UNICAMP

# UNIVERSIDADE ESTADUAL DE CAMPINAS <br> Instituto de Matemática, Estatística e Computação Científica 

ANDRÉS JULIÁN MORENO OSPINA

# Algebraic methods in $\mathrm{G}_{2}$-geometry 

Métodos algébricos em $\mathrm{G}_{2}$-geometria

Campinas
2019

Andrés Julián Moreno Ospina

## Algebraic methods in $\mathrm{G}_{2}$-geometry

## Métodos algébricos em $\mathrm{G}_{2}$-geometria


#### Abstract

Tese apresentada ao Instituto de Matemática, Estatística e Computação Científica da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Doutor em Matemática.

Thesis presented to the Institute of Mathematics, Statistics and Scientific Computing of the University of Campinas in partial fulfillment of the requirements for the degree of Doctor in Mathematics.


Supervisor: Henrique Nogueira de Sá Earp

Este exemplar corresponde à versão final da Tese defendida pelo aluno Andrés Julián Moreno Ospina e orientada pelo Prof. Dr. Henrique Nogueira de Sá Earp.

Ficha catalográfica
Universidade Estadual de Campinas
Biblioteca do Instituto de Matemática, Estatística e Computação Científica Ana Regina Machado - CRB 8/5467

```
Moreno Ospina, Andrés Julián, 1990-
M815a Algebraic methods in G2-geometry / Andrés Julián Moreno Ospina. Campinas, SP : [s.n.], 2019.
Orientador: Henrique Nogueira de Sá Earp.
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica.
1. Fueter, Operadores de. 2. G-estruturas. 3. Subvariedades. 4. Geometria diferencial. 5. Lie, Grupos de. I. Sá Earp, Henrique Nogueira de, 1981-. II. Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica. III. Título.
```


## Informações para Biblioteca Digital

Título em outro idioma: Métodos algébricos em G2-geometria Palavras-chave em inglês:
Fueter operator
G-structures
Submanifolds
Differential geometry
Lie groups
Área de concentração: Matemática
Titulação: Doutor em Matemática

## Banca examinadora:

Henrique Nogueira de Sá Earp [Orientador]
Gonçalo Marques Fernandes de Oliveira
Lino Anderson da Silva Grama
Andrew James Clarke
Lázaro Orlando Rodríguez Díaz
Data de defesa: 09-08-2019
Programa de Pós-Graduação: Matemática

# Tese de Doutorado defendida em 09 de agosto de 2019 e aprovada 

 pela banca examinadora composta pelos Profs. Drs.Prof(a). Dr(a). HENRIQUE NOGUEIRA DE SÁ EARP

## Prof(a). Dr(a). GONÇALO MARQUES FERNANDES DE OLIVEIRA

Prof(a). Dr(a). LINO ANDERSON DA SILVA GRAMA

Prof(a). Dr(a). ANDREW JAMES CLARKE

Prof(a). Dr(a). LÁZARO ORLANDO RODRÍGUEZ DÍAZ

A Ata da Defesa, assinada pelos membros da Comissão Examinadora, consta no SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria de Pós-Graduação do Instituto de Matemática, Estatística e Computação Científica.

To my family and Yuliana

## Acknowledgements

I would like to express my gratitude to my advisor Professor Henrique Sá Earp for his valuable advice and continued support.
I am thankful to Professor Lino Grama, Professor Marcos Jardim, Professor Rafael Leão, Professor Alcibiades Rigas and Professor Luiz San Martin, I owe them a deeply gratitude for their valuable teaching. Also, I am grateful with professor Jorge Lauret for the valuable suggestions to this work.
I would like to thank my colleagues for the useful discussions and all the moments that we shared. Also, I am grateful to the administrative staff from IMECC for their kind-hearted help.
Finally, this thesis would not be possible with the understanding and the constant encouragement from my family and my fiancée.
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 and by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) n ${ }^{\circ}$ 140689/2017-6.

Someday, everyone will know LINEARALGEBRA, (trademark, copyright, patent-pending), and ignorance and superstition will be banished forever. (Robert Bryant at mathoverflow)

## Resumo

Nesta tese estudamos dois tópicos, o espaço de deformação de subvariedades associativas e fluxos de $\mathrm{G}_{2}$-estruturas co-fechadas invariantes. No primeiro tópico, encontramos uma fórmula de Weitzenböck para o operador de Fueter-Dirac, o qual controla as deformações infinitesimais de uma subvariedade associativa em uma 7 -variedade com uma $\mathrm{G}_{2}$-estrutura. Como aplicações, construímos duas subvariedades associativas rígidas e demos uma prova diferente da rigidez da 3 -esfera na 7 -esfera redonda, o qual foi feito por Kawai [Kaw13, Kaw17]. No segundo tópico, aplicamos a técnica geral proposta por Lauret [Lau16] para o co-fluxo laplaciano e o co-fluxo laplaciano modificado de $\mathrm{G}_{2}$-estruturas co-fechadas invariantes em um grupo de Lie. Como resultado, para cada um dos fluxos encontramos um soliton explícito em uma 7 -variedade quase abeliana particular.

Palavras-chave: $\mathrm{G}_{2}$-estrutura, subvariedade associativa, $\mathrm{G}_{2}$-fluxo, grupo de Lie.

## Abstract

In this thesis we deal with two topics, the deformation space of associative submanifolds and flows of invariant co-closed $\mathrm{G}_{2}$-structures. For the first one, we find a Weitzenböck formula for the Fueter-Dirac operator which controls infinitesimal deformations of an associative submanifold in a 7 -manifold with a $\mathrm{G}_{2}$-structure. As applications, we construct two rigid associative submanifolds and we find a different proof of rigidity for associative 3 -sphere in the round 7 -sphere from those given by Kawai [Kaw13, Kaw17]. For the second one, we apply the general Ansatz proposed by Lauret [Lau16] for the Laplacian co-flow and the modified Laplacian co-flow of invariant co-closed $\mathrm{G}_{2}$-structures on a Lie group. As result, for each flow we find an explicit soliton on a particular almost abelian 7-manifold.

Keywords: $\mathrm{G}_{2}$-structure, associative submanifold, $\mathrm{G}_{2}$-flow, Lie group.

## Contents

Introduction ..... 11
PRELIMINARY: $\mathrm{G}_{2}$-GEOMETRY ..... 16
1.1 Linear algebra of dimension 8, 7, 6 ..... 16
1.2 Associative 3-planes ..... 19
1.3 $\mathrm{G}_{2}$-manifolds and associative submanifolds ..... 20
1.4 $\mathrm{G}_{2}$-decomposition of the space of differential $k$-forms ..... 21
1.4.1 $\mathrm{SU}(3)$-decompositions of the space of differential $k$-forms ..... 26
1.5 Description of the normal bundle of an associative submanifold ..... 27
1.5.1 Spin group of 4-dimensional vector space ..... 28
1.5.2 The twisted Dirac operator ..... 31
2 DEFORMATION OF ASSOCIATIVE SUBMANIFOLDS ..... 34
2.1 The nearly parallel case and applications ..... 42
2.1.1 Proof of the vanishing theorem ..... 43
2.1.2 An associative submanifold of the 7-sphere ..... 46
2.2 Locally conformal calibrated case and applications ..... 49
2.3 Calibrated case ..... 59
3 CO-CLOSED $\mathrm{G}_{2}$-FLOWS ..... 63
3.1 Geometric flow of $G$-invariant structures ..... 63
3.2 Invariant $\mathrm{G}_{2}$-structures on Lie groups ..... 64
3.2.1 Proof of Lemma 24 ..... 67
3.3 Lie bracket flow ..... 69
3.4 Self Similar Solutions ..... 71
3.5 Almost abelian Lie groups ..... 74
3.5.1 Example of a co-flow soliton ..... 83
3.5.2 Example of a modified co-flow soliton ..... 85
3.6 An associative submanifold along the Laplacian flow ..... 87
Concluding Remarks ..... 89
BIBLIOGRAPHY ..... 90

## Introduction

This thesis is concerned with $\mathrm{G}_{2}$-geometry, more specifically about associative submanifolds and flows of co-closed $\mathrm{G}_{2}$-structures.

Associative submanifolds were introduced by Harvey and Lawson [HL82] as particular case of calibrated submanifold. Afterwards, R. McLean in his seminal paper [McL98] addressed the question of deformability of calibrated submanifolds as a generalisation of Kodaira's work on deformation of complex submanifolds [Kod62]. In two particular calibrated geometries, namely, the special Lagrangian and the coassociative geometries, the normal bundles are intrinsic, so, the existence of calibrated deformations of a calibrated submanifold is reduced to topological questions of the submanifold itself. Meanwhile, in the other two calibrated geometries, specifically, the three dimensional associative submanifolds and the four dimensional Cayley submanifolds the normal bundle are not intrinsic, but rather they are twisted spin bundles of extrinsic vector bundles. In this thesis is discussed the case of associative submanifold $Y$, which only occur when the ambient manifold $M$ has real dimension 7, and the calibration is a 3-form $\varphi$. In fact, $(M, \varphi)$ is a manifold with $\mathrm{G}_{2}$-structure, in [McL98], McLean proved that a class in the moduli space of associative deformations corresponds to a harmonic spinor of a twisted Dirac operator, under the torsion-free hypothesis $T \equiv \nabla \varphi=0$. Then, Akbulut and Salur [AS08a, AS08b] generalised McLean's theorem for a general $\mathrm{G}_{2}$-structure identifying the tangent space at an associative submanifold $Y^{3}$ in $\left(M^{7}, \varphi\right)$ with the kernel of

$$
\begin{equation*}
\not D_{\mathrm{A}}: \Omega^{0}(Y, N Y) \rightarrow \Omega^{0}(Y, N Y) \tag{1}
\end{equation*}
$$

where $A=A_{0}+a$, for $A_{0}$ the induced connection on $N Y$ and some $a \in \Omega^{1}(Y, \operatorname{ad}(N Y))$. The first purpose of this thesis is to obtain a Weitzenböck formula for the operator (1), that is, a relation between the second-order elliptic square $D_{\mathrm{A}}^{2}$ and the trace Laplacian $\nabla^{*} \nabla$ of the induced Levi-Civita connection on $N Y$. Under suitable positivity assumptions on curvature, this implies rigidity, i.e., that $Y$ has "essentially" no infinitesimal associative deformations, in the following sense. Denote by $G:=\operatorname{Stab}(\varphi) \subset \operatorname{Aut}(M)$ the group of global automorphisms preserving $\varphi$. The infinitesimal associative deformations of $Y$ consist of:
(i) trivial deformations given by the action of $G$ on $Y$ (see [Kaw17] and [Mor16]);
(ii) non-trivial deformations, which depend intrinsically on the geometry of the associative submanifold.

For instance, in [Kaw17], an associative submanifold is considered rigid if all infinitesimal associative deformations are trivial; in the particular case of the homogeneous space
$M=S^{7}$, the symmetry group of $\varphi$ is $G=\operatorname{Spin}(7)$. On the other hand, Gayet [Gay14] and McLean [McL98] consider a generic $\mathrm{G}_{2}$-structure, i.e., without symmetries. So, $G$ is 0 -dimensional and $Y$ is rigid if the space of nontrivial infinitesimal deformation vanishes.

The exposition is organised as follows: Chapter 1 is proactive background review in $\mathrm{G}_{2}$-geometry, in order to fix the notation and the sign convention of some important tensors arising from the $\mathrm{G}_{2}$-structure. We then deduce Lemma 5, a Leibniz rule for the Levi-Civita connection and the Riemann curvature tensor with respect to the cross product. After that, we collect $\varepsilon_{i j k}$-identities for $\mathrm{SU}(3)$-structure, it will be a key computational tool in Chapter 3. Finally, we concluded by recalling some results from 4-dimensional spin geometry to explain the explicit identification

$$
N Y \otimes_{\mathbb{R}} \mathbb{C} \cong S^{+} \otimes_{\mathbb{C}} S^{-}
$$

between the normal bundle of $Y$ and a spinor bundle $S=S^{+} \oplus S^{-} \rightarrow Y$, in order to describe the Fueter-Dirac operator in detail.

In Chapter 2, we deal with deformation of associative submanifold following the general framework proposed by Akbulut and Salur [AS08a, AS08b]. We then obtain the following Weitzenböck formula, which generalise the previous formula obtained by Gayet [Gay14].

Theorem 1. The Weitzenböck formula for (1) is

$$
\begin{align*}
\not D_{\mathrm{A}}^{2}(\sigma)= & \nabla^{*} \nabla \sigma+\mathcal{R}(\sigma)-\pi^{\perp}\left(\sum_{i \in \mathbb{Z}_{3}} e_{i} \times \mathcal{T}\left(e_{i+1}, \sigma, e_{i}, e_{i+1}\right)\right)+H \times \mathcal{B}(\sigma)+\left(\operatorname{tr} S_{\sigma}\right) H-\mathcal{A}(\sigma) \\
& -\sum_{j=1}^{3} \pi^{\perp}\left(T\left(e_{j}, \cdot\right)^{\sharp}\right) \times S_{\sigma}\left(e_{j}\right)+\pi^{\perp}\left(T(\mathcal{B}(\sigma), \cdot)^{\sharp}\right)+P_{1}(\sigma)+P_{2}(\sigma)+P_{3}(\sigma) . \tag{2}
\end{align*}
$$

Where $P_{1}, P_{2}$ and $P_{3}$ are first order differential operators on $N Y$, involving the torsion of the $\mathrm{G}_{2}$-structure, $\mathcal{B}$ is a $0^{\text {th }}$-order operator defined by the shape operator $S_{\sigma}$ on the normal section $\sigma$

$$
\mathcal{B}(\sigma):=\sum_{j=1}^{3} e_{j} \times S_{\sigma}\left(e_{j}\right)
$$

$H$ is the mean curvature vector field of the immersed associative submanifold, $\mathcal{A}(\sigma)=$ $S^{t} \circ S(\sigma)$, is a symmetric positive $0^{\text {th }}-$ order operator determined by the shape operator, $\mathcal{R}(\sigma)=\pi^{\perp} \sum_{i=1}^{3} R\left(e_{i}, \sigma\right) e_{i}$ is a partial Ricci operator, $\mathcal{T}\left(e_{i+1}, \sigma, e_{i}, e_{i+1}\right)$ is a $0^{\text {th }}$-order involving the torsion tensor, the Hodge dual 4 -form $\psi$ and its covariant derivative, and $\nabla^{*} \nabla$ is the connection Laplacian

$$
\nabla^{*} \nabla n=-\sum \nabla_{i}^{\perp} \nabla_{i}^{\perp} n-\nabla_{\nabla_{i} e_{i}}^{\perp} n
$$

in a global frame $\left\{e_{i}\right\}$ on the associative submanifold $Y$.

As application, in Section 2.1, we specialise to the nearly parallel case, in which $d \varphi$ and $\psi$ are collinear and the formula (2) simplifies significantly. For a generic nearly parallel $\mathrm{G}_{2}$-structure, we obtain a vanishing theorem to conclude rigidity under suitable intrinsic geometric conditions on $Y$.

Theorem 2. Let $(M, \varphi)$ be a 7-manifold with a nearly parallel $\mathrm{G}_{2}$-structure. If $Y \subset M$ is a closed associative submanifold such that the operator $\mathcal{R}-\mathcal{A}$ is non-negative, then $Y$ is rigid.

As immediate applications, we propose an alternative proof of rigidity for the known case of an associative $\mathrm{SU}(2)$-orbit 3 -sphere for Lotay's cocalibrated $\mathrm{G}_{2}$-structure on $S^{7}$ studied by Kawai [Lot12, Kaw13, Kaw17].

Corollary 1. The 3 -sphere in $S^{7}$ is rigid as an associative submanifold.

In sections 2.2 and 2.3, we construct rigid associative submanifolds (Corollaries 7 and 8), respectively. The first one associative submanifold lies in a compact manifold $S$ with locally conformal calibrated $\mathrm{G}_{2}$-structure obtained from the 3-dimensional complex Heisenberg group by Fernández-Fino-Raffero [FR16] and the second one associative submanifold lies in a seven dimensional nilmanifold with closed $\mathrm{G}_{2}$-structure obtained from the seven dimensional 2-step nilpotent Lie algebra $\mathfrak{n}_{2}$ [FR17, Lau17, Nic18]

The second purpose of this thesis is to study the Laplacian co-flow (LC) and the modified Laplacian co-flow (MLC)

$$
\text { (LC) } \quad \frac{\partial}{\partial t} \psi_{t}=-\Delta_{\psi} \psi, \quad(\mathrm{MLC}) \quad \frac{\partial}{\partial t} \psi_{t}=\Delta_{\psi} \psi+2 d((C-\operatorname{tr} T) \varphi)
$$

of co-closed $\mathrm{G}_{2}$-structures, introduced by Karigiannis et al. [KT12] and Grigorian [Gri13], respectively. The co-closed $\mathrm{G}_{2}$-structure condition $d \psi=0$ is weaker than the torsion free condition and even than the closed condition $d \varphi=0$. Also, any $\mathrm{G}_{2}$-structure can be deformed to become co-closed, for a closed $\mathrm{G}_{2}$-structure it does not necessarily true [CN15], thus, in some sense, consider co-closed $\mathrm{G}_{2}$-structures is more natural than closed ones. However, the Laplacian co-flow does not have a nice behaviour, namely, (LC) is not weakly parabolic, in fact, the symbol of the linearised equation has not sign-definite. For that reason, the modified Laplacian co-flow arises to fixing the non parabolicity of the Laplacian co-flow in the direction of the co-closed forms.
The flows (LC) and (MLC) have been studied in [KT12, Gri16] for two explicit examples of co-closed $G_{2}$-structures with symmetry, namely for warped products of an interval, or a circle, with a compact 6 -manifold $N$ which is taken to be either a nearly Kähler or a Calabi-Yau manifold and recently, in [BF17] Bagaglini et al. studied both flows for the 7-dimensional Heisenberg group and in [BF18] they showed long time-existence for a class of seven dimensional almost-abelian Lie group for (LC).

In Chapter 3, our main focus is when $M^{7}=G$ is a Lie group, we propose to study these flows from the perspective introduced by Lauret [Lau16] in the general context of geometric flows on homogeneous spaces. In section 3.5, we gathered useful identities for co-closed $\mathrm{G}_{2}$-structures on almost abelian Lie groups, namely, we calculated the remained torsion forms,

Proposition 1. The torsion forms $\tau_{0}$ and $\tau_{3}$ for an almost abelian Lie group $\left(G_{A}, \varphi\right)$ with co-closed $\mathrm{G}_{2}$-structure are

$$
\tau_{0}=\frac{2}{7} \operatorname{tr}(J A) \quad \text { and } \quad \tau_{27}=\left(\begin{array}{c|c}
\frac{1}{14} \operatorname{tr}(J A) I_{6}-\frac{1}{2}[J, A] & 0 \\
\hline 0 & -\frac{3}{7} \operatorname{tr}(J A)
\end{array}\right)
$$

The full torsion tensor,
Corollary 2. The full torsion tensor $T$ of an almost abelian Lie group $\left(G_{A}, \varphi\right)$ with an invariant co-closed $\mathrm{G}_{2}$-structure is

$$
T=\frac{1}{2}\left(\begin{array}{c|c}
{[J, A]} & 0 \\
\hline 0 & \operatorname{tr}(J A)
\end{array}\right)
$$

And the Laplacian of $\psi$,
Proposition 2. If $\left(G_{A}, \varphi\right)$ is co-closed, we have:
i) For the Hodge Laplacian of $\psi$

$$
\Delta_{\psi} \psi=\theta\left(\operatorname{Ric}(g)-\frac{1}{2} T \circ T-(\operatorname{tr} T) T\right)=\theta\left(Q_{A}\right)
$$

Furthermore, $Q_{A}=\operatorname{Ric}(g)-(\operatorname{tr} T) T-\frac{1}{2} T \circ T$ is a symmetric operator and it is given by

$$
Q_{A}=\left(\begin{array}{c|c}
Q_{1} & 0 \\
\hline 0 & q
\end{array}\right),
$$

where

$$
Q_{1}=\frac{1}{2}\left[A, A^{t}\right]+\frac{1}{2} S_{A} \circ_{6} S_{A} \quad \text { and } \quad q=-\frac{1}{2} \operatorname{tr}\left(S_{A}\right)^{2}-\frac{1}{4}(\operatorname{tr} J A)^{2} .
$$

ii) For the modified Laplacian

$$
\Delta_{\psi} \psi+2 d((C-\operatorname{tr} T) \varphi)=\theta\left(\operatorname{Ric}(g)-\frac{1}{2} T \circ T-(2 C-\operatorname{tr} T) T\right)=\theta\left(P_{A}\right)
$$

where

$$
P_{A}=\left(\begin{array}{c|c}
P_{1} & 0 \\
\hline 0 & p
\end{array}\right)
$$

where $P_{1}=\frac{1}{2}\left[A, A^{t}\right]+\frac{1}{2} S_{A} \circ_{6} S_{A}-\left(C-\frac{1}{2} \operatorname{tr} J A\right)[J, A]$ and $p=-\frac{1}{2} \operatorname{tr}\left(S_{A}\right)^{2}+$ $\frac{1}{4}(\operatorname{tr} J A)^{2}-C \operatorname{tr} J A$.

Where the matrix $A \in \mathfrak{s p}(6, \mathbb{R})$ encode the constant structures of the almost abelian Lie algebra $\mathfrak{g}=\operatorname{Lie}(G)$.
As an application of these formulae, we apply a natural Ansatz to construct examples of invariant self-similar solution, or soliton, of both co-flows in the Subsections 3.5.1 and 3.5.2. Solitons are $\mathrm{G}_{2}$-structures which, under the flow, simply scale monotonically and move by diffeomorphisms. In particular, they provide potential models for singularities of the flow, as well as means for desingularising certain singular $\mathrm{G}_{2}$-structures, both of which are key aspects of any geometric flow.
In section 3.6, we address a motivational example of a soliton for the Laplacian flow of closed $\mathrm{G}_{2}$-structures following the framework developed by Lauret [Lau16]. Here, we study the behaviour of the associative submanifold from Example 8 along the Laplacian flow with initial $\mathrm{G}_{2}$-structure given in (2.28).
Ultimately, we formulate two questions for future work.

## 1 Preliminary: $\mathrm{G}_{2}$-Geometry

We first present some algebraic and geometric proprieties of $G_{2}$-geometry related with $\mathrm{G}_{2}$-structures and associative submanifolds, these can be found e.g. in [HL82, Kar09, CP15].

### 1.1 Linear algebra of dimension $8,7,6$

The octonions $\mathbb{O}=\mathbb{H} \oplus \mathbb{H} \cong \mathbb{R}^{8}$ are an 8-dimensional, non-associative, division algebra. For the basis $\left\{1_{\mathbb{O}}=e_{0}, e_{1}, \ldots, e_{7}\right\}$ we adopt the following convention for the octonionic product:

| $\cdot$ | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ | $e_{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $e_{1}$ | -1 | $e_{3}$ | $-e_{2}$ | $e_{5}$ | $-e_{4}$ | $e_{7}$ | $-e_{6}$ |
| $e_{2}$ | $-e_{3}$ | -1 | $e_{1}$ | $e_{6}$ | $-e_{7}$ | $-e_{4}$ | $e_{5}$ |
| $e_{3}$ | $e_{2}$ | $-e_{1}$ | -1 | $-e_{7}$ | $-e_{6}$ | $e_{5}$ | $e_{4}$ |
| $e_{4}$ | $-e_{5}$ | $-e_{6}$ | $e_{7}$ | -1 | $e_{1}$ | $e_{2}$ | $-e_{3}$ |
| $e_{5}$ | $e_{4}$ | $e_{7}$ | $e_{6}$ | $-e_{1}$ | -1 | $-e_{3}$ | $-e_{2}$ |
| $e_{6}$ | $-e_{7}$ | $e_{4}$ | $-e_{5}$ | $-e_{2}$ | $e_{3}$ | -1 | $e_{1}$ |
| $e_{7}$ | $e_{6}$ | $-e_{5}$ | $-e_{4}$ | $e_{3}$ | $e_{2}$ | $-e_{1}$ | -1 |

By the product above follows that $u \in \operatorname{Im}(\mathbb{O})$ if and only $u^{2}=u \cdot u$ is real but $u$ in not.
Definition 1. The group of automorphism of $\left(\mathbb{O}\right.$ is $\mathrm{G}_{2}:=\operatorname{Aut}(\mathbb{O})$.

For $\gamma \in \mathrm{G}_{2}$ and $u \in \operatorname{Im}(\mathbb{O}), \gamma(u) \notin \mathbb{R}$ and $\gamma\left(u^{2}\right)=\gamma(u)^{2}$ is real, so $\gamma(u) \in \operatorname{Im}(\mathbb{O})$. Therefore, $\mathrm{G}_{2}$ is a subgroup of the group of automorphism of $\operatorname{Im}(\mathbb{O})$ preserving the octonionic product on $\operatorname{Im}(\mathbb{D})$. On the imaginary part $\operatorname{Im}(\mathbb{O})=\mathbb{R}^{7}$, the cross product is given by (e.g. [HL82, Appendix IV.A])

$$
\begin{align*}
\times: \mathbb{R}^{7} \times \mathbb{R}^{7} & \rightarrow \mathbb{R}^{7} \\
(u, v) & \mapsto \frac{1}{2}(u v-v u)=\operatorname{Im}(u v) . \tag{1.1}
\end{align*}
$$

Notice that, $(u \times v)^{2}=-g_{0}(u, u) g_{0}(v, v) \in \mathbb{R}$ and $u \times v$ is not real, where $g_{0}$ is the standard inner product in $\mathbb{R}^{7}$. Hence, $\times$ is well defined and also is preserved by the action of $G_{2}$ i.e. $\gamma(u \times v)=\gamma(u) \times \gamma(v)$ for all $\gamma \in \mathrm{G}_{2}$. On the other hand, the inner product in $\mathbb{R}^{7}$ can be defined in terms of the octonionic product (e.g. [HL82, Appendix IV.A])

$$
\begin{equation*}
g_{0}(u, v)=-\frac{1}{2}(u v+v u)=\operatorname{Re}(u v) \quad \text { for } \quad u, v \in \mathbb{R}^{7} \tag{1.2}
\end{equation*}
$$

from the above, follows that $G_{2}$ lies in $O(7)$, the orthogonal transformations of $\mathbb{R}^{7}$. Notice that, the algebra structure of $\mathbb{O}=\mathbb{R} \oplus \operatorname{Im}(\mathbb{O})$ can be recovered from the vector product (1.1) and the inner product (1.2) by

$$
(a, u) \cdot(b, v)=\left(a b-g_{0}(u, v), a v+b u+u \times v\right) \quad \text { for } \quad a, b \in \mathbb{R}, u, v \in \operatorname{Im}(\mathbb{D}),
$$

So, for $\gamma \in \operatorname{Gl}(7)$ preserving the cross and the inner product, we have that $\gamma(a, u):=$ $(a, \gamma(u))$ lies in $\operatorname{Aut}(\mathbb{O})$. So, we get

$$
\begin{equation*}
\mathrm{G}_{2}=\left\{\gamma \in \mathrm{Gl}(7): \gamma(u) \times \gamma(v)=u \times v \quad \text { and } \quad g_{0}(\gamma(u), \gamma(v))=g_{0}(u, v)\right\} . \tag{1.3}
\end{equation*}
$$

From $g_{0}$ and $\times$ we can define the trilinear alternating form

$$
\varphi_{0}(u, v, w)=g_{0}(u \times v, w) \in \Lambda^{3}\left(\mathbb{R}^{7}\right)^{*},
$$

choosing the basis $e_{1}, \ldots, e_{7}$ orthonormal with respect to (1.2) we can write

$$
\begin{equation*}
\varphi_{0}=e^{123}+e^{145}+e^{167}+e^{246}-e^{257}-e^{347}-e^{356} \tag{1.4}
\end{equation*}
$$

where $e^{i j k}=e^{i} \wedge e^{j} \wedge e^{k}$. Notice that the octonionic multiplication can be recovered from the 3 -form $\varphi_{0}$ by

$$
e_{i} \cdot e_{j}=\varphi_{0}\left(e_{i}, e_{j}, e_{k}\right) e_{k}
$$

hence, for $\gamma$ in the stabiliser of $\varphi_{0}, \operatorname{Stab}\left(\varphi_{0}\right) \subset \operatorname{Gl}(7)$

$$
\gamma\left(e_{i}\right) \cdot \gamma\left(e_{j}\right)=\varphi_{0}\left(\gamma\left(e_{i}\right), \gamma\left(e_{j}\right), e_{k}\right) e_{k}=\varphi_{0}\left(e_{i}, e_{j}, \gamma^{-1}\left(e_{k}\right)\right) \gamma\left(\gamma^{-1}\left(e_{k}\right)\right)=\gamma\left(e_{i} \cdot e_{j}\right)
$$

Therefore, we can give a second definition for $\mathrm{G}_{2}$ following [Joy00, Definition 10.1.1].
Definition 2. The subgroup of $\mathrm{Gl}(7)$ preserving the 3 -form $\varphi_{0}$ is the exceptional Lie group $G_{2}$. It is compact, connected, simply connected, semisimple and 14-dimensional.

By direct inspection on basis elements of $\mathbb{R}^{7}$ we get the relation

$$
\begin{equation*}
\left(e_{i}, \varphi_{0}\right) \wedge\left(e_{j}, \varphi_{0}\right) \wedge \varphi_{0}=6 g_{0}\left(e_{i}, e_{j}\right) e^{1 \cdots 7} \tag{1.5}
\end{equation*}
$$

notice that, the inner product and the volume form can be recovered from $\varphi_{0}$, so by equation (1.5) the elements of $\mathrm{G}_{2}$ also preserve the orientation of $\mathbb{R}^{7}$ and the 4-form

$$
\begin{equation*}
\psi_{0}=* \varphi_{0}=e^{4567}+e^{2367}+e^{2345}+e^{1357}-e^{1346}-e^{1256}-e^{1247} . \tag{1.6}
\end{equation*}
$$

We can use $\psi_{0}$ and the inner product to obtain an alternating vector valued 3 -form $\chi_{0}: \mathbb{R}^{7} \times \mathbb{R}^{7} \times \mathbb{R}^{7} \rightarrow \mathbb{R}^{7}$ defined by

$$
\begin{equation*}
\psi_{0}(u, v, w, z)=* \varphi_{0}(u, v, w, z)=g_{0}\left(\chi_{0}(u, v, w), z\right) \quad \text { for } \quad u, v, w, z \in \mathbb{R}^{7} \tag{1.7}
\end{equation*}
$$

Notice that, $\chi_{0}$ is not a triple cross-product since there exist orthonormal triples $u, v, w$ such that $\chi_{0}(u, v, w)=0$. Thus $\chi_{0}=-\sum_{i=1}^{7}\left(e_{i\lrcorner} \psi_{0}\right) \otimes e_{i}$, can be expressed in terms of the cross product (c.f. [HL82]),

$$
\begin{equation*}
\chi_{0}(u, v, w)=-u \times(v \times w)-g_{0}(u, v) w+g_{0}(u, w) v \tag{1.8}
\end{equation*}
$$

Remark 1. Regarding orientation conventions, some authors adopt the model 3-form to be

$$
\phi_{0}=e^{567}+e^{125}+e^{136}+e^{246}+e^{147}-e^{345}-e^{237}
$$

(cf. [McL98, Chapters 4 and 5]), which relates to (1.4) by the orientation-reversing automorphism of $\mathbb{R}^{7}$

$$
\left(\begin{array}{ccccc} 
& & & & I_{3} \\
1 & 0 & 0 & 0 & \\
0 & 1 & 0 & 0 & \\
0 & 0 & 1 & 0 & \\
0 & 0 & 0 & -1 &
\end{array}\right)
$$

In this case, relation (1.5) becomes

$$
\begin{equation*}
\left(u_{\lrcorner} \phi_{0}\right) \wedge\left(v_{\lrcorner} \phi_{0}\right) \wedge \phi_{0}=-6 g_{0}(u, v) \operatorname{vol}_{g_{0}} \tag{1.9}
\end{equation*}
$$

And the alternating vector valued 3 -form (1.8) by

$$
\chi(u, v, w)=u \times(v \times w)+\langle u, v\rangle w-\langle u, w\rangle v .
$$

Unless otherwise stated, we adopt throughout the convention (1.4).

Next, we want to define a $\mathrm{G}_{2}$-structure on a 7 -dimensional real vector space. This arise from the general notion of G -structure which is related with the reduction of the structure group of a principal bundle and the existence of a global section in a specific associated bundle, to more details see [Joy00, Sec. 2.6 and 10.1] and [Hus66, Ch. 6, Sec. 2].

Definition 3. Let $V$ be a 7-dimensional real vector space. We call $\varphi \in \Lambda^{3} V^{*} a \mathrm{G}_{2}{ }^{-}$ structure if there is a linear isomorphism $V \cong \mathbb{R}^{7}$ identifying $\varphi$ with $\varphi_{0}$. The 3 -form with this property is call positive and the set o positive 3 -forms is denoted by $\Lambda_{+}^{3} V^{*} \subset \Lambda^{3} V^{*}$.

The orbit $\mathrm{Gl}(7) \cdot \varphi_{0}$ has dimension $35=\operatorname{dim} \mathrm{Gl}(7)-\operatorname{dim} \mathrm{G}_{2}$, therefore $\Lambda_{+}^{3} V^{*}$ is open in $\Lambda^{3} V^{*}$. Also by Hodge duals of forms, the orbit $\mathrm{Gl}(V) \cdot \psi$ is open in $\Lambda^{4} V^{*}$.

Since the stabiliser of the basis element $e_{7} \in S^{6} \subset \mathbb{R}^{7}$ is isomorphic to $\operatorname{SU}(3)$ [CP15, Proposition 2.3 (b)], there exist a natural $\mathrm{SU}(3)$-structure arisen from the $\mathrm{G}_{2}{ }^{-}$ structure $\varphi$. The orthogonal complement $e_{7}^{\perp}$ with respect to the inner product (1.2) can be identified with $\mathbb{C}^{3}$ by taking a complex basis $w_{1}=e_{1}-i e_{6}, w_{2}=e_{2}+i e_{5}, w_{3}=e_{3}+i e_{4}$. Now, from the $\mathrm{G}_{2}$-structure (1.4), we have

$$
\begin{aligned}
-e_{7,} \varphi_{0} & =-e^{16}+e^{25}+e^{34}=\frac{i}{2}\left(\sum_{k=1}^{3} w^{k} \wedge \bar{w}^{k}\right)=\omega_{0} \\
\left.\varphi_{0}\right|_{e_{7} \perp} & =e^{123}+e^{145}+e^{246}-e^{356}=\rho_{+} \\
e_{7}, \psi_{0} & =e^{124}-e^{135}-e^{236}-e^{456}=\rho_{-}
\end{aligned}
$$

where $\rho_{+}=\frac{1}{2}(\rho+\bar{\rho}), \rho_{-}=-\frac{i}{2}(\rho-\bar{\rho})$ and $\rho=w^{1} \wedge w^{2} \wedge w^{3}$ is a decomposable complex 3 -form. Notice that the pair $\left(\rho, \omega_{0}\right)$ satisfies the relations

$$
\omega_{0} \wedge \rho_{+}=\omega_{0} \wedge \rho_{-}=0 \quad \text { and } \quad \frac{1}{4} \rho_{+} \wedge \rho_{-}=\frac{\omega_{0}^{3}}{3!}
$$

The pair $\left(\rho, \omega_{0}\right)$ defines a $\operatorname{SU}(3)$-structure on $\mathbb{C}^{3}$ and notice that $\varphi_{0}=-\omega_{0} \wedge e^{7}+\rho_{+}$. The following example illustrates a natural construction of $\mathrm{G}_{2}$-structures on a 7-dimensional Lie algebra, for some key examples, it will be a model to follow.

Example 1. Consider a 6-dimensional real Lie algebra $\mathfrak{h}$ endowed with a $\mathrm{SU}(3)$-structure $(\rho, \omega)$ and consider the semi-direct product $\mathfrak{g}=\mathfrak{h} \times_{\nu} \mathbb{R}$ with Lie bracket

$$
[(u, r),(v, s)]=\left([u, v]_{\mathfrak{h}}+\nu(r) v-\nu(s) u, 0\right)
$$

where $\nu: \mathbb{R} \rightarrow \operatorname{Der}(\mathfrak{h})$. Then the induced $\mathrm{G}_{2}$-structure on $\mathfrak{g}$ has the form

$$
\varphi=\omega \wedge e^{7}+\rho_{+}
$$

And similarly, the Hodge dual $\psi$ of $\varphi$ has the form

$$
\psi=\frac{1}{2} \omega^{2}+\rho_{-} \wedge e^{7}
$$

### 1.2 Associative 3-planes

Fix $\left(V^{7},\langle\cdot, \cdot\rangle\right)$ an inner product space. A $k$-form $\alpha \in \Lambda^{k} V^{*}$ is a calibration if, for every oriented $k$-plane $\pi$ in $V$, we have $\left.\alpha\right|_{\pi} \leq \operatorname{vol}(\pi)$ and when the equality is attained we say that $\pi$ is calibrated.

Lemma 1. [CP15, Lemma 2.17]
i) The 3 -form $\varphi_{0}$ defined in (1.4) is a calibration on $\left(\mathbb{R}^{7}, g_{0}\right)$.
ii) If $u, v, w$ is an orthonormal triple of vectors in $\mathbb{R}^{7}$, the $\varphi_{0}(u, v, w)=1$ if and only if $w=u \times v$.

Definition 4. An oriented 3-plane $\pi$ in $\mathbb{R}^{7}$ calibrated by $\varphi_{0}$ is called an associative plane.

It follows from equation (1.8) and Lemma 1 ii), that $\left.\chi_{0}\right|_{\pi}=0$ for an associative plane. The following example provides a construction of associative planes arisen from other calibrations (see [CP15, Lemma 2.24]).

Example 2. Let $(\mathfrak{g}, \varphi)$ from Example 1:

1. Let $\mathfrak{k} \subset \mathfrak{h}$ be a 2-dimensional Lie subalgebra. Then $\mathfrak{k} \times_{\nu} \mathbb{R}$ is associative in $\mathfrak{g}$ if and only if $\mathfrak{k}$ is calibrated by $\omega$, namely, $\mathfrak{k}$ is a complex line for some complex coordinates on $\mathfrak{h}$.
2. Let $\mathfrak{m} \subset \mathfrak{h}$ be a 3-dimensional Lie subalgebra. Then $\mathfrak{m}$ is associative in $\mathfrak{g}$ if and only if $\mathfrak{m}$ is calibrated by $\rho_{+}$, namely, $\mathfrak{m}$ is special Lagrangian.

## 1.3 $G_{2}$-manifolds and associative submanifolds

Here the framework are oriented Riemannian manifolds. Particularly, an oriented, spin 7-manifold and an oriented immersed 3-submanifold.

Definition 5. Let $M$ be a smooth oriented 7-manifold. A $\mathrm{G}_{2}$-structure is a 3-form $\varphi \in \Omega^{3}(M)$ such that, around every $p \in M$, there exists a local section $f$ of the oriented frame bundle $P_{\mathrm{SO}}(M)$ such that

$$
\varphi_{p}=\left(f_{p}\right)^{*} \varphi_{0}
$$

The relation (1.5) holds for a $\mathrm{G}_{2}$-structure from the above definition. Consequently, $\varphi$ induces a Hodge star operator $*_{\varphi}$ and the Levi-Civita connection $\nabla^{\varphi}$, though for simplicity we omit henceforth the subscripts in $g:=g_{\varphi}, *:=*_{\varphi}$ and $\nabla:=\nabla^{\varphi}$.

Definition 6. $A \mathrm{G}_{2}$-structure is torsion free if $\nabla \varphi=0$.

It follows by the definition that the holonomy group $\operatorname{Hol}(g) \subset \mathrm{G}_{2}$ for $(M, \varphi, g)$ if and only if $\varphi$ is torsion free.

Theorem 3. [FG82, Férnandez-Gray,1982] $A \mathrm{G}_{2}$-structure $\varphi$ is torsion free if and only if $d \varphi=0$ (closed) and $d \psi=0$ (co-closed).

Moreover, the model cross-product on $\mathbb{R}^{7}$ induces the bilinear map on vector fields

$$
\begin{align*}
P: \Omega^{0}(T M) \times \Omega^{0}(T M) & \rightarrow \Omega^{0}(T M) \\
(u, v) & \mapsto P(u, v)=u \times v \tag{1.10}
\end{align*}
$$

Definition 7. Let $(M, \varphi)$ be a 7-manifold with $\mathrm{G}_{2}$-structure. A 3-dimensional submanifold $Y \subset M$ is called associative if $\left.\varphi\right|_{Y} \equiv \operatorname{vol}(Y)$.

For an associative subamnifold $Y^{3}$ also holds Lemma 1 in the sense that there exist an orthonormal frame $e_{1}, e_{2}, e_{3}$ of tangent bundle $T Y$ satisfying $e_{1} \times e_{2}=e_{3}$ for each point of $Y$. Hence, we have that $Y^{3}$ is associative if and only $\left.\chi\right|_{T Y}=0$, where $\chi \in \Omega^{3}(M, T M)$ is a section from the vector bundle $\Lambda^{3}(T M)^{*} \otimes(T M)$ induced by $\psi$.

Lemma 2. If $Y$ is an associative submanifold, then there is a natural identification $T Y \cong \Lambda_{+}^{2}(N Y)$.

Proof. Fix local orthonormal frames $e_{1}, e_{2}, e_{3}$ and $\eta_{4}, \eta_{5}, \eta_{6}, \eta_{7}$ of $T Y$ and $N Y$, respectively, about a point $p \in Y$ :

$$
\begin{equation*}
\varphi_{p}=e^{123}+e^{1}\left(\eta^{45}+\eta^{67}\right)+e^{2}\left(\eta^{46}+\eta^{75}\right)-e^{3}\left(\eta^{47}+\eta^{56}\right) \tag{1.11}
\end{equation*}
$$

and

$$
\begin{aligned}
& e_{1,} \varphi=e^{23}+\eta^{45}+\eta^{67} \\
& e_{2,} \varphi=e^{31}+\eta^{46}+\eta^{75} \\
& e_{3,} \varphi=e^{12}-\eta^{47}-\eta^{56}
\end{aligned}
$$

Denote $\omega_{1}=\left.\left(e_{1}, \varphi\right)\right|_{N_{p} Y}, \omega_{2}=\left.\left(e_{2}, \varphi\right)\right|_{N_{p} Y}, \omega_{3}=-\left.\left(e_{3}, \varphi\right)\right|_{N_{p} Y}$ and define on each fibre the isomorphism $e_{j} \in T_{p} Y \mapsto \omega_{j} \in \Lambda_{+}^{2}\left(N_{p} Y\right)$, which obviously varies smoothly with $p$.

## $1.4 \quad \mathrm{G}_{2}$-decomposition of the space of differential $k$-forms

We will briefly review the intrinsic torsion forms of a $\mathrm{G}_{2}$-structure and define the full torsion tensor $T_{i j}$, using local coordinates, following [Kar09, Bry06]. As before, let $(M, \varphi)$ be a smooth 7 -manifold with $\mathrm{G}_{2}$-structure. In a local coordinate system $\left(x_{1}, \ldots, x_{7}\right)$, a differential $k$-form $\alpha$ on $M$ will be written as

$$
\alpha=\frac{1}{k!} \alpha_{i_{1} \cdots i_{k}} d x^{i_{1} \cdots i_{k}}
$$

where the sum is taken over all ordered subsets $\left\{i_{1} \cdots i_{k}\right\} \subset\{1, \ldots, 7\}$ and $\alpha_{i_{1} \cdots i_{k}}$ is skewsymmetric in all indices, i.e. $\alpha_{i_{1} \cdots i_{k}}=\alpha\left(e_{i_{1}}, \ldots, e_{i_{k}}\right)$. So, the interior product of a $k$-form is given by

$$
e_{j_{\perp}} \alpha=\frac{1}{(k-1)!} \alpha_{j i_{1} \cdots i_{k-1}} d x^{i_{1} \cdots i_{k-1}}
$$

A Riemannian metric $g$ on $M$ induces on $\Omega^{k}:=\Omega^{k}(M)$ the metric $g\left(d x^{i}, d x^{j}\right):=g^{i j}$, where $\left(g^{i j}\right)$ denotes the inverse of the matrix $\left(g_{i j}\right)$, then for decomposable $k$-forms we have

$$
\begin{aligned}
g\left(d x^{i_{1} \cdots i_{k}}, d x^{j_{1} \cdots j_{k}}\right) & =\operatorname{det}\left(\begin{array}{ccc}
g^{i_{1} j_{1}} & \cdots & g^{i_{1} j_{k}} \\
\vdots & \cdots & \vdots \\
g^{i_{k} j_{1}} & \cdots & g^{i_{k} j_{k}}
\end{array}\right) \\
& =\sum_{\sigma \in S_{7}} \operatorname{sgn}(\sigma) g^{i_{1} j_{\sigma(1)}} \cdots g^{i_{k} j_{\sigma(k)}}
\end{aligned}
$$

With this convention, the inner product of two $k$-forms $\alpha=\frac{1}{k!} \alpha_{i_{1} \cdots i_{k}} d x^{i_{1} \cdots i_{k}}$ and $\beta=$ $\frac{1}{k!} \beta_{j_{1} \cdots j_{k}} d x^{j_{1} \cdots j_{k}}$ is given by

$$
\begin{aligned}
g(\alpha, \beta) & =\frac{1}{(k!)^{2}} \alpha_{i_{1} \cdots i_{k}} \beta_{j_{1} \cdots j_{k}} \sum_{\sigma \in S_{7}} \operatorname{sgn}(\sigma) g^{i_{1} j_{\sigma(1)}} \cdots g^{i_{k} j_{\sigma(k)}} \\
& =\frac{1}{k!} \alpha_{i_{1} \cdots i_{k}} \beta_{j_{1} \cdots j_{k}} g^{i_{1} j_{1}} \cdots g^{i_{k} j_{k}}
\end{aligned}
$$

notice that the last equality follows by the skew-symmetry of $\beta, \beta_{j_{\sigma(1)} \cdots j_{\sigma(k)}}=\operatorname{sgn}(\sigma) \beta_{j_{1} \cdots j_{k}}$. A $\mathrm{G}_{2}$-structure $\varphi$ splits $\Omega^{\bullet}$ into orthogonal irreducible $\mathrm{G}_{2}$ representations, with respect to its $\mathrm{G}_{2}-$ metric $g$. In particular,

$$
\begin{equation*}
\Omega^{2}=\Omega_{7}^{2} \oplus \Omega_{14}^{2} \quad \text { and } \quad \Omega^{3}=\Omega_{1}^{3} \oplus \Omega_{7}^{3} \oplus \Omega_{27}^{3}, \tag{1.12}
\end{equation*}
$$

where $\Omega_{l}^{k} \subset \Omega^{k}$ denotes (fibrewise) an irreducible $\mathrm{G}_{2}$-submodule of dimension $l$, with an explicit description:

$$
\begin{align*}
\Omega_{7}^{2} & =\left\{X, \varphi ; X \in \Omega^{0}(T M)\right\}=\left\{\beta \in \Omega^{2} ; *(\varphi \wedge \beta)=2 \beta\right\} \\
\Omega_{14}^{2} & =\left\{\beta \in \Omega^{2} ; \beta \wedge \psi=0\right\}=\left\{\beta \in \Omega^{2} ; *(\varphi \wedge \beta)=-\beta\right\} \\
\Omega_{1}^{3} & =\left\{f \varphi ; f \in C^{\infty}(M)\right\}  \tag{1.13}\\
\Omega_{7}^{3} & =\left\{X_{\lrcorner} \psi ; X \in \Omega^{0}(T M)\right\} \\
\Omega_{27}^{3} & =\left\{h_{i j} g^{j l} d x^{i} \wedge\left(e_{l}\right)_{\lrcorner} \varphi ; h_{i j}=h_{j i}, \operatorname{tr}_{g}\left(h_{i j}\right)=g^{i j} h_{i j}=0\right\}
\end{align*}
$$

Remark 2. The definitions above for $\Omega_{7}^{2}$ and $\Omega_{14}^{2}$ correspond to the convention 1.5. In the convention 1.9, the eigenvalues of the operator $\beta \mapsto *(\varphi \wedge \beta)$ are -2 and 1 instead of +2 and -1 , respectively.

The analogous decompositions of $\Omega^{4}$ and $\Omega^{5}$ are obtained from the above by the Hodge isomorphism $*_{\varphi}: \Omega^{k} \rightarrow \Omega^{7-k}$. Studying the symmetries of torsion one finds that $\nabla \varphi \in \Omega^{1} \otimes \Omega_{7}^{3}$, so that tensor lies in a bundle of rank 49 [Kar09, Lemma 2.24]. Notice also that $\Omega_{7}^{3} \cong \Omega^{1}$, so, contracting the dual 4-form $\psi=*_{\varphi} \varphi$ by a frame of $T M$, then using the Riemannian metric, one has

$$
\Omega^{2} \oplus \mathrm{~S}^{2}\left(\mathrm{~T}^{*} \mathrm{M}\right)=\Omega^{1} \otimes \Omega_{7}^{3} \cong \operatorname{End}(T M)=\mathfrak{s o}(T M) \oplus \operatorname{sym}(T M)
$$

Here $S^{2}\left(T^{*} M\right)$ denotes the symmetric bilinear forms and $\operatorname{sym}(T M)$ the symmetric endomorphisms of $T M$. Both of the above splittings are $\mathrm{G}_{2}$-invariant, so, comparing the $\mathrm{G}_{2}$-irreducible decomposition $\mathfrak{s o}(7)=\mathfrak{g}_{2} \oplus\left[\mathbb{R}^{7}\right]$ and (1.12), we get the following identification between $\mathrm{G}_{2}$-irreducible summands

$$
\left[\mathbb{R}^{7}\right] \cong \Omega_{7}^{2} \quad \text { and } \quad \mathfrak{g}_{2} \cong \Omega_{14}^{2}
$$

For $\mathrm{S}^{2}\left(\mathrm{~T}^{*} \mathrm{M}\right) \cong \operatorname{sym}(T M)$, Bryant defines maps $i: \mathrm{S}^{2}\left(\mathrm{~T}^{*} \mathrm{M}\right) \rightarrow \Omega^{3}$ and $j: \Omega^{3} \rightarrow \mathrm{~S}^{2}\left(\mathrm{~T}^{*} \mathrm{M}\right)$ by

$$
\begin{equation*}
i(h)=\frac{1}{2} h_{i l} g^{l m} \varphi_{m j k} d x^{i j k} \quad \text { and } \quad j(\eta)(u, v)=*\left(\left(u_{\lrcorner} \varphi\right) \wedge\left(v_{\lrcorner} \varphi\right) \wedge \eta\right) \tag{1.14}
\end{equation*}
$$

notice that $i(h)=h_{i l} g^{l m} d x^{i} \wedge\left(e_{m\lrcorner} \varphi\right)$ and $i(g)=3 \varphi$. We list the following proprierties (see [Kar09, Propositions 2.14 and 2.17]).

Lemma 3. Suppose that $h$ is a symmetric tensor then holds:

$$
\begin{aligned}
* i(h) & =\left(\frac{1}{4} \operatorname{tr}_{g}(h) g_{i j}-h_{i j}\right) g^{j l} d x^{i} \wedge\left(e_{l_{\lrcorner}} \psi\right) . \\
j(i(h)) & =2 \operatorname{tr}_{g}(h) g+4 h .
\end{aligned}
$$

From the above relation follows $j(\varphi)=6 g$, while $j\left(\Omega_{7}^{3}\right)=0$. The map $i$ is injective [Kar09, Corollary 2.16] and, by the $\mathrm{G}_{2}$-decomposition $\mathrm{S}^{2}\left(\mathrm{~T}^{*} \mathrm{M}\right)=\mathbb{R} g_{\varphi} \oplus \mathrm{S}_{0}^{2}\left(\mathrm{~T}^{*} \mathrm{M}\right)$, it identifies

$$
\mathbb{R} g_{\varphi} \cong \Omega_{1}^{3} \quad \text { and } \quad \mathrm{S}_{0}^{2}\left(\mathrm{~T}^{*} \mathrm{M}\right) \cong \Omega_{27}^{3}
$$

Accordingly, we have a decomposition for the torsion components $d \varphi \in \Omega^{4}$ and $d \psi \in \Omega^{5}$ given by (see [Bry06, Kar09])

$$
\begin{equation*}
d \varphi=\tau_{0} \psi+3 \tau_{1} \wedge \varphi+* \tau_{3} \quad \text { and } \quad d \psi=4 \tau_{1} \wedge \psi+\tau_{2} \wedge \varphi=4 \tau_{1} \wedge \psi-* \tau_{2} \tag{1.15}
\end{equation*}
$$

where $\tau_{0} \in \Omega^{0}, \tau_{1} \in \Omega^{1}, \tau_{2} \in \Omega_{14}^{2}$ and $\tau_{3} \in \Omega_{27}^{3}$ are called the torsion forms.
Remark 3. The constants are chosen for convenience. A slightly different convention for torsion components is used in [Gri13]

$$
d \varphi=4 \tau_{1} \psi-3 \tau_{7} \wedge \varphi-3 * i\left(\tau_{27}\right) \quad \text { and } \quad d \psi=-4 \tau_{7} \wedge \psi-2 * \tau_{14}
$$

accordingly with our notation, $\tau_{0}$ corresponds to $4 \tau_{1}, \tau_{1}$ corresponds to $-\tau_{7}, \tau_{3}$ corresponds to $-3 i\left(\tau_{27}\right)$ and $\tau_{2}$ corresponds to $-2 \tau_{14}$.

The torsion forms are completely encoded in the full torsion tensor $T$, defined in coordinates by

$$
\begin{equation*}
\nabla_{l} \varphi_{a b c}=: T_{l m} g^{m n} \psi_{n a b c} \tag{1.16}
\end{equation*}
$$

which is expressed in terms of the irreducible $\mathrm{G}_{2}$-decomposition of $\operatorname{End}(T M)=W_{0} \oplus$ $W_{1} \oplus W_{2} \oplus W_{3}$ where $W_{0} \cong \Omega^{0}, W_{1} \cong \Omega_{7}^{3}, W_{2} \cong \Omega_{14}^{2}$ and $W_{3} \cong \Omega_{27}^{3}$.
Proposition 3. [Kar09, Theorem 2.27] The full torsion tensor $T=T_{l m}$ is

$$
T=\frac{\tau_{0}}{4} g_{\varphi}-\tau_{27}-\left(\tau_{1}\right)^{\sharp}, \varphi-\frac{1}{2} \tau_{2},
$$

where $\tau_{3}:=i\left(\tau_{27}\right)$ and ${ }^{\sharp}: \Omega^{1} \rightarrow \mathcal{X}(M)$ the musical isomorphism induced by the $\mathrm{G}_{2}$-metric.
Remark 4. (i) For the $\mathrm{G}_{2}$-structure convention (1.9), the full torsion tensor is

$$
T=\frac{\tau_{0}}{4} g_{\varphi}-\tau_{27}+\left(\tau_{1}\right)^{\sharp}, \varphi-\frac{1}{2} \tau_{2},
$$

(ii) Notice that, in light of the convention 3, the full torsion tensor is expressed as $T=\tau_{1} g+\left(\tau_{7}\right)^{\sharp}, \varphi+\tau_{14}+\tau_{27}$

In [Kar09, Lemmata A.8-A.10], Karigiannis compiles several useful identities among the tensors $g, \varphi$ and $\psi$ :

$$
\begin{align*}
\varphi_{i j k} \varphi_{a b c} g^{k c}= & g_{i a} g_{j b}-g_{i b} g_{j a}+\psi_{i j a b}  \tag{1.17}\\
\varphi_{i j k} \psi_{a b c d} g^{k d}= & -g_{i a} \varphi_{j b c}-g_{i b} \varphi_{a j c}-g_{i c} \varphi_{a b j}  \tag{1.18}\\
& +g_{a j} \varphi_{i b c}+g_{b j} \varphi_{a i c}+g_{c j} \varphi_{a b i}  \tag{1.19}\\
\psi_{r s t u} \psi_{a b c d} g^{r a} g^{s b} g^{t c} g^{u d}= & 168  \tag{1.20}\\
\psi_{r s t u} \psi_{a b c d} g^{s b} g^{t c} g^{u d}= & 24 g_{r a} \tag{1.21}
\end{align*}
$$

Differentiating (1.20) and (1.21), one obtains

$$
\begin{gather*}
\nabla_{l} \psi_{r s t u} \psi_{a b c d} g^{r a} g^{s b} g^{t c} g^{u d}=0  \tag{1.22}\\
\nabla_{l} \psi_{r s t u} \psi_{a b c d} g^{s b} g^{t c} g^{u d}=-\psi_{r s t u} \nabla_{l} \psi_{a b c d} g^{s b} g^{t c} g^{u d} \tag{1.23}
\end{gather*}
$$

Lemma 4. For any vector field $X$, the 4 -form $\nabla_{X} \psi$ lies in the subspace $\Omega_{7}^{4}$ of $\Omega^{4}$.
Proof. It is enough to prove that $\nabla_{X} \psi \perp \Omega_{1}^{4} \oplus \Omega_{27}^{4}$. Considering $X=e_{l}$ and applying (1.22), we have

$$
g\left(\nabla_{l} \psi, \psi\right)=\frac{1}{24} \nabla_{l} \psi_{r s t u} \psi_{a b c d} g^{r a} g^{s b} g^{t c} g^{u d}=0
$$

so $\nabla_{l} \psi \perp \Omega_{1}^{4}$. To see that $\nabla_{l} \psi \perp \Omega_{27}^{4}$, consider some $\eta \in \Omega_{27}^{4}$ in local form,

$$
\eta=\frac{1}{3!}\left(\frac{1}{4} \operatorname{tr}_{g}(h) g_{i j}-h_{i j}\right) g^{j l} \psi_{l a b c} d x^{i a b c}
$$

and take the inner product with $\nabla_{l} \psi$ :

$$
\begin{aligned}
g\left(\nabla_{l} \psi, \eta\right) & =\frac{1}{3!} \nabla_{l} \psi_{r s t u}\left(\frac{1}{4} \operatorname{tr}_{g}(h) g_{i}^{l}-h_{i}^{l}\right) \psi_{l a b c} g^{r i} g^{s a} g^{t b} g^{u c} \\
& =\frac{1}{4!} \nabla_{l} \psi_{r s t u}\left(\operatorname{tr}_{g}(h) g^{r l}-4 h^{r l}\right) \psi_{l a b c} g^{s a} g^{t b} g^{u c}=0
\end{aligned}
$$

using that, $\operatorname{tr}_{g}(h) g^{r l}-4 h^{r l}$ is a symmetric ( 0,2 )-tensor, while $\nabla_{l} \psi_{r s t u} \psi_{l a b c} g^{s a} g^{t b} g^{u c}$ is skew-symmetric in $r$ and $l$, by (1.23).

Using Lemma 4 above and the identity $*(X, \psi)=\varphi \wedge X^{b}\left(X \in \Omega^{0}(M)\right)$, where $X^{\mathrm{b}}$ is the 1 -form defined by $X^{\mathrm{b}}(Y)=g(X, Y)$, one has:

Corollary 3. [Kar09, Remark 2.29] With the above notation,

$$
\nabla_{l} \psi_{r s t u}=-T_{l r} \varphi_{s t u}+T_{l s} \varphi_{r t u}-T_{l t} \varphi_{r s u}+T_{l u} \varphi_{r s t}
$$

For a torsion-free $\mathrm{G}_{2}$-structure, the cross-product (1.10) is parallel, so it satisfies the Leibniz rule

$$
\nabla(u \times v)=\nabla u \times v+u \times \nabla v, \quad \forall u, v \in \Omega^{0}(T M)
$$

In general, the action of $\nabla$ on the cross product can be expressed in terms of the total torsion tensor:

Lemma 5. For the vector fields $u, v, w, z \in \Omega^{0}(T M)$, we have
(i) $\nabla_{z}(u \times v)=\nabla_{z} u \times v+u \times \nabla_{z} v+\sum_{m=1}^{7} T\left(z, e_{m}\right) \chi\left(e_{m}, u, v\right)$.
(ii) $R(w, z)(u \times v)=R(w, z) u \times v+u \times R(w, z) v+\mathcal{T}(w, z, u, v)$, where

$$
\begin{align*}
\mathcal{T}(w, z, u, v):= & \sum_{m=1}^{7} T\left(z, e_{m}\right)\left(\nabla_{w} \psi\right)\left(e_{m}, u, v, \cdot \cdot\right)^{\sharp}-T\left(w, e_{m}\right)\left(\nabla_{z} \psi\right)\left(e_{m}, u, v, \cdot\right)^{\sharp} \\
& +\left(\left(\nabla_{w} T\right)\left(z, e_{m}\right)-\left(\nabla_{z} T\right)\left(w, e_{m}\right)\right) \chi\left(e_{m}, u, v\right) \tag{1.24}
\end{align*}
$$

in an orthonormal local frame $\left\{e_{1}, \ldots, e_{7}\right\}$ of $T M$.
(iii) If $Y$ is an associative submanifold of $M$, for $u, v, z \in \Omega^{0}(T Y)$ and $\eta \in \Omega^{0}(N Y)$, then

$$
\begin{aligned}
& \nabla_{z}^{\top}(u \times v)=\nabla_{z}^{\top} u \times v+u \times \nabla_{z}^{\top} v \\
& \nabla_{z}^{\perp}(u \times \eta)=\nabla_{z}^{\top} u \times \eta+u \times \nabla_{z}^{\perp} \eta+\sum_{m=1}^{3} T\left(z, e_{m}\right) \chi\left(e_{m}, u, \eta\right)
\end{aligned}
$$

where $e_{1}, e_{2}, e_{3}=e_{1} \times e_{2}$ is a local frame of $T Y, \nabla^{\top}=\nabla-\nabla^{\perp}$ is the orthogonal projection of $\nabla$ to $T Y$ and $\nabla^{\perp}$ the normal connection on $N Y$.

Proof. (i) Consider normal coordinates $x_{1}, \ldots, x_{7}$ about a given $p \in M$, (i.e. $\nabla_{i} e_{j}=0$ at $p)$ and an orthonormal frame $e_{1}, \ldots, e_{7}$. At the point $p$, we have:

$$
\begin{aligned}
\nabla_{z}(u \times v) & =\sum_{i=1}^{7} \nabla_{z}\left(\left\langle u \times v, e_{i}\right) e_{i}\right)=\sum_{i=1}^{7} \nabla_{z}\left(\varphi\left(u, v, e_{i}\right) e_{i}\right) \\
& =\sum_{i=1}^{7} z\left(\varphi\left(u, v, e_{i}\right)\right) e_{i}+\varphi\left(u, v, e_{i}\right) \nabla_{z} e_{i} \\
& =\sum_{i=1}^{7}\left(\varphi\left(\nabla_{z} u, v, e_{i}\right)+\varphi\left(u, \nabla_{z} v, e_{i}\right)+\varphi\left(u, v, \nabla_{z} e_{i}\right)+\left(\nabla_{z} \varphi\right)\left(u, v, e_{i}\right)\right) e_{i} \\
& =\sum_{i=1}^{7}\left(\varphi\left(\nabla_{z} u, v, e_{i}\right)+\varphi\left(u, \nabla_{z} v, e_{i}\right)+\sum_{m=1}^{7} T\left(z, e_{m}\right) \psi\left(e_{m}, u, v, e_{i}\right)\right) e_{i} \\
& =\nabla_{z} u \times v+u \times \nabla_{z} v+\sum_{m=1}^{7} T\left(z, e_{m}\right) \chi\left(e_{m}, u, v\right) .
\end{aligned}
$$

Notice that we used $\left(\nabla_{j} e_{i}\right)_{p}=0$ in the third and fourth equalities, also the fact that $\nabla_{z} \varphi=T\left(z, e_{m}\right) e_{m_{\lrcorner}} \psi \in \Omega_{7}^{3}$.
(ii) Using the first part, we have

$$
\begin{aligned}
\nabla_{w} \nabla_{z}(u \times v)= & \nabla_{w} \nabla_{z} u \times v+\nabla_{z} u \times \nabla_{w} v+\nabla_{w} u \times \nabla_{z} v+u \times \nabla_{w} \nabla_{z} v \\
& +\sum_{i, m=1}^{7}\left(T\left(w, e_{m}\right)\left(\psi\left(e_{m}, \nabla_{z} u, v, e_{i}\right)+\psi\left(e_{m}, u, \nabla_{z} v, e_{i}\right)\right)\right. \\
& +\left(\left(\nabla_{w} T\right)\left(z, e_{m}\right)+T\left(\nabla_{w} z, e_{m}\right)\right) \psi\left(e_{m}, u, v, e_{i}\right) \\
& +T\left(z, e_{m}\right)\left(\psi\left(e_{m}, \nabla_{w} u, v, e_{i}\right)+\psi\left(e_{m}, u, \nabla_{w} v, e_{i}\right)\right. \\
& \left.\left.+\left(\nabla_{w} \psi\right)\left(e_{m}, u, v, e_{i}\right)\right)\right) e_{i} .
\end{aligned}
$$

Using the symmetries of the curvature tensor $R(w, z)=\nabla_{w} \nabla_{z}-\nabla_{z} \nabla_{w}-\nabla_{[w, z]}$ and the fact that $\nabla$ is torsion-free, one has $[w, z]=\nabla_{w} z-\nabla_{z} w$, and we compute

$$
\begin{aligned}
& R(w, z)(u \times v)= R(w, z) u \times v+u \times R(w, z) v \\
&+\sum_{i, m=1}^{7}\left(T\left(z, e_{m}\right)\left(\nabla_{w} \psi\right)\left(e_{m}, u, v, e_{i}\right)\right. \\
& \quad+\left(\left(\nabla_{w} T\right)\left(z, e_{m}\right)-\left(\nabla_{z} T\right)\left(w, e_{m}\right)\right) \psi\left(e_{m}, u, v, e_{i}\right) \\
&\left.\quad-T\left(w, e_{m}\right)\left(\nabla_{z} \psi\right)\left(e_{m}, u, v, e_{i}\right)\right) e_{i}
\end{aligned}
$$

(iii) Now, if $u$ and $v$ are in $T Y$, consider $e_{1}, e_{2}, e_{3}=e_{1} \times e_{2}$ an orthonormal frame of $T Y$, then we have

$$
\left(\nabla_{z} u \times v\right)^{\top}=\left(\sum_{i=1}^{7} \varphi\left(\nabla_{z} u, v, e_{i}\right) e_{i}\right)^{\top}=\sum_{i=1}^{3} \varphi\left(\nabla_{z} u, v, e_{i}\right) e_{i}=\nabla_{z}^{\top} u \times v .
$$

Notice that we used the $T Y$-invariance of the $\times$ i.e. $T_{p} Y \times T_{p} Y \subset T_{p} Y$. Then,

$$
\begin{aligned}
\nabla_{z}^{\top}(u \times v) & =\left(\nabla_{z}(u \times v)\right)^{\top} \\
& =\nabla_{z}^{\top} u \times v+u \times \nabla_{z}^{\top} v+\left(\sum_{m=1}^{7} T\left(z, e_{m}\right) \chi\left(e_{m}, u, v\right)\right)^{\top} \\
& =\nabla_{z}^{\top} u \times v+u \times \nabla_{z}^{\top} v+\sum_{m=1}^{7} T\left(z, e_{m}\right) \chi\left(e_{m}, u, v\right)^{\top}
\end{aligned}
$$

The first equation follows by the relations $N_{p} Y \times N_{p} Y \subset T_{p} Y$ and $T_{p} Y \times N_{p} Y \subset N_{p} Y$. So, $\chi\left(e_{m}, u, v\right)^{\top} \in T_{p} Y$ if and only if $m \in\{1,2,3\}$ and by the associative of $Y$ $\chi\left(e_{m}, u, v\right)^{\top}=0$.
For the second relation we have

$$
\begin{aligned}
\nabla_{z}^{\perp}(u \times \eta) & =\nabla_{z}(u \times \eta)-\nabla_{z}^{\top}(u \times \eta)=\nabla_{z}(u \times \eta)-\left(\nabla_{z}(u \times \eta)\right)^{\top} \\
& =\nabla_{z}^{\top} u \times \eta+u \times \nabla_{z}^{\perp} \eta+\sum_{m=1}^{7} T\left(z, e_{m}\right) \chi\left(e_{m}, u, \eta\right)-\sum_{m=1}^{7} T\left(z, e_{m}\right) \chi\left(e_{m}, u, \eta\right)^{\top} \\
& =\nabla_{z}^{\top} u \times \eta+u \times \nabla_{z}^{\perp} \eta+\sum_{m=1}^{7} T\left(z, e_{m}\right) \chi\left(e_{m}, u, \eta\right)-\sum_{m=4}^{7} T\left(z, e_{m}\right) \chi\left(e_{m}, u, \eta\right) .
\end{aligned}
$$

### 1.4.1 $\mathrm{SU}(3)$-decompositions of the space of differential $k$-forms

By the relation between $\mathrm{G}_{2}$-geometry and $\mathrm{SU}(3)$-geometry mentioned in Section 1.1, in this section we collect some facts about $k$-differential forms on a 6 -manifold. It will be a useful computational tool for the Chapter 3.
Let $\left(N, \omega, \rho_{+}\right)$be an oriented, Riemannian 6 -manifold. $\mathrm{An} \mathrm{SU}(3)$-structure is a reduction of the oriented frame bundle $P_{S O}(N)$ to an $\mathrm{SU}(3)$-principal subbundle [Joy00, Section 6.1]. The required $\operatorname{SU}(3)$ reduction is related to the existence of:

An almost complex structure $J$, i.e. A smooth map $J: \Omega^{0}(T N) \rightarrow \Omega^{0}(T N)$ such that $J^{2}=-\mathrm{Id}$.

A Riemannian metric $h$ with respect to which $J$ is orthogonal i.e. $h(X, Y)=$ $h(J X, J Y)$ for any $X, Y \in \Omega^{0}(T N)$.

And a nowhere vanishing smooth complex valued 3 -form $\rho$ of type (3, 0) i.e. Near to each point of $N$ we can find a local unitary coframe of complex-valued 1-forms $\left(d z^{1}, d z^{2}, d z^{3}\right)$ for which $\rho=d z^{1} \wedge d z^{2} \wedge d z^{3}$.

From the natural $\mathrm{SU}(3)$-action on $\Omega^{\bullet}(T N)$ we have the irreducible representation [BV07]

$$
\begin{align*}
& \Omega^{2}(T N)=\Omega_{1}^{2}(T N) \oplus \Omega_{6}^{2}(T N) \oplus \Omega_{8}^{2}(T N) \\
& \Omega^{3}(T N)=\Omega_{\mathrm{Re}}^{3}(T N) \oplus \Omega_{\mathrm{Im}}^{3}(T N) \oplus \Omega_{6}^{3}(T N) \oplus \Omega_{12}^{3}(T N) \tag{1.25}
\end{align*}
$$

similar to the $\mathrm{G}_{2}$-decomposition, $\Omega_{l}^{k}(T N) \subset \Omega^{k}(T N)$ denotes (fibrewise) an irreducible $\mathrm{SU}(3)$-submodule of dimension $l$, with an explicit description:

- $\Omega_{1}^{2}(T N)=\left\{f \omega ; f \in C^{\infty}(N)\right\}$.
- $\Omega_{6}^{2}(T N)=\left\{\alpha \in \Omega^{2}(T N) ; \quad J^{*} \alpha=-\alpha\right\}$.
- $\Omega_{8}^{2}(T N)=\left\{\alpha \in \Omega^{2}(T N) ; \quad J^{*} \alpha=\alpha \quad\right.$ and $\left.\quad \alpha \wedge \omega^{2}=0\right\}$.
- $\Omega_{\mathrm{Re}}^{3}(T N)=\left\{f \rho_{+} ; f \in C^{\infty}(N)\right\}$ and $\Omega_{\mathrm{Im}}^{3}(T N)=\left\{f \rho_{-} ; f \in C^{\infty}(N)\right\}$.
- $\Omega_{6}^{3}(T N)=\left\{\beta \wedge \omega ; \quad \beta \in \Omega^{1}(T N)\right\}$.
- $\Omega_{12}^{3}(T N)=\left\{\gamma \in \Omega^{3}(T N) ; \quad \gamma \wedge \omega=0, \gamma \wedge \rho_{+}=\gamma \wedge \rho_{-}=0\right\}$.

Similarly to the $\mathrm{G}_{2}$-identities from [Kar09, Appendix A and B], for the $\mathrm{SU}(3)-$ structure

$$
\omega=\frac{1}{2} \omega_{i j} d x^{i j}, \quad \rho_{+}=\rho_{i j k}^{+} d x^{i j k} \quad \text { and } \quad \rho_{-}=\rho_{i j k}^{-} d x^{i j k}
$$

the following properties hold [BV07, Section 2.2]

$$
\begin{align*}
\rho_{i a b}^{+} \omega_{a b} & =0, \quad \omega_{i p} \omega_{p j}=-\delta_{i j}, \quad \rho_{i j p}^{+} \omega_{p k}=\rho_{i j k}^{-}, \\
\rho_{i j p}^{-} \omega_{p k} & =-\rho_{i j k}^{+}, \quad \rho_{i p q}^{+} \rho_{j p q}^{-}=4 \omega_{i j}, \quad \rho_{i p q}^{+} \rho_{j p q}^{+}=4 \delta_{i j}=\rho_{i p q}^{-} \rho_{j p q}^{-},  \tag{1.26}\\
\rho_{i j p}^{-} \rho_{k l p}^{+} & =-\omega_{i k} \delta_{j l}+\omega_{j k} \delta_{i l}+\omega_{i l} \delta_{j k}-\omega_{j l} \delta_{i k}, \\
\rho_{i j p}^{+} \rho_{k l p}^{+} & =-\omega_{i k} \omega_{j l}+\omega_{i l} \omega_{j k}+\delta_{i k} \delta_{j l}-\delta_{j k} \delta_{i l}=\rho_{i j p}^{-} \rho_{k l p}^{-} .
\end{align*}
$$

### 1.5 Description of the normal bundle of an associative submanifold

We conclude this chapter applying results from 4-dimensional spin geometry to describe the normal bundle of an associative submanifold in terms of a spinor bundle.

### 1.5.1 Spin group of 4-dimensional vector space

Here we recall some background and fix the notation, following [Sal00, Chapter 2] and [DK90, Chapter 3].

On an inner product space $\left(V^{n},\langle\cdot, \cdot\rangle\right)$, the Clifford algebra $\mathrm{Cl}(V)$ is a $2^{n}$ dimensional associative algebra with unit 1 , generated by the elements of some orthonormal basis $e_{1}, \ldots, e_{n}$ of $V$ with relations

$$
e_{i}^{2}=-1, \quad e_{i} e_{j}=-e_{j} e_{i} \quad \text { for } \quad i \neq j
$$

A basis for $\mathrm{Cl}(V)$ is given by

$$
e_{0}=1, \quad e_{I}=e_{i_{1}} \cdots e_{i_{k}}
$$

where $I=\left\{i_{1}, \ldots, i_{k}\right\} \subset\{1, \ldots, n\}$ for $i_{1}<\cdots<i_{k}$, and $\mathrm{Cl}(V)$ admits a natural involution

$$
\alpha: \mathrm{Cl}(V) \rightarrow \mathrm{Cl}(V)
$$

defined by $\alpha(x)=\widetilde{x}:=\sum_{I} \epsilon_{I} x_{I} e_{I}$, where $\epsilon_{I}:=(-1)^{k(k+1) / 2}$ and $x_{I} \in \mathbb{R}$ are the components of $x$ in the basis $\left\{e_{I}\right\}$. Denote by $\operatorname{deg}\left(e_{I}\right):=|I|$ the degree of an element $e_{I} \in \mathrm{Cl}(V)$, by $\mathrm{Cl}_{k}(V)$ the subset of elements of degree $k$, and by $\mathrm{Cl}^{0}(V)$ and $\mathrm{Cl}^{1}(V)$ the subspaces of elements of even and odd degree, respectively.

Example 3. On $V=\mathbb{R}^{4}$ with the Euclidean inner product, we have $\mathrm{Cl}(V)=M_{2}(\mathbb{H})$, the $2 \times 2$ matrices with entries in the quaternions $\mathbb{H}=\langle i, j, k\rangle$. The elements of $\mathrm{Cl}(V)$ are 1 , $e_{i},\left\{e_{i} e_{j}\right\}_{i<j},\left\{e_{i} e_{j} e_{k}\right\}_{i<j<k}$ and $e_{1} e_{2} e_{3} e_{4}$, with $i, j, k=1,2,3,4$, with generators

$$
e_{1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), e_{2}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right), e_{3}=\left(\begin{array}{cc}
0 & j \\
j & 0
\end{array}\right) \quad \text { and } \quad e_{4}=\left(\begin{array}{cc}
0 & k \\
k & 0
\end{array}\right)
$$

and the involution $\alpha(A)=A^{*}$ is the transpose conjugation.
Denote the set of units of $\mathrm{Cl}(V)$ by $\mathrm{Cl}^{\times}(V)$. Considering the twisted adjoint representation $\mathrm{Add}^{\mathrm{l}}: \mathrm{Cl}^{\times}(V) \rightarrow \mathrm{Gl}(\mathrm{Cl}(V))$ given by

$$
\widetilde{A d}(x) y=\left((x)^{0}-(x)^{1}\right) y \widetilde{x}
$$

where $(x)^{0} \in \mathrm{Cl}^{0}(V)$ and $(x)^{1} \in \mathrm{Cl}^{1}(V)$ are the even and odd parts of $x$, respectively. We define the Spin group of $V$ :

$$
\operatorname{Spin}(V):=\left\{x \in \mathrm{Cl}^{0}(V) \mid \widetilde{A d}(x) V=V, x \widetilde{x}=1\right\} .
$$

For $\operatorname{dim} V \geq 3, \operatorname{Spin}(V)$ is a compact, connected and simply connected Lie group, fitting in a short exact sequence [Sal00, Lemma 4.25]

$$
0 \rightarrow \mathbb{Z}_{2} \rightarrow \operatorname{Spin}(V) \rightarrow \mathrm{SO}(V) \rightarrow 1
$$

In particular, the following results hold in dimensions 3 and 4:

Lemma 6. [Sal00, Lemma 4.4] For every $x \in \operatorname{Sp}(1)$, there is a unique orthogonal matrix $\xi_{0}(x) \in \mathrm{SO}(3)$, such that $\xi_{0}(x) y=x y \widetilde{x}$, for all $y \in \operatorname{Im}(\mathbb{H}) \cong \mathbb{R}^{3}$, and the map $\xi_{0}: \operatorname{Sp}(1) \rightarrow$ $\mathrm{SO}(3)$ is a surjective homomorphism with kernel $\{ \pm 1\}$, hence

$$
\mathrm{SO}(3) \cong \mathrm{Sp}(1) / \mathbb{Z}_{2} \quad \text { and } \quad \mathrm{Spin}(3) \cong \mathrm{Sp}(1)
$$

Lemma 7. [Sal00, Lemma 4.6] For every $x, y \in \mathrm{Sp}(1)$, there is a unique orthogonal matrix $\eta_{0}(x, y) \in \operatorname{SO}(4)$, such that $\eta_{0}(x, y) z=x z \widetilde{y}$, for all $z \in \mathbb{R}^{4} \cong \mathbb{H}$, and the map $\eta_{0}: \operatorname{Sp}(1) \times \operatorname{Sp}(1) \rightarrow \mathrm{SO}(4)$ is a surjective homomorphism with kernel $\{ \pm(1,1)\}$, hence

$$
\mathrm{SO}(4) \cong \mathrm{Sp}(1) \times \operatorname{Sp}(1) / \mathbb{Z}_{2} \quad \text { and } \quad \mathrm{Spin}(4) \cong \mathrm{Sp}(1) \times \operatorname{Sp}(1)
$$

The last lemma provides two natural surjective homomorphisms $\rho^{ \pm}: \mathrm{SO}(4) \rightarrow$ $\mathrm{SO}(3)$ and, therefore, two exact sequences

$$
1 \rightarrow \mathrm{Sp}(1) \xrightarrow{\iota^{ \pm}} \mathrm{SO}(4) \xrightarrow{\rho^{ \pm}} \mathrm{SO}(3) \rightarrow 1
$$

where $\iota^{+}(v)=\eta_{0}([v, 1])$ and $\iota^{-}(v)=\eta_{0}([1, v])$, interpreting $\eta_{0}$ as the induced homomorphism on the quotient $\operatorname{Sp}(1) \times_{\mathbb{Z}_{2}} \operatorname{Sp}(1)$. Those sequences are related to the $\mathrm{SO}(4)$-action on the spaces of self-dual and anti-self-dual 2-forms of a 4-dimensional inner-product space.

An element $q \in \mathbb{H}$ in the canonical basis $q=t+x i+y j+z k=(t+x i)+(y+z i) j$ can be identified with the $2 \times 2$ complex matrix

$$
A=\left(\begin{array}{cc}
t+x i & -y+z i \\
y+z i & t-x i
\end{array}\right)
$$

with

$$
\operatorname{det} A=t^{2}+x^{2}+y^{2}+z^{2}=|q|^{2}
$$

Since $A^{*} A=(\operatorname{det} A) I_{2}$, every $q \in \operatorname{Sp}(1) \cong S^{3}$ is identified with a unitary matrix with determinant 1 , that is, $\mathrm{SU}(2) \cong \mathrm{Sp}(1)$.

Definition 8. Let $V$ be a real inner product space of dimension $2 n \equiv 2,4 \bmod 8$ or $2 n+1 \equiv 3 \bmod 8$. A Spin structure on $V$ is a quadruple $(S, I, J, \Gamma)$, where $S$ is a $2^{n+1}$ dimensional real inner product space, $I$ and $J$ are two anti-commuting orthogonal complex structure

$$
I^{-1}=I^{*}=-I, \quad J^{-1}=J^{*}=-J, \quad I J=-J I
$$

and $\Gamma: V \rightarrow \operatorname{End}(S)$ is a real linear map with the following properties:

$$
\Gamma(v)^{*}+\Gamma(v)=0, \quad \Gamma(v)^{*} \Gamma(v)=|v|^{2} \mathrm{Id}, \quad \Gamma(v) I=I \Gamma(v), \quad \Gamma(v) J=J \Gamma(v), \quad \forall v \in V .
$$

Example 4. For a vector space $V$ of real dimension 4, using the identification $V \cong \mathbb{H}$ and defining $S=\mathbb{H} \oplus \mathbb{H}$, we have the maps $\Gamma: \mathbb{H} \rightarrow \operatorname{End}(\mathbb{H} \oplus \mathbb{H}), I, J: \mathbb{H} \oplus \mathbb{H} \rightarrow \mathbb{H} \oplus \mathbb{H}$ defined for $v, x, y \in \mathbb{H}$ by

$$
\Gamma(v)(x, y)=(v y,-\bar{v} x), \quad I(x, y)=(x i, y i), \quad J(x, y)=(x j, y j) .
$$

It is interesting to note that

$$
\Gamma(v)=\left(\begin{array}{cc}
0 & \gamma(v) \\
-\gamma(v)^{*} & 0
\end{array}\right)
$$

where $\gamma: \mathbb{H} \rightarrow \operatorname{End}(\mathbb{H})$ also satisfies

$$
\gamma(v)^{*}+\gamma(v)=0, \quad \gamma(v)^{*} \gamma(v)=|v|^{2} \mathrm{Id}, \quad \forall v \in \mathbb{H}
$$

Given a Spin structure on a 4-dimensional space $V$, consider $S=S^{+} \oplus S^{-}$, where $S^{+}$and $S^{-}$are copies of $\mathbb{C}^{2}$ with standard Hermitian metric $\langle\cdot, \cdot\rangle$. The associated symplectic form compatible with the almost complex structure $I: S^{ \pm} \rightarrow S^{ \pm}$is defined by $\omega(x, y):=\langle x, I y\rangle$. Now, consider the (real) 4-dimensional space $\operatorname{Hom}_{I}\left(S^{+}, S^{-}\right)=$ $\operatorname{Re}\left(\operatorname{Hom}\left(S^{+}, S^{-}\right)\right)$of linear maps over the quaternions, where $\operatorname{Hom}\left(S^{+}, S^{-}\right)$are complex linear maps. Unitary elements of $\operatorname{Hom}_{I}\left(S^{+}, S^{-}\right)$preserve the Hermitian and symplectic structures, and $\gamma: V \rightarrow \operatorname{Hom}_{I}\left(S^{+}, S^{-}\right)$defined above acts on the standard basis by

$$
\gamma\left(e_{1}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \gamma\left(e_{2}\right)=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad \gamma\left(e_{3}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad \gamma\left(e_{4}\right)=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
$$

Up to isomorphism, the above generate $\mathrm{SU}(2) \cong \operatorname{Spin}(3)$, since the symmetry group $\mathrm{SU}(2)^{+} \times \mathrm{SU}(2)^{-}$of $\left(S^{+}, S^{-}\right)$is connected. Thus $\gamma$ fixes the orientation of $V$ and, using the sympletic form to identify $S^{+}$with its dual, we have

$$
\begin{equation*}
V \otimes_{\mathbb{R}} \mathbb{C} \cong S^{+} \otimes_{\mathbb{C}} S^{-} \tag{1.27}
\end{equation*}
$$

Moreover, given $v \in V$, consider the Hermitian adjoint $\gamma(v)^{*}: S^{-} \rightarrow S^{+}$of the map $\gamma(v): S^{+} \rightarrow S^{-}$. Then, for orthonormal vectors $v, v^{\prime} \in V$, the map $\gamma(v)^{*} \gamma\left(v^{\prime}\right)$ defines an endomorphism of $S^{+}$which satisfies

$$
\gamma(v)^{*} \gamma(v)=1 \quad \text { and } \quad \gamma(v)^{*} \gamma\left(v^{\prime}\right)+\gamma^{*}\left(v^{\prime}\right) \gamma(v)=0 .
$$

In particular, we have a natural action $\rho$ of $\Lambda^{2}(V)$ on $S^{+}$defined by

$$
\rho\left(v \wedge v^{\prime}\right) s:=-\gamma(v)^{*} \gamma\left(v^{\prime}\right) s \quad \text { for } \quad s \in S^{+} .
$$

Now, with respect to the Euclidean metric, the 2 -forms split as $\Lambda^{2}(V)=$ $\Lambda_{+}^{2}(V) \oplus \Lambda_{-}^{2}(V)$, where $\Lambda_{+}^{2}(V)$ and $\Lambda_{-}^{2}(V)$ denote the self-dual and anti-self-dual forms, respectively:

$$
\Lambda_{ \pm}^{2}(V):=\left\{\beta \in \Lambda^{2}(V) \mid * \beta= \pm \beta\right\} .
$$

We observe that $\Lambda_{-}^{2}(V)$ acts trivially on $S^{+}$, by direct inspection on basis elements:

$$
\Lambda_{-}^{2}(V)=\operatorname{Span}\left\{e_{1} \wedge e_{2}-e_{3} \wedge e_{4}, e_{1} \wedge e_{4}-e_{2} \wedge e_{3}, e_{1} \wedge e_{3}-e_{4} \wedge e_{2}\right\}
$$

$$
\begin{aligned}
\rho\left(e_{1} \wedge e_{2}-e_{3} \wedge e_{4}\right) & =-\gamma\left(e_{1}\right)^{*} \gamma\left(e_{2}\right)+\gamma\left(e_{3}\right)^{*} \gamma\left(e_{4}\right) \\
& =\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)+\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right)=0,
\end{aligned}
$$

$$
\begin{aligned}
\rho\left(e_{1} \wedge e_{4}-e_{2} \wedge e_{3}\right) & =-\gamma\left(e_{1}\right)^{*} \gamma\left(e_{4}\right)+\gamma\left(e_{2}\right)^{*} \gamma\left(e_{3}\right) \\
& =\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)+\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=0,
\end{aligned}
$$

$$
\rho\left(e_{1} \wedge e_{3}-e_{4} \wedge e_{2}\right)=-\gamma\left(e_{1}\right)^{*} \gamma\left(e_{3}\right)+\gamma\left(e_{4}\right)^{*} \gamma\left(e_{2}\right)
$$

$$
=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right)\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)=0 .
$$

Thus we get the isomorphisms $\Lambda_{+}^{2}(V) \rightarrow \mathfrak{s u}\left(S^{+}\right)$and $\Lambda_{-}^{2}(V) \rightarrow \mathfrak{s u}\left(S^{-}\right)$.

### 1.5.2 The twisted Dirac operator

Let $(M, \varphi)$ be a smooth 7 -manifold with $\mathrm{G}_{2}$-structure and $Y$ an associative submanifold of $M$. The oriented orthonormal frame of $T Y$ has the form $\left\{e_{1}, e_{2}, e_{3}=e_{1} \times e_{2}\right\}$. So, with respect to the splitting $\left.T M\right|_{Y}=T Y \oplus N Y$, the cross product induces maps

$$
\begin{align*}
\Omega^{0}(T Y) \times \Omega^{0}(T Y) & \rightarrow \Omega^{0}(T Y), \\
\Omega^{0}(T Y) \times \Omega^{0}(N Y) & \rightarrow \Omega^{0}(N Y),  \tag{1.28}\\
\Omega^{0}(N Y) \times \Omega^{0}(N Y) & \rightarrow \Omega^{0}(T Y) .
\end{align*}
$$

In particular, the map $\gamma: \Omega^{0}(T Y) \times \Omega^{0}(N Y) \rightarrow \Omega^{0}(N Y)$ endows $N Y$ with a Clifford bundle structure.
Since the Levi-Civita connection of $(M, \varphi)$ induces metric connections on the bundles $T Y$ and $N Y$, the composition

$$
\begin{equation*}
\Omega^{0}(N Y) \xrightarrow{\nabla_{A_{0}}} \Omega^{0}(T Y) \otimes \Omega^{0}(N Y) \xrightarrow{\gamma} \Omega^{0}(N Y) \tag{1.29}
\end{equation*}
$$

defines a natural Fueter-Dirac operator $D_{A_{0}}(\sigma):=\gamma\left(\nabla_{A_{0}}(\sigma)\right)$, where $A_{0} \in \Omega^{1}(Y, \mathfrak{s o}(4))$ denotes the connection induced on $N Y$ by the Levi-Civita connection $\nabla^{\varphi}$ of the $\mathrm{G}_{2}$-metric of $(M, \varphi)$. To simplify the notation, the twisted Dirac operator induced by the normal connection $A_{0}$ will be denoted just by $\not D$.

The normal bundle $N Y$ of an associative submanifold is trivial [CP15, Lemma 5.1, arXiv version: 1207.4470 v 3$]$. In particular, the second Stiefel-Whitney class $w_{2}(N Y)$
vanishes, so there exists a spin structure on $N Y$ [LM16, Theorem 1.7]. This is equivalent to the existence of a map $\Gamma: N Y \rightarrow \operatorname{End}(S)$ such that

$$
\Gamma(\sigma)+\Gamma(\sigma)^{*}=0 \quad \Gamma(\sigma)^{*} \Gamma(\sigma)=\langle\sigma, \sigma\rangle \text { Id } \quad \sigma \in \Omega^{0}(N Y)
$$

where $S$ is a vector bundle of (real) rank 8 and it splits into $\Gamma$-eigenbundles $S^{+}$and $S^{-}$of rank 4. We saw in the last Section that the Spin structure induces an isomorphism

$$
\rho_{ \pm}: \Lambda_{ \pm}^{2}(N Y) \rightarrow \mathfrak{s u}\left(S^{ \pm}\right)
$$

so, by Lemma 2, the Spin structure $\Gamma_{0}: T Y \rightarrow \operatorname{End}\left(S^{+}\right)$on $T Y$ coincides with the Spin structure on $N Y$ via the projection $\operatorname{Spin}(4)=\operatorname{Spin}(3) \times \operatorname{Spin}(3)$. Defining the Clifford multiplication

$$
\tau:=\Gamma_{0} \otimes \operatorname{Id}_{S^{-}}: T Y \rightarrow \operatorname{End}\left(S^{+} \otimes S^{-}\right)
$$

and using the Spin connection $\nabla$ on $S^{+} \otimes S^{-}$,

$$
\nabla(\sigma \otimes \varepsilon)=\nabla^{+} \sigma \otimes \varepsilon+\sigma \otimes \nabla^{-} \varepsilon
$$

we form the Dirac operator $D: \Omega^{0}\left(Y, S^{+} \otimes S^{-}\right) \rightarrow \Omega^{0}\left(Y, S^{+} \otimes S^{-}\right)$by

$$
D(\sigma \otimes \varepsilon):=\sum_{i=1}^{3} \tau\left(e_{i}\right) \nabla_{i}(\sigma \otimes \varepsilon)
$$

Proposition 4. Under the isomorphism (1.27), we have $N Y \otimes_{\mathbb{R}} \mathbb{C} \cong S^{+} \otimes_{\mathbb{C}} S^{-}$, the Spin connection $\nabla$ and the Clifford multiplication $\tau$ agree with the induced connection $\nabla^{\perp}$ on $N Y$ and $\gamma$, respectively.

Proof. In fact, each section $\sigma \otimes \varepsilon$ of $S^{+} \otimes_{\mathbb{C}} S^{-}$induces a section $\nu=\sigma^{*} \otimes \varepsilon$ on $\operatorname{Hom}\left(S^{+}, S^{-}\right) \cong$ $\left(S^{+}\right)^{*} \otimes S^{-}$such that $\nu(\sigma)=\sigma^{*}(\sigma) \otimes \varepsilon=\varepsilon$, then

$$
\begin{aligned}
\nabla \nu & =\nabla\left(\sigma^{*} \otimes \varepsilon\right) \\
& =\left(\nabla^{+}\right)^{*} \sigma^{*} \otimes \varepsilon+\sigma^{*} \otimes \nabla^{-} \varepsilon
\end{aligned}
$$

where $\nabla \nu$ is a section on $T^{*} Y \otimes \operatorname{Hom}\left(S^{+}, S^{-}\right)$, so, for each $\sigma$ section on $S^{+}$

$$
\begin{aligned}
(\nabla \nu)(\sigma) & =\left(\nabla^{+}\right)^{*} \sigma^{*}(\sigma) \otimes \varepsilon+\sigma^{*}(\sigma) \otimes \nabla^{-} \varepsilon \\
& =\left[d \sigma^{*}(\sigma)-\sigma^{*}\left(\nabla^{+} \sigma\right)\right] \otimes \varepsilon+\sigma^{*}(\sigma) \otimes \nabla^{-} \varepsilon \\
& =-\nu\left(\nabla^{+} \sigma\right)+\nabla^{-}(\nu(\sigma))
\end{aligned}
$$

On the other hand, the Spin connection $\nabla$ is compatible with the induced connection $\nabla^{\perp}$, that is,

$$
\nabla^{-}(\Gamma(n) \sigma)=\Gamma\left(\nabla^{\perp} n\right) \sigma+\Gamma(n) \nabla^{+} \sigma
$$

where $\Gamma: N Y \rightarrow \operatorname{Hom}_{J}\left(S^{+}, S^{-}\right)$is the isomorphism induced by (1.27), then for each section $n$ of $N Y$ and $\sigma$ of $S^{+}$,

$$
\Gamma\left(\nabla^{\perp} n\right)=-\Gamma(n) \nabla^{+} \sigma+\nabla^{-}(\Gamma(n) \sigma)
$$

Therefore, $\nabla^{\perp}$ agrees with the Spin connection $\nabla$ via the isomorphism $\Gamma$. Finally, with respect to the Clifford multiplications we have

and by Schur's lemma $\gamma$ and $\tau$ are the same.

In conclusion, (1.29) defines a twisted Dirac operator.

## 2 Deformation of associative submanifolds

We now address the general framework proposed by Akbulut and Salur [AS08a, AS08b], in which the role of torsion in the associative deformation theory is captured by a twisted Fueter-Dirac operator. Given an associative submanifold $Y^{3}$ in $(M, \varphi)$, the $\mathrm{G}_{2}$-structure induces connections on the bundles $N Y$ and $T Y$. Moreover, Proposition 4 gives an identification $N Y \cong \operatorname{Re}\left(S^{+} \otimes_{\mathbb{C}} S^{-}\right)$, with the respective reductions $\Lambda_{ \pm}^{2}(N Y) \cong$ $\mathfrak{s u}\left(S^{ \pm}\right)=\operatorname{ad}\left(S^{ \pm}\right)$. We will refer to elements in the kernel ker $\not D$ of the Dirac operator (1.29) as harmonic spinors twisted by $S^{-}$, or simply, twisted harmonic spinors.

Denote by $\mathcal{A}\left(S^{ \pm}\right)$the space of connections on each spinor bundle $S^{ \pm}$, and let $A_{0} \in \Omega^{1}(Y, \mathfrak{s o}(4))$ be the induced connection on $N Y$, so that the isomorphism $\mathfrak{s o}(4) \cong$ $\mathfrak{s o}(3) \oplus \mathfrak{s o}(3)$ gives a decomposition $A_{0}=A_{0}^{+} \oplus A_{0}^{-}$, with $A_{0}^{ \pm} \in \mathcal{A}\left(S^{ \pm}\right)$. Fixing these reference connections, each $\mathcal{A}\left(S^{ \pm}\right)$is an affine space modelled on $\Omega^{1}\left(Y, \operatorname{ad}\left(S^{ \pm}\right)\right)$, so a connection $A^{ \pm} \in \mathcal{A}\left(S^{ \pm}\right)$is of the form

$$
A^{ \pm}=A_{0}^{ \pm}+a^{ \pm} \quad \text { for } \quad a^{ \pm} \in \Omega^{1}\left(Y, \operatorname{ad}\left(S^{ \pm}\right)\right)
$$

Thus a connection on $N Y$ has the form

$$
A=A_{0}+a=\left(A_{0}^{+}+a^{+}\right) \oplus\left(A_{0}^{-}+a^{-}\right) \quad \text { for } \quad a \in \Omega^{1}(Y, \operatorname{ad}(N Y)) .
$$

Now, using the Clifford multiplication (indeed the cross-product), we define the twisted Dirac operator

$$
\not D_{\mathrm{A}}:=\sum_{j=1}^{3} e_{i} \times \nabla_{e_{i}} \quad: \quad \Omega^{0}(N Y) \rightarrow \Omega^{0}(N Y)
$$

where $\nabla:=\nabla_{A}$ is given by a connection on $N Y$ and the normal sections in $\operatorname{ker}\left(\mathbb{D}_{\mathrm{A}}\right)$ are called harmonic spinors twisted by $\left(S^{-}, A\right)$. The following Definition is adopted from [AS08a]:

Definition 9. Let $Y$ be an associative submanifold of $(M, \varphi)$. The Fueter-Dirac operator associated with $Y$ is

$$
\begin{equation*}
\not D_{\mathrm{A}} \sigma:=\sum_{i=1}^{3} e_{i} \times \nabla_{e_{i}}^{\perp} \sigma-e_{i} \times a\left(e_{i}\right)(\sigma), \tag{2.1}
\end{equation*}
$$

where $a \in \Omega^{1}(Y, \operatorname{ad}(N Y))$ defined by $a\left(e_{i}\right)(\sigma)=\left(\nabla_{\sigma}\left(e_{i}\right)\right)^{\perp}$ is the normal component of $\nabla_{\sigma}\left(e_{i}\right)$, and $\nabla$ is the Levi-Civita connection on $M$.

We know from [AS08a, Theorem 6] that the linearisation of the deformation problem for an associative submanifold $Y$ of $(M, \varphi)$ at $Y$ is identified with $\operatorname{ker} D_{\mathrm{A}}$, so this space is called the infinitesimal deformation space of $Y$. Our motivation is precisely the
expectation that a Weitzenböck formula for (2.1), in favourable cases at least, can give information about the deformation space ker $\not D_{\mathrm{A}}$.

Lemma 8. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ and $\left\{\eta_{4}, \ldots, \eta_{7}\right\}$ be orthonormal frames of the vector bundles $T Y$ and $N Y$, respectively. Then

$$
\begin{equation*}
\not D_{\mathrm{A}} \sigma=\sum_{i=1}^{3} e_{i} \times \nabla_{e_{i}}^{\perp} \sigma-\sum_{k=4}^{7}\left(\nabla_{\sigma} \psi\right)\left(\eta_{k}, e_{1}, e_{2}, e_{3}\right) \eta_{k} \tag{2.2}
\end{equation*}
$$

Proof. Since $A_{0}$ is the connection induced on $N Y$ by the Levi-Civita connection on $M$ given by the $\mathrm{G}_{2}$-metric $g_{\varphi}$, we have $\nabla_{A_{0}}=\nabla^{\perp}$. Now, for each $\sigma \in \Omega^{0}(N Y)$,

$$
\begin{aligned}
\sum_{i=1}^{3} e_{i} \times a\left(e_{i}\right)(\sigma) & =e_{1} \times\left(\nabla_{\sigma} e_{1}\right)^{\perp}+e_{2} \times\left(\nabla_{\sigma} e_{2}\right)^{\perp}+e_{3} \times\left(\nabla_{\sigma} e_{3}\right)^{\perp} \\
& =\left(e_{2} \times e_{3}\right) \times\left(\nabla_{\sigma} e_{1}\right)^{\perp}+\left(e_{3} \times e_{1}\right) \times\left(\nabla_{\sigma} e_{2}\right)^{\perp}+\left(e_{1} \times e_{2}\right) \times\left(\nabla_{\sigma} e_{3}\right)^{\perp} \\
& =\chi\left(\left(\nabla_{\sigma} e_{1}\right)^{\perp}, e_{2}, e_{3}\right)+\chi\left(\left(\nabla_{\sigma} e_{2}\right)^{\perp}, e_{3}, e_{1}\right)+\chi\left(\left(\nabla_{\sigma} e_{3}\right)^{\perp}, e_{1}, e_{2}\right) \\
& =(\diamond) .
\end{aligned}
$$

Since $Y$ is associative exactly when $\left.\chi\right|_{T Y}=0$, this implies

$$
\chi\left(\left(\nabla_{\sigma} e_{i}\right)^{\perp}, e_{j}, e_{k}\right)=\chi\left(\nabla_{\sigma} e_{i}, e_{j}, e_{k}\right)
$$

Furthermore, the section $\chi\left(\nabla_{\sigma}\left(e_{i}\right), e_{j}, e_{k}\right)$ lies on the normal component, so

$$
\begin{aligned}
(\diamond) & =\sum_{k=4}^{7}\left(\left\langle\chi\left(\nabla_{\sigma}\left(e_{1}\right), e_{2}, e_{3}\right), \eta_{k}\right\rangle+\left\langle\chi\left(e_{1}, \nabla_{\sigma}\left(e_{2}\right), e_{3}\right), \eta_{k}\right\rangle+\left\langle\chi\left(e_{1}, e_{2}, \nabla_{\sigma}\left(e_{3}\right)\right), \eta_{k}\right\rangle\right) \eta_{k} \\
& =\sum_{k=4}^{7}\left(-\left(\nabla_{\sigma} \psi\right)\left(e_{1}, e_{2}, e_{3}, \eta_{k}\right)+\sigma\left(\psi\left(e_{1}, e_{2}, e_{3}, \eta_{k}\right)\right)-\psi\left(e_{1}, e_{2}, e_{3}, \nabla_{\sigma}\left(\eta_{k}\right)\right)\right) \eta_{k} \\
& =\sum_{k=4}^{7}\left(\left(\nabla_{\sigma} \psi\right)\left(\eta_{k}, e_{1}, e_{2}, e_{3}\right) \eta_{k} .\right.
\end{aligned}
$$

To obtain the second equality we used the covariant derivative of $\psi$ :

$$
\left(\nabla_{\sigma} \psi\right)\left(e_{1}, e_{2}, e_{3}, \eta_{k}\right)=\sigma\left(\psi\left(e_{1}, e_{2}, e_{3}, \eta_{k}\right)\right)-\psi\left(\nabla_{\sigma} e_{1}, e_{2}, e_{3}, \eta_{k}\right)-\cdots-\psi\left(e_{1}, e_{2}, e_{3}, \nabla_{\sigma} \eta_{k}\right)
$$

and equation (1.7), and for the last one we used the skew-symmetry of $\nabla_{\sigma} \psi$ and the associativity condition $\chi\left(e_{1}, e_{2}, e_{3}\right)=0$.

Remark 5. If the $\mathrm{G}_{2}$-structure is choosen with the convention (1.9), then the operator $\not D_{\mathrm{A}}$ is expressed as

$$
\begin{equation*}
\not D_{\mathrm{A}} \sigma=-\sum_{i=1}^{3} e_{i} \times \nabla_{e_{i}}^{\perp} \sigma+\sum_{k=4}^{7}\left(\nabla_{\sigma} \psi\right)\left(\eta_{k}, e_{1}, e_{2}, e_{3}\right) \eta_{k} . \tag{2.3}
\end{equation*}
$$

Fix $p \in Y$ and choose local orthonormal frames $\left\{e_{1}, e_{2}, e_{3}\right\}$ and $\left\{\eta_{4}, \eta_{5}, \eta_{6}, \eta_{7}\right\}$ of $T Y$ and $N Y$, respectively, such that

$$
\begin{equation*}
\left(\nabla_{e_{i}} e_{j}\right)_{p}=\left(\nabla_{e_{i}} \eta_{k}\right)_{p}=\left(\nabla_{\eta_{l}} \eta_{k}\right)_{p}=0 \tag{2.4}
\end{equation*}
$$

for all $i, j=1,2,3$ and $k, l=4,5,6,7$. Observe that, for any sections $\sigma, \eta \in \Omega^{0}\left(\left.T M\right|_{Y}\right)$, one has

$$
\begin{equation*}
\nabla_{\sigma}(\eta) \in \Omega^{0}\left(\left.T M\right|_{Y}\right)=\Omega^{0}(T Y) \oplus \Omega^{0}(N Y) \tag{2.5}
\end{equation*}
$$

so both tangent and normal components of (2.4) vanish at $p$. Then the following holds at $p$ :

$$
\begin{align*}
& \not \text { A }^{2} \sigma=\sum_{i, j=1}^{3} e_{i} \times \nabla_{i}^{\perp}\left(e_{j} \times \nabla_{j}^{\perp} \sigma\right)-\sum_{i=1}^{3} \sum_{l=4}^{7} e_{i} \times \nabla_{i}^{\perp}\left\{\left(\nabla_{\sigma} \psi\right)\left(\eta_{l}, e_{1}, e_{2}, e_{3}\right) \eta_{l}\right\} \\
& -\sum_{j=1}^{3} \sum_{k=4}^{7}\left(\nabla_{e_{j} \times \nabla_{j}^{\perp} \sigma} \psi\right)\left(\eta_{k}, e_{1}, e_{2}, e_{3}\right) \eta_{k}+\sum_{k, l=4}^{7}\left(\nabla_{\left(\nabla_{\sigma} \psi\right)\left(\eta_{l}, e_{1}, e_{2}, e_{3}\right) \eta_{l}} \psi\right)\left(\eta_{k}, e_{1}, e_{2}, e_{3}\right) \eta_{k} \\
& =\underbrace{\sum_{i, j=1}^{3} e_{i} \times\left(e_{j} \times \nabla_{i}^{\perp} \nabla_{j}^{\perp} \sigma\right)}+\underbrace{\sum_{i, j, l=1}^{3} \sum_{m=4}^{7} T\left(e_{i}, e_{l}\right) \psi\left(e_{l}, e_{j}, \nabla_{j}^{\perp} \sigma, \eta_{m}\right) e_{i} \times \eta_{m}}, \\
& \text { (I) } \\
& \text { (II) } \\
& -\underbrace{-\sum_{j=1}^{3} \sum_{k, n=4}^{7} \varphi\left(e_{j}, \nabla_{j}^{\perp} \sigma, \eta_{n}\right)\left(\nabla_{\eta_{n}} \psi\right)\left(\eta_{k}, e_{1}, e_{2}, e_{3}\right) \eta_{k}}_{\text {(III) }}, \\
& -\underbrace{\sum_{i=1}^{3} \sum_{l=4}^{7} e_{i}\left(\nabla_{\sigma} \psi\left(\eta_{l}, e_{1}, e_{2}, e_{3}\right)\right) e_{i} \times \eta_{l}}_{\text {(IV) }}, \\
& +\underbrace{\sum_{k, l=4}^{7}\left(\nabla_{\sigma} \psi\right)\left(\eta_{l}, e_{1}, e_{2}, e_{3}\right)\left(\nabla_{\eta_{l}} \psi\right)\left(\eta_{k}, e_{1}, e_{2}, e_{3}\right) \eta_{k}} . \tag{2.6}
\end{align*}
$$

(V)

To obtain (I) and (II) we used Lemma 5 (i) and the property $\left(\nabla_{i} e_{j}\right)_{p}=0$, whereas (IV) follows from the Leibniz rule for $\nabla^{\perp}$ and $\left(\nabla_{i} \eta_{k}\right)_{p}=0$.

Remark 6. In [Gay14], Gayet obtains a Weitzenböck-type formula when the $\mathrm{G}_{2}$-structure is torsion-free:

$$
\begin{equation*}
\not D^{2}=\nabla^{*} \nabla+\mathcal{R}-\mathcal{A} \tag{2.7}
\end{equation*}
$$

The term $\mathcal{R}(\sigma)=\pi^{\perp} \sum_{i=1}^{3} R\left(e_{i}, \sigma\right) e_{i}$ can be seen as a partial Ricci operator, where $R$ is the curvature tensor of $g$ on $M$ and $\pi^{\perp}$ is the orthogonal projection to $N Y$, and

$$
\mathcal{A}: \Omega^{0}(N Y) \rightarrow \Omega^{0}(\operatorname{Sym}(T Y))
$$

defined by $\mathcal{A}(\sigma)=S^{t} \circ S(\sigma)$, is a symmetric positive $0^{\text {th }}$-order operator determined by the shape operator $S(\sigma)(X)=-\left(\nabla_{X} \sigma\right)^{\top}$. With these data, Gayet formulates a vanishing theorem for a compact associative submanifold $Y$ of a $\mathrm{G}_{2}$-manifold and proves that $Y$ is rigid when the spectrum of the operator $\mathcal{R}-\mathcal{A}$ is positive. The advantage of formula (2.7) lies in the relation between the intrinsic and extrinsic geometries of the associative submanifold, because $\mathcal{R}-\mathcal{A}$ is obtained from a curvature term

$$
\begin{equation*}
-\sum_{i<j}^{3}\left(e_{i} \times e_{j}\right) \times R^{\perp}\left(e_{i}, e_{j}\right) \sigma . \tag{2.8}
\end{equation*}
$$

While one cannot entirely apply his proof to the general case (because the full torsion tensor is non-zero), we are able to adapt some of its steps.

Given $\sigma \in \Omega^{0}(N Y)$, we define operator $\mathcal{B}: \Omega^{0}(N Y) \rightarrow \Omega^{0}(T Y)$ by

$$
\begin{equation*}
\mathcal{B}(\sigma):=\sum_{j=1}^{3} e_{j} \times S_{\sigma}\left(e_{j}\right) \tag{2.9}
\end{equation*}
$$

We recall the mean curvature vector field $H$ of a immersed submanifold by

$$
\begin{aligned}
\sum_{i=1}^{3}\left(\nabla_{i} e_{i}\right)^{\perp} & =\sum_{i=1}^{3} \sum_{k=4}^{7}\left\langle\nabla_{i} e_{i}, \eta_{k}\right\rangle \eta_{k}=-\sum_{i=1}^{3} \sum_{k=4}^{7}\left\langle e_{i}, \nabla_{i} \eta_{k}\right\rangle \eta_{k} \\
& =-\sum_{i=1}^{3} \sum_{k=4}^{7}\left\langle e_{i},\left(\nabla_{i} \eta_{k}\right)^{\top}\right\rangle \eta_{k}=\sum_{i=1}^{3} \sum_{k=4}^{7}\left\langle e_{i}, S_{\eta_{k}}\left(e_{i}\right)\right\rangle \eta_{k} \\
& =\sum_{k=4}^{7} \operatorname{tr}\left(S_{\eta_{k}}\right) \eta_{k}=H
\end{aligned}
$$

Lemma 9. Denoting by $\nabla^{*} \nabla$ the Laplacian of the connection $\nabla^{\perp}$, by $\mathcal{R}$ the partial Ricci operator $\mathcal{R}(\sigma)=\pi^{\perp} \sum_{i=1}^{3} R\left(e_{i}, \sigma\right) e_{i}$, and by $\mathcal{B}$ the $0^{\text {th }}$-order operator defined in (2.9), for a normal vector field $\sigma$ to an associative submanifold $Y$ one has

$$
\begin{aligned}
(\mathrm{I}) & =\nabla^{*} \nabla \sigma+\mathcal{R}(\sigma)-\pi^{\perp}\left(\sum_{i \in \mathbb{Z}_{3}} e_{i} \times \mathcal{T}\left(e_{i+1}, \sigma, e_{i}, e_{i+1}\right)\right) \\
& H \times \mathcal{B}(\sigma)-\sum_{j=1}^{3} \pi^{\perp}\left(T\left(e_{j}, \cdot\right)^{\sharp}\right) \times S_{\sigma}\left(e_{j}\right)+\left(\operatorname{tr} S_{\sigma}\right) H-\mathcal{A}(\sigma)+\pi^{\perp}\left(T(\mathcal{B}(\sigma), \cdot)^{\sharp}\right)
\end{aligned}
$$

where $\mathcal{T}$ is defined in (1.24) by

$$
\begin{aligned}
\mathcal{T}\left(e_{i+1}, \sigma, e_{i}, e_{i+1}\right):= & \sum_{m=1}^{7} T\left(\sigma, e_{m}\right)\left(\nabla_{i+1} \psi\right)\left(e_{m}, e_{i}, e_{i+1}, \cdot\right)^{\sharp}-T_{i+1 m}\left(\nabla_{\sigma} \psi\right)\left(e_{m}, e_{i}, e_{i+1}, \cdot\right)^{\sharp} \\
& +\left(\left(\nabla_{i+1} T\right)\left(\sigma, e_{m}\right)-\left(\nabla_{\sigma} T\right)\left(e_{i+1}, e_{m}\right)\right) \chi\left(e_{m}, e_{i}, e_{i+1}\right) .
\end{aligned}
$$

Proof. In terms of an orthonormal frame $\left\{e_{1}, e_{2}, e_{3}\right\}$ of $T Y$,

$$
(\mathrm{I})=\sum_{i=1}^{3} e_{i} \times\left(e_{i} \times \nabla_{i}^{\perp} \nabla_{i}^{\perp} \sigma\right)+\sum_{\substack{i, j=1 \\ i \neq j}}^{3} e_{i} \times\left(e_{j} \times \nabla_{i}^{\perp} \nabla_{j}^{\perp} \sigma\right)
$$

$$
\begin{aligned}
& =-\sum_{i} \nabla_{i}^{\perp} \nabla_{i}^{\perp} \sigma-\sum_{i \neq j}\left(e_{i} \times e_{j}\right) \times \nabla_{i}^{\perp} \nabla_{j}^{\perp} \sigma \\
& =-\sum_{i} \nabla_{i}^{\perp} \nabla_{i}^{\perp} \sigma-\nabla_{\nabla_{i}^{\top} e_{i}}^{\perp} \sigma-\sum_{i<j}\left(e_{i} \times e_{j}\right) \times\left(\nabla_{i}^{\perp} \nabla_{j}^{\perp}-\nabla_{j}^{\perp} \nabla_{i}^{\perp}-\nabla_{\left[e_{i}, e_{j}\right]}^{\perp}\right) \sigma \\
& =\nabla^{*} \nabla \sigma-\sum_{i<j}\left(e_{i} \times e_{j}\right) \times R^{\perp}\left(e_{i}, e_{j}\right) \sigma .
\end{aligned}
$$

Here $R^{\perp} \in \Omega^{0}\left(\Lambda^{2} T^{*} Y \otimes \operatorname{End}(N Y)\right)$ is the normal curvature of $Y$ :

$$
\begin{equation*}
R^{\perp}\left(e_{i}, e_{j}\right) \sigma=\left(\nabla_{i}^{\perp} \nabla_{j}^{\perp}-\nabla_{j}^{\perp} \nabla_{i}^{\perp}-\nabla_{\left[e_{i}, e_{j}\right]}^{\perp}\right) \sigma . \tag{2.10}
\end{equation*}
$$

To obtain the second equality, we used (1.8) in each term of the form

$$
\begin{aligned}
e_{i} \times\left(e_{i} \times \nabla_{i}^{\perp} \nabla_{i}^{\perp} \sigma\right) & =-\chi\left(e_{i}, e_{i}, \nabla_{i}^{\perp} \nabla_{i}^{\perp} \sigma\right)-\left\langle e_{i}, e_{i}\right\rangle \nabla_{i}^{\perp} \nabla_{i}^{\perp} \sigma+\left\langle e_{i}, \nabla_{i}^{\perp} \nabla_{i}^{\perp} \sigma\right\rangle e_{i} \\
& =-\nabla_{i}^{\perp} \nabla_{i}^{\perp} \sigma .
\end{aligned}
$$

Moreover, for $i \neq j$,

$$
\begin{aligned}
e_{i} \times\left(e_{j} \times \nabla_{i}^{\perp} \nabla_{j}^{\perp} \sigma\right) & =-\chi\left(e_{i}, e_{j}, \nabla_{i}^{\perp} \nabla_{j}^{\perp} \sigma\right)-\left\langle e_{i}, e_{j}\right\rangle \nabla_{i}^{\perp} \nabla_{j}^{\perp} \sigma+\left\langle e_{i}, \nabla_{i}^{\perp} \nabla_{j}^{\perp} \sigma\right\rangle e_{j} \\
& =-\chi\left(\nabla_{i}^{\perp} \nabla_{j}^{\perp} \sigma, e_{i}, e_{j}\right)=\nabla_{i}^{\perp} \nabla_{j}^{\perp} \sigma \times\left(e_{i} \times e_{j}\right) \\
& =-\left(e_{i} \times e_{j}\right) \times \nabla_{i}^{\perp} \nabla_{j}^{\perp} \sigma .
\end{aligned}
$$

Now, expanding the summands in the frame $\left\{\eta_{4}, \ldots, \eta_{7}\right\}$ and using antisymmetry of the mixed product and the Ricci equation, we have

$$
\begin{aligned}
-\sum_{i<j}^{3}\left(e_{i} \times e_{j}\right) \times R^{\perp}\left(e_{i}, e_{j}\right) \sigma= & -\frac{1}{2} \sum_{i, j=1}^{3} \sum_{k=4}^{7}\left\langle\left(e_{i} \times e_{j}\right) \times R^{\perp}\left(e_{i}, e_{j}\right) \sigma, \eta_{k}\right\rangle \eta_{k} \\
= & \frac{1}{2} \sum_{i, j=1}^{3} \sum_{k=4}^{7}\left\langle R^{\perp}\left(e_{i}, e_{j}\right) \sigma,\left(e_{i} \times e_{j}\right) \times \eta_{k}\right\rangle \eta_{k} \\
= & \frac{1}{2} \sum_{i, j=1}^{3} \sum_{k=4}^{7}\left\langle R\left(e_{i}, e_{j}\right) \sigma,\left(e_{i} \times e_{j}\right) \times \eta_{k}\right\rangle \eta_{k} \\
& +\left\langle\left[S_{\sigma}, S_{\left.\left(e_{i} \times e_{j}\right) \times \eta_{k}\right]} e_{i}, e_{j}\right\rangle \eta_{k}\right. \\
= & -\frac{1}{2} \pi^{\perp} \sum_{i, j=1}^{3}\left(e_{i} \times e_{j}\right) \times R\left(e_{i}, e_{j}\right) \sigma \\
& \underbrace{}_{(\star)}, \underbrace{\frac{1}{2} \sum_{i, j=1}^{3} \sum_{k=4}^{7}\left\langle\left[S_{\sigma}, S_{\left.\left(e_{i} \times e_{j}\right) \times \eta_{k}\right]}\right] e_{i}, e_{j}\right\rangle \eta_{k}}_{(\star \star)},
\end{aligned}
$$

Applying the Bianchi identity $R\left(e_{i}, e_{j}\right) \sigma=-R\left(\sigma, e_{i}\right) e_{j}-R\left(e_{j}, \sigma\right) e_{i}$ to the first term, expanding the sum and using Lemma 5, we have:

$$
(\star)=\pi^{\perp} \sum_{i, j=1}^{3}\left(e_{i} \times e_{j}\right) \times R\left(e_{j}, \sigma\right) e_{i}
$$

$$
\begin{aligned}
= & \pi^{\perp}\left(e_{3} \times R\left(e_{2}, \sigma\right) e_{1}-e_{2} \times R\left(e_{3}, \sigma\right) e_{1}-e_{3} \times R\left(e_{1}, \sigma\right) e_{2}+e_{1} \times R\left(e_{3}, \sigma\right) e_{2}\right. \\
& \left.+e_{2} \times R\left(e_{1}, \sigma\right) e_{3}-e_{1} \times R\left(e_{2}, \sigma\right) e_{3}\right) \\
= & \pi^{\perp}(\underbrace{-e_{1} \times\left[R\left(e_{2}, \sigma\right) e_{1} \times e_{2}+e_{1} \times R\left(e_{2}, \sigma\right) e_{2}\right.}+\mathcal{T}\left(e_{2}, \sigma, e_{1}, e_{2}\right)]
\end{aligned}
$$

(I)

$$
\underbrace{-e_{2} \times\left[R\left(e_{3}, \sigma\right) e_{2} \times e_{3}+e_{2} \times R\left(e_{3}, \sigma\right) e_{3}\right.}_{\sim}+\mathcal{T}\left(e_{3}, \sigma, e_{2}, e_{3}\right)]
$$

(II)
$-\underbrace{e_{3} \times\left[R\left(e_{1}, \sigma\right) e_{3} \times e_{1}+e_{3} \times R\left(e_{1}, \sigma\right) e_{1}\right.}+\mathcal{T}\left(e_{1}, \sigma, e_{3}, e_{1}\right)]$
(III)

$$
\left.+e_{3} \times R\left(e_{2}, \sigma\right) e_{1}+e_{1} \times R\left(e_{3}, \sigma\right) e_{2}+e_{2} \times R\left(e_{1}, \sigma\right) e_{3}\right)
$$

Using the identity $u \times(v \times w)+v \times(u \times w)=\langle u, w\rangle v+\langle v, w\rangle u-2\langle u, v\rangle w$, we check that

$$
\begin{aligned}
(\mathrm{I}) & =-e_{3} \times R\left(e_{2}, \sigma\right) e_{1}-\left(e_{2}, \sigma, e_{1}, e_{2}\right) e_{1}+2\left(e_{2}, \sigma, e_{1}, e_{1}\right) e_{2}+R\left(e_{2}, \sigma\right) e_{2} \\
(\mathrm{II}) & =-e_{1} \times R\left(e_{3}, \sigma\right) e_{2}-\left(e_{3}, \sigma, e_{2}, e_{3}\right) e_{2}+2\left(e_{3}, \sigma, e_{2}, e_{2}\right) e_{3}+R\left(e_{3}, \sigma\right) e_{3} \\
(\mathrm{III}) & =-e_{2} \times R\left(e_{1}, \sigma\right) e_{3}-\left(e_{1}, \sigma, e_{3}, e_{1}\right) e_{3}+2\left(e_{1}, \sigma, e_{3}, e_{3}\right) e_{1}+R\left(e_{1}, \sigma\right) e_{1}
\end{aligned}
$$

where $\left(e_{1}, \sigma, e_{3}, e_{1}\right):=\left\langle R\left(e_{1}, \sigma\right) e_{3}, e_{1}\right\rangle$. Cancelling terms and taking the orthogonal projection on $(\mathrm{I})+(\mathrm{II})+(\mathrm{III})$, we find $(\star)=\mathcal{R}(\sigma)-\pi^{\perp}\left(\sum e_{i} \times \mathcal{T}\left(e_{i+1}, \sigma, e_{i}, e_{i+1}\right)\right)$.

Finally, by the symmetry of $S_{\sigma}$ and $S_{\left(e_{i} \times e_{j}\right) \times \eta_{k}}$, the second term is

$$
\begin{aligned}
(\star \star) & =\frac{1}{2} \sum_{i, j=1}^{3} \sum_{k=4}^{7}\left(\left\langle S_{\left(e_{i} \times e_{j}\right) \times \eta_{k}}\left(e_{i}\right), S_{\sigma}\left(e_{j}\right)\right\rangle-\left\langle S_{\sigma}\left(e_{i}\right), S_{\left(e_{i} \times e_{j}\right) \times \eta_{k}}\left(e_{j}\right)\right\rangle\right) \eta_{k} \\
& =\sum_{i, j=1}^{3} \sum_{k=4}^{7}\left(\left\langle S_{\left(e_{i} \times e_{j}\right) \times \eta_{k}}\left(e_{i}\right), S_{\sigma}\left(e_{j}\right)\right\rangle\right) \eta_{k}=(\star \star \star)
\end{aligned}
$$

Using Lemma 5 i), we compute

$$
\begin{aligned}
S_{\left(e_{i} \times e_{j}\right) \times \eta_{k}}\left(e_{i}\right)= & -\left(\nabla_{i}\left(e_{i} \times e_{j}\right) \times \eta_{k}+\left(e_{i} \times e_{j}\right) \times \nabla_{i} \eta_{k}+\sum_{m=1}^{7} T_{i m} \chi\left(e_{m}, e_{i} \times e_{j}, \eta_{k}\right)\right)^{\top} \\
= & -\left(\left(\nabla_{i} e_{i} \times e_{j}\right) \times \eta_{k}+\left(e_{i} \times \nabla_{i} e_{j}\right) \times \eta_{k}+\sum_{l=1}^{7} T_{i l} \chi\left(e_{l}, e_{i}, e_{j}\right) \times \eta_{k}\right. \\
& \left.+\left(e_{i} \times e_{j}\right) \times \nabla_{i} \eta_{k}+\sum_{m=1}^{7} T_{i m} \chi\left(e_{m}, e_{i} \times e_{j}, \eta_{k}\right)\right)^{\top} \\
= & -\left(\left(\nabla_{i} e_{i}\right)^{\perp} \times e_{j}\right) \times \eta_{k}-\left(e_{i} \times\left(\nabla_{i} e_{j}\right)^{\perp}\right) \times \eta_{k} \\
& -\left(e_{i} \times e_{j}\right) \times\left(\nabla_{i} \eta_{k}\right)^{\top}-\sum_{m=1}^{7} T_{i m}\left(\chi\left(e_{m}, e_{i}, e_{j}\right)^{\perp} \times \eta_{k}+\chi\left(e_{m}, e_{i} \times e_{j}, \eta_{k}\right)^{\top}\right) \\
= & -\left(\left(\nabla_{i} e_{i}\right)^{\perp} \times e_{j}\right) \times \eta_{k}-\left(e_{i} \times\left(\nabla_{i} e_{j}\right)^{\perp}\right) \times \eta_{k}+\left(e_{i} \times e_{j}\right) \times S_{\eta_{k}}\left(e_{i}\right) \\
& -\sum_{m=4}^{7} T_{i m}\left(\chi\left(\eta_{m}, e_{i}, e_{j}\right)^{\perp} \times \eta_{k}+\chi\left(\eta_{m}, e_{i} \times e_{j}, \eta_{k}\right)^{\top}\right)
\end{aligned}
$$

Notice that, we used the cross product properties (1.28) in the third line and the associative condition $\left.\chi\right|_{T Y}=0$ in the last one. Moreover, using the Levi-Civita conection symmetry and the relation $e_{3}=e_{1} \times e_{2}$, we have for each $j=1,2,3$

$$
\begin{aligned}
\sum_{i} e_{i} \times\left(\nabla_{i} e_{j}\right)^{\perp}= & \sum_{i} e_{i} \times\left(\nabla_{j} e_{i}\right)^{\perp} \\
= & e_{1} \times\left(\nabla_{j} e_{1}\right)^{\perp}+e_{2} \times\left(\nabla_{j} e_{2}\right)^{\perp} \\
& +e_{3} \times\left(\left(\nabla_{j} e_{1}\right)^{\perp} \times e_{2}+e_{1} \times\left(\nabla_{j} e_{2}\right)^{\perp}+\sum_{m=4}^{7} T_{j m} \chi\left(\eta_{m}, e_{1}, e_{2}\right)\right) \\
= & e_{1} \times\left(\nabla_{j} e_{1}\right)^{\perp}+e_{2} \times\left(\nabla_{j} e_{2}\right)^{\perp}-\left(\nabla_{j} e_{1}\right)^{\perp}\left(e_{3} \times e_{2}\right)-\left(e_{3} \times e_{1}\right) \times\left(\nabla_{j} e_{2}\right)^{\perp} \\
& -\sum_{m=4}^{7} T_{j m} e_{3} \times\left(\eta_{m} \times\left(e_{1} \times e_{2}\right)\right)=-\sum_{m=4}^{7} T_{j m} \eta_{m}
\end{aligned}
$$

Note that, we used the triality cross product property between $e_{1}, e_{2}, e_{3}$ and the definition (1.8) of $\chi$.

$$
\begin{aligned}
(\star \star \star)= & \sum_{i j=1}^{3} \sum_{k=4}^{7}-\left\langle\left(\left(\nabla_{i} e_{i}\right)^{\perp} \times e_{j}\right) \times \eta_{k}, S_{\sigma}\left(e_{j}\right)\right\rangle \eta_{k} \\
& +\sum_{m=4}^{7}\left(T_{j m}\left\langle\eta_{m} \times \eta_{k}, S_{\sigma}\left(e_{j}\right)\right\rangle \eta_{k}\right)+\left\langle\left(e_{i} \times e_{j}\right) \times S_{\eta_{k}}\left(e_{i}\right), S_{\sigma}\left(e_{j}\right)\right\rangle \eta_{k} \\
& -\sum_{m=4}^{7} T_{i m}\left\langle\chi\left(\eta_{m}, e_{i}, e_{j}\right) \times \eta_{k}+\chi\left(\eta_{m}, e_{i} \times e_{j}, \eta_{k}\right), S_{\sigma}\left(e_{j}\right)\right\rangle \eta_{k} \\
= & \sum_{i j=1}^{3}\left(\left(\nabla_{i} e_{i}\right)^{\perp} \times e_{j}\right) \times S_{\sigma}\left(e_{j}\right)-\sum_{j=1}^{3} \sum_{m=4}^{7} T_{j m} \eta_{m} \times S_{\sigma}\left(e_{j}\right)+ \\
& +\sum_{i j=1}^{3} \sum_{k=4}^{7}\left\langle S_{\eta_{k}}\left(e_{i}\right), e_{i}\right\rangle\left\langle e_{j}, S_{\sigma}\left(e_{j}\right)\right\rangle \eta_{k}-\left\langle S_{\eta_{k}}\left(e_{i}\right), e_{j}\right\rangle\left\langle e_{i}, S_{\sigma}\left(e_{j}\right)\right\rangle \eta_{k} \\
& +\sum_{i, j=1}^{3} \sum_{m=4}^{7} T_{i m}\left(\chi\left(\eta_{m}, e_{i}, e_{j}\right) \times S_{\sigma}\left(e_{j}\right)+\chi\left(\eta_{m}, e_{i} \times e_{j}, S_{\sigma}\left(e_{j}\right)\right)\right) \\
& =H \times \mathcal{B}(\sigma)-\sum_{j=1}^{3} \pi^{\perp}\left(T\left(e_{j}, \cdot\right)^{\sharp}\right) \times S_{\sigma}\left(e_{j}\right)+\left(\operatorname{tr} S_{\sigma}\right) H-\mathcal{A}(\sigma)+\pi^{\perp}\left(T(\mathcal{B}(\sigma), \cdot)^{\sharp}\right)
\end{aligned}
$$

To obtain the last line we computed

$$
\begin{aligned}
\sum_{j} \chi\left(\eta_{m}, e_{i}, e_{j}\right) \times S_{\sigma}\left(e_{j}\right) & =\sum_{j}-\left(\eta_{k} \times\left(e_{i} \times e_{j}\right)\right) \times S_{\sigma}\left(e_{j}\right) \\
& =\sum_{j}-\chi\left(S_{\sigma}\left(e_{j}\right), \eta_{m}, e_{i} \times e_{j}\right)+\left\langle S_{\sigma}\left(e_{j}\right), e_{i} \times e_{j}\right\rangle \eta_{k} \\
& =\sum_{j}\left\langle e_{j} \times S_{\sigma}\left(e_{j}\right), e_{i}\right\rangle \eta_{k}=\left\langle\mathcal{B}(\sigma), e_{i}\right\rangle \eta_{k}
\end{aligned}
$$

The correction terms (II),...,(V) can be conveniently organised into three $1^{\text {st }}$ order differential operators $P_{1}, P_{2}, P_{3}$ on sections of $N Y$.

## Lemma 10.

$$
\text { (II) }=P_{1}(\sigma):=\sum_{i, j=1}^{3} T_{i i} e_{j} \times \nabla_{j}^{\perp} \sigma-T_{j i} e_{j} \times \nabla_{i}^{\perp} \sigma-2 \sum_{(i, j, k) \in S_{3}^{0}}^{3} C_{i j} \nabla_{k}^{\perp} \sigma,
$$

where $S_{3}^{0}$ are the even permutations in $S_{3}, T_{j i}$ is the full torsion tensor and $C_{i j}$ the anti-symmetric part of $T_{i j}$.

Proof. By Lemma 1.16, we have

$$
(\mathrm{II})=\sum_{i, j, n=1}^{3} \sum_{k=4}^{7} T\left(e_{i}, e_{n}\right) \psi\left(e_{n}, e_{j}, \nabla_{j}^{\perp} \sigma, \eta_{k}\right) e_{i} \times \eta_{k}=(*) .
$$

Since $\chi\left(e_{n}, e_{j}, \nabla_{j}^{\perp} \sigma\right) \in \Omega^{0}(N Y)$, then using (1.8) we have

$$
\begin{aligned}
(*) & =\sum_{i, j, n=1}^{3} T\left(e_{i}, e_{n}\right) e_{i} \times \chi\left(\nabla_{j}^{\perp} \sigma, e_{n}, e_{j}\right)=\sum_{i, j, n=1}^{3}-T\left(e_{i}, e_{n}\right) e_{i} \times\left(\nabla_{j}^{\perp} \sigma \times\left(e_{n} \times e_{j}\right)\right) \\
& =\sum_{i, j, n=1}^{3} T\left(e_{i}, e_{n}\right) \chi\left(e_{i}, \nabla_{j}^{\perp} \sigma, e_{n} \times e_{j}\right)-\left\langle e_{i}, e_{n} \times e_{j}\right\rangle \nabla_{j}^{\perp} \sigma \\
& =\sum_{i, j, n=1}^{3} T\left(e_{i}, e_{n}\right)\left(\nabla_{j}^{\perp} \sigma \times\left(e_{i} \times\left(e_{n} \times e_{j}\right)\right)-\varphi\left(e_{i}, e_{n}, e_{j}\right) \nabla_{j}^{\perp} \sigma\right)
\end{aligned}
$$

Using relations $e_{1} \times e_{2}=e_{3}$ and $e_{i} \times\left(e_{n} \times e_{j}\right)=-\chi\left(e_{i}, e_{n}, e_{j}\right)-\left\langle e_{i}, e_{n}\right\rangle e_{j}+\left\langle e_{i}, e_{j}\right\rangle e_{n}$. The first term of the sum is equal to

$$
\sum_{i, j=1}^{3} T_{i i} e_{j} \times \nabla_{j}^{\perp} \sigma-T_{j i} e_{j} \times \nabla_{i}^{\perp} \sigma .
$$

Moreover, since $\varphi\left(e_{1}, e_{2}, e_{3}\right)=1$, the second term becomes

$$
\begin{equation*}
-2 \sum_{(i, j, k) \in S_{3}^{0}}^{3} C_{i j} \nabla_{k}^{\perp} \sigma . \tag{2.11}
\end{equation*}
$$

where $2 C_{i j}=T_{i j}-T_{j i}$.
Lemma 11. With the above notation

$$
\begin{equation*}
\sum_{k=4}^{7}\left(\nabla_{n} \psi\right)\left(\eta_{k}, e_{1}, e_{2}, e_{3}\right) \eta_{k}=-\sum_{k=4}^{7} T_{n k} \eta_{k} . \tag{2.12}
\end{equation*}
$$

Proof. Since $Y$ is associative, Corollary 3 gives $\nabla_{n} \psi_{k 123}=-T_{n k}$.
Denote the following two operators on $N Y$, involving the full torsion tensor

$$
\begin{aligned}
P_{2}(\sigma) & =\sum_{i=1}^{3} \sum_{l=4}^{7}\left(\left(\nabla_{i} T\right)\left(\sigma, \eta_{l}\right)+T\left(\nabla_{i}^{\perp} \sigma, \eta_{l}\right)\right) e_{i} \times \eta_{l}, \\
P_{3}(\sigma) & =\sum_{k, l=4}^{7}\left(T\left(\sigma, \eta_{l}\right)+\sum_{i=1}^{3} \varphi\left(e_{i}, \nabla_{i}^{\perp} \sigma, \eta_{l}\right)\right) T_{l k} \eta_{k} .
\end{aligned}
$$

With this notation, we arrive at one of our main theorems:

Theorem 4. The Weitzenböck formula for (2.1) is

$$
\begin{align*}
\not \mathrm{A}_{\mathrm{A}}^{2}(\sigma) & =\nabla^{*} \nabla \sigma+\mathcal{R}(\sigma)-\pi^{\perp}\left(\sum_{i \in \mathbb{Z}_{3}} e_{i} \times \mathcal{T}\left(e_{i+1}, \sigma, e_{i}, e_{i+1}\right)\right)+H \times \mathcal{B}(\sigma)+\left(\operatorname{tr} S_{\sigma}\right) H-\mathcal{A}(\sigma) \\
& -\sum_{j=1}^{3} \pi^{\perp}\left(T\left(e_{j}, \cdot\right)^{\sharp}\right) \times S_{\sigma}\left(e_{j}\right)+\pi^{\perp}\left(T(\mathcal{B}(\sigma), \cdot)^{\sharp}\right)+P_{1}(\sigma)+P_{2}(\sigma)+P_{3}(\sigma) \tag{2.13}
\end{align*}
$$

Proof. We examine the five components of $D_{\mathrm{A}}{ }^{2}$ as on page 36. Components (I) and (II) have been studied in Lemmata 9 and 10. Now, applying Lemma 11, we have

$$
(\mathrm{III})=\sum_{i=1}^{3} \sum_{k, l=4}^{7} \varphi\left(e_{i}, \nabla_{i}^{\perp} \sigma, \eta_{l}\right) T_{l k} \eta_{k} .
$$

As to (IV), for each $i=1,2,3$ and $l=4,5,6,7$, we use Lemma 11 to find

$$
e_{i}\left(\left(\nabla_{\sigma} \psi\right)\left(\eta_{l}, e_{1}, e_{2}, e_{3}\right)\right)=-e_{i}\left(T\left(\sigma, \eta_{l}\right)\right)=-\left(\nabla_{i} T\right)\left(\sigma, \eta_{l}\right)-T\left(\nabla_{i}^{\perp} \sigma, \eta_{l}\right)
$$

Then, indeed,

$$
(\mathrm{IV})=\sum_{i=1}^{3} \sum_{l=4}^{7}\left(\left(\nabla_{i} T\right)\left(\sigma, \eta_{l}\right)+T\left(\nabla_{i}^{\perp} \sigma, \eta_{l}\right)\right) e_{i} \times \eta_{l}=P_{2}(\sigma)
$$

Finally, a simple calculation gives $(\mathrm{V})=\sum_{k, l=4}^{7} T\left(\sigma, \eta_{l}\right) T_{l k} \eta_{k}$, and

$$
(\mathrm{V})+(\mathrm{III})=\sum_{k, l=4}^{7}\left(T\left(\sigma, \eta_{l}\right)+\sum_{i=1}^{3} \varphi\left(e_{i}, \nabla_{i}^{\perp} \sigma, \eta_{l}\right)\right) T_{l k} \eta_{k}=P_{3}(\sigma)
$$

Notice that for a $\mathrm{G}_{2}$-manifold the $1^{\text {st }}$ order differential operators $P_{1}, P_{2}, P_{3}$ vanish because $T=0$. Also, an associative submanifold is a minimal submanifold hence $H=0$. Thus, from formula (2.13) we get:

Corollary 4. Let $\left(M^{7}, \varphi\right)$ be a $\mathrm{G}_{2}$-manifold. Then,

$$
\not D_{\mathrm{A}}^{2}=\not D^{2}=\nabla^{*} \nabla+\mathcal{R}-\mathcal{A}
$$

### 2.1 The nearly parallel case and applications

The torsion-free condition for a $\mathrm{G}_{2}$-structure is highly overdetermined, so examples are difficult to construct and seldom known explicitly. In terms of the FernándezGray classification recalled in Section 1.4, the next natural 'least-torsion' case consists of the so-called nearly parallel structures, for which the torsion forms $\tau_{1}, \tau_{2}, \tau_{3}$ vanish and the remaining torsion is just a constant:

Definition 10. Let $(M, \varphi)$ a manifold with a $\mathrm{G}_{2}$-structure, $\varphi$ is called nearly parallel if

$$
d \varphi=\tau_{0} \psi
$$

with $\tau_{0} \neq 0$ constant.

Regarding the deformations of associative submanifolds, our approach unifies previously known results by means of a Bochner-type vanishing theorem. This technique requires a certain 'positivity' of curvature, which can in practice be found in cases of interest studied by several authors.

### 2.1.1 Proof of the vanishing theorem

Following Proposition 3, the full torsion tensor in the nearly parallel case is given by $T_{i j}=\frac{\tau_{0}}{4} g_{i j}$, thus, the covariant derivatives $\nabla \varphi$ and $\nabla \psi$ simplifies.

Lemma 12. Let $(M, \varphi)$ a manifold with a nearly parallel $\mathrm{G}_{2}$-structure, then we hold the following propierties:
(i) $\nabla \varphi=\frac{\tau_{0}}{4} \psi$.
(ii) $\nabla_{u} \psi=-\frac{\tau_{0}}{4} u^{b} \wedge \varphi$ for any $u \in \Omega^{0}(T M)$.
(iii) $u_{\lrcorner} \nabla_{u} \varphi=0$ for any $u \in \Omega^{0}(T M)$.

Proof. The propierties (i) and (ii) follow by equations (1.16) and Corollary 3, respectively. And (iii) follows by the skew-symmetry of (i).

Lemma 13. Let $Y$ an associative submanifold of $(M, \varphi)$, then $Y$ is a minimal submanifold.
Proof. We will show that the mean vector field curvature $H$ of $Y$ vanishes, for each $p \in Y$

$$
H(p)=\sum_{i=1}^{3} \sum_{k=4}^{7}\left\langle\nabla_{i} e_{i}, \eta_{k}\right\rangle \eta_{k}=-\sum_{i=1}^{3} \sum_{k=4}^{7}\left\langle\nabla_{i} \eta_{k}, e_{i}\right\rangle \eta_{k}
$$

Using the relation $e_{3}=e_{1} \times e_{2}$, for each $k$ we have

$$
\begin{aligned}
\sum_{i=1}^{3}\left\langle\nabla_{i} \eta_{k}, e_{i}\right\rangle= & \varphi\left(e_{2}, e_{3}, \nabla_{1} \eta_{k}\right)+\varphi\left(e_{3}, e_{1}, \nabla_{2} \eta_{k}\right)+\varphi\left(e_{1}, e_{2}, \nabla_{3} \eta_{k}\right) \\
= & e_{1}\left(\varphi\left(e_{2}, e_{3}, \eta_{k}\right)\right)-\left(\nabla_{1} \varphi\right)\left(e_{2}, e_{3}, \eta_{k}\right)-\varphi\left(\nabla_{1} e_{2}, e_{3}, \eta_{k}\right)-\varphi\left(e_{2}, \nabla_{1} e_{3}, \eta_{k}\right) \\
& +e_{2}\left(\varphi\left(e_{3}, e_{1}, \eta_{k}\right)\right)-\left(\nabla_{2} \varphi\right)\left(e_{3}, e_{1}, \eta_{k}\right)-\varphi\left(\nabla_{2} e_{3}, e_{1}, \eta_{k}\right)-\varphi\left(e_{3}, \nabla_{2} e_{1}, \eta_{k}\right) \\
& +e_{3}\left(\varphi\left(e_{1}, e_{2}, \eta_{k}\right)\right)-\left(\nabla_{3} \varphi\right)\left(e_{1}, e_{2}, \eta_{k}\right)-\varphi\left(\nabla_{3} e_{1}, e_{2}, \eta_{k}\right)-\varphi\left(e_{1}, \nabla_{3} e_{2}, \eta_{k}\right) \\
= & -\psi\left(e_{1}, e_{2}, e_{3}, \eta_{k}\right)-\psi\left(e_{2}, e_{3}, e_{1}, \eta_{k}\right)-\psi\left(e_{3}, e_{1}, e_{2}, \eta_{k}\right) \\
= & -\left\langle\chi\left(e_{1}, e_{2}, e_{3}\right)+\chi\left(e_{2}, e_{3}, e_{1}\right)+\chi\left(e_{3}, e_{1}, e_{2}\right), \eta_{k}\right\rangle=0 .
\end{aligned}
$$

Notice that in the third equality we used the symmetry of the connection $\nabla$ (i.e. $\nabla_{i} e_{j}=$ $\nabla_{j} e_{i}$ ), the orthogonal property $\varphi\left(e_{i}, e_{j}, \eta_{k}\right)=0$ for any $i, j=1,2,3$ and $k=4, \ldots, 7$, and Lemma 12 (i). And the last line follows by the associative condition $\chi\left(e_{1}, e_{2}, e_{3}\right)=0$.

Now, we move on to the Weitzenböck formula (2.13) for the nearly parallel case, we see that (2.13) is drastically simplified:

Proposition 5. The Weitzenböck formula for the Fueter-Dirac operator (2.1) in the nearly parallel case is

$$
\begin{equation*}
\not D_{\mathrm{A}}^{2}(\sigma)=\nabla^{*} \nabla \sigma+\mathcal{R}(\sigma)-\mathcal{A}(\sigma)+\tau_{0} \not D(\sigma)+\frac{\tau_{0}^{2}}{4} \cdot \sigma \tag{2.14}
\end{equation*}
$$

Proof. By Lemma 13 the terms $H \times \mathcal{B}(\sigma)$ and $\left(\operatorname{tr} S_{\sigma}\right) H$ in (2.13) vanish, as well for $\pi^{\perp}\left(T\left(e_{j}, \cdot\right)^{\sharp}\right), \pi^{\perp}\left(T(\mathcal{B}(\sigma), \cdot)^{\sharp}\right)$ since $\left\{e_{1}, e_{2}, e_{3}, \eta_{4}, \ldots, \eta_{7}\right\}$ is an orthonormal frame. It suffices to prove that the last three terms in (2.13) satisfy

$$
\left(P_{1}+P_{2}+P_{3}\right)(\sigma)=\tau_{0} \not D(\sigma)+\frac{\tau_{0}^{2}}{16} \cdot \sigma \quad \text { and } \quad \mathcal{T}(\sigma)=-\frac{3}{16} \tau_{0}^{2} \sigma
$$

At a point $p \in Y$, for $P_{1}$, we have $C_{i j}=0$, because $\tau_{1}$ and $\tau_{2}$ are zero, then

$$
\begin{aligned}
\sum_{i, j=1}^{3} T_{i i} e_{j} \times \nabla_{j}^{\perp} \sigma-T_{j i} e_{j} \times \nabla_{i}^{\perp} \sigma & =\frac{3}{4} \tau_{0} \sum_{j=1}^{3} e_{j} \times \nabla_{j}^{\perp} \sigma-\frac{1}{4} \tau_{0} \sum_{j=1}^{3} e_{j} \times \nabla_{j}^{\perp} \sigma \\
& =\frac{1}{2} \tau_{0} \not D(\sigma) .
\end{aligned}
$$

For $P_{2}$,

$$
\begin{aligned}
\sum_{i=1}^{3} \sum_{l=4}^{7}\left(\left(\nabla_{i} T\right)\left(\sigma, \eta_{l}\right)+T\left(\nabla_{i}^{\perp} \sigma, \eta_{l}\right)\right) e_{i} \times \eta_{l} & =\frac{\tau_{0}}{4} \sum_{i=1}^{3} \sum_{l=4}^{7} g\left(\nabla_{i}^{\perp} \sigma, \eta_{l}\right) e_{i} \times \eta_{l} \\
& =\frac{\tau_{0}}{4} \sum_{i=1}^{3} e_{i} \times \nabla_{i}^{\perp} \sigma=\frac{\tau_{0}}{4} \not D(\sigma) .
\end{aligned}
$$

And, for $P_{3}$,

$$
\begin{aligned}
\sum_{k, l=4}^{7}\left(T\left(\sigma, \eta_{l}\right)+\sum_{i=1}^{3} \varphi\left(e_{i}, \nabla_{i}^{\perp} \sigma, \eta_{l}\right)\right) T_{l k} \eta_{k} & =\frac{\tau_{0}}{4} \sum_{k, l=4}^{7}\left(\frac{\tau_{0}}{4} g\left(\sigma, \eta_{l}\right)+\sum_{i=1}^{3} \varphi\left(e_{i}, \nabla_{i} \sigma, \eta_{l}\right)\right) g\left(\eta_{l}, \eta_{k}\right) \eta_{k} \\
& =\frac{\tau_{0}}{4} \sum_{l=4}^{7}\left(\frac{\tau_{0}}{4} g\left(\sigma, \eta_{l}\right)+\sum_{i=1}^{3} \varphi\left(e_{i}, \nabla_{i} \sigma, \eta_{l}\right)\right) \eta_{l} \\
& =\frac{\tau_{0}^{2}}{16} \cdot \sigma+\frac{\tau_{0}}{4} \not D(\sigma)
\end{aligned}
$$

And finally

$$
\begin{aligned}
\mathcal{T}(\sigma)= & \sum_{i \in \mathbb{Z}_{3}} e_{i} \times \mathcal{T}\left(e_{i+1}, \sigma, e_{i}, e_{i+1}\right)=\frac{\tau_{0}}{4} \sum_{i \in \mathbb{Z}_{3}} \sum_{m, l=1}^{7}\left(g\left(\sigma, e_{m}\right)\left(\nabla_{i+1} \psi\right)\left(e_{m}, e_{i}, e_{i+1}, e_{l}\right)\right. \\
& \left.-g\left(e_{i+1}, e_{m}\right)\left(\nabla_{\sigma} \psi\right)\left(e_{m}, e_{i}, e_{i+1}, e_{l}\right)\right) e_{i} \times e_{l} \\
= & \frac{\tau_{0}}{4} \sum_{i \in \mathbb{Z}_{3}} \sum_{l=1}^{7}\left(\left(\nabla_{i+1} \psi\right)\left(\sigma, e_{i}, e_{i+1}, e_{l}\right)\right. \\
& \left.-\left(\nabla_{\sigma} \psi\right)\left(e_{i+1}, e_{i}, e_{i+1}, e_{l}\right)\right) e_{i} \times e_{l} \\
= & \frac{\tau_{0}}{4} \sum_{i \in \mathbb{Z}_{3}} \sum_{l=1}^{7}\left(\left(\nabla_{i+1} \psi\right)\left(\sigma, e_{i}, e_{i+1}, e_{l}\right)\right) e_{i} \times e_{l} \\
= & -\frac{\tau_{0}}{4} \sum_{i \in \mathbb{Z}_{3}} \sum_{l=1}^{7} T\left(e_{i+1}, e_{i+1}\right) \varphi\left(\sigma, e_{i}, e_{l}\right) e_{i} \times e_{l} \\
= & -\frac{\tau_{0}^{2}}{16} \sum_{i \in \mathbb{Z}_{3}} g\left(e_{i+1}, e_{i+1}\right) e_{i} \times\left(\sigma \times e_{i}\right) \\
= & -\frac{3}{16} \tau_{0}^{2} \sigma
\end{aligned}
$$

Here we used the skew-symmetry of $\nabla_{\sigma} \psi$ for the third equality and Corollary 3 for the fourth one.

Theorem 5. Let $(M, \varphi)$ be a 7-manifold with a nearly parallel $\mathrm{G}_{2}$-structure. If $Y \subset M$ is a closed associative submanifold such that the operator $\mathcal{R}-\mathcal{A}$ is non-negative, then $Y$ is rigid.

Proof. Let $\sigma$ be a section of $N Y$,

$$
\begin{aligned}
\Delta|\sigma|^{2} & =\sum_{i} e_{i} e_{i}\langle\sigma, \sigma\rangle=2 \sum_{i} e_{i}\left\langle\nabla_{i}^{\perp} \sigma, \sigma\right\rangle \\
& =2 \sum_{i}\left\langle\nabla_{i}^{\perp} \nabla_{i}^{\perp} \sigma, \sigma\right\rangle+\left\langle\nabla_{i}^{\perp} \sigma, \nabla_{i}^{\perp} \sigma\right\rangle \\
& =-2\left\langle\nabla^{*} \nabla \sigma, \sigma\right\rangle+2\left|\nabla^{\perp} \sigma\right|^{2} \\
& =-2\left\langle\not D_{\mathrm{A}}^{2}(\sigma), \sigma\right\rangle+2\langle\mathcal{R}(\sigma), \sigma\rangle-2\langle\mathcal{A}(\sigma), \sigma\rangle+2 \tau_{0}\langle\not D(\sigma), \sigma\rangle+\frac{\tau_{0}^{2}}{2}|\sigma|^{2}+2\left|\nabla^{\perp} \sigma\right|^{2} .
\end{aligned}
$$

Taking $\sigma \in \operatorname{ker} \Phi_{\mathrm{A}}$, equation (2.2) gives

$$
\langle D D(\sigma), \sigma\rangle=\sum_{k=4}^{7}\left(\nabla_{\sigma} \psi\right)\left(\eta_{k}, e_{1}, e_{2}, e_{3}\right)\left\langle\eta_{k}, \sigma\right\rangle=-\sum_{k=4}^{7} T\left(\sigma, \eta_{k}\right)\left\langle\eta_{k}, \sigma\right\rangle=-\frac{\tau_{0}}{4} \sum_{k=4}^{7}\left\langle\sigma, \eta_{k}\right\rangle^{2} .
$$

By Stokes' theorem, it follows that

$$
\begin{aligned}
0 & =\int_{Y}\left(\langle\mathcal{R}(\sigma)-\mathcal{A}(\sigma), \sigma\rangle-\frac{\tau_{0}^{2}}{4} \sum_{k=4}^{7}\left\langle\sigma, \eta_{k}\right\rangle^{2}+\frac{\tau_{0}^{2}}{4}|\sigma|^{2}+\left|\nabla^{\perp} \sigma\right|^{2}\right) d \operatorname{vol}_{Y} \\
& =\int_{Y}\left(\left(\langle\mathcal{R}(\sigma)-\mathcal{A}(\sigma), \sigma\rangle+\left|\nabla^{\perp} \sigma\right|^{2}\right) d \operatorname{vol}_{Y}\right.
\end{aligned}
$$

By assumption, $\langle\mathcal{R}(\sigma)-\mathcal{A}(\sigma), \sigma\rangle \geq 0$, so $\nabla^{\perp} \sigma=0$ and this implies $\not D(\sigma)=0$. Notice from Lemma 11 that the Fueter-Dirac operator is

$$
\not D_{\mathrm{A}}=\not D+\frac{\tau_{0}}{4} \quad \text { with } \quad \tau_{0} \neq 0
$$

Then, from $D_{\mathrm{A}}(\sigma)=0$ it follows that $\sigma=0$, i.e. $\operatorname{ker} \mathscr{D}_{\mathrm{A}}=\{0\}$.

### 2.1.2 An associative submanifold of the 7-sphere

In [Lot12], Lotay defines a natural $\mathrm{G}_{2}$-structure $\varphi$ on $S^{7}$, writing $\mathbb{R}^{8} \backslash\{0\} \cong$ $C\left(S^{7}\right)=\mathbb{R}^{+} \times S^{7}$ where $C\left(S^{7}\right)$ denotes the Riemannian cone and a 4 -form

$$
\left.\Phi_{0}\right|_{(r, p)}=\left.r^{3} d r \wedge \varphi\right|_{p}+\left.r^{4} * \varphi\right|_{p}
$$

where $r$ the radial coordinate on $\mathbb{R}^{+}, *$ the Hodge star on $S^{7}$ induced by the round metric. and $\Phi_{0}$ is the $\operatorname{Spin}(7)$-structure of $\mathbb{R}^{8}$, choosing an orthonormal basis of $\mathbb{R}^{8}, \Phi_{0}$ can be written by

$$
\begin{aligned}
\Phi_{0}=e^{0123}+e^{0145}+e^{0167}+e^{0246}- & e^{0257}-e^{0347}-e^{0356} \\
& \quad e^{4567}+e^{2367}+e^{2345}+e^{1357}-e^{1346}-e^{1256}-e^{1247} .
\end{aligned}
$$

Since $\Phi_{0}$ is closed, it follows that $d \varphi=4 * \varphi$ i.e. $\varphi$ is a nearly parallel $\mathrm{G}_{2}$-structure.
Consider the totally geodesic submanifold $S^{3} \subset S^{7}$, given by

$$
S^{3}=S^{3} \times\{0\}=\left\{\left(x_{0}, x_{1}, x_{2}, x_{3}, 0,0,0,0\right) \in \mathbb{R}^{8}: x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}
$$

If we think the 7 -sphere as the homogeneous space $\operatorname{Spin}(7) / G_{2}$ and hence $\operatorname{Spin}(7)$ as the $\mathrm{G}_{2}$ frame bundle over $S^{7}$. So, the associative submanifold $S^{3}$ arise as the $\mathrm{SU}(2)$-orbit through the point $p_{0}=(1,0,0,0) \in \mathbb{C}^{4}$ given by the action

$$
\left(\begin{array}{l}
z_{1}  \tag{2.15}\\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right) \in \mathbb{C}^{4} \cong \mathbb{R}^{8} \mapsto\left(\begin{array}{c}
a z_{1}+b z_{2} \\
-\bar{b} z_{1}+\bar{a} z_{2} \\
a z_{3}+b z_{4} \\
-\bar{b} z_{3}+\bar{a} z_{4}
\end{array}\right) \in \mathbb{C}^{4} \quad \text { for } \quad\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right) \in \mathrm{SU}(2)
$$

For the associative submanifold $S^{3} \subset S^{7}$ the Weitzenböck formula 2.14 is

$$
\not D_{\mathrm{A}}^{2}(\sigma)=\nabla^{*} \nabla \sigma+\mathcal{R}(\sigma)-\mathcal{A}(\sigma)+4 \not D_{\mathrm{A}}(\sigma)
$$

or, in terms of the operator $\lfloor D$,

$$
\begin{equation*}
\not D^{2}=\nabla^{*} \nabla \sigma+\mathcal{R}(\sigma)-\mathcal{A}(\sigma)+2 \not D(\sigma)+3 \sigma \tag{2.16}
\end{equation*}
$$

which coincides with the formula given by Kawai [Kaw17]. As the induced metric on $S^{3}$, from the round metric on $S^{7}$, coincides with the round metric of constant curvature 1, the following results of [Bär96] can be adapted to our case.

Lemma 14. The normal bundle $N S^{3}$ can be trivialized by parallel sections $\sigma_{1}, \ldots, \sigma_{4}$ of the connection $\nabla^{\perp}$.

Proof. It suffices to show that the curvature operator $R^{\perp}$ vanishes (c.f. (2.10)). Let $u, v$ be tangent vector fields of $S^{3}$, and $\sigma$ a section of $N S^{3}$, then the Ricci equation gives

$$
\begin{aligned}
R^{\perp}(u, v) \sigma & =\sum_{k=4}^{7}\left\langle R^{\perp}(u, v) \sigma, \eta_{k}\right\rangle \eta_{k} \\
& =\sum_{k=4}^{7}\left(\left\langle R(u, v) \sigma, \eta_{k}\right\rangle+\left\langle\left[S_{\sigma}, S_{\eta_{k}}\right] u, v\right\rangle\right) \eta_{k} \\
& =\sum_{k=4}^{7}\left(\langle u, \sigma\rangle\left\langle v, \eta_{k}\right\rangle-\langle v, \sigma\rangle\left\langle u, \eta_{k}\right\rangle\right) \eta_{k}=0 .
\end{aligned}
$$

At the third equality we used the well-known facts that the metric on $S^{7}$ has constant sectional curvature equal to 1 and that $S^{3} \subset S^{7}$ is a totally geodesic immersed submanifold.

The following Weitzenböck formula relates the operator $D=\not D$ - Id with the Laplacian of the connection $\nabla^{\perp}$ on $N S^{3}$.

Lemma 15. On the normal bundle $N S^{3}$, the following formula holds:

$$
\begin{equation*}
D^{2}=\nabla^{*} \nabla+\mathrm{Id} \tag{2.17}
\end{equation*}
$$

Proof. In a local orthonormal frame $e_{1}, e_{2}, e_{3}$ around $p \in S^{3}$, we compute

$$
\begin{aligned}
D^{2}(\sigma) & =\not D^{2}(\sigma)-2 \not D(\sigma)+\sigma \\
& =\nabla^{*} \nabla \sigma+\mathcal{R}(\sigma)+4 \sigma \\
& =\nabla^{*} \nabla \sigma+\left(\sum_{i=1}^{3}\left\langle\sigma, e_{i}\right\rangle e_{i}-\left\langle e_{i}, e_{i}\right\rangle \sigma\right)^{\perp}+4 \sigma \\
& =\nabla^{*} \nabla \sigma+\sigma .
\end{aligned}
$$

Consider a basis $1=f_{0}, f_{1}, f_{2}, \ldots$ of $L^{2}\left(S^{3}, \mathbb{R}\right)$, consisting of eigenfunctions of the Laplace operator:

$$
\Delta f_{i}=\lambda_{i} f_{i}
$$

The next lemma describes a natural eigenbasis for the operator $D^{2}$ on sections of $N S^{3}$.
Lemma 16. $D^{2}\left(f_{i} \sigma_{k}\right)=\left(\lambda_{i}+1\right)\left(f_{i} \sigma_{k}\right)$.
Proof. This follows directly from Lemma 14 and (2.17).

Since the metric on $S^{3}$ has constant curvature 1, the eigenvalues of the Laplace operator on $S^{3}$ are

$$
\lambda_{k}=k(k+2) \quad k \geq 0
$$

with multiplicities $m_{k}=(k+1)^{2}$ [SA87, Proposition 22.2 and Corollary 22.1]. Together with Lemma 16, this gives:

Corollary 5. $D^{2}$ has eigenvalues $(k+1)^{2}$ with multiplicities $4(k+1)^{2}, k \geq 0$.
In general, for an operator $T$ and a vector $u$ such that $T^{2} u=\mu^{2} u$, if

$$
v^{ \pm}:=(T \pm \mu) u \neq 0
$$

then $v^{ \pm}$is an eigenvector of $T$ with eigenvalue $\pm \mu$. Let us apply this principle to $T=D$, with $\mu_{k}^{2}=(k+1)^{2}$ and $u_{k}=f_{k} \sigma_{j}$, for $j=1, \ldots, 4$.

Let us first look at the case $k=0$, in which $f_{0}=1$ and $\lambda_{0}=0$, so $u_{0}=\sigma_{j}$ and $\mu_{0}^{2}=1$, i.e.,

$$
v^{ \pm}=\left(D \pm \mu_{0}\right) \sigma_{j}=D \sigma_{j} \pm \sigma_{j} .
$$

Now, $\not D \sigma_{j}=0$ by Lemma 14, so $D \sigma_{j}=-\sigma_{j}$ and therefore $v^{+}=0$ and $v^{-}=-2 \sigma_{j}$. Accordingly, $v^{-}$is an eigenvector of $D$ with eigenvalue $-\mu_{0}=-1$. Since $v^{-}=-2 \sigma_{j}$, for $j=1, \ldots, 4$, the multiplicity of $-\mu_{0}=-1$ is at least 4 , but the multiplicity of $\left(-\mu_{0}\right)^{2}=\mu_{0}^{2}=1$ is already 4 , by Corollary 5 , therefore the multiplicity of $-\mu_{0}=-1$ is exactly 4.
Now, for $k \geq 1$, we take $u_{k}=f_{k} \sigma_{j}$ and $\mu_{k}=k+1$, and use the trivial fact that $e_{i} \times \sigma_{j}$ and $\sigma_{j}$ are linearly independent for all $i, j$ :

$$
\begin{aligned}
v_{k}^{ \pm} & =\left(D \pm \mu_{k}\right) u_{k}=\not D u_{k}-\left(1 \mp \mu_{k}\right) u_{k} \\
& =\sum_{i=1}^{3} e_{i}\left(f_{k}\right) e_{i} \times \sigma_{j}-\underbrace{}_{\substack{(-\underbrace{\prime} \\
\neq 0}} \underbrace{}_{k}) \underbrace{f_{k}}_{\neq 0} \sigma_{j} \neq 0 .
\end{aligned}
$$

Thus $v_{k}^{ \pm}$is an eigenvector of $D$ with eigenvalue $\pm \mu_{k}$, and it follows that $v^{ \pm}$is an eigenvector of $\not D$ with eigenvalue $1 \pm \mu_{k}$, such that $m\left(1+\mu_{k}\right)+m\left(1-\mu_{k}\right)=4(k+1)^{2}$. It remains to determine the multiplicities of the eigenvalues $1 \pm(k+1)$. We introduce the following notation:

$$
\mu_{0}^{+}:=1-\mu_{0}=0, \quad \mu_{k}^{+}:=1+\mu_{k}=k+2, \quad \text { and } \quad \mu_{-k}^{+}:=1-\mu_{k}=-k, \quad k \geq 1 .
$$

From Corollary 5, multiplicities of opposite index add up as $m\left(\mu_{k}^{+}\right)+m\left(\mu_{-k}^{+}\right)=4(k+1)^{2}$. Alternatively, in the sign convention of Remark 1, we denote the eigenvalues of $\not D$ by

$$
\mu_{0}^{-}=0, \quad \mu_{-k}^{-}=-k-2, \quad \text { and } \quad \mu_{k}^{-}=k, \quad k \geq 1
$$

and again we know $m\left(\mu_{k}^{-}\right)+m\left(\mu_{-k}^{-}\right)=4(k+1)^{2}$. The multiplicities in both sign conventions satisfy the following relations:

## Lemma 17.

$$
m\left(\mu_{-k}^{+}\right)=m\left(\mu_{k}^{-}\right)=2(k+1)(k+2), \quad k \geq 0 .
$$

and

$$
m\left(\mu_{k}^{+}\right)=m\left(\mu_{-k}^{-}\right)=2 k(k+1), \quad k \geq 1 .
$$

Proof. From the above, the operator $D D-\frac{3}{2}$ has eigenvalues

$$
\alpha_{0}^{+}=-\frac{3}{2}, \quad \alpha_{k}^{+}=k+\frac{3}{2}-1 \quad \text { and } \quad \alpha_{-k}^{+}=-k-\frac{3}{2} .
$$

Let $\alpha_{k}^{-}:=-\alpha_{-k}^{+}$. Since $\mu_{k}^{-}=-\mu_{-k}^{+}$, we have $m\left(\alpha_{k}^{ \pm}\right)=m\left(\mu_{k}^{ \pm}\right)$, for all $k \in \mathbb{Z}$, and so

$$
m\left(\alpha_{k}^{ \pm}\right)+m\left(\alpha_{-k}^{ \pm}\right)=4(k+1)^{2}
$$

Now the claim clearly holds for $k=0$ and, by induction on $k \geq 1$, we have

$$
\begin{aligned}
m\left(\mu_{-(k+1)}^{+}\right) & =m\left(\alpha_{-(k+1)}^{+}\right)=4(k+2)^{2}-m\left(\alpha_{(k+1)}^{+}\right) \\
& =4(k+2)^{2}-m\left(\alpha_{k}^{-}\right)=4\left(k^{2}+4 k+4\right)-2(k+1)(k+2) \\
& =2(k+2)(k+3) .
\end{aligned}
$$

To obtain the second equality we used the relation

$$
\alpha_{(k+1)}^{+}=(k+1)+\frac{3}{2}-1=\alpha_{k}^{-},
$$

and for the last one we used the induction hypothesis on $\alpha_{k}^{-}$.
The group $\operatorname{Aut}\left(S^{7}, \varphi\right)=\operatorname{Spin}(7)$ of automorphisms of $S^{7}$ which fix the $\mathrm{G}_{2^{-}}$ structure induces trivial associative deformations, and the associative 3 -sphere is invariant by the action of the embedded subgroup $K=\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{SU}(2) / \mathbb{Z}_{2} \subset \operatorname{Spin}(7)$, where $\mathbb{Z}_{2}$ is generated by $(-1,-1,-1)$ [HL82, Theorem IV 1.38]. Therefore the space of infinitesimal associative deformations of $S^{3}$ has dimension at least $\operatorname{dim}(\operatorname{Spin}(7) / K)=12$.

Corollary 6. The 3 -sphere in $S^{7}$ is rigid as an associative submanifold.
Proof. Since $\mu_{-1}^{+}$is the eigenvalue corresponding to the space of infinitesimal associative deformations, then, by Lemma 17, $\operatorname{dim}\left(\operatorname{ker} \not D_{\mathrm{A}}\right)=m\left(\mu_{-1}^{+}\right)=12$.

### 2.2 Locally conformal calibrated case and applications

As an application of the Fueter-Dirac Weitzenböck formula (2.13), we focus on locally conformal calibrated $\mathrm{G}_{2}$-structures, whose associated metric is (at least locally) conformal to a metric induced by a calibrated $\mathrm{G}_{2}$-structure. We provide a novel example of a rigid associative submanifold, inside a compact manifold $S$ with a locally conformal calibrated $\mathrm{G}_{2}$-structure, studied by Fernández, Fino and Raffero [FR16].

Definition 11. A $\mathrm{G}_{2}$-structure is locally conformal calibrated if it has vanishing torsion components $\tau_{0} \equiv 0$ and $\tau_{3} \equiv 0$, so

$$
\begin{aligned}
d \varphi & =3 \tau_{1} \wedge \varphi \\
d \psi & =4 \tau_{1} \wedge \psi+\tau_{2} \wedge \varphi
\end{aligned}
$$

A $\operatorname{SU}(3)$-structure on a 6 -manifold $N$ is a pair $\left(\omega, \phi_{+}\right) \in \Omega^{2}(N) \times \Omega^{3}(N)$ such that $\phi_{+}=\frac{1}{2}(\Omega+\bar{\Omega})$, where $\Omega \in \Omega^{0}\left(\Lambda^{3}\left(T^{*} N \otimes \mathbb{C}\right)\right)$ is a decomposable complex 3 -form and

$$
\begin{equation*}
\omega \wedge \phi_{+}=0 \quad \text { and } \quad \frac{\omega^{3}}{6}=\frac{i}{8} \Omega \wedge \bar{\Omega}=\frac{1}{4} \phi_{+} \wedge \phi_{-} \quad \text { with } \quad \phi_{-}:=\frac{1}{2 i}(\Omega-\bar{\Omega}) . \tag{2.18}
\end{equation*}
$$

The $\operatorname{SU}(3)$-structure $\left(\omega, \phi_{+}\right)$is said to be coupled if $d \omega=c \phi_{+}$with $c$ a non-zero real number. So, the product manifold $N \times S^{1}$ has a natural locally conformal calibrated $\mathrm{G}_{2}$-structure defined by

$$
\varphi=\omega \wedge d t+\phi_{+}
$$

with $\tau_{0} \equiv 0, \tau_{3} \equiv 0$ and $\tau_{1}=-\frac{c}{3} d t$.
Example 5. [FR16, Example 3.3] Consider the 6-dimensional Lie algebra $\mathfrak{n}_{28}$, and let $\left\{e_{1}, \ldots, e_{6}\right\}$ be a $\mathrm{SU}(3)$-basis. With respect to the dual basis $\left\{e^{1}, \ldots, e^{6}\right\}$, the structure equations of $\mathfrak{n}_{28}$ are

$$
\begin{equation*}
\left(0,0,0,0, e^{13}-e^{24}, e^{14}+e^{23}\right) \tag{2.19}
\end{equation*}
$$

and we denote its components by $d e^{i}:=0$, for $i=1, \ldots, 4, d e^{5}:=e^{13}-e^{24}$ and $d e^{6}:=$ $e^{14}+e^{23}$. The pair

$$
\begin{equation*}
\omega=e^{12}+e^{34}-e^{56} \quad \text { and } \quad \phi_{+}=e^{136}-e^{145}-e^{235}-e^{246} \tag{2.20}
\end{equation*}
$$

defines a coupled $S U(3)$-structure on $\mathfrak{n}_{28}$ with $d \omega=-\phi_{+}$. Denote by $G$ the 3 -dimensional complex Heisenberg group with Lie algebra $\operatorname{Lie}(G)=\mathfrak{n}_{28}$ given by

$$
G=\left\{\left(\begin{array}{ccc}
1 & z_{1} & z_{3} \\
0 & 1 & z_{2} \\
0 & 0 & 1
\end{array}\right) ; \quad z_{1}, z_{2}, z_{3} \in \mathbb{C}\right\}
$$

The structure equations (2.19) can be rewritten as

$$
d z_{1}=e^{1}+i e^{2}, \quad d z_{2}=e^{3}+i e^{4} \quad d z_{3}+z_{1} d z_{2}=e^{5}+i e^{6}
$$

By [Mal49, Theorem 7], $G$ admits a uniform discrete subgroup $\Gamma \subset G$, i.e., a discrete subgroup such that $\Gamma \backslash G$ is compact, the elements of which have $z_{1}, z_{2}, z_{3} \in \mathbb{Z}[i]$. The left-invariant forms $\omega$ and $\phi_{+}$on $G$ are well defined in the quotient $\Gamma \backslash G$. Consider the automorphism $\nu: G \rightarrow G$ defined by

$$
\left(\begin{array}{ccc}
1 & z_{1} & z_{3} \\
0 & 1 & z_{2} \\
0 & 0 & 1
\end{array}\right) \xrightarrow{\nu}\left(\begin{array}{ccc}
1 & i z_{1} & z_{3} \\
0 & 1 & -i z_{2} \\
0 & 0 & 1
\end{array}\right),
$$

and denote by $\operatorname{Diff}_{\nu}:=\langle(p, t) \mapsto(\nu(p), t+1)\rangle$ the infinite cyclic subgroup of diffeomorphisms of $(\Gamma \backslash G) \times \mathbb{R}$. The manifold

$$
S=((\Gamma \backslash G) \times \mathbb{R}) / \text { Diff }_{\nu}
$$

is endowed with a locally conformal calibrated $\mathrm{G}_{2}$-structure as follows: for the left-invariant coframe given in (2.19), we have

$$
\nu^{*}\left(e_{1}\right)=-e_{2}, \nu^{*}\left(e_{2}\right)=e_{1}, \nu^{*}\left(e_{3}\right)=e_{4}, \nu^{*}\left(e_{4}\right)=-e_{3}, \nu^{*}\left(e_{5}\right)=e_{5}, \nu^{*}\left(e_{6}\right)=e_{6}
$$

Hence $\nu^{*} \omega=\omega$ and $\nu^{*} \phi_{+}=\phi_{+}$, for ( $\omega, \phi_{+}$) defined in (2.20). Denoting by $p_{1}:(\Gamma \backslash G) \times$ $\mathbb{R} \rightarrow \Gamma \backslash G$ the projection onto the first factor, the forms $p_{1}^{*} \omega \in \Omega^{2}((\Gamma \backslash G) \times \mathbb{R})$ and $p_{1}^{*} \phi_{+} \in \Omega^{3}((\Gamma \backslash G) \times \mathbb{R})$ are invariant under $\sim_{\nu}$. Therefore, we have differential forms $\widetilde{\omega} \in \Omega^{2}(S)$ and $\tilde{\phi}_{+} \in \Omega^{3}(S)$ satisfying the same relations as ( $\omega, \phi_{+}$) from (2.20). In this set-up, the 3 -form

$$
\begin{equation*}
\widetilde{\varphi}=\widetilde{\omega} \wedge e^{7}+\widetilde{\phi}_{+} \tag{2.21}
\end{equation*}
$$

defines a locally conformal calibrated $\mathrm{G}_{2}$-structure on $S$. Here $e^{7}$ denotes the pullback of the canonical closed 1 -form on $\mathbb{R}$ by the projection $p_{2}:(\Gamma \backslash G) \times \mathbb{R} \rightarrow \mathbb{R}$. The torsion forms of $\tilde{\varphi}$ are

$$
\tau_{1}=\frac{1}{3} e^{7}, \quad \tau_{2}=\widetilde{\alpha} \quad \text { where } \quad \alpha=-\frac{4}{3}\left(e^{12}+e^{34}+2 e^{56}\right)
$$

and, by Proposition 3, the full torsion tensor is

$$
T=\widetilde{\beta}, \quad \text { with } \quad \beta=e^{12}+e^{34}+e^{56}
$$

The 7 -manifold from Example 5 contains an associative submanifold, corresponding to a particular Lie subalgebra:

Example 6. Consider the abelian subalgebra $\mathfrak{n}_{28}^{\prime}=\operatorname{Span}\left(e_{5}, e_{6}\right) \subset \mathfrak{n}_{28}$ and its respective Lie group $G^{\prime}=[G, G]=\exp \left(\mathfrak{n}_{28}^{\prime}\right) \subset G$, which is generated by the commutator $[g, h]=$ $g h g^{-1} h^{-1}$. Since $G^{\prime}$ is obtained as the maximal integral submanifold of $G$ given by the left-invariant distribution

$$
\Delta(g)=\left(d L_{g}\right)_{1} \mathfrak{n}_{28} \quad \text { for } \quad g \in G
$$

i.e. $\left(L_{h}\right)_{*}(\Delta(g)) \subset \Delta(h g)($ c.f. [SM16, Theorem 6.5]), we get an integral distribution $\bar{\Delta}$ on $\Gamma \backslash G$. Representing $G^{\prime}$ by

$$
G^{\prime}=\left\{\left(\begin{array}{ccc}
1 & 0 & z_{3} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) ; \quad z_{3} \in \mathbb{C}\right\}
$$

we see that, for each $p=\Gamma g^{\prime} \in \Gamma \backslash G^{\prime}$, we have $T_{p}\left(\Gamma \backslash G^{\prime}\right)=\bar{\Delta}\left(\Gamma g^{\prime}\right)$, and so $\Gamma \backslash G^{\prime}$ is a compact embedded submanifold of $\Gamma \backslash G$. Now $\left.\nu\right|_{G^{\prime}}=$ Id and the quotient map $(\Gamma \backslash G) \times \mathbb{R} \rightarrow S$ is a local diffeomorphism, so

$$
Y=\left(\left(\Gamma \backslash G^{\prime}\right) \times \mathbb{R}\right) / \operatorname{Diff}_{\nu} \cong\left(\Gamma \backslash G^{\prime}\right) \times S^{1}
$$

is a compact embedded submanifold of $S$. Moreover,

$$
T_{(p, t)} Y=T_{p}\left(\Gamma \backslash G^{\prime}\right) \oplus T_{t} \mathbb{R} \cong \mathfrak{n}_{28}^{\prime} \oplus \mathbb{R}
$$

and indeed $\left.\widetilde{\varphi}\right|_{T_{p} Y} \equiv \operatorname{vol}\left(e_{5}, e_{6}, e_{7}\right)$. Hence, $Y$ is a closed associative submanifold of $S$.
Now, we assess formula (2.13) for Example 6. The first correction term is

$$
\begin{aligned}
P_{1}(\sigma) & =-T_{56} e_{5} \times \nabla_{6}^{\perp} \sigma-T_{65} e_{6} \times \nabla_{5}^{\perp} \sigma-2 T_{56} \nabla_{7}^{\perp} \sigma \\
& =-\left(e_{7} \times e_{6}\right) \times \nabla_{6}^{\perp} \sigma-\left(e_{7} \times e_{5}\right) \times \nabla_{5}^{\perp} \sigma-2 \nabla_{7}^{\perp} \sigma \\
& =e_{7} \times \not D(\sigma)-\nabla_{7}^{\perp} \sigma .
\end{aligned}
$$

Here, to obtain the second equality we used the associative relation $e_{5} \times e_{6}=-e_{7}$ and for the last one we used the identity $(u \times v) \times w=-u \times(v \times w)$, for mutually orthonormal $u, v, w$. To calculate $P_{2}$, we need the covariant derivative of the total torsion tensor $T$

$$
\begin{equation*}
\nabla_{i} T_{k l}=e_{i}\left(T_{k l}\right)-\Gamma_{i k}^{m} T_{m l}-\Gamma_{i l}^{m} T_{k m}=-\Gamma_{i k}^{m} T_{m l}-\Gamma_{i l}^{m} T_{k m} \tag{2.22}
\end{equation*}
$$

Since $S$ is locally isometric to $G \times \mathbb{R}$, the Christoffel symbols of the $\mathrm{G}_{2}-$ metric on $S$ are defined by the structure constants of the Lie algebra $\mathfrak{n}_{28}$ (cf. [Mil76]):

$$
\Gamma_{i j}^{k}=\frac{1}{2}\left(\alpha_{i j k}-\alpha_{j k i}+\alpha_{k i j}\right) \quad \text { with } \quad \alpha_{i j k}=\left\langle\left[e_{i}, e_{j}\right], e_{k}\right\rangle .
$$

Applying this to Example 5, we find

$$
\begin{aligned}
& \Gamma_{13}^{5}=\Gamma_{23}^{6}=\Gamma_{36}^{2}=\Gamma_{42}^{5}=\Gamma_{63}^{2}=\Gamma_{52}^{4}=-\frac{1}{2} \\
& \Gamma_{14}^{6}=\Gamma_{25}^{4}=\Gamma_{35}^{1}=\Gamma_{46}^{1}=\Gamma_{64}^{1}=\Gamma_{53}^{1}=-\frac{1}{2} \\
& \Gamma_{16}^{4}=\Gamma_{24}^{5}=\Gamma_{31}^{5}=\Gamma_{41}^{6}=\Gamma_{61}^{4}=\Gamma_{51}^{3}=+\frac{1}{2} \\
& \Gamma_{15}^{3}=\Gamma_{26}^{3}=\Gamma_{32}^{6}=\Gamma_{45}^{2}=\Gamma_{62}^{3}=\Gamma_{54}^{2}=+\frac{1}{2}
\end{aligned}
$$

$$
\Gamma_{i j}^{k}=0, \text { otherwise. }
$$

Using the cross product defined by (2.21) and the above Christoffel symbols, we have:

$$
\begin{equation*}
\nabla_{l} e_{i+5}=\nabla_{i+5} e_{l}=\frac{(-1)^{i}}{2} e_{6-i} \times e_{l} \quad \text { for } \quad i=0,1 \quad \text { and } \quad l=1,2,3,4 \tag{2.23}
\end{equation*}
$$

Notice that the full torsion tensor of the $\mathrm{G}_{2}$-structure (2.21) can be written as

$$
\begin{equation*}
T(u, v)=-\left\langle e_{7} \times u^{\top}, v^{\top}\right\rangle+\left\langle e_{7} \times u^{\perp}, v^{\perp}\right\rangle \quad \text { for } \quad u, v \in \Omega^{0}\left(\left.T S\right|_{Y}\right)=\Omega^{0}(T Y) \oplus \Omega^{0}(N Y), \tag{2.24}
\end{equation*}
$$

where $u^{\top}$ and $u^{\perp}$ are the tangent and normal components of $u$, respectively. Combining these facts with Lemma $5(i)$, we have

$$
\begin{align*}
\nabla_{u}(v \times w) & =\nabla_{u} v \times w+v \times \nabla_{u} w+\sum_{i=1}^{7} T\left(u, e_{m}\right) \chi\left(e_{m}, v, w\right)  \tag{2.25}\\
& =\nabla_{u} v \times w+v \times \nabla_{u} w-\chi\left(e_{7} \times u^{\top}, v, w\right)+\chi\left(e_{7} \times u^{\perp}, v, w\right) .
\end{align*}
$$

Now, for $P_{2}$ we obtain:

$$
\begin{aligned}
P_{2}(\sigma)= & \sum_{i=5}^{7} \sum_{k=1}^{4} e_{i}\left(T\left(\sigma, e_{k}\right)\right) e_{i} \times e_{k} \\
= & \sum_{i=5}^{7} \sum_{k=1}^{4} e_{i} \times\left(\nabla_{i}^{\perp}\left(T\left(\sigma, e_{k}\right) e_{k}\right)-T\left(\sigma, e_{k}\right) \nabla_{i}^{\perp} e_{k}\right) \\
= & \sum_{i=5}^{7} e_{i} \times \nabla_{i}^{\perp}\left(e_{7} \times \sigma\right)-\sum_{i=0,1} \sum_{k=1}^{4}\left\langle e_{7} \times \sigma, e_{k}\right\rangle \frac{(-1)^{i}}{2} e_{i+5} \times\left(e_{6-i} \times e_{k}\right) \\
= & \sum_{i=5}^{7} e_{i} \times\left(e_{7} \times \nabla_{i}^{\perp} \sigma\right)-e_{i} \times \chi\left(e_{7} \times e_{i}, e_{7}, \sigma\right)-\sum_{i=0,1} \frac{(-1)^{i}}{2} e_{i+5} \times\left(e_{6-i} \times\left(e_{7} \times \sigma\right)\right) \\
= & -2 \nabla_{7}^{\perp} \sigma+\sum_{i=5}^{7}-e_{7} \times\left(e_{i} \times \nabla_{i}^{\perp} \sigma\right) \\
& -\sum_{i=0,1} e_{i+5} \times \chi\left(e_{7} \times e_{i+5}, e_{7}, \sigma\right)+\underbrace{\frac{(-1)^{i}}{2}}_{(\star)}\left(e_{i+5} \times e_{6-i}\right) \times\left(e_{7} \times \sigma\right) \\
= & -e_{7} \times \not D(\sigma)-2 \nabla_{7}^{\perp} \sigma-3 \sigma
\end{aligned}
$$

For the third equality, we used (2.24) in the first term and (2.23) in the second one. The fourth equality follows from (2.25) and, finally, a short calculation gives:

$$
\begin{aligned}
(\star)= & \sum_{i=0,1}-e_{i+5} \times\left(\left(e_{7} \times e_{i+5}\right) \times\left(e_{7} \times \sigma\right)\right)+\frac{(-1)^{i}}{2}\left(e_{i+5} \times e_{6-i}\right) \times\left(e_{7} \times \sigma\right) \\
= & \sum_{i=0,1}-\left(\left(e_{i+5} \times e_{7}\right) \times e_{i+5}\right) \times\left(e_{7} \times \sigma\right)+\frac{(-1)^{i}}{2}\left(e_{i+5} \times e_{6-i}\right) \times\left(e_{7} \times \sigma\right) \\
= & -\left(\left(e_{5} \times e_{7}\right) \times e_{5}\right) \times\left(e_{7} \times \sigma\right)+\frac{1}{2}\left(e_{5} \times e_{6}\right) \times\left(e_{7} \times \sigma\right) \\
& -\left(\left(e_{6} \times e_{7}\right) \times e_{6}\right) \times\left(e_{7} \times \sigma\right)-\frac{1}{2}\left(e_{6} \times e_{5}\right) \times\left(e_{7} \times \sigma\right) \\
= & \sigma+\frac{1}{2} \sigma+\sigma+\frac{1}{2} \sigma=3 \sigma .
\end{aligned}
$$

Finally, for $P_{3}$, we have

$$
\begin{aligned}
P_{3}(\sigma) & =\sum_{k, l=1}^{4}\left(T\left(\sigma, e_{k}\right)+\sum_{i=5}^{7} \widetilde{\varphi}\left(e_{i}, \nabla_{i}^{\perp} \sigma, e_{k}\right)\right) T_{k l} e_{l} \\
& =\sum_{k=1}^{4}\left(\left\langle e_{7} \times \sigma, e_{k}\right\rangle+\sum_{i=5}^{7}\left\langle e_{i} \times \nabla_{i}^{\perp} \sigma, e_{k}\right\rangle\right) e_{7} \times e_{k} \\
& =e_{7} \times\left(e_{7} \times \sigma\right)+e_{7} \times \not D(\sigma)=-\sigma+e_{7} \times \not D(\sigma)
\end{aligned}
$$

Now, writing the curvature tensor as

$$
R\left(e_{i}, e_{j}\right) e_{k}=\sum_{l, m=1}^{7}\left(\Gamma_{j k}^{l} \Gamma_{i l}^{m}-\Gamma_{i k}^{l} \Gamma_{j l}^{m}-\left(\Gamma_{i j}^{l}-\Gamma_{j i}^{l}\right) \Gamma_{l k}^{m}\right) e_{m}
$$

and using the last expression, we have

$$
\begin{aligned}
R\left(e_{5}, \sigma\right) e_{5} & =\sum_{l, m=1}^{7} \sum_{j=1}^{4} \sigma^{j}\left(\Gamma_{j 5}^{l} \Gamma_{5 l}^{m}-\Gamma_{55}^{l} \Gamma_{j l}^{m}-\left(\Gamma_{5 j}^{l}-\Gamma_{j 5}^{l}\right) \Gamma_{l 5}^{m}\right) e_{m} \\
& =\sum_{l, m=1}^{7} \sum_{j=1}^{4} \sigma^{j}\left(\Gamma_{j 5}^{l} \Gamma_{5 l}^{m}\right) e_{m} \\
& =\sigma^{1} \Gamma_{15}^{3} \Gamma_{53}^{1} e_{1}+\sigma^{2} \Gamma_{25}^{4} \Gamma_{54}^{2} e_{2}+\sigma^{3} \Gamma_{35}^{1} \Gamma_{51}^{3} e_{3}+\sigma^{4} \Gamma_{45}^{2} \Gamma_{52}^{4} e_{4}=-\frac{\sigma}{4} .
\end{aligned}
$$

And,

$$
\begin{aligned}
R\left(e_{6}, \sigma\right) e_{6} & =\sum_{l, m=1}^{7} \sum_{j=1}^{4} \sigma^{j}\left(\Gamma_{j 6}^{l} \Gamma_{6 l}^{m}-\Gamma_{66}^{l} \Gamma_{j l}^{m}-\left(\Gamma_{6 j}^{l}-\Gamma_{j 6}^{l}\right) \Gamma_{l 6}^{m}\right) e_{m} \\
& =\sum_{l, m=1}^{7} \sum_{j=1}^{4} \sigma^{j}\left(\Gamma_{j 6}^{l} \Gamma_{6 l}^{m}\right) e_{m} \\
& =\sigma^{1} \Gamma_{16}^{4} \Gamma_{64}^{1} e_{1}+\sigma^{2} \Gamma_{26}^{3} \Gamma_{63}^{2} e_{2}+\sigma^{3} \Gamma_{36}^{2} \Gamma_{62}^{3} e_{3}+\sigma^{4} \Gamma_{46}^{1} \Gamma_{61}^{4} e_{4}=-\frac{\sigma}{4} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathcal{R}(\sigma) & =\left(R\left(e_{5}, \sigma\right) e_{5}+R\left(e_{6}, \sigma\right) e_{6}+R\left(e_{7}, \sigma\right) e_{7}\right)^{\perp}=-\frac{1}{4} \sigma-\frac{1}{4} \sigma+0 \\
& =-\frac{1}{2} \sigma .
\end{aligned}
$$

Now, we assess the operator $\mathcal{T}$ defined in equation (1.24) for a pair $e_{i}, e_{j} \in \Omega^{0}(T Y)$ and $\sigma \in \Omega^{0}(N Y)$ :

$$
\begin{aligned}
\mathcal{T}\left(e_{j}, \sigma, e_{i}, e_{j}\right)= & \sum_{m=1}^{7} \underbrace{T\left(\sigma, e_{m}\right) \nabla_{j} \psi\left(e_{m}, e_{i}, e_{j}, \cdot\right)^{\sharp}}_{\text {(I) }},-\underbrace{T\left(e_{j}, e_{m}\right) \nabla_{\sigma}}_{\text {(II) }} \psi\left(e_{m}, e_{i}, e_{j}, \cdot\right)^{\sharp} \\
& +\underbrace{\left(\nabla_{j} T\left(\sigma, e_{m}\right)-\nabla_{\sigma} T\left(e_{j}, e_{m}\right)\right) \chi\left(e_{m}, e_{i}, e_{j}\right)}_{\text {(III) }},
\end{aligned}
$$

We will use throughout the proof both the expression of $\nabla \psi$ in terms of $T$ and $\varphi$ from Corollary 3 and the expression for $T$ given in (2.24). For the first term,

$$
\begin{aligned}
(\mathrm{I})= & \sum_{m=1}^{7}\left\langle e_{7} \times \sigma, e_{m}\right\rangle \nabla_{j} \psi\left(e_{m}, e_{i}, e_{j}, \cdot \cdot\right)^{\sharp}=\nabla_{j} \psi\left(e_{7} \times \sigma, e_{i}, e_{j}, \cdot\right)^{\sharp} \\
= & -T\left(e_{j}, e_{7} \times \sigma\right) \varphi\left(e_{i}, e_{j}, \cdot\right)^{\sharp}+T\left(e_{j}, e_{i}\right) \varphi\left(e_{7} \times \sigma, e_{j}, \cdot\right)^{\sharp}-T\left(e_{j}, e_{j}\right) \varphi\left(e_{7} \times \sigma, e_{i}, \cdot \cdot\right)^{\sharp} \\
& +T\left(e_{j}, \cdot\right)^{\sharp} \varphi\left(e_{7} \times \sigma, e_{i}, e_{j}\right) \\
= & -\left\langle e_{7} \times e_{j}, e_{i}\right\rangle\left(e_{7} \times \sigma\right) \times e_{j}=\left\langle e_{7} \times e_{j}, e_{i}\right\rangle\left(e_{7} \times e_{j}\right) \times \sigma .
\end{aligned}
$$

Here we used the vanishings $T\left(e_{j}, e_{7} \times \sigma\right)=0$, again by (2.24), $T\left(e_{j}, e_{j}\right)=0$, by skewsymmetry, and $\varphi\left(e_{7} \times \sigma, e_{i}, e_{j}\right)=\left\langle e_{i} \times e_{j}, e_{7} \times \sigma\right\rangle=0$, by orthogonality.
For the second term,

$$
\begin{aligned}
(\mathrm{II})= & \sum_{m=1}^{7}\left\langle e_{7} \times e_{j}, e_{m}\right\rangle \nabla_{\sigma} \psi\left(e_{m}, e_{i}, e_{j}, \cdot\right)^{\sharp}=\nabla_{\sigma} \psi\left(e_{7} \times e_{j}, e_{i}, e_{j}, \cdot\right)^{\sharp} \\
= & -T\left(\sigma, e_{7} \times e_{j}\right) \varphi\left(e_{i}, e_{j}, \cdot\right)^{\sharp}+T\left(\sigma, e_{i}\right) \varphi\left(e_{7} \times e_{j}, e_{j}, \cdot\right)^{\sharp}-T\left(\sigma, e_{j}\right) \varphi\left(e_{7} \times e_{j}, e_{i}, \cdot\right)^{\sharp} \\
& +T(\sigma, \cdot)^{\sharp} \varphi\left(e_{7} \times e_{j}, e_{i}, e_{j}\right) \\
= & -\left\langle e_{7} \times \sigma, \cdot\right\rangle^{\sharp}\left\langle\left(e_{7} \times e_{j}\right) \times e_{i}, e_{j}\right\rangle=-\left\langle\left(e_{7} \times e_{j}\right) \times e_{i}, e_{j}\right\rangle e_{7} \times \sigma .
\end{aligned}
$$

Again the vanishings $T\left(\sigma, e_{7} \times e_{j}\right)=T\left(\sigma, e_{i}\right)=T\left(\sigma, e_{j}\right)=0$ follow from (2.24). For the third term, we use expression (2.22) for the derivatives of the torsion tensor:

$$
\begin{aligned}
(\mathrm{III}) & =-\sum_{m=1}^{7}\left(T\left(\sigma, \nabla_{j} e_{m}\right)-T\left(e_{j}, \nabla_{\sigma} e_{m}\right)\right) \chi\left(e_{m}, e_{i}, e_{j}\right) \\
& =-\sum_{m=1}^{7}\left(\left\langle e_{7} \times \sigma, \nabla_{j} e_{m}\right\rangle+\left\langle e_{7} \times e_{j}, \nabla_{\sigma} e_{m}\right\rangle\right) \chi\left(e_{m}, e_{i}, e_{j}\right) .
\end{aligned}
$$

We now apply (I), (II) and (III) for $i=5$ and $j=6$ :

$$
\begin{aligned}
\mathcal{T}\left(e_{6}, \sigma, e_{5}, e_{6}\right)= & \left\langle e_{7} \times e_{6}, e_{5}\right\rangle\left(e_{7} \times e_{6}\right) \times \sigma+\left\langle\left(e_{7} \times e_{6}\right) \times e_{5}, e_{6}\right\rangle e_{7} \times \sigma \\
& -\sum_{m=1}^{7}\left(\left\langle e_{7} \times \sigma, \nabla_{6} e_{m}\right\rangle+\left\langle e_{7} \times e_{6}, \nabla_{\sigma} e_{m}\right\rangle\right) \chi\left(e_{m}, e_{5}, e_{6}\right) \\
= & e_{5} \times \sigma-\sum_{m=1}^{7}\left(-\frac{1}{2}\left\langle e_{7} \times \sigma, e_{5} \times e_{m}\right\rangle+\left\langle e_{5}, \nabla_{\sigma} e_{m}\right\rangle\right) \chi\left(e_{m}, e_{5}, e_{6}\right) \\
= & e_{5} \times \sigma-\sum_{m=1}^{7}\left(\frac{1}{2}\left\langle e_{5} \times\left(e_{7} \times \sigma\right), e_{m}\right\rangle+\sigma\left\langle e_{5}, e_{m}\right\rangle-\left\langle\nabla_{\sigma} e_{5}, e_{m}\right\rangle\right) \chi\left(e_{m}, e_{5}, e_{6}\right) \\
= & e_{5} \times \sigma-\sum_{m=1}^{7}\left(-\frac{1}{2}\left\langle e_{6} \times \sigma, e_{m}\right\rangle-\frac{1}{2}\left\langle e_{6} \times \sigma, e_{m}\right\rangle\right) \chi\left(e_{m}, e_{5}, e_{6}\right) \\
= & e_{5} \times \sigma+\chi\left(e_{6} \times \sigma, e_{5}, e_{6}\right)=e_{5} \times \sigma-\left(e_{6} \times \sigma\right) \times\left(e_{5} \times e_{6}\right) \\
= & e_{5} \times \sigma+\left(e_{6} \times \sigma\right) \times e_{7} \\
= & 2 e_{5} \times \sigma .
\end{aligned}
$$

Here we used repeatedly that $e_{5} \times e_{6}=-e_{7}$ and $e_{i} \times\left(e_{j} \times \sigma\right)=-e_{j} \times\left(e_{i} \times \sigma\right)$ for $i \neq j$. At the second and fourth lines we applied again (2.23), and at the third line we used the compatibility of the Riemannian connection.

For $j=7$ and $i=6$, we have trivially

$$
\mathcal{T}\left(e_{7}, \sigma, e_{6}, e_{7}\right)=0
$$

Finally, for $j=5$ and $i=7$, we have

$$
\begin{aligned}
\mathcal{T}\left(e_{5}, \sigma, e_{7}, e_{5}\right)= & \left\langle e_{7} \times e_{5}, e_{7}\right\rangle\left(e_{7} \times e_{5}\right) \times \sigma+\left\langle\left(e_{7} \times e_{5}\right) \times e_{7}, e_{5}\right\rangle e_{7} \times \sigma \\
& -\sum_{m=1}^{7}\left(\left\langle e_{7} \times \sigma, \nabla_{5} e_{m}\right\rangle+\left\langle e_{7} \times e_{5}, \nabla_{\sigma} e_{m}\right\rangle\right) \chi\left(e_{m}, e_{7}, e_{5}\right) \\
= & \left\langle e_{6}, e_{7}\right\rangle e_{6} \times \sigma-\left\langle e_{6} \times e_{7}, e_{5}\right\rangle e_{7} \times \sigma-\sum_{m=1}^{7}\left(\frac{1}{2}\left\langle e_{7} \times \sigma, e_{6} \times e_{m}\right\rangle\right. \\
& \left.-\left\langle e_{6}, \nabla_{\sigma} e_{m}\right\rangle\right) \chi\left(e_{m}, e_{7}, e_{5}\right) \\
= & e_{7} \times \sigma-\sum_{m=1}^{7}\left(-\frac{1}{2}\left\langle e_{6} \times\left(e_{7} \times \sigma\right), e_{m}\right\rangle-\sigma\left\langle e_{6}, e_{m}\right\rangle\right. \\
& \left.+\left\langle\nabla_{\sigma} e_{6}, e_{m}\right\rangle\right) \chi\left(e_{m}, e_{7}, e_{5}\right) \\
= & e_{7} \times \sigma-\sum_{m=1}^{7}\left(-\frac{1}{2}\left\langle e_{5} \times \sigma, e_{m}\right\rangle-\frac{1}{2}\left\langle e_{5} \times \sigma, e_{m}\right\rangle\right) \chi\left(e_{m}, e_{7}, e_{5}\right) \\
= & e_{7} \times \sigma+\chi\left(e_{5} \times \sigma, e_{7}, e_{5}\right)=e_{7} \times \sigma-\left(e_{5} \times \sigma\right) \times\left(e_{7} \times e_{5}\right) \\
= & e_{7} \times \sigma+\left(e_{5} \times \sigma\right) \times e_{6}=2 e_{7} \times \sigma .
\end{aligned}
$$

Therefore,

$$
\left(\sum_{i \in \mathbb{Z}_{3}} e_{i+5} \times \mathcal{T}\left(e_{i+6}, \sigma, e_{i+5}, e_{i+6}\right)\right)^{\perp}=-4 \sigma .
$$

Following the notation of [CP15, §5.3], we define an operator

$$
\not D^{c}(\sigma):=e_{5} \times \nabla_{5}^{\perp} \sigma+e_{6} \times \nabla_{6}^{\perp} \sigma
$$

and recall that the cross-product by $e_{7}$ defines an almost complex structure on $T(\Gamma \backslash G)$ denoted by $J(\sigma):=e_{7} \times \sigma$. Then (2.2) becomes

$$
\not D_{\mathrm{A}}(\sigma)=\not D^{c}(\sigma)+J(\dot{\sigma})+J(\sigma)
$$

where $\dot{\sigma}:=\nabla_{7}^{\perp} \sigma$. To simplify notation, let $\|\cdot\|$ and $\langle\langle\cdot, \cdot\rangle\rangle$ denote the $L^{2}$-norm and inner product of sections, respectively (the integral of the corresponding pointwise quantity over the associative submanifold). The next Lemma gathers some relations between the operators $D D, J$ and $\nabla$; although some of them will not be used in this article, we state them anyway as a curiosity.

Lemma 18. With the above notation, we have the following properties:
(i) $\not D^{c} \circ J(\sigma)=-J \circ \not D^{c}(\sigma)+2 \sigma$.
(ii) $\left\langle\left\langle D^{c}(\sigma), \eta\right\rangle\right\rangle=\left\langle\left\langle\sigma, \not D^{c}(\eta)\right\rangle\right\rangle+2\langle\langle\sigma, J(\eta)\rangle\rangle$.
(iii) $\left\langle\left\langle D^{c}(\sigma), J(\dot{\sigma})\right\rangle\right\rangle=0$.
(iv) $\langle\langle\dot{\sigma}, \sigma\rangle\rangle=0$ and $\left\langle\left\langle\not D^{c}(\sigma), J(\sigma)\right\rangle\right\rangle \leq 0$.

Proof. (i) Using Lemma 5 (i), we have,

$$
\begin{aligned}
\not D^{c} \circ J(\sigma) & =-J \circ \not D^{c}(\sigma)-T_{65} e_{6} \times\left(e_{5} \times\left(e_{7} \times \sigma\right)\right)-T_{56} e_{5} \times\left(e_{6} \times\left(e_{7} \times \sigma\right)\right) \\
& =-J \circ \not D^{c}(\sigma)+2 T_{56}\left(e_{5} \times e_{6}\right) \times\left(e_{7} \times \sigma\right) \\
& =-J \circ \not D^{c}(\sigma)+2 \cdot \sigma .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\left\langle\not D^{c}(\sigma), \eta\right\rangle_{p} & =-\sum_{i=5}^{6}\left\langle\nabla_{i}^{\perp} \sigma, e_{i} \times \eta\right\rangle_{p}=-\sum_{i=5}^{6}\left\{e_{i}\left\langle\sigma, e_{i} \times \eta\right\rangle-\left\langle\sigma, \nabla_{i}^{\perp}\left(e_{i} \times \eta\right)\right\rangle\right\}_{p} \\
& \left.=\operatorname{div}(\sigma \times \eta)_{p}+-\sum_{i=5}^{6}\left\langle\sigma, e_{i} \times \nabla_{i}^{\perp} \eta-\chi\left(e_{7} \times e_{i}, e_{i}, \eta\right)\right\rangle\right\}_{p} \\
& =\operatorname{div}(\sigma \times \eta)_{p}+\left\langle\sigma, \not D^{c}(\eta)\right\rangle_{p}+2\left\langle\sigma, e_{7} \times \eta\right\rangle_{p}
\end{aligned}
$$

Here we used the Leibniz rule (2.25), then the following trivial calculation:

$$
\begin{aligned}
\chi\left(e_{7} \times e_{i}, e_{i}, \eta\right) & =\chi\left(\eta, e_{7} \times e_{i}, e_{i}\right)=-\eta \times\left(\left(e_{7} \times e_{i}\right) \times e_{i}\right) \\
& =-\eta \times\left(e_{i} \times\left(e_{i} \times e_{7}\right)\right)=-e_{7} \times \eta
\end{aligned}
$$

(iii) Using (i) and (ii), one has $\left\langle\left\langle\not D^{c}(\sigma), J(\dot{\sigma})\right\rangle\right\rangle=\left\langle\left\langle J(\sigma), \not D^{c}(\dot{\sigma})\right\rangle\right\rangle$, and, by the vanishing of the normal curvature tensor $R^{\perp}\left(e_{i}, e_{7}\right) \sigma=0$ for $i=5,6$, we have $\nabla_{i}^{\perp} \nabla_{7}^{\perp} \sigma=\nabla_{7}^{\perp} \nabla_{i}^{\perp} \sigma$. Using Lemma 5 (i) and the compatibility of $\nabla^{\perp}$ with the induced metric in $N Y$ we have

$$
\begin{aligned}
\left\langle\not D^{c}(\sigma), J(\dot{\sigma})\right\rangle_{p} & =\sum_{i=5}^{7}\left\langle J(\sigma), e_{i} \times \nabla_{7}^{\perp} \nabla_{i}^{\perp} \sigma\right\rangle_{p} \\
& =\sum_{i=5}^{7}\left\langle J(\sigma), \nabla_{7}^{\perp}\left(e_{i} \times \nabla_{i}^{\perp} \sigma\right)\right\rangle_{p} \\
& =-\left\langle\nabla_{7}^{\perp}(J(\sigma)), \not \text { D' }^{c}(\sigma)\right\rangle_{p}+e_{7}\left\langle J(\sigma), \not D^{c}(\sigma)\right\rangle_{p} \\
& =-\left\langle J(\dot{\sigma}), \not D^{c}(\sigma)\right\rangle_{p}+\operatorname{div}\left(\left\langle J(\sigma), \not D^{c}(\sigma)\right\rangle e_{7}\right)_{p} .
\end{aligned}
$$

(iv) Again by compatibility of $\nabla^{\perp}$ with the metric on $N Y$, we have $2\langle\dot{\sigma}, \sigma\rangle=2\left\langle\nabla_{7}^{\perp} \sigma, \sigma\right\rangle=$ $e_{7}|\sigma|^{2}$. Now Stokes' Theorem gives

$$
\begin{equation*}
\langle\langle\dot{\sigma}, \sigma\rangle\rangle=\frac{1}{2} \int_{Y} e_{7}|\sigma|^{2} d \operatorname{vol}_{Y}=\frac{1}{2} \int_{Y} \operatorname{div}\left(|\sigma|^{2} e_{7}\right) d \operatorname{vol}_{Y}=0 \tag{2.26}
\end{equation*}
$$

Computing the $L^{2}$-norm for $D_{\mathrm{A}}(\sigma)$, we have

$$
\left\|\not D_{\mathrm{A}}(\sigma)\right\|^{2}=\left\|\not D^{c}(\sigma)\right\|^{2}+\|\dot{\sigma}\|^{2}+\|\sigma\|^{2}+2\left\langle\left\langle\not D^{c}(\sigma), J(\dot{\sigma})\right\rangle\right\rangle+2\left\langle\left\langle\not D^{c}(\sigma), J(\sigma)\right\rangle\right\rangle+2\langle\langle\dot{\sigma}, \sigma\rangle\rangle,
$$

and from Lemma 18(iii) and equation (2.26) it follows that

$$
\left\|\not D_{\mathrm{A}}(\sigma)\right\|^{2}=\left\|\not D^{c}(\sigma)\right\|^{2}+\|\dot{\sigma}\|^{2}+\|\sigma\|^{2}+2\left\langle\left\langle D^{c}(\sigma), J(\sigma)\right\rangle\right\rangle .
$$

Therefore, by the triangle inequality,

$$
\left\langle\left\langle D^{c}(\sigma), J(\sigma)\right\rangle\right\rangle \leq 0
$$

Corollary 7. The submanifold $Y$ of Example 6 is rigid.
Proof. We recall the full torsion tensor is $T=e^{12}+e^{34}+e^{56}$, from it follows that $\pi^{\perp}\left(T\left(e_{j}, \cdot\right)^{\sharp}\right)=\pi^{\perp}\left(T(\mathcal{B}(\sigma), \cdot)^{\sharp}\right)=0$ for any $j=5,6,7$ and $\sigma \in \Omega^{0}(N Y)$. Now, notice that the operator $\mathcal{A}$ and the mean curvature vector field $H$ vanish on $Y$, as can be seen from

$$
\begin{aligned}
\mathcal{A}(\sigma) & =\sum_{i, j=5}^{7} \sum_{k=1}^{4}\left\langle S_{e_{k}}\left(e_{i}\right), e_{j}\right\rangle\left\langle e_{i}, S_{\sigma}\left(e_{j}\right)\right\rangle e_{k} \\
& =-\sum_{i, j=5}^{7} \sum_{k=1}^{4}\left\langle\nabla_{i} e_{k}, e_{j}\right\rangle\left\langle e_{i}, S_{\sigma}\left(e_{j}\right)\right\rangle e_{k} \\
& =-\sum_{i, j=5}^{7} \sum_{k=1}^{4} \Gamma_{i k}^{j}\left\langle e_{i}, S_{\sigma}\left(e_{j}\right)\right\rangle e_{k}=0
\end{aligned}
$$

since, $\Gamma_{i k}^{j}=0$ for $i, j=5,6,7$ and $k=1, \ldots, 4$. As well

$$
\begin{aligned}
H & =\sum_{i=5}^{7} \sum_{k=1}^{4}\left\langle S_{e_{k}}\left(e_{i}\right), e_{i}\right\rangle e_{k} \\
& =-\sum_{i=5}^{7} \sum_{k=1}^{4}\left\langle\nabla_{i} e_{k}, e_{i}\right\rangle e_{k} \\
& =-\sum_{i, j=5}^{7} \sum_{k=1}^{4} \Gamma_{i k}^{i} e_{k}=0,
\end{aligned}
$$

Applying equation (2.13), Lemma 5 and the previous calculation, we obtain the Weitzenböck formula

$$
\not D_{\mathrm{A}}^{2}(\sigma)=\nabla^{*} \nabla \sigma+e_{7} \times \not D(\sigma)-3 \nabla_{7}^{\perp} \sigma-\frac{1}{2} \sigma .
$$

Taking the inner product with $\sigma$ and integrating over $Y$,

$$
\begin{aligned}
\int_{Y}\left\langle\not D_{\mathrm{A}}^{2}(\sigma), \sigma\right\rangle d \operatorname{vol}_{Y}= & \int_{Y}\left\langle\nabla^{*} \nabla \sigma, \sigma\right\rangle d \operatorname{vol}_{Y}+\int_{Y}\left\langle e_{7} \times \not D(\sigma), \sigma\right\rangle d \operatorname{vol}_{Y}-\int_{Y} 3\left\langle\nabla \frac{1}{7} \sigma, \sigma\right\rangle d \operatorname{vol}_{Y} \\
& -\int_{Y} \frac{1}{2}\langle\sigma, \sigma\rangle d \operatorname{vol}_{Y} \\
\geq & \int_{Y}\left\langle e_{7} \times \not D(\sigma), \sigma\right\rangle d \operatorname{vol}_{Y}-3 \int_{Y}\langle\dot{\sigma}, \sigma\rangle d \operatorname{vol}_{Y}-\int_{Y} \frac{1}{2}\langle\sigma, \sigma\rangle d \operatorname{vol}_{Y} .
\end{aligned}
$$

From Lemma 18 (iv), we conclude that

$$
\begin{equation*}
\int_{Y}\left\langle\not D_{\mathrm{A}}^{2}(\sigma), \sigma\right\rangle d \operatorname{vol}_{Y} \geq \int_{Y}\left\langle e_{7} \times \not D(\sigma), \sigma\right\rangle d \operatorname{vol}_{Y}-\frac{1}{2} \int_{Y}\langle\sigma, \sigma\rangle d \operatorname{vol}_{Y} . \tag{2.27}
\end{equation*}
$$

So, for $\sigma \in \operatorname{ker} \not D_{\mathrm{A}}$, we have $\not D(\sigma)=-e_{7} \times \sigma$ and, replacing that in (2.27), we get the inequality

$$
0 \geq-\int_{Y}\left\langle e_{7} \times\left(e_{7} \times \sigma\right), \sigma\right\rangle d \operatorname{vol}_{Y}-\frac{1}{2} \int_{Y}\langle\sigma, \sigma\rangle d \operatorname{vol}_{Y}=\frac{1}{2} \int_{Y}\langle\sigma, \sigma\rangle d \operatorname{vol}_{Y}
$$

Then $\sigma=0$ and therefore $Y$ is rigid.

### 2.3 Calibrated case

Consider a 6 -dimensional Lie algebra $\mathfrak{h}$ endowed with a $\operatorname{SU}(3)$-structure $\left(\omega, \phi_{+}\right) \in$ $\Lambda^{2}(\mathfrak{h})^{*} \times \Lambda^{3}(\mathfrak{h})^{*}$ satisfying the compatibility and normalized condition (2.18) such that both $\omega$ and $\phi_{+}$are closed, in this case the pair $\left(\omega, \phi_{+}\right)$is a symplectic half-flat $\mathrm{SU}(3)$-structure. Thus, for the product Lie algebra $\mathfrak{g}=\mathfrak{h} \oplus \mathbb{R}$ has a closed $\mathrm{G}_{2}$-structure given by

$$
\varphi=\omega \wedge e^{7}+\phi_{+},
$$

where $\mathbb{R}=\operatorname{Span}\left(e_{7}\right)$.
Example 7. Consider the nilpotent Lie algebra $\mathfrak{h}$ with constant structures given by

$$
\mathfrak{h}=\mathfrak{g}_{5,1} \oplus \mathbb{R}=\left(0,0,0,0, e^{12}, e^{13}\right)
$$

With respect to the $\mathrm{SU}(3)$-basis $\left\{e_{1}, \ldots, e_{6}\right\}$ the symplectic half-flat $S U(3)$-structure is given by

$$
\omega=e^{14}+e^{26}+e^{35} \quad \text { and } \quad \phi_{+}=e^{123}+e^{156}+e^{245}-e^{346}
$$

Hence, the 7-dimensional Lie algebra $\mathfrak{g}=\mathfrak{h} \oplus \mathbb{R}=\mathfrak{g}_{5,1} \oplus \mathbb{R}^{2}$ has a closed $\mathrm{G}_{2}$-structure given by

$$
\begin{equation*}
\varphi=\omega \wedge e^{7}+\phi_{+}=e^{147}+e^{267}+e^{357}+e^{123}+e^{156}+e^{245}-e^{346} \tag{2.28}
\end{equation*}
$$

Its dual 4-form

$$
\psi=\frac{1}{2} \omega^{2}+\phi_{-} \wedge e^{7}=e^{2356}-e^{1345}-e^{1246}+e^{4567}+e^{2347}-e^{1367}+e^{1257}
$$

An straightforward calculation shows

$$
d \psi=-e^{1246}+e^{1345} \quad \text { and } \quad \tau_{2}=-e^{35}+e^{26} \in \Lambda_{14}^{2}(\mathfrak{h})^{*},
$$

therefore, the full torsion tensor is given by

$$
\begin{equation*}
T=\frac{1}{2} e^{35}+\frac{1}{2} e^{26} . \tag{2.29}
\end{equation*}
$$

By [Mal49, Theorem 7], the corresponding connected and simply connected nilpotent Lie group $G$ admits a uniform discrete subgroup $\Gamma \subset G$ given by

$$
\Gamma=\exp \left(\mathbb{Z}\left\langle e_{1}, \ldots, e_{7}\right\rangle\right)
$$

So, the compact manifold $M=\Gamma \backslash G$ has a $G$-invariant closed $\mathrm{G}_{2}$-structure

The 7 -manifold from Example 7 contains an associative submanifold corresponding to a particular Lie subalgebra:

Example 8. Consider the abelian subalgebra $\mathfrak{a}=\operatorname{Span}\left(e_{1}, e_{5}, e_{6}\right)$, note that the restriction $\left.\varphi\right|_{\mathfrak{a}}=e^{156}$, so $\mathfrak{a}$ is an associative 3-plane. Since the connected and simply connected Lie subgroup $A$ with Lie algebra $\mathfrak{a}$ is obtained as integral submanifold of $G$ given by the left-invariant distribution

$$
\Delta(g)=\left(d L_{g}\right)_{1} \mathfrak{a} \quad \text { for } \quad g \in G,
$$

we get an integral distribution $\bar{\Delta}$ on $M=\Gamma \backslash G$. For each $p=\Gamma a \in(\Gamma \backslash A)$ we have $T_{p}(\Gamma \backslash A)=\bar{\Delta}(\Gamma a)$ and so $Y=\Gamma \backslash A$ is a compact embedded submanifold of $M$. Moreover,

$$
T_{p} Y \cong \mathfrak{a},
$$

hence, $Y$ is an associative submanifold of $M$.
Fix $e_{1}, \ldots, e_{7}$ an orthonormal frame of $T M$ induced by left invariant vector fields on $G$, such that the restriction on $Y$ makes $e_{1}, e_{5}, e_{6}$ an orthonormal frame of $T Y$ and $e_{2}, e_{3}, e_{4}, e_{7}$ an orthonormal frame of $N Y$. Notice that, the Lie algebra $\mathfrak{g}$ contains an abelian ideal $\mathfrak{u}=\operatorname{Span}\left(e_{2}, \ldots, e_{7}\right)$ of codimension 1. Let $L: \mathfrak{u} \rightarrow \mathfrak{u}$ be the linear transformation $L(u)=\left[e_{1}, u\right]$. The Riemannian connection $\nabla$ on $G$ is completely determined by $L$.

Lemma 19. [Mil\%6, Lemma 5.5] For each $u, v \in \mathfrak{u}$, the covariant derivative satisfies

$$
\begin{aligned}
\nabla_{1} e_{1} & =0, & \nabla_{1} u & =\frac{1}{2}\left(L-L^{t}\right) u \\
\nabla_{u} e_{1} & =-\frac{1}{2}\left(L+L^{t}\right) u, & \nabla_{u} v & =\left\langle\left(L+L^{t}\right) u, v\right\rangle e_{1}
\end{aligned}
$$

where $L^{t}$ denotes the transpose of $L$.

Using the above Lemma we have

$$
\begin{array}{ll}
\nabla_{1} e_{2}=-\nabla_{2} e_{1}=-\frac{1}{2} e_{5} & \nabla_{1} e_{5}=\nabla_{5} e_{1}=\frac{1}{2} e_{2} \\
\nabla_{1} e_{3}=-\nabla_{3} e_{1}=-\frac{1}{2} e_{6} & \nabla_{1} e_{6}=\nabla_{6} e_{1}=\frac{1}{2} e_{3} \\
\nabla_{2} e_{5}=\nabla_{5} e_{2}=\nabla_{3} e_{6}=\nabla_{6} e_{3}=-\frac{1}{2} e_{1} & \nabla_{i} e_{j}=0 \text { otherwise. }
\end{array}
$$

Notice that, the normal connection $\nabla_{i}^{\perp} e_{j}=\nabla_{i} e_{j}-\left(\nabla_{i} e_{j}\right)^{\top}$ vanishes, since $\left(\nabla_{i} e_{j}\right)^{\top}=\nabla_{i} e_{j}$ for $i=1,5,6$ and $j=2,3,4,7$.

Lemma 20. The normal bundle NY for the submanifold 8 can be trivialized by parallel sections $e_{2}, e_{3}, e_{4}, e_{7}$ of the connection $\nabla^{\perp}$.

Now, from Corollary 3 we have that $\nabla_{l} \psi_{k 156}=-T_{l k}$ for $k, l=2,3,4,7$, and by equation (2.29) we get $\left.T\right|_{N Y \times N Y}=0$. Therefore, it follows:

Lemma 21. For the associative submanifold $Y$ of Example 8:
(i) The Fueter operator (2.1) is

$$
\not D_{\mathrm{A}}(\sigma)=\not D(\sigma)=e_{1} \times \nabla_{1}^{\perp} \sigma+e_{5} \times \nabla_{5}^{\perp} \sigma+e_{6} \times \nabla_{6}^{\perp} \sigma
$$

(ii) The operators $P_{1}, P_{2}, P_{3}$ defined in Theorem 4 vanishes.

Applying Lemmata 20 and 21 we obtain that $e_{2}, e_{3}, e_{4}, e_{7} \in \operatorname{ker} D_{\mathrm{A}}$. However, each vector field $e_{k}$ is induced by the one parameter subgroup of diffeomorphism $f_{t}=$ $R_{\exp \left(t e_{k}\right)} \subset \operatorname{Diff}(M)$, indeed, the left-invariant vector field $e_{k}$ on $G$ is induced by the flow given by the right-translation $R_{\exp \left(t e_{k}\right)}: G \rightarrow G$. So, define

$$
R_{\exp \left(t e_{k}\right)}: \Gamma g \in M \mapsto \Gamma\left(g \exp \left(t e_{k}\right)\right) \in M
$$

notice that this map is well defined, for $\Gamma g_{1}=\Gamma g_{2}$ (i.e. $g_{1} g_{2}^{-1} \in \Gamma$ ), then

$$
R_{\exp \left(t e_{k}\right)}\left(\Gamma g_{1}\right)=\Gamma g_{1} \exp \left(t e_{k}\right)=\Gamma g_{1} g_{2}^{-1} g_{2} \exp \left(t e_{k}\right)=\Gamma g_{2} \exp \left(t e_{k}\right)=R_{\exp \left(t e_{k}\right)}\left(\Gamma g_{2}\right) .
$$

Since the Lie group $G$ is nilpotent, the exponential map $\exp : \mathfrak{g} \rightarrow G$ is a diffeomorphism, then, using the Baker-Campbell-Hausdorff formula the structure group of $G$ is $g h=\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}, x_{4}+y_{4}, x_{5}+y_{5}+\frac{1}{2}\left(x_{2} y_{1}-x_{1} y_{2}\right), x_{6}+y_{6}+\frac{1}{2}\left(x_{3} y_{1}-x_{1} y_{3}\right), x_{7}+y_{7}\right)$, where $g=\left(x_{1}, \ldots, x_{7}\right), h=\left(y_{1}, \ldots, y_{7}\right) \in G \cong \mathbb{R}^{7}$, the identity element is the vector 0 and the inverse $g^{-1}=\left(-x_{1}, \ldots,-x_{7}\right)$. So, the differential of the left and right-translation are

$$
d L_{g}=\left(\begin{array}{cccccc}
1 & & & & & \\
& 1 & & & & \\
& & 1 & & & \\
& & & 1 & & \\
\frac{x_{2}}{2} & -\frac{x_{1}}{2} & 0 & 0 & 1 & \\
\frac{x_{3}}{2} & 0 & -\frac{x_{1}}{2} & 0 & & 1 \\
0 & 0 & 0 & 0 & & 1
\end{array}\right), \quad d R_{g}=\left(\begin{array}{ccccccc}
1 & & & & & \\
& 1 & & & & \\
& & 1 & & & \\
& & & 1 & & \\
-\frac{x_{2}}{2} & \frac{x_{1}}{2} & 0 & 0 & 1 & & \\
-\frac{x_{3}}{2} & 0 & \frac{x_{1}}{2} & 0 & & 1 & \\
0 & 0 & 0 & 0 & & 1
\end{array}\right)
$$

Notice that $d R_{g}=d L_{g^{-1}}$, in fact this follows by the fact that $A$ is a normal subgroup of $G$, since $\mathfrak{a}$ is an ideal of $\mathfrak{g}$. Thus, the restriction $\left\{f_{t}=R_{\exp \left(t e_{k}\right)}: Y \rightarrow M\right\}$ induces trivial deformations for each $k=2,3,4,7$.

Lemma 22. For the associative submanifold $Y$ of Example 8 we have

$$
\begin{aligned}
& \mathcal{R}(\sigma)-\pi^{\perp}\left(\sum_{i \in \mathbb{Z}_{3}} e_{i} \times \mathcal{T}\left(e_{i+1}, \sigma, e_{i}, e_{i+1}\right)\right)+H \times \mathcal{B}(\sigma)+\left(\operatorname{tr} S_{\sigma}\right) H \\
&-\mathcal{A}(\sigma)-\sum_{j=1}^{3} \pi^{\perp}\left(T\left(e_{j}, \cdot\right)^{\sharp}\right) \times S_{\sigma}\left(e_{j}\right)+\pi^{\perp}\left(T(\mathcal{B}(\sigma), \cdot)^{\sharp}\right)=0
\end{aligned}
$$

Proof. By Lemma 20 we have that $R^{\perp}=0$ and using the calculation from the proof of Lemma 9

$$
\begin{array}{r}
-\sum_{i<j}^{3}\left(e_{i} \times e_{j}\right) \times R^{\perp}\left(e_{i}, e_{j}\right) \sigma=\mathcal{R}(\sigma)-\pi^{\perp}\left(\sum_{i \in \mathbb{Z}_{3}} e_{i} \times \mathcal{T}\left(e_{i+1}, \sigma, e_{i}, e_{i+1}\right)\right)+H \times \mathcal{B}(\sigma)+\left(\operatorname{tr} S_{\sigma}\right) H \\
-\mathcal{A}(\sigma)-\sum_{j=1}^{3} \pi^{\perp}\left(T\left(e_{j}, \cdot\right)^{\sharp}\right) \times S_{\sigma}\left(e_{j}\right)+\pi^{\perp}\left(T(\mathcal{B}(\sigma), \cdot)^{\sharp}\right),
\end{array}
$$

the result follows.

Now, the Weitzenböck formula (2.13) simplify drastically and we obtain the following result.

Corollary 8. All infinitesimal associative deformation of the associative submanifold $Y$ of Example 8 come from trivial deformations, $Y$ is rigid.

Proof. Using Lemmata 21 and 22 we have $D_{\mathrm{A}}{ }^{2}(\sigma)=\nabla^{*} \nabla(\sigma)$, where

$$
\nabla^{*} \nabla(\sigma)=\left(\begin{array}{cccc}
\Delta & & & \\
& \Delta & & \\
& & \Delta & \\
& & & \Delta
\end{array}\right)\left(\begin{array}{c}
\sigma^{2} \\
\sigma^{3} \\
\sigma^{4} \\
\sigma^{7}
\end{array}\right)
$$

where $\sigma=\sigma^{2} e_{2}+\sigma^{3} e_{3}+\sigma^{4} e_{4}+\sigma^{7} e_{7} \in \Omega^{0}(N Y)$ and $\Delta=-e_{1}^{2}-e_{5}^{2}-e_{6}^{2}$ is the Laplacian of functions on $Y$. If $\sigma \in \operatorname{ker} D_{\mathrm{A}}$ then each $\sigma^{k}$ is a harmonic function on $Y$ for each $k=2,3,4,7$, hence by the compactness of $Y$ each $\sigma^{k}$ is a constant function.

## 3 Co-closed $\mathrm{G}_{2}$-flows

Geometric flows in $\mathrm{G}_{2}$-geometry were first outlined by the seminal works of Bryant [Bry06] and Hitchin [Hit08], and have since been studied by several authors, e.g. [Bry11, BF18, Gri13, KT12, Lau16, Lau17]. These so-called $\mathrm{G}_{2}$-flows arise as a tool in the search for ultimately torsion-free $\mathrm{G}_{2}$-structures, by varying a non-degenerate 3 -form on an oriented and spin 7 -manifold $M$ towards some $\varphi \in \Omega^{3}:=\Omega^{3}(M)$ such that the torsion $\nabla^{g_{\varphi}} \varphi$ vanishes. Such pairs $\left(M^{7}, \varphi\right)$ solving the non-linear PDE problem $\nabla^{g_{\varphi}} \varphi \equiv 0$ are called $\mathrm{G}_{2}$-manifolds and are very difficult to construct, especially when $M$ is required to be compact. To this date, all known solutions stem from elaborate constructions in geometric analysis [Joy96, CP15, JK17].

When $M^{7}=G$ is a Lie group, we propose to study the Laplacian co-flow [KT12]

$$
\begin{equation*}
\frac{\partial \psi_{t}}{\partial t}=-\Delta_{\psi_{t}} \psi_{t} \tag{3.1}
\end{equation*}
$$

and the modified Laplacian co-flow [Gri13]

$$
\begin{equation*}
\frac{\partial \psi_{t}}{\partial t}=\Delta_{\psi_{t}} \psi_{t}+2 d\left((C-\operatorname{tr} T) \varphi_{t}\right) \quad \text { for } \quad C \quad \text { a constant } \tag{3.2}
\end{equation*}
$$

from the perspective introduced by Lauret [Lau16] in the general context of geometric flows on homogeneous spaces. As a proof of principle, we apply a natural Ansatz to construct an example of invariant self-similar solution, or soliton, of the Laplacian co-flow.

### 3.1 Geometric flow of $G$-invariant structures

Let us briefly survey Lauret's approach to geometric flows on homogeneous spaces [Lau16]. Consider the action of a Lie group $G$ on a manifold $M$. A $(r, s)$-tensor $\gamma$ on $M$ is $G$-invariant if $g^{*} \gamma=\gamma$, for each $g \in G$, where

$$
g^{*} \gamma\left(X_{1}, \ldots, X_{r}, \alpha_{1}, \ldots, \alpha_{s}\right):=\gamma\left(g_{*} X_{1}, \ldots, g_{*} X_{r},\left(g^{-1}\right)^{*} \alpha_{1}, \ldots,\left(g^{-1}\right)^{*} \alpha_{s}\right)
$$

for $X_{1}, \ldots, X_{r} \in \Gamma(T M)$ and $\alpha_{1}, \ldots, \alpha_{s} \in \Gamma\left(T^{*} M\right)$. In particular, when $M=G / H$ is a reductive homogeneous space, i.e.

$$
\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m} \quad \text { such that } \quad \operatorname{Ad}(h) \mathfrak{m} \subset \mathfrak{m}, \forall h \in H
$$

any $G$-invariant tensor $\gamma$ is completely determined by its value $\gamma_{x_{0}}$ at the point $x_{0}=\left[1_{G}\right] \in$ $G / H$, where $\gamma_{x_{0}}$ is an $\operatorname{Ad}(H)$-invariant tensor at $\mathfrak{m} \cong T_{x_{0}} M$, i.e. $(\operatorname{Ad}(h))^{*} \gamma_{x_{0}}=\gamma_{x_{0}}$ for
each $h \in H$. Given $x=\left[g x_{0}\right] \in G / H$, clearly $\gamma_{x}=\left(g^{-1}\right)^{*} \gamma_{x_{0}}$. Consider now a geometric flow on $M$ of the general form

$$
\begin{equation*}
\frac{\partial}{\partial t} \gamma_{t}=q\left(\gamma_{t}\right) \tag{3.3}
\end{equation*}
$$

where $\gamma_{t}$ is one-parameter family of tensor fields attached to a family of geometric structures on $M$ [Hus66, Ch. 6, Sec. 2] and $q: \gamma \mapsto q(\gamma)$ is an assignment of a tensor field on $M$ of the same type of $\gamma$ such that for any diffeomorphism of $M$

$$
\begin{equation*}
q\left(f^{*} \gamma\right)=f^{*} q(\gamma) \quad \text { for } \quad f \in \operatorname{Diff}(M) \tag{3.4}
\end{equation*}
$$

Then, if $M=G / H$, requiring $G$-invariance of $\gamma_{t}$, for all $t$, the diffeomorphism invariance (3.4) reduces the flow to an ODE for a one-parameter family $\gamma_{t}$ of $\operatorname{Ad}(H)$-invariant tensors on the vector space $\mathfrak{m}$ :

$$
\frac{d}{d t} \gamma_{t}=q\left(\gamma_{t}\right)
$$

thus, short-time existence and uniqueness among the $G$-invariant solution are guaranteed.
Now, suppose that for a fixed geometric structure, the orbit

$$
\begin{equation*}
\operatorname{Gl}(\mathfrak{m}) \cdot \gamma \tag{3.5}
\end{equation*}
$$

is open in the vector space $\mathfrak{T}$ of all tensor of the same type as $\gamma$, and it is parametrised by the homogeneous space $\mathrm{Gl}(\mathfrak{m}) / G_{\gamma}$, where

$$
G_{\gamma}:=\{h \in \operatorname{Gl}(\mathfrak{m}) ; h \cdot \gamma=\gamma\}
$$

is the stabilizer of $\gamma$ within $\operatorname{Gl}(\mathfrak{m})$. Consider $\theta: \mathfrak{g l}(\mathfrak{m}) \rightarrow \operatorname{End}(\mathfrak{T})$ the infinitesimal representation given by the action (3.5) defined by

$$
\theta(A) \gamma:=\left.\frac{d}{d t}\right|_{t=0}\left(e^{A t} \cdot \gamma\right)
$$

Using the reductive decomposition $\mathfrak{g l}(\mathfrak{m})=\mathfrak{g}_{\gamma} \oplus \mathfrak{q}_{\gamma}$ from (3.5), we have

$$
\begin{equation*}
\theta\left(\mathfrak{q}_{\gamma}\right) \gamma=\mathfrak{T} \tag{3.6}
\end{equation*}
$$

In particular, for $q(\gamma)$ there exist a unique linear operator $Q_{\gamma} \in \mathfrak{q}_{\gamma}$ such that $q(\gamma)=\theta\left(Q_{\gamma}\right) \gamma$.

### 3.2 Invariant $G_{2}$-structures on Lie groups

At this point, we fix $\left(M^{7}=G, \varphi\right)$ a connected and simply connected Lie group with Lie algebra $\mathfrak{g}$ and $\varphi$ a left-invariant $\mathrm{G}_{2}$-structure. We consider $\gamma=\psi$ the dual 4-form of the $\mathrm{G}_{2}$-structure, which is left-invariant too. Now, we address the geometric flow (3.3) for the cases (3.1) and (3.2), i.e. $q:=-\Delta_{\psi}$ and $q:=\Delta_{\psi}+2 d(C-\operatorname{tr} T) *_{\varphi}$, respectively. Accordingly with this, we also denote by $\psi \in \Lambda^{4}(\mathfrak{g})^{*}$ which lift to $G$ by left-translation. The $\operatorname{Gl}(\mathfrak{g})$-orbit (see Definition 3)

$$
\begin{equation*}
\operatorname{Gl}(\mathfrak{g}) \cdot \psi \subset \Lambda^{4}(\mathfrak{g})^{*} \tag{3.7}
\end{equation*}
$$

is open under the natural action

$$
h \cdot \psi:=\left(h^{-1}\right)^{*} \psi=\psi\left(h^{-1} \cdot, h^{-1} \cdot, h^{-1} \cdot, h^{-1} \cdot\right), \quad h \in \operatorname{Gl}(\mathfrak{g}) .
$$

So, the infinitesimal representation $\theta: \mathfrak{g l}(\mathfrak{g}) \rightarrow \operatorname{End}\left(\Lambda^{4}(\mathfrak{g})^{*}\right)$ at $\psi$ is given by

$$
\theta(A) \psi:=-\psi(A \cdot, \cdot, \cdot, \cdot)-\cdots-\psi(\cdot, \cdot, \cdot, A \cdot),
$$

following (3.6) we have

$$
\begin{equation*}
\theta(\mathfrak{g l}(\mathfrak{g})) \psi=\Lambda^{4}(\mathfrak{g})^{*} \tag{3.8}
\end{equation*}
$$

The Lie algebra of the stabilizer subgroup $\mathrm{G}_{2}(\psi):=\mathrm{Gl}(\mathfrak{g})_{\psi} \cong \mathrm{G}_{2} \times \mathbb{Z}_{2}$ is given by

$$
\mathfrak{g}_{2}(\psi):=\{A \in \mathfrak{g l}(\mathfrak{g}) ; \theta(A) \psi=0\} \cong \mathfrak{g}_{2}
$$

From (1.4) we get the polar decomposition $\mathfrak{g l}(\mathfrak{g})=\mathfrak{s o}(\mathfrak{g}) \oplus \operatorname{sym}(\mathfrak{g})$, we consider the orthogonal complement subspace $\mathfrak{q}_{7}(\psi) \subset \mathfrak{s o}(\mathfrak{g})$ of $\mathfrak{g}_{2}(\psi)$ relative to the induced inner product from $\mathfrak{g l}(\mathfrak{g})$ (i.e. $\operatorname{tr}\left(A B^{t}\right)$ ). In the other hand, the $\mathrm{G}_{2}$-decomposition of $\operatorname{sym}(\mathfrak{g})$ into $\mathfrak{q}_{1}(\psi)=\mathbb{R} I$, the one dimensional trivial representation and $\mathfrak{q}_{27}(\psi)=\operatorname{sym}_{0}(\mathfrak{g})$ the fundamental representation of traceless symmetric matrices which has dimension 27. Moreover, by comparing with the reductive decomposition $\mathfrak{g l}(\mathfrak{g})=\mathfrak{g}_{2}(\psi) \oplus \mathfrak{q}(\psi)$ it follows the $\mathrm{G}_{2}$-invariant decomposition

$$
\mathfrak{q}(\psi)=\mathfrak{q}_{1}(\psi) \oplus \mathfrak{q}_{7}(\psi) \oplus \mathfrak{q}_{27}(\psi),
$$

and the faithful representation

$$
\begin{equation*}
\theta(\mathfrak{q}(\psi)) \psi=\Lambda^{4}(\mathfrak{g})^{*} . \tag{3.9}
\end{equation*}
$$

In particular, for the Laplacian $\Delta_{\psi} \psi$, there exists a unique $Q_{\psi} \in \mathfrak{q}(\psi)$ such that $\theta\left(Q_{\psi}\right) \psi=$ $\Delta_{\psi} \psi$. Now, for any other $\phi=h \cdot \psi \in \operatorname{Gl}(\mathfrak{g}) \cdot \psi$,

$$
\operatorname{Gl}(\mathfrak{g})_{\phi}=\operatorname{Gl}(\mathfrak{g})_{h \cdot \psi_{0}}=h^{-1} G_{2}(\psi) h \quad \text { and } \quad \mathfrak{g l}(\mathfrak{g})_{\phi}=\mathfrak{g l}(\mathfrak{g})_{h \cdot \psi}=\operatorname{Ad}\left(h^{-1}\right) \mathfrak{g}_{2}(\psi)
$$

where $\operatorname{Ad}: \operatorname{Gl}(\mathfrak{g}) \rightarrow \operatorname{Gl}(\mathfrak{g l}(\mathfrak{g}))$. Moreover, we have the following relations.
Lemma 23. Let $\bar{\psi}=h \cdot \psi$ for $h \in \operatorname{Gl}(\mathfrak{g})$, denote $\bar{*}$ the Hodge star and $\bar{\Delta}$ the Laplacian operator of $\bar{\psi}$, then

$$
\bar{*}=\left(h^{-1}\right)^{*} * h^{*} \quad \text { and } \quad h^{*} \circ \bar{\Delta}=\Delta \circ h^{*},
$$

where $*$ and $\Delta$ are the Hodge star and the Laplacian operator of $\psi$, respectively.
Proof. The inner products on $\mathfrak{g}$ and $\mathfrak{g}^{*}$ induced by a $\mathrm{G}_{2}$-structure $\bar{\varphi}=h \cdot \varphi$ are $\bar{g}=\left(h^{-1}\right)^{*} g$ and $\bar{g}=h^{*} g$, respectively, where $g$ is the inner product induced by $\varphi$. So, for $\alpha \in \Lambda^{k}(\mathfrak{g})^{*}$
we have

$$
\begin{aligned}
\alpha \wedge \bar{\nsim} \alpha & =\bar{g}(\alpha, \alpha) \overline{\mathrm{vol}} \\
& =\left(h^{*} g\right)(\alpha, \alpha)\left(h^{-1}\right)^{*} \mathrm{vol} \\
& =\left(h^{-1}\right)^{*}\left(g\left(h^{*} \alpha, h^{*} \alpha\right) \mathrm{vol}\right) \\
& =\alpha \wedge\left(h^{-1}\right)^{*} * h^{*} \alpha,
\end{aligned}
$$

which gives the first claimed relation. In particular,

$$
\bar{*} \bar{\psi}=\left(h^{-1}\right)^{*} * h^{*} \bar{\psi}=\left(h^{-1}\right)^{*} * \psi=h \cdot \varphi=\bar{\varphi} .
$$

Applying again the first relation to the operator $d^{*}=(-1)^{7 k} * d *$, we have $d^{\bar{*}}=\left(h^{-1}\right)^{*}$ 。 $d^{*} \circ h^{*}$, which yields the claim because $d$ commutes with the pull-back $h^{*}$.

As consequence of the above Lemma, we can relate $Q_{\bar{\psi}} \in \mathfrak{q}(\bar{\psi})$ to $Q_{\psi} \in \mathfrak{q}(\psi)$ :

$$
\begin{aligned}
\theta\left(Q_{\bar{\psi}}\right) \bar{\psi} & =\Delta_{\bar{\psi}} \bar{\psi}=\Delta_{\bar{\psi}}\left(\left(h^{-1}\right)^{*} \psi\right)=\left(h^{-1}\right)^{*}\left(\Delta_{\psi} \psi\right) \\
& =\left(h^{-1}\right)^{*} \theta\left(Q_{\psi}\right) \psi=\left(h^{-1}\right)^{*} \theta\left(Q_{\psi}\right) h^{*} \bar{\psi} \\
& \left.=\left.\left(h^{-1}\right)^{*} \frac{d}{d t}\left(e^{t Q_{\psi}} \cdot\left(h^{-1} \cdot \bar{\psi}\right)\right)\right|_{t=0}=\frac{d}{d t}\left(\left(h e^{t Q_{\psi}} h^{-1}\right) \cdot \bar{\psi}\right)\right)\left.\right|_{t=0} \\
& \left.=\frac{d}{d t}\left(\left(e^{t \operatorname{Ad}(h) Q_{\psi}}\right) \cdot \bar{\psi}\right)\right)\left.\right|_{t=0}=\theta\left(\operatorname{Ad}(h) Q_{\psi}\right) \bar{\psi}
\end{aligned}
$$

since $\mathfrak{g}_{2}(\bar{\psi}) \cap \mathfrak{q}(\bar{\psi})=0$. Therefore,

$$
\begin{equation*}
Q_{\bar{\psi}}=\operatorname{Ad}(h) Q_{\psi} \tag{3.10}
\end{equation*}
$$

In particular, a $G$-invariant solution of the Laplacian co-flow (3.1) is given by a 1-parameter family in $\mathfrak{g}$ solving

$$
\begin{equation*}
\frac{d}{d t} \psi_{t}=-\Delta_{t} \psi_{t} \tag{3.11}
\end{equation*}
$$

Writing $\psi_{t}=: h_{t}^{-1} \cdot \psi$ for $h_{t} \in \operatorname{Gl}(\mathfrak{g})$, we have

$$
\begin{aligned}
\frac{d}{d t} \psi_{t} & =\psi\left(h_{t}^{\prime} \cdot, h_{t} \cdot, h_{t} \cdot, h_{t} \cdot\right)+\psi\left(h_{t} \cdot, h_{t}^{\prime} \cdot, h_{t} \cdot, h_{t} \cdot\right)+\psi\left(h_{t} \cdot, h_{t} \cdot, h_{t}^{\prime} \cdot, h_{t} \cdot\right)+\psi\left(h_{t} \cdot, h_{t} \cdot, h_{t} \cdot, h_{t}^{\prime} \cdot\right) \\
& =\psi_{t}\left(h_{t}^{-1} h_{t}^{\prime} \cdot \cdot, \cdot, \cdot\right)+\psi_{t}\left(\cdot, h_{t}^{-1} h_{t}^{\prime} \cdot \cdot, \cdot \cdot\right)+\psi_{t}\left(\cdot, \cdot, h_{t}^{-1} h_{t}^{\prime} \cdot, \cdot\right)+\psi_{t}\left(\cdot, \cdot, \cdot,, h_{t}^{-1} h_{t}^{\prime} \cdot\right) \\
& =-\theta\left(h_{t}^{-1} h_{t}^{\prime}\right) \psi_{t}
\end{aligned}
$$

thus the evolution of $h_{t}$ under the flow (3.11) is given by

$$
\begin{equation*}
\frac{d}{d t} h_{t}=h_{t} Q_{t} \tag{3.12}
\end{equation*}
$$

Remark 7. If we identify $\operatorname{sym}(\mathfrak{g})$ with the symmetric 2 -tensor $S^{2}(\mathfrak{g})$ using the map $i: \operatorname{sym}(\mathfrak{g}) \rightarrow \Lambda^{3}(\mathfrak{g})^{*}$ from (1.14) and applying Lemma 3 we have

$$
\begin{equation*}
* i(Q)=\theta\left(Q-\frac{1}{4} \operatorname{tr}(Q) I\right) \psi \tag{3.13}
\end{equation*}
$$

We adapt the following proposition to our convention (1.15) instead of the Grigorian convention for the torsion forms (See Remark 3).

Proposition 6. [Gri13, Proposition 2.3] Suppose we have a co-closed $G_{2}$-structure on a manifold $M$ with 3 -form $\varphi$. Let $\xi=i(h) \in \Omega^{3}$ with $h$ a symmetric tensor, then the exterior derivative $d \xi$ is given by

$$
\begin{align*}
d \xi= & \frac{1}{2}(\operatorname{tr} T \operatorname{tr} h-\langle T, h\rangle) \psi-(\nabla \operatorname{tr} h-\operatorname{div} h)^{b} \wedge \varphi \\
& +* i\left(\operatorname{curl} h_{(a b)}+\frac{1}{2} T \circ h_{a b}+(T h)_{a b}-\frac{1}{2}(\operatorname{tr} h) T_{a b}-\frac{1}{2}(\operatorname{tr} T) h_{a b}\right) \tag{3.14}
\end{align*}
$$

where $(\operatorname{div} h)_{a}=\nabla^{b} h_{b a}$ denotes the divergence of a symmetric 2-tensor, $(\operatorname{curl} h)_{(a b)}=$ $(\operatorname{curl} h)_{a b}+(\operatorname{curl} h)_{b a}=\left(\nabla_{m} h_{a n}\right) \varphi_{b}^{m n}+\left(\nabla_{m} h_{b n}\right) \varphi_{a}^{m n}$ is the symmetrized curl operator and $(T \circ h)_{a b}=\varphi_{a m n} \varphi_{b p q} T^{m n} T^{p q}$ a product of 2-tensors.

Lemma 24. For a co-closed $\mathrm{G}_{2}$-structure $\varphi$ we have:
(i) For any vector field $v$ holds $\theta\left(A_{v}\right) \psi=3 v^{b} \wedge \varphi$ where $A_{v}(w)=v \times w$ is the skewsymmetric matrix given by the cross product.
(ii) $d \varphi=-\theta(T) \psi$, where $T$ is the full torsion tensor.
(iii) $\Delta_{\psi} \psi=\theta\left(\frac{10}{21} A_{\operatorname{div} T}-(\operatorname{curl} T)_{(a b)}-\frac{1}{2}(T \circ T)_{a b}-\left(T^{2}\right)_{a b}\right) \psi$.

For a $G$-invariant solution of the modified Laplacian co-flow (3.2) is given by a one-parameter family in $\mathfrak{g}$ solving

$$
\begin{equation*}
\frac{d}{d t} \psi_{t}=\Delta_{t} \psi_{t}+2\left(C-\operatorname{tr}\left(T_{t}\right)\right) d \varphi_{t} \quad \text { for } \quad C \quad \text { a constant } \tag{3.15}
\end{equation*}
$$

notice, by the $G$-invariance of $\tau_{0}$ for any $\varphi_{t}$ then $\operatorname{tr}\left(T_{t}\right)$ is just time-dependent. Thus, writing $\psi_{t}=: h_{t}^{-1} \cdot \psi$ for $h_{t} \in \operatorname{Gl}(\mathfrak{g})$, we have that the evolution of $h_{t}$ under the flow (3.15) is given by

$$
\begin{equation*}
\frac{d}{d t} h_{t}=-h_{t} Q_{t}+2\left(C-\operatorname{tr}\left(T_{t}\right)\right) h_{t} T_{t} \quad \text { for } \quad C \quad \text { a constant } \tag{3.16}
\end{equation*}
$$

### 3.2.1 Proof of Lemma 24

Before the proof of Lemma 24, we collect the following properties for an invariant co-closed $\mathrm{G}_{2}$-structure.
Lemma 25. (i) $\operatorname{div} \tau_{27}=\frac{1}{7} \nabla(\operatorname{tr} T)-\operatorname{div} T$.
(ii) $\left(\operatorname{curl} \tau_{27}\right)_{(a b)}=-(\operatorname{curl} T)_{(a b)}$ and $\operatorname{tr}\left((\operatorname{curl} T)_{(a b)}\right)=0$.
(iii) $\left(T \circ \tau_{27}\right)=\frac{1}{7}\left((\operatorname{tr} T)^{2} g-(\operatorname{tr} T) T\right)-T \circ T$ and $\operatorname{tr}(T \circ T)=(\operatorname{tr} T)^{2}-|T|^{2}$.

Proof. (i) It is enough to apply the div to $\tau_{27}=\frac{1}{7}(\operatorname{tr} T) g-T$.
(ii) Again, we apply curl to $\tau_{27}$, it remains to proof the traceless property

$$
(\operatorname{curl} T)_{a b} g^{a b}=\left(\nabla_{m} T_{a n}\right) \varphi^{m n a}=0
$$

(iii)

$$
\begin{aligned}
\left(T \circ \tau_{27}\right)_{a b}=T^{m n} \tau_{27}^{p q} \varphi_{m p a} \varphi_{n q b} & =\frac{1}{7}(\operatorname{tr} T) T^{m n} \varphi_{m p a} \varphi_{n q b} g^{p q}-(T \circ T)_{a b} \\
& =\frac{1}{7}(\operatorname{tr} T) T^{m n}\left(g_{m n} g_{a b}-g_{m b} g_{a n}+\psi_{m a n b}\right)-(T \circ T)_{a b} \\
& =\frac{1}{7}(\operatorname{tr} T)^{2} g_{a b}-\frac{1}{7}(\operatorname{tr} T) T_{a b}-(T \circ T)_{a b}
\end{aligned}
$$

For the trace we have

$$
\begin{aligned}
(T \circ T)_{a b} g^{a b} & =T^{m n} T^{p q} \varphi_{m p a} \varphi_{n q b} g^{a b} \\
& =T^{m n} T^{p q}\left(g_{m n} g_{p q}-g_{m q} g_{p n}+\psi_{m p n q}\right) \\
& =(\operatorname{tr} T)^{2}-T_{q}^{n} T_{n}^{q}
\end{aligned}
$$

Proof of Lemma 24. (i) Let $v=v^{i} e_{i}$ be a vector field, then the skew-symmetric matrix $A_{v}$ is given by $\left(A_{v}\right)_{j k}=v^{i} \varphi_{i j k}$, thus we have

$$
\begin{aligned}
\theta\left(A_{v}\right) \psi= & -\frac{1}{3!}\left(A_{v}\right)_{a}^{l} \psi_{b c d} d x^{a b c d} \\
= & -\frac{1}{3!} v^{i} \varphi_{i a}^{l} \psi_{l b c d} d x^{a b c d} \\
= & \frac{1}{3!} v^{i}\left(-g_{i b} \varphi_{a c d}-g_{i c} \varphi_{b a d}-g_{i d} \varphi_{b c a}\right. \\
& \left.+g_{a b} \varphi_{i c d}+g_{a c} \varphi_{b i d}+g_{a d} \varphi_{b c i}\right) d x^{a b c d} \\
= & \frac{3}{3!} v^{i} g_{i b} \varphi_{a c d} d x^{b a c d}=3 v^{b} \wedge \varphi .
\end{aligned}
$$

(ii) Using the equation (3.13) we have

$$
\tau_{0} \psi=* i\left(\frac{\tau_{0}}{3} I\right)=\theta\left(-\frac{\tau_{0}}{4} I\right) \psi \quad \text { and } \quad * \tau_{3}=* i\left(\tau_{27}\right)=\theta\left(\tau_{27}\right) \psi
$$

By the co-closed condition the torsion tensor is $T=\frac{\tau_{0}}{4} I-\tau_{27}$, thus $\tau_{0}=\frac{4}{7} \operatorname{tr}(T)$ and $\tau_{27}=\frac{1}{7} \operatorname{tr}(T)-T$, therefore

$$
d \varphi=\tau_{0} \psi+* \tau_{3}=\theta\left(-\frac{\tau_{0}}{4} I+\tau_{27}\right) \psi=-\theta(T) \psi .
$$

(iii) For a co-closed $\mathrm{G}_{2}$-structure, the Laplacian of $\psi$ is

$$
\Delta \psi=d * d \varphi=d \tau_{0} \wedge \varphi+\tau_{0}^{2} \psi+\tau_{0} * \tau_{3}+d \tau_{3} .
$$

Now, we apply Lemma 6 to $d \tau_{3}=d i\left(\tau_{27}\right)$, thus, we get

$$
\begin{aligned}
d \tau_{3}= & -\frac{2}{7}\left\langle T, \tau_{27}\right\rangle \psi-\frac{1}{2}\left(\operatorname{div} \tau_{27}\right)^{b} \varphi \\
& +* i\left(\left(\operatorname{curl} \tau_{27}\right)_{(a b)}+\frac{1}{2}\left(T \circ \tau_{27}\right)_{a b}+\left(T \tau_{27}\right)_{a b}\right. \\
& \left.-\frac{1}{2}(\operatorname{tr} T)\left(\tau_{27}\right)_{a b}-\frac{1}{14}\left\langle T, \tau_{27}\right\rangle g_{a b}\right) .
\end{aligned}
$$

Thus, the Laplacian of $\psi$ is

$$
\begin{aligned}
\Delta \psi= & \left(\frac{4}{7} d(\operatorname{tr} T)-\frac{1}{2}\left(\operatorname{div} \tau_{27}\right)^{b}\right) \wedge \varphi+* i\left(\left(\operatorname{curl} \tau_{27}\right)_{(a b)}+\frac{1}{2}\left(T \circ \tau_{27}\right)_{a b}+\left(T \tau_{27}\right)_{a b}\right. \\
& \left.+\frac{1}{14}(\operatorname{tr} T)\left(\tau_{27}\right)_{a b}+\frac{16}{147}(\operatorname{tr} T)^{2} g_{a b}-\frac{1}{6}\left\langle T, \tau_{27}\right\rangle g_{a b}\right) .
\end{aligned}
$$

Now, replacing $\tau_{27}=\frac{1}{7}(\operatorname{tr} T) g-T$ and using the identity $\operatorname{div} T=\nabla \operatorname{tr} T$, we get

$$
\begin{aligned}
\Delta \psi= & \frac{10}{7}(\nabla \operatorname{tr} T)^{b} \wedge \varphi+* i\left(-(\operatorname{curl} T)_{(a b)}-\frac{1}{2}(T \circ T)_{a b}-\left(T^{2}\right)_{a b}\right. \\
& \left.+\frac{1}{6}(\operatorname{tr} T)^{2} g_{a b}+\frac{1}{6}|T|^{2} g_{a b}\right) \\
= & \frac{10}{7} d(\operatorname{tr} T) \wedge \varphi+\theta\left(-(\operatorname{curl} T)_{(a b)}-\frac{1}{2}(T \circ T)_{a b}-\left(T^{2}\right)_{a b}\right) \psi
\end{aligned}
$$

Since

$$
\operatorname{tr}\left(-(\operatorname{curl} T)_{(a b)}-\frac{1}{2}(T \circ T)_{a b}-\left(T^{2}\right)_{a b}+\frac{1}{6}(\operatorname{tr} T)^{2} g_{a b}+\frac{1}{6}|T|^{2} g_{a b}\right)=\frac{4}{6}\left((\operatorname{tr} T)^{2}+|T|^{2}\right)
$$

### 3.3 Lie bracket flow

The Lie bracket flow is a dynamical system defined on the variety of Lie algebras, corresponding to an invariant geometric flow under a natural change of variables. It is introduced in [Lau16] as a tool for the study of regularity and long-time behaviour of solutions.

For each $h \in \operatorname{Gl}(\mathfrak{g})$, consider the following Lie bracket in $\mathfrak{g}$ :

$$
\begin{equation*}
\mu=[\cdot, \cdot]_{h}:=h \cdot[\cdot, \cdot]=h\left[h^{-1} \cdot, h^{-1} \cdot\right] . \tag{3.17}
\end{equation*}
$$

Indeed, $(\mathfrak{g},[\cdot, \cdot]) \xrightarrow{h}(\mathfrak{g}, \mu)$ defines a Lie algebra isomorphism, and consequently an equivariant equivalence between invariant structures

$$
\eta:\left(G, \psi_{\mu}\right) \rightarrow\left(G_{\mu}, \psi\right)
$$

where $G_{\mu}$ is the 1-connected Lie group with Lie algebra $(\mathfrak{g}, \mu), \eta$ is an automorphism such that $d \eta_{1}=h$ and $\psi_{\mu}=\eta^{*} \psi$. In particular, by Lemma 23, $\Delta_{\mu} \psi_{\mu}=\eta^{*} \Delta_{\psi} \psi$, or, equivalently, $Q_{\mu}=h Q_{\psi} h^{-1}$, by equation (3.10).

Lemma 26. [Lau16, §4.1] Let $\left\{h_{t}\right\} \subset \mathrm{Gl}(\mathfrak{g})$ be:
(i) a solution of (3.12), then the bracket $\mu_{t}:=[\cdot, \cdot]_{h_{t}}$ evolves under the flow

$$
\begin{equation*}
\frac{d}{d t} \mu_{t}=-\delta_{\mu_{t}}\left(Q_{\mu_{t}}\right) \tag{3.18}
\end{equation*}
$$

(ii) a solution of (3.16), then the bracket $\mu_{t}:=[\cdot, \cdot]_{h_{t}}$ evolves under the flow

$$
\begin{equation*}
\frac{d}{d t} \mu_{t}=\delta_{\mu_{t}}\left(Q_{\mu_{t}}-2\left(C-\operatorname{tr} T_{t}\right) T_{\mu_{t}}\right) \tag{3.19}
\end{equation*}
$$

in which $\delta_{\mu}: \operatorname{End}(\mathfrak{g}) \rightarrow \Lambda^{2}(\mathfrak{g})^{*} \otimes \mathfrak{g}$ is the infinitesimal representation of the $\mathrm{Gl}(\mathfrak{g})$-action (3.17), defined by

$$
\delta_{\mu}(A):=-A \mu(\cdot, \cdot)+\mu(A \cdot, \cdot)+\mu(\cdot, A \cdot)
$$

Proof. (i) Setting $Q_{\mu_{t}}:=h_{t} Q_{t} h_{t}^{-1}$, we compute:

$$
\begin{aligned}
\frac{d}{d t} \mu_{t} & =h_{t}^{\prime}\left[h_{t}^{-1} \cdot h_{t}^{-1} \cdot\right]+h_{t}\left[\left(h_{t}^{-1}\right)^{\prime} \cdot h_{t}^{-1} \cdot\right]+h_{t}\left[h_{t}^{-1} \cdot,\left(h_{t}^{-1}\right)^{\prime} \cdot\right] \\
& =h_{t}^{\prime} h_{t}^{-1} \mu_{t}(\cdot, \cdot)-\mu_{t}\left(h_{t}^{\prime} h_{t}^{-1} \cdot, \cdot\right)-\mu_{t}\left(\cdot, h_{t}^{\prime} h_{t}^{-1} \cdot\right) \\
& =-\delta_{\mu_{t}}\left(h_{t}^{\prime} h_{t}^{-1}\right)=-\delta_{\mu_{t}}\left(h_{t} Q_{t} h_{t}^{-1}\right)=-\delta_{\mu_{t}}\left(Q_{\mu_{t}}\right),
\end{aligned}
$$

since $\left(h_{t}^{-1}\right)^{\prime}=-h_{t}^{-1} h_{t}^{\prime} h_{t}^{-1}$.
(ii) Similarly, setting $T_{\mu_{t}}=h_{t} T_{t} h_{t}^{-1}$, we compute:

$$
\begin{aligned}
\frac{d}{d t} \mu_{t} & =\delta_{\mu_{t}}\left(h_{t}^{\prime} h_{t}^{-1}\right) \\
& =\delta_{\mu_{t}}\left(h_{t} Q_{t} h_{t}^{-1}-2\left(C-\operatorname{tr}\left(T_{t}\right)\right) h_{t} T_{t} h_{t}^{-1}\right) \\
& =\delta_{\mu_{t}}\left(Q_{\mu_{t}}-2\left(C-\operatorname{tr} T_{t}\right) T_{\mu_{t}}\right),
\end{aligned}
$$

Remark. Notice that, if $\left\{h_{t}\right\} \subset \mathrm{Gl}(\mathfrak{g})$ solves

$$
\frac{d}{d t} h_{t}=Q_{\mu_{t}} h_{t}, \quad \text { or } \quad \frac{d}{d t} h_{t}=-Q_{\mu_{t}} h_{t}+2\left(C-\operatorname{tr} T_{t}\right) T_{\mu_{t}} h_{t}
$$

then $\mu_{t}$ solves the bracket flow (3.18) or (3.19).

### 3.4 Self Similar Solutions

We say that a 4 -form $\psi$ flows self-similarly along the flow (3.11) if the solution $\psi_{t}$ starting at $\psi$ has the form $\psi_{t}=b_{t} f_{t}^{*} \psi$, for some one-parameter families $\left\{f_{t}\right\} \subset \operatorname{Diff}(G)$ and time-dependent non-vanishing functions $\left\{b_{t}\right\}$. This is equivalent to the relation

$$
q(\psi)=\lambda \psi+\mathcal{L}_{X} \psi
$$

for some constant $\lambda \in \mathbb{R}, X$ a complete vector field and $q$ denotes either minus the Hodge Laplace operator $\Delta_{\psi}$ or the modified Laplace operator $\Delta_{\psi}+2 d(C-\operatorname{tr} T) *_{\varphi}$. Suppose that the infinitesimal operator defined by $q(\psi)=\theta\left(Q_{\psi}\right) \psi$ had the particular form

$$
\begin{equation*}
Q_{\psi}=c I+D \quad \text { for } \quad c \in \mathbb{R} \quad \text { and } \quad D \in \operatorname{Der}(\mathfrak{g}) . \tag{3.20}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
\theta\left(Q_{\psi}\right) \psi & =-4 c \psi+\theta(D) \psi=-4 c \psi-\left.\frac{d}{d t}\left(\left(e^{t D}\right)^{*} \psi\right)\right|_{t=0} \\
& =-4 c \psi-\mathcal{L}_{X_{D}} \psi
\end{aligned}
$$

where $X_{D}$ is a vector field on $\mathfrak{g}$ defined by the 1-parameter group of automorphisms $e^{t D} \in \operatorname{Aut}(\mathfrak{g})$.
In that case, $(G, \psi)$ is a soliton for the Laplacian co-flow or for the modified Laplacian co-flow with

$$
q(\psi)=-4 c \psi-\mathcal{L}_{X_{D}} \psi
$$

where $X_{D}$ also denotes the invariant vector field on $G$ defined by the 1-parameter subgroup $\beta_{t}$ in $\operatorname{Aut}(G)$ such that $d\left(\beta_{t}\right)_{1}=e^{t D} \in \operatorname{Aut}(\mathfrak{g})$.
A $\mathrm{G}_{2}$-structure whose underlying 4-form $\psi$ satisfies (3.20) is called an algebraic soliton, and we say that it is expanding, steady, or shrinking if $\lambda$ is positive, zero, or negative, respectively.

Lemma 27. Given $\psi_{2}=c \psi_{1}$ with $c \in \mathbb{R}^{*}$, then:
(i) The Laplacian operator satisfies the scaling property

$$
\begin{equation*}
\Delta_{2} \psi_{2}=c^{1 / 2} \Delta_{1} \psi_{1} \tag{3.21}
\end{equation*}
$$

(ii) The torsion forms have the scaling property

$$
\left(\tau_{0}\right)_{2}=c^{-1 / 4}\left(\tau_{0}\right)_{1} \quad \text { and } \quad\left(\tau_{3}\right)_{2}=c^{1 / 2}\left(\tau_{3}\right)_{1}
$$

In particular, $\operatorname{tr}_{g_{2}} T_{2}=c^{-1 / 4} \operatorname{tr}_{g_{1}} T_{1}$.

Proof. Notice that $c \psi_{1}=\left(c^{1 / 4}\right)^{4} \psi_{1}$, then $\varphi_{2}=c^{3 / 4} \varphi_{1}, g_{2}=c^{1 / 2} g_{1}$ and $\operatorname{vol}_{2}=c^{7 / 4} \operatorname{vol}_{1}$. For a $k$-form $\alpha$ we have

$$
\begin{aligned}
\alpha \wedge *_{2} \alpha & =g_{2}(\alpha, \alpha) \operatorname{vol}_{2}=\frac{1}{k!} \alpha_{i_{1}, \ldots, i_{k}} \alpha_{j_{1}, \ldots j_{k}}\left(g_{2}\right)^{i_{1} j_{1}} \cdots\left(g_{2}\right)^{i_{k} j_{k}} \operatorname{vol}_{2} \\
& =c^{7 / 4-k / 2} \frac{1}{k!} \alpha_{i_{1}, \ldots, i_{k}} \alpha_{j_{1}, \ldots j_{k}}\left(g_{1}\right)^{i_{1} j_{1}} \cdots\left(g_{1}\right)^{i_{k} j_{k}} \operatorname{vol}_{1}=c^{7 / 4-k / 2} g_{1}(\alpha, \alpha) \operatorname{vol}_{1} \\
& =c^{7 / 4-k / 2} \alpha \wedge *_{1} \alpha .
\end{aligned}
$$

So, for a $k$-form $*_{2} \alpha=c^{\frac{1}{4}(7-2 k)} *_{1} \alpha$.
(i) For the Hodge Laplacian operator we have

$$
\begin{aligned}
\Delta_{2} \psi_{2} & =d *_{2} d *_{2} \psi_{2}-*_{2} d *_{2} d \psi_{2}=c d *_{2} d *_{2} \psi_{1}-c *_{2} d *_{2} d \psi_{1} \\
& =c^{3 / 4} d *_{2} d *_{1} \psi_{1}-c^{1 / 4} *_{2} d *_{1} d \psi_{1} \\
& =c^{1 / 2} d *_{1} d *_{1} \psi_{1}-c^{1 / 2} *_{1} d *_{1} d \psi_{1}=c^{1 / 2} \Delta_{1} \psi_{1} .
\end{aligned}
$$

(ii) For the scalar torsion form, we have

$$
\left(\tau_{0}\right)_{2}=\frac{1}{7} *_{2}\left(\varphi_{2} \wedge d \varphi_{2}\right)=\frac{c^{3 / 2}}{7} *_{2}\left(\varphi_{1} \wedge d \varphi_{1}\right)=\frac{c^{3 / 2} c^{-7 / 4}}{7} *_{1}\left(\varphi_{1} \wedge d \varphi_{1}\right)=c^{-1 / 4}\left(\tau_{0}\right)_{1}
$$

Finally, since $\psi_{2}$ is co-closed, using the relation $\left(\tau_{3}\right)_{2}=*_{2} d \varphi_{2}-\left(\tau_{0}\right)_{2} \varphi_{2}$ the result $\left(\tau_{3}\right)_{2}=c^{1 / 2}\left(\tau_{3}\right)_{1}$ follows.

Lemma 28. If $\psi$ is an algebraic soliton with $Q_{\psi}=c I+D$, then $\psi_{t}=b_{t} h_{t}^{*} \psi$ is a self-similar solution for the Laplacian co-flow (3.11), with

$$
\begin{equation*}
b_{t}=(2 c t+1)^{2} \quad \text { and } \quad h_{t}=e^{s_{t} D}, \quad \text { for } \quad s_{t}=-\frac{1}{2 c} \log (2 c t+1) . \tag{3.22}
\end{equation*}
$$

Moreover,

$$
Q_{t}=b_{t}^{-1 / 2} Q_{\psi}
$$

Proof. Applying Lemmata 23 and 27, we have

$$
\begin{aligned}
\Delta_{t} \psi_{t} & =b_{t}^{1 / 2} h_{t}^{*} \Delta \psi=b_{t}^{1 / 2} h_{t}^{*} \theta\left(Q_{\psi}\right) \psi \\
& =b_{t}^{1 / 2} h_{t}^{*}(-4 c \psi+\theta(D) \psi) \\
& =-4 c b_{t}^{1 / 2} h_{t}^{*} \psi+\theta\left(b_{t}^{1 / 2} h_{t}^{-1} D h_{t}\right) h_{t}^{*} \psi
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\frac{d}{d t} \psi_{t} & =b_{t}^{\prime} h_{t}^{*} \psi+b_{t}\left(h_{t}^{*} \psi\right)^{\prime} \\
& =b_{t}^{\prime} h_{t}^{*} \psi+b_{t} \theta\left(h_{t}^{-1} h_{t}^{\prime}\right) h_{t}^{*} \psi
\end{aligned}
$$

Replacing the above expressions in (3.11) and comparing terms we obtain the ODE system

$$
\begin{cases}b_{t}^{\prime}=4 c b_{t}^{1 / 2}, & b(0)=1 \\ b_{t} h_{t}^{\prime}=-b_{t}^{1 / 2} D h_{t}, & h(0)=I\end{cases}
$$

the solutions of which are as claimed.
Finally, we have

$$
\begin{aligned}
\theta\left(Q_{t}\right) \psi_{t} & =\Delta_{t} \psi_{t}=b_{t}^{1 / 2} h_{t}^{*} \Delta \psi=b_{t}^{1 / 2} h_{t}^{*} \theta\left(Q_{\psi}\right) \psi \\
& =b_{t}^{1 / 2} \theta\left(h_{t}^{-1} Q_{\psi} h_{t}\right) h_{t}^{*} \psi=\theta\left(b_{t}^{-1 / 2} h_{t}^{-1} Q_{\psi} h_{t}\right) \psi_{t}
\end{aligned}
$$

so $Q_{t}=b_{t}^{-1 / 2} h_{t}^{-1} Q_{\psi} h_{t}$, which yields the second claim, since $Q_{\psi} h_{t}=h_{t} Q_{\psi}$.
In terms of the bracket flow, we have $Q_{\mu_{t}}=h_{t} Q_{t} h_{t}^{-1}=b_{t}^{-1 / 2} Q_{\psi}$. Then, replacing in (3.18) the Ansatz

$$
\begin{equation*}
\mu_{t}=\left(\frac{1}{c(t)} I\right) \cdot[\cdot, \cdot]=c(t)[\cdot, \cdot] \quad \text { for } \quad c(t) \neq 0 \quad \text { and } \quad c(0)=1 \tag{3.23}
\end{equation*}
$$

we obtain $c_{t}^{\prime}=c b_{t}^{-1 / 2} c_{t}$, which has solution $c_{t}=e^{c . s_{t}}$, with $s_{t}$ as above.
Lemma 29. If $\psi$ is an algebraic soliton with $P_{\psi}=Q_{\psi}-2(C-\operatorname{tr} T) T=c I+D$, then $\psi_{t}=b_{t} h_{t}^{*} \psi$ is a self-similar solution for the modified Laplacian co-flow (3.15), with

$$
\begin{equation*}
b_{t}=(-2 c t+1)^{2} \tag{3.24}
\end{equation*}
$$

and
$h_{t}=e^{s_{t}(D+2 C T)-2 C r_{t} T}, \quad$ for $\quad s_{t}=-\frac{1}{2 c} \log (-2 c t+1), \quad$ and $\quad r_{t}=\frac{1}{c}(-2 c t+1)^{-1 / 2}-\frac{1}{c}$.
Moreover,

$$
P_{t}=b_{t}^{-1 / 2} P_{\psi}-2 C\left(b_{t}^{-1 / 4}-b_{t}^{-1 / 2}\right) \operatorname{Ad}\left(h_{t}^{-1}\right) T .
$$

Proof. Applying Lemmata 23 and 27, we have

$$
\begin{aligned}
\Delta_{t} \psi_{t}+2\left(C-\operatorname{tr} T_{t}\right) d \varphi_{t} & =b_{t}^{1 / 2} h_{t}^{*} \Delta \psi+2\left(C-\operatorname{tr} T b_{t}^{-1 / 4}\right) b^{3 / 4} h_{t}^{*} d \varphi \\
& =b_{t}^{1 / 2} h_{t}^{*} \theta\left(Q_{\psi}\right) \psi-2 C b_{t}^{3 / 4} h_{t}^{*} \theta(T) \psi+2 \operatorname{tr} T b_{t}^{1 / 2} h_{t}^{*} \theta(T) \psi \\
& =b_{t}^{1 / 2} h_{t}^{*} \theta\left(Q_{\psi}-2(C-\operatorname{tr} T) T\right) \psi-2 C\left(b_{t}^{3 / 4}-b_{t}^{1 / 2}\right) h_{t}^{*} \theta(T) \psi \\
& =b_{t}^{1 / 2} h_{t}^{*}(-4 c \psi+\theta(D) \psi)-2 C\left(b_{t}^{3 / 4}-b_{t}^{1 / 2}\right) h_{t}^{*} \theta(T) \psi \\
& =-4 c b_{t}^{1 / 2} h_{t}^{*} \psi+\theta\left(b_{t}^{1 / 2} h_{t}^{-1}\left(D+2 C T-2 C b_{t}^{1 / 4} T\right) h_{t}\right) h_{t}^{*} \psi
\end{aligned}
$$

On the other hand, we know from the proof of Lemma 28 that $\psi_{t}^{\prime}=b_{t}^{\prime} h_{t}^{*} \psi+b_{t} \theta\left(h_{t}^{-1} h_{t}^{\prime}\right) h_{t}^{*} \psi$, then replacing the above expressions in (3.15) and comparing terms we obtain the ODE system

$$
\begin{cases}b_{t}^{\prime}=-4 c b_{t}^{1 / 2}, & b(0)=1 \\ b_{t} h_{t}^{\prime}=b_{t}^{1 / 2}\left(D+2 C T-2 C b_{t}^{1 / 4} T\right) h_{t}, & h(0)=I\end{cases}
$$

the solutions of which are as claimed.
Finally, we have

$$
\begin{aligned}
\theta\left(P_{t}\right) \psi_{t} & =\Delta_{t} \psi_{t}+2\left(C-\operatorname{tr}_{t} T\right) d \varphi_{t} \\
& =b_{t}^{1 / 2} h_{t}^{*} \Delta \psi+2\left(C-\operatorname{tr} T b_{t}^{-1 / 4}\right) b^{3 / 4} h_{t}^{*} d \varphi \\
& =b_{t}^{1 / 2} h_{t}^{*} \theta\left(P_{\psi}\right) \psi-2 C\left(b_{t}^{3 / 4}-b_{t}^{1 / 2}\right) h_{t}^{*} \theta(T) \psi \\
& =\theta\left(b_{t}^{-1 / 2} h_{t}^{-1} P_{\psi} h_{t}-2 C\left(b_{t}^{-1 / 4}-b_{t}^{-1 / 2}\right) h_{t}^{-1} T h_{t}\right) \psi_{t},
\end{aligned}
$$

so $P_{t}=b_{t}^{-1 / 2} h_{t}^{-1} P_{\psi} h_{t}-2 C\left(b_{t}^{-1 / 4}-b_{t}^{-1 / 2}\right) h_{t}^{-1} T h_{t}$, which yields the second claim, since $P_{\psi} h_{t}=h_{t} P_{\psi}$.

Indeed, there is an equivalence between the time-dependent Lie bracket given in (3.23) and the corresponding soliton given in Lemma 28:

Theorem 6. [Lau16, Theorem 6] Let $(G, \varphi)$ be a 1-connected Lie group with an invariant $\mathrm{G}_{2}$-structure. The following conditions are equivalent:
(i) The bracket flow solution starting at $[\cdot, \cdot]$ is given by

$$
\mu_{t}=\left(\frac{1}{c(t)} I\right) \cdot[\cdot, \cdot] \quad \text { for } \quad c(t)>0, c(0)=1
$$

(ii) The operator $Q_{t} \in \mathfrak{q}_{\psi} \subset \operatorname{End}(\mathfrak{g})$, such that $\Delta_{\psi} \psi=\theta\left(Q_{\psi}\right) \psi$, satisfies

$$
Q_{\psi}=c I+D, \quad \text { for } \quad c \in \mathbb{R} \quad \text { and } \quad D \in \operatorname{Der}(\mathfrak{g}) .
$$

### 3.5 Almost abelian Lie groups

In this section we address a class of solvable Lie group named the almost abelian,to exposed some basic notions about this we will follow [Lau17, Section 5]. Let $(G, \varphi)$ be a connected and simply connected Lie group with an invariant $G_{2}$-structure $\varphi$, if the corresponding Lie algebra $\mathfrak{g}$ has an abelian ideal $\mathfrak{h}$ of codimension 1, we say that $G$ is an almost abelian Lie group and $\mathfrak{g}$ is an almost abelian Lie algebra. For $\operatorname{dim} G=7$ there exist an orthonormal basis $\left\{e_{1}, \ldots, e_{7}\right\}$ of $\mathfrak{g}$ such that $\mathfrak{h}=\operatorname{Span}\left\{e_{1}, \ldots, e_{6}\right\}$ and the left invariant $\mathrm{G}_{2}$-structure is determined by

$$
\begin{equation*}
\varphi=\omega \wedge e^{7}+\rho^{+}=e^{127}+e^{347}+e^{567}+e^{135}-e^{146}-e^{245}-e^{236} \tag{3.25}
\end{equation*}
$$

where

$$
\omega=e^{12}+e^{34}+e^{56} \quad \text { and } \quad \rho_{+}=e^{135}-e^{146}-e^{245}-e^{236}
$$

are the canonical $\operatorname{SU}(3)$-structure of $\mathbb{R}^{6} \cong \mathfrak{h}$. an the dual 4-form $\psi=\frac{1}{2} \omega^{2}+\rho_{-} \wedge e^{7}$ where $\rho_{-}=J^{*} \rho_{+}=-e^{246}+e^{235}+e^{145}+e^{136}$ and $J$ is the canonical almost structure on $\mathbb{R}^{6}$
defined by $\omega:=\langle J \cdot, \cdot\rangle$. Notice that the Lie algebra structure of $\mathfrak{g}$ is completely determined by a real $6 \times 6$ matrix $A:=\left.\operatorname{ad}\left(e_{7}\right)\right|_{\mathfrak{h}}$. So, following the notation of [Lau17], $\mu_{A}$ will denote the Lie bracket and $G_{A}$ the corresponding connected and simply connected Lie group. In [Fre12] was studied the existence of invariant co-closed $\mathrm{G}_{2}$-structures on $G_{A}$ and the condition $d \psi=0$ is entirely encoded by $A$.

Proposition 7. [Fre12] $\left(G_{A}, \varphi\right)$ is co-closed if and only if $A \in \mathfrak{s p}(6, \mathbb{R})$.

$$
\left.\left.\begin{array}{rl}
\mathfrak{s p}(6, \mathbb{R}) & :=\left\{A \in \mathfrak{g l}(6, \mathbb{R}) ; \quad A^{t} J+J A=0\right\} \\
& =\left\{A=\left[\frac{B}{} \left\lvert\, \begin{array}{c}
C \\
D
\end{array}-B^{t}\right.\right.\right.
\end{array}\right] ; \quad C, D \in \operatorname{sym}(3)\right\}, ~ l
$$

A useful algebraic relations between the geometry of $\mathfrak{g}, \mathfrak{h}$ and $A$ are summarised in the following Lemma:

Lemma 30. Let $*$ and $\star$ the Hodge star operators on $\mathfrak{g}$ and $\mathfrak{h}$, respectively, determined by $\varphi$. Also, $d_{A}$ denote the exterior derivative of left-invariant forms on the $G_{A}$, so for $\gamma \in \Lambda^{k}(\mathfrak{h})^{*}$ the following properties holds:

- [Lau17, Lemma 5.11] $* \gamma=\star \gamma \wedge e^{7}, *\left(\gamma \wedge e^{7}\right)=(-1)^{k} \star \gamma$ and $\theta(A) \star=-\star \theta\left(A^{t}\right)$ (if $\operatorname{tr} A=0$ ).
- [Lau17, Lemma 5.12] $d_{A} e^{7}=0, d_{A} \gamma=(-1)^{k} \theta(A) \gamma \wedge e^{7}$ and $d_{A}\left(\gamma \wedge e^{7}\right)=0$.
- [Lau17, Equation (29)] The Ricci operator $\operatorname{Ric}_{A}$ of $G_{A}$ is given by

$$
\operatorname{Ric}_{A}=\left[\begin{array}{c|c}
\frac{1}{2}\left[A, A^{t}\right] & 0  \tag{3.26}\\
\hline 0 & -\frac{1}{4} \operatorname{tr}\left(A+A^{t}\right)^{2}
\end{array}\right]
$$

From the above follows that

$$
d \varphi=-\theta(A) \varphi \wedge e^{7}=-\theta(A) \rho^{+} \wedge e^{7}
$$

Lemma 31. For a matrix $A \in \mathfrak{s p}(6, \mathbb{R})$ holds the following:

$$
\theta(A) \rho_{+}=\theta(J A) \rho_{-} \quad \text { and } \quad \theta(A) \rho_{-}=\theta\left(A^{t} J\right) \rho_{+} .
$$

Proof. Note that $\omega_{i j}=J_{i}^{k} h_{k j}$ then

$$
\begin{aligned}
\theta(A) \rho_{+} & =-\frac{1}{2} A_{i}^{l} \rho_{l j k}^{+} d x^{i j k} \\
& =-\frac{1}{2} A_{i}^{l} \rho_{j k p}^{-} \omega_{p l} d x^{i j k} \\
& =-\frac{1}{2} A_{i}^{l} J_{l}^{q} h_{q p} \rho_{j k p} d x^{i j k} \\
& =-\frac{1}{2}(J A)_{i}^{q} \rho_{q j k}^{-} d x^{i j k}=\theta(J A) \rho_{-} .
\end{aligned}
$$

Notice that we used in the second line the identities (1.26). Similarly, $\theta(A) \rho_{-}=-\theta(J A) \rho_{+}$ and since $J A=-A^{t} J$ the result follows.

For a co-closed $\mathrm{G}_{2}$-structure on $G_{A}$, we want to write the torsion forms in term of the matrix $A$.

Proposition 8. The torsion forms $\tau_{0}$ and $\tau_{3}$ for an almost abelian Lie group $\left(G_{A}, \varphi\right)$ with co-closed $\mathrm{G}_{2}$-structure are

$$
\tau_{0}=\frac{2}{7} \operatorname{tr}(J A) \quad \text { and } \quad \tau_{27}=\left(\begin{array}{c|c}
\frac{1}{14} \operatorname{tr}(J A) I_{6}-\frac{1}{2}[J, A] & 0 \\
\hline 0 & -\frac{3}{7} \operatorname{tr}(J A)
\end{array}\right)
$$

Proof. Since the $\mathrm{G}_{2}$-structure (3.25) is co-closed the scalar torsion is given by

$$
\begin{aligned}
\tau_{0} & =\frac{1}{7} *(\varphi \wedge d \varphi)=-\frac{1}{7} *\left(\rho^{+} \wedge \theta(A) \rho^{+} \wedge e^{7}\right) \\
& =-\frac{1}{7} \star\left(\rho^{+} \wedge \theta(A) \rho^{+}\right)=-\frac{1}{7} \star\left(\rho^{+} \wedge \theta(J A) \rho^{-}\right) \\
& =\frac{1}{7}\left\langle\rho_{-}, \theta(J A) \rho_{-}\right\rangle \star\left(\operatorname{vol}_{6}\right)=\frac{2}{7} \operatorname{tr} J A
\end{aligned}
$$

Here, we used in the second line the Lemma 31 and from the orthogonal $\mathrm{SU}(3)$-decomposition we have

$$
\begin{aligned}
\left\langle\rho_{-}, \theta(J A) \rho_{-}\right\rangle= & (J A)_{2}^{2}+(J A)_{4}^{4}+(J A)_{6}^{6}+(J A)_{2}^{2}+(J A)_{3}^{3}+(J A)_{5}^{5} \\
& +(J A)_{1}^{1}+(J A)_{3}^{3}+(J A)_{6}^{6}+(J A)_{1}^{1}+(J A)_{4}^{4}+(J A)_{5}^{5} \\
= & 2 \operatorname{tr} J A .
\end{aligned}
$$

Now, applying Lemma 30 to $* d \varphi$, we have

$$
* d \varphi=-*\left(\theta(A) \rho^{+} \wedge e^{7}\right)=\star \theta(A) \rho^{+}=-\theta\left(A^{t}\right) \rho^{-}=-\theta(A J) \rho^{+} .
$$

Thus, applying $j$ to $* d \varphi$ we get the symmetric bilinear form

$$
\left.j(* d \varphi)(u, v)=*(u\lrcorner \varphi \wedge v_{\lrcorner} \varphi \wedge * d \varphi\right)
$$

For $u=e_{7}$ and $v=e_{i}$

$$
\begin{aligned}
e_{7_{\lrcorner}} \varphi \wedge e_{i_{\lrcorner}} \varphi \wedge * d \varphi= & \omega \wedge e_{i\lrcorner} \omega \wedge e^{7} \wedge \star \theta(A) \rho_{+}+\delta_{i 7} \omega^{2} \wedge \star \theta(A) \rho_{+} \\
& +\omega \wedge e_{i_{\lrcorner}} \rho_{+} \wedge \star \theta(A) \rho_{+} \\
= & e_{i^{\prime}} \omega \wedge \omega \wedge \star \theta(A) \rho_{+} \wedge e^{7} \\
= & h\left(e_{i\lrcorner} \omega \wedge \omega, \theta(A) \rho_{+}\right) \operatorname{vol}_{7}
\end{aligned}
$$

where $h$ is the induced inner product on $\mathfrak{h}$ and notice that

$$
\begin{aligned}
h\left(e_{i,} \omega \wedge \omega, \theta(A) \rho_{+}\right) & =\frac{1}{4} \omega_{i r} \omega_{s t} A_{a}^{l} \rho_{l b c}^{+} h^{r a} h^{s b} h^{t c} \\
& =\frac{1}{4} \omega_{i r} A^{r l} \omega^{b c} \rho_{b c l}^{+}=0
\end{aligned}
$$

The last result follows by the identities (1.26). So, it is enough to consider $1 \leq i, j \leq 6$, we have:

$$
\begin{aligned}
j(* d \varphi)_{i j}= & *\left(e_{i_{\lrcorner}} \varphi \wedge e_{j_{\lrcorner}} \varphi \wedge * d \varphi\right)=*\left(e_{i_{\lrcorner}} \varphi \wedge e_{j_{\lrcorner}} \varphi \wedge \star \theta(A) \rho_{+}\right) \\
= & -*\left(e_{i_{\lrcorner}} \omega \wedge e_{j_{\lrcorner}} \rho_{+} \wedge * \theta(J A) \rho_{-} \wedge e^{7}+e_{j_{\lrcorner}} \omega \wedge e_{i_{\lrcorner}} \rho_{+} \wedge \star \theta(J A) \rho_{-} \wedge e^{7}\right) \\
= & -\star\left(e_{i_{\lrcorner}} \omega \wedge e_{j_{\lrcorner}} \rho_{+} \wedge \star \theta(J A) \rho_{-}+e_{j_{\lrcorner}} \omega \wedge e_{i_{\lrcorner}} \rho_{+} \wedge \star \theta(J A) \rho_{-}\right) \\
= & -\left(h\left(e_{i_{\lrcorner}} \omega \wedge e_{j_{\lrcorner}} \rho_{+}, \theta(J A) \rho_{-}\right)+h\left(e_{j_{\lrcorner}} \omega \wedge e_{i_{\lrcorner}} \rho_{+}, \theta(J A) \rho_{-}\right)\right) \star \operatorname{vol}_{6} \\
& -h\left(e_{i_{\lrcorner}} \omega \wedge e_{j_{\lrcorner}} \rho_{+}, \theta(J A) \rho_{-}\right)-h\left(e_{j_{\lrcorner}} \omega \wedge e_{i_{\lrcorner}} \rho_{+}, \theta(J A) \rho_{-}\right)
\end{aligned}
$$

We compute the first term

$$
\begin{aligned}
h\left(e_{i,} \omega \wedge e_{j\lrcorner} \rho_{+}, \theta(J A) \rho_{-}\right) & =-\frac{1}{3!}\left(3 \omega_{i r} \rho_{j s t}^{+}\right)\left((J A)_{r}^{l} \rho_{l s t}^{+}-(J A)_{s}^{l} \rho_{l r t}^{+}+(J A)_{t}^{l} \rho_{l r s}^{+}\right) \\
& =-\frac{1}{2}(\underbrace{\omega_{i r}(J A)_{r}^{l} \rho_{\rho_{s t}}^{+} \rho_{l s t}^{+}}_{\text {(I) }}-\underbrace{\rho_{j s t}^{+}(J A)_{s}^{l} \rho_{l t r}^{+} \omega_{r i}}_{\text {(II) }}, \underbrace{\rho_{j s t}^{+}(J A)_{t}^{l} \rho_{l s r}^{+} \omega_{r i}}_{\text {(III) }})=\boldsymbol{q}
\end{aligned}
$$

For each term (I),(II),(III) we apply the $\mathrm{SU}(3)$-identities (1.26)

$$
\begin{aligned}
(\mathrm{I}) & =-4 \omega_{i r} \omega_{l j}(J A)_{r}^{l}=-4 J_{i}^{n} h_{n r} J_{l}^{m} h_{m j}(J A)_{r}^{l} \\
& =-4 J_{i}^{n} h_{n r} h_{m j}\left(J^{2} A\right)_{r}^{m}=4 J_{i}^{n} A_{n}^{j}=4(A J)_{i}^{j} .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
(\mathrm{II}) & =(J A)_{s}^{l} \rho_{j s t}^{+} \rho_{l i t}^{+} \\
& =(J A)_{s}^{l}\left(-\omega_{j l} \omega_{s i}+\omega_{j i} \omega_{s l}+\delta_{j l} \delta_{s i}-\delta_{j i} \delta_{s l}\right) \\
& =(A J)_{i}^{j}+(J A)_{i}^{j}-\operatorname{tr}(J A) \delta_{j i} .
\end{aligned}
$$

Notice that, we used the symmetry of $J A$ in the last line. Similarly, for (III) we have

$$
(\mathrm{III})=-(A J)_{i}^{j}-(J A)_{i}^{j}+\operatorname{tr}(J A) \delta_{j i} .
$$

Summarising, we get

$$
\boldsymbol{\&}=-(A J)_{i}^{j}+(J A)_{i}^{j}-\operatorname{tr}(J A) \delta_{j i}=-[A, J]_{i}^{j}-\operatorname{tr}(J A) \delta_{j i} .
$$

Therefore,

$$
j(* d \varphi)_{i j}=[A, J]_{i}^{j}+\operatorname{tr}(J A) \delta_{j i}+[A, J]_{j}^{i}+\operatorname{tr}(J A) \delta_{i j},
$$

since the matrix $[A, J]$ is symmetric we have $j(* d \varphi)=2 \operatorname{tr}(J A) I_{6}+2[A, J]$. Finally, by using Lemma 3 we compute

$$
\begin{aligned}
i\left(\tau_{27}\right) & =* d \varphi-\tau_{0} \varphi \\
4 \tau_{27} & =2 \operatorname{tr}(J A) I_{6}+2[A, J]-\frac{12}{7} \operatorname{tr}(J A) I_{7}
\end{aligned}
$$

Corollary 9. The full torsion tensor $T$ of an almost abelian Lie group $\left(G_{A}, \varphi\right)$ with an invariant co-closed $G_{2}$-structure is

$$
T=\frac{1}{2}\left(\begin{array}{c|c}
{[J, A]} & 0  \tag{3.27}\\
\hline 0 & \operatorname{tr}(J A)
\end{array}\right)
$$

Remark 8. Since $G_{A}$ induces diffeomorphism by left translation and $\varphi$ is $G_{A}$-invariant then $\tau_{0}$ is constant and equal by its value at $1 \in G_{A}$. In particular,

$$
\nabla(\operatorname{tr} T)=0
$$

Also, for a co-closed $G_{2}$-structure, the Ricci curvature is given by [Gri13, Eq (4.30)]

$$
\operatorname{Ric}(g)=-\operatorname{curl}(T)-T^{2}+(\operatorname{tr} T) T
$$

Lemma 32. For the symmetric product of 2-tensor defined in Proposition 6 we have

$$
T \circ T=\left(\begin{array}{c|c}
-\frac{1}{2}(\operatorname{tr} J A)[J, A]-S_{A} \circ_{6} S_{A} & 0  \tag{3.28}\\
\hline 0 & -\operatorname{tr} S_{A}^{2}
\end{array}\right)
$$

where $S_{A}=\frac{1}{2}\left(A+A^{t}\right)$ is the symmetric part of $A$ and $\left(S_{A} \circ_{6} S_{A}\right)_{a b}:=S_{A}^{m n} S_{A}^{p q} \rho_{m p a}^{+} \rho_{n q b}^{+}$. Proof. We are going to calculate the matrix elements $(T \circ T)_{i j}$. So, for $i, j=7$ we have

$$
\begin{aligned}
(T \circ T)_{77} & =T^{m n} T^{p q} \varphi_{m p} \varphi_{n q 7}=\frac{1}{4}[J, A]^{m n}[J, A]^{p q} \omega_{m p} \omega_{n q} \\
& =\frac{1}{4}\left(J\left(A+A^{t}\right)\right)^{n m}\left(J\left(A+A^{t}\right)\right)^{p q} \omega_{m p} \omega_{n q} \\
& =\frac{1}{4}\left(A+A^{t}\right)^{n a} J_{a}^{m}\left(A+A^{t}\right)^{p b} J_{b}^{q} \omega_{m p} \omega_{n q} \\
& =-S_{A}^{n a} S_{A}^{p b} h_{a p} h_{b n}=-\operatorname{tr} S_{A}^{2} .
\end{aligned}
$$

Notice that we used the relation $A J=-J A^{t}$ in the second line and symmetry of $J\left(A+A^{t}\right)$ in the third line. For $j=7$ and $i \neq 7$, we have

$$
(T \circ T)_{i 7}=T^{m n} T^{p q} \varphi_{m p i} \varphi_{n q 7}=T^{m n} T^{p q} \varphi_{m p i} \omega_{n q}=
$$

Since $n, q \in\{1, \ldots, 6\}$ by Corollary 9 also $m, p \in\{1, \ldots, 6\}$, then

$$
\begin{aligned}
\boldsymbol{\uparrow} & =[J, A]^{m n}[J, A]^{p q} \rho_{m p i}^{+} \omega_{n q} \\
& =4\left(J S_{A}\right)^{m n}\left(J S_{A}\right)^{q p} \rho_{m p i}^{+} \omega_{n q} \\
& =4\left(S_{A}\right)^{m a} J_{a}^{n}\left(S_{A}\right)^{q b} J_{b}^{p} \rho_{m p i}^{+} \omega_{n q} \\
& =-4\left(S_{A}\right)^{m a}\left(S_{A}\right)^{q b} J_{b}^{p} \rho_{m p i}^{+} h_{a q} \\
& =-4\left(S_{A}\right)_{q}^{m}\left(S_{A}\right)^{q b} J_{b}^{p} \rho_{p i m}^{+} \\
& =4\left(S_{A}^{2}\right)_{b}^{m} \rho_{i m b}^{-}=0
\end{aligned}
$$

Here we used in the second line the symmetry of $[J, A]$, in the fourth line the relation $J_{a}^{n} \omega_{n q}=-h_{a q}$ and in the last one, the symmetry of $S_{A}^{2}$ with the skew-symmetry of $\rho_{-}$. Finally, for $i \neq 7$ and $j \neq 7$ we have

$$
\begin{aligned}
(T \circ T)_{i j} & =T^{m n} T^{p q} \varphi_{m p i} \varphi_{n q j} \\
& =2 T^{m n} T^{77} \omega_{m i} \omega_{n j}+T^{m n} T^{p q} \rho_{m p i}^{+} \rho_{n q j}^{+} \\
& =\frac{1}{2}(\operatorname{tr} J A)[J, A]^{m n} J_{m}^{a} h_{a i} J_{n}^{b} h_{b j}+\frac{1}{4}[J, A]^{m n}[J, A]^{p q} \rho_{m p i}^{+} \rho_{n q j}^{+} \\
& =\frac{1}{2}(\operatorname{tr} J A)\left(J\left(A+A^{t}\right)\right)^{m n} J_{m}^{a} h_{a i} J_{n}^{b} h_{b j}+\frac{1}{4}(J(A+A))^{m n}\left(J\left(A+A^{t}\right)\right)^{p q} \rho_{m p i}^{+} \rho_{n q j}^{+} \\
& =\frac{1}{2}(\operatorname{tr} J A)\left(A+A^{t}\right)_{c}^{m} J^{c n} J_{m}^{a} h_{a i} J_{n}^{b} h_{b j}+\frac{1}{4}\left(A+A^{t}\right)^{m c} J_{c}^{n}\left(A+A^{t}\right)^{p d} J_{d}^{q} \rho_{m p i}^{+} \rho_{n q j}^{+} \\
& =\frac{1}{2}(\operatorname{tr} J A)\left(J\left(A+A^{t}\right)\right)^{c a} h_{a i}\left(J^{2}\right)^{c b} h_{b j}+\left(S_{A}\right)^{m c}\left(S_{A}\right)^{p d} \rho_{m p i}^{+} \rho_{j n q}^{+} J_{d}^{q} J_{c}^{n} \\
& =-\frac{1}{2}(\operatorname{tr} J A)[J, A]^{c a} h_{a i} \delta^{c b} h_{b j}+\left(S_{A}\right)^{m c}\left(S_{A}\right)^{p d} \rho_{m p i}^{+} \rho_{j n d}^{-} J_{c}^{n} \\
& =-\frac{1}{2}(\operatorname{tr} J A)[J, A]_{j i}-\left(S_{A}\right)^{m c}\left(S_{A}\right)^{p d} \rho_{m p i}^{+} \rho_{d j c}^{+} \\
& =-\frac{1}{2}(\operatorname{tr} J A)[J, A]_{i j}-\left(S_{A}\right)^{m c}\left(S_{A}\right)^{p d} \rho_{m p i}^{+} \rho_{c d j}^{+}
\end{aligned}
$$

Proposition 9. If $\left(G_{A}, \varphi\right)$ is co-closed, we have:
i) For the Hodge Laplacian of $\psi$

$$
\begin{equation*}
\Delta_{\psi} \psi=\theta\left(\operatorname{Ric}(g)-\frac{1}{2} T \circ T-(\operatorname{tr} T) T\right)=\theta\left(Q_{A}\right) \tag{3.29}
\end{equation*}
$$

Furthermore, $Q_{A}=\operatorname{Ric}(g)-(\operatorname{tr} T) T-\frac{1}{2} T \circ T$ is a symmetric operator and it is given by

$$
Q_{A}=\left(\begin{array}{c|c}
Q_{1} & 0 \\
\hline 0 & q
\end{array}\right),
$$

where

$$
Q_{1}=\frac{1}{2}\left[A, A^{t}\right]+\frac{1}{2} S_{A} \circ_{6} S_{A} \quad \text { and } \quad q=-\frac{1}{2} \operatorname{tr}\left(S_{A}\right)^{2}-\frac{1}{4}(\operatorname{tr} J A)^{2} .
$$

ii) For the modified Laplacian

$$
\Delta_{\psi} \psi+2 d((C-\operatorname{tr} T) \varphi)=\theta\left(\operatorname{Ric}(g)-\frac{1}{2} T \circ T-(2 C-\operatorname{tr} T) T\right)=\theta\left(P_{A}\right)
$$

where

$$
P_{A}=\left(\begin{array}{c|c}
P_{1} & 0  \tag{3.30}\\
\hline 0 & p
\end{array}\right)
$$

where $P_{1}=\frac{1}{2}\left[A, A^{t}\right]+\frac{1}{2} S_{A} \circ_{6} S_{A}-\left(C-\frac{1}{2} \operatorname{tr} J A\right)[J, A]$ and $p=-\frac{1}{2} \operatorname{tr}\left(S_{A}\right)^{2}+$ $\frac{1}{4}(\operatorname{tr} J A)^{2}-C \operatorname{tr} J A$.

Proof. (i) Equation (3.29) follows directly from Lemma 24 (iii) and Remark 8, and the expression for $Q_{A}$ follows by equation (3.26), Corollary 9 and Lemma 32.
(ii) It follows by a similar reason as above.

Lemma 33. For a symmetric matrix $A \in \mathfrak{s p}(6, \mathbb{R})$ we have $A \circ_{6} A \in \mathfrak{s p}(6, \mathbb{R})$, where $\left(A \circ_{6} A\right)_{a b}=A^{m n} A^{p q} \rho_{m p a}^{+} \rho_{n q b}^{+}$.

Proof. The condition $A \circ_{6} A \in \mathfrak{s p}(6, \mathbb{R})$ is equivalent with $\theta\left(A \circ_{6} A\right) \omega=0$. So,

$$
\theta\left(A \circ_{6} A\right) \omega=\left(A \circ_{6} A\right)_{a i} h^{i j} \omega_{j b} d x^{a b}=A^{m n} A^{p q} \rho_{m p a}^{+} \rho_{n q i}^{+} h^{i j} \omega_{j b} d x^{a b} .
$$

The result follows by the symmetry of $A^{m n} A^{p q} \rho_{m p a}^{+} \rho_{n q i}^{+} h^{i j} \omega_{j b}$, in fact

$$
\begin{aligned}
A^{m n} A^{p q} \rho_{m p a}^{+} \rho_{n q i}^{+} h^{i j} \omega_{j b} & =A^{m n} A^{p q} \rho_{m p a}^{+} \rho_{n q b}^{-} \\
& =A^{m n} A^{p q} \rho_{m p a}^{+} \rho_{q b r}^{+} h^{r s} \omega_{s n} \\
& =-(A J)^{m r} A^{p q} \rho_{m p a}^{+} \rho_{q b r}^{+} \\
& =(J A)^{m r} A^{p q} \rho_{m p a}^{+} \rho_{q b r}^{+} \\
& =h^{m i} \omega_{i n} A^{n r} A^{p q} \rho_{m p a}^{+} \rho_{q b r}^{+} \\
& =A^{n r} A^{p q} \rho_{p a n}^{-} \rho_{q b r}^{+} \\
& =A^{n r} A^{p q} \rho_{n p i}^{+} h^{i j} \omega_{j a} \rho_{q b r}^{+} \\
& =A^{n m} A^{q p} \rho_{m p b}^{+} \rho_{n q i}^{+} h^{i j} \omega_{j a}
\end{aligned}
$$

Notice that, we had used equation (1.26) time and again, and the symmetry of $A$.

The following two propositions involve the evoltion of the matrix $A$ under the flow (3.15). The expectation is that in the future these result allow to inquire about long time existence solution for the modified Laplacian co-flow on almost abelian Lie groups, similar to the Laplacian flow [Lau17] and the Laplacian co-flow [BF17].

Proposition 10. Let $\mathcal{L}$ be the variety of 7 -dimensional Lie algebras. The family $\left\{\mu_{A}: A \in\right.$ $\mathfrak{s p}(6, \mathbb{R})\} \subset \mathcal{L}$ of co-closed $\mathrm{G}_{2}$-structures is invariant under the bracket flow $\dot{\mu}=\delta_{\mu}\left(P_{A}\right)$, which becomes equivalent to the following ODE for a one-parameter family of matrices $A=A(t) \in \mathfrak{s p}(6, \mathbb{R}):$

$$
\begin{align*}
\frac{d}{d t} A= & \left(-\frac{1}{2} \operatorname{tr}\left(S_{A}\right)^{2}+\frac{1}{4}(\operatorname{tr} J A)^{2}-C \operatorname{tr} J A\right) A+\frac{1}{2}\left[A,\left[A, A^{t}\right]\right]+\frac{1}{2}\left[A, S_{A} \circ_{6} S_{A}\right]  \tag{3.31}\\
& -\left(C-\frac{1}{2} \operatorname{tr} J A\right)[A,[J, A]]
\end{align*}
$$

Proof. Notice that the family $\left\{\mu_{A}: A \in \mathfrak{s p}(6, \mathbb{R})\right\} \subset \mathcal{L}$ is invariant under the bracket flow if and only if $\delta_{\mu}\left(P_{A}\right)=\mu_{B}$ for some $B \in \mathfrak{s p}(6, \mathbb{R})$, for any $A \in \mathfrak{s p}(6, \mathbb{R})$. Using (3.30) we
have

$$
\begin{aligned}
\delta_{\mu}\left(P_{A}\right)\left(e_{7}, e_{i}\right) & =\mu_{A}\left(P_{A} e_{7}, e_{i}\right)+\mu_{A}\left(e_{7}, P_{A} e_{i}\right)-Q_{A} \mu_{A}\left(e_{7}, e_{i}\right) \\
& =p \mu_{A}\left(e_{7}, e_{i}\right)+\mu_{A}\left(e_{7}, P_{1} e_{i}\right)-P_{1} \mu_{A}\left(e_{7}, e_{i}\right) \\
& =\left(p A+A P_{1}-P_{1} A\right) e_{i} .
\end{aligned}
$$

Hence, $B=p A+\left[A, P_{1}\right]$, note that $B \in \mathfrak{s p}(6, \mathbb{R})$, indeed

$$
[J, A]^{t} J+J[J, A]=\left[J, A^{t}\right] J+J[J, A]=J A^{t} J+A^{t}-A-J A J=0
$$

and $S_{A} \circ_{6} S_{A} \in \mathfrak{s p}(6, \mathbb{R})$ by Lemma 33, thus $P_{1} \in \mathfrak{s p}(6, \mathbb{R})$. Therefore, the subset of invariant co-closed $\mathrm{G}_{2}$-structures is invariant under the bracket flow and the matrix $A$ evolves by $\dot{A}=B$.

Proposition 11. If $\mu_{A(t)}$ is a bracket flow solution, then the norm of $A(t) \in \mathfrak{s p}(6, \mathbb{R})$ evolves

$$
\begin{aligned}
\frac{d}{d t}|A|^{2}= & \left(-\left|S_{A}\right|^{2}+\frac{1}{2}(\operatorname{tr} J A)^{2}-2 C \operatorname{tr} J A\right)|A|^{2}-\left|\left[A, A^{t}\right]\right|^{2} \\
& -\left\langle S_{A} \circ_{6} S_{A},\left[A, A^{t}\right]\right\rangle+(2 C-\operatorname{tr} J A)\left(\left\langle[J, A],\left[A, A^{t}\right]\right\rangle\right)
\end{aligned}
$$

Proof. From Proposition 10, we have

$$
\begin{aligned}
\frac{d}{d t}|A|^{2}= & 2\langle\dot{A}, A\rangle=2 \operatorname{tr}\left(\dot{A} A^{t}\right) \\
= & \left(-\left|S_{A}\right|^{2}+\frac{1}{2}(\operatorname{tr} J A)^{2}-C \operatorname{tr} J A\right)|A|^{2}+\left\langle\left[A,\left[A, A^{t}\right]\right], A\right\rangle+\left\langle\left[A, S_{A} \circ_{6} S_{A}\right], A\right\rangle \\
& -(2 C-\operatorname{tr} J A)\langle[A,[J, A]], A\rangle \\
= & -\left(\frac{1}{4}\left|S_{A}\right|^{2}+2 C(\operatorname{tr} J A)^{2}\right)|A|^{2}-\left|\left[A, A^{t}\right]\right|-\left\langle S_{A} \circ_{6} S_{A},\left[A, A^{t}\right]\right\rangle \\
& +(2 C-\operatorname{tr} J A)\left\langle[J, A],\left[A, A^{t}\right]\right\rangle
\end{aligned}
$$

Similarly to Propositions 10 and 11, we get the following result for the Laplacian co-flow.

Proposition 12. The bracket flow $\left\{\mu_{A}: A \in \mathfrak{s p}(6, \mathbb{R})\right\} \subset \mathcal{L}$ and its norm $\left|\mu_{A(t)}\right|^{2}=|A|^{2}$ associated with the Laplacian co-flow (3.11) evolve

$$
\begin{gather*}
\dot{A}=-\left(\frac{1}{2} \operatorname{tr}\left(S_{A}\right)^{2}+\frac{1}{4}(\operatorname{tr} J A)^{2}\right) A+\frac{1}{2}\left[A,\left[A, A^{t}\right]\right]+\frac{1}{2}\left[A, S_{A} \circ_{6} S_{A}\right]  \tag{3.32}\\
|\dot{A}|^{2}=-\left(\left|S_{A}\right|^{2}+\frac{1}{2}(\operatorname{tr} J A)^{2}\right)|A|^{2}-\left|\left[A, A^{t}\right]\right|^{2}-\left\langle S_{A} \circ_{6} S_{A},\left[A, A^{t}\right]\right\rangle \tag{3.33}
\end{gather*}
$$

In order to proof long time existence solution for (3.11) we need the following identity.

Lemma 34. For the symmetric part $S_{A}$ of the matrix $A \in \mathfrak{s p}(6, \mathbb{R})$ holds

$$
\left|S_{A} \circ_{6} S_{A}\right|^{2}=4\left(\left|S_{A}\right|^{2}\left|S_{A}\right|^{2}-2\left|S_{A}^{2}\right|^{2}-\left\langle J S_{A}, S_{A}\right\rangle^{2}\right)
$$

Proof. This identity is found just by manipulating the $\operatorname{SU}(3)-$ representations (1.25) and the contraction identities (1.26) between $\omega, \rho_{+}$and $\rho_{-}$.

Now, we are going to study the term $-\left\langle S_{A} \circ_{6} S_{A},\left[A, A^{t}\right]\right\rangle$ given in the evolution equation (3.33). Using the Cauchy-Schwarz and Peter-Paul inequalities $a b \leq \frac{a^{2}}{2 \varepsilon}+\frac{\varepsilon b^{2}}{2}$ for $a, b \geq 0$ and $\varepsilon>0$, we have

$$
\begin{aligned}
-\left\langle S_{A} \circ_{6} S_{A},\left[A, A^{t}\right]\right\rangle & \leq\left|S_{A} \circ_{6} S_{A}\right|\left|\left[A, A^{t}\right]\right| \\
& \leq \frac{\left|S_{A} \circ_{6} S_{A}\right|^{2}}{2 \varepsilon}+\frac{\varepsilon\left|\left[A, A^{t}\right]\right|^{2}}{2} \\
& =\frac{2}{\varepsilon}\left(\left|S_{A}\right|^{2}\left|S_{A}\right|^{2}-2\left|S_{A}^{2}\right|^{2}-\left\langle J S_{A}, S_{A}\right\rangle^{2}\right)+\frac{\varepsilon}{2}\left|\left[A, A^{t}\right]\right|^{2}
\end{aligned}
$$

Taking $\varepsilon=2$ and replacing the last inequality in the equation 3.33, we have

$$
\begin{aligned}
|\dot{A}|^{2} & \leq-\left(\left|S_{A}\right|^{2}+\frac{1}{2}(\operatorname{tr} J A)^{2}\right)|A|^{2}-\left|\left[A, A^{t}\right]\right|^{2}+\left|S_{A}\right|^{2}\left|S_{A}\right|^{2}-2\left|S_{A}^{2}\right|^{2}-\left\langle J S_{A}, S_{A}\right\rangle^{2}+\left|\left[A, A^{t}\right]\right|^{2} \\
& =-\left|S_{A}\right|^{2}\left|S_{A}\right|^{2}-\frac{1}{2}\left|S_{A}\right|^{2}\left|A-A^{t}\right|^{2}-\frac{1}{2}(\operatorname{tr} J A)^{2}|A|^{2}+\left|S_{A}\right|^{2}\left|S_{A}\right|^{2}-2\left|S_{A}^{2}\right|^{2}-\left\langle J S_{A}, S_{A}\right\rangle^{2} \\
& =-\frac{1}{2}\left|S_{A}\right|^{2}\left|A-A^{t}\right|^{2}-\frac{1}{2}(\operatorname{tr} J A)^{2}|A|^{2}-2\left|S_{A}^{2}\right|^{2}-\left\langle J S_{A}, S_{A}\right\rangle^{2} \leq 0
\end{aligned}
$$

Thus, $|A|^{2}$ is non-increasing and so long time existence the bracket flow (3.32) follows. In fact, $|A|^{2}$ is strictly decreasing unless $\left(G_{A}, \varphi\right)$ is torsion free (that is, $|\dot{A}|^{2}=0$ if $A^{t}=-A$ and $\operatorname{tr} J A=0\left[\right.$ Fre13]), and thus $A(t) \equiv A_{0}$ is constant. In view of the equivalence between the Laplacian co-flow (3.11) and the bracket flow (3.32) (see [Lau16, Theorem 5]), we obtain long time existence for the Laplacian co-flow among this class.

Corollary 10. The left invariant Laplacian co-flow solutions starting at any co-closed $\mathrm{G}_{2}$-structure $\left(G_{A}, \varphi\right)$ is defined for all $t \in\left(T_{-}, \infty\right)$ for some $T_{-}<0$.

Remark 9. The equations 3.32 and 3.33 correspond to the bracket flow

$$
\dot{\mu}_{t}=\delta_{\mu_{t}}\left(Q_{\mu_{t}}\right) \Leftrightarrow \dot{\psi}_{t}=\Delta \psi_{t} .
$$

However, the results also hold for the co-flow (3.11) and in this case the solution of Corollary 10 are defined for all $t \in\left(-\infty, T_{+}\right)$for some $0<T_{+}$, it as was proved by Bagaglini and Fino [BF18] for a normal matrix $A \in \mathfrak{s p}(6, \mathbb{R})$. Notice that we proved long time existence for (3.11) for any matrix $A \in \mathfrak{s p}(6, \mathbb{R})$.

### 3.5.1 Example of a co-flow soliton

We now apply the previous theoretical framework to construct an explicit co-flow soliton from a natural Ansatz. Let $\mathfrak{g}=\mathbb{R} \times_{\nu} \mathbb{R}^{6}$ be the Lie algebra defined by $\nu(t)=\exp (t A) \in \operatorname{Aut}(\mathfrak{g})$, with


The canonical $\mathrm{SU}(3)$-structure on $\mathbb{R}^{6}$ with respect to the orthonormal basis $\left\{e_{1}, e_{6}, e_{2}, e_{5}, e_{3}, e_{4}\right\}$ is

$$
\omega=e^{16}+e^{25}+e^{34}, \quad \rho_{+}=e^{135}-e^{124}-e^{236}-e^{456}
$$

and the standard complex structure of $\mathbb{R}^{6}$ is

$$
J=\left(\begin{array}{lll|lll} 
& & & & & \\
& & & & & \\
& & & & & \\
& & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & &
\end{array}\right)
$$

We also have the natural 3 -form

$$
\rho_{-}:=J \cdot \rho_{+}=e^{123}+e^{145}+e^{356}-e^{246} .
$$

The structure equations of $\mathfrak{g}^{*}$ with respect to the dual basis of $\left\{e_{1}, e_{6}, e_{2}, e_{5}, e_{3}, e_{4}, e_{7}\right\}$ are

$$
d e^{1}=e^{67}, \quad d e^{6}=e^{17}, \quad d e^{3}=e^{47}, \quad d e^{4}=e^{37}, \quad d e^{j}=0 \quad \text { for } \quad j=2,5
$$

From the above, we have

$$
d \omega=0, \quad d \rho_{+}=-2\left(e^{2467}+e^{1237}\right), \quad \text { and } \quad d \rho_{-}=2\left(e^{1357}+e^{4567}\right) .
$$

There is a natural co-closed $\mathrm{G}_{2}$-structure on $\mathfrak{g}$, given by

$$
\varphi:=\omega \wedge e^{7}+\rho_{+}=e^{167}+e^{257}+e^{347}+e^{135}-e^{124}-e^{236}-e^{456}
$$

with dual 4-form

$$
\psi=* \varphi=\frac{\omega^{2}}{2}+\rho_{-} \wedge e^{7}=e^{1256}+e^{1346}+e^{2345}+e^{1237}+e^{1457}+e^{3567}-e^{2467}
$$

We have $J A=-A J=\operatorname{diag}(-1,0,-1,1,0,1)$, then by Lemma 8

$$
\tau_{0}=\operatorname{tr} J A=0 \quad \text { and } \quad \tau_{27}=\operatorname{diag}(1,0,1,-1,0,-1,0)
$$

Hence, $T=-\tau_{27}=\operatorname{diag}(-1,0,-1,1,0,1,0)$. To obtain the Laplacian of $\psi$ we apply Proposition 9 (i), notice that $Q_{1}=\frac{1}{2} A \circ_{6} A$ and $q=-\frac{1}{2} \operatorname{tr} A^{2}$ since $A$ is symmetric. By a straightforward computation we have

$$
\operatorname{tr} A^{2}=4 \quad \text { and } \quad A \circ_{6} A=\operatorname{diag}(0,4,0,0,-4,0)
$$

So, $\Delta_{\psi} \psi=\theta\left(Q_{\psi}\right) \psi=4\left(e^{1457}+e^{3567}\right)$ where $Q_{\psi}=\operatorname{diag}(0,2,0,0,-2,0,-2)$. Consider the derivation $D=\operatorname{diag}(a, b, c, c, d, a, 0) \in \operatorname{Der}(\mathfrak{g})$, and take the vector field on $\mathfrak{g}$

$$
X_{D}(x)=\frac{d}{d t}(\exp (t D)(x)), \quad \text { for } \quad x \in \mathfrak{g}
$$

Then we have

$$
\begin{aligned}
\mathcal{L}_{X_{D}} \psi= & \left.\frac{d}{d t}\left(\exp (-t D)^{*} \psi\right)\right|_{t=0}=-\theta(D) \psi \\
= & (2 a+b+d) e^{1256}+(2 a+2 c) e^{1346}+(b+2 c+d) e^{2345}+(a+b+c) e^{1237} \\
& +(a+c+d) e^{1457}+(a+c+d) e^{3567}-(a+b+c) e^{2467} .
\end{aligned}
$$

From the soliton equation $-\Delta \psi=\mathcal{L}_{X_{D}} \psi+\lambda \psi$, we obtain a system of linear equations

$$
\left\{\begin{aligned}
2 a+b+d+\lambda & =0 \\
2 a+2 c+\lambda & =0 \\
a+b+c+\lambda & =0 \\
a+c+d+\lambda & =-4
\end{aligned}\right.
$$

which has solution $D=\operatorname{diag}(2,4,2,2,0,2,0)$ and $\lambda=-8$. In particular, for the matrix $Q_{\psi}=D+\frac{\lambda}{4} I_{7}$, we have $\Delta \psi=\theta\left(Q_{\psi}\right) \psi$. By Lemma 28 , the functions

$$
c(t)=(1-4 t)^{2} \quad \text { and } \quad s(t)=\frac{1}{4} \log (1-4 t) \quad \text { for } \quad \frac{1}{4}>t
$$

yield the family of 4-forms $\left\{\psi_{t}=c(t)\left(f(t)^{-1}\right)^{*} \psi\right\}$, where

$$
\begin{aligned}
f(t)^{-1} & =\exp (-s(t) D) \\
& =\operatorname{diag}\left((1-4 t)^{-1 / 2},(1-4 t)^{-1},(1-4 t)^{-1 / 2},(1-4 t)^{-1 / 2}, 1,(1-4 t)^{-1 / 2}, 1\right)
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\psi_{t}=e^{1256}+e^{1346}+e^{2345}+e^{1237}+(1-4 t)\left(e^{1457}+e^{3567}\right)-e^{2467} \tag{3.34}
\end{equation*}
$$

defines a soliton of the Laplacian co-flow:

$$
\frac{d \psi_{t}}{d t}=-4\left(e^{1457}+e^{3567}\right)=-c(t)^{1 / 2}\left(f(t)^{-1}\right)^{*} \Delta \psi=-\Delta_{t} \psi_{t}
$$

Corollary 11. The relevant geometric structures associated to the 4 -form given in (3.34) are:
(i) the $\mathrm{G}_{2}$-structure

$$
\varphi_{t}=c(t)^{1 / 4}\left(e^{167}+e^{257}+e^{347}+e^{135}-e^{456}\right)-c(t)^{-1 / 4}\left(e^{124}+e^{236}\right) ;
$$

(ii) the $\mathrm{G}_{2}$-metric

$$
g_{t}=\left(e^{1}\right)^{2}+\left(e^{3}\right)^{2}+\left(e^{4}\right)^{2}+\left(e^{6}\right)^{2}+c(t)^{-1 / 2}\left(e^{2}\right)^{2}+c(t)^{1 / 2}\left(\left(e^{5}\right)^{2}+\left(e^{7}\right)^{2}\right) ;
$$

(iii) the volume form

$$
\operatorname{vol}_{t}=c(t)^{1 / 4} \operatorname{vol}_{\psi} ;
$$

(iv) the torsion form and the full torsion tensor

$$
\tau_{3}(t)=2\left(e^{135}+e^{456}\right) \quad \text { and } \quad T(t)=c(t)^{-1 / 4}\left(-\left(e^{1}\right)^{2}-\left(e^{3}\right)^{2}+\left(e^{4}\right)^{2}+\left(e^{6}\right)^{2}\right)
$$

(v) the Ricci tensor and the scalar curvature

$$
\operatorname{Ric}\left(g_{t}\right)=-4 c(t)^{-1 / 2}\left(e^{7}\right)^{2} \quad \text { and } \quad R_{t}=-\frac{1}{2}\left|\tau_{3}(t)\right|^{2}=-4 c(t)^{-1 / 2}
$$

(vi) the bracket flow solution

$$
\mu_{t}=c(t)^{-1 / 4}[\cdot, \cdot] .
$$

### 3.5.2 Example of a modified co-flow soliton

We now construct an explicit modified co-flow soliton following the same ideas from the last example. Let $\mathfrak{g}=\mathbb{R} \times{ }_{\nu} \mathbb{R}^{6}$ be the Lie algebra defined by $\nu(t)=\exp (t A) \in$ $\operatorname{Aut}(\mathfrak{g})$, with

$$
A=\left(\begin{array}{cc|c|c}
0 & -1 & & \\
1 & 0 & & \\
\\
\hline & & & 0 \\
\hline
\end{array}\right)
$$

The canonical $\operatorname{SU}(3)$-structure on $\mathbb{R}^{6}$ with respect to the orthonormal basis $\left\{e_{1}, \ldots, e_{6}\right\}$ is

$$
\omega=e^{12}+e^{34}+e^{56}, \quad \rho_{+}=e^{135}-e^{146}-e^{236}-e^{245}
$$

and the standard complex structure of $\mathbb{R}^{6}$ is

$$
J\left(e_{1}\right)=e_{2}, \quad J\left(e_{3}\right)=e_{4}, \quad J\left(e_{5}\right)=e_{6} \quad \text { and } \quad J^{2}=-I
$$

We also have the natural 3-form

$$
\rho_{-}:=J \cdot \rho_{+}=-e^{246}+e^{235}+e^{136}+e^{145}
$$

The natural co-closed $\mathrm{G}_{2}$-structure on $\mathfrak{g}$ is given by

$$
\varphi:=\omega \wedge e^{7}+\rho_{+}=e^{127}+e^{347}+e^{567}+e^{135}-e^{146}-e^{236}-e^{245}
$$

with dual 4-form

$$
\psi=* \varphi=\frac{\omega^{2}}{2}+\rho_{-} \wedge e^{7}=e^{1234}+e^{1256}+e^{3456}-e^{2467}+e^{2357}+e^{1367}+e^{1457}
$$

We have

$$
J A=A J=\left(\begin{array}{cc|cc|c}
-1 & 0 & & & \\
0 & -1 & & & \\
\hline & & & & -1 \\
0 & 0 & -1 \\
\hline & & -1 & 0 & \\
\hline & & 0 & -1 &
\end{array}\right)
$$

Then, by Proposition 8 we have

$$
\tau_{0}=-\frac{4}{7}, \quad \tau_{27}=-\frac{1}{7} \operatorname{diag}(1,1,1,1,1,1,-6)
$$

and by Corollary $9, T=\operatorname{diag}(0,0,0,0,0,0,-1)$. Now, we apply Proposition 9 (ii), since $A$ is skew symmetric we have $\Delta_{\psi} \psi+2(C-\operatorname{tr} T) d \varphi=\theta\left(P_{A}\right) \psi$ where $P_{A}=\operatorname{diag}(0, \ldots, 0,1+2 C)$ Now, for $C=0$ we get

$$
P_{A}=Q_{A}+2(\operatorname{tr} T) T=I+D \quad \text { for } \quad D=\operatorname{diag}(-1,-1,-1,-1,-1,-1,0) \in \operatorname{Der}(\mathfrak{g})
$$

By Lemma 29, the functions

$$
c(t)=(1-2 t)^{2} \quad \text { and } \quad s(t)=-\frac{1}{2} \log (1-2 t) \quad \text { for } \quad \frac{1}{2}>t
$$

yield the family of 4-forms $\left\{\psi_{t}=c(t)\left(f(t)^{-1}\right)^{*} \psi\right\}$, where

$$
\begin{aligned}
f(t)^{-1} & =\exp (-s(t) D) \\
& =(1-2 t)^{-1 / 2} \operatorname{diag}\left(1,1,1,1,1,1,(1-2 t)^{1 / 2}\right)
\end{aligned}
$$

Hence,

$$
\psi_{t}=e^{1234}+e^{1256}+e^{3456}+(1-2 t)^{1 / 2}\left(e^{1367}+e^{1457}+e^{2357}-e^{2467}\right)
$$

defines a soliton of the modified Laplacian co-flow with $C=0$ :

$$
\begin{aligned}
\Delta_{t} \psi_{t}-2 \operatorname{tr}_{t} T_{t} d \varphi_{t} & =c_{t}^{1 / 2} f_{t} \cdot \Delta_{\psi} \psi-2 c_{t}^{-1 / 4}(\operatorname{tr} T) c_{t}^{3 / 4} f_{t} \cdot d \varphi \\
& =-(1-2 t)^{-1 / 2}\left(e^{1367}+e^{1457}+e^{2357}-e^{2467}\right)=\frac{d}{d t} \psi_{t}
\end{aligned}
$$

### 3.6 An associative submanifold along the Laplacian flow

Here we pretend to give a connection between the main topics of this work, namely, we consider the deformation of the associative submanifold from Example 8 along the Laplacian flow of closed $\mathrm{G}_{2}$-structures.

Consider the connected and simply connected nilpotent Lie group $G$ with Lie algebra

$$
\mathfrak{g}=\left(0,0,0,0, e^{12}, e^{13}, 0\right)
$$

from the Example 7. It could be seen as an almost abelian Lie algebra [Lau17] with respect to the orthonormal basis $\mathfrak{g}=\operatorname{Span}\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{7}, e_{5}, e_{6}\right), \mathfrak{h}=\operatorname{Span}\left(e_{2}, e_{3}, e_{4}, e_{7}, e_{5}, e_{6}\right)$ and

$$
A=\left.\operatorname{ad}\left(e_{1}\right)\right|_{\mathfrak{h}}=\left(\begin{array}{lll}
0 & &  \tag{3.35}\\
0 & 0 & \\
1 & 0 & 0
\end{array}\right) \in \mathfrak{s l}(3, \mathbb{C}) .
$$

This example corresponds with $\mathfrak{n}_{2}$ from [Lau17, Example 5.8] under the change of basis

$$
P=\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right) \in \mathrm{G}_{2} .
$$

Thus, the $\mathrm{G}_{2}$-structure (2.28) is rewritten as

$$
\varphi=e^{1} \wedge \omega+\rho_{+}
$$

for $\omega=e^{23}+e^{47}+e^{56}$ and $\rho_{+}=e^{267}+e^{357}+e^{245}-e^{346}$ a $\mathrm{SU}(3)$-structure on the abelian ideal $\mathfrak{h}$. We calculate the Laplacian of $\varphi$ by $\Delta_{A} \varphi=\theta\left(Q_{A}\right) \varphi$ where

$$
Q_{A}=\left(\begin{array}{c|c}
q & 0 \\
\hline 0 & Q_{1}
\end{array}\right),
$$

with $Q_{1}=\frac{1}{2}\left[A, A^{t}\right]+\frac{1}{12} \operatorname{tr}\left(A+A^{t}\right)^{2} I-\frac{1}{2}\left(A+A^{t}\right)^{2}$ and $q=-\frac{1}{6} \operatorname{tr}\left(A+A^{t}\right)^{2}$ (see [Lau17, Proposition 5.15]). Then we have $Q_{A}=\frac{1}{3} \operatorname{diag}(-2,-2,-2,1,1,1,1)$ for the nilpotent matrix $A$ given in (3.35). It can be verified that the matrix $A$ satisfies the relation

$$
\left[A,\left[A, A^{t}\right]-\left(A+A^{t}\right)^{2}\right]=\frac{\left|\left[A, A^{t}\right]\right|^{2}}{\left.|A|\right|^{2}} A
$$

thus, by [Lau17, Proposition 5.22] $\left(G_{A}, \varphi\right)$ is an algebraic soliton for the Laplacian flow given $D=Q_{A}-c I$ with

$$
c=-\frac{1}{2} \operatorname{tr}\left(A+A^{t}\right)^{2}-\frac{\mid\left[A, A^{t}\right]^{2}}{2|A|^{2}}=-3,
$$

hence, $D=\operatorname{diag}(1,1,1,2,2,2,2) \in \operatorname{Der}(\mathfrak{g})$. Therefore, by [Lau17, Theorem 3.8] we have

$$
b(t)=\left(\frac{10}{3} t+1\right)^{3 / 2}, \quad s(t)=\frac{3}{10} \log \left(\frac{10}{3} t+1\right)
$$

and

$$
\varphi(t)=b(t)\left(e^{-s(t) D}\right)^{*} \varphi=\left(\frac{10}{3} t+1\right)^{3 / 5} e^{123}+e^{147}+e^{156}+e^{267}+e^{357}+e^{245}-e^{346}
$$

Notice that $\left.\varphi(t)\right|_{\mathfrak{a}}=e^{156}$ where $\mathfrak{a}=\operatorname{Span}\left(e_{1}, e_{5}, e_{6}\right)$ is the abelian subalgebra. So, the associative submanifold given in the Example 8 remains associative for any $\varphi(t)$.

## Concluding Remarks

We would like to conclude with two questions for future work.

1. In view of the equivalence between the bracket flow and the modified Laplacian co-flow given in Lemma 26, it would be interesting to study the evolution of the norm obtained in Proposition 11 to understand the long time behaviour of solutions and thereof give necessary and sufficient conditions on $A \in \mathfrak{s p}(6, \mathbb{R})$ to obtain an algebraic soliton.
2. When the full torsion tensor $T=-\tau_{27}$ is traceless symmetric, the scalar curvature of the corresponding $\mathrm{G}_{2}$-metric is nonpositive, and it vanishes if, and only if, the structure is torsion-free (c.f. [Bry06, (4.28)] or [Kar09, (4.21)]). This fact was first pointed out by Bryant for a closed $\mathrm{G}_{2}$-structure, in order to explain the absence of closed Einstein $\mathrm{G}_{2}$-structures (other than Ricci-flat ones) on compact 7-manifolds, giving rise to the concept of extremally Ricci-pinched closed $\mathrm{G}_{2}$-structure [Bry06, Remark 13]. Later on, Fernández et al. showed that a 7-dimensional (non-flat) Einstein solvmanifold $(S, g)$ cannot admit any left-invariant co-closed $\mathrm{G}_{2}$-structure $\varphi$ such that $g_{\varphi}=g[\mathrm{FM}]$.

In that context, it would be interesting to study pinching phenomena for the Ricci curvature of solvmanifolds with a co-closed (non-flat) left-invariant $\mathrm{G}_{2}$-structure and traceless torsion. In our present construction, for instance, we can see from Corollary 11 that

$$
F(t)=\frac{R_{t}^{2}}{\left|\operatorname{Ric}\left(g_{t}\right)\right|^{2}}=1
$$

## Bibliography

[AS08a] S. Akbulut and S. Salur. Calibrated manifolds and gauge theory. J. Reine Angew. Math., 2008(625):187-214, 2008.
[AS08b] S. Akbulut and S. Salur. Deformations in $\mathrm{G}_{2}$-manifolds. Adv. Math., 217(5):21302140, 2008.
[Bär96] C. Bär. The Dirac operator on space forms of positive curvature. J. Math. Soc. Japan, 48(1):69-83, 1996.
[BF17] M. Bagaglini, L. Fernández and A. Fino. Laplacian co-flow on the 7-dimensional Heisenberg group. arXiv preprint arXiv:1704.00295, 2017.
[BF18] L. Bagaglini and A. Fino. The Laplacian coflow on almost-Abelian Lie groups. Annali di Matematica Pura ed Applicata (1923-), 197(6):1855-1873, 2018.
[Bry06] R. Bryant. Some remarks on $\mathrm{G}_{2}$-structures. Proceedings of Gökova GeometryTopology Conference 2005, pages 75-109, 2006.
[Bry11] R. Bryant. Laplacian flow for closed $\mathrm{G}_{2}$-structures: short time behavior. arXiv preprint arXiv:1101.2004, 2011.
[BV07] Lucio Bedulli and Luigi Vezzoni. The Ricci tensor of su(3)-manifolds. Journal of Geometry and Physics, 57(4):1125-1146, 2007.
[CN15] D. Crowley and J. Nordström. New invariants of $\mathrm{G}_{2}$-structures. Geometry $\mathfrak{G}$ Topology, 19(5):2949-2992, 2015.
[CP15] M. Nordström J. Corti, A. Haskins and T. Pacini. $\mathrm{G}_{2}$-manifolds and associative submanifolds via semi-fano 3-folds. Duke Math. J., 164(10):1971-2092, 2015.
[DK90] S. Donaldson and P. Kronheimer. The geometry of four-manifolds. Oxford University Press, 1990.
[FG82] M. Fernández and A. Gray. Riemannian manifolds with structure group $\mathrm{G}_{2}$. Annali di matematica pura ed applicata, 132(1):19-45, 1982.
[FM] Fino A. Fernández, M. and V. Manero. G R $_{2}$-structures on einstein solvmanifolds. Asian Journal of Mathematics, No 19.
[FR16] A. Fernández, M. Fino and A. Raffero. Locally conformal calibrated $\mathrm{G}_{2}$-manifolds. Annali di Matematica Pura ed Applicata (1923-), 195(5):1721-1736, 2016.
[FR17] A. Fino and A. Raffero. Closed warped $\mathrm{G}_{2}$-structures evolving under the Laplacian flow. arXiv preprint arXiv:1708.00222. To appear in Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 2017.
[Fre12] M. Freibert. Cocalibrated structures on Lie algebras with a codimension one Abelian ideal. Annals of Global Analysis and Geometry, 42(4):537-563, 2012.
[Fre13] M. Freibert. Calibrated and parallel structures on almost Abelian Lie algebras. arXiv preprint arXiv:1307.2542, 2013.
[Gay14] D. Gayet. Smooth moduli spaces of associative submanifolds. The Quarterly Journal of Mathematics, 2014.
[Gri13] S. Grigorian. Short-time behaviour of a modified laplacian co-flow of $\mathrm{G}_{2}$-structures. Adv. Math., 248:378-415, 2013.
[Gri16] S. Grigorian. Modified Laplacian co-flow of $\mathrm{G}_{2}$-structures on manifolds with symmetry. Differential Geom. Appl., 46:39-78, 2016.
[Hit08] N. Hitchin. The geometry of three-forms in six and seven dimensions. 2000. arXiv preprint math.dg/0010054, pages 1-38, 2008.
[HL82] R. Harvey and H. Lawson. Calibrated geometries. Acta Mathematica, 148(1):47157, 1982.
[Hus66] D. Hussemoller. Fiber bundles. Graduate Texts in Mathematics, 1966.
[JK17] D. Joyce and S. Karigiannis. A new construction of compact $\mathrm{G}_{2}$-manifolds by gluing families of Eguchi-Hanson spaces. arXiv:1707.09325 to appear in Journal of Differential Geometry, 2017.
[Joy96] D. Joyce. Compact Riemannian 7-manifolds with holonomy G 2 . i. Journal of differential geometry, 43:291-328, 1996.
[Joy00] D. Joyce. Compact manifolds with special holonomy. Oxford University Press on Demand, 2000.
[Kar09] S. Karigiannis. Flows of $\mathrm{G}_{2}$-structures, i. The Quarterly Journal of Mathematics, 60(4):487-522, 2009.
[Kaw13] K. Kawai. Submanifolds in $\mathrm{G}_{2}$-manifolds. 2013.
[Kaw17] K. Kawai. Deformations of homogeneous associative submanifolds in nearly parallel $\mathrm{G}_{2}$-manifolds. Asian J. Math., (3):429-462, 2017.
[Kod62] K. Kodaira. A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds. Annals of Mathematics, pages 146-162, 1962.
[KT12] B. Karigiannis, S. McKay and M. Tsui. Soliton solutions for the Laplacian co-flow of some $\mathrm{G}_{2}$-structures with symmetry. Differential Geom. Appl., 30(4):318-333, 2012.
[Lau16] J. Lauret. Geometric flows and their solitons on homogeneous spaces. Rendiconti del Seminario Matematico di Torino, 74:55-93, 2016.
[Lau17] J. Lauret. Laplacian flow of homogeneous $\mathrm{G}_{2}$-structures and its solitons. Proceedings of the London Mathematical Society, 114(3):527-560, 2017.
[LM16] H. B. Lawson and M. Michelsohn. Spin geometry, volume 38. Princeton university press, 2016.
[Lot12] Jason D Lotay. Associative submanifolds of the 7-sphere. Proceedings of the London Mathematical Society, 105(6):1183-1214, 2012.
[Mal49] A. Maltsev. On a class of homogeneous spaces. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 13(1):9-32, 1949.
[McL98] R. McLean. Deformations of calibrated submanifolds. Communications in Analysis and Geometry, 6:705-747, 1998.
[Mil76] J. Milnor. Curvatures of left invariant metrics on Lie groups. Adv. Math., 21(3):293-329, 1976.
[Mor16] T. Moriyama. Deformations of special Legendrian submanifolds in Sasaki-Einstein manifolds. Mathematische Zeitschrift, 283:1111-1147, 2016.
[Nic18] M. Nicolini. Laplacian solitons on nilpotent Lie groups. Bulletin of the Belgian Mathematical Society-Simon Stevin, 25(2):183-196, 2018.
[SA87] M. Shubin and S. Andersson. Pseudodifferential operators and spectral theory, volume 200. Springer, 1987.
[Sal00] D. Salamon. Spin Geometry and Sieberg-Witten Invariants. ETH, 2000.
[SM16] L. San Martin. Grupos de Lie. Editora da Unicamp, 2016.

