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Resumo

Nesta tese estudamos dois tópicos, o espaço de deformação de subvariedades associativas

e fluxos de G2–estruturas co-fechadas invariantes. No primeiro tópico, encontramos uma

fórmula de Weitzenböck para o operador de Fueter-Dirac, o qual controla as deformações

infinitesimais de uma subvariedade associativa em uma 7–variedade com uma G2–estrutura.

Como aplicações, construímos duas subvariedades associativas rígidas e demos uma prova

diferente da rigidez da 3-esfera na 7-esfera redonda, o qual foi feito por Kawai [Kaw13,

Kaw17]. No segundo tópico, aplicamos a técnica geral proposta por Lauret [Lau16] para

o co-fluxo laplaciano e o co-fluxo laplaciano modificado de G2-estruturas co-fechadas

invariantes em um grupo de Lie. Como resultado, para cada um dos fluxos encontramos

um soliton explícito em uma 7-variedade quase abeliana particular.

Palavras-chave: G2-estrutura, subvariedade associativa, G2-fluxo, grupo de Lie.



Abstract

In this thesis we deal with two topics, the deformation space of associative submanifolds

and flows of invariant co-closed G2–structures. For the first one, we find a Weitzenböck

formula for the Fueter-Dirac operator which controls infinitesimal deformations of an

associative submanifold in a 7–manifold with a G2–structure. As applications, we construct

two rigid associative submanifolds and we find a different proof of rigidity for associative

3-sphere in the round 7-sphere from those given by Kawai [Kaw13, Kaw17]. For the second

one, we apply the general Ansatz proposed by Lauret [Lau16] for the Laplacian co-flow

and the modified Laplacian co-flow of invariant co-closed G2–structures on a Lie group. As

result, for each flow we find an explicit soliton on a particular almost abelian 7–manifold.

Keywords: G2–structure, associative submanifold, G2–flow, Lie group.
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Introduction

This thesis is concerned with G2-geometry, more specifically about associative

submanifolds and flows of co-closed G2–structures.

Associative submanifolds were introduced by Harvey and Lawson [HL82] as

particular case of calibrated submanifold. Afterwards, R. McLean in his seminal paper

[McL98] addressed the question of deformability of calibrated submanifolds as a gen-

eralisation of Kodaira’s work on deformation of complex submanifolds [Kod62]. In two

particular calibrated geometries, namely, the special Lagrangian and the coassociative

geometries, the normal bundles are intrinsic, so, the existence of calibrated deformations

of a calibrated submanifold is reduced to topological questions of the submanifold itself.

Meanwhile, in the other two calibrated geometries, specifically, the three dimensional

associative submanifolds and the four dimensional Cayley submanifolds the normal bundle

are not intrinsic, but rather they are twisted spin bundles of extrinsic vector bundles.

In this thesis is discussed the case of associative submanifold Y , which only occur when

the ambient manifold M has real dimension 7, and the calibration is a 3-form ϕ. In fact,

(M,ϕ) is a manifold with G2-structure, in [McL98], McLean proved that a class in the

moduli space of associative deformations corresponds to a harmonic spinor of a twisted

Dirac operator, under the torsion-free hypothesis T ≡ ∇ϕ = 0. Then, Akbulut and Salur

[AS08a, AS08b] generalised McLean’s theorem for a general G2-structure identifying the

tangent space at an associative submanifold Y 3 in (M7, ϕ) with the kernel of

/DA : Ω0(Y,NY ) → Ω0(Y,NY ) (1)

where A = A0 + a, for A0 the induced connection on NY and some a ∈ Ω1(Y, ad(NY )).

The first purpose of this thesis is to obtain a Weitzenböck formula for the operator (1),

that is, a relation between the second-order elliptic square /DA
2

and the trace Laplacian

∇∗∇ of the induced Levi-Civita connection on NY . Under suitable positivity assumptions

on curvature, this implies rigidity, i.e., that Y has “essentially” no infinitesimal associative

deformations, in the following sense. Denote by G := Stab(ϕ) ⊂ Aut(M) the group of

global automorphisms preserving ϕ. The infinitesimal associative deformations of Y consist

of:

(i) trivial deformations given by the action of G on Y (see [Kaw17] and [Mor16]);

(ii) non-trivial deformations, which depend intrinsically on the geometry of the associative

submanifold.

For instance, in [Kaw17], an associative submanifold is considered rigid if all infinitesimal

associative deformations are trivial; in the particular case of the homogeneous space
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M = S7, the symmetry group of ϕ is G = Spin(7). On the other hand, Gayet [Gay14]

and McLean [McL98] consider a generic G2–structure, i.e., without symmetries. So, G is

0–dimensional and Y is rigid if the space of nontrivial infinitesimal deformation vanishes.

The exposition is organised as follows: Chapter 1 is proactive background review

in G2–geometry, in order to fix the notation and the sign convention of some important

tensors arising from the G2–structure. We then deduce Lemma 5, a Leibniz rule for the

Levi-Civita connection and the Riemann curvature tensor with respect to the cross product.

After that, we collect εijk-identities for SU(3)–structure, it will be a key computational

tool in Chapter 3. Finally, we concluded by recalling some results from 4-dimensional spin

geometry to explain the explicit identification

NY ⊗R C ∼= S+ ⊗C S
−,

between the normal bundle of Y and a spinor bundle S = S+ ⊕ S− → Y , in order to

describe the Fueter-Dirac operator in detail.

In Chapter 2, we deal with deformation of associative submanifold following

the general framework proposed by Akbulut and Salur [AS08a, AS08b]. We then obtain

the following Weitzenböck formula, which generalise the previous formula obtained by

Gayet [Gay14].

Theorem 1. The Weitzenböck formula for (1) is

/DA
2
(σ) = ∇∗∇σ+R(σ)−π⊥

✁
∑

i∈Z3

ei×T (ei+1, σ, ei, ei+1)
✠

+H×B(σ)+(trSσ)H−A(σ)

−
3

∑

j=1

π⊥(T (ej, ·)
♯) × Sσ(ej) + π⊥(T (B(σ), ·)♯) + P1(σ) + P2(σ) + P3(σ). (2)

Where P1, P2 and P3 are first order differential operators on NY , involving the

torsion of the G2–structure, B is a 0th–order operator defined by the shape operator Sσ on

the normal section σ

B(σ) :=
3

∑

j=1

ej × Sσ(ej).

H is the mean curvature vector field of the immersed associative submanifold, A(σ) =

St ◦ S(σ), is a symmetric positive 0th–order operator determined by the shape operator,

R(σ) = π⊥
3

∑

i=1

R(ei, σ)ei is a partial Ricci operator, T (ei+1, σ, ei, ei+1) is a 0th–order

involving the torsion tensor, the Hodge dual 4-form ψ and its covariant derivative, and

∇∗∇ is the connection Laplacian

∇∗∇n = −
∑

∇⊥
i ∇⊥

i n− ∇⊥
∇iei

n

in a global frame {ei} on the associative submanifold Y .
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As application, in Section 2.1, we specialise to the nearly parallel case, in which

dϕ and ψ are collinear and the formula (2) simplifies significantly. For a generic nearly

parallel G2–structure, we obtain a vanishing theorem to conclude rigidity under suitable

intrinsic geometric conditions on Y .

Theorem 2. Let (M,ϕ) be a 7-manifold with a nearly parallel G2–structure. If Y ⊂ M is

a closed associative submanifold such that the operator R − A is non-negative, then Y is

rigid.

As immediate applications, we propose an alternative proof of rigidity for the

known case of an associative SU(2)–orbit 3-sphere for Lotay’s cocalibrated G2–structure

on S7 studied by Kawai [Lot12, Kaw13, Kaw17].

Corollary 1. The 3-sphere in S7 is rigid as an associative submanifold.

In sections 2.2 and 2.3, we construct rigid associative submanifolds (Corollaries

7 and 8), respectively. The first one associative submanifold lies in a compact manifold S

with locally conformal calibrated G2–structure obtained from the 3-dimensional complex

Heisenberg group by Fernández-Fino-Raffero [FR16] and the second one associative sub-

manifold lies in a seven dimensional nilmanifold with closed G2–structure obtained from

the seven dimensional 2-step nilpotent Lie algebra n2 [FR17, Lau17, Nic18]

The second purpose of this thesis is to study the Laplacian co-flow (LC) and

the modified Laplacian co-flow (MLC)

(LC)
∂

∂t
ψt = −∆ψψ, (MLC)

∂

∂t
ψt = ∆ψψ + 2d♣(C − trT )ϕq

of co-closed G2–structures, introduced by Karigiannis et al. [KT12] and Grigorian [Gri13],

respectively. The co-closed G2–structure condition dψ = 0 is weaker than the torsion

free condition and even than the closed condition dϕ = 0. Also, any G2–structure can

be deformed to become co-closed, for a closed G2–structure it does not necessarily true

[CN15], thus, in some sense, consider co-closed G2–structures is more natural than closed

ones. However, the Laplacian co-flow does not have a nice behaviour, namely, (LC) is not

weakly parabolic, in fact, the symbol of the linearised equation has not sign-definite. For

that reason, the modified Laplacian co-flow arises to fixing the non parabolicity of the

Laplacian co-flow in the direction of the co-closed forms.

The flows (LC) and (MLC) have been studied in [KT12, Gri16] for two explicit examples

of co-closed G2–structures with symmetry, namely for warped products of an interval, or

a circle, with a compact 6-manifold N which is taken to be either a nearly Kähler or a

Calabi-Yau manifold and recently, in [BF17] Bagaglini et al. studied both flows for the

7–dimensional Heisenberg group and in [BF18] they showed long time-existence for a class

of seven dimensional almost-abelian Lie group for (LC).
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In Chapter 3, our main focus is when M7 = G is a Lie group, we propose to

study these flows from the perspective introduced by Lauret [Lau16] in the general context

of geometric flows on homogeneous spaces. In section 3.5, we gathered useful identities for

co-closed G2–structures on almost abelian Lie groups, namely, we calculated the remained

torsion forms,

Proposition 1. The torsion forms τ0 and τ3 for an almost abelian Lie group (GA, ϕ) with

co-closed G2–structure are

τ0 =
2

7
tr(JA) and τ27 =

☎✝✆ 1

14
tr(JA)I6 −

1

2
[J,A] 0

0 −
3

7
tr(JA)

☞✍✌
The full torsion tensor,

Corollary 2. The full torsion tensor T of an almost abelian Lie group (GA, ϕ) with an

invariant co-closed G2–structure is

T =
1

2

✄
[J,A] 0

0 tr(JA)

☛
.

And the Laplacian of ψ,

Proposition 2. If (GA, ϕ) is co-closed, we have:

i) For the Hodge Laplacian of ψ

∆ψψ = θ
�

Ric(g) −
1

2
T ◦ T − (trT )T

✟
= θ(QA)

Furthermore, QA = Ric(g) − (trT )T −
1

2
T ◦ T is a symmetric operator and it is

given by

QA =

✄
Q1 0

0 q

☛
,

where

Q1 =
1

2
[A,At] +

1

2
SA ◦6 SA and q = −

1

2
tr(SA)2 −

1

4
(tr JA)2.

ii) For the modified Laplacian

∆ψψ + 2d♣(C − trT )ϕq = θ
�

Ric(g) −
1

2
T ◦ T − (2C − trT )T

✟
= θ(PA)

where

PA =

✄
P1 0

0 p

☛
,

where P1 =
1

2
[A,At] +

1

2
SA ◦6 SA −

✁
C −

1

2
tr JA

✠
[J,A] and p = −

1

2
tr(SA)2 +

1

4
(tr JA)2 − C tr JA.
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Where the matrix A ∈ sp(6,R) encode the constant structures of the almost

abelian Lie algebra g = Lie(G).

As an application of these formulae, we apply a natural Ansatz to construct examples of

invariant self-similar solution, or soliton, of both co-flows in the Subsections 3.5.1 and

3.5.2. Solitons are G2–structures which, under the flow, simply scale monotonically and

move by diffeomorphisms. In particular, they provide potential models for singularities

of the flow, as well as means for desingularising certain singular G2–structures, both of

which are key aspects of any geometric flow.

In section 3.6, we address a motivational example of a soliton for the Laplacian flow of

closed G2–structures following the framework developed by Lauret [Lau16]. Here, we study

the behaviour of the associative submanifold from Example 8 along the Laplacian flow

with initial G2–structure given in (2.28).

Ultimately, we formulate two questions for future work.
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1 Preliminary: G2–Geometry

We first present some algebraic and geometric proprieties of G2–geometry

related with G2–structures and associative submanifolds, these can be found e.g. in

[HL82, Kar09, CP15].

1.1 Linear algebra of dimension 8, 7, 6

The octonions O = H⊕H ∼= R
8 are an 8-dimensional, non-associative, division

algebra. For the basis {1O = e0, e1, . . . , e7} we adopt the following convention for the

octonionic product:

· e1 e2 e3 e4 e5 e6 e7

e1 −1 e3 −e2 e5 −e4 e7 −e6

e2 −e3 −1 e1 e6 −e7 −e4 e5

e3 e2 −e1 −1 −e7 −e6 e5 e4

e4 −e5 −e6 e7 −1 e1 e2 −e3

e5 e4 e7 e6 −e1 −1 −e3 −e2

e6 −e7 e4 −e5 −e2 e3 −1 e1

e7 e6 −e5 −e4 e3 e2 −e1 −1

By the product above follows that u ∈ Im(O) if and only u2 = u · u is real but u in not.

Definition 1. The group of automorphism of O is G2 := Aut(O).

For γ ∈ G2 and u ∈ Im(O), γ(u) /∈ R and γ(u2) = γ(u)2 is real, so γ(u) ∈ Im(O).

Therefore, G2 is a subgroup of the group of automorphism of Im(O) preserving the

octonionic product on Im(O). On the imaginary part Im(O) = R
7, the cross product is

given by (e.g. [HL82, Appendix IV.A])

× : R
7 × R

7 → R
7

(u, v) 7→
1

2
(uv − vu) = Im(uv).

(1.1)

Notice that, (u×v)2 = −g0(u, u)g0(v, v) ∈ R and u×v is not real, where g0 is the standard

inner product in R
7. Hence, × is well defined and also is preserved by the action of G2 i.e.

γ(u× v) = γ(u) × γ(v) for all γ ∈ G2. On the other hand, the inner product in R
7 can be

defined in terms of the octonionic product (e.g. [HL82, Appendix IV.A])

g0(u, v) = −
1

2
(uv + vu) = Re(uv) for u, v ∈ R

7, (1.2)
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from the above, follows that G2 lies in O(7), the orthogonal transformations of R7. Notice

that, the algebra structure of O = R ⊕ Im(O) can be recovered from the vector product

(1.1) and the inner product (1.2) by

(a, u) · (b, v) = (ab− g0(u, v), av + bu+ u× v) for a, b ∈ R, u, v ∈ Im(O),

So, for γ ∈ Gl(7) preserving the cross and the inner product, we have that γ(a, u) :=

(a, γ(u)) lies in Aut(O). So, we get

G2 = {γ ∈ Gl(7) : γ(u) × γ(v) = u× v and g0(γ(u), γ(v)) = g0(u, v)}. (1.3)

From g0 and × we can define the trilinear alternating form

ϕ0(u, v, w) = g0(u× v, w) ∈ Λ3(R7)∗,

choosing the basis e1, . . . , e7 orthonormal with respect to (1.2) we can write

ϕ0 = e123 + e145 + e167 + e246 − e257 − e347 − e356, (1.4)

where eijk = ei ∧ ej ∧ ek. Notice that the octonionic multiplication can be recovered from

the 3-form ϕ0 by

ei · ej = ϕ0(ei, ej, ek)ek,

hence, for γ in the stabiliser of ϕ0, Stab(ϕ0) ⊂ Gl(7)

γ(ei) · γ(ej) = ϕ0(γ(ei), γ(ej), ek)ek = ϕ0(ei, ej, γ
−1(ek))γ(γ−1(ek)) = γ(ei · ej).

Therefore, we can give a second definition for G2 following [Joy00, Definition 10.1.1].

Definition 2. The subgroup of Gl(7) preserving the 3-form ϕ0 is the exceptional Lie group

G2. It is compact, connected, simply connected, semisimple and 14-dimensional.

By direct inspection on basis elements of R7 we get the relation

(ei④ϕ0) ∧ (ej④ϕ0) ∧ ϕ0 = 6g0(ei, ej)e
1···7, (1.5)

notice that, the inner product and the volume form can be recovered from ϕ0, so by

equation (1.5) the elements of G2 also preserve the orientation of R7 and the 4-form

ψ0 = ∗ϕ0 = e4567 + e2367 + e2345 + e1357 − e1346 − e1256 − e1247. (1.6)

We can use ψ0 and the inner product to obtain an alternating vector valued 3-form

χ0 : R7 × R
7 × R

7 → R
7 defined by

ψ0(u, v, w, z) = ∗ϕ0(u, v, w, z) = g0(χ0(u, v, w), z) for u, v, w, z ∈ R
7. (1.7)

Notice that, χ0 is not a triple cross-product since there exist orthonormal triples u, v, w

such that χ0(u, v, w) = 0. Thus χ0 = −
7

∑

i=1

(ei④ψ0) ⊗ ei, can be expressed in terms of the

cross product (c.f. [HL82]),

χ0(u, v, w) = −u× (v × w) − g0(u, v)w + g0(u,w)v, (1.8)
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Remark 1. Regarding orientation conventions, some authors adopt the model 3-form to

be

φ0 = e567 + e125 + e136 + e246 + e147 − e345 − e237,

(cf. [McL98, Chapters 4 and 5]), which relates to (1.4) by the orientation-reversing auto-

morphism of R7 ☎✝✝✝✝✝✝✆
I3

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

☞✍✍✍✍✍✍✌.

In this case, relation (1.5) becomes

(u④φ0) ∧ (v④φ0) ∧ φ0 = −6g0(u, v) volg0 . (1.9)

And the alternating vector valued 3-form (1.8) by

χ(u, v, w) = u× (v × w) + 〈u, v〉w − 〈u,w〉v.

Unless otherwise stated, we adopt throughout the convention (1.4).

Next, we want to define a G2–structure on a 7–dimensional real vector space.

This arise from the general notion of G–structure which is related with the reduction of

the structure group of a principal bundle and the existence of a global section in a specific

associated bundle, to more details see [Joy00, Sec. 2.6 and 10.1] and [Hus66, Ch. 6, Sec. 2].

Definition 3. Let V be a 7–dimensional real vector space. We call ϕ ∈ Λ3V ∗ a G2–

structure if there is a linear isomorphism V ∼= R
7 identifying ϕ with ϕ0. The 3-form with

this property is call positive and the set o positive 3-forms is denoted by Λ3
+V

∗ ⊂ Λ3V ∗.

The orbit Gl(7) · ϕ0 has dimension 35 = dim Gl(7) − dim G2, therefore Λ3
+V

∗

is open in Λ3V ∗. Also by Hodge duals of forms, the orbit Gl(V ) · ψ is open in Λ4V ∗.

Since the stabiliser of the basis element e7 ∈ S6 ⊂ R
7 is isomorphic to SU(3)

[CP15, Proposition 2.3 (b)], there exist a natural SU(3)–structure arisen from the G2–

structure ϕ. The orthogonal complement e⊥
7 with respect to the inner product (1.2) can

be identified with C
3 by taking a complex basis w1 = e1 − ie6, w2 = e2 + ie5, w3 = e3 + ie4.

Now, from the G2–structure (1.4), we have

−e7④ϕ0 = −e16 + e25 + e34 =
i

2
(

3
∑

k=1

wk ∧ w̄k) = ω0

ϕ0|e7⊥ = e123 + e145 + e246 − e356 = ρ+

e7④ψ0 = e124 − e135 − e236 − e456 = ρ−
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where ρ+ =
1

2
(ρ+ ρ̄), ρ− = −

i

2
(ρ− ρ̄) and ρ = w1 ∧ w2 ∧ w3 is a decomposable complex

3-form. Notice that the pair (ρ, ω0) satisfies the relations

ω0 ∧ ρ+ = ω0 ∧ ρ− = 0 and
1

4
ρ+ ∧ ρ− =

ω3
0

3!
.

The pair (ρ, ω0) defines a SU(3)–structure on C
3 and notice that ϕ0 = −ω0 ∧ e7 + ρ+. The

following example illustrates a natural construction of G2–structures on a 7-dimensional

Lie algebra, for some key examples, it will be a model to follow.

Example 1. Consider a 6–dimensional real Lie algebra h endowed with a SU(3)–structure

(ρ, ω) and consider the semi-direct product g = h ×ν R with Lie bracket

[(u, r), (v, s)] = ([u, v]h + ν(r)v − ν(s)u, 0)

where ν : R → Der(h). Then the induced G2–structure on g has the form

ϕ = ω ∧ e7 + ρ+.

And similarly, the Hodge dual ψ of ϕ has the form

ψ =
1

2
ω2 + ρ− ∧ e7.

1.2 Associative 3-planes

Fix (V 7, 〈·, ·〉) an inner product space. A k-form α ∈ ΛkV ∗ is a calibration if,

for every oriented k-plane π in V , we have α|π≤ vol(π) and when the equality is attained

we say that π is calibrated.

Lemma 1. [CP15, Lemma 2.17]

i) The 3-form ϕ0 defined in (1.4) is a calibration on (R7, g0).

ii) If u, v, w is an orthonormal triple of vectors in R
7, the ϕ0(u, v, w) = 1 if and only if

w = u× v.

Definition 4. An oriented 3-plane π in R
7 calibrated by ϕ0 is called an associative plane.

It follows from equation (1.8) and Lemma 1 ii), that χ0|π= 0 for an associative

plane. The following example provides a construction of associative planes arisen from

other calibrations (see [CP15, Lemma 2.24]).

Example 2. Let (g, ϕ) from Example 1:

1. Let k ⊂ h be a 2–dimensional Lie subalgebra. Then k ×ν R is associative in g if and

only if k is calibrated by ω, namely, k is a complex line for some complex coordinates

on h.
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2. Let m ⊂ h be a 3-dimensional Lie subalgebra. Then m is associative in g if and only

if m is calibrated by ρ+, namely, m is special Lagrangian.

1.3 G2–manifolds and associative submanifolds

Here the framework are oriented Riemannian manifolds. Particularly, an ori-

ented, spin 7–manifold and an oriented immersed 3–submanifold.

Definition 5. Let M be a smooth oriented 7–manifold. A G2–structure is a 3–form

ϕ ∈ Ω3(M) such that, around every p ∈ M , there exists a local section f of the oriented

frame bundle PSO(M) such that

ϕp = (fp)
∗ϕ0.

The relation (1.5) holds for a G2–structure from the above definition. Conse-

quently, ϕ induces a Hodge star operator ∗ϕ and the Levi-Civita connection ∇ϕ, though

for simplicity we omit henceforth the subscripts in g := gϕ, ∗ := ∗ϕ and ∇ := ∇ϕ.

Definition 6. A G2–structure is torsion free if ∇ϕ = 0.

It follows by the definition that the holonomy group Hol(g) ⊂ G2 for (M,ϕ, g)

if and only if ϕ is torsion free.

Theorem 3. [FG82, Férnandez-Gray,1982] A G2–structure ϕ is torsion free if and only

if dϕ = 0 (closed) and dψ = 0 (co-closed).

Moreover, the model cross-product on R
7 induces the bilinear map on vector

fields
P : Ω0(TM) × Ω0(TM) → Ω0(TM)

(u, v) 7→ P (u, v) = u× v.
(1.10)

Definition 7. Let (M,ϕ) be a 7–manifold with G2–structure. A 3–dimensional submanifold

Y ⊂ M is called associative if ϕ|Y ≡ vol(Y ).

For an associative subamnifold Y 3 also holds Lemma 1 in the sense that there

exist an orthonormal frame e1, e2, e3 of tangent bundle TY satisfying e1 × e2 = e3 for

each point of Y . Hence, we have that Y 3 is associative if and only χ|TY = 0, where

χ ∈ Ω3(M,TM) is a section from the vector bundle Λ3(TM)∗ ⊗ (TM) induced by ψ.

Lemma 2. If Y is an associative submanifold, then there is a natural identification

TY ∼= Λ2
+(NY ).
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Proof. Fix local orthonormal frames e1, e2, e3 and η4, η5, η6, η7 of TY and NY , respectively,

about a point p ∈ Y :

ϕp = e123 + e1(η45 + η67) + e2(η46 + η75) − e3(η47 + η56) (1.11)

and

e1④ϕ = e23 + η45 + η67,

e2④ϕ = e31 + η46 + η75,

e3④ϕ = e12 − η47 − η56.

Denote ω1 = (e1④ϕ)|NpY , ω2 = (e2④ϕ)|NpY , ω3 = −(e3④ϕ)|NpY and define on each fibre the

isomorphism ej ∈ TpY 7→ ωj ∈ Λ2
+(NpY ), which obviously varies smoothly with p.

1.4 G2–decomposition of the space of differential k-forms

We will briefly review the intrinsic torsion forms of a G2–structure and define

the full torsion tensor Tij, using local coordinates, following [Kar09, Bry06]. As before, let

(M,ϕ) be a smooth 7–manifold with G2–structure. In a local coordinate system (x1, ..., x7),

a differential k–form α on M will be written as

α =
1

k!
αi1···ikdx

i1···ik

where the sum is taken over all ordered subsets {i1 · · · ik} ⊂ {1, ..., 7} and αi1···ik is skew-

symmetric in all indices, i.e. αi1···ik = α(ei1 , ..., eik). So, the interior product of a k–form is

given by

ej④α =
1

(k − 1)!
αji1···ik−1

dxi1···ik−1 .

A Riemannian metric g on M induces on Ωk := Ωk(M) the metric g(dxi, dxj) := gij, where

(gij) denotes the inverse of the matrix (gij), then for decomposable k–forms we have

g(dxi1···ik , dxj1···jk) = det

☎✝✝✆
gi1j1 · · · gi1jk

... · · ·
...

gikj1 · · · gikjk

☞✍✍✌
=

∑

σ∈S7

sgn(σ)gi1jσ(1) · · · gikjσ(k)

With this convention, the inner product of two k–forms α =
1

k!
αi1···ikdx

i1···ik and β =

1

k!
βj1···jkdx

j1···jk is given by

g(α, β) =
1

(k! )2
αi1···ikβj1···jk

∑

σ∈S7

sgn(σ)gi1jσ(1) · · · gikjσ(k)

=
1

k!
αi1···ikβj1···jkg

i1j1 · · · gikjk ,
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notice that the last equality follows by the skew-symmetry of β, βjσ(1)···jσ(k)
= sgn(σ)βj1···jk .

A G2–structure ϕ splits Ω• into orthogonal irreducible G2 representations, with respect to

its G2–metric g. In particular,

Ω2 = Ω2
7 ⊕ Ω2

14 and Ω3 = Ω3
1 ⊕ Ω3

7 ⊕ Ω3
27, (1.12)

where Ωk
l ⊂ Ωk denotes (fibrewise) an irreducible G2–submodule of dimension l, with an

explicit description:

Ω2
7 = {X④ϕ;X ∈ Ω0(TM)} = {β ∈ Ω2; ∗(ϕ ∧ β) = 2β}

Ω2
14 = {β ∈ Ω2; β ∧ ψ = 0} = {β ∈ Ω2; ∗(ϕ ∧ β) = −β}

Ω3
1 = {fϕ; f ∈ C∞(M)}

Ω3
7 = {X④ψ;X ∈ Ω0(TM)}

Ω3
27 = {hijg

jldxi ∧ (el)④ϕ;hij = hji, trg(hij) = gijhij = 0}

(1.13)

Remark 2. The definitions above for Ω2
7 and Ω2

14 correspond to the convention 1.5. In

the convention 1.9, the eigenvalues of the operator β 7→ ∗(ϕ ∧ β) are −2 and 1 instead of

+2 and −1, respectively.

The analogous decompositions of Ω4 and Ω5 are obtained from the above by

the Hodge isomorphism ∗ϕ : Ωk → Ω7−k. Studying the symmetries of torsion one finds

that ∇ϕ ∈ Ω1 ⊗ Ω3
7, so that tensor lies in a bundle of rank 49 [Kar09, Lemma 2.24]. Notice

also that Ω3
7

∼= Ω1, so, contracting the dual 4-form ψ = ∗ϕϕ by a frame of TM , then using

the Riemannian metric, one has

Ω2 ⊕ S2(T∗M) = Ω1 ⊗ Ω3
7

∼= End(TM) = so(TM) ⊕ sym(TM).

Here S2(T∗M) denotes the symmetric bilinear forms and sym(TM) the symmetric en-

domorphisms of TM . Both of the above splittings are G2–invariant, so, comparing the

G2–irreducible decomposition so(7) = g2 ⊕ [R7] and (1.12), we get the following identifica-

tion between G2–irreducible summands

[R7] ∼= Ω2
7 and g2

∼= Ω2
14.

For S2(T∗M) ∼= sym(TM), Bryant defines maps i : S2(T∗M) → Ω3 and j : Ω3 → S2(T∗M)

by

i(h) =
1

2
hilg

lmϕmjkdx
ijk and j(η)(u, v) = ∗((u④ϕ) ∧ (v④ϕ) ∧ η), (1.14)

notice that i(h) = hilg
lmdxi ∧ (em④ϕ) and i(g) = 3ϕ. We list the following proprierties (see

[Kar09, Propositions 2.14 and 2.17]).

Lemma 3. Suppose that h is a symmetric tensor then holds:

∗i(h) =
�1

4
trg(h)gij − hij

✟
gjldxi ∧ (el④ψ).

j(i(h)) =2 trg(h)g + 4h.
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From the above relation follows j(ϕ) = 6g, while j(Ω3
7) = 0. The map i is

injective [Kar09, Corollary 2.16] and, by the G2–decomposition S2(T∗M) = Rgϕ⊕S2
0(T

∗M),

it identifies

Rgϕ ∼= Ω3
1 and S2

0(T
∗M) ∼= Ω3

27.

Accordingly, we have a decomposition for the torsion components dϕ ∈ Ω4 and dψ ∈ Ω5

given by (see [Bry06, Kar09])

dϕ = τ0ψ + 3τ1 ∧ ϕ+ ∗τ3 and dψ = 4τ1 ∧ ψ + τ2 ∧ ϕ = 4τ1 ∧ ψ − ∗τ2, (1.15)

where τ0 ∈ Ω0, τ1 ∈ Ω1, τ2 ∈ Ω2
14 and τ3 ∈ Ω3

27 are called the torsion forms.

Remark 3. The constants are chosen for convenience. A slightly different convention for

torsion components is used in [Gri13]

dϕ = 4τ1ψ − 3τ7 ∧ ϕ− 3 ∗ i(τ27) and dψ = −4τ7 ∧ ψ − 2 ∗ τ14,

accordingly with our notation, τ0 corresponds to 4τ1, τ1 corresponds to −τ7, τ3 corresponds

to −3i(τ27) and τ2 corresponds to −2τ14.

The torsion forms are completely encoded in the full torsion tensor T , defined

in coordinates by

∇lϕabc =: Tlmg
mnψnabc, (1.16)

which is expressed in terms of the irreducible G2–decomposition of End(TM) = W0 ⊕

W1 ⊕W2 ⊕W3 where W0
∼= Ω0, W1

∼= Ω3
7, W2

∼= Ω2
14 and W3

∼= Ω3
27.

Proposition 3. [Kar09, Theorem 2.27] The full torsion tensor T = Tlm is

T =
τ0

4
gϕ − τ27 − (τ1)

♯④ϕ−
1

2
τ2,

where τ3 := i(τ27) and ♯ : Ω1 → X (M) the musical isomorphism induced by the G2–metric.

Remark 4. (i) For the G2–structure convention (1.9), the full torsion tensor is

T =
τ0

4
gϕ − τ27 + (τ1)

♯④ϕ−
1

2
τ2,

(ii) Notice that, in light of the convention 3, the full torsion tensor is expressed as

T = τ1g + (τ7)
♯④ϕ+ τ14 + τ27

In [Kar09, Lemmata A.8-A.10], Karigiannis compiles several useful identities

among the tensors g, ϕ and ψ:

ϕijkϕabcg
kc =giagjb − gibgja + ψijab (1.17)

ϕijkψabcdg
kd = − giaϕjbc − gibϕajc − gicϕabj (1.18)

+ gajϕibc + gbjϕaic + gcjϕabi (1.19)

ψrstuψabcdg
ragsbgtcgud =168 (1.20)

ψrstuψabcdg
sbgtcgud =24gra (1.21)
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Differentiating (1.20) and (1.21), one obtains

∇lψrstuψabcdg
ragsbgtcgud = 0, (1.22)

∇lψrstuψabcdg
sbgtcgud = −ψrstu∇lψabcdg

sbgtcgud. (1.23)

Lemma 4. For any vector field X, the 4-form ∇Xψ lies in the subspace Ω4
7 of Ω4.

Proof. It is enough to prove that ∇Xψ ⊥ Ω4
1 ⊕ Ω4

27. Considering X = el and applying

(1.22), we have

g(∇lψ, ψ) =
1

24
∇lψrstuψabcdg

ragsbgtcgud = 0,

so ∇lψ ⊥ Ω4
1. To see that ∇lψ ⊥ Ω4

27, consider some η ∈ Ω4
27 in local form,

η =
1

3!

�1

4
trg(h)gij − hij

✟
gjlψlabcdx

iabc,

and take the inner product with ∇lψ:

g(∇lψ, η) =
1

3!
∇lψrstu

�1

4
trg(h)gli − hli

✟
ψlabcg

rigsagtbguc

=
1

4!
∇lψrstu(trg(h)grl − 4hrl)ψlabcg

sagtbguc = 0,

using that, trg(h)grl − 4hrl is a symmetric (0, 2)-tensor, while ∇lψrstuψlabcg
sagtbguc is

skew-symmetric in r and l, by (1.23).

Using Lemma 4 above and the identity ∗(X④ψ) = ϕ∧X♭ ( X ∈ Ω0(M) ), where

X♭ is the 1–form defined by X♭(Y ) = g(X, Y ), one has:

Corollary 3. [Kar09, Remark 2.29] With the above notation,

∇lψrstu = −Tlrϕstu + Tlsϕrtu − Tltϕrsu + Tluϕrst.

For a torsion-free G2–structure, the cross-product (1.10) is parallel, so it satisfies

the Leibniz rule

∇(u× v) = ∇u× v + u× ∇v, ∀u, v ∈ Ω0(TM).

In general, the action of ∇ on the cross product can be expressed in terms of the total

torsion tensor:

Lemma 5. For the vector fields u, v, w, z ∈ Ω0(TM), we have

(i) ∇z(u× v) = ∇zu× v + u× ∇zv +
7

∑

m=1

T (z, em)χ(em, u, v).
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(ii) R(w, z)(u× v) = R(w, z)u× v + u×R(w, z)v + T (w, z, u, v), where

T (w, z, u, v) :=
7

∑

m=1

T (z, em)(∇wψ)(em, u, v, ·)
♯ − T (w, em)(∇zψ)(em, u, v, ·)

♯

+
�
(∇wT )(z, em) − (∇zT )(w, em)

✟
χ(em, u, v)

(1.24)

in an orthonormal local frame {e1, ..., e7} of TM .

(iii) If Y is an associative submanifold of M , for u, v, z ∈ Ω0(TY ) and η ∈ Ω0(NY ), then

∇⊤
z (u× v) =∇⊤

z u× v + u× ∇⊤
z v

∇⊥
z (u× η) =∇⊤

z u× η + u× ∇⊥
z η +

3
∑

m=1

T (z, em)χ(em, u, η)

where e1, e2, e3 = e1 × e2 is a local frame of TY , ∇⊤ = ∇ − ∇⊥ is the orthogonal

projection of ∇ to TY and ∇⊥ the normal connection on NY .

Proof. (i) Consider normal coordinates x1, ..., x7 about a given p ∈ M , (i.e. ∇iej = 0 at

p) and an orthonormal frame e1, ..., e7. At the point p, we have:

∇z(u× v) =
7

∑

i=1

∇z(〈u× v, ei〉ei) =
7

∑

i=1

∇z(ϕ(u, v, ei)ei)

=
7

∑

i=1

z(ϕ(u, v, ei))ei + ϕ(u, v, ei)∇zei

=
7

∑

i=1

�
ϕ(∇zu, v, ei) + ϕ(u,∇zv, ei) + ϕ(u, v,∇zei) + (∇zϕ)(u, v, ei)

✟
ei

=
7

∑

i=1

✁
ϕ(∇zu, v, ei) + ϕ(u,∇zv, ei) +

7
∑

m=1

T (z, em)ψ(em, u, v, ei)
✠
ei

= ∇zu× v + u× ∇zv +
7

∑

m=1

T (z, em)χ(em, u, v).

Notice that we used (∇jei)p = 0 in the third and fourth equalities, also the fact that

∇zϕ = T (z, em)em④ψ ∈ Ω3
7.

(ii) Using the first part, we have

∇w∇z(u× v) = ∇w∇zu× v + ∇zu× ∇wv + ∇wu× ∇zv + u× ∇w∇zv

+
7

∑

i,m=1

✁
T (w, em)

�
ψ(em,∇zu, v, ei) + ψ(em, u,∇zv, ei)

✟
+
�
(∇wT )(z, em) + T (∇wz, em)

✟
ψ(em, u, v, ei)

+T (z, em)
�
ψ(em,∇wu, v, ei) + ψ(em, u,∇wv, ei)

+(∇wψ)(em, u, v, ei)
✟✠
ei.
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Using the symmetries of the curvature tensor R(w, z) = ∇w∇z − ∇z∇w − ∇[w,z] and

the fact that ∇ is torsion-free, one has [w, z] = ∇wz − ∇zw, and we compute

R(w, z)(u× v) = R(w, z)u× v + u×R(w, z)v

+
7

∑

i,m=1

✁
T (z, em)(∇wψ)(em, u, v, ei)

+
�
(∇wT )(z, em) − (∇zT )(w, em)

✟
ψ(em, u, v, ei)

− T (w, em)(∇zψ)(em, u, v, ei)
✠
ei

(iii) Now, if u and v are in TY , consider e1, e2, e3 = e1 × e2 an orthonormal frame of TY ,

then we have

(∇zu× v)⊤ =
� 7

∑

i=1

ϕ(∇zu, v, ei)ei
✟⊤

=
3

∑

i=1

ϕ(∇zu, v, ei)ei = ∇⊤
z u× v.

Notice that we used the TY -invariance of the × i.e. TpY × TpY ⊂ TpY . Then,

∇⊤
z (u× v) =♣∇z(u× v)q⊤

=∇⊤
z u× v + u× ∇⊤

z v +
� 7

∑

m=1

T (z, em)χ(em, u, v)
✟⊤

=∇⊤
z u× v + u× ∇⊤

z v +
7

∑

m=1

T (z, em)χ(em, u, v)⊤

The first equation follows by the relations NpY ×NpY ⊂ TpY and TpY ×NpY ⊂ NpY .

So, χ(em, u, v)
⊤ ∈ TpY if and only if m ∈ {1, 2, 3} and by the associative of Y

χ(em, u, v)⊤ = 0.

For the second relation we have

∇⊥
z (u× η) =∇z(u× η) − ∇⊤

z (u× η) = ∇z(u× η) − ♣∇z(u× η)q⊤

=∇⊤
z u× η + u× ∇⊥

z η +
7

∑

m=1

T (z, em)χ(em, u, η) −
7

∑

m=1

T (z, em)χ(em, u, η)⊤

=∇⊤
z u× η + u× ∇⊥

z η +
7

∑

m=1

T (z, em)χ(em, u, η) −
7

∑

m=4

T (z, em)χ(em, u, η).

1.4.1 SU(3)–decompositions of the space of differential k-forms

By the relation between G2–geometry and SU(3)–geometry mentioned in Section

1.1, in this section we collect some facts about k–differential forms on a 6-manifold. It will

be a useful computational tool for the Chapter 3.

Let (N,ω, ρ+) be an oriented, Riemannian 6-manifold. An SU(3)–structure is a reduction

of the oriented frame bundle PSO(N) to an SU(3)-principal subbundle [Joy00, Section 6.1].

The required SU(3) reduction is related to the existence of:
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An almost complex structure J , i.e. A smooth map J : Ω0(TN) → Ω0(TN) such

that J2 = − Id.

A Riemannian metric h with respect to which J is orthogonal i.e. h(X, Y ) =

h(JX, JY ) for any X, Y ∈ Ω0(TN).

And a nowhere vanishing smooth complex valued 3-form ρ of type (3, 0) i.e. Near

to each point of N we can find a local unitary coframe of complex-valued 1-forms

(dz1, dz2, dz3) for which ρ = dz1 ∧ dz2 ∧ dz3.

From the natural SU(3)–action on Ω•(TN) we have the irreducible representation [BV07]

Ω2(TN) =Ω2
1(TN) ⊕ Ω2

6(TN) ⊕ Ω2
8(TN)

Ω3(TN) =Ω3
Re(TN) ⊕ Ω3

Im(TN) ⊕ Ω3
6(TN) ⊕ Ω3

12(TN),
(1.25)

similar to the G2–decomposition, Ωk
l (TN) ⊂ Ωk(TN) denotes (fibrewise) an irreducible

SU(3)–submodule of dimension l, with an explicit description:

• Ω2
1(TN) = {fω; f ∈ C∞(N)}.

• Ω2
6(TN) = {α ∈ Ω2(TN); J∗α = −α}.

• Ω2
8(TN) = {α ∈ Ω2(TN); J∗α = α and α ∧ ω2 = 0}.

• Ω3
Re(TN) = {fρ+; f ∈ C∞(N)} and Ω3

Im(TN) = {fρ−; f ∈ C∞(N)}.

• Ω3
6(TN) = {β ∧ ω; β ∈ Ω1(TN)}.

• Ω3
12(TN) = {γ ∈ Ω3(TN); γ ∧ ω = 0, γ ∧ ρ+ = γ ∧ ρ− = 0}.

Similarly to the G2–identities from [Kar09, Appendix A and B], for the SU(3)–

structure

ω =
1

2
ωijdx

ij, ρ+ = ρ+
ijkdx

ijk and ρ− = ρ−
ijkdx

ijk,

the following properties hold [BV07, Section 2.2]

ρ+
iabωab = 0, ωipωpj = −δij, ρ+

ijpωpk = ρ−
ijk,

ρ−
ijpωpk = −ρ+

ijk, ρ+
ipqρ

−
jpq = 4ωij, ρ+

ipqρ
+
jpq = 4δij = ρ−

ipqρ
−
jpq,

ρ−
ijpρ

+
klp = −ωikδjl + ωjkδil + ωilδjk − ωjlδik,

ρ+
ijpρ

+
klp = −ωikωjl + ωilωjk + δikδjl − δjkδil = ρ−

ijpρ
−
klp.

(1.26)

1.5 Description of the normal bundle of an associative submanifold

We conclude this chapter applying results from 4-dimensional spin geometry to

describe the normal bundle of an associative submanifold in terms of a spinor bundle.
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1.5.1 Spin group of 4-dimensional vector space

Here we recall some background and fix the notation, following [Sal00, Chapter

2] and [DK90, Chapter 3].

On an inner product space (V n, 〈·, ·〉), the Clifford algebra Cl(V ) is a 2n-

dimensional associative algebra with unit 1, generated by the elements of some orthonormal

basis e1, ..., en of V with relations

e2
i = −1, eiej = −ejei for i 6= j.

A basis for Cl(V ) is given by

e0 = 1, eI = ei1 · · · eik

where I = {i1, ..., ik} ⊂ {1, ..., n} for i1 < · · · < ik, and Cl(V ) admits a natural involution

α : Cl(V ) → Cl(V )

defined by α(x) = rx :=
∑

I

ǫIxIeI , where ǫI := (−1)k(k+1)/2 and xI ∈ R are the components

of x in the basis {eI}. Denote by deg(eI) := |I| the degree of an element eI ∈ Cl(V ), by

Clk(V ) the subset of elements of degree k, and by Cl0(V ) and Cl1(V ) the subspaces of

elements of even and odd degree, respectively.

Example 3. On V = R
4 with the Euclidean inner product, we have Cl(V ) = M2(H), the

2 × 2 matrices with entries in the quaternions H = 〈i, j, k〉. The elements of Cl(V ) are 1,

ei, {eiej}i<j, {eiejek}i<j<k and e1e2e3e4, with i, j, k = 1, 2, 3, 4, with generators

e1 =

✄
0 1

−1 0

☛
, e2 =

✄
0 i

i 0

☛
, e3 =

✄
0 j

j 0

☛
and e4 =

✄
0 k

k 0

☛
and the involution α(A) = A∗ is the transpose conjugation.

Denote the set of units of Cl(V ) by Cl×(V ). Considering the twisted adjoint

representation rAd : Cl×(V ) → Gl(Cl(V )) given by⑨Ad(x)y = ((x)0 − (x)1)yrx,
where (x)0 ∈ Cl0(V ) and (x)1 ∈ Cl1(V ) are the even and odd parts of x, respectively. We

define the Spin group of V :

Spin(V ) := {x ∈ Cl0(V )| ⑨Ad(x)V = V, xrx = 1}.

For dim V ≥ 3, Spin(V ) is a compact, connected and simply connected Lie group, fitting

in a short exact sequence [Sal00, Lemma 4.25]

0 → Z2 → Spin(V ) → SO(V ) → 1.

In particular, the following results hold in dimensions 3 and 4:
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Lemma 6. [Sal00, Lemma 4.4] For every x ∈ Sp(1), there is a unique orthogonal matrix

ξ0(x) ∈ SO(3), such that ξ0(x)y = xyrx, for all y ∈ Im(H) ∼= R
3, and the map ξ0 : Sp(1) →

SO(3) is a surjective homomorphism with kernel {±1}, hence

SO(3) ∼= Sp(1)/Z2 and Spin(3) ∼= Sp(1).

Lemma 7. [Sal00, Lemma 4.6] For every x, y ∈ Sp(1), there is a unique orthogonal

matrix η0(x, y) ∈ SO(4), such that η0(x, y)z = xzry, for all z ∈ R
4 ∼= H, and the map

η0 : Sp(1) × Sp(1) → SO(4) is a surjective homomorphism with kernel {±(1, 1)}, hence

SO(4) ∼= Sp(1) × Sp(1)/Z2 and Spin(4) ∼= Sp(1) × Sp(1)

The last lemma provides two natural surjective homomorphisms ρ± : SO(4) →

SO(3) and, therefore, two exact sequences

1 → Sp(1)
ι±
−→ SO(4)

ρ±

−→ SO(3) → 1

where ι+(v) = η0([v, 1]) and ι−(v) = η0([1, v]), interpreting η0 as the induced homomor-

phism on the quotient Sp(1) ×Z2 Sp(1). Those sequences are related to the SO(4)-action on

the spaces of self-dual and anti-self-dual 2-forms of a 4-dimensional inner-product space.

An element q ∈ H in the canonical basis q = t+xi+yj+zk = (t+xi)+(y+zi)j

can be identified with the 2 × 2 complex matrix

A =

✄
t+ xi −y + zi

y + zi t− xi

☛
,

with

detA = t2 + x2 + y2 + z2 = |q|2.

Since A∗A = (detA)I2, every q ∈ Sp(1) ∼= S3 is identified with a unitary matrix with

determinant 1, that is, SU(2) ∼= Sp(1).

Definition 8. Let V be a real inner product space of dimension 2n ≡ 2, 4 mod 8 or

2n+ 1 ≡ 3 mod 8. A Spin structure on V is a quadruple (S, I, J,Γ), where S is a 2n+1-

dimensional real inner product space, I and J are two anti-commuting orthogonal complex

structure

I−1 = I∗ = −I, J−1 = J∗ = −J, IJ = −JI,

and Γ : V → End(S) is a real linear map with the following properties:

Γ(v)∗ + Γ(v) = 0, Γ(v)∗Γ(v) = |v|2Id, Γ(v)I = IΓ(v), Γ(v)J = JΓ(v), ∀v ∈ V.

Example 4. For a vector space V of real dimension 4, using the identification V ∼= H

and defining S = H ⊕ H, we have the maps Γ : H → End(H ⊕ H), I, J : H ⊕ H → H ⊕ H

defined for v, x, y ∈ H by

Γ(v)(x, y) = (vy,−v̄x), I(x, y) = (xi, yi), J(x, y) = (xj, yj).
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It is interesting to note that

Γ(v) =

✄
0 γ(v)

−γ(v)∗ 0

☛
,

where γ : H → End(H) also satisfies

γ(v)∗ + γ(v) = 0, γ(v)∗γ(v) = |v|2Id, ∀v ∈ H.

Given a Spin structure on a 4-dimensional space V , consider S = S+ ⊕ S−,

where S+ and S− are copies of C2 with standard Hermitian metric 〈·, ·〉. The associated

symplectic form compatible with the almost complex structure I : S± → S± is defined

by ω(x, y) := 〈x, Iy〉. Now, consider the (real) 4-dimensional space HomI(S
+, S−) =

Re(Hom(S+, S−)) of linear maps over the quaternions, where Hom(S+, S−) are complex

linear maps. Unitary elements of HomI(S
+, S−) preserve the Hermitian and symplectic

structures, and γ : V → HomI(S
+, S−) defined above acts on the standard basis by

γ(e1) =

✄
1 0

0 1

☛
, γ(e2) =

✄
i 0

0 −i

☛
, γ(e3) =

✄
0 −1

1 0

☛
γ(e4) =

✄
0 i

i 0

☛
.

Up to isomorphism, the above generate SU(2) ∼= Spin(3), since the symmetry group

SU(2)+ × SU(2)− of (S+, S−) is connected. Thus γ fixes the orientation of V and, using

the sympletic form to identify S+ with its dual, we have

V ⊗R C ∼= S+ ⊗C S
−. (1.27)

Moreover, given v ∈ V , consider the Hermitian adjoint γ(v)∗ : S− → S+ of the map

γ(v) : S+ → S−. Then, for orthonormal vectors v, v′ ∈ V , the map γ(v)∗γ(v′) defines an

endomorphism of S+ which satisfies

γ(v)∗γ(v) = 1 and γ(v)∗γ(v′) + γ∗(v′)γ(v) = 0.

In particular, we have a natural action ρ of Λ2(V ) on S+ defined by

ρ(v ∧ v′)s := −γ(v)∗γ(v′)s for s ∈ S+.

Now, with respect to the Euclidean metric, the 2–forms split as Λ2(V ) =

Λ2
+(V ) ⊕ Λ2

−(V ), where Λ2
+(V ) and Λ2

−(V ) denote the self-dual and anti-self-dual forms,

respectively:

Λ2
±(V ) := {β ∈ Λ2(V ) | ∗β = ±β}.

We observe that Λ2
−(V ) acts trivially on S+, by direct inspection on basis elements:

Λ2
−(V ) = Span{e1 ∧ e2 − e3 ∧ e4, e1 ∧ e4 − e2 ∧ e3, e1 ∧ e3 − e4 ∧ e2}
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ρ(e1 ∧ e2 − e3 ∧ e4) = −γ(e1)
∗γ(e2) + γ(e3)

∗γ(e4)

=

✄
−1 0

0 −1

☛✄
i 0

0 −i

☛
+

✄
0 1

−1 0

☛✄
0 i

i 0

☛
= 0,

ρ(e1 ∧ e4 − e2 ∧ e3) = −γ(e1)
∗γ(e4) + γ(e2)

∗γ(e3)

=

✄
−1 0

0 −1

☛✄
0 i

i 0

☛
+

✄
−i 0

0 i

☛✄
0 −1

1 0

☛
= 0,

ρ(e1 ∧ e3 − e4 ∧ e2) = −γ(e1)
∗γ(e3) + γ(e4)

∗γ(e2)

=

✄
−1 0

0 −1

☛✄
0 −1

1 0

☛
+

✄
0 −i

−i 0

☛✄
i 0

0 −i

☛
= 0.

Thus we get the isomorphisms Λ2
+(V ) → su(S+) and Λ2

−(V ) → su(S−).

1.5.2 The twisted Dirac operator

Let (M,ϕ) be a smooth 7-manifold with G2–structure and Y an associative

submanifold of M . The oriented orthonormal frame of TY has the form {e1, e2, e3 = e1×e2}.

So, with respect to the splitting TM |Y = TY ⊕NY , the cross product induces maps

Ω0(TY ) × Ω0(TY ) → Ω0(TY ),

Ω0(TY ) × Ω0(NY ) → Ω0(NY ),

Ω0(NY ) × Ω0(NY ) → Ω0(TY ).

(1.28)

In particular, the map γ : Ω0(TY ) × Ω0(NY ) → Ω0(NY ) endows NY with a Clifford

bundle structure.

Since the Levi-Civita connection of (M,ϕ) induces metric connections on the bundles TY

and NY , the composition

Ω0(NY )
∇A0−−→ Ω0(TY ) ⊗ Ω0(NY )

γ
−→ Ω0(NY ) (1.29)

defines a natural Fueter-Dirac operator /DA0
(σ) := γ(∇A0(σ)), where A0 ∈ Ω1(Y, so(4))

denotes the connection induced on NY by the Levi-Civita connection ∇ϕ of the G2–metric

of (M,ϕ). To simplify the notation, the twisted Dirac operator induced by the normal

connection A0 will be denoted just by /D.

The normal bundle NY of an associative submanifold is trivial [CP15, Lemma

5.1, arXiv version: 1207.4470v3]. In particular, the second Stiefel-Whitney class w2(NY )
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vanishes, so there exists a spin structure on NY [LM16, Theorem 1.7]. This is equivalent

to the existence of a map Γ : NY → End(S) such that

Γ(σ) + Γ(σ)∗ = 0 Γ(σ)∗Γ(σ) = 〈σ, σ〉 Id σ ∈ Ω0(NY ),

where S is a vector bundle of (real) rank 8 and it splits into Γ–eigenbundles S+ and S− of

rank 4. We saw in the last Section that the Spin structure induces an isomorphism

ρ± : Λ2
±(NY ) → su(S±),

so, by Lemma 2, the Spin structure Γ0 : TY → End(S+) on TY coincides with the Spin

structure on NY via the projection Spin(4) = Spin(3) × Spin(3). Defining the Clifford

multiplication

τ := Γ0 ⊗ IdS− :TY → End(S+ ⊗ S−)

and using the Spin connection ∇ on S+ ⊗ S−,

∇(σ ⊗ ε) = ∇+σ ⊗ ε+ σ ⊗ ∇−ε,

we form the Dirac operator D : Ω0(Y, S+ ⊗ S−) → Ω0(Y, S+ ⊗ S−) by

D(σ ⊗ ε) :=
3

∑

i=1

τ(ei)∇i(σ ⊗ ε).

Proposition 4. Under the isomorphism (1.27), we have NY ⊗R C ∼= S+ ⊗C S
−, the Spin

connection ∇ and the Clifford multiplication τ agree with the induced connection ∇⊥ on

NY and γ, respectively.

Proof. In fact, each section σ⊗ε of S+⊗CS
− induces a section ν = σ∗⊗ε on Hom(S+, S−) ∼=

(S+)∗ ⊗ S− such that ν(σ) = σ∗(σ) ⊗ ε = ε, then

∇ν = ∇(σ∗ ⊗ ε)

= (∇+)∗σ∗ ⊗ ε+ σ∗ ⊗ ∇−ε,

where ∇ν is a section on T ∗Y ⊗ Hom(S+, S−), so, for each σ section on S+

(∇ν)(σ) = (∇+)∗σ∗(σ) ⊗ ε+ σ∗(σ) ⊗ ∇−ε

= [dσ∗(σ) − σ∗(∇+σ)] ⊗ ε+ σ∗(σ) ⊗ ∇−ε

= −ν(∇+σ) + ∇−(ν(σ)).

On the other hand, the Spin connection ∇ is compatible with the induced connection ∇⊥,

that is,

∇−(Γ(n)σ) = Γ(∇⊥ n)σ + Γ(n)∇+σ,
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where Γ : NY → HomJ(S+, S−) is the isomorphism induced by (1.27), then for each

section n of NY and σ of S+,

Γ(∇⊥ n) = −Γ(n)∇+σ + ∇−(Γ(n)σ).

Therefore, ∇⊥ agrees with the Spin connection ∇ via the isomorphism Γ. Finally, with

respect to the Clifford multiplications we have

TY End(S+) End(S+ ⊗C S
−)

End(NY ⊗R C)

Γ0

γ

⊗ IdEnd(S−)

∼=

and by Schur’s lemma γ and τ are the same.

In conclusion, (1.29) defines a twisted Dirac operator.
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2 Deformation of associative submanifolds

We now address the general framework proposed by Akbulut and Salur [AS08a,

AS08b], in which the role of torsion in the associative deformation theory is captured

by a twisted Fueter-Dirac operator. Given an associative submanifold Y 3 in (M,ϕ), the

G2–structure induces connections on the bundles NY and TY . Moreover, Proposition 4

gives an identification NY ∼= Re(S+ ⊗C S
−), with the respective reductions Λ2

±(NY ) ∼=

su(S±) = ad(S±). We will refer to elements in the kernel ker /D of the Dirac operator (1.29)

as harmonic spinors twisted by S−, or simply, twisted harmonic spinors.

Denote by A(S±) the space of connections on each spinor bundle S±, and let

A0 ∈ Ω1(Y, so(4)) be the induced connection on NY , so that the isomorphism so(4) ∼=

so(3) ⊕ so(3) gives a decomposition A0 = A+
0 ⊕ A−

0 , with A±
0 ∈ A(S±). Fixing these

reference connections, each A(S±) is an affine space modelled on Ω1(Y, ad(S±)), so a

connection A± ∈ A(S±) is of the form

A± = A±
0 + a± for a± ∈ Ω1(Y, ad(S±)).

Thus a connection on NY has the form

A = A0 + a = (A+
0 + a+) ⊕ (A−

0 + a−) for a ∈ Ω1(Y, ad(NY )).

Now, using the Clifford multiplication (indeed the cross-product), we define the twisted

Dirac operator

/DA :=
3

∑

j=1

ei × ∇ei : Ω0(NY ) → Ω0(NY )

where ∇ := ∇A is given by a connection on NY and the normal sections in ker( /DA)

are called harmonic spinors twisted by (S−, A). The following Definition is adopted from

[AS08a]:

Definition 9. Let Y be an associative submanifold of (M,ϕ). The Fueter-Dirac operator

associated with Y is

/DA σ :=
3

∑

i=1

ei × ∇⊥
ei
σ − ei × a(ei)(σ), (2.1)

where a ∈ Ω1(Y, ad(NY )) defined by a(ei)(σ) = (∇σ(ei))
⊥ is the normal component of

∇σ(ei), and ∇ is the Levi-Civita connection on M .

We know from [AS08a, Theorem 6] that the linearisation of the deformation

problem for an associative submanifold Y of (M,ϕ) at Y is identified with ker /DA, so this

space is called the infinitesimal deformation space of Y . Our motivation is precisely the
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expectation that a Weitzenböck formula for (2.1), in favourable cases at least, can give

information about the deformation space ker /DA.

Lemma 8. Let {e1, e2, e3} and {η4, ..., η7} be orthonormal frames of the vector bundles

TY and NY , respectively. Then

/DA σ =
3

∑

i=1

ei × ∇⊥
ei
σ −

7
∑

k=4

(∇σψ)(ηk, e1, e2, e3)ηk. (2.2)

Proof. Since A0 is the connection induced on NY by the Levi-Civita connection on M

given by the G2–metric gϕ, we have ∇A0 = ∇⊥. Now, for each σ ∈ Ω0(NY ),

3
∑

i=1

ei × a(ei)(σ) = e1 × (∇σe1)
⊥ + e2 × (∇σe2)

⊥ + e3 × (∇σe3)
⊥

= (e2 × e3) × (∇σe1)
⊥ + (e3 × e1) × (∇σe2)

⊥ + (e1 × e2) × (∇σe3)
⊥

= χ((∇σe1)
⊥, e2, e3) + χ((∇σe2)

⊥, e3, e1) + χ((∇σe3)
⊥, e1, e2)

= (♦).

Since Y is associative exactly when χ|TY = 0, this implies

χ((∇σei)
⊥, ej, ek) = χ(∇σei, ej, ek).

Furthermore, the section χ(∇σ(ei), ej, ek) lies on the normal component, so

(♦) =
7

∑

k=4

(〈χ(∇σ(e1), e2, e3), ηk〉 + 〈χ(e1,∇σ(e2), e3), ηk〉 + 〈χ(e1, e2,∇σ(e3)), ηk〉)ηk

=
7

∑

k=4

(−(∇σψ)(e1, e2, e3, ηk) + σ(ψ(e1, e2, e3, ηk)) − ψ(e1, e2, e3,∇σ(ηk)))ηk

=
7

∑

k=4

((∇σψ)(ηk, e1, e2, e3)ηk.

To obtain the second equality we used the covariant derivative of ψ:

(∇σψ)(e1, e2, e3, ηk) = σ(ψ(e1, e2, e3, ηk)) − ψ(∇σe1, e2, e3, ηk) − · · · − ψ(e1, e2, e3,∇σηk)

and equation (1.7), and for the last one we used the skew-symmetry of ∇σψ and the

associativity condition χ(e1, e2, e3) = 0.

Remark 5. If the G2–structure is choosen with the convention (1.9), then the operator

/DA is expressed as

/DA σ = −
3

∑

i=1

ei × ∇⊥
ei
σ +

7
∑

k=4

(∇σψ)(ηk, e1, e2, e3)ηk. (2.3)
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Fix p ∈ Y and choose local orthonormal frames {e1, e2, e3} and {η4, η5, η6, η7}

of TY and NY , respectively, such that

(∇eiej)p = (∇eiηk)p = (∇ηlηk)p = 0 (2.4)

for all i, j = 1, 2, 3 and k, l = 4, 5, 6, 7. Observe that, for any sections σ, η ∈ Ω0(TM |Y ),

one has

∇σ(η) ∈ Ω0(TM |Y ) = Ω0(TY ) ⊕ Ω0(NY ), (2.5)

so both tangent and normal components of (2.4) vanish at p. Then the following holds at

p:

/DA
2
σ =

3
∑

i,j=1

ei × ∇⊥
i (ej × ∇⊥

j σ) −
3

∑

i=1

7
∑

l=4

ei × ∇⊥
i {(∇σψ)(ηl, e1, e2, e3)ηl}

−
3

∑

j=1

7
∑

k=4

(∇ej×∇⊥
j σ
ψ)(ηk, e1, e2, e3)ηk +

7
∑

k,l=4

(∇(∇σψ)(ηl,e1,e2,e3)ηlψ)(ηk, e1, e2, e3)ηk

=
3

∑

i,j=1

ei × (ej × ∇⊥
i ∇⊥

j σ)❧ ❥❤ ♥
(I)

+
3

∑

i,j,l=1

7
∑

m=4

T (ei, el)ψ(el, ej,∇
⊥
j σ, ηm)ei × ηm❧ ❥❤ ♥

(II)

−
3

∑

j=1

7
∑

k,n=4

ϕ(ej,∇
⊥
j σ, ηn)(∇ηnψ)(ηk, e1, e2, e3)ηk❧ ❥❤ ♥

(III)

−
3

∑

i=1

7
∑

l=4

ei(∇σψ(ηl, e1, e2, e3))ei × ηl❧ ❥❤ ♥
(IV)

+
7

∑

k,l=4

(∇σψ)(ηl, e1, e2, e3)(∇ηlψ)(ηk, e1, e2, e3)ηk❧ ❥❤ ♥
(V)

.

(2.6)

To obtain (I) and (II) we used Lemma 5 (i) and the property (∇iej)p = 0, whereas (IV)

follows from the Leibniz rule for ∇⊥ and (∇iηk)p = 0.

Remark 6. In [Gay14], Gayet obtains a Weitzenböck-type formula when the G2–structure

is torsion-free:

/D
2

= ∇∗∇ + R − A. (2.7)

The term R(σ) = π⊥
3

∑

i=1

R(ei, σ)ei can be seen as a partial Ricci operator, where R is the

curvature tensor of g on M and π⊥ is the orthogonal projection to NY , and

A : Ω0(NY ) → Ω0(Sym(TY )),



Chapter 2. Deformation of associative submanifolds 37

defined by A(σ) = St ◦ S(σ), is a symmetric positive 0th–order operator determined by

the shape operator S(σ)(X) = −(∇Xσ)⊤. With these data, Gayet formulates a vanishing

theorem for a compact associative submanifold Y of a G2–manifold and proves that Y

is rigid when the spectrum of the operator R − A is positive. The advantage of formula

(2.7) lies in the relation between the intrinsic and extrinsic geometries of the associative

submanifold, because R − A is obtained from a curvature term

−
3

∑

i<j

(ei × ej) ×R⊥(ei, ej)σ. (2.8)

While one cannot entirely apply his proof to the general case (because the full torsion tensor

is non-zero), we are able to adapt some of its steps.

Given σ ∈ Ω0(NY ), we define operator B : Ω0(NY ) → Ω0(TY ) by

B(σ) :=
3

∑

j=1

ej × Sσ(ej). (2.9)

We recall the mean curvature vector field H of a immersed submanifold by

3
∑

i=1

(∇iei)
⊥ =

3
∑

i=1

7
∑

k=4

〈∇iei, ηk〉ηk = −
3

∑

i=1

7
∑

k=4

〈ei,∇iηk〉ηk

= −
3

∑

i=1

7
∑

k=4

〈ei, (∇iηk)
⊤〉ηk =

3
∑

i=1

7
∑

k=4

〈ei, Sηk(ei)〉ηk

=
7

∑

k=4

tr(Sηk)ηk = H

Lemma 9. Denoting by ∇∗∇ the Laplacian of the connection ∇⊥, by R the partial Ricci

operator R(σ) = π⊥
3

∑

i=1

R(ei, σ)ei, and by B the 0th–order operator defined in (2.9), for a

normal vector field σ to an associative submanifold Y one has

(I) = ∇∗∇σ + R(σ) − π⊥
✁

∑

i∈Z3

ei × T (ei+1, σ, ei, ei+1)
✠

H × B(σ) −
3

∑

j=1

π⊥(T (ej, ·)
♯) × Sσ(ej) + (trSσ)H − A(σ) + π⊥(T (B(σ), ·)♯)

where T is defined in (1.24) by

T (ei+1, σ, ei, ei+1) :=
7

∑

m=1

T (σ, em)(∇i+1ψ)(em, ei, ei+1, ·)
♯ − Ti+1m(∇σψ)(em, ei, ei+1, ·)

♯

+
�
(∇i+1T )(σ, em) − (∇σT )(ei+1, em)

✟
χ(em, ei, ei+1).

Proof. In terms of an orthonormal frame {e1, e2, e3} of TY ,

(I) =
3

∑

i=1

ei × (ei × ∇⊥
i ∇⊥

i σ) +
3

∑

i,j=1
i6=j

ei × (ej × ∇⊥
i ∇⊥

j σ)
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= −
∑

i

∇⊥
i ∇⊥

i σ −
∑

i6=j

(ei × ej) × ∇⊥
i ∇⊥

j σ

= −
∑

i

∇⊥
i ∇⊥

i σ − ∇⊥
∇⊤
i
ei
σ −

∑

i<j

(ei × ej) × (∇⊥
i ∇⊥

j − ∇⊥
j ∇⊥

i −∇⊥
[ei,ej ]

)σ

= ∇∗∇σ −
∑

i<j

(ei × ej) ×R⊥(ei, ej)σ.

Here R⊥ ∈ Ω0(Λ2T ∗Y ⊗ End(NY )) is the normal curvature of Y :

R⊥(ei, ej)σ = (∇⊥
i ∇⊥

j − ∇⊥
j ∇⊥

i −∇⊥
[ei,ej ]

)σ. (2.10)

To obtain the second equality, we used (1.8) in each term of the form

ei × (ei × ∇⊥
i ∇⊥

i σ) = − χ(ei, ei,∇
⊥
i ∇⊥

i σ) − 〈ei, ei〉 ∇⊥
i ∇⊥

i σ + 〈ei,∇
⊥
i ∇⊥

i σ〉ei

= − ∇⊥
i ∇⊥

i σ.

Moreover, for i 6= j,

ei × (ej × ∇⊥
i ∇⊥

j σ) = − χ(ei, ej,∇
⊥
i ∇⊥

j σ) − 〈ei, ej〉 ∇⊥
i ∇⊥

j σ + 〈ei,∇
⊥
i ∇⊥

j σ〉ej

= − χ(∇⊥
i ∇⊥

j σ, ei, ej) = ∇⊥
i ∇⊥

j σ × (ei × ej)

= − (ei × ej) × ∇⊥
i ∇⊥

j σ.

Now, expanding the summands in the frame {η4, . . . , η7} and using anti-

symmetry of the mixed product and the Ricci equation, we have

−
3

∑

i<j

(ei × ej) ×R⊥(ei, ej)σ = −
1

2

3
∑

i,j=1

7
∑

k=4

〈(ei × ej) ×R⊥(ei, ej)σ, ηk〉ηk

=
1

2

3
∑

i,j=1

7
∑

k=4

〈R⊥(ei, ej)σ, (ei × ej) × ηk〉ηk

=
1

2

3
∑

i,j=1

7
∑

k=4

〈R(ei, ej)σ, (ei × ej) × ηk〉ηk

+ 〈[Sσ, S(ei×ej)×ηk ]ei, ej〉ηk

= −
1

2
π⊥

3
∑

i,j=1

(ei × ej) ×R(ei, ej)σ❧ ❥❤ ♥
(⋆)

+
1

2

3
∑

i,j=1

7
∑

k=4

〈[Sσ, S(ei×ej)×ηk ]ei, ej〉ηk❧ ❥❤ ♥
(⋆⋆)

.

Applying the Bianchi identity R(ei, ej)σ = −R(σ, ei)ej − R(ej, σ)ei to the first term,

expanding the sum and using Lemma 5, we have:

(⋆) = π⊥
3

∑

i,j=1

(ei × ej) ×R(ej, σ)ei
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= π⊥(e3 ×R(e2, σ)e1 − e2 ×R(e3, σ)e1 − e3 ×R(e1, σ)e2 + e1 ×R(e3, σ)e2

+ e2 ×R(e1, σ)e3 − e1 ×R(e2, σ)e3)

= π⊥(−e1 × [R(e2, σ)e1 × e2 + e1 ×R(e2, σ)e2❧ ❥❤ ♥
(I)

+T (e2, σ, e1, e2)]

−e2 × [R(e3, σ)e2 × e3 + e2 ×R(e3, σ)e3❧ ❥❤ ♥
(II)

+T (e3, σ, e2, e3)]

− e3 × [R(e1, σ)e3 × e1 + e3 ×R(e1, σ)e1❧ ❥❤ ♥
(III)

+T (e1, σ, e3, e1)]

+ e3 ×R(e2, σ)e1 + e1 ×R(e3, σ)e2 + e2 ×R(e1, σ)e3).

Using the identity u× (v×w) + v× (u×w) = 〈u,w〉v+ 〈v, w〉u− 2〈u, v〉w, we check that

(I) = −e3 ×R(e2, σ)e1 − (e2, σ, e1, e2)e1 + 2(e2, σ, e1, e1)e2 +R(e2, σ)e2

(II) = −e1 ×R(e3, σ)e2 − (e3, σ, e2, e3)e2 + 2(e3, σ, e2, e2)e3 +R(e3, σ)e3

(III) = −e2 ×R(e1, σ)e3 − (e1, σ, e3, e1)e3 + 2(e1, σ, e3, e3)e1 +R(e1, σ)e1,

where (e1, σ, e3, e1) := 〈R(e1, σ)e3, e1〉. Cancelling terms and taking the orthogonal projec-

tion on (I) + (II) + (III), we find (⋆) = R(σ) − π⊥
�∑

ei × T (ei+1, σ, ei, ei+1)
✟
.

Finally, by the symmetry of Sσ and S(ei×ej)×ηk , the second term is

(⋆⋆) =
1

2

3
∑

i,j=1

7
∑

k=4

✁
〈S(ei×ej)×ηk(ei), Sσ(ej)〉 − 〈Sσ(ei), S(ei×ej)×ηk(ej)〉

✠
ηk

=
3

∑

i,j=1

7
∑

k=4

✁
〈S(ei×ej)×ηk(ei), Sσ(ej)〉

✠
ηk = (⋆ ⋆ ⋆).

Using Lemma 5 i), we compute

S(ei×ej)×ηk(ei) = −
✁

∇i(ei × ej) × ηk + (ei × ej) × ∇iηk +
7

∑

m=1

Timχ(em, ei × ej, ηk)
✠⊤

= −
✁

(∇iei × ej) × ηk + (ei × ∇iej) × ηk +
7

∑

l=1

Tilχ(el, ei, ej) × ηk

+ (ei × ej) × ∇iηk +
7

∑

m=1

Timχ(em, ei × ej, ηk)
✠⊤

= −
�
(∇iei)

⊥ × ej
✟

× ηk −
�
ei × (∇iej)

⊥
✟

× ηk

− (ei × ej) × (∇iηk)
⊤ −

7
∑

m=1

Tim(χ(em, ei, ej)
⊥ × ηk + χ(em, ei × ej, ηk)

⊤)

= −
�
(∇iei)

⊥ × ej
✟

× ηk −
�
ei × (∇iej)

⊥
✟

× ηk + (ei × ej) × Sηk(ei)

−
7

∑

m=4

Tim(χ(ηm, ei, ej)
⊥ × ηk + χ(ηm, ei × ej, ηk)

⊤)
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Notice that, we used the cross product properties (1.28) in the third line and the associative

condition χ|TY = 0 in the last one. Moreover, using the Levi-Civita conection symmetry

and the relation e3 = e1 × e2, we have for each j = 1, 2, 3

∑

i

ei × (∇iej)
⊥ =

∑

i

ei × (∇jei)
⊥

=e1 × (∇je1)
⊥ + e2 × (∇je2)

⊥

+ e3 ×
�
(∇je1)

⊥ × e2 + e1 × (∇je2)
⊥ +

7
∑

m=4

Tjmχ(ηm, e1, e2)
✟

=e1 × (∇je1)
⊥ + e2 × (∇je2)

⊥ − (∇je1)
⊥(e3 × e2) − (e3 × e1) × (∇je2)

⊥

−
7

∑

m=4

Tjme3 × (ηm × (e1 × e2)) = −
7

∑

m=4

Tjmηm

Note that, we used the triality cross product property between e1, e2, e3 and the definition

(1.8) of χ.

(⋆ ⋆ ⋆) =
3

∑

ij=1

7
∑

k=4

−〈
�
(∇iei)

⊥ × ej
✟

× ηk, Sσ(ej)〉ηk

+
7

∑

m=4

✁
Tjm〈ηm × ηk, Sσ(ej)〉ηk

✠
+ 〈(ei × ej) × Sηk(ei), Sσ(ej)〉ηk

−
7

∑

m=4

Tim〈χ(ηm, ei, ej) × ηk + χ(ηm, ei × ej, ηk), Sσ(ej)〉ηk

=
3

∑

ij=1

�
(∇iei)

⊥ × ej
✟

× Sσ(ej) −
3

∑

j=1

7
∑

m=4

Tjmηm × Sσ(ej)+

+
3

∑

ij=1

7
∑

k=4

〈Sηk(ei), ei〉〈ej, Sσ(ej)〉ηk − 〈Sηk(ei), ej〉〈ei, Sσ(ej)〉ηk

+
3

∑

i,j=1

7
∑

m=4

Tim♣χ(ηm, ei, ej) × Sσ(ej) + χ(ηm, ei × ej, Sσ(ej))q

= H × B(σ) −
3

∑

j=1

π⊥(T (ej, ·)
♯) × Sσ(ej) + (trSσ)H − A(σ) + π⊥(T (B(σ), ·)♯)

To obtain the last line we computed

∑

j

χ(ηm, ei, ej) × Sσ(ej) =
∑

j

−
�
ηk × (ei × ej)

✟
× Sσ(ej)

=
∑

j

−χ(Sσ(ej), ηm, ei × ej) + 〈Sσ(ej), ei × ej〉ηk

=
∑

j

〈ej × Sσ(ej), ei〉ηk = 〈B(σ), ei〉ηk

The correction terms (II),...,(V) can be conveniently organised into three 1st

order differential operators P1, P2, P3 on sections of NY .
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Lemma 10.

(II) = P1(σ) :=
3

∑

i,j=1

Tiiej × ∇⊥
j σ − Tjiej × ∇⊥

i σ − 2
3

∑

(i,j,k)∈S0
3

Cij ∇⊥
k σ,

where S0
3 are the even permutations in S3, Tji is the full torsion tensor and Cij the

anti-symmetric part of Tij.

Proof. By Lemma 1.16, we have

(II) =
3

∑

i,j,n=1

7
∑

k=4

T (ei, en)ψ(en, ej,∇
⊥
j σ, ηk)ei × ηk = (∗).

Since χ(en, ej,∇
⊥
j σ) ∈ Ω0(NY ), then using (1.8) we have

(∗) =
3

∑

i,j,n=1

T (ei, en)ei × χ(∇⊥
j σ, en, ej) =

3
∑

i,j,n=1

−T (ei, en)ei × (∇⊥
j σ × (en × ej))

=
3

∑

i,j,n=1

T (ei, en)χ(ei,∇
⊥
j σ, en × ej) − 〈ei, en × ej〉 ∇⊥

j σ

=
3

∑

i,j,n=1

T (ei, en)(∇⊥
j σ × (ei × (en × ej)) − ϕ(ei, en, ej) ∇⊥

j σ)

Using relations e1 × e2 = e3 and ei × (en × ej) = −χ(ei, en, ej) − 〈ei, en〉ej + 〈ei, ej〉en. The

first term of the sum is equal to

3
∑

i,j=1

Tiiej × ∇⊥
j σ − Tjiej × ∇⊥

i σ.

Moreover, since ϕ(e1, e2, e3) = 1, the second term becomes

−2
3

∑

(i,j,k)∈S0
3

Cij ∇⊥
k σ. (2.11)

where 2Cij = Tij − Tji.

Lemma 11. With the above notation

7
∑

k=4

(∇nψ)(ηk, e1, e2, e3)ηk = −
7

∑

k=4

Tnkηk. (2.12)

Proof. Since Y is associative, Corollary 3 gives ∇nψk123 = −Tnk.

Denote the following two operators on NY , involving the full torsion tensor

P2(σ) =
3

∑

i=1

7
∑

l=4

((∇iT )(σ, ηl) + T (∇⊥
i σ, ηl))ei × ηl,

P3(σ) =
7

∑

k,l=4

✁
T (σ, ηl) +

3
∑

i=1

ϕ(ei,∇
⊥
i σ, ηl)

✠
Tlkηk.

With this notation, we arrive at one of our main theorems:
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Theorem 4. The Weitzenböck formula for (2.1) is

/DA
2
(σ) = ∇∗∇σ+R(σ)−π⊥

✁
∑

i∈Z3

ei×T (ei+1, σ, ei, ei+1)
✠

+H×B(σ)+(trSσ)H−A(σ)

−
3

∑

j=1

π⊥(T (ej, ·)
♯) × Sσ(ej) + π⊥(T (B(σ), ·)♯) + P1(σ) + P2(σ) + P3(σ) (2.13)

Proof. We examine the five components of /DA
2

as on page 36. Components (I) and (II)

have been studied in Lemmata 9 and 10. Now, applying Lemma 11, we have

(III) =
3

∑

i=1

7
∑

k,l=4

ϕ(ei,∇
⊥
i σ, ηl)Tlkηk.

As to (IV), for each i = 1, 2, 3 and l = 4, 5, 6, 7, we use Lemma 11 to find

ei((∇σψ)(ηl, e1, e2, e3)) = −ei(T (σ, ηl)) = −(∇iT )(σ, ηl) − T (∇⊥
i σ, ηl).

Then, indeed,

(IV) =
3

∑

i=1

7
∑

l=4

((∇iT )(σ, ηl) + T (∇⊥
i σ, ηl))ei × ηl = P2(σ).

Finally, a simple calculation gives (V) =
7

∑

k,l=4

T (σ, ηl)Tlkηk, and

(V) + (III) =
7

∑

k,l=4

✁
T (σ, ηl) +

3
∑

i=1

ϕ(ei,∇
⊥
i σ, ηl)

✠
Tlkηk = P3(σ)

Notice that for a G2–manifold the 1st order differential operators P1, P2, P3

vanish because T = 0. Also, an associative submanifold is a minimal submanifold hence

H = 0. Thus, from formula (2.13) we get:

Corollary 4. Let (M7, ϕ) be a G2–manifold. Then,

/DA
2

= /D
2

= ∇∗∇ + R − A

2.1 The nearly parallel case and applications

The torsion-free condition for a G2–structure is highly overdetermined, so

examples are difficult to construct and seldom known explicitly. In terms of the Fernández-

Gray classification recalled in Section 1.4, the next natural ‘least-torsion’ case consists of

the so-called nearly parallel structures, for which the torsion forms τ1, τ2, τ3 vanish and

the remaining torsion is just a constant:
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Definition 10. Let (M,ϕ) a manifold with a G2–structure, ϕ is called nearly parallel if

dϕ = τ0ψ,

with τ0 6= 0 constant.

Regarding the deformations of associative submanifolds, our approach unifies

previously known results by means of a Bochner-type vanishing theorem. This technique

requires a certain ‘positivity’ of curvature, which can in practice be found in cases of

interest studied by several authors.

2.1.1 Proof of the vanishing theorem

Following Proposition 3, the full torsion tensor in the nearly parallel case is

given by Tij =
τ0

4
gij, thus, the covariant derivatives ∇ϕ and ∇ψ simplifies.

Lemma 12. Let (M,ϕ) a manifold with a nearly parallel G2–structure, then we hold the

following propierties:

(i) ∇ϕ =
τ0

4
ψ.

(ii) ∇uψ = −
τ0

4
u♭ ∧ ϕ for any u ∈ Ω0(TM).

(iii) u④∇uϕ = 0 for any u ∈ Ω0(TM).

Proof. The propierties (i) and (ii) follow by equations (1.16) and Corollary 3, respectively.

And (iii) follows by the skew-symmetry of (i).

Lemma 13. Let Y an associative submanifold of (M,ϕ), then Y is a minimal submanifold.

Proof. We will show that the mean vector field curvature H of Y vanishes, for each p ∈ Y

H(p) =
3

∑

i=1

7
∑

k=4

〈∇iei, ηk〉ηk = −
3

∑

i=1

7
∑

k=4

〈∇iηk, ei〉ηk

Using the relation e3 = e1 × e2, for each k we have

3
∑

i=1

〈∇iηk, ei〉 =ϕ(e2, e3,∇1ηk) + ϕ(e3, e1,∇2ηk) + ϕ(e1, e2,∇3ηk)

=e1(ϕ(e2, e3, ηk)) − (∇1ϕ)(e2, e3, ηk) − ϕ(∇1e2, e3, ηk) − ϕ(e2,∇1e3, ηk)

+ e2(ϕ(e3, e1, ηk)) − (∇2ϕ)(e3, e1, ηk) − ϕ(∇2e3, e1, ηk) − ϕ(e3,∇2e1, ηk)

+ e3(ϕ(e1, e2, ηk)) − (∇3ϕ)(e1, e2, ηk) − ϕ(∇3e1, e2, ηk) − ϕ(e1,∇3e2, ηk)

= − ψ(e1, e2, e3, ηk) − ψ(e2, e3, e1, ηk) − ψ(e3, e1, e2, ηk)

= − 〈χ(e1, e2, e3) + χ(e2, e3, e1) + χ(e3, e1, e2), ηk〉 = 0.



Chapter 2. Deformation of associative submanifolds 44

Notice that in the third equality we used the symmetry of the connection ∇ (i.e. ∇iej =

∇jei), the orthogonal property ϕ(ei, ej, ηk) = 0 for any i, j = 1, 2, 3 and k = 4, ..., 7, and

Lemma 12 (i). And the last line follows by the associative condition χ(e1, e2, e3) = 0.

Now , we move on to the Weitzenböck formula (2.13) for the nearly parallel

case, we see that (2.13) is drastically simplified:

Proposition 5. The Weitzenböck formula for the Fueter-Dirac operator (2.1) in the nearly

parallel case is

/DA
2
(σ) = ∇∗∇σ + R(σ) − A(σ) + τ0 /D(σ) +

τ 2
0

4
· σ. (2.14)

Proof. By Lemma 13 the terms H × B(σ) and (trSσ)H in (2.13) vanish, as well for

π⊥(T (ej, ·)
♯), π⊥(T (B(σ), ·)♯) since {e1, e2, e3, η4, ..., η7} is an orthonormal frame. It suffices

to prove that the last three terms in (2.13) satisfy

(P1 + P2 + P3)(σ) = τ0 /D(σ) +
τ 2

0

16
· σ and T (σ) = −

3

16
τ 2

0σ

At a point p ∈ Y , for P1, we have Cij = 0, because τ1 and τ2 are zero, then

3
∑

i,j=1

Tiiej × ∇⊥
j σ − Tjiej × ∇⊥

i σ =
3

4
τ0

3
∑

j=1

ej × ∇⊥
j σ −

1

4
τ0

3
∑

j=1

ej × ∇⊥
j σ

=
1

2
τ0 /D(σ).

For P2,

3
∑

i=1

7
∑

l=4

((∇iT )(σ, ηl) + T (∇⊥
i σ, ηl))ei × ηl =

τ0

4

3
∑

i=1

7
∑

l=4

g(∇⊥
i σ, ηl)ei × ηl

=
τ0

4

3
∑

i=1

ei × ∇⊥
i σ =

τ0

4
/D(σ).

And, for P3,

7
∑

k,l=4

✁
T (σ, ηl) +

3
∑

i=1

ϕ(ei,∇
⊥
i σ, ηl)

✠
Tlkηk =

τ0

4

7
∑

k,l=4

✁τ0

4
g(σ, ηl) +

3
∑

i=1

ϕ(ei,∇iσ, ηl)
✠
g(ηl, ηk)ηk

=
τ0

4

7
∑

l=4

✁τ0

4
g(σ, ηl) +

3
∑

i=1

ϕ(ei,∇iσ, ηl)
✠
ηl

=
τ 2

0

16
· σ +

τ0

4
/D(σ).
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And finally

T (σ) =
∑

i∈Z3

ei × T (ei+1, σ, ei, ei+1) =
τ0

4

∑

i∈Z3

7
∑

m,l=1

�
g(σ, em)(∇i+1ψ)(em, ei, ei+1, el)

− g(ei+1, em)(∇σψ)(em, ei, ei+1, el)
✟
ei × el

=
τ0

4

∑

i∈Z3

7
∑

l=1

�
(∇i+1ψ)(σ, ei, ei+1, el)

− (∇σψ)(ei+1, ei, ei+1, el)
✟
ei × el

=
τ0

4

∑

i∈Z3

7
∑

l=1

�
(∇i+1ψ)(σ, ei, ei+1, el)

✟
ei × el

= −
τ0

4

∑

i∈Z3

7
∑

l=1

T (ei+1, ei+1)ϕ(σ, ei, el)ei × el

= −
τ 2

0

16

∑

i∈Z3

g(ei+1, ei+1)ei × (σ × ei)

= −
3

16
τ 2

0σ

Here we used the skew-symmetry of ∇σ ψ for the third equality and Corollary 3 for the

fourth one.

Theorem 5. Let (M,ϕ) be a 7-manifold with a nearly parallel G2–structure. If Y ⊂ M is

a closed associative submanifold such that the operator R − A is non-negative, then Y is

rigid.

Proof. Let σ be a section of NY ,

∆|σ|2 =
∑

i

eiei〈σ, σ〉 = 2
∑

i

ei〈∇
⊥
i σ, σ〉

= 2
∑

i

〈∇⊥
i ∇⊥

i σ, σ〉 + 〈∇⊥
i σ,∇

⊥
i σ〉

= −2〈∇∗∇σ, σ〉 + 2|∇⊥ σ|2

= −2〈 /DA
2
(σ), σ〉 + 2〈R(σ), σ〉 − 2〈A(σ), σ〉 + 2τ0〈 /D(σ), σ〉 +

τ 2
0

2
|σ|2+2|∇⊥ σ|2.

Taking σ ∈ ker /DA, equation (2.2) gives

〈 /D(σ), σ〉 =
7

∑

k=4

(∇σψ)(ηk, e1, e2, e3)〈ηk, σ〉 = −
7

∑

k=4

T (σ, ηk)〈ηk, σ〉 = −
τ0

4

7
∑

k=4

〈σ, ηk〉
2.

By Stokes’ theorem, it follows that

0 =
∫

Y

✁
〈R(σ) − A(σ), σ〉 −

τ 2
0

4

7
∑

k=4

〈σ, ηk〉
2 +

τ 2
0

4
|σ|2+|∇⊥ σ|2

✠
d volY

=
∫

Y
(
✁

〈R(σ) − A(σ), σ〉 + |∇⊥ σ|2)d volY .
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By assumption, 〈R(σ) − A(σ), σ〉 ≥ 0, so ∇⊥ σ = 0 and this implies /D(σ) = 0. Notice

from Lemma 11 that the Fueter-Dirac operator is

/DA = /D+
τ0

4
with τ0 6= 0.

Then, from /DA(σ) = 0 it follows that σ = 0, i.e. ker /DA = {0}.

2.1.2 An associative submanifold of the 7-sphere

In [Lot12], Lotay defines a natural G2–structure ϕ on S7, writing R
8 \ {0} ∼=

C(S7) = R
+ × S7 where C(S7) denotes the Riemannian cone and a 4–form

Φ0|(r,p)= r3dr ∧ ϕ|p+r
4 ∗ ϕ|p,

where r the radial coordinate on R
+, ∗ the Hodge star on S7 induced by the round metric.

and Φ0 is the Spin(7)–structure of R8, choosing an orthonormal basis of R8, Φ0 can be

written by

Φ0 = e0123 + e0145 + e0167 + e0246 − e0257 − e0347 − e0356

e4567 + e2367 + e2345 + e1357 − e1346 − e1256 − e1247.

Since Φ0 is closed, it follows that dϕ = 4 ∗ ϕ i.e. ϕ is a nearly parallel G2–structure.

Consider the totally geodesic submanifold S3 ⊂ S7, given by

S3 = S3 × {0} = {(x0, x1, x2, x3, 0, 0, 0, 0) ∈ R
8 : x2

0 + x2
1 + x2

2 + x2
3 = 1}

If we think the 7–sphere as the homogeneous space Spin(7)/G2 and hence Spin(7) as the

G2 frame bundle over S7. So, the associative submanifold S3 arise as the SU(2)–orbit

through the point p0 = (1, 0, 0, 0) ∈ C
4 given by the action

☎✝✝✝✝✆
z1

z2

z3

z4

☞✍✍✍✍✌∈ C
4 ∼= R

8 7→

☎✝✝✝✝✆
az1 + bz2

−b̄z1 + āz2

az3 + bz4

−b̄z3 + āz4

☞✍✍✍✍✌∈ C
4 for

✄
a b

−b̄ ā

☛
∈ SU(2). (2.15)

For the associative submanifold S3 ⊂ S7 the Weitzenböck formula 2.14 is

/DA
2
(σ) = ∇∗∇σ + R(σ) − A(σ) + 4 /DA(σ),

or, in terms of the operator /D,

/D
2

= ∇∗∇σ + R(σ) − A(σ) + 2 /D(σ) + 3σ, (2.16)

which coincides with the formula given by Kawai [Kaw17]. As the induced metric on S3,

from the round metric on S7, coincides with the round metric of constant curvature 1, the

following results of [Bär96] can be adapted to our case.
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Lemma 14. The normal bundle NS3 can be trivialized by parallel sections σ1, . . . , σ4 of

the connection ∇⊥.

Proof. It suffices to show that the curvature operator R⊥ vanishes (c.f. (2.10)). Let u, v

be tangent vector fields of S3, and σ a section of NS3, then the Ricci equation gives

R⊥(u, v)σ =
7

∑

k=4

〈R⊥(u, v)σ, ηk〉ηk

=
7

∑

k=4

(〈R(u, v)σ, ηk〉 + 〈[Sσ, Sηk ]u, v〉)ηk

=
7

∑

k=4

(〈u, σ〉〈v, ηk〉 − 〈v, σ〉〈u, ηk〉)ηk = 0.

At the third equality we used the well-known facts that the metric on S7 has constant

sectional curvature equal to 1 and that S3 ⊂ S7 is a totally geodesic immersed submanifold.

The following Weitzenböck formula relates the operator D = /D− Id with the

Laplacian of the connection ∇⊥ on NS3.

Lemma 15. On the normal bundle NS3, the following formula holds:

D2 = ∇∗∇ + Id . (2.17)

Proof. In a local orthonormal frame e1, e2, e3 around p ∈ S3, we compute

D2(σ) = /D
2
(σ) − 2 /D(σ) + σ

= ∇∗∇σ + R(σ) + 4σ

= ∇∗∇σ +
� 3
∑

i=1

〈σ, ei〉ei − 〈ei, ei〉σ
✟⊥

+ 4σ

= ∇∗∇σ + σ.

Consider a basis 1 = f0, f1, f2, . . . of L2(S3,R), consisting of eigenfunctions of

the Laplace operator:

∆fi = λifi.

The next lemma describes a natural eigenbasis for the operator D2 on sections of NS3.

Lemma 16. D2(fiσk) = (λi + 1)(fiσk).

Proof. This follows directly from Lemma 14 and (2.17).
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Since the metric on S3 has constant curvature 1, the eigenvalues of the Laplace

operator on S3 are

λk = k(k + 2) k ≥ 0,

with multiplicities mk = (k + 1)2 [SA87, Proposition 22.2 and Corollary 22.1]. Together

with Lemma 16, this gives:

Corollary 5. D2 has eigenvalues (k + 1)2 with multiplicities 4(k + 1)2, k ≥ 0.

In general, for an operator T and a vector u such that T 2u = µ2u, if

v± := (T ± µ)u 6= 0

then v± is an eigenvector of T with eigenvalue ±µ. Let us apply this principle to T = D,

with µ2
k = (k + 1)2 and uk = fkσj, for j = 1, . . . , 4.

Let us first look at the case k = 0, in which f0 = 1 and λ0 = 0, so u0 = σj and

µ2
0 = 1, i.e.,

v± = (D ± µ0)σj = Dσj ± σj.

Now, /Dσj = 0 by Lemma 14, so Dσj = −σj and therefore v+ = 0 and v− = −2σj.

Accordingly, v− is an eigenvector of D with eigenvalue −µ0 = −1. Since v− = −2σj,

for j = 1, . . . , 4, the multiplicity of −µ0 = −1 is at least 4, but the multiplicity of

(−µ0)
2 = µ2

0 = 1 is already 4, by Corollary 5, therefore the multiplicity of −µ0 = −1 is

exactly 4.

Now, for k ≥ 1, we take uk = fkσj and µk = k + 1, and use the trivial fact that ei × σj

and σj are linearly independent for all i, j:

v±
k =(D ± µk)uk = /Duk − (1 ∓ µk)uk

=
3

∑

i=1

ei(fk)ei × σj − (1 ∓ µk)❧ ❥❤ ♥
6=0

fk❧❥❤♥
6=0

σj 6= 0.

Thus v±
k is an eigenvector of D with eigenvalue ±µk, and it follows that v± is an eigenvector

of /D with eigenvalue 1 ± µk, such that m(1 + µk) + m(1 − µk) = 4(k + 1)2. It remains

to determine the multiplicities of the eigenvalues 1 ± (k + 1). We introduce the following

notation:

µ+
0 := 1 − µ0 = 0, µ+

k := 1 + µk = k + 2, and µ+
−k := 1 − µk = −k, k ≥ 1.

From Corollary 5, multiplicities of opposite index add up as m(µ+
k ) +m(µ+

−k) = 4(k + 1)2.

Alternatively, in the sign convention of Remark 1, we denote the eigenvalues of /D by

µ−
0 = 0, µ−

−k = −k − 2, and µ−
k = k, k ≥ 1,

and again we know m(µ−
k )+m(µ−

−k) = 4(k+1)2. The multiplicities in both sign conventions

satisfy the following relations:
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Lemma 17.

m(µ+
−k) = m(µ−

k ) = 2(k + 1)(k + 2), k ≥ 0.

and

m(µ+
k ) = m(µ−

−k) = 2k(k + 1), k ≥ 1.

Proof. From the above, the operator /D−
3

2
has eigenvalues

α+
0 = −

3

2
, α+

k = k +
3

2
− 1 and α+

−k = −k −
3

2
.

Let α−
k := −α+

−k. Since µ−
k = −µ+

−k, we have m(α±
k ) = m(µ±

k ), for all k ∈ Z, and so

m(α±
k ) +m(α±

−k) = 4(k + 1)2.

Now the claim clearly holds for k = 0 and, by induction on k ≥ 1, we have

m(µ+
−(k+1)) = m(α+

−(k+1)) = 4(k + 2)2 −m(α+
(k+1))

= 4(k + 2)2 −m(α−
k ) = 4(k2 + 4k + 4) − 2(k + 1)(k + 2)

= 2(k + 2)(k + 3).

To obtain the second equality we used the relation

α+
(k+1) = (k + 1) +

3

2
− 1 = α−

k ,

and for the last one we used the induction hypothesis on α−
k .

The group Aut(S7, ϕ) = Spin(7) of automorphisms of S7 which fix the G2–

structure induces trivial associative deformations, and the associative 3–sphere is invariant

by the action of the embedded subgroup K = SU(2) × SU(2) × SU(2)/Z2 ⊂ Spin(7),

where Z2 is generated by (−1,−1,−1) [HL82, Theorem IV 1.38]. Therefore the space of

infinitesimal associative deformations of S3 has dimension at least dim(Spin(7)/K) = 12.

Corollary 6. The 3-sphere in S7 is rigid as an associative submanifold.

Proof. Since µ+
−1 is the eigenvalue corresponding to the space of infinitesimal associative

deformations, then, by Lemma 17, dim(ker /DA) = m(µ+
−1) = 12.

2.2 Locally conformal calibrated case and applications

As an application of the Fueter-Dirac Weitzenböck formula (2.13), we focus

on locally conformal calibrated G2–structures, whose associated metric is (at least locally)

conformal to a metric induced by a calibrated G2–structure. We provide a novel example

of a rigid associative submanifold, inside a compact manifold S with a locally conformal

calibrated G2–structure, studied by Fernández, Fino and Raffero [FR16].
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Definition 11. A G2–structure is locally conformal calibrated if it has vanishing torsion

components τ0 ≡ 0 and τ3 ≡ 0, so

dϕ = 3τ1 ∧ ϕ,

dψ = 4τ1 ∧ ψ + τ2 ∧ ϕ.

A SU(3)–structure on a 6-manifold N is a pair (ω, φ+) ∈ Ω2(N) × Ω3(N) such

that φ+ =
1

2
(Ω + Ω̄), where Ω ∈ Ω0(Λ3(T ∗N ⊗C)) is a decomposable complex 3-form and

ω ∧ φ+ = 0 and
ω3

6
=
i

8
Ω ∧ Ω̄ =

1

4
φ+ ∧ φ− with φ− :=

1

2i
(Ω − Ω̄). (2.18)

The SU(3)–structure (ω, φ+) is said to be coupled if dω = cφ+ with c a non-zero real

number. So, the product manifold N × S1 has a natural locally conformal calibrated

G2–structure defined by

ϕ = ω ∧ dt+ φ+,

with τ0 ≡ 0, τ3 ≡ 0 and τ1 = −
c

3
dt.

Example 5. [FR16, Example 3.3] Consider the 6–dimensional Lie algebra n28, and

let {e1, ..., e6} be a SU(3)–basis. With respect to the dual basis {e1, ..., e6}, the structure

equations of n28 are

(0, 0, 0, 0, e13 − e24, e14 + e23), (2.19)

and we denote its components by dei := 0, for i = 1, . . . , 4, de5 := e13 − e24 and de6 :=

e14 + e23. The pair

ω = e12 + e34 − e56 and φ+ = e136 − e145 − e235 − e246 (2.20)

defines a coupled SU(3)–structure on n28 with dω = −φ+. Denote by G the 3-dimensional

complex Heisenberg group with Lie algebra Lie(G) = n28 given by

G =

{

☎✝✆1 z1 z3

0 1 z2

0 0 1

☞✍✌; z1, z2, z3 ∈ C

}

.

The structure equations (2.19) can be rewritten as

dz1 = e1 + ie2, dz2 = e3 + ie4 dz3 + z1dz2 = e5 + ie6.

By [Mal49, Theorem 7], G admits a uniform discrete subgroup Γ ⊂ G, i.e., a discrete

subgroup such that Γ\G is compact, the elements of which have z1, z2, z3 ∈ Z[i]. The

left-invariant forms ω and φ+ on G are well defined in the quotient Γ\G. Consider the

automorphism ν : G → G defined by☎✝✆1 z1 z3

0 1 z2

0 0 1

☞✍✌ ν
−→

☎✝✆1 iz1 z3

0 1 −iz2

0 0 1

☞✍✌,
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and denote by Diffν := 〈(p, t) 7→ (ν(p), t+ 1)〉 the infinite cyclic subgroup of diffeomor-

phisms of (Γ\G) × R. The manifold

S =
�
(Γ\G) × R

✟
/Diffν

is endowed with a locally conformal calibrated G2–structure as follows: for the left-invariant

coframe given in (2.19), we have

ν∗(e1) = −e2, ν
∗(e2) = e1, ν

∗(e3) = e4, ν
∗(e4) = −e3, ν

∗(e5) = e5, ν
∗(e6) = e6.

Hence ν∗ω = ω and ν∗φ+ = φ+, for (ω, φ+) defined in (2.20). Denoting by p1 : (Γ\G) ×

R → Γ\G the projection onto the first factor, the forms p∗
1ω ∈ Ω2((Γ\G) × R) and

p∗
1φ+ ∈ Ω3((Γ\G) × R) are invariant under ∼ν. Therefore, we have differential formsrω ∈ Ω2(S) and rφ+ ∈ Ω3(S) satisfying the same relations as (ω, φ+) from (2.20). In this

set-up, the 3-form rϕ = rω ∧ e7 + rφ+ (2.21)

defines a locally conformal calibrated G2–structure on S. Here e7 denotes the pullback of

the canonical closed 1-form on R by the projection p2 : (Γ\G) ×R → R. The torsion forms

of rϕ are

τ1 =
1

3
e7, τ2 = rα where α = −

4

3

✁
e12 + e34 + 2e56

✠
and, by Proposition 3, the full torsion tensor is

T = rβ, with β = e12 + e34 + e56.

The 7-manifold from Example 5 contains an associative submanifold, corre-

sponding to a particular Lie subalgebra:

Example 6. Consider the abelian subalgebra n
′

28 = Span(e5, e6) ⊂ n28 and its respective

Lie group G
′

= [G,G] = exp(n
′

28) ⊂ G, which is generated by the commutator [g, h] =

ghg−1h−1. Since G′ is obtained as the maximal integral submanifold of G given by the

left-invariant distribution

∆(g) = (dLg)1n28 for g ∈ G,

i.e. (Lh)∗(∆(g)) ⊂ ∆(hg) (c.f. [SM16, Theorem 6.5]), we get an integral distribution ∆̄ on

Γ\G. Representing G′ by

G′ =

{

☎✝✆1 0 z3

0 1 0

0 0 1

☞✍✌; z3 ∈ C

}

,

we see that, for each p = Γg′ ∈ Γ\G′, we have Tp(Γ\G′) = ∆̄(Γg′), and so Γ\G′ is a

compact embedded submanifold of Γ\G. Now ν|G′= Id and the quotient map (Γ\G)×R → S

is a local diffeomorphism, so

Y =
✁

(Γ\G′) × R

✠
/Diffν ∼= (Γ\G′) × S1
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is a compact embedded submanifold of S. Moreover,

T(p,t)Y = Tp(Γ\G′) ⊕ TtR ∼= n′
28 ⊕ R,

and indeed rϕ|TpY ≡ vol(e5, e6, e7). Hence, Y is a closed associative submanifold of S.

Now, we assess formula (2.13) for Example 6. The first correction term is

P1(σ) = −T56e5 × ∇⊥
6 σ − T65e6 × ∇⊥

5 σ − 2T56∇
⊥
7 σ

= −(e7 × e6) × ∇⊥
6 σ − (e7 × e5) × ∇⊥

5 σ − 2∇⊥
7 σ

= e7 × /D(σ) − ∇⊥
7 σ.

Here, to obtain the second equality we used the associative relation e5 × e6 = −e7 and for

the last one we used the identity (u× v) × w = −u× (v × w), for mutually orthonormal

u, v, w. To calculate P2, we need the covariant derivative of the total torsion tensor T

∇iTkl = ei(Tkl) − ΓmikTml − Γmil Tkm = −ΓmikTml − Γmil Tkm. (2.22)

Since S is locally isometric to G× R, the Christoffel symbols of the G2–metric on S are

defined by the structure constants of the Lie algebra n28 (cf. [Mil76]):

Γkij =
1

2
(αijk − αjki + αkij) with αijk = 〈[ei, ej], ek〉.

Applying this to Example 5, we find

Γ5
13 = Γ6

23 = Γ2
36 = Γ5

42 = Γ2
63 = Γ4

52 = −
1

2

Γ6
14 = Γ4

25 = Γ1
35 = Γ1

46 = Γ1
64 = Γ1

53 = −
1

2

Γ4
16 = Γ5

24 = Γ5
31 = Γ6

41 = Γ4
61 = Γ3

51 = +
1

2

Γ3
15 = Γ3

26 = Γ6
32 = Γ2

45 = Γ3
62 = Γ2

54 = +
1

2

Γkij = 0, otherwise.

Using the cross product defined by (2.21) and the above Christoffel symbols, we have:

∇lei+5 = ∇i+5el =
(−1)i

2
e6−i × el for i = 0, 1 and l = 1, 2, 3, 4. (2.23)

Notice that the full torsion tensor of the G2–structure (2.21) can be written as

T (u, v) = −〈e7 × u⊤, v⊤〉 + 〈e7 × u⊥, v⊥〉 for u, v ∈ Ω0(TS|Y ) = Ω0(TY ) ⊕ Ω0(NY ),

(2.24)
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where u⊤ and u⊥ are the tangent and normal components of u, respectively. Combining

these facts with Lemma 5 (i), we have

∇u(v × w) = ∇uv × w + v × ∇uw +
7

∑

i=1

T (u, em)χ(em, v, w)

= ∇uv × w + v × ∇uw − χ(e7 × u⊤, v, w) + χ(e7 × u⊥, v, w).

(2.25)

Now, for P2 we obtain:

P2(σ) =
7

∑

i=5

4
∑

k=1

ei(T (σ, ek))ei × ek

=
7

∑

i=5

4
∑

k=1

ei ×
�
∇⊥
i (T (σ, ek)ek) − T (σ, ek)∇

⊥
i ek

✟
=

7
∑

i=5

ei × ∇⊥
i (e7 × σ) −

∑

i=0,1

4
∑

k=1

〈e7 × σ, ek〉
(−1)i

2
ei+5 × (e6−i × ek)

=
7

∑

i=5

ei × (e7 × ∇⊥
i σ) − ei × χ(e7 × ei, e7, σ) −

∑

i=0,1

(−1)i

2
ei+5 × (e6−i × (e7 × σ))

= −2∇⊥
7 σ +

7
∑

i=5

−e7 × (ei × ∇⊥
i σ)

−
∑

i=0,1

ei+5 × χ(e7 × ei+5, e7, σ) +
(−1)i

2
(ei+5 × e6−i) × (e7 × σ)❧ ❥❤ ♥

(⋆)

= −e7 × /D(σ) − 2∇⊥
7 σ − 3σ

For the third equality, we used (2.24) in the first term and (2.23) in the second one. The

fourth equality follows from (2.25) and, finally, a short calculation gives:

(⋆) =
∑

i=0,1

−ei+5 × ((e7 × ei+5) × (e7 × σ)) +
(−1)i

2
(ei+5 × e6−i) × (e7 × σ)

=
∑

i=0,1

−((ei+5 × e7) × ei+5) × (e7 × σ) +
(−1)i

2
(ei+5 × e6−i) × (e7 × σ)

= −((e5 × e7) × e5) × (e7 × σ) +
1

2
(e5 × e6) × (e7 × σ)

− ((e6 × e7) × e6) × (e7 × σ) −
1

2
(e6 × e5) × (e7 × σ)

= σ +
1

2
σ + σ +

1

2
σ = 3σ.

Finally, for P3, we have

P3(σ) =
4

∑

k,l=1

�
T (σ, ek) +

7
∑

i=5

rϕ(ei,∇
⊥
i σ, ek)

✟
Tklel

=
4

∑

k=1

�
〈e7 × σ, ek〉 +

7
∑

i=5

〈ei × ∇⊥
i σ, ek〉

✟
e7 × ek

= e7 × (e7 × σ) + e7 × /D(σ) = −σ + e7 × /D(σ)
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Now, writing the curvature tensor as

R(ei, ej)ek =
7

∑

l,m=1

�
ΓljkΓ

m
il − ΓlikΓ

m
jl − (Γlij − Γlji)Γ

m
lk

✟
em

and using the last expression, we have

R(e5, σ)e5 =
7

∑

l,m=1

4
∑

j=1

σj
�
Γlj5Γ

m
5l − Γl55Γ

m
jl − (Γl5j − Γlj5)Γ

m
l5

✟
em

=
7

∑

l,m=1

4
∑

j=1

σj
�
Γlj5Γ

m
5l

✟
em

= σ1Γ3
15Γ

1
53e1 + σ2Γ4

25Γ
2
54e2 + σ3Γ1

35Γ
3
51e3 + σ4Γ2

45Γ
4
52e4 = −

σ

4
.

And,

R(e6, σ)e6 =
7

∑

l,m=1

4
∑

j=1

σj
�
Γlj6Γ

m
6l − Γl66Γ

m
jl − (Γl6j − Γlj6)Γ

m
l6

✟
em

=
7

∑

l,m=1

4
∑

j=1

σj
�
Γlj6Γ

m
6l

✟
em

= σ1Γ4
16Γ

1
64e1 + σ2Γ3

26Γ
2
63e2 + σ3Γ2

36Γ
3
62e3 + σ4Γ1

46Γ
4
61e4 = −

σ

4
.

Therefore,

R(σ) =
�
R(e5, σ)e5 +R(e6, σ)e6 +R(e7, σ)e7

✟⊥
= −

1

4
σ −

1

4
σ + 0

= −
1

2
σ.

Now, we assess the operator T defined in equation (1.24) for a pair ei, ej ∈ Ω0(TY ) and

σ ∈ Ω0(NY ):

T (ej, σ, ei, ej) =
7

∑

m=1

T (σ, em)∇jψ(em, ei, ej, ·)
♯❧ ❥❤ ♥

(I)

−T (ej, em)∇σψ(em, ei, ej, ·)
♯❧ ❥❤ ♥

(II)

+
�
∇jT (σ, em) − ∇σT (ej, em)

✟
χ(em, ei, ej)❧ ❥❤ ♥

(III)

.

We will use throughout the proof both the expression of ∇ψ in terms of T and ϕ from

Corollary 3 and the expression for T given in (2.24). For the first term,

(I) =
7

∑

m=1

〈e7 × σ, em〉∇jψ(em, ei, ej, ·)
♯ = ∇jψ(e7 × σ, ei, ej, ·)

♯

= −T (ej, e7 × σ)ϕ(ei, ej, ·)
♯ + T (ej, ei)ϕ(e7 × σ, ej, ·)

♯ − T (ej, ej)ϕ(e7 × σ, ei, ·)
♯

+ T (ej, ·)
♯ϕ(e7 × σ, ei, ej)

= −〈e7 × ej, ei〉(e7 × σ) × ej = 〈e7 × ej, ei〉(e7 × ej) × σ.
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Here we used the vanishings T (ej, e7 × σ) = 0, again by (2.24), T (ej, ej) = 0, by skew-

symmetry, and ϕ(e7 × σ, ei, ej) = 〈ei × ej, e7 × σ〉 = 0, by orthogonality.

For the second term,

(II) =
7

∑

m=1

〈e7 × ej, em〉∇σψ(em, ei, ej, ·)
♯ = ∇σψ(e7 × ej, ei, ej, ·)

♯

= − T (σ, e7 × ej)ϕ(ei, ej, ·)
♯ + T (σ, ei)ϕ(e7 × ej, ej, ·)

♯ − T (σ, ej)ϕ(e7 × ej, ei, ·)
♯

+ T (σ, ·)♯ϕ(e7 × ej, ei, ej)

= − 〈e7 × σ, ·〉♯〈(e7 × ej) × ei, ej〉 = −〈(e7 × ej) × ei, ej〉e7 × σ.

Again the vanishings T (σ, e7 × ej) = T (σ, ei) = T (σ, ej) = 0 follow from (2.24).

For the third term, we use expression (2.22) for the derivatives of the torsion tensor:

(III) = −
7

∑

m=1

�
T (σ,∇jem) − T (ej,∇σem)

✟
χ(em, ei, ej)

= −
7

∑

m=1

�
〈e7 × σ,∇jem〉 + 〈e7 × ej,∇σem〉

✟
χ(em, ei, ej).

We now apply (I), (II) and (III) for i = 5 and j = 6:

T (e6, σ, e5, e6) = 〈e7 × e6, e5〉(e7 × e6) × σ + 〈(e7 × e6) × e5, e6〉e7 × σ

−
7

∑

m=1

�
〈e7 × σ,∇6em〉 + 〈e7 × e6,∇σem〉

✟
χ(em, e5, e6)

= e5 × σ −
7

∑

m=1

�
−

1

2
〈e7 × σ, e5 × em〉 + 〈e5,∇σem〉

✟
χ(em, e5, e6)

= e5 × σ −
7

∑

m=1

�1

2
〈e5 × (e7 × σ), em〉 + σ〈e5, em〉 − 〈∇σe5, em〉

✟
χ(em, e5, e6)

= e5 × σ −
7

∑

m=1

�
−

1

2
〈e6 × σ, em〉 −

1

2
〈e6 × σ, em〉

✟
χ(em, e5, e6)

= e5 × σ + χ(e6 × σ, e5, e6) = e5 × σ − (e6 × σ) × (e5 × e6)

= e5 × σ + (e6 × σ) × e7

= 2e5 × σ.

Here we used repeatedly that e5 × e6 = −e7 and ei × (ej × σ) = −ej × (ei × σ) for i 6= j.

At the second and fourth lines we applied again (2.23), and at the third line we used the

compatibility of the Riemannian connection.

For j = 7 and i = 6, we have trivially

T (e7, σ, e6, e7) = 0.
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Finally, for j = 5 and i = 7, we have

T (e5, σ, e7, e5) = 〈e7 × e5, e7〉(e7 × e5) × σ + 〈(e7 × e5) × e7, e5〉e7 × σ

−
7

∑

m=1

�
〈e7 × σ,∇5em〉 + 〈e7 × e5,∇σem〉

✟
χ(em, e7, e5)

= 〈e6, e7〉e6 × σ − 〈e6 × e7, e5〉e7 × σ −
7

∑

m=1

�1

2
〈e7 × σ, e6 × em〉

− 〈e6,∇σem〉
✟
χ(em, e7, e5)

= e7 × σ −
7

∑

m=1

�
−

1

2
〈e6 × (e7 × σ), em〉 − σ〈e6, em〉

+ 〈∇σe6, em〉
✟
χ(em, e7, e5)

= e7 × σ −
7

∑

m=1

�
−

1

2
〈e5 × σ, em〉 −

1

2
〈e5 × σ, em〉

✟
χ(em, e7, e5)

= e7 × σ + χ(e5 × σ, e7, e5) = e7 × σ − (e5 × σ) × (e7 × e5)

= e7 × σ + (e5 × σ) × e6 = 2e7 × σ.

Therefore, ✁
∑

i∈Z3

ei+5 × T (ei+6, σ, ei+5, ei+6)
✠⊥

= −4σ.

Following the notation of [CP15, §5.3], we define an operator

/D
c
(σ) := e5 × ∇⊥

5 σ + e6 × ∇⊥
6 σ,

and recall that the cross-product by e7 defines an almost complex structure on T (Γ\G)

denoted by J(σ) := e7 × σ. Then (2.2) becomes

/DA(σ) = /D
c
(σ) + J( ✾σ) + J(σ),

where ✾σ := ∇⊥
7 σ. To simplify notation, let ‖·‖ and 〈〈·, ·〉〉 denote the L2-norm and inner

product of sections, respectively (the integral of the corresponding pointwise quantity

over the associative submanifold). The next Lemma gathers some relations between the

operators /D, J and ∇; although some of them will not be used in this article, we state

them anyway as a curiosity.

Lemma 18. With the above notation, we have the following properties:

(i) /D
c
◦J(σ) = −J ◦ /D

c
(σ) + 2σ.

(ii) 〈〈 /D
c
(σ), η〉〉 = 〈〈σ, /D

c
(η)〉〉 + 2〈〈σ, J(η)〉〉.

(iii) 〈〈 /D
c
(σ), J( ✾σ)〉〉 = 0.
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(iv) 〈〈 ✾σ, σ〉〉 = 0 and 〈〈 /D
c
(σ), J(σ)〉〉 ≤ 0.

Proof. (i) Using Lemma 5 (i), we have,

/D
c
◦J(σ) = −J ◦ /D

c
(σ) − T65e6 × (e5 × (e7 × σ)) − T56e5 × (e6 × (e7 × σ))

= −J ◦ /D
c
(σ) + 2T56(e5 × e6) × (e7 × σ)

= −J ◦ /D
c
(σ) + 2 · σ.

(ii)

〈 /D
c
(σ), η〉p = −

6
∑

i=5

〈∇⊥
i σ, ei × η〉p = −

6
∑

i=5

{ei〈σ, ei × η〉 − 〈σ,∇⊥
i (ei × η)〉}p

= div(σ × η)p + −
6

∑

i=5

〈σ, ei × ∇⊥
i η − χ(e7 × ei, ei, η)〉}p

= div(σ × η)p + 〈σ, /D
c
(η)〉p + 2〈σ, e7 × η〉p.

Here we used the Leibniz rule (2.25), then the following trivial calculation:

χ(e7 × ei, ei, η) =χ(η, e7 × ei, ei) = −η ×
�
(e7 × ei) × ei

✟
= − η ×

�
ei × (ei × e7)

✟
= −e7 × η.

(iii) Using (i) and (ii), one has 〈〈 /D
c
(σ), J( ✾σ)〉〉 = 〈〈J(σ), /D

c
( ✾σ)〉〉, and, by the vanishing of

the normal curvature tensor R⊥(ei, e7)σ = 0 for i = 5, 6, we have ∇⊥
i ∇⊥

7 σ = ∇⊥
7 ∇⊥

i σ.

Using Lemma 5 (i) and the compatibility of ∇⊥ with the induced metric in NY we

have

〈 /D
c
(σ), J( ✾σ)〉p =

7
∑

i=5

〈J(σ), ei × ∇⊥
7 ∇⊥

i σ〉p

=
7

∑

i=5

〈J(σ),∇⊥
7 (ei × ∇⊥

i σ)〉p

= −〈∇⊥
7 (J(σ)), /D

c
(σ)〉p + e7〈J(σ), /D

c
(σ)〉p

= −〈J( ✾σ), /D
c
(σ)〉p + div(〈J(σ), /D

c
(σ)〉e7)p.

(iv) Again by compatibility of ∇⊥ with the metric on NY , we have 2〈 ✾σ, σ〉 = 2〈∇⊥
7 σ, σ〉 =

e7|σ|2. Now Stokes’ Theorem gives

〈〈 ✾σ, σ〉〉 =
1

2

∫

Y
e7|σ|2d volY =

1

2

∫

Y
div(|σ|2e7)d volY = 0. (2.26)

Computing the L2-norm for /DA(σ), we have
∥

∥

∥

/DA(σ)
∥

∥

∥

2
=

∥

∥

∥

/D
c
(σ)

∥

∥

∥

2
+ ‖ ✾σ‖2 + ‖σ‖2 + 2〈〈 /D

c
(σ), J( ✾σ)〉〉 + 2〈〈 /D

c
(σ), J(σ)〉〉 + 2〈〈 ✾σ, σ〉〉,

and from Lemma 18(iii) and equation (2.26) it follows that
∥

∥

∥

/DA(σ)
∥

∥

∥

2
=

∥

∥

∥

/D
c
(σ)

∥

∥

∥

2
+ ‖ ✾σ‖2 + ‖σ‖2 + 2〈〈 /D

c
(σ), J(σ)〉〉.
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Therefore, by the triangle inequality,

〈〈 /D
c
(σ), J(σ)〉〉 ≤ 0.

Corollary 7. The submanifold Y of Example 6 is rigid.

Proof. We recall the full torsion tensor is T = e12 + e34 + e56, from it follows that

π⊥(T (ej, ·)
♯) = π⊥(T (B(σ), ·)♯) = 0 for any j = 5, 6, 7 and σ ∈ Ω0(NY ). Now, notice that

the operator A and the mean curvature vector field H vanish on Y , as can be seen from

A(σ) =
7

∑

i,j=5

4
∑

k=1

〈Sek(ei), ej〉〈ei, Sσ(ej)〉ek

= −
7

∑

i,j=5

4
∑

k=1

〈∇iek, ej〉〈ei, Sσ(ej)〉ek

= −
7

∑

i,j=5

4
∑

k=1

Γjik〈ei, Sσ(ej)〉ek = 0,

since, Γjik = 0 for i, j = 5, 6, 7 and k = 1, ..., 4. As well

H =
7

∑

i=5

4
∑

k=1

〈Sek(ei), ei〉ek

= −
7

∑

i=5

4
∑

k=1

〈∇iek, ei〉ek

= −
7

∑

i,j=5

4
∑

k=1

Γiikek = 0,

Applying equation (2.13), Lemma 5 and the previous calculation, we obtain the Weitzenböck

formula

/DA
2
(σ) = ∇∗∇σ + e7 × /D(σ) − 3∇⊥

7 σ −
1

2
σ.

Taking the inner product with σ and integrating over Y ,
∫

Y
〈 /DA

2
(σ), σ〉d volY =

∫

Y
〈∇∗∇σ, σ〉d volY +

∫

Y
〈e7 × /D(σ), σ〉d volY −

∫

Y
3〈∇⊥

7 σ, σ〉d volY

−
∫

Y

1

2
〈σ, σ〉d volY

≥
∫

Y
〈e7 × /D(σ), σ〉d volY −3

∫

Y
〈 ✾σ, σ〉d volY −

∫

Y

1

2
〈σ, σ〉d volY .

From Lemma 18 (iv), we conclude that
∫

Y
〈 /DA

2
(σ), σ〉d volY ≥

∫

Y
〈e7 × /D(σ), σ〉d volY −

1

2

∫

Y
〈σ, σ〉d volY . (2.27)

So, for σ ∈ ker /DA, we have /D(σ) = −e7 × σ and, replacing that in (2.27), we get the

inequality

0 ≥ −
∫

Y
〈e7 × (e7 × σ), σ〉d volY −

1

2

∫

Y
〈σ, σ〉d volY =

1

2

∫

Y
〈σ, σ〉d volY .

Then σ = 0 and therefore Y is rigid.
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2.3 Calibrated case

Consider a 6-dimensional Lie algebra h endowed with a SU(3)-structure (ω, φ+) ∈

Λ2(h)∗ ×Λ3(h)∗ satisfying the compatibility and normalized condition (2.18) such that both

ω and φ+ are closed, in this case the pair (ω, φ+) is a symplectic half-flat SU(3)-structure.

Thus, for the product Lie algebra g = h ⊕ R has a closed G2–structure given by

ϕ = ω ∧ e7 + φ+,

where R = Span(e7).

Example 7. Consider the nilpotent Lie algebra h with constant structures given by

h = g5,1 ⊕ R = (0, 0, 0, 0, e12, e13).

With respect to the SU(3)-basis {e1, . . . , e6} the symplectic half-flat SU(3)-structure is

given by

ω = e14 + e26 + e35 and φ+ = e123 + e156 + e245 − e346

Hence, the 7-dimensional Lie algebra g = h ⊕ R = g5,1 ⊕ R
2 has a closed G2–structure

given by

ϕ = ω ∧ e7 + φ+ = e147 + e267 + e357 + e123 + e156 + e245 − e346. (2.28)

Its dual 4-form

ψ =
1

2
ω2 + φ− ∧ e7 = e2356 − e1345 − e1246 + e4567 + e2347 − e1367 + e1257.

An straightforward calculation shows

dψ = −e1246 + e1345 and τ2 = −e35 + e26 ∈ Λ2
14(h)∗,

therefore, the full torsion tensor is given by

T =
1

2
e35 +

1

2
e26. (2.29)

By [Mal49, Theorem 7], the corresponding connected and simply connected nilpotent Lie

group G admits a uniform discrete subgroup Γ ⊂ G given by

Γ = exp(Z〈e1, ..., e7〉).

So, the compact manifold M = Γ\G has a G-invariant closed G2–structure

The 7-manifold from Example 7 contains an associative submanifold corre-

sponding to a particular Lie subalgebra:
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Example 8. Consider the abelian subalgebra a = Span(e1, e5, e6), note that the restriction

ϕ|a= e156, so a is an associative 3-plane. Since the connected and simply connected Lie

subgroup A with Lie algebra a is obtained as integral submanifold of G given by the

left-invariant distribution

∆(g) = (dLg)1a for g ∈ G,

we get an integral distribution ∆̄ on M = Γ\G. For each p = Γa ∈ (Γ\A) we have

Tp(Γ\A) = ∆̄(Γa) and so Y = Γ\A is a compact embedded submanifold of M . Moreover,

TpY ∼= a,

hence, Y is an associative submanifold of M .

Fix e1, ..., e7 an orthonormal frame of TM induced by left invariant vector fields

on G, such that the restriction on Y makes e1, e5, e6 an orthonormal frame of TY and

e2, e3, e4, e7 an orthonormal frame of NY . Notice that, the Lie algebra g contains an abelian

ideal u = Span(e2, ..., e7) of codimension 1. Let L : u → u be the linear transformation

L(u) = [e1, u]. The Riemannian connection ∇ on G is completely determined by L.

Lemma 19. [Mil76, Lemma 5.5] For each u, v ∈ u, the covariant derivative satisfies

∇1e1 =0, ∇1u =
1

2
(L− Lt)u,

∇ue1 = −
1

2
(L+ Lt)u, ∇uv =〈(L+ Lt)u, v〉e1,

where Lt denotes the transpose of L.

Using the above Lemma we have

∇1e2 = − ∇2e1 = −
1

2
e5 ∇1e5 =∇5e1 =

1

2
e2

∇1e3 = − ∇3e1 = −
1

2
e6 ∇1e6 =∇6e1 =

1

2
e3

∇2e5 =∇5e2 = ∇3e6 = ∇6e3 = −
1

2
e1 ∇iej =0 otherwise.

Notice that, the normal connection ∇⊥
i ej = ∇iej − (∇iej)

⊤ vanishes, since (∇iej)
⊤ = ∇iej

for i = 1, 5, 6 and j = 2, 3, 4, 7.

Lemma 20. The normal bundle NY for the submanifold 8 can be trivialized by parallel

sections e2, e3, e4, e7 of the connection ∇⊥.

Now, from Corollary 3 we have that ∇lψk156 = −Tlk for k, l = 2, 3, 4, 7, and by

equation (2.29) we get T |NY×NY = 0. Therefore, it follows:

Lemma 21. For the associative submanifold Y of Example 8:
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(i) The Fueter operator (2.1) is

/DA(σ) = /D(σ) = e1 × ∇⊥
1 σ + e5 × ∇⊥

5 σ + e6 × ∇⊥
6 σ

(ii) The operators P1, P2, P3 defined in Theorem 4 vanishes.

Applying Lemmata 20 and 21 we obtain that e2, e3, e4, e7 ∈ ker /DA. However,

each vector field ek is induced by the one parameter subgroup of diffeomorphism ft =

Rexp(tek) ⊂ Diff(M), indeed, the left-invariant vector field ek on G is induced by the flow

given by the right-translation Rexp(tek) : G → G. So, define

Rexp(tek) : Γg ∈ M 7→ Γ(g exp(tek)) ∈ M,

notice that this map is well defined, for Γg1 = Γg2 (i.e. g1g
−1
2 ∈ Γ), then

Rexp(tek)(Γg1) = Γg1 exp(tek) = Γg1g
−1
2 g2 exp(tek) = Γg2 exp(tek) = Rexp(tek)(Γg2).

Since the Lie group G is nilpotent, the exponential map exp : g → G is a diffeomorphism,

then, using the Baker-Campbell-Hausdorff formula the structure group of G is

gh = (x1+y1, x2+y2, x3+y3, x4+y4, x5+y5+
1

2
(x2y1−x1y2), x6+y6+

1

2
(x3y1−x1y3), x7+y7),

where g = (x1, ..., x7), h = (y1, ..., y7) ∈ G ∼= R
7, the identity element is the vector 0 and

the inverse g−1 = (−x1, ...,−x7). So, the differential of the left and right-translation are

dLg =

☎✝✝✝✝✝✝✝✝✝✝✝✝✆

1

1

1

1
x2

2
−
x1

2
0 0 1

x3

2
0 −

x1

2
0 1

0 0 0 0 1

☞✍✍✍✍✍✍✍✍✍✍✍✍✌
, dRg =

☎✝✝✝✝✝✝✝✝✝✝✝✝✆

1

1

1

1

−
x2

2

x1

2
0 0 1

−
x3

2
0

x1

2
0 1

0 0 0 0 1

☞✍✍✍✍✍✍✍✍✍✍✍✍✌
Notice that dRg = dLg−1 , in fact this follows by the fact that A is a normal subgroup of

G, since a is an ideal of g. Thus, the restriction {ft = Rexp(tek) : Y → M} induces trivial

deformations for each k = 2, 3, 4, 7.

Lemma 22. For the associative submanifold Y of Example 8 we have

R(σ) − π⊥
✁

∑

i∈Z3

ei × T (ei+1, σ, ei, ei+1)
✠

+H × B(σ) + (trSσ)H

− A(σ) −
3

∑

j=1

π⊥(T (ej, ·)
♯) × Sσ(ej) + π⊥(T (B(σ), ·)♯) = 0
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Proof. By Lemma 20 we have that R⊥ = 0 and using the calculation from the proof of

Lemma 9

−
3

∑

i<j

(ei×ej)×R
⊥(ei, ej)σ = R(σ)−π⊥

✁
∑

i∈Z3

ei×T (ei+1, σ, ei, ei+1)
✠

+H×B(σ)+(trSσ)H

− A(σ) −
3

∑

j=1

π⊥(T (ej, ·)
♯) × Sσ(ej) + π⊥(T (B(σ), ·)♯),

the result follows.

Now, the Weitzenböck formula (2.13) simplify drastically and we obtain the

following result.

Corollary 8. All infinitesimal associative deformation of the associative submanifold Y

of Example 8 come from trivial deformations, Y is rigid.

Proof. Using Lemmata 21 and 22 we have /DA
2
(σ) = ∇∗∇(σ), where

∇∗∇(σ) =

☎✝✝✝✝✆
∆

∆

∆

∆

☞✍✍✍✍✌
☎✝✝✝✝✆
σ2

σ3

σ4

σ7

☞✍✍✍✍✌
where σ = σ2e2 + σ3e3 + σ4e4 + σ7e7 ∈ Ω0(NY ) and ∆ = −e2

1 − e2
5 − e2

6 is the Laplacian

of functions on Y . If σ ∈ ker /DA then each σk is a harmonic function on Y for each

k = 2, 3, 4, 7, hence by the compactness of Y each σk is a constant function.
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3 Co-closed G2–flows

Geometric flows in G2–geometry were first outlined by the seminal works of

Bryant [Bry06] and Hitchin [Hit08], and have since been studied by several authors, e.g.

[Bry11, BF18, Gri13, KT12, Lau16, Lau17]. These so-called G2–flows arise as a tool in

the search for ultimately torsion-free G2–structures, by varying a non-degenerate 3-form

on an oriented and spin 7–manifold M towards some ϕ ∈ Ω3 := Ω3(M) such that the

torsion ∇gϕϕ vanishes. Such pairs (M7, ϕ) solving the non-linear PDE problem ∇gϕϕ ≡ 0

are called G2–manifolds and are very difficult to construct, especially when M is required

to be compact. To this date, all known solutions stem from elaborate constructions in

geometric analysis [Joy96, CP15, JK17].

When M7 = G is a Lie group, we propose to study the Laplacian co-flow

[KT12]
∂ψt
∂t

= −∆ψtψt (3.1)

and the modified Laplacian co-flow [Gri13]

∂ψt
∂t

= ∆ψtψt + 2d((C − trT )ϕt) for C a constant, (3.2)

from the perspective introduced by Lauret [Lau16] in the general context of

geometric flows on homogeneous spaces. As a proof of principle, we apply a natural Ansatz

to construct an example of invariant self-similar solution, or soliton, of the Laplacian

co-flow.

3.1 Geometric flow of G-invariant structures

Let us briefly survey Lauret’s approach to geometric flows on homogeneous

spaces [Lau16]. Consider the action of a Lie group G on a manifold M . A (r, s)-tensor γ

on M is G-invariant if g∗γ = γ, for each g ∈ G, where

g∗γ(X1, ..., Xr, α1, ..., αs) := γ(g∗X1, ..., g∗Xr, (g
−1)∗α1, ..., (g

−1)∗αs),

for X1, ..., Xr ∈ Γ(TM) and α1, . . . , αs ∈ Γ(T ∗M). In particular, when M = G/H is a

reductive homogeneous space, i.e.

g = h ⊕ m such that Ad(h)m ⊂ m, ∀h ∈ H,

any G-invariant tensor γ is completely determined by its value γx0 at the point x0 = [1G] ∈

G/H, where γx0 is an Ad(H)-invariant tensor at m ∼= Tx0M , i.e. (Ad(h))∗γx0 = γx0 for
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each h ∈ H. Given x = [gx0] ∈ G/H, clearly γx = (g−1)∗γx0 . Consider now a geometric

flow on M of the general form
∂

∂t
γt = q(γt), (3.3)

where γt is one-parameter family of tensor fields attached to a family of geometric structures

on M [Hus66, Ch. 6, Sec. 2] and q : γ 7→ q(γ) is an assignment of a tensor field on M of

the same type of γ such that for any diffeomorphism of M

q(f ∗γ) = f ∗q(γ) for f ∈ Diff(M). (3.4)

Then, if M = G/H, requiring G-invariance of γt, for all t, the diffeomorphism invariance

(3.4) reduces the flow to an ODE for a one-parameter family γt of Ad(H)-invariant tensors

on the vector space m:
d

dt
γt = q(γt),

thus, short-time existence and uniqueness among the G-invariant solution are guaranteed.

Now, suppose that for a fixed geometric structure, the orbit

Gl(m) · γ (3.5)

is open in the vector space T of all tensor of the same type as γ, and it is parametrised by

the homogeneous space Gl(m)/Gγ, where

Gγ := {h ∈ Gl(m) ; h · γ = γ}

is the stabilizer of γ within Gl(m). Consider θ : gl(m) → End(T) the infinitesimal

representation given by the action (3.5) defined by

θ(A)γ :=
d

dt
|t=0(e

At · γ).

Using the reductive decomposition gl(m) = gγ ⊕ qγ from (3.5), we have

θ(qγ)γ = T. (3.6)

In particular, for q(γ) there exist a unique linear operator Qγ ∈ qγ such that q(γ) = θ(Qγ)γ.

3.2 Invariant G2–structures on Lie groups

At this point, we fix (M7 = G,ϕ) a connected and simply connected Lie group

with Lie algebra g and ϕ a left-invariant G2–structure. We consider γ = ψ the dual 4-form

of the G2–structure, which is left-invariant too. Now, we address the geometric flow (3.3)

for the cases (3.1) and (3.2), i.e. q := −∆ψ and q := ∆ψ + 2d(C − trT )∗ϕ, respectively.

Accordingly with this, we also denote by ψ ∈ Λ4(g)∗ which lift to G by left-translation.

The Gl(g)-orbit (see Definition 3)

Gl(g) · ψ ⊂ Λ4(g)∗ (3.7)
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is open under the natural action

h · ψ := (h−1)∗ψ = ψ(h−1·, h−1·, h−1·, h−1·), h ∈ Gl(g).

So, the infinitesimal representation θ : gl(g) → End(Λ4(g)∗) at ψ is given by

θ(A)ψ := −ψ(A·, ·, ·, ·) − · · · − ψ(·, ·, ·, A·),

following (3.6) we have

θ(gl(g))ψ = Λ4(g)∗, (3.8)

The Lie algebra of the stabilizer subgroup G2(ψ) := Gl(g)ψ ∼= G2 × Z2 is given by

g2(ψ) := {A ∈ gl(g) ; θ(A)ψ = 0} ∼= g2.

From (1.4) we get the polar decomposition gl(g) = so(g) ⊕ sym(g), we consider the

orthogonal complement subspace q7(ψ) ⊂ so(g) of g2(ψ) relative to the induced inner

product from gl(g) (i.e. tr(ABt)). In the other hand, the G2–decomposition of sym(g)

into q1(ψ) = RI, the one dimensional trivial representation and q27(ψ) = sym0(g) the

fundamental representation of traceless symmetric matrices which has dimension 27.

Moreover, by comparing with the reductive decomposition gl(g) = g2(ψ) ⊕ q(ψ) it follows

the G2–invariant decomposition

q(ψ) = q1(ψ) ⊕ q7(ψ) ⊕ q27(ψ),

and the faithful representation

θ(q(ψ))ψ = Λ4(g)∗. (3.9)

In particular, for the Laplacian ∆ψψ, there exists a unique Qψ ∈ q(ψ) such that θ(Qψ)ψ =

∆ψψ. Now, for any other φ = h · ψ ∈ Gl(g) · ψ,

Gl(g)φ = Gl(g)h·ψ0 = h−1G2(ψ)h and gl(g)φ = gl(g)h·ψ = Ad(h−1)g2(ψ),

where Ad : Gl(g) → Gl(gl(g)). Moreover, we have the following relations.

Lemma 23. Let ψ̄ = h · ψ for h ∈ Gl(g), denote ∗̄ the Hodge star and ∆̄ the Laplacian

operator of ψ̄, then

∗̄ = (h−1)∗ ∗ h∗ and h∗ ◦ ∆̄ = ∆ ◦ h∗,

where ∗ and ∆ are the Hodge star and the Laplacian operator of ψ, respectively.

Proof. The inner products on g and g∗ induced by a G2–structure ϕ̄ = h ·ϕ are ḡ = (h−1)∗g

and ḡ = h∗g, respectively, where g is the inner product induced by ϕ. So, for α ∈ Λk(g)∗
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we have

α ∧ ∗̄α =ḡ(α, α)v̄ol

=(h∗g)(α, α)(h−1)∗ vol

=(h−1)∗(g(h∗α, h∗α) vol)

=α ∧ (h−1)∗ ∗ h∗α,

which gives the first claimed relation. In particular,

∗̄ ψ̄ = (h−1)∗ ∗ h∗ψ̄ = (h−1)∗ ∗ ψ = h · ϕ = ϕ̄.

Applying again the first relation to the operator d∗ = (−1)7k ∗ d∗, we have d∗̄ = (h−1)∗ ◦

d∗ ◦ h∗, which yields the claim because d commutes with the pull-back h∗.

As consequence of the above Lemma, we can relate Qψ̄ ∈ q(ψ̄) to Qψ ∈ q(ψ):

θ(Qψ̄)ψ̄ =∆ψ̄ψ̄ = ∆ψ̄((h−1)∗ψ) = (h−1)∗(∆ψψ)

=(h−1)∗θ(Qψ)ψ = (h−1)∗θ(Qψ)h∗ψ̄

=(h−1)∗ d

dt
♣etQψ · (h−1 · ψ̄)q|t=0=

d

dt
♣(hetQψh−1) · ψ̄)q|t=0

=
d

dt
♣(etAd(h)Qψ) · ψ̄)q|t=0= θ(Ad(h)Qψ)ψ̄,

since g2(ψ̄) ∩ q(ψ̄) = 0. Therefore,

Qψ̄ = Ad(h)Qψ. (3.10)

In particular, a G-invariant solution of the Laplacian co-flow (3.1) is given by

a 1-parameter family in g solving

d

dt
ψt = −∆tψt. (3.11)

Writing ψt =: h−1
t · ψ for ht ∈ Gl(g), we have

d

dt
ψt =ψ(h′

t·, ht·, ht·, ht·) + ψ(ht·, h
′
t·, ht·, ht·) + ψ(ht·, ht·, h

′
t·, ht·) + ψ(ht·, ht·, ht·, h

′
t·)

=ψt(h
−1
t h′

t·, ·, ·, ·) + ψt(·, h
−1
t h′

t·, ·, ·) + ψt(·, ·, h
−1
t h′

t·, ·) + ψt(·, ·, ·, h
−1
t h′

t·)

= − θ(h−1
t h′

t)ψt,

thus the evolution of ht under the flow (3.11) is given by

d

dt
ht = htQt. (3.12)

Remark 7. If we identify sym(g) with the symmetric 2-tensor S2(g) using the map

i : sym(g) → Λ3(g)∗ from (1.14) and applying Lemma 3 we have

∗i(Q) = θ(Q−
1

4
tr(Q)I)ψ (3.13)
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We adapt the following proposition to our convention (1.15) instead of the

Grigorian convention for the torsion forms (See Remark 3).

Proposition 6. [Gri13, Proposition 2.3] Suppose we have a co-closed G2-structure on a

manifold M with 3-form ϕ. Let ξ = i(h) ∈ Ω3 with h a symmetric tensor, then the exterior

derivative dξ is given by

dξ =
1

2

�
trT trh− 〈T, h〉

✟
ψ − (∇ trh− div h)♭ ∧ ϕ

+ ∗i(curl h(ab) +
1

2
T ◦ hab + (Th)ab −

1

2
(trh)Tab −

1

2
(trT )hab)

(3.14)

where (div h)a = ∇bhba denotes the divergence of a symmetric 2-tensor, (curl h)(ab) =

(curl h)ab + (curl h)ba = (∇mhan)ϕmnb + (∇mhbn)ϕmna is the symmetrized curl operator and

(T ◦ h)ab = ϕamnϕbpqT
mnT pq a product of 2-tensors.

Lemma 24. For a co-closed G2–structure ϕ we have:

(i) For any vector field v holds θ(Av)ψ = 3v♭ ∧ ϕ where Av(w) = v × w is the skew-

symmetric matrix given by the cross product.

(ii) dϕ = −θ(T )ψ, where T is the full torsion tensor.

(iii) ∆ψψ = θ(
10

21
AdivT − (curlT )(ab) −

1

2
(T ◦ T )ab − (T 2)ab)ψ.

For a G-invariant solution of the modified Laplacian co-flow (3.2) is given by a

one-parameter family in g solving

d

dt
ψt = ∆tψt + 2(C − tr(Tt))dϕt for C a constant, (3.15)

notice, by the G-invariance of τ0 for any ϕt then tr(Tt) is just time-dependent. Thus,

writing ψt =: h−1
t · ψ for ht ∈ Gl(g), we have that the evolution of ht under the flow (3.15)

is given by
d

dt
ht = −htQt + 2(C − tr(Tt))htTt for C a constant. (3.16)

3.2.1 Proof of Lemma 24

Before the proof of Lemma 24, we collect the following properties for an invariant

co-closed G2–structure.

Lemma 25. (i) div τ27 =
1

7
∇(trT ) − div T .

(ii) (curl τ27)(ab) = −(curlT )(ab) and tr((curlT )(ab)) = 0.

(iii) (T ◦ τ27) =
1

7
♣(trT )2g − (trT )T q − T ◦ T and tr(T ◦ T ) = (trT )2 − |T |2.
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Proof. (i) It is enough to apply the div to τ27 =
1

7
(trT )g − T .

(ii) Again, we apply curl to τ27, it remains to proof the traceless property

(curlT )abg
ab = (∇mTan)ϕmna = 0.

(iii)

(T ◦ τ27)ab = Tmnτ pq27ϕmpaϕnqb =
1

7
(trT )Tmnϕmpaϕnqbg

pq − (T ◦ T )ab

=
1

7
(trT )Tmn(gmngab − gmbgan + ψmanb) − (T ◦ T )ab

=
1

7
(trT )2gab −

1

7
(trT )Tab − (T ◦ T )ab

For the trace we have

(T ◦ T )abg
ab =TmnT pqϕmpaϕnqbg

ab

=TmnT pq(gmngpq − gmqgpn + ψmpnq)

=(trT )2 − T nq T
q
n

Proof of Lemma 24. (i) Let v = viei be a vector field, then the skew-symmetric matrix

Av is given by (Av)jk = viϕijk, thus we have

θ(Av)ψ = −
1

3!
(Av)

l
aψbcddx

abcd

= −
1

3!
viϕliaψlbcddx

abcd

=
1

3!
vi(−gibϕacd − gicϕbad − gidϕbca

+ gabϕicd + gacϕbid + gadϕbci)dx
abcd

=
3

3!
vigibϕacddx

bacd = 3v♭ ∧ ϕ.

(ii) Using the equation (3.13) we have

τ0ψ = ∗i
✁τ0

3
I
✠

= θ
✁

−
τ0

4
I
✠
ψ and ∗ τ3 = ∗i(τ27) = θ(τ27)ψ.

By the co-closed condition the torsion tensor is T =
τ0

4
I − τ27, thus τ0 =

4

7
tr(T )

and τ27 =
1

7
tr(T ) − T , therefore

dϕ = τ0ψ + ∗τ3 = θ
✁

−
τ0

4
I + τ27

✠
ψ = −θ(T )ψ.
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(iii) For a co-closed G2–structure, the Laplacian of ψ is

∆ψ = d ∗ dϕ = dτ0 ∧ ϕ+ τ 2
0ψ + τ0 ∗ τ3 + dτ3.

Now, we apply Lemma 6 to dτ3 = di(τ27), thus, we get

dτ3 = −
2

7
〈T, τ27〉ψ −

1

2
(div τ27)

♭ϕ

+ ∗i
✁

(curl τ27)(ab) +
1

2
(T ◦ τ27)ab + (Tτ27)ab

−
1

2
(trT )(τ27)ab −

1

14
〈T, τ27〉gab

✠
.

Thus, the Laplacian of ψ is

∆ψ =
✁4

7
d(trT ) −

1

2
(div τ27)

♭
✠

∧ ϕ+ ∗i
✁

(curl τ27)(ab) +
1

2
(T ◦ τ27)ab + (Tτ27)ab

+
1

14
(trT )(τ27)ab +

16

147
(trT )2gab −

1

6
〈T, τ27〉gab

✠
.

Now, replacing τ27 =
1

7
(trT )g − T and using the identity div T = ∇ trT , we get

∆ψ =
10

7
(∇ trT )♭ ∧ ϕ+ ∗i

✁
− (curlT )(ab) −

1

2
(T ◦ T )ab − (T 2)ab

+
1

6
(trT )2gab +

1

6
|T |2gab

✠
=

10

7
d(trT ) ∧ ϕ+ θ(−(curlT )(ab) −

1

2
(T ◦ T )ab − (T 2)ab)ψ

Since

tr(−(curlT )(ab) −
1

2
(T ◦ T )ab − (T 2)ab +

1

6
(trT )2gab +

1

6
|T |2gab) =

4

6
((trT )2 + |T |2)

3.3 Lie bracket flow

The Lie bracket flow is a dynamical system defined on the variety of Lie

algebras, corresponding to an invariant geometric flow under a natural change of variables.

It is introduced in [Lau16] as a tool for the study of regularity and long-time behaviour of

solutions.

For each h ∈ Gl(g), consider the following Lie bracket in g:

µ = [·, ·]h := h · [·, ·] = h[h−1·, h−1·]. (3.17)

Indeed, (g, [·, ·])
h
−→ (g, µ) defines a Lie algebra isomorphism, and consequently an equivari-

ant equivalence between invariant structures

η : (G,ψµ) → (Gµ, ψ),



Chapter 3. Co-closed G2–flows 70

where Gµ is the 1-connected Lie group with Lie algebra (g, µ), η is an automorphism such

that dη1 = h and ψµ = η∗ψ. In particular, by Lemma 23, ∆µψµ = η∗∆ψψ, or, equivalently,

Qµ = hQψh
−1, by equation (3.10).

Lemma 26. [Lau16, §4.1] Let {ht} ⊂ Gl(g) be:

(i) a solution of (3.12), then the bracket µt := [·, ·]ht evolves under the flow

d

dt
µt = −δµt(Qµt). (3.18)

(ii) a solution of (3.16), then the bracket µt := [·, ·]ht evolves under the flow

d

dt
µt = δµt(Qµt − 2(C − trTt)Tµt), (3.19)

in which δµ : End(g) → Λ2(g)∗ ⊗ g is the infinitesimal representation of the Gl(g)-action

(3.17), defined by

δµ(A) := −Aµ(·, ·) + µ(A·, ·) + µ(·, A·).

Proof. (i) Setting Qµt := htQth
−1
t , we compute:

d

dt
µt =h′

t[h
−1
t ·, h−1

t ·] + ht[(h
−1
t )′·, h−1

t ·] + ht[h
−1
t ·, (h−1

t )′·]

=h′
th

−1
t µt(·, ·) − µt(h

′
th

−1
t ·, ·) − µt(·, h

′
th

−1
t ·)

= − δµt(h
′
th

−1
t ) = −δµt(htQth

−1
t ) = −δµt(Qµt),

since (h−1
t )′ = −h−1

t h′
th

−1
t .

(ii) Similarly, setting Tµt = htTth
−1
t , we compute:

d

dt
µt =δµt(h

′
th

−1
t )

=δµt(htQth
−1
t − 2(C − tr(Tt))htTth

−1
t )

=δµt(Qµt − 2(C − trTt)Tµt),

Remark. Notice that, if {ht} ⊂ Gl(g) solves

d

dt
ht = Qµtht, or

d

dt
ht = −Qµtht + 2(C − trTt)Tµtht

then µt solves the bracket flow (3.18) or (3.19).
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3.4 Self Similar Solutions

We say that a 4-form ψ flows self-similarly along the flow (3.11) if the solution

ψt starting at ψ has the form ψt = btf
∗
t ψ, for some one-parameter families {ft} ⊂ Diff(G)

and time-dependent non-vanishing functions {bt}. This is equivalent to the relation

q(ψ) = λψ + LXψ,

for some constant λ ∈ R, X a complete vector field and q denotes either minus the Hodge

Laplace operator ∆ψ or the modified Laplace operator ∆ψ + 2d(C − trT )∗ϕ. Suppose that

the infinitesimal operator defined by q(ψ) = θ(Qψ)ψ had the particular form

Qψ = cI +D for c ∈ R and D ∈ Der(g). (3.20)

Then we have

θ(Qψ)ψ = − 4cψ + θ(D)ψ = −4cψ −
d

dt

�
(etD)∗ψ

✟
|t=0

= − 4cψ − LXDψ,

where XD is a vector field on g defined by the 1-parameter group of automorphisms

etD ∈ Aut(g).

In that case, (G,ψ) is a soliton for the Laplacian co-flow or for the modified Laplacian

co-flow with

q(ψ) = −4cψ − LXDψ,

where XD also denotes the invariant vector field on G defined by the 1-parameter subgroup

βt in Aut(G) such that d(βt)1 = etD ∈ Aut(g).

A G2–structure whose underlying 4-form ψ satisfies (3.20) is called an algebraic soliton,

and we say that it is expanding, steady, or shrinking if λ is positive, zero, or negative,

respectively.

Lemma 27. Given ψ2 = cψ1 with c ∈ R
∗, then:

(i) The Laplacian operator satisfies the scaling property

∆2ψ2 = c1/2∆1ψ1. (3.21)

(ii) The torsion forms have the scaling property

(τ0)2 = c−1/4(τ0)1 and (τ3)2 = c1/2(τ3)1.

In particular, trg2 T2 = c−1/4 trg1 T1.
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Proof. Notice that cψ1 = (c1/4)4ψ1, then ϕ2 = c3/4ϕ1, g2 = c1/2g1 and vol2 = c7/4 vol1. For

a k-form α we have

α ∧ ∗2α =g2(α, α) vol2 =
1

k!
αi1,...,ikαj1,...jk(g2)

i1j1 · · · (g2)
ikjk vol2

=c7/4−k/2 1

k!
αi1,...,ikαj1,...jk(g1)

i1j1 · · · (g1)
ikjk vol1 = c7/4−k/2g1(α, α) vol1

=c7/4−k/2α ∧ ∗1α.

So, for a k-form ∗2α = c
1
4

(7−2k) ∗1 α.

(i) For the Hodge Laplacian operator we have

∆2ψ2 =d ∗2 d ∗2 ψ2 − ∗2d ∗2 dψ2 = cd ∗2 d ∗2 ψ1 − c ∗2 d ∗2 dψ1

=c3/4d ∗2 d ∗1 ψ1 − c1/4 ∗2 d ∗1 dψ1

=c1/2d ∗1 d ∗1 ψ1 − c1/2 ∗1 d ∗1 dψ1 = c1/2∆1ψ1.

(ii) For the scalar torsion form, we have

(τ0)2 =
1

7
∗2 (ϕ2 ∧ dϕ2) =

c3/2

7
∗2 (ϕ1 ∧ dϕ1) =

c3/2c−7/4

7
∗1 (ϕ1 ∧ dϕ1) = c−1/4(τ0)1.

Finally, since ψ2 is co-closed, using the relation (τ3)2 = ∗2dϕ2 − (τ0)2ϕ2 the result

(τ3)2 = c1/2(τ3)1 follows.

Lemma 28. If ψ is an algebraic soliton with Qψ = cI+D, then ψt = bth
∗
tψ is a self-similar

solution for the Laplacian co-flow (3.11), with

bt = (2ct+ 1)2 and ht = estD, for st = −
1

2c
log(2ct+ 1). (3.22)

Moreover,

Qt = b
−1/2
t Qψ.

Proof. Applying Lemmata 23 and 27, we have

∆tψt = b
1/2
t h∗

t∆ψ = b
1/2
t h∗

t θ(Qψ)ψ

= b
1/2
t h∗

t

�
− 4cψ + θ(D)ψ

✟
= −4cb

1/2
t h∗

tψ + θ(b
1/2
t h−1

t Dht)h
∗
tψ.

On the other hand,

d

dt
ψt =b′

th
∗
tψ + bt(h

∗
tψ)′

=b′
th

∗
tψ + btθ(h

−1
t h′

t)h
∗
tψ.



Chapter 3. Co-closed G2–flows 73

Replacing the above expressions in (3.11) and comparing terms we obtain the ODE system










b′
t = 4cb

1/2
t , b(0) = 1

bth
′
t = −b

1/2
t Dht, h(0) = I

,

the solutions of which are as claimed.

Finally, we have

θ(Qt)ψt = ∆tψt = b
1/2
t h∗

t∆ψ = b
1/2
t h∗

t θ(Qψ)ψ

= b
1/2
t θ(h−1

t Qψht)h
∗
tψ = θ(b

−1/2
t h−1

t Qψht)ψt,

so Qt = b
−1/2
t h−1

t Qψht, which yields the second claim, since Qψht = htQψ.

In terms of the bracket flow, we have Qµt = htQth
−1
t = b

−1/2
t Qψ. Then, replacing

in (3.18) the Ansatz

µt = (
1

c(t)
I) · [·, ·] = c(t)[·, ·] for c(t) 6= 0 and c(0) = 1, (3.23)

we obtain c′
t = cb

−1/2
t ct, which has solution ct = ec.st , with st as above.

Lemma 29. If ψ is an algebraic soliton with Pψ = Qψ − 2(C − trT )T = cI + D, then

ψt = bth
∗
tψ is a self-similar solution for the modified Laplacian co-flow (3.15), with

bt = (−2ct+ 1)2 (3.24)

and

ht = est(D+2CT )−2CrtT , for st = −
1

2c
log(−2ct+ 1), and rt =

1

c
(−2ct+ 1)−1/2 −

1

c
.

Moreover,

Pt = b
−1/2
t Pψ − 2C(b

−1/4
t − b

−1/2
t ) Ad(h−1

t )T.

Proof. Applying Lemmata 23 and 27, we have

∆tψt + 2(C − trTt)dϕt = b
1/2
t h∗

t∆ψ + 2(C − trTb
−1/4
t )b3/4h∗

tdϕ

= b
1/2
t h∗

t θ(Qψ)ψ − 2Cb
3/4
t h∗

t θ(T )ψ + 2 trTb
1/2
t h∗

t θ(T )ψ

= b
1/2
t h∗

t θ(Qψ − 2(C − trT )T )ψ − 2C(b
3/4
t − b

1/2
t )h∗

t θ(T )ψ

= b
1/2
t h∗

t

�
− 4cψ + θ(D)ψ

✟
− 2C(b

3/4
t − b

1/2
t )h∗

t θ(T )ψ

= −4cb
1/2
t h∗

tψ + θ(b
1/2
t h−1

t (D + 2CT − 2Cb
1/4
t T )ht)h

∗
tψ.

On the other hand, we know from the proof of Lemma 28 that ψ′
t = b′

th
∗
tψ+ btθ(h

−1
t h′

t)h
∗
tψ,

then replacing the above expressions in (3.15) and comparing terms we obtain the ODE

system










b′
t = −4cb

1/2
t , b(0) = 1

bth
′
t = b

1/2
t (D + 2CT − 2Cb

1/4
t T )ht, h(0) = I

,
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the solutions of which are as claimed.

Finally, we have

θ(Pt)ψt = ∆tψt + 2(C − trt T )dϕt

= b
1/2
t h∗

t∆ψ + 2(C − trTb
−1/4
t )b3/4h∗

tdϕ

= b
1/2
t h∗

t θ(Pψ)ψ − 2C(b
3/4
t − b

1/2
t )h∗

t θ(T )ψ

= θ(b
−1/2
t h−1

t Pψht − 2C(b
−1/4
t − b

−1/2
t )h−1

t Tht)ψt,

so Pt = b
−1/2
t h−1

t Pψht − 2C(b
−1/4
t − b

−1/2
t )h−1

t Tht, which yields the second claim, since

Pψht = htPψ.

Indeed, there is an equivalence between the time-dependent Lie bracket given

in (3.23) and the corresponding soliton given in Lemma 28:

Theorem 6. [Lau16, Theorem 6] Let (G,ϕ) be a 1-connected Lie group with an invariant

G2–structure. The following conditions are equivalent:

(i) The bracket flow solution starting at [·, ·] is given by

µt = (
1

c(t)
I) · [·, ·] for c(t) > 0, c(0) = 1.

(ii) The operator Qt ∈ qψ ⊂ End(g), such that ∆ψψ = θ(Qψ)ψ, satisfies

Qψ = cI +D, for c ∈ R and D ∈ Der(g).

3.5 Almost abelian Lie groups

In this section we address a class of solvable Lie group named the almost

abelian,to exposed some basic notions about this we will follow [Lau17, Section 5]. Let

(G,ϕ) be a connected and simply connected Lie group with an invariant G2-structure ϕ,

if the corresponding Lie algebra g has an abelian ideal h of codimension 1, we say that

G is an almost abelian Lie group and g is an almost abelian Lie algebra. For dimG = 7

there exist an orthonormal basis {e1, ..., e7} of g such that h = Span{e1, ..., e6} and the

left invariant G2–structure is determined by

ϕ = ω ∧ e7 + ρ+ = e127 + e347 + e567 + e135 − e146 − e245 − e236 (3.25)

where

ω = e12 + e34 + e56 and ρ+ = e135 − e146 − e245 − e236

are the canonical SU(3)–structure of R6 ∼= h. an the dual 4-form ψ =
1

2
ω2 + ρ− ∧ e7 where

ρ− = J∗ρ+ = −e246 + e235 + e145 + e136 and J is the canonical almost structure on R
6
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defined by ω := 〈J ·, ·〉. Notice that the Lie algebra structure of g is completely determined

by a real 6 × 6 matrix A := ad(e7)|h. So, following the notation of [Lau17], µA will denote

the Lie bracket and GA the corresponding connected and simply connected Lie group.

In [Fre12] was studied the existence of invariant co-closed G2–structures on GA and the

condition dψ = 0 is entirely encoded by A.

Proposition 7. [Fre12] (GA, ϕ) is co-closed if and only if A ∈ sp(6,R).

sp(6,R) :={A ∈ gl(6,R); AtJ + JA = 0}

=

{

A =

✓
B C

D −Bt

✛
; C,D ∈ sym(3)

}

A useful algebraic relations between the geometry of g, h and A are summarised

in the following Lemma:

Lemma 30. Let ∗ and ⋆ the Hodge star operators on g and h, respectively, determined

by ϕ. Also, dA denote the exterior derivative of left-invariant forms on the GA, so for

γ ∈ Λk(h)∗ the following properties holds:

• [Lau17, Lemma 5.11] ∗γ = ⋆γ ∧ e7, ∗(γ ∧ e7) = (−1)k ⋆ γ and θ(A)⋆ = − ⋆ θ(At) (if

trA = 0).

• [Lau17, Lemma 5.12] dAe
7 = 0, dAγ = (−1)kθ(A)γ ∧ e7 and dA(γ ∧ e7) = 0.

• [Lau17, Equation (29)] The Ricci operator RicA of GA is given by

RicA =

✔✖✕ 1

2
[A,At] 0

0 −
1

4
tr(A+ At)2

✜✣✢ (3.26)

From the above follows that

dϕ = −θ(A)ϕ ∧ e7 = −θ(A)ρ+ ∧ e7.

Lemma 31. For a matrix A ∈ sp(6,R) holds the following:

θ(A)ρ+ = θ(JA)ρ− and θ(A)ρ− = θ(AtJ)ρ+.

Proof. Note that ωij = Jki hkj then

θ(A)ρ+ = −
1

2
Aliρ

+
ljkdx

ijk

= −
1

2
Aliρ

−
jkpωpldx

ijk

= −
1

2
AliJ

q
l hqpρ

−
jkpdx

ijk

= −
1

2
(JA)qiρ

−
qjkdx

ijk = θ(JA)ρ−.
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Notice that we used in the second line the identities (1.26). Similarly, θ(A)ρ− = −θ(JA)ρ+

and since JA = −AtJ the result follows.

For a co-closed G2–structure on GA, we want to write the torsion forms in term

of the matrix A.

Proposition 8. The torsion forms τ0 and τ3 for an almost abelian Lie group (GA, ϕ) with

co-closed G2–structure are

τ0 =
2

7
tr(JA) and τ27 =

☎✝✆ 1

14
tr(JA)I6 −

1

2
[J,A] 0

0 −
3

7
tr(JA)

☞✍✌
Proof. Since the G2–structure (3.25) is co-closed the scalar torsion is given by

τ0 =
1

7
∗ (ϕ ∧ dϕ) = −

1

7
∗ (ρ+ ∧ θ(A)ρ+ ∧ e7)

= −
1

7
⋆ (ρ+ ∧ θ(A)ρ+) = −

1

7
⋆ (ρ+ ∧ θ(JA)ρ−)

=
1

7
〈ρ−, θ(JA)ρ−〉 ⋆ (vol6) =

2

7
tr JA

Here, we used in the second line the Lemma 31 and from the orthogonal SU(3)–decomposition

we have

〈ρ−, θ(JA)ρ−〉 =(JA)2
2 + (JA)4

4 + (JA)6
6 + (JA)2

2 + (JA)3
3 + (JA)5

5

+ (JA)1
1 + (JA)3

3 + (JA)6
6 + (JA)1

1 + (JA)4
4 + (JA)5

5

=2 tr JA.

Now, applying Lemma 30 to ∗dϕ, we have

∗dϕ = − ∗ (θ(A)ρ+ ∧ e7) = ⋆θ(A)ρ+ = −θ(At)ρ− = −θ(AJ)ρ+.

Thus, applying j to ∗dϕ we get the symmetric bilinear form

j(∗dϕ)(u, v) = ∗(u④ϕ ∧ v④ϕ ∧ ∗dϕ)

For u = e7 and v = ei

e7④ϕ ∧ ei④ϕ ∧ ∗dϕ =ω ∧ ei④ω ∧ e7 ∧ ⋆θ(A)ρ+ + δi7ω
2 ∧ ⋆θ(A)ρ+

+ ω ∧ ei④ρ+ ∧ ⋆θ(A)ρ+

=ei④ω ∧ ω ∧ ⋆θ(A)ρ+ ∧ e7

=h(ei④ω ∧ ω, θ(A)ρ+) vol7

where h is the induced inner product on h and notice that

h(ei④ω ∧ ω, θ(A)ρ+) =
1

4
ωirωstA

l
aρ

+
lbch

rahsbhtc

=
1

4
ωirA

rlωbcρ+
bcl = 0
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The last result follows by the identities (1.26). So, it is enough to consider 1 ≤ i, j ≤ 6, we

have:

j(∗dϕ)ij = ∗ (ei④ϕ ∧ ej④ϕ ∧ ∗dϕ) = ∗(ei④ϕ ∧ ej④ϕ ∧ ⋆θ(A)ρ+)

= − ∗(ei④ω ∧ ej④ρ+ ∧ ∗θ(JA)ρ− ∧ e7 + ej④ω ∧ ei④ρ+ ∧ ⋆θ(JA)ρ− ∧ e7)

= − ⋆(ei④ω ∧ ej④ρ+ ∧ ⋆θ(JA)ρ− + ej④ω ∧ ei④ρ+ ∧ ⋆θ(JA)ρ−)

= −
�
h(ei④ω ∧ ej④ρ+, θ(JA)ρ−) + h(ej④ω ∧ ei④ρ+, θ(JA)ρ−)

✟
⋆ vol6

− h(ei④ω ∧ ej④ρ+, θ(JA)ρ−) − h(ej④ω ∧ ei④ρ+, θ(JA)ρ−)

We compute the first term

h(ei④ω ∧ ej④ρ+, θ(JA)ρ−) = −
1

3!
(3ωirρ

+
jst)((JA)lrρ

+
lst − (JA)lsρ

+
lrt + (JA)ltρ

+
lrs)

= −
1

2
(ωir(JA)lrρ

+
jstρ

+
lst❧ ❥❤ ♥

(I)

− ρ+
jst(JA)lsρ

+
ltrωri❧ ❥❤ ♥

(II)

+ ρ+
jst(JA)ltρ

+
lsrωri❧ ❥❤ ♥

(III)

) = ♣

For each term (I),(II),(III) we apply the SU(3)–identities (1.26)

(I) = − 4ωirωlj(JA)lr = −4Jni hnrJ
m
l hmj(JA)lr

= − 4Jni hnrhmj(J
2A)mr = 4Jni A

j
n = 4(AJ)ji .

On the other hand

(II) =(JA)lsρ
+
jstρ

+
lit

=(JA)ls(−ωjlωsi + ωjiωsl + δjlδsi − δjiδsl)

=(AJ)ji + (JA)ji − tr(JA)δji.

Notice that, we used the symmetry of JA in the last line. Similarly, for (III) we have

(III) = −(AJ)ji − (JA)ji + tr(JA)δji.

Summarising, we get

♣ = −(AJ)ji + (JA)ji − tr(JA)δji = −[A, J ]ji − tr(JA)δji.

Therefore,

j(∗dϕ)ij = [A, J ]ji + tr(JA)δji + [A, J ]ij + tr(JA)δij,

since the matrix [A, J ] is symmetric we have j(∗dϕ) = 2 tr(JA)I6 + 2[A, J ]. Finally, by

using Lemma 3 we compute

i(τ27) = ∗ dϕ− τ0ϕ

4τ27 =2 tr(JA)I6 + 2[A, J ] −
12

7
tr(JA)I7
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Corollary 9. The full torsion tensor T of an almost abelian Lie group (GA, ϕ) with an

invariant co-closed G2-structure is

T =
1

2

✄
[J,A] 0

0 tr(JA)

☛
(3.27)

Remark 8. Since GA induces diffeomorphism by left translation and ϕ is GA-invariant

then τ0 is constant and equal by its value at 1 ∈ GA. In particular,

∇(trT ) = 0.

Also, for a co-closed G2-structure, the Ricci curvature is given by [Gri13, Eq (4.30)]

Ric(g) = − curl(T ) − T 2 + (trT )T

Lemma 32. For the symmetric product of 2-tensor defined in Proposition 6 we have

T ◦ T =

☎✆ −
1

2
(tr JA)[J,A] − SA ◦6 SA 0

0 − trS2
A

☞✌, (3.28)

where SA =
1

2
(A+ At) is the symmetric part of A and (SA ◦6 SA)ab := SmnA SpqA ρ

+
mpaρ

+
nqb.

Proof. We are going to calculate the matrix elements (T ◦ T )ij. So, for i, j = 7 we have

(T ◦ T )77 =TmnT pqϕmp7ϕnq7 =
1

4
[J,A]mn[J,A]pqωmpωnq

=
1

4
(J(A+ At))nm(J(A+ At))pqωmpωnq

=
1

4
(A+ At)naJma (A+ At)pbJqbωmpωnq

= − SnaA S
pb
A haphbn = − trS2

A.

Notice that we used the relation AJ = −JAt in the second line and symmetry of J(A+At)

in the third line. For j = 7 and i 6= 7, we have

(T ◦ T )i7 = TmnT pqϕmpiϕnq7 = TmnT pqϕmpiωnq = ♠.

Since n, q ∈ {1, ..., 6} by Corollary 9 also m, p ∈ {1, ..., 6}, then

♠ =[J,A]mn[J,A]pqρ+
mpiωnq

=4(JSA)mn(JSA)qpρ+
mpiωnq

=4(SA)maJna (SA)qbJpb ρ
+
mpiωnq

= − 4(SA)ma(SA)qbJpb ρ
+
mpihaq

= − 4(SA)mq (SA)qbJpb ρ
+
pim

=4(S2
A)mb ρ

−
imb = 0
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Here we used in the second line the symmetry of [J,A], in the fourth line the relation

Jna ωnq = −haq and in the last one, the symmetry of S2
A with the skew-symmetry of ρ−.

Finally, for i 6= 7 and j 6= 7 we have

(T ◦ T )ij =TmnT pqϕmpiϕnqj

=2TmnT 77ωmiωnj + TmnT pqρ+
mpiρ

+
nqj

=
1

2
(tr JA)[J,A]mnJamhaiJ

b
nhbj +

1

4
[J,A]mn[J,A]pqρ+

mpiρ
+
nqj

=
1

2
(tr JA)(J(A+ At))mnJamhaiJ

b
nhbj +

1

4
(J(A+ A))mn(J(A+ At))pqρ+

mpiρ
+
nqj

=
1

2
(tr JA)(A+ At)mc J

cnJamhaiJ
b
nhbj +

1

4
(A+ At)mcJnc (A+ At)pdJqdρ

+
mpiρ

+
nqj

=
1

2
(tr JA)(J(A+ At))cahai(J

2)cbhbj + (SA)mc(SA)pdρ+
mpiρ

+
jnqJ

q
dJ

n
c

= −
1

2
(tr JA)[J,A]cahaiδ

cbhbj + (SA)mc(SA)pdρ+
mpiρ

−
jndJ

n
c

= −
1

2
(tr JA)[J,A]ji − (SA)mc(SA)pdρ+

mpiρ
+
djc

= −
1

2
(tr JA)[J,A]ij − (SA)mc(SA)pdρ+

mpiρ
+
cdj

Proposition 9. If (GA, ϕ) is co-closed, we have:

i) For the Hodge Laplacian of ψ

∆ψψ = θ
�

Ric(g) −
1

2
T ◦ T − (trT )T

✟
= θ(QA) (3.29)

Furthermore, QA = Ric(g) − (trT )T −
1

2
T ◦ T is a symmetric operator and it is

given by

QA =

✄
Q1 0

0 q

☛
,

where

Q1 =
1

2
[A,At] +

1

2
SA ◦6 SA and q = −

1

2
tr(SA)2 −

1

4
(tr JA)2.

ii) For the modified Laplacian

∆ψψ + 2d♣(C − trT )ϕq = θ
�

Ric(g) −
1

2
T ◦ T − (2C − trT )T

✟
= θ(PA)

where

PA =

✄
P1 0

0 p

☛
, (3.30)

where P1 =
1

2
[A,At] +

1

2
SA ◦6 SA −

✁
C −

1

2
tr JA

✠
[J,A] and p = −

1

2
tr(SA)2 +

1

4
(tr JA)2 − C tr JA.
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Proof. (i) Equation (3.29) follows directly from Lemma 24 (iii) and Remark 8, and the

expression for QA follows by equation (3.26), Corollary 9 and Lemma 32.

(ii) It follows by a similar reason as above.

Lemma 33. For a symmetric matrix A ∈ sp(6,R) we have A ◦6 A ∈ sp(6,R), where

(A ◦6 A)ab = AmnApqρ+
mpaρ

+
nqb.

Proof. The condition A ◦6 A ∈ sp(6,R) is equivalent with θ(A ◦6 A)ω = 0. So,

θ(A ◦6 A)ω =(A ◦6 A)aih
ijωjbdx

ab = AmnApqρ+
mpaρ

+
nqih

ijωjbdx
ab.

The result follows by the symmetry of AmnApqρ+
mpaρ

+
nqih

ijωjb, in fact

AmnApqρ+
mpaρ

+
nqih

ijωjb =AmnApqρ+
mpaρ

−
nqb

=AmnApqρ+
mpaρ

+
qbrh

rsωsn

= − (AJ)mrApqρ+
mpaρ

+
qbr

=(JA)mrApqρ+
mpaρ

+
qbr

=hmiωinA
nrApqρ+

mpaρ
+
qbr

=AnrApqρ−
panρ

+
qbr

=AnrApqρ+
npih

ijωjaρ
+
qbr

=AnmAqpρ+
mpbρ

+
nqih

ijωja

Notice that, we had used equation (1.26) time and again, and the symmetry of A.

The following two propositions involve the evoltion of the matrix A under the

flow (3.15). The expectation is that in the future these result allow to inquire about long

time existence solution for the modified Laplacian co-flow on almost abelian Lie groups,

similar to the Laplacian flow [Lau17] and the Laplacian co-flow [BF17].

Proposition 10. Let L be the variety of 7-dimensional Lie algebras. The family {µA : A ∈

sp(6,R)} ⊂ L of co-closed G2-structures is invariant under the bracket flow ✾µ = δµ(PA),

which becomes equivalent to the following ODE for a one-parameter family of matrices

A = A(t) ∈ sp(6,R):

d

dt
A =

�
−

1

2
tr(SA)2 +

1

4
(tr JA)2 − C tr JA

✟
A+

1

2
[A, [A,At]] +

1

2
[A, SA ◦6 SA]

−
✁
C −

1

2
tr JA

✠
[A, [J,A]]

(3.31)

Proof. Notice that the family {µA : A ∈ sp(6,R)} ⊂ L is invariant under the bracket flow

if and only if δµ(PA) = µB for some B ∈ sp(6,R), for any A ∈ sp(6,R). Using (3.30) we
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have

δµ(PA)(e7, ei) =µA(PAe7, ei) + µA(e7, PAei) −QAµA(e7, ei)

=pµA(e7, ei) + µA(e7, P1ei) − P1µA(e7, ei)

=(pA+ AP1 − P1A)ei.

Hence, B = pA+ [A,P1], note that B ∈ sp(6,R), indeed

[J,A]tJ + J [J,A] = [J,At]J + J [J,A] = JAtJ + At − A− JAJ = 0

and SA ◦6 SA ∈ sp(6,R) by Lemma 33, thus P1 ∈ sp(6,R). Therefore, the subset of

invariant co-closed G2–structures is invariant under the bracket flow and the matrix A

evolves by ✾A = B.

Proposition 11. If µA(t) is a bracket flow solution, then the norm of A(t) ∈ sp(6,R)

evolves

d

dt
|A|2=

�
− |SA|2+

1

2
(tr JA)2 − 2C tr JA

✟
|A|2−|[A,At]|2

− 〈SA ◦6 SA, [A,A
t]〉 +

✁
2C − tr JA

✠
(〈[J,A], [A,At]〉)

Proof. From Proposition 10, we have

d

dt
|A|2=2〈 ✾A,A〉 = 2 tr( ✾AAt)

=
�

− |SA|2+
1

2
(tr JA)2 − C tr JA

✟
|A|2+〈[A, [A,At]], A〉 + 〈[A, SA ◦6 SA], A〉

−
✁

2C − tr JA
✠

〈[A, [J,A]], A〉

= −
�1

4
|SA|2+2C(tr JA)2

✟
|A|2−|[A,At]|−〈SA ◦6 SA, [A,A

t]〉

+
✁

2C − tr JA
✠

〈[J,A], [A,At]〉

Similarly to Propositions 10 and 11, we get the following result for the Laplacian

co-flow.

Proposition 12. The bracket flow {µA : A ∈ sp(6,R)} ⊂ L and its norm |µA(t)|
2= |A|2

associated with the Laplacian co-flow (3.11) evolve

✾A = −
�1

2
tr(SA)2 +

1

4
(tr JA)2

✟
A+

1

2
[A, [A,At]] +

1

2
[A, SA ◦6 SA] (3.32)

✾|A|2 = −
�
|SA|2+

1

2
(tr JA)2

✟
|A|2−|[A,At]|2−〈SA ◦6 SA, [A,A

t]〉 (3.33)
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In order to proof long time existence solution for (3.11) we need the following

identity.

Lemma 34. For the symmetric part SA of the matrix A ∈ sp(6,R) holds

|SA ◦6 SA|2= 4(|SA|2|SA|2−2|S2
A|2−〈JSA, SA〉2).

Proof. This identity is found just by manipulating the SU(3)–representations (1.25) and

the contraction identities (1.26) between ω, ρ+ and ρ−.

Now, we are going to study the term −〈SA ◦6 SA, [A,A
t]〉 given in the evolution

equation (3.33). Using the Cauchy-Schwarz and Peter-Paul inequalities ab ≤
a2

2ε
+
εb2

2
for

a, b ≥ 0 and ε > 0, we have

−〈SA ◦6 SA, [A,A
t]〉 ≤|SA ◦6 SA||[A,At]|

≤
|SA ◦6 SA|2

2ε
+
ε|[A,At]|2

2

=
2

ε
(|SA|2|SA|2−2|S2

A|2−〈JSA, SA〉2) +
ε

2
|[A,At]|2

Taking ε = 2 and replacing the last inequality in the equation 3.33, we have

✾|A|2 ≤ −
�
|SA|2+

1

2
(tr JA)2

✟
|A|2−|[A,At]|2+|SA|2|SA|2−2|S2

A|2−〈JSA, SA〉2 + |[A,At]|2

= − |SA|2|SA|2−
1

2
|SA|2|A− At|2−

1

2
(tr JA)2|A|2+|SA|2|SA|2−2|S2

A|2−〈JSA, SA〉2

= −
1

2
|SA|2|A− At|2−

1

2
(tr JA)2|A|2−2|S2

A|2−〈JSA, SA〉2 ≤ 0

Thus, |A|2 is non-increasing and so long time existence the bracket flow (3.32)

follows. In fact, |A|2 is strictly decreasing unless (GA, ϕ) is torsion free (that is, ✾|A|2 = 0

if At = −A and tr JA = 0 [Fre13]), and thus A(t) ≡ A0 is constant. In view of the

equivalence between the Laplacian co-flow (3.11) and the bracket flow (3.32) (see [Lau16,

Theorem 5]), we obtain long time existence for the Laplacian co-flow among this class.

Corollary 10. The left invariant Laplacian co-flow solutions starting at any co-closed

G2–structure (GA, ϕ) is defined for all t ∈ (T−,∞) for some T− < 0.

Remark 9. The equations 3.32 and 3.33 correspond to the bracket flow

✾µt = δµt(Qµt) ⇔ ✾ψt = ∆ψt.

However, the results also hold for the co-flow (3.11) and in this case the solution of

Corollary 10 are defined for all t ∈ (−∞, T+) for some 0 < T+, it as was proved by

Bagaglini and Fino [BF18] for a normal matrix A ∈ sp(6,R). Notice that we proved long

time existence for (3.11) for any matrix A ∈ sp(6,R).
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3.5.1 Example of a co-flow soliton

We now apply the previous theoretical framework to construct an explicit

co-flow soliton from a natural Ansatz. Let g = R ×ν R
6 be the Lie algebra defined by

ν(t) = exp(tA) ∈ Aut(g), with

A =

☎✝✝✝✝✝✝✝✝✝✆

1

0

1

1

0

1

☞✍✍✍✍✍✍✍✍✍✌
.

The canonical SU(3)–structure on R
6 with respect to the orthonormal basis {e1, e6, e2, e5, e3, e4}

is

ω = e16 + e25 + e34, ρ+ = e135 − e124 − e236 − e456

and the standard complex structure of R6 is

J =

☎✝✝✝✝✝✝✝✝✝✆

−1

−1

−1

1

1

1

☞✍✍✍✍✍✍✍✍✍✌
We also have the natural 3-form

ρ− := J · ρ+ = e123 + e145 + e356 − e246.

The structure equations of g∗ with respect to the dual basis of {e1, e6, e2, e5, e3, e4, e7} are

de1 = e67, de6 = e17, de3 = e47, de4 = e37, dej = 0 for j = 2, 5.

From the above, we have

dω = 0, dρ+ = −2(e2467 + e1237), and dρ− = 2(e1357 + e4567).

There is a natural co-closed G2–structure on g, given by

ϕ := ω ∧ e7 + ρ+ = e167 + e257 + e347 + e135 − e124 − e236 − e456,

with dual 4-form

ψ = ∗ϕ =
ω2

2
+ ρ− ∧ e7 = e1256 + e1346 + e2345 + e1237 + e1457 + e3567 − e2467.
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We have JA = −AJ = diag(−1, 0,−1, 1, 0, 1), then by Lemma 8

τ0 = tr JA = 0 and τ27 = diag(1, 0, 1,−1, 0,−1, 0).

Hence, T = −τ27 = diag(−1, 0,−1, 1, 0, 1, 0). To obtain the Laplacian of ψ we apply

Proposition 9 (i), notice that Q1 =
1

2
A ◦6 A and q = −

1

2
trA2 since A is symmetric. By a

straightforward computation we have

trA2 = 4 and A ◦6 A = diag(0, 4, 0, 0,−4, 0),

So, ∆ψψ = θ(Qψ)ψ = 4(e1457 + e3567) where Qψ = diag(0, 2, 0, 0,−2, 0,−2). Consider the

derivation D = diag(a, b, c, c, d, a, 0) ∈ Der(g), and take the vector field on g

XD(x) =
d

dt
(exp(tD)(x)), for x ∈ g.

Then we have

LXDψ =
d

dt
(exp(−tD)∗ψ)|t=0= −θ(D)ψ

= (2a+ b+ d)e1256 + (2a+ 2c)e1346 + (b+ 2c+ d)e2345 + (a+ b+ c)e1237

+ (a+ c+ d)e1457 + (a+ c+ d)e3567 − (a+ b+ c)e2467.

From the soliton equation −∆ψ = LXDψ + λψ, we obtain a system of linear equations































2a+ b+ d+ λ = 0

2a+ 2c+ λ = 0

a+ b+ c+ λ = 0

a+ c+ d+ λ = −4

,

which has solution D = diag(2, 4, 2, 2, 0, 2, 0) and λ = −8. In particular, for the matrix

Qψ = D +
λ

4
I7, we have ∆ψ = θ(Qψ)ψ. By Lemma 28, the functions

c(t) = (1 − 4t)2 and s(t) =
1

4
log(1 − 4t) for

1

4
> t,

yield the family of 4-forms {ψt = c(t)(f(t)−1)∗ψ}, where

f(t)−1 = exp(−s(t)D)

= diag((1 − 4t)−1/2, (1 − 4t)−1, (1 − 4t)−1/2, (1 − 4t)−1/2, 1, (1 − 4t)−1/2, 1).

Hence,

ψt = e1256 + e1346 + e2345 + e1237 + (1 − 4t)(e1457 + e3567) − e2467 (3.34)

defines a soliton of the Laplacian co-flow:

dψt
dt

= −4(e1457 + e3567) = −c(t)1/2(f(t)−1)∗∆ψ = −∆tψt.
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Corollary 11. The relevant geometric structures associated to the 4-form given in (3.34)

are:

(i) the G2–structure

ϕt = c(t)1/4(e167 + e257 + e347 + e135 − e456) − c(t)−1/4(e124 + e236);

(ii) the G2–metric

gt = (e1)2 + (e3)2 + (e4)2 + (e6)2 + c(t)−1/2(e2)2 + c(t)1/2((e5)2 + (e7)2);

(iii) the volume form

volt = c(t)1/4 volψ;

(iv) the torsion form and the full torsion tensor

τ3(t) = 2(e135 + e456) and T (t) = c(t)−1/4
�

− (e1)2 − (e3)2 + (e4)2 + (e6)2
✟
;

(v) the Ricci tensor and the scalar curvature

Ric(gt) = −4c(t)−1/2(e7)2 and Rt = −
1

2
|τ3(t)|

2= −4c(t)−1/2;

(vi) the bracket flow solution

µt = c(t)−1/4[·, ·].

3.5.2 Example of a modified co-flow soliton

We now construct an explicit modified co-flow soliton following the same ideas

from the last example. Let g = R ×ν R
6 be the Lie algebra defined by ν(t) = exp(tA) ∈

Aut(g), with

A =

☎✝✝✝✝✝✝✝✝✝✆

0 −1

1 0

0 −1

1 0

0 −1

1 0

☞✍✍✍✍✍✍✍✍✍✌
.

The canonical SU(3)–structure on R
6 with respect to the orthonormal basis {e1, ..., e6} is

ω = e12 + e34 + e56, ρ+ = e135 − e146 − e236 − e245

and the standard complex structure of R6 is

J(e1) = e2, J(e3) = e4, J(e5) = e6 and J2 = −I
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We also have the natural 3–form

ρ− := J · ρ+ = −e246 + e235 + e136 + e145.

The natural co-closed G2–structure on g is given by

ϕ := ω ∧ e7 + ρ+ = e127 + e347 + e567 + e135 − e146 − e236 − e245,

with dual 4-form

ψ = ∗ϕ =
ω2

2
+ ρ− ∧ e7 = e1234 + e1256 + e3456 − e2467 + e2357 + e1367 + e1457.

We have

JA = AJ =

☎✝✝✝✝✝✝✝✝✝✆

−1 0

0 −1

−1 0

0 −1

−1 0

0 −1

☞✍✍✍✍✍✍✍✍✍✌
.

Then, by Proposition 8 we have

τ0 = −
4

7
, τ27 = −

1

7
diag(1, 1, 1, 1, 1, 1,−6),

and by Corollary 9, T = diag(0, 0, 0, 0, 0, 0,−1). Now, we apply Proposition 9 (ii), since A is

skew symmetric we have ∆ψψ+2(C− trT )dϕ = θ(PA)ψ where PA = diag(0, . . . , 0, 1+2C)

Now, for C = 0 we get

PA = QA + 2(trT )T = I +D for D = diag(−1,−1,−1,−1,−1,−1, 0) ∈ Der(g)

By Lemma 29, the functions

c(t) = (1 − 2t)2 and s(t) = −
1

2
log(1 − 2t) for

1

2
> t,

yield the family of 4-forms {ψt = c(t)(f(t)−1)∗ψ}, where

f(t)−1 = exp(−s(t)D)

= (1 − 2t)−1/2 diag(1, 1, 1, 1, 1, 1, (1 − 2t)1/2).

Hence,

ψt = e1234 + e1256 + e3456 + (1 − 2t)1/2(e1367 + e1457 + e2357 − e2467)

defines a soliton of the modified Laplacian co-flow with C = 0:

∆tψt − 2 trt Ttdϕt =c
1/2
t ft · ∆ψψ − 2c

−1/4
t (trT )c

3/4
t ft · dϕ

= − (1 − 2t)−1/2(e1367 + e1457 + e2357 − e2467) =
d

dt
ψt
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3.6 An associative submanifold along the Laplacian flow

Here we pretend to give a connection between the main topics of this work,

namely, we consider the deformation of the associative submanifold from Example 8 along

the Laplacian flow of closed G2–structures.

Consider the connected and simply connected nilpotent Lie group G with Lie

algebra

g = (0, 0, 0, 0, e12, e13, 0),

from the Example 7. It could be seen as an almost abelian Lie algebra [Lau17] with respect

to the orthonormal basis g = Span(e1, e2, e3, e4, e7, e5, e6), h = Span(e2, e3, e4, e7, e5, e6)

and

A = ad(e1)|h=

☎✝✆0

0 0

1 0 0

☞✍✌∈ sl(3,C). (3.35)

This example corresponds with n2 from [Lau17, Example 5.8] under the change of basis

P =

☎✝✝✝✝✝✝✝✝✝✝✝✆

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 1 0 0 0

☞✍✍✍✍✍✍✍✍✍✍✍✌
∈ G2.

Thus, the G2–structure (2.28) is rewritten as

ϕ = e1 ∧ ω + ρ+

for ω = e23 + e47 + e56 and ρ+ = e267 + e357 + e245 − e346 a SU(3)-structure on the abelian

ideal h. We calculate the Laplacian of ϕ by ∆Aϕ = θ(QA)ϕ where

QA =

✄
q 0

0 Q1

☛
,

with Q1 =
1

2
[A,At] +

1

12
tr(A+ At)2I −

1

2
(A+ At)2 and q = −

1

6
tr(A+ At)2 (see [Lau17,

Proposition 5.15]). Then we have QA =
1

3
diag(−2,−2,−2, 1, 1, 1, 1) for the nilpotent

matrix A given in (3.35). It can be verified that the matrix A satisfies the relation

[A, [A,At] − (A+ At)2] =
|[A,At]|2

|A||2
A,

thus, by [Lau17, Proposition 5.22] (GA, ϕ) is an algebraic soliton for the Laplacian flow

given D = QA − cI with

c = −
1

2
tr(A+ At)2 −

|[A,At]2

2|A|2
= −3,
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hence, D = diag(1, 1, 1, 2, 2, 2, 2) ∈ Der(g). Therefore, by [Lau17, Theorem 3.8] we have

b(t) = (
10

3
t+ 1)3/2, s(t) =

3

10
log

✂
10

3
t+ 1

✡
and

ϕ(t) = b(t)(e−s(t)D)∗ϕ = (
10

3
t+ 1)3/5e123 + e147 + e156 + e267 + e357 + e245 − e346.

Notice that ϕ(t)|a= e156 where a = Span(e1, e5, e6) is the abelian subalgebra. So, the

associative submanifold given in the Example 8 remains associative for any ϕ(t).
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Concluding Remarks

We would like to conclude with two questions for future work.

1. In view of the equivalence between the bracket flow and the modified Laplacian

co-flow given in Lemma 26, it would be interesting to study the evolution of the

norm obtained in Proposition 11 to understand the long time behaviour of solutions

and thereof give necessary and sufficient conditions on A ∈ sp(6,R) to obtain an

algebraic soliton.

2. When the full torsion tensor T = −τ27 is traceless symmetric, the scalar curvature

of the corresponding G2-metric is nonpositive, and it vanishes if, and only if, the

structure is torsion-free (c.f. [Bry06, (4.28)] or [Kar09, (4.21)]). This fact was first

pointed out by Bryant for a closed G2-structure, in order to explain the absence of

closed Einstein G2-structures (other than Ricci-flat ones) on compact 7-manifolds,

giving rise to the concept of extremally Ricci-pinched closed G2-structure [Bry06,

Remark 13]. Later on, Fernández et al. showed that a 7-dimensional (non-flat)

Einstein solvmanifold (S, g) cannot admit any left-invariant co-closed G2-structure

ϕ such that gϕ = g [FM].

In that context, it would be interesting to study pinching phenomena for the Ricci

curvature of solvmanifolds with a co-closed (non-flat) left-invariant G2-structure and

traceless torsion. In our present construction, for instance, we can see from Corollary

11 that

F (t) =
R2
t

|Ric(gt)|2
= 1.
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