simply connected Lie group.
In [Frel2] was studied the existence of invariant co-closed Ga-structures on G4 and the

condition di» = 0 is entirely encoded by A.
Proposition 7. [Fre12] (G4, ) is co-closed if and only if A € sp(6,R).
sp(6,R) :={A € gl(6,R); A'J+ JA =0}

B| C

D|-B
A useful algebraic relations between the geometry of g, h and A are summarised

; C,D € sym(3)}

in the following Lemma:

Lemma 30. Let x and x the Hodge star operators on g and b, respectively, determined
by p. Also, da denote the exterior derivative of left-invariant forms on the G, so for
v € A*(B)* the following properties holds:

o [Laul?, Lemma 5.11] ¥y =xyAe”, x(yAe) = (=1)F xy and O(A)x = — x O(AY) (if
trA=0).
o [Laul?, Lemma 5.12] dae” =0, day = (—1)*0(A)y A e” and ds(y A e”) = 0.
o [Laul7, Equation (29)] The Ricci operator Rica of G4 is given by
1

A4, AT
RiCA = 2

0

(3.26)
0 —i tr(A + A

From the above follows that
dp=—0(A)pne” =—0(A)pT ANe'.
Lemma 31. For a matriz A € sp(6,R) holds the following:
0(A)p =0(JA)p-  and O(A)p- = (A" T)p.

Proof. Note that w;; = JFhy; then

1 i
0(A)ps =— §A§pl§kd$ "
1, _
=- §A§ijpwpzdl’

ijk
L — ik
= §Ai‘]l hapPjrpd

1 _ i
= L A = 0T A)p
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Notice that we used in the second line the identities (1.26). Similarly, 8(A)p_ = —0(JA)p+
and since JA = —A"J the result follows. O

For a co-closed Ga—structure on GG 4, we want to write the torsion forms in term
of the matrix A.

Proposition 8. The torsion forms 1o and 13 for an almost abelian Lie group (G a, ) with

co-closed Go—structure are

1 1
) N Y AV
0=z tr(JA) and 1 = | 14 2

0 —‘;tr(JA)

Proof. Since the Go—structure (3.25) is co-closed the scalar torsion is given by

1 1
To == * (p A dip) = == x (p AO(A)p™ Ne)

7
= Lx (P ABA)T) = 2 x (0 A BT A
:;@, 8(JA)p_) * (volg) = itr JA

Here, we used in the second line the Lemma 31 and from the orthogonal SU(3)-decomposition

we have
(p— 0(JA)p) =(JA); + (JA); + (JAJs + (JA); + (JA); + (JA);
+ (JA)L + (JA+ (JAG+ (JA) + (JA); + (JA)
=2tr JA.
Now, applying Lemma 30 to *dy, we have
xdp = —* (0(A)pT N e) = x0(A)pT = —0(A)p~ = —0(AJ)p™.
Thus, applying j to xdyp we get the symmetric bilinear form

J(xdp)(u, v) = *(u,p Av,p A xdp)
For u = e; and v = ¢;
er, 0 Neip ANxdp =w Aej,w e’ AxO(A)py + Sizw® Ax0(A)py
+ w AN eijp_;'_ A *Q(A)p_;r
—e; wAwAXO(A)py Ae'
=h(e;,w A w,8(A)p;)vols

where h is the induced inner product on § and notice that

aplzchra hsbhtc

1
hiei,w Aw,0(A)py) = ZwirwstAl

1
= ZwirA”wap;;l =0
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The last result follows by the identities (1.26). So, it is enough to consider 1 < i,j < 6, we

have:

Jlxdip)iy = * (e, N ej,p N xdp) = *(ei,0 A ej,p Ax0(A)py)
=—x(ei,wAej,pr AxO(JA)p_ Ne' +ej,w Aei,pr A*O(JA)p_ Ae)
=—*(e;,wAej,pr NxO(JA)p_ +ejw e, pr N*0(JA)p_)
= — (hlei,w Aej,pr, 0(JA)p-) + hlejw A ey,py, 0(TA)p-)) * volg

— h(e;,wAej pr, 0(JA)p-) — hiejwNe;,pir,0(JA)p-)
We compute the first term

1
h(e,w A ej,pi, 0(JA)p-) = — — (Bwiply) (JALp — (JA) ot + (JA)ipits)
31

1
=— §(wir(JA)ipﬁtp£t — L (JA) plhwni + ply (JA) o wrs) = o

-~ ~

~ -~ ~ -~

~~ ~~ ~~

1) (1) (11n)
For each term (I),(II),(III) we apply the SU(3)-identities (1.26)

(1) = = gty (JA) = =47 by T s (A,
— — 4T Byl (JPA)™ = 4T AT = 4(AJ)].
On the other hand
(1) =(JA).ploity
=(JA)L(—wjiwsi + wjiws + 605 — 05i05)
—(AJ) 4+ (JA)Y — tr(JA)dj;.

Notice that, we used the symmetry of JA in the last line. Similarly, for (III) we have
(ITT) = —(AJ)] — (JAY, + tr(JA)d;;.
Summarising, we get
& = —(AI)] + (JA) = 2(JA)8;; = —[A, )] — tx(JA)d;.

Therefore,
G(xdep)ij = [A, JY + tr(JA)Gs + [A, J]; + tr(JA)dy;,
since the matrix [A, J] is symmetric we have j(xdy) = 2tr(JA)Is + 2[A, J]. Finally, by
using Lemma 3 we compute
i(To7) =% dp — Top
12
4’7‘27 =2 tI'(JA)I6 + 2[14, J] - 7 tI‘(JA)I7
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Corollary 9. The full torsion tensor T of an almost abelian Lie group (G a, ) with an

tnvariant co-closed Gy-structure 1is

1[4 o
1= ( 0 |tr(JA) ) (3.27)

Remark 8. Since G 4 induces diffeomorphism by left translation and ¢ is G 4-invariant

then 1y is constant and equal by its value at 1 € G 4. In particular,
V(trT) = 0.
Also, for a co-closed Gy-structure, the Ricci curvature is given by [Gril3, Eq (4.50)]
Ric(g) = —curl(T) — T? + (tr T)T
Lemma 32. For the symmetric product of 2-tensor defined in Proposition 6 we have

1
—E(trJA)[J,A]—SAOE;SA 0
0 ‘ —tr 9%

ToT = (3.28)

where Sy = ;(A + A') is the symmetric part of A and (Sa 06 Sa)as = SH ™Sy PripaPriap-
Proof. We are going to calculate the matrix elements (7o T");;. So, for i, 7 = 7 we have
AT AP g
= TT(A+ A9 (A4 APyt
:i(A + AN JTA + AP T wnpng

(T o T)77 :Tmnqu(Pmpﬂan? =

— — SRS Ry hy = — tr S

Notice that we used the relation AJ = —JA" in the second line and symmetry of J(A+ A")
in the third line. For j = 7 and ¢ # 7, we have

(T o T)ﬂ = Tmnqu(pmpi(pnq7 = Tmnqu(pmpiwnq - ‘
Since n,q € {1,...,6} by Corollary 9 also m,p € {1, ...,6}, then

& =[] A" AP pitong

{2

=4(JSA)™™(JS4)™ ik ing
=4(S4)™ T2 (S4) ™ T} Py ing
= — 4(Sa)™(Sa) " T} prbpitag
= =4Sy (SA) T} Pl

=4(S2)8 Pimy = 0
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Here we used in the second line the symmetry of [J, A], in the fourth line the relation
Jowng = —heg and in the last one, the symmetry of S2% with the skew-symmetry of p_.
Finally, for ¢ # 7 and j # 7 we have

(T o T)ij =T T™ OppitPng;
:2TmnT77wmiwnj + Tmnqup;piprtqj
1 1
:E(tr JA) [‘]7 A]mn‘]gmhaijrbbhbj + Z[‘]a A]mn[‘]a A]pqp;;rlpiprtqj
1 1
=S TAYT(A+ A" Te bty + J(T(A+ A (J(A+ AP0t
1 1
= (G TAY A+ AT T by + (A AT (A+ Ao,
1
=5(tr JA)(J(A + A hai(J2) P hog + (Sa) ™ (Sa) ppil g T4 T2
1
= S TA)T AT by + (54 (S) D
1
== (tr JA)J, Alji — (Sa)"™(Sa) prtilie

1
= — 5 (tr JA)J, Alij = (Sa) " (Sa)™ Proip

Pmpi
O]
Proposition 9. If (G4, ) is co-closed, we have:
i) For the Hodge Laplacian of 1
Ayt = 0(Ric(g) - ;T oT — (rT)T) = 6(Qu) (3.29)

1
Furthermore, Qa = Ric(g) — (tr T)T — §T oT is a symmetric operator and it is

[ @10
QA—( 0 q)7

1 1 1
Q]Zi[A,At]—I-iSA Og SA and q:—§tr(SA)2

given by

where

— i(tr JA)?.

it) For the modified Laplacian

Ayptp +2d((C — tr T)g) = 0( Ric(g) — ;T oT — (2C = trT)T) = 0(Pa)

where
P |0
Py = (%») , (3.30)
0
11 1 1 ,
where Py = i[A,A] + 55,4 og Sa — (C’ - 5trJA>[J,A] and p = _§tr<SA) +

1
Z(t]r JA)?? — Ctr JA.
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Proof. (i) Equation (3.29) follows directly from Lemma 24 (iii) and Remark 8, and the
expression for @ 4 follows by equation (3.26), Corollary 9 and Lemma 32.

(ii) It follows by a similar reason as above.

O

Lemma 33. For a symmetric matriz A € sp(6,R) we have A og A € sp(6,R), where
(Aog A)gy = A™™ APt

Proof. The condition A og A € sp(6,R) is equivalent with 6(A og A)w = 0. So,
0(A og A)w =(A o A)gih"wida®™ = A™ AP pl i W widz®.
The result follows by the symmetry of Am”qup;pap:qihij wjp, in fact

AT AP pE ot h P g = AT AP pE o
— AT AP W
= — (AD)" AP} Pt
=(JA)™ AP} P
=h"wi, A" AP pt ok
AT AP gt
=A" AP p W wjapg,

:Anmquprbp:zrqihijwja
Notice that, we had used equation (1.26) time and again, and the symmetry of A. O]

The following two propositions involve the evoltion of the matrix A under the
flow (3.15). The expectation is that in the future these result allow to inquire about long
time existence solution for the modified Laplacian co-flow on almost abelian Lie groups,

similar to the Laplacian flow [Laul7] and the Laplacian co-flow [BF17].

Proposition 10. Let L be the variety of T-dimensional Lie algebras. The family {ua : A €
sp(6,R)} C L of co-closed Ga-structures is invariant under the bracket flow 1 = §,,(Pa),
which becomes equivalent to the following ODE for a one-parameter family of matrices
A=A(t) € sp(6,R):

d 1 1 1 1
%A :( — 5tf(SA)2 + 1(tr JA)2 — CtrJA)A+ 5[14, [A7 At]] + 5[14, SA Og SA]

: (3.31)
- ((J — 5t JA) A, [J, Al

Proof. Notice that the family {pa: A € sp(6,R)} C L is invariant under the bracket flow
if and only if 6,(P4) = pup for some B € sp(6,R), for any A € sp(6,R). Using (3.30) we
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have

6u(Pa)(er, ei) =pa(Paer, e;) + paler, Pae;) — Qapaler, ;)
=ppaler,e;) + paler, Pie;) — Pipa(er, e;)

Hence, B = pA + [A, P1], note that B € sp(6,R), indeed
[T, AJ'T + J[J, A] = [J, AT + J[J,A] = JAT + A' — A — JAJ =0

and S4 0 Sa € sp(6,R) by Lemma 33, thus P, € sp(6,R). Therefore, the subset of
invariant co-closed Gg—structures is invariant under the bracket flow and the matrix A
evolves by A=B. O

Proposition 11. If paq) is a bracket flow solution, then the norm of A(t) € sp(6,R)

evolves
d 1
£|A|2:( — [SalP+5 (b JA) = 2C tr JA) | AP~ |[4, AP
— (Sa 05 Sa, [4, A]) + (2€ = tr JA)([J, 4], [4, A]))
Proof. From Proposition 10, we have
jt|A|2:2<A,A> — 2tr(AA)
1
=(— ISalP+5 (60 JA)? = C'tr JA) | AP+((A, [4, A], A) + ([A, S 06 Sa], 4)
- (20 —tr JA) (A, [J, A]], A)
1
=— (Z|SA\2+20(tr JA))| AP —|[A, A"]|—(Sa 06 Sa, [4, A"])
+ (20 — w7 A) (1, 4], [A, A1)

]

Similarly to Propositions 10 and 11, we get the following result for the Laplacian

co-flow.

Proposition 12. The bracket flow {pa: A € sp(6,R)} C L and its norm |puaw|*= |A]”

associated with the Laplacian co-flow (3.11) evolve

A=— (; tr(Sa)* + i(tr JA?)A + ;[A, [A, A]] + ;[A, S4 06 54| (3.32)

AP = = (1SaP 5 (tr JAY) AP~ [[4, AT —(Sa 0 Sa, [4, AT (3.33)



Chapter 3. Co-closed Go—flows 82

In order to proof long time existence solution for (3.11) we need the following

identity.
Lemma 34. For the symmetric part S of the matriz A € sp(6,R) holds

1S4 06 Sal?= 4(|Sal*|Sa|?—2|SA|*—(TSa, Sa)?).

Proof. This identity is found just by manipulating the SU(3)-representations (1.25) and

the contraction identities (1.26) between w, p; and p_. O

Now, we are going to study the term —(S4 05 S4, [A, A]) given in the evolution
2 b2
equation (3.33). Using the Cauchy-Schwarz and Peter-Paul inequalities ab < g— + % for
€

a,b >0 and ¢ > 0, we have
— (S 06 Sa, [A, A']) <|Sa 06 Sal|[A, A]]
15406 Saf? LA A"P?
- 2e 2
2 €
ZE(ISAIQ|5A|2—2|531|2—<J5A,5A>2) + §|[A7At]l2

Taking ¢ = 2 and replacing the last inequality in the equation 3.33, we have
: 1
AP < = (19aP+5 (tr JAP) AP =[[A, AP +[SaP|Sal*=2|SAP = (IS4, Sa)” + [[A, AP
1 1
= = |SaPISal =5 [Sal’|A = AP =5 (tr JAP|AP+[Sal* Sal” —2155* = (J Sa, 54)°
1 1
= = SISaP|A = AP =5 (tr JAP|AP =2/ S5 = (754, S4)° < 0
Thus, |A]* is non-increasing and so long time existence the bracket flow (3.32)
follows. In fact, |A|* is strictly decreasing unless (G 4, @) is torsion free (that is, |A|> =0
if A = —A and trJA = 0 [Frel3]), and thus A(t) = Ay is constant. In view of the

equivalence between the Laplacian co-flow (3.11) and the bracket flow (3.32) (see [Laulb,

Theorem 5]), we obtain long time existence for the Laplacian co-flow among this class.

Corollary 10. The left invariant Laplacian co-flow solutions starting at any co-closed
Go—structure (G 4, @) is defined for allt € (T, 00) for some T_ < 0.

Remark 9. The equations 3.32 and 3.33 correspond to the bracket flow
it = 8 (Quu) & Wy = A,

Howewver, the results also hold for the co-flow (3.11) and in this case the solution of
Corollary 10 are defined for all t € (—oo,Ty) for some 0 < Ty, it as was proved by
Bagaglini and Fino [BF18] for a normal matriz A € sp(6,R). Notice that we proved long
time existence for (3.11) for any matriz A € sp(6,R).
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3.5.1 Example of a co-flow soliton

We now apply the previous theoretical framework to construct an explicit
co-flow soliton from a natural Ansatz. Let g = R x, R® be the Lie algebra defined by
v(t) = exp(tA) € Aut(g), with

a

0

! )

The canonical SU(3)-structure on R® with respect to the orthonormal basis {e1, eg, €2, €5, €3, €4}
is

w=elb e 3t =185 12 286 456

and the standard complex structure of R® is

We also have the natural 3-form
p_ = J - py = !y M5 4 (356 _ 26
The structure equations of g* with respect to the dual basis of {ey, g, €2, €5, €3, €4, €7} are
det =%, deb=e'", ded=e', de'=¢€%, de! =0 for j=2,5.
From the above, we have
do =0, dpy =2+, and dp_ = 2(e" + ),

There is a natural co-closed Go—structure on g, given by

= WA 4y = el 2T BT 135 124 6 156

with dual 4-form

2
W
w = xp = > +p_ A 67 _ 61256 + e1346 + 62345 + 61237 + 61457 + 63567 o 62467.
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We have JA = —AJ = diag(—1,0,—1,1,0, 1), then by Lemma 8
n=trJA=0 and m;=diag(1,0,1,—1,0,—1,0).

Hence, T' = —my; = diag(—1,0,—1,1,0,1,0). To obtain the Laplacian of 1) we apply
1 1
Proposition 9 (i), notice that @ = §A og A and g = —3 tr A? since A is symmetric. By a

straightforward computation we have
trA*> =4 and Aog A= diag(0,4,0,0,—4,0),

So, Ayth = 0(Qy)Y = 4('**" + €*7) where Q, = diag(0,2,0,0,—2,0,—2). Consider the
derivation D = diag(a, b, ¢, ¢, d,a,0) € Der(g), and take the vector field on g

Xp(z) = (jt(exp(tD)(:v)), for zeg.

Then we have

d .
Lx,¢ = %(exp(—tD) V)|t=o= —0(D)v
= (2a + b+ d)e*®°® + (2a + 2¢)e™®* + (b + 2c + d)e** + (a + b+ c)e'*7
+ (a4 c+ d)e™" + (a+ ¢+ d)e* — (a+ b+ c)e**,

From the soliton equation —AvY = Lx ¥ + A\, we obtain a system of linear equations

20 +b+d+ X\ =

20 +2c+ X =
a+b+c+ )\ =
atctd+N = —4

which has solution D = diag(2,4,2,2,0,2,0) and A = —8. In particular, for the matrix
A
Qu=D+ 117, we have Ay = 6(Q)y)1. By Lemma 28, the functions
, 1 1
c(t) =(1—4t)° and s(t) = Zlog(l —4t) for 1> t,

yield the family of 4-forms {, = c(t)(f(t)"")*¥}, where

f(t)™" = exp(—s(t)D)
= diag((1 —4t)"Y2 (1 —4t)71, (1 — 48) Y2 (1 — 46)7Y2,1, (1 — 4)~ V2 1).

Hence,
Wy = 1256 4 Q1346 4 (2345 4 (1237 4 () 4t)(el457  3567) _ (2467 (3.34)

defines a soliton of the Laplacian co-flow:

Gzit — (M 4 BOTY — ()2 (1) AY = —Adhy.
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Corollary 11. The relevant geometric structures associated to the 4-form given in (3.34)

are.

(i) the Go-structure

0y = C(t)1/4(6167 4 625’7 + 6347 4 6135 o e456) - C(t>71/4(€124 4 6236);

(ii) the Go-metric
g0 = (e1)? + (€))7 + () + (%) + ) 2(e%)? + (1) 2 (%) + (€)?);
(ili) the volume form
vol, = c(t)"* voly;
(iv) the torsion form and the full torsion tensor
m3(t) = 2(e’®® + e and T(t) = c(t)_1/4( — (") = (e°)* + (e*)* + (e%));
(v) the Ricci tensor and the scalar curvature
Ric(g) = —4c(t)"Y2(e")? and R, = —;|7'3(t)|2: —de(t) Y2,

(vi) the bracket flow solution
pe = c(t) .

3.5.2 Example of a modified co-flow soliton

We now construct an explicit modified co-flow soliton following the same ideas
from the last example. Let g = R x,, R® be the Lie algebra defined by v(t) = exp(tA) €
Aut(g), with
0 —1
1 0

1 0

0 -1
1 0

The canonical SU(3)-structure on R® with respect to the orthonormal basis {ey, ..., e} is

w=el2 p BBy =135 M6 236 245

and the standard complex structure of R® is

J(er) = ey, J(e3) =es, J(es)=¢s and J*=—1I
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We also have the natural 3—form
p= J - py = —M6 2 4 136 4 U5
The natural co-closed Go—structure on g is given by

Qi=w A 67 —I—p+ — e127 + 6347 + 6567 + 6135 o 6146 o e236 o 6245

Y

with dual 4-form

2
w
w = xp = 5 4 p_ A 67 — 61234 4 61256 + 63456 o 62467 4 62357 4 61367 4 61457.

[ -1 0

0 -1

We have

JA=AJ =

Then, by Proposition 8 we have

4 1
To = A Tor = —§diag(1’ 1,1,1,1,1,-6),

and by Corollary 9, T = diag(0, 0, 0,0, 0,0, —1). Now, we apply Proposition 9 (ii), since A is
skew symmetric we have Ay +2(C' —tr T)dyp = 0(P4)y where Py = diag(0,...,0,1+2C)
Now, for C' = 0 we get

Py=Qa+2(trT)T =1+ D for D =diag(—1,—1,—1,—1,—1,—1,0) € Der(g)

By Lemma 29, the functions
) 1 1
ct)=(1-2t)° and s(t) = —5 log(1 —2t) for 5> t,
yield the family of 4-forms {1, = c(t)(f(t)"')*1}, where

f(t)™" = exp(=s(t)D)
= (1—2t)""?diag(1,1,1,1,1,1, (1 — 2t)/?).

Hence,

Wy = 12 4 126 | (356 | (] p)L/2(l367 4 GLST | 2857 2167
defines a soliton of the modified Laplacian co-flow with C' = 0:
Athy = 2tr, Tidepy = fr - Aytp = 26 (e 7Y fr - dg

d
- (1- 2t)—1/2(61367 | Ql457 y 2857 o2467) %¢t
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3.6 An associative submanifold along the Laplacian flow

Here we pretend to give a connection between the main topics of this work,
namely, we consider the deformation of the associative submanifold from Example 8 along

the Laplacian flow of closed Go—structures.

Consider the connected and simply connected nilpotent Lie group GG with Lie
algebra
g = (07 07 07 O’ 6127 6137 0)7

from the Example 7. It could be seen as an almost abelian Lie algebra [Laul7] with respect
to the orthonormal basis g = Span(ey, ey, €3, €4, €7, €5,€¢), h = Span(es, €3, €4, €7, €5, €6)

and

A=adle)ly=[0 0 |esl(3.0). (3.35)

This example corresponds with ny from [Laul7, Example 5.8] under the change of basis

000O0O0O01

1 00 00O0O

0100000
P=100100 0 0]€G,.

0000100

000O0O0OT10

0001000

Thus, the Go—structure (2.28) is rewritten as
p=e Aw+p;

for w = e® + ' + €% and py = ¥7 + %7 + 2 — 310 3 SU(3)-structure on the abelian

ideal h. We calculate the Laplacian of ¢ by Axp = 0(Q )y where

(4]0
QA—(O Q1>7

1 1 1 1
5[14, A+ 5 tr(A+ A1 — i(A + A")? and ¢ = 5 tr(A + A")? (see [Laul7,

Proposition 5.15]). Then we have Q4 = ;diag(—Q, —2,-2,1,1,1,1) for the nilpotent

matrix A given in (3.35). It can be verified that the matrix A satisfies the relation

(A, AP
Al

thus, by [Laul7, Proposition 5.22] (G, ¢) is an algebraic soliton for the Laplacian flow

given D = Q4 — ¢l with

[A7 [A7 At] - (A + At>2] = A,

2 |[A AT
2|42

c= —;tr(A—i-At) = -3,
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hence, D = diag(1,1,1,2,2,2,2) € Der(g). Therefore, by [Laul7, Theorem 3.8] we have

3 10
—t+1)%2 s(t) = 10 log (375 + 1)

Et—i— 1)3/56123 4 6147 4 6156 + 6267 4 6357 4 6245 . 6346.

Notice that ¢(t)|,= €'®® where a = Span(ey,es, e6) is the abelian subalgebra. So, the

associative submanifold given in the Example 8 remains associative for any ¢(t).
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Concluding Remarks

We would like to conclude with two questions for future work.

1. In view of the equivalence between the bracket flow and the modified Laplacian
co-flow given in Lemma 26, it would be interesting to study the evolution of the
norm obtained in Proposition 11 to understand the long time behaviour of solutions
and thereof give necessary and sufficient conditions on A € sp(6,R) to obtain an

algebraic soliton.

2. When the full torsion tensor T'= —7y7 is traceless symmetric, the scalar curvature
of the corresponding Gs-metric is nonpositive, and it vanishes if, and only if, the
structure is torsion-free (c.f. [Bry06, (4.28)] or [Kar09, (4.21)]). This fact was first
pointed out by Bryant for a closed Go-structure, in order to explain the absence of
closed Einstein Go-structures (other than Ricci-flat ones) on compact 7-manifolds,
giving rise to the concept of extremally Ricci-pinched closed Ga-structure [Bry06,
Remark 13]. Later on, Ferndndez et al. showed that a 7-dimensional (non-flat)
Einstein solvmanifold (S, ¢) cannot admit any left-invariant co-closed Go-structure
¢ such that g, = ¢g [FM].

In that context, it would be interesting to study pinching phenomena for the Ricci
curvature of solvmanifolds with a co-closed (non-flat) left-invariant Ge-structure and
traceless torsion. In our present construction, for instance, we can see from Corollary

11 that
R}

O = fRictaP

=1.



[AS08a)

[AS08b)

[B&ir96]

[BF17]

[BF18]

[Bry06]

[Bryl1]

[BVO7]

[CN15]

[CP15]

[DK90]

[FG82]

[FM]

[FR16]

90

Bibliography

S. Akbulut and S. Salur. Calibrated manifolds and gauge theory. J. Reine Angew.
Math., 2008(625):187-214, 2008.

S. Akbulut and S. Salur. Deformations in Go—manifolds. Adv. Math., 217(5):2130—
2140, 2008.

C. Bar. The Dirac operator on space forms of positive curvature. J. Math. Soc.
Japan, 48(1):69-83, 1996.

M. Bagaglini, L. Ferndndez and A. Fino. Laplacian co-flow on the 7-dimensional
Heisenberg group. arXiv preprint arXiv:1704.00295, 2017.

L. Bagaglini and A. Fino. The Laplacian coflow on almost-Abelian Lie groups.
Annali di Matematica Pura ed Applicata (1923-), 197(6):1855-1873, 2018.

R. Bryant. Some remarks on Go-structures. Proceedings of Gékova Geometry-
Topology Conference 2005, pages 75-109, 2006.

R. Bryant. Laplacian flow for closed Ga-structures: short time behavior. arXiv
preprint arXiv:1101.2004, 2011.

Lucio Bedulli and Luigi Vezzoni. The Ricci tensor of su(3)-manifolds. Journal of
Geometry and Physics, 57(4):1125-1146, 2007.

D. Crowley and J. Nordstrom. New invariants of Go—structures. Geometry &
Topology, 19(5):2949-2992, 2015.

M. Nordstrom J. Corti, A. Haskins and T. Pacini. Go—manifolds and associative
submanifolds via semi-fano 3-folds. Duke Math. J., 164(10):1971-2092, 2015.

S. Donaldson and P. Kronheimer. The geometry of four-manifolds. Oxford
University Press, 1990.

M. Fernandez and A. Gray. Riemannian manifolds with structure group Geo.
Annali di matematica pura ed applicata, 132(1):19-45, 1982.

Fino A. Fernandez, M. and V. Manero. Gs-structures on einstein solvmanifolds.
Asian Journal of Mathematics, No 19.

A. Fernandez, M. Fino and A. Raffero. Locally conformal calibrated Gs-manifolds.
Annali di Matematica Pura ed Applicata (1923-), 195(5):1721-1736, 2016.



Bibliography 91

[FR17]

[Frel2]

[Frel3]

[Gay14]

[Gril3]

[Gril6]

[Hit0g]

[HLS2]

[Hus66]

[JK17]

[Joy96]

[Joy00]

[Kar09)]

[Kaw13]

[Kaw17]

A. Fino and A. Raffero. Closed warped Gao—structures evolving under the Lapla-
cian flow. arXiv preprint arXiv:1708.00222. To appear in Annali della Scuola
Normale Superiore di Pisa, Classe di Scienze, 2017.

M. Freibert. Cocalibrated structures on Lie algebras with a codimension one
Abelian ideal. Annals of Global Analysis and Geometry, 42(4):537-563, 2012.

M. Freibert. Calibrated and parallel structures on almost Abelian Lie algebras.

arXiw preprint arXiv:1307.2542, 2013.

D. Gayet. Smooth moduli spaces of associative submanifolds. The Quarterly
Journal of Mathematics, 2014.

S. Grigorian. Short-time behaviour of a modified laplacian co-flow of Ga-structures.

Adv. Math., 248:378-415, 2013.

S. Grigorian. Modified Laplacian co-flow of Ga-structures on manifolds with
symmetry. Differential Geom. Appl., 46:39-78, 2016.

N. Hitchin. The geometry of three-forms in six and seven dimensions. 2000. arXiv
preprint math.dg/0010054, pages 1-38, 2008.

R. Harvey and H. Lawson. Calibrated geometries. Acta Mathematica, 148(1):47—
157, 1982.

D. Hussemoller. Fiber bundles. Graduate Texts in Mathematics, 1966.

D. Joyce and S. Karigiannis. A new construction of compact Ge-manifolds by
gluing families of Eguchi-Hanson spaces. arXiv:1707.09325 to appear in Journal
of Differential Geometry, 2017.

D. Joyce. Compact Riemannian 7-manifolds with holonomy Gs. i. Journal of
differential geometry, 43:291-328, 1996.

D. Joyce. Compact manifolds with special holonomy. Oxford University Press on
Demand, 2000.

S. Karigiannis. Flows of Gg-structures, i. The Quarterly Journal of Mathematics,
60(4):487-522, 2009.

K. Kawai. Submanifolds in Go—manifolds. 2013.

K. Kawai. Deformations of homogeneous associative submanifolds in nearly
parallel Go—manifolds. Asian J. Math., (3):429-462, 2017.



Bibliography 92

[Kod62]

[KT12]

[Laul6]

[Laul7]

[LM16]

[Lot12]

[Mal49]

[McLOg]

[Mil76]

[Mor16]

[Nicl8]

[SAST]

[Sal00]

[SM16]

K. Kodaira. A theorem of completeness of characteristic systems for analytic

families of compact submanifolds of complex manifolds. Annals of Mathematics,
pages 146-162, 1962.

B. Karigiannis, S. McKay and M. Tsui. Soliton solutions for the Laplacian co-flow
of some Go—structures with symmetry. Differential Geom. Appl., 30(4):318-333,
2012.

J. Lauret. Geometric flows and their solitons on homogeneous spaces. Rendiconti
del Seminario Matematico di Torino, 74:55-93, 2016.

J. Lauret. Laplacian flow of homogeneous Ga-structures and its solitons. Pro-
ceedings of the London Mathematical Society, 114(3):527-560, 2017.

H. B. Lawson and M. Michelsohn. Spin geometry, volume 38. Princeton university
press, 2016.

Jason D Lotay. Associative submanifolds of the 7-sphere. Proceedings of the
London Mathematical Society, 105(6):1183-1214, 2012.

A. Maltsev. On a class of homogeneous spaces. Izvestiya Rossiiskoi Akademii
Nauk. Seriya Matematicheskaya, 13(1):9-32, 1949.

R. McLean. Deformations of calibrated submanifolds. Communications in
Analysis and Geometry, 6:705-747, 1998.

J. Milnor. Curvatures of left invariant metrics on Lie groups. Adv. Math.,
21(3):293-329, 1976.

T. Moriyama. Deformations of special Legendrian submanifolds in Sasaki-Einstein
manifolds. Mathematische Zeitschrift, 283:1111-1147, 2016.

M. Nicolini. Laplacian solitons on nilpotent Lie groups. Bulletin of the Belgian
Mathematical Society-Simon Stevin, 25(2):183-196, 2018.

M. Shubin and S. Andersson. Pseudodifferential operators and spectral theory,
volume 200. Springer, 1987.

D. Salamon. Spin Geometry and Sieberg- Witten Invariants. ETH, 2000.

L. San Martin. Grupos de Lie. Editora da Unicamp, 2016.



	First page
	Title page
	Catalographic data
	Approval
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	Contents
	Introduction
	Preliminary: G2–Geometry
	Linear algebra of dimension 8,7,6
	Associative 3-planes
	G2–manifolds and associative submanifolds
	G2–decomposition of the space of differential k-forms
	`39 `42 `"613A `45 `47 `"603A SU(3)–decompositions of the space of differential k-forms

	Description of the normal bundle of an associative submanifold
	Spin group of 4-dimensional vector space
	The twisted Dirac operator


	Deformation of associative submanifolds
	The nearly parallel case and applications
	Proof of the vanishing theorem
	An associative submanifold of the 7-sphere

	Locally conformal calibrated case and applications
	Calibrated case

	Co-closed G2–flows
	Geometric flow of G-invariant structures
	Invariant G2–structures on Lie groups
	Proof of Lemma 24

	Lie bracket flow
	Self Similar Solutions
	Almost abelian Lie groups
	Example of a co-flow soliton 
	Example of a modified co-flow soliton

	An associative submanifold along the Laplacian flow

	Concluding Remarks
	Bibliography

