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Resumo

Nós mostramos que diversos ingredientes cruciais para o Modelo Padrão Cosmológico, como

Inflação e Matéria Escura, podem ter uma origem comum em uma teoria de Yang-Mills de-

sacoplada do Modelo Padrão das Partículas Elementares. Vários aspectos da teoria de Yang-Mills

em temperatura finita, em particular o comportamento não-trivial da viscosidade volumétrica

com a temperatura, têm o potencial de fornecer um candidato para a matéria escura, na forma de

partículas de glueballs, e de gerar Inflação com uma transição de deconfinamento.

Nessa dissertação, nós resolvemos as equações de Friedmann utilizando a equação de estado de

Yang-Mills SUpNcq e o comportamento conjecturado da viscosidade volumétrica, com parâmetro

de quebra de simetria conforme e número de cores genéricos. Nós calculamos o número de

efoldings produzido nos cenários investigados e checamos a existência de uma transição suave

no fim do período Inflacionário. Um caso viável é detalhado.

Palavras-chave: Teoria de Yang-Mills, Universo inflacionário, Transição de deconfinamento.



Abstract

We show that several ingredients crucial to the Standard Cosmological Model, such as Inflation

and Dark Matter, could have a common origin in a Yang-Mills theory decoupled from the

Standard Model of Particle Physics. Several aspects of finite temperature Yang-Mills theory,

in particular the non-trivial behavior of bulk viscosity with temperature, have the potential to

provide a candidate for dark matter, in the form of glueball particles, and to generate Inflation

with a deconfinement transition.

In this thesis, we solve the Friedmann equations using the SUpNcq Yang-Mills equation of

state and conjectured bulk viscosity behaviour, with generic conformal symmetry breaking

parameter and number of colors. We calculate the number of efoldings generated in the scenarios

investigated and we check the existence of a smooth transition at the end of the Inflationary

period. A viable case is detailed.

Keywords: Yang-Mills theorie, Inflationary universe, Deconfinement transition.
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Introduction

The Standard Model of Particle Physics describes all elementary particles and

their interactions through the Strong, Weak and Electromagnetic forces. It has been extremely

successful in explaining phenomena from the microscopical to the galatic scales, from the Early

times, few seconds after the Big Bang, to nowadays. However, the recent discoveries of dark

matter and dark energy, unpredicted and unexplained by the Standard Model, have led to the

suspicion that a more fundamental theory of Particle Physics is yet to be discovered.

Many theories beyond the Standard Model have been proposed aiming to complete

our picture of the understanding of nature. Although many of these theories dedicate themselves

to the proposal of candidates for dark matter and the unification of the gravitation with the

remaining forces, few theories attempt to address another important issue of the Standard

Model: the elusive nature of the Inflaton. The Inflaton is a scalar field assumed to permeate the

whole Universe and be responsible for the Inflationary period in the Early Universe. Later, its

oscillations accounted for the production of all barionic matter in the Universe, in a process known

as reheating. Despite its predictions having been indirectly confirmed through observational data,

many open questions remain for this model, for example, the exact format of this field or how to

falsify this theory.

In this work, we present an extension to the Standard Model of Particle Physics that

explains the Inflationary period of the Early Universe without recurring to a scalar field. We

hypothesize the existence of a Yang-Mills SUpNcq fluid, non-coupled to the standard matter,

whose deconfinement transition at a critical temperature Tc generates this exponential expansion

of the scale factor of the Universe. Yang-Mills theories are generalizations of the mathematical

formulation of the Quantum Chromodynamics, or QCD, the theory of the strong forces. This

theory presents several distinguished proprieties, such as color confinement and asymptotic

freedom. In particular, at the deconfinement transition, a plasma of free elementary particles,

such as quarks and gluons, transforms into a hadronic gas of composed particles, such as protons

and neutrons. It is our hypothesis that a transition like this could generate the Inflationary period

of the universe and the hadronic SUpNcq particles formed could be the dark matter particles.

In chapter 1, we introduce some useful results from General Relativity to derive the

Friedmann equations, that determine the evolution of the universe with time. We study their

formulation with perfect and imperfect fluids and we detail the Inflationary model, its justification

and current formulation. In chapter 2, we review Yang-Mills theories starting from QCD and we

introduce techniques such as lattice QCD and the large-N limit to study their non-perturbative

limit. This is the basis for our inflationary model, introduced in chapter 3. In this chapter we

motivate our model, describe it and find the new equations of state for the primordial plasma of
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the Early Universe. We also solve the Friedmann equations and calculate the number of efolds

for some configurations of the free parameters of the model. A viable scenario for the description

of our universe is found and discussed.
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1 Understanding Friedmann’s equa-

tions

In this chapter, we derive Friedmann’s equations from Einstein’s equations and a

specific metric, one that describes an isotropic and homogeneous universe. We start with a generic

energy-momentum tensor and then analyze the specific cases where this tensor represents an

ideal fluid (section 1.1) and a non-ideal fluid (section 1.2). We interpret how these scenarios differ

in determining the evolution of the universe with time and introduce the principal features of the

ΛCDM model, the Standard Cosmological Model, specially its inflationary period. We assume

the reader is familiarized with Lorentzian Geometry, General Relativity and Fluid Mechanics.

We start by introducing some useful quantities. Given that:

ds2 “ gµνdx
µdxν and gµνgνσ “ δµσ , (1.1)

we have the Christoffel symbols Γλ
µν , determined from the metric gµν by:

Γλ
µν “ 1

2
gλσpBµgνσ ` Bνgσµ ´ Bσgµνq (1.2)

They help us to find the Ricci tensor Rµν from the connection Rρ
σµν (the Riemann

tensor). The Ricci tensor, in turn, determines the Ricci scalar R:

Rρ
σµν “ BµΓρ

νσ ´ BνΓρ
µσ ` Γ

ρ
µλΓ

λ
νσ ´ Γ

ρ
νλΓ

λ
µσ,

Rλ
µλν “ Rµν ,

R “ gµνRµν

(1.3)

Having all these quantities for a specific metric in a determined set of coordinates,

one can solve Einstein’s equations:

Rµν ´ 1

2
Rgµν ` Λgµν “ 8πGTµν , (1.4)

where Λ represents a cosmological constant and Tµν stands for the energy-momentum tensor.

Here G is the gravitational constant and we’re using units such that ~ “ c “ kb “ 1.
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The following metric in spherical coordinates was proposed by Friedmann and

Lemaître independently and then further studied by Robertson and Walker. Its model is constantly

referred to by the FRLW metric:

ds2 “ ´dt2 ` a2ptq
„

dr2

1 ´ kr2
` r2

`

dθ2 ` sin2 θdφ2
˘



(1.5)

This represents a space-time where the time coordinate is t and the space coordinates

are r, θ and φ. The term aptq, also called the scale factor, determines how these three last

coordinates change with time. Their evolution is completely specified by this quantity and the

curvature of the manifold k, therefore, this space-time is spatially isotropic and homogeneous.

This structure reflects our universe’s and among several experiments that investigated

this, we highlight the Planck telescope, which measured CMB (cosmic microwave background)

radiation from 2009 to 2013. It was able to determine the degree of isotropy and homogeneity

of the early universe with accuracy of 0.1 percent as well as its flatness, with accuracy of 0.5

percent [1].

Because this space-time evolves with time, it does not represent a maximally sym-

metric universe, but one that can be decomposed in 3D space-like slices, each one maximally

symmetric. This immensely simplifies the calculations of the quantities defined above. To find

them, we first identify the metric tensor.

From equation (1.1) and remembering Einstein’s sum convention (repeated indexes

on top and bottom of a expression are to be summed), we identify:

gµν “

¨

˚

˚

˚

˚

˚

˝

´1 0 0 0

0
a2

1 ´ kr2
0 0

0 0 a2r2 0

0 0 0 a2r2 sin2 θ

˛

‹

‹

‹

‹

‹

‚

Then, we find, from equation (1.2), all non-zero Christoffel symbols. Due to symme-

try properties (such as Γα
βγ “ Γα

γβq, they can all be found from this list:

Γ0

11
“ a 9a

1 ´ kr2
Γ2

12
“ 1

r
Γ0

22
“ a 9ar2 Γ2

33
“ ´ sin θ cos θ

Γ0

33
“ a 9ar2 sin2 θ Γ3

23
“ cot θ

Γ1

11
“ kr

1 ´ kr2
Γ1

01
“ Γ2

02
“ Γ3

03
“ 9a

a

Γ1

22
“ ´rp1 ´ kr2q Γ3

13
“ 1

r
Γ1

33
“ ´rp1 ´ kr2q sin2 θ
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We then find the Ricci tensor:

Rµν “

¨

˚

˚

˚

˚

˚

˚

˝

´3:a

a
0 0 0

0
a:a ` 2 9a2 ` 2k

1 ´ kr2
0 0

0 0 r2pa:a ` 2 9a2 ` 2kq 0

0 0 0 r2pa:a ` 2 9a2 ` 2kq sin2 θ

˛

‹

‹

‹

‹

‹

‹

‚

As well as the Ricci scalar, both from the equations (1.3) :

R “ g00R00 ` g11R11 ` g22R22 ` g33R33 “ 6

ˆ

:a

a
` 9a2

a2
` k

a2

˙

Plugging this in the expression of the Einstein’s tensor,

Gµν “ Rµν ´ 1

2
Rgµν , (1.6)

Gµν “

¨

˚

˚

˚

˚

˚

˚

˚

˝

3

ˆ

9a

a

˙

2

` 3
k

a2
0 0 0

0
´2a:a ´ 9a2 ´ k

1 ´ kr2
0 0

0 0 r2p´2a:a ´ 9a2 ´ kq 0

0 0 0 r2 sin2 θp´2a:a ´ 9a2 ´ kq

˛

‹

‹

‹

‹

‹

‹

‹

‚

Because we want this metric to solve Einstein’s equations (1.4) and assuming, for

now, that there’s no cosmological constant, we find the energy-momentum tensor in terms of the

Einstein’s tensor:

Tµν “ Gµν

8πG
(1.7)

Thus, for the metric (1.5), we have found an expression for the energy-momentum

tensor without special considerations for its format. There’s one other important generic relation

we can find for this tensor. The energy-momentum tensor describes the energy content of the

universe, therefore, it’s reasonable to ask for its conservation. As we are in a Lorentzian manifold,

we write this requirement as:

∇µT
µν “ 0, (1.8)

where ∇µ stands for a covariant derivative. Thus:

∇µT
µν “ BµT µν ` Γµ

µσT
σν ` Γν

µσT
µσ “ 0 (1.9)
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The equality ∇µG
µν “ 0 is equivalent to the above for a universe without cosmolog-

ical constant. It is a rewritten Bianchi identity (∇λRρσµν ` ∇ρRσλµν ` ∇σRλρµν “ 0). Because

this identity describes intrinsic symmetries of the Riemann tensor, we know it is already satisfied

by the metric. However, it’s interesting to explicitly state it and contrast it against this equation

for a Euclidean space-time: BµT µν “ 0.

Later, we will show how this expression (1.9) can be rewritten in terms of the

components of the energy-momentum tensor. This will clarify its interpretation.

1.1 Perfect fluid energy-momentum tensor

The homogeneity and isotropy of the FLRW metric require the energy-momentum

tensor to be form-invariant with respect to coordinate transformations that leave the metric

form-invariant [2], equation (1.10). Therefore, T 00 must transform as a three-scalar, T i0 as a

three-vector and T ij as a three-tensor, where we used the indexes i and j to represent spatial

coordinates, thus running from 1 to 3.

Tµνpyq “ T 1
µνpyq (1.10)

This implies that the energy-momentum tensor must have the form of:

T00 “ αptq Ti0 “ 0 Tij “ g3ij βptq (1.11)

where αptq and βptq are unknown functions that must depend only on t and g3ij represents the

spatial part of the metric tensor. This tensor can be conveniently written as:

Tµν “ pα ` βqUµUν ` βgµν (1.12)

with U0 “ 1 and U i “ 0. If we take α “ ρ “ energy density and β “ p “ pressure, we find that

this tensor takes the form of a perfect fluid: Tµν “ pρ` pqUµUν ` pgµν . Therefore, the symmetry

properties of the FLRW metric only allow energy-momentum tensors that can be written like

this.

Regarding the vector Uµ “ p1, 0, 0, 0q, one can interpret it as follows: an isotropic

and homogeneous metric in a certain reference frame gives rise to a tensor in the form of an

isotropic and homogeneous fluid in a certain reference frame, thus, the reference frame of the

metric and the fluid must be the same. This information is encoded in the vector Uµ, as it

represents the fluid at rest in relation to those coordinates.
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These specific coordinates are called comoving coordinates and the vector Uµ is the

velocity four-vector. It is normalized such that:

gµνU
µU ν “ ´1 (1.13)

Replacing the energy-momentum tensor of a perfect fluid in equation (1.7) and

having (1), one can find relations between the scale factor aptq and ρptq, pptq. These relations are

called the Friedmann equations:

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

3

ˆ

9a

a

˙

2

` 3
k

a2
“ 8πGρptq

´2a:a ´ 9a2 ´ k

1 ´ kr2
“ 8πGpptq a2

1 ´ kr2

r2p´2a:a ´ 9a2 ´ kq “ 8πGpptqa2r2

r2 sin2 θp´2a:a ´ 9a2 ´ kq “ 8πGpptqa2r2 sin2 θ

(1.14)

They can be resumed to two equations, more commonly written as:

ˆ

9a

a

˙

2

“ 8πGρptq
3

´ k

a2
,

:a

a
“ ´4πG

3
pρptq ` 3pptqq

(1.15)

From those equations, one can find the evolution of the scale factor aptq with time,

depending only on the energy density ρptq, pressure pptq and curvature k. It’s possible to choose

a normalization where aptq is dimensionless or where it has dimension of length. This happens

because the metric (1.5) is invariant to transformations as:

a Ñ λ´1a

r Ñ λr

k Ñ λ´2k

(1.16)

In this work, we chose to use a dimensionless scale factor, thus, r has dimensions of

distance and k has dimensions of plengthq´2.

Plugging the perfect fluid energy-momentum tensor in equation (1.9), we find, for

ν “ 0, the conservation of energy equation (1.17). We keep from writing this expression for

ν “ p1, 2, 3q, which represents the conservation of momentum equations, because those explicit

equations are not very clarifying.

BµT µ0 ` Γµ
µσT

σ0 ` Γ0

µσT
µσ “ 0 Ñ 9ρ ` 3

9a

a
pρptq ` pptqq “ 0 (1.17)
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In most studied cases, it’s possible to write pptq “ wρptq, where w is a function

that doesn’t depend on time. This is called the equation of state. Note that equations (1.15

and 1.17) are not independent, they’re related by Bianchi’s identity. Therefore, to solve for

a specific scenario (a specific w), we don’t need all three equations, as they get redundant.

Specially for simple cases, it suffices to solve the first equation in (1.15), also known as the

first Friedmann equation. Some examples will be given later in section (1.3), where we solve

Friedmann equations for matter, radiation and vacuum dominated scenarios.

1.2 Imperfect fluid energy-momentum tensor

Different from perfect fluids, imperfect fluids exhibit pressure, density and/or velocity

varying considerably in distances of the order of the mean free path or times of the order of the

mean free time [2]. In other words, they represent fluids whose constituents interact with each

other. Thus, the easiest way to write an energy-momentum tensor for this configuration is to add

a correction in the perfect fluid energy-momentum tensor, to account for the interactions:

T µν “ pgµν ` pp ` ρqUµU ν ` ∆T µν (1.18)

We can model the internal structure of those fluids as blocks of particles moving in a

certain direction with a specific velocity. Therefore, we expect that the correction will quantify

the possibility of particles moving between blocks and of their kinetic energy being dissipated

in this process. It can be shown [2] that the most generic way of writing this correction in a

Lorentzian manifold is:

∆T µν “ ´ηHµγHνσWγσ ´ χ pHµγU ν ` HνγUµqQγ ´ ζHµν BUγ

Bxγ (1.19)

where

Hµν “ gµν ` UµU ν ,

W µν “ BUµ

Bxν
` BU ν

Bxµ
´ 2

3
gµν

BUγ

Bxγ ,

Qµ “ BT
Bxµ

` T
BUµ

Bxγ U
γ

(1.20)

for χ, η, ζ ě 0 and T is the temperature per particle. χ is called the coefficient of heat conduction;

η is the shear viscosity coefficient, accounting for the fluid’s resistance to adjacent parallel layers

of fluid at different speeds; and ζ is the bulk viscosity coefficient, expressing the resistance of the
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fluid to be compressed or expanded evenly. Following the same logic, W µν is called the shear

tensor and Qµ is the heat-flow vector. Hµν is a projector tensor on the hyperplane normal to Uµ.

For a FLRW metric, two of the three terms in the correction are annulled. Also,

because in this metric
BUγ

Bxγ “ 3
9a

a
, we can rewrite equation (1.19) as:

∆T µν “ ´ζHµν BUγ

Bxγ “ ´3ζ pgµν ` UµU νq 9a

a
(1.21)

Therefore, the complete energy-momentum tensor is:

T µν “ pgµν ` pp` ρqUµU ν ´ 3ζ
9a

a
pgµν ` UµU νq “

ˆ

p ´ 3ζ
9a

a

˙

gµν `
ˆ

p ´ 3ζ
9a

a
` ρ

˙

UµU ν

(1.22)

Note that it has the same form of the perfect fluid energy-momentum tensor. In

fact, we can rewrite it as that tensor if we replace the original pressure for an effective pressure

p˚ “
ˆ

p ´ 3ζ
9a

a

˙

.

We proved in the previous section (1.2) that only tensors that can be written as (1.12)

originate Friedmann equations. Thus, these equations can only be solved for the perfect fluid

energy-momentum tensor and the imperfect fluid with bulk viscosity energy-momentum tensor.

All expressions we found previously, such as equations (1.15 and 1.17), remain valid

if instead of writing pressure p, we use effective pressure p˚. So, for example, equation (1.17)

becomes:

BµT µ0 ` Γµ
µσT

σ0 ` Γ0

µσT
µσ “ 0 Ñ 9ρ ` 3

9a

a

ˆ

ρptq `
ˆ

pptq ´ 3ζ
9a

a

˙˙

“ 0 (1.23)

Using the first Friedmann equation, we can replace the term

ˆ

9a

a

˙

2

and rewrite

equation (1.23) as:

9ρ ` 3ρ

ˆ

9a

a
´ 8πGζ

˙

` 3p
9a

a
` 9ζ

k

a2
“ 0 (1.24)

This poses a restriction on the aptq we can have when ζ ‰ 0. It also highlights that,

for the limit where ζ “ 0, aptq should behave as if it’s immersed in a perfect fluid, because we

recover equation (1.17). Finally, one should note that, as we are dealing with imperfect fluids,

equation (1.23) doesn’t represent the conservation of energy equation anymore. When ζ ‰ 0, we

should expect dissipation of energy generated by viscosity, therefore, equation (1.23) is only one

of the four expressions of Bianchi’s identity, a restriction imposed on the metric tensor due to

symmetries of the Riemann tensor.



Chapter 1. Understanding Friedmann’s equations 21

1.3 Possible solutions for Friedmann equations

Let’s now attempt to solve equations (1.15) assuming the universe is filled with a

perfect fluid and that we can write its equation of state: pptq “ wρptq. Thus, we have the set of

equations:

ˆ

9a

a

˙

2

“ 8πGρptq
3

´ k

a2
,

:a

a
“ ´4πG

3
ρptqp1 ` 3wq,

0 “ 9ρ ` 3ρptq 9a

a
p1 ` wq

(1.25)

Integrating in time the final equation of this set, we find that:

ρptq “ ρc

ˆ

a

ac

˙´3p1`wq

ñ pptq “ wρc

ˆ

a

ac

˙´3p1`wq

(1.26)

where ρc is a constant with dimension of energy density and ac is a dimensionless constant. Note

that since we chose ~ “ c “ kb “ 1, pptq and ρptq have the same units. With the information in

(1.26), we only need a value for k to find aptq, the evolution of the scale factor with time. To

simplify its calculation, let’s put k “ 0, an experimentally confirmed value, as discussed in (1.1).

Then, by solving the first equation of the set (1.25), we find:

a3{2p1`wq

3

2
p1 ` wq ´ a

3{2p1`wq
c2

3

2
p1 ` wq “

ˆ

8πG

3
ρca

3p1`wq
c

˙

1{2

t ´
ˆ

8πG

3
ρca

3p1`wq
c

˙

1{2

tc (1.27)

where ac2 and tc are integration constants. Choosing tc “ 0,

aptq “
«

ˆ

8πG

3
ρca

3p1`wq
c

˙

1{2
3

2
p1 ` wqt ` a3{2p1`wq

c2

ff 2

3p1`wq

(1.28)

Thus, we can see that for fluids with this simple equation of state it’s relatively easy

to find analytic solutions for the Friedmann equations. Before exploring some fluids that satisfy

this condition, let’s define a very useful quantity: the number of efoldings, N . It is given by:

N “
ż tf

ti

9a

a
dt (1.29)

It quantifies how much the scale factor varies for a given time interval. According

to inflationary theories, the size of the observable universe nowadays pose an inferior limit on
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this number. We will discuss this in section (1.4), for now let’s find its generic expression for a

perfect fluid and its equation of state. Replacing equation (1.28) in (1.29), we find:

9a

a
“

2

3p1`wq
t

´ p1`3wq
3p1`wq

t
2

3p1`wq

ñ eN “
ˆ

tf

ti

˙ 2

3p1`wq

(1.30)

Note that we put ac2 “ 0 to make the calculation easy, which represents a normaliza-

tion such that apt “ 0q “ 0. If necessary, this can be changed to more convenient values without

modifying the power of t in the expression above.

Matter dominated universe

In a matter dominated universe, the fluid is collisionless and the particles are non-

relativistic. Thus, pptq “ 0 ñ w “ 0. We have, then:

ρptq “ ρc

ˆ

a

ac

˙´3

,

aptq “
«

ˆ

8πG

3
ρca

3

c

˙

1{2
3

2
t

ff 2

3

,

eN “
ˆ

tf

ti

˙ 2

3

(1.31)

The energy density ρptq falls as a´3, which suggests that the energy decreases as the

number of particles is being diluted with the expansion of the universe.

Radiation dominated universe

A fluid composed mainly of radiation is formed by relativistic particles, such as

photons or anything massive moving at v « c. Following the derivation of [3], an isotropic gas

of those particles will behave as a perfect fluid and it will also obey:

T µν “ F µλF ν
λ ´ 1

4
gµνF λσFλσ (1.32)

where F µν represents the electromagnetic field strength. But the trace of this tensor is null,

T µ
µ “ 0, while the trace of the perfect fluid energy-momentum tensor is T µ

µ “ ´ρ ` 3p. Thus,



Chapter 1. Understanding Friedmann’s equations 23

p “ ρ{3 ñ w “ 1{3. Therefore, we have:

ρptq “ ρc

ˆ

a

ac

˙´4

,

aptq “
«

ˆ

8πG

3
ρca

4

c

˙

1{2

2t

ff 1

2

,

eN “
ˆ

tf

ti

˙ 1

2

(1.33)

We are interested in these two scenarios because they provide scale factors that grow

with time, thus, they are mathematically fit to describe the early universe, which is expected to

expand. Although both of these scenarios could generate an expansion, it is believed that the

universe after the Big Bang could not be matter dominated because of its high temperature and

density. Besides, for reasons that will be discussed in section (1.4), an exponential expansion is

expected, not a power law expansion. So, we present one other scenario that provide us that.

Vacuum dominated universe

In a vacuum dominated universe, we assume there is an energy that fills the empty

space. Because this energy is expected to be isotropic, then the energy-momentum tensor

corresponding to it must be proportional to the metric. The simplest tensor we can build in this

condition is T µν “ ´ρgµν .

Comparing to the perfect fluid energy-momentum tensor, T µν “ pgµν`pp`ρqUµU ν ,

we must have that pptq “ ´ρptq ñ w “ ´1. Therefore, we will have:

ρptq “ ρc

aptq “ ace

´?
ρc

8πG
3

t
¯

N “
c

ρc
8πG

3
ptf ´ tiq ñ eN “ e

´?
ρc

8πG
3

ptf´tiq
¯

(1.34)

Note that, for a perfect fluid with equation of state, this is the only case where an

exponential expansion is possible. This inspired us to look for negative pressure in non-perfect

fluids and check if that is a sufficient condition for this kind of evolution.

1.4 The inflationary model

The current accepted model to describe the evolution of the universe is called the

Standard Cosmological Model or ΛCDM . Based on General Relativity and the Standard Model
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of Particle Physics, it describes the synthesis of light elements, the formation of atoms and

nuclei and the origin of CMB (cosmic microwave background) radiation, among other things. It

assumes the universe was originated at the Big Bang, an event where the space-time structure

was created. In this work, we’re interested in the period right after the Big Bang called the

“inflationary period”.

Redshift measuring detected that the majority of the galaxies are receding from us,

an indication that the universe is expanding. This reinforced the belief that the young universe

was smaller than today’s and that it began expanding right after the Big Bang. This allowed for

several different scenarios, as we showed in section (1.3), that could present an expansion of

some sort. Later, satellites measurements of the CMB radiation indicated that, in large scales,

the early universe was extremely isotropic and homogeneous, a result also confirmed by galaxy

counts measurements.

This pointed to a perfect-fluid universe from the beginning, because inhomogeneities

cannot be dissolved through a power law expansion, according to General Relativity [4]. However,

this assumption wasn’t enough to explain why non-causal regions (regions far enough that light

going from one of them wouldn’t have time to reach the other one) had the same temperature to

one part in 10´4. This is known as the horizon problem.

The horizon problem

Following [4], we can estimate the number of causally disconnected regions that had

to agree in temperature to generate the universe today, if the scale factor grows as a power law.

We know the universe today remains highly isotropic and homogeneous, at least until the particle

horizon scale l0 “ ct0 « 1028 cm. But the original size of this domain was li « ct0
ai

a0
, also

assumed to be isotropic and homogeneous. Comparing this to the initial causal region lc “ cti,

li

lc
« t0

ti

ai

a0
« 9ai

9a0
(1.35)

Estimating the initial time as Planck’s time tp “ 10´43 s, and that apT q9 1{T , then,

li

lc
« t0

10´43

T0

Ti
« 1017

10´43

1

1032
« 1028 (1.36)

where we used that today’s time t0 « 1017s and today’s temperature of the CMB radiation

T0 « 1K. In estimating initial temperature, we assumed the universe was radiation dominated.

Thus, we found that li « 1028lc, therefore, the initial horizon was 28 orders of

magnitude bigger than the initial causal horizon. Since no information travels faster than light,

this means that no physical process could have occurred to smooth the temperatures in all those

regions. Also, if we assume that the scale factor grows as a power law with time and that gravity
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was always attractive, thus decelerating this expansion, since the Big Bang the causal horizon

was always smaller than the homogeneous horizon. On the other hand, to assume all regions in

the homogeneous horizon coincidentally had the same temperature to a degree of 10´4 seems

fine-tuned.

There is still another problem with this scenario, called the flatness problem.

The flatness problem

The distribution of matter plays an important role in the evolution of the universe.

Because we’re assuming gravity is always attractive, the initial distribution of velocities of matter

particles can determine the curvature of the universe. Again following [4], for a large spherically

symmetric cloud of matter, its total energy is:

ET “ Ek
i ` E

p
i “ Ek

0
` E

p
0

(1.37)

where Ek stands for kinetic energy and Ep, for potential energy. Note that the total energy is

conserved. We assume the velocity of the particles is proportional to 9a, otherwise the homogeneity

of the universe would be quickly spoiled. Then,

Ek
i “ Ek

0

ˆ

9ai

9a0

˙

2

ñ ET

Ek
i

“ Ek
0

` E
p
0

Ek
0

ˆ

9a0

9ai

˙

2

(1.38)

For Ek « |Ep| and, using a result from the previous subsection
9a0

9ai
« 10´28, we find

that:

ET

Ek
i

ď 10´56 (1.39)

this means that the kinetic and potential energies of the matter particles in the early universe

should be balanced to a factor of 10´56. Also, it can be shown that Ω “ |Ep|{Ek. Thus,

ET

Ek
i

“ pΩ0 ´ 1q
ˆ

9a0

9ai

˙

2

ď 10´56 (1.40)

Because Ω0 “ ρ0
8πG

3

1
`

9a
a

˘2
, the second Friedmann equation can be written as

Ω0 ´ 1 “ k

9a2
. Therefore, we found that the curvature of the universe must be extremely close to

zero, which again seems fine-tuned.

The horizon problem and the flatness problem expose the fact that, from all possible

configurations of energy density, pressure and distribution of velocities the particles at the early

universe could have, they presented incredibly specific values. In order to explain those values
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(and the density of particles nowadays), another explanation was provided [4, 5]. They postulated

the universe (or at least the universe contained in the event horizon) was entirely generated from

a causal part of the early universe. This could only be possible if the scale factor expanded

exponentially instead of according to a power law, or, in other words, if gravity acted repulsively

instead of attractively for a period of time. As we saw in section (1.3), this is only possible when

p ă 0.

It can be shown [4] that the causal part from which the universe originated does

not need to be homogeneous and isotropic. Inflation can expand the universe enough to dilute

possible initial anisotropies. According to the inflationary model, this expansion was generated

by a scalar field that encompasses all causal early universe. Its format would be the simplest

possible to present negative pressure, generate the minimum necessary number of efoldings and

have a smooth transition to a Friedmann expansion, where the scale factor grows as a power law.

1.4.1 The slow-roll scalar field

Let’s consider the energy-momentum tensor of a scalar field. In a Minkovski mani-

fold, it can be written as [4]:

T α
β “ gαγ

Bφ
Bxγ

Bφ
Bxβ ´

ˆ

1

2
gγδ

Bφ
Bxδ

Bφ
Bxγ ´ V pφq

˙

δαβ (1.41)

Comparing it with the energy-momentum tensor of a perfect fluid (1.12), we can

identify energy density and pressure as:

p “ 1

2
gγδ

Bφ
Bxδ

Bφ
Bxγ ´ V pφq ρ “ 1

2
gγδ

Bφ
Bxδ

Bφ
Bxγ ` V pφq (1.42)

If the scalar field φ is homogeneous, that is,
Bφ
Bxi “ 0, then,

p “ 1

2

ˆBφ
Bt

˙

2

´ V pφq ρ “ 1

2

ˆBφ
Bt

˙

2

` V pφq (1.43)

But, as shown previously (section 1.3), we need p “ ´ρ to generate an exponential

expansion. Thus, we need:

|V pφq| ě
ˆBφ

Bt

˙

2

(1.44)

This is known as the first slow roll condition. It is a basic condition an homogeneous

scalar field has to fulfill to produce an expansion faster than a power law. We also know this field
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has to obey the conservation law (1.17), this is,

Bφ
Bt

B2φ

Bt2 ` BV
Bφ

Bφ
Bt “ ´3

9a

a

ˆBφ
Bt

˙

2

(1.45)

This equation is most commonly written as:

B2φ

Bt2 ` 3
9a

a

Bφ
Bt ` BV

Bφ “ 0 (1.46)

Note that it resembles the movement equation for a damped harmonic oscillator. As

previously mentioned, in addition to an exponential expansion, we need a smooth transition from

this regime to a power-law-expansion regime. This can be accomplished by demanding that:

3
9a

a

Bφ
Bt "

ˇ

ˇ

ˇ

ˇ

B2φ

Bt2
ˇ

ˇ

ˇ

ˇ

(1.47)

This is the second slow roll condition.

Initially, it was expected that experimental evidences would be able to determine the

shape of the scalar field, but there have been some claims that any φ obeying those conditions

would provide a viable universe in this context. Other critic to this model is that the scalar

field cannot be explained from first principles using particle theory. Given this situation, many

proposals started to emerge recently, attempting to answer these questions with or without scalar

fields.

We conclude this chapter by pointing out that the ΛCDM model has this name

to emphasize the presence of cold dark matter (CDM) representing « 26% of the energetic

content of the universe and the presence of dark energy, treated as a cosmological constant (Λ),

representing 70% of this content. Although the model did not predict these quantities or even the

existence of the dark sector, it was able to incorporate them. This is a very active area of both

theoretical and experimental research, to find the constituents of dark matter and the nature of

dark energy.

Our cosmological model proposes a candidate for dark matter and sheds some light

on its interactions while at the same time providing a more physical origin to the inflationary

period, without a scalar field. In chapter 3, we will present its details along with a highlight of

the most relevant experimentally found characteristics of dark matter. But first let’s make a quick

review of SU(N) theories.
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2 Some results of non-perturbative

QCD

In this chapter we introduce the theory that describes the strong force, Quantum

Chromodynamics. We highlight techniques to study its non-perturbative limit, such as lattice

QCD and the large-N limit and we present their most important findings for our research. We also

present the results of a research internship period, at McGill University, dedicated to provide an

alternative view on the importance of viscous coefficients in the description of the quark-gluon

plasma.

2.1 Quantum Chromodynamics

Up until now, only four forces have been necessary to explain all known phenomena

in physics, from the subatomic to the extragalatic level: the gravitational force, the electromag-

netic force, the weak force and the strong force. While the gravitational force can be explained

by Einstein’s theory of General Relativity, all other three forces are described by the Standard

Model of Particle Physics as quantum field theories. In this section, we focus on the strong force

and its formalization, the theory of Quantum Chromodynamics, QCD.

The strong force describes the interactions between all particles with color charge,

this is, quarks and gluons (the elementary particles that form protons, neutrons, etc). Gluons are

the mediators of this force, but because they have color charge as well, they feel the force by

self-interacting. Following [6], we present an heuristic derivation of the mathematical formalism

behind this theory.

Quarks have spin 1{2, thus, if they were free particles in a relativistic quantum

scenario, they would obey Dirac’s equation, that can be deducted from the Lagrangian (2.1):

Lpxq “ ψ̄jpxqpi{B ´ mqψjpxq (2.1)

Here, {B “ γµBµ where γµ are Dirac matrices; j is an index that stands for color; ψ

is a 4-dimensional spinor and m represents quarks’ masses, if quarks were free particles. We

demand this Lagrangian to be invariant to the transformation:

ψ1pxq Ñ Uψpxq (2.2)

where U is a 3x3 unitary matrix acting on the color index. Because U has a real determinant that

obeys |Det U | “ 1, this matrix is part of a group called SUp3q, a subgroup of Up3q - the group of
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unitary matrices. Matrices obeying these conditions depend only on 8 real free parameters, which

is another way of saying that there are 8 generators for the SUp3q group. Generally speaking,

the generators for the SUpNcq groups are N2

c ´ 1 gauge bosons.

We chose the matrix U to have these characteristics because we know quarks present

themselves in three colors: red, blue or green. SUp3q is the symmetry group that represents the

Lagragian invariance to these colors (as well as the 3 anticolors for the antiquarks). In other

words, these three color states form a basis in the quark’s color vector space.

The fact that gluons are the mediators of this interaction can be shown by identifying

them as the gauge fields introduced for the demanded invariance in the Lagrangian [6]. In other

words, to be invariant to (2.2), the Lagrangian (2.1) has to be modified such that it doesn’t

represent quarks as free particles anymore, but as particles coupled with gauge fields, the gluons.

Thus, the Lagrangian (2.1) Lpxq corresponds only to Lquarks and the Lagragian representing QCD

will now be called LQCD.

Because gluons also have energy and momentum, these additional degrees of freedom

must be accounted for in an extra term (Lgluons) in the Lagrangian LQCD, so that LQCD “
Lquarks ` Lgluons. Demanding this extra term to be invariant to the transformation (2.2) as well,

we find that it depends on non-linear terms in the gauge fields. In other words, color rotations

don’t commute, for SUp3q is a non-abelian group. Physically, this translates as self-interacting

gluons. Because the modified Lagrangian LQCD accounts for all the experimentally observed

characteristics of the strong force, we conclude it’s an accurate description. It’s worth mentioning

that quarks are organized by flavours, to represent their different quantum numbers, as charge and

mass. Until now, six flavours have been found: up(u), down(d), charm(c), strange(s), top(t) and

bottom(b). This was the final information missing in our Lagrangian, so now we can explicitly

write it:

LQCD “ ´1

4
F a
µνF

µν
a ´

ÿ

f

ψ̄f
αpiγuBu ` mf ´ gγµA

µqαβψf
β (2.3)

F a
µν “ BµAa

ν ´ BνAa
µ ´ gfa

bcA
b
µA

c
ν (2.4)

Aa
µ stands for the gluon field of color a and ψf

α, the quark field of colour α and

flavour f . The effective quark masses are represented by mf , g is the coupling constant for this

interaction and fa
bc are the structure constants of SUp3q, which tell us each component of the

SUp3q generators as well as their commutative relations.

The procedure of imposing local symmetries of compact Lie groups (such as U(N)

and SU(N)) to a Lagrangian, as we just did, originated the Yang-Mills theories. Those theories

describe non-linear gauge fields, self-interacting particles, thus, they were used to formalize

QCD and the electroweak theory. Note that this gauge symmetry does not imply new symmetries

in nature, they only represent a constrain in the action that generates the Lagrangian. Therefore,
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one can interpret gauge symmetries as a specification in the form of the interaction felt by the

particles [7].

Gluons’ self-interaction is responsible for many characteristics exclusive to the

strong force, such as the phenomena of asymptotic freedom and color confinement. Asymptotic

freedom is the fact that the coupling between quarks and gluons becomes smaller as the distance

between the interacting quarks gets shorter. This is also known as the anti-screening effect.

Therefore, at small distances of the order of 0.8fm, one can study quarks interactions using

perturbative techniques (pQCD) [7].

Color confinement stands for the experimental fact that isolated free quarks were

never detected in nature. One can extend the reasoning of asymptotic freedom and conclude

that as the interacting quarks get distant, the coupling between quarks and gluons gets bigger,

thus it becomes energetically unfavourable to isolate one quark. Although this has not been

mathematically proved yet, this energetic limit could not be described by a perturbative treatment,

indicating that we entered the regime of strong coupling.

2.1.1 Lattice QCD

One of the techniques to further our understanding of QCD in the non-perturbative

limit is lattice QCD. Within this technique, one studies the action that generated the Lagrangian

by calculating Feynman’s integrals in a finite lattice. Each vertex of the lattice represents a quark

and each edge, a gluon. To get physically valid behaviours in this configuration, one extrapolates

its results to zero lattice spacing, which is the continuum limit. This procedure works well for

baryochemical potential µ “ 0 but technical difficulties arise as one tries to investigate µ ą 0.

Lattice QCD is an active area of research, of which we will summarize here only its most relevant

findings for our work.

There are strong indications that a deconfinement transition takes place for certain

values of temperature and baryon density. This means that hadrons (particles composed of

quarks) become a fluid of deconfined quarks and gluons at a given region of the phase diagram

[8]. This fluid is called the quark-gluon plasma. For µ “ 0, the transition is a cross-over that

happens at Tc « 170 MeV. For µ ‰ 0, it is believed that, above a critical point in temperature

and baryon density, the transition becomes first-order. A sketch of this phase diagram is shown

in Figure 1.

We are specially interested in the quark-gluon plasma and its transition to a hadronic

phase, thus, we illustrate the behaviour of the energy density of this fluid near deconfinement

in Figure 2a. There’s a clear distinction in the values of energy density for the fluid and for

the hadronic gas. In particular, the sudden jump in energy density at Tc is proportional to the

latent heat of deconfinement [9]. Note also that all values are below the Stefan-Boltzmann

limit - the expected value for an ideal gas of massless quarks and gluons - which highlights the
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Figure 1 – Sketch of the phase diagram of nuclear matter when µ ‰ 0. From [9].

importance of quarks’ mass in this simulation. This result was obtained by lattice simulations of

[10], considering two and three flavours of quarks with µ “ 0.

Other useful quantity to analyze is the expectation value for the trace of the energy-

momentum tensor, ∆ “ pρ´ 3pq{T 4. It measures the degree of interaction of the constituents of

a fluid, such that, for example, for an ideal gas of massless particles, that behaves as radiation,

p “ ρ{3 ñ ∆ “ 0. In the Figure 2b, from the same simulations of [10], we can see that the strong

interaction effects, expected to vanish at T “ Tc, remain for Tc ă T ă 2Tc, which is evident

from the peak’s considerable width. This can be an indication that during the deconfinement

transition there’s a mixed phase of deconfined plasma and hadron gas [9].

Finally, we highlight the result that, for lattice QCD simulations with varied number

of flavours, the deconfinement transition is always present, although the critical temperature may

vary with the parameters considered.

(a) Energy density over temperature T 4 in terms of tem-

perature over critical temperature for different flavour

configurations.

(b) ∆, defined in the main text, in terms of temperature

over critical temperature for different flavour configu-

rations.

Figure 2 – Simulations in the lattice for two pnf “ 2q and three pnf “ 3q flavours of light quarks

and two flavours of light quarks plus one flavour of heavy quark pnf “ 2 ` 1q with

µ “ 0. Results from [10] and adapted figures from [9].
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2.2 Bulk viscosity in the quark-gluon plasma

A parallel study, under the supervision of Professor Charles Gale and Professor

Sangyong Jeon at McGill university, was performed to further our understanding of the quark-

gluon plasma and the role of bulk viscosity therein. This aggregated on the mathematical

description of viscous coefficients, explicit in the previous chapter 1, to provide physical intuition.

Several experiments on heavy-ion collisions have shown that, soon after the event

for a short period of time in a localized region, the formation of a quark-gluon plasma occurs.

Although the evolution of this plasma can be well described by ideal hydrodynamics and the

experimentally found factor
η

s
(shear viscosity over entropy) seems to be very small - pointing

that the plasma behaves very closely to an ideal fluid - there’s still room for small viscous

corrections. Those corrections provide better agreement of the rates of photon production with

data [11].

In our work, we extended the approach of [11, 12] to dilepton (lepton-antilepton

pairs) production. We understand that dileptons, as photons, are good probes for the properties

and evolution of the quark-gluon plasma because they do not interact strongly. Thus, as they

are produced, they are naturally transparent to the strong interactions of the medium, keeping a

memory of instants after the collision and providing a clearer picture of that environment.

2.2.1 Dilepton emission rate

We start by deriving an expression for the dilepton emission rate without viscous

corrections. Following the approach of [13], we study the reaction q` ` q´ Ñ l` ` l´, where q

represents a quark and l, a lepton.

But for the similar reaction e` ` e´ Ñ µ` ` µ´, from Quantum Electrodynamics

(QED), we know that the cross-section σ is:

σpMq “ 4π

3

α2

M2

ˆ

1 ` 2m2

l

M2

˙ ˆ

1 ´ 4m2

l

M2

˙1{2

(2.5)

where ml represents the dilepton mass, M , the center-of-mass energy and α stands for the

coupling constant of QED. Because we want to deal with quarks instead of electrons, we must

modify the expression above to account for colour effects. Thus,

σqpMq “ FqσpMq Fq “ Ncp2s ` 1q2
ÿ

f

e2f (2.6)

The factor Fq accounts for all missing degrees of freedom in the previous expression.

Nc represents the number of colours; s, the spin and ef , the fractional electric charges of

each flavour. Considering only two flavours of massless quarks pu, dq, we use that Nc “ 3,

p2s ` 1q2 “ 4 and
ÿ

f

e2f “ 5

9
, therefore this factor is numerically equal to Fq “ 20

3
.
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From kinetic theory, the number of dileptons produced per unit time per unit volume

is:

dN{d4x “ Rpq`q´ Ñ l`l´q “
ż

d3p1

p2πq3fp~p1q d
3p2

p2πq3fp~p2qσpq`q´ Ñ l`l´; ~p1, ~p2qvrel

vrel “
rpp1 ¨ p2q2 ´ m4

qs1{2

E1E2

(2.7)

Note that p1 and p2 are the relativistic four-momenta and fp~p1q{fp~p2q are the occu-

pation probabilities in the momentum space. Because quantum effects are not important, we use

the relativistic energy and the Boltzmann distribution:

E2 “ ~p2 ` m2

q fp~pq “ e´E{T “ e´
p~p2`m2

qq1{2

T
(2.8)

To evaluate this integral, one can analytically integrate in five of the six variables

and, assuming massless quarks, get the simplified temperature-dependent expression:

RpT q “ T 6

p2πq4
ż 8

2ml{T

σpzqz4K1pzqdz z “ M{T (2.9)

Note thatK1pzq stands for the modified Bessel function of the second kind. Although

the rate of production is not experimentally accessible, it is the basis to calculate the quantities
dN

dydM2
- the number of particles produced per unit rapidity per unity center-of-mass energy

squared - and
dN

dydM2dET

- the number of particles produced per unit rapidity per unity center-

of-mass energy squared per unit total energy - which are more convenient and experimentally

available. The rapidity y is defined by y “ 1

2
ln

ˆ

E ` pz

E ´ pz

˙

where pz stands for momentum in

the z direction, along the beam line of the accelerator.

2.2.2 Dilepton emission rate with bulk viscosity correction

To account for bulk viscous corrections in this scenario, we follow the approach of

[11], so that the corrections are represented by an additional term in the occupation probability:

fp~pq “ f p0qp~pq ` δfp~pq (2.10)
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Thus, from:

Rpq`q´ Ñ l`l´q “ 1

2p2πq3
ż

d3p1

2E1p2πq3
d3p2

2E2p2πq3
d3p3

2E3p2πq3 p2πq4

δ4pP1 ` P2 ´ P3 ´ P4q|M|2fp~p1qfp~p2q
(2.11)

That is the same of equation (2.7), considering the following identity, for a generic

reaction 1 ` 2 Ñ 3 ` 4 [14],

dσ “ p2πq4|M|2
4
a

pp1 ¨ p2q2 ´ m2

1
m2

2

δ4pP1 ` P2 ´ P3 ´ P4q d3p3

2E3p2πq3
d3p4

2E4p2πq3 (2.12)

Different physical processes are represented by the different cross sections pσq or,

equivalently, by the different scattering matrices pMq. We assume that fp~p1q “ f p0qp~p1q`δfp~p1q
and fp~p2q “ f p0qp~p2q ` δfp~p2q, such that, in first order,

Rl`l´ “ R
p0q

l`l´
` 1

2p2πq3
ż

d3p1

2E1p2πq3
d3p2

2E2p2πq3
d3p3

2E3p2πq3 p2πq4δ4pP1 ` P2 ´ P3 ´ P4q|M|2

“

f p0qp~p1qδfp~p2q ` f p0qp~p2qδfp~p1q
‰

(2.13)

R
p0q

l`l´
stands for the dilepton production rate without corrections. Taking in account

only bulk viscous corrections,

δfpP,Xq “ ΠpXq
ÿ

j

B
j
XpXqBj

MpP, T q (2.14)

ΠpXq represents the bulk pressure, defined as Π “ ´ζ∇µu
µ where ζ is the bulk viscosity and

uµ is the fluid four-velocity. B
j
XpXq and B

j
MpP, T q are functions that depend, respectively, on

space-time position X , four-momentum P and temperature T . Thus,

Rl`l´ “ R
p0q

l`l´
` ΠpXq

ÿ

j

B
j
XpXq

„

1

2p2πq3
ż

d3p1

2E1p2πq3
d3p2

2E2p2πq3
d3p3

2E3p2πq3 p2πq4

δ4pP1 ` P2 ´ P3 ´ P4q|M|2
`

f p0qp~p1qBj
MpP2, T q ` f p0qp~p2qBj

MpP1, T q
˘



(2.15)
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From [11],

B1

XpXq “ ´τΠ

ζ
B1

MpP, T q “ f p0qpP q1
3

m2

T 2

1

P ¨ u{T

B2

XpXq “ ´τΠ

ζ

ˆ

1

3
´ c2s

˙

B2

MpP, T q “ f p0qpP q
ˆ´P ¨ u

T

˙

(2.16)

where cs is the velocity of sound and τΠ is the relaxation time, a transport coefficient related to

the bulk viscosity. Therefore, we can explicitly write the modified rate of dilepton production as:

Rl`l´ “ R
p0q

l`l´
` 1

2p2πq3
ż

d3p1

2E1p2πq3
d3p2

2E2p2πq3
d3p3

2E3p2πq3 p2πq4δ4pP1 ` P2 ´ P3 ´ P4q|M|2

ΠpXq
ˆ´τΠ

ζ

˙

f p0qp~p1qf p0qp~p2q
„

1

3

m2

T 2

ˆ

T

P2 ¨ u ` T

P1 ¨ u

˙

`

ˆ

1

3
´ c2s

˙ ˆ

´P2 ¨ u
T

´ P1 ¨ u
T

˙

(2.17)

Note that the only dependence in the fluid velocity is in the term P ¨ u, a scalar.

Because scalars are invariant quantities, we can choose to calculate this term in the rest referential,

thus, P ¨ u “ P0 “ E. As before, the occupation probabilities are Boltzmann distributions

fp~pq “ e´E{T “ e´
p~p2`m2

qq1{2

T .

To compare the importance of this correction with the former value of the dilepton

production rate, we need more realistic estimates for the transport coefficients and bulk pressure.

Also, an extra effort will need to be made to find experimentally accessible quantities from this

rate.

A non-zero bulk viscosity in the quark-gluon plasma represents that this fluid is

not as ideal as previously thought. In other words, microscopic inelastic collisions are taking

place inside it. We show in the next section how this phenomenon also happens during the

deconfinement transition and its microscopical explanation. Before that, we introduce another

approach in the non-perturbative study of QCD: the large-N limit.
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Figure 3 – An example of a Feynmann diagram illustrating a strong interaction. Adapted figure

from [16].

2.3 The large-N limit

Although lattice QCD was a breakthrough in the study of non-perturbative QCD, its

limitations, such as the increasing need of computational power to perform intricate calculations,

stimulated the utilization of other approaches in this problem.

One of them is the Large-N limit. Within this technique, we consider the number

of colors Nc as an arbitrary value in the Lagrangian (2.3). Then, we take the limit Nc Ñ 8
at the same time that the coupling constant g Ñ 0, such that the quantity λ “ g2Nc remains

finite. This guarantees that observables that grow with Nc do not diverge in this limit [15]. The

term λ is called the ’t Hooft coupling, after Gerard ’t Hooft, who proposed this technique and

proved that the finiteness of λ suffices to guarantee reasonable results in the calculations. He

also fixed the number of flavours nf , which is called the ’t Hooft limit. Instead, one can choose

to hold the quantity nf{Nc finite, the Veneziano limit. This also produces finite calculations but

its properties are more complex [15], so here we focus on the results of the former limit.

The greatest contribution of the large-N limit to the study of non-perturbative QCD

was the finding that, in this regime, the calculations of the amplitudes of the processes become

easier. Remember that particle physics reactions can be graphically represented by Feynmann

diagrams (for example, Figure 3), allowing for their clear and concise visualization and simpli-

fying the calculations of their probabilities. For any given reaction, a multitude of Feynmann

diagrams can be drawn, representing multiple interactions that participate in that specific process.

Quantifying the probability that a particular reaction occurs, this is, calculating its amplitude,

is an intricate procedure that, in principle, demands the consideration of all related Feynmann

diagrams.

However, it was shown that, for Nc Ñ 8, only a small class of Feynmann diagrams

gives a non-negligible contribution to the calculation of the amplitude of a reaction [15]. This

happens because, for each diagram, there are effects proportional to Nc, that grow as Nc Ñ 8,

and effects proportional to g, that diminish as g Ñ 0. Even so, it’s not possible to calculate all

those contributions exactly because the number of diagrams that should be taken in account

grows exponentially with the power of the coupling to which they correspond [15]. Thus, to
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take valid results from this approach, one needs to appeal to the lattice technique. Note that

due to the reduced number of Feynmann diagrams that must be considered in one reaction, the

computational power demanded from lattice simulations is considerably lessened, despite the

increase on degrees of freedom at larger Nc [16].

The lattice description in subsection (2.1.1) remains valid, but now, instead of

investigating in the lattice the action that generates QCD, one shall use it to study the action that

generates a SUpNcq theory. This is also an active area of research, so, in this thesis, we limit

ourselves to the summary of some results that will be important for us in the next chapters.

For lattices with 4 “ p3 spatial dimensions ` 1 temporal dimension q and 3 “
p2 spatial dimensions `1 temporal dimension q Euclidean spacetime dimensions, SUpNcq Yang-

Mills theories were proved to be confining [15]. This means that they were able to describe

quarks and gluons confined within particles, outside the limit of asymptotic freedom. Although

this is a first step to describe experimentally accessible quantities (like the mass of hadrons, for

example), it should be remarked that this conclusion is valid for big lattice spaces, thus, it is

not obvious that they will hold in the continuum limit, even though there are indications in this

direction [15].

Those theories were also proved to generate finite mass for the lightest physical state

in the spectrum. In the case of a pure Yang-Mills theory - this is, a theory without quarks, such

that nf “ 0 - the lightest stable state are glueballs. This is an hypothetical particle, composed

only of gluons. According to lattice simulations for Nc ě 2, their masses, m0`` , exhibit a mild

dependence on the number of colours, such that the following relation is obeyed for any Nc [17]:

m0``?
σ

“ 3.37p15q ` 1.93p85q
N2

c

(2.18)

This quantity is normalized by the string tension σ, a parameter for lattice calculations

and the numbers in parenthesis represent simulations’ uncertainties. For lattice studies including

temperature through Monte-Carlo simulations, it has been proved that all SUpNcq Yang-Mills

theories undergo a physical deconfining transition at a critical temperature Tc [15]. Also, for

Nc ą 3, this transition is of first order, which is associated to the finiteness of the latent heat Lh,

that grows like [18]:

L
1{4
h

N
1{2
c Tc

“ 0.766p40q ´ 0.34p1.60q
N2

c

(2.19)

The critical temperature Tc has a small dependence on the number of colours Nc

such that [19]:

Tc?
σ

“ 0.5949p17q ` 0.458p18q
N2

c

(2.20)



Chapter 2. Some results of non-perturbative QCD 38

Also, it has been verified that the thermodynamic quantities (pressure p, energy

density ρ, entropy s and the trace of the energy-moment tensor ∆) present the same behaviour

for T ą Tc in all SUpNcq theories with Nc ě 3. Some results are shown in Figures 4 and 5,

product of simulations from [20] and [21].

(a) Energy density and pressure normalized by their re-

spective Steffan-Boltzmann limits in terms of tem-

perature over critical temperature for different colour

configurations. Results and figure from [20].

(b) Energy density over temperature T 4 normalized by its

Steffan-Boltzmann limit in terms of temperature over

critical temperature for different colour configurations.

A comparison with an holografic model is performed.

Results and figure from [21].

Figure 4 – Simulations in the lattice for energy density and pressure in several colour configura-

tions with nf “ 0. Results and figures from [20, 21].

(a) Trace of the energy-momentum tensor normalized by

the quantity TA “ N2

c ´ 1 over temperature T 4 in

terms of temperature over critical temperature for dif-

ferent colour configurations. Results and figure from

[20].

(b) Trace of the energy-momentum tensor normalized by

the Steffan-Boltzmann limit of p{T 4 over temperature

T 4 in terms of temperature over critical temperature

for different colour configurations. A comparison with

an holografic model is performed. Results and figure

from [21].

Figure 5 – Simulations in the lattice for the trace of the energy-momentum tensor in several

colour configurations with nf “ 0. Results and figures from [20, 21].

The existence of those patterns is an indication that the large-N limit can generate

results valid for Nc “ 3, describing QCD. It also suggests that the conclusions obtained with

these simulations may remain valid for Nc Ñ 8. In particular, one interested in studying the

SUpNcq theories when Nc ą 3 may grow on the knowledge obtained for QCD. For example, the
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physical explanations of the features demonstrated here for Nc ą 3 -like the peak in the energy

density - are probably the same as QCD - in this example, the finiteness of the latent heat.

This extension, however, has to be cautious, for some experimental results of QCD

fail to match the predictions from the large-N limit, which may be explained by non-trivial

dynamics in QCD [15]. Also, the lattice presents several technical subtleties which may compro-

mise the generalization of some results, specially regarding the continuum limit. Nonetheless, the

large-N limit has proven to be a valuable technique in the study of SUpNcq Yang-Mills theories.

One final result we want to highlight is the bulk viscosity peak. Numerical estimates

[22] and lattice simulations [23] for SUp3q prove that, close to the deconfinement transition

pT « Tcq, the bulk viscosity coefficient ζ presents a non-negligible value. For temperatures

T ą 2Tc, however, it becomes almost zero. This is shown in Figure 6 below.

(a) The quantity ζ{s in terms of temperature over criti-

cal temperature for different ansatz in the estimates.

Results and figure from [22].

(b) The quantity ζ{s in terms of pǫ´ 3P q{pǫ`P q, which

measures the system’s interaction. Uncertainties and

bounds shown. The line represents a perturbative pre-

diction. Results and figure from [23].

Figure 6 – Bulk viscosity ζ over entropy density s for estimates (Figure 6a) and lattice simulation

(Figure 6b) in SUp3q. Results and figures respectively from [22, 23].

It is believed that this phenomenon is directly related to the peak in the trace of

the energy-momentum tensor [22, 23, 24], thus, it is reasonable to assume that it happens for

SUpNcq theories [24] as well. Microscopically speaking, this generalization is justified by the

following explanation: considering that the bulk viscosity peak happens at a deconfinement

transition region, one can interpret it as a change in the degrees of freedom of the substance [25].

During deconfinement, there is a mixed phase of a plasma of quark-gluons and a gas of hadrons,

such that inelastic collisions are expected to happen. Those collisions are quantified by the bulk

viscosity coefficient. Because deconfinement transitions happen for all SUpNcq theories, it is

expected that in all of them a bulk viscosity peak around T “ Tc will be present.

It is important to note that the study of viscous coefficients in Yang-Mills theories is

very recent, partially due to the difficulty of simulating these quantities in the lattice [23, 26].

Also, there are many uncertainties in their calculation, such that the exact shape of the peak ζ{s,
for example, is still unknown. For completeness, we briefly mention that lattice simulations of
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shear viscosity, η, for SUp3q, have obtained a small value for T ě 2Tc which grows increasingly

important as the temperature approaches the critical temperature [26, 27]. This is an indication

of the strong interacting nature of the system.



41

3 Our cosmological model

In this chapter, we will motivate and describe a cosmological model pictured by us.

It provides a microscopical explanation to the inflationary period of the Universe as well as a

candidate for dark matter, while being heavily based on pure Yang-Mills theories, described in

chapter 2.

3.1 Motivation

As mentioned in section 1.4, at early times the Universe went through a phase of

exponential expansion called Inflation. According to the Standard Cosmological Model, this

was generated by a scalar field. However, as already mentioned, there is no consensus in the

scientific community that this field is the most plausible way to generate this phenomenon.

In addition, there have been claims that, once a scalar field obeys the slow roll conditions, it

becomes impossible to find its exact format experimentally. From a microscopical point of view,

the scalar field explanation is not a complete one either. In particular, in the Standard Model of

Particle Physics, there is no prediction of its properties.

Addressing this issue was one of our motivations to propose a cosmological model.

Within our model, we intended to propose a mechanism for inflation that did not rely on a scalar

field. In particular, we wanted particle interactions to account for this phenomenon. The natural

candidate in this case are dark matter particles because we know Standard particles’ interactions

could not mimic a repulsive effect at the energy range inflation is expected to happen (around

1016 GeV) [5].

This perspective allowed us to investigate another interesting open question: the

nature of dark matter. Ever since its first experimental evidence of existence, all efforts to directly

detect it have been in vain. Within our model, we propose a candidate for this matter whose only

interaction with the particles of the Standard Model is through the gravitational force, therefore,

explaining the lack of direct detection.

Proposing a candidate for dark matter and describing its interactions whilst micro-

scopically explaining the inflationary model was our main motivation and goal in this project.

Before describing our model in details, we will explicit some restrictions to which we’ve been

submitted in its construction in the next section.
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Figure 7 – Pictorial representation of the evolution of our Universe, explicitly showing the energy

scales involved. Image by the Particle Data Group at Lawrence Berkeley National

Lab, 2015.

3.2 Restrictions

3.2.1 Inflationary period

All information we have on the inflationary period of our Universe was obtained

indirectly. The oldest register of the Early Universe available to us nowadays is the CMB

radiation, which was freed long after the inflationary period had finished (see Figure 7 for an idea

of the time scales involved). However, based on models of the thermal history of the Universe

and structure formation simulations, we can estimate some characteristics of this period.

In specific, to account for the high degrees of homogeneity, isotropy and flatness of

the universe measured by CMB radiation, there is an inferior limit in the amount of time this

expansion must last. This can be translated in an inferior limit in the number of efoldings N .

Note that we can rewrite equation 1.29 as:

N “
ż af

ai

1

a
da “ ln

ˆ

af

ai

˙

ñ eN “
ˆ

af

ai

˙

(3.1)

Also, let’s introduce the Hubble factor H “ 9a{a. The very least we can demand of

the observable universe today is that it fits the Hubble radius of the universe at the beginning of

inflation, pa0H0q´1 ă paiHiq´1. Assuming, just for estimation purposes, that after the end of



Chapter 3. Our cosmological model 43

inflation until now the universe was radiation dominated,

a0H0

aeHe

« ae

a0
« T0

Te
« 10´28 (3.2)

Because, for this scenario aptq9 t1{2, as demonstrated in section 1.3, then H9 a´2.

As before, we assumed that apT q9 T´1, T0 « 1K and Te « 1015 GeV. Thus,

paiHiq´1 ą 1028paeHeq´1 (3.3)

For H constant during inflation, Hi “ He, therefore ae{ai ą 1028. This implies

that eN ą 1028 Ñ N ą 64. This derivation followed [28] and represented only one possible

reasoning. Other derivations with other estimates can arrive at slightly smaller or bigger number

of efoldings, but all agree thatN « Op10q. This represents the minimum amount of time inflation

is expected to last.

Besides that, we also have an expectation on how much time after the Big Bang

inflation ended, tf . It comes from the expected durations of the reheating period and of the

Friedmann expansion period of the universe. The reheating period is an hypothesized phase, to

happen shortly after Inflation. It is responsible for the baryonic abundance and entropy generation,

both phenomena being a result of the scalar field’s oscillations at its point of minimal energy

in the potential V pφq. The Friedmann expansion corresponds to a period when the universe

was primarily composed of radiation, thus it expanded and cooled at a slower rate than in

the inflationary period. It accounts for the production of atoms and light elements. Based on

evidences from this period, it is estimated that tf « 10´34 ´ 10´36s [4].

Although these resources provide a reasonable estimate for the final time of inflation,

there’s no tool for the estimation of the initial time, ti. This is a consequence of our ignorance of

the mechanism of the Big Bang, which is believed to have happened in the regime of quantum

gravity, starting around the Planck scale (t « 10´43 s, when the Big Bang is set tBig Bang “ 0).

Inflation is outside this regime, however their proximity and the lack of direct experimental data

from this period turn any estimates of the initial time of inflation into speculation. Therefore,

despite this quantity being related to N and tf through equation 1.29, it is normally considered

a free parameter in any inflationary model. Usually, it is set to be at the limit of the Planckian

scale, thus, ti “ 10´43 s.

The last restriction one can take from indirect evidences of the inflationary period

is the fact that it ended smoothly. In other words, the transition from an exponential expansion

to a power law expansion must have happened continuously, otherwise the homogeneity of

the universe would be spoiled [4]. As described in section 1.4, the slow roll scalar field model

guarantees this restriction by its second condition, equation 1.47.
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3.2.2 Dark matter characteristics

Over 85 years have passed since the first experimental hint of the existence of dark

matter [29]. Although we still have not directly detected the particle that composes this substance,

we can infer some of its characteristics. First, let’s clarify that we are referring here to cold dark

matter instead of hot dark matter. The latter is assumed to be relativistic and it can be part of this

matter, but not its major component because, if this was the case, no galaxies would be able to

form [14].

It is believed that initial quantum fluctuations on the primordial plasma of the universe

were amplified by Inflation and, later, further increased as dark matter particles agglutinated there.

At this stage, these particles must have been non-relativistic and they must have had decoupled

from the primordial plasma of the Early Universe much sooner than everything else. As the other

components of the plasma decoupled, they were gravitationally attracted to dark matter rich

regions, which became even bigger with the aggregation of matter. They became proto-galaxies

that eventually grew to be galaxies. This picture is a result of simulations of structure formation

and data from galaxy surveys [29] and it justified the search for cold dark matter (CDM).

The lack of direct detection of this matter from astrophysical observations implies

that it is non-luminous and non-absorbing, in other words, it does not emit or absorb light.

This raised the hypothesis that it could be Massive Astrophysical Compact Halo Objects, or

MACHOs. This denomination represents non-relativistic, non-luminous, baryonic matter such as

black holes, neutron stars or planets. These objects can account for as most as 8% of the mass of

the galatic halo of a galaxy [14], according to the EROS collaboration, so they certainly do not

represent CDM’s main component. This directed the searches for non-baryonic cold dark matter.

As the laboratory search for these particles proceeds, more limits on their properties

can be set. For example, we know that non-baryonic cold dark matter particles must be stable or

long-lived, otherwise the products of their decay would have already been detected - as an excess

of gamma rays or charged cosmic rays, for instance [30]. Following the same argument, these

particles must be neutral of electromagnetic charge and their most important -maybe unique-

interaction with other particles of the Standard Model is gravitational. Finally, from collisions of

galaxies and their resultant distribution of matter and dark matter, it can be concluded that cold

dark matter particles do not self-interact or they self-interact very weakly. Candidates with these

characteristics are known as Weakly Interacting Massive Particles (WIMPs).

The last model-independent characteristics of dark matter we can take from experi-

ments are its distribution in a galaxy and its abundance in the universe. The latter can be found

through CMB radiation to be, according to Planck data [1], Ωch
2 “ 0.1199 ˘ 0.0027 where

Ωch
2 stands for cold dark matter density today. In this expression, h “ H{100 km s´1 Mpc´1,

H being the Hubble constant, H0 “ p67.3 ˘ 1.2q km s´1 Mpc´1.

A WIMP candidate for dark matter must have all the characteristics highlighted in



Chapter 3. Our cosmological model 45

this section. In addition, its mechanism of production must account for its density in the universe

and galaxy distribution today, and finally, its thermal history must be compatible with structure

formation models.

3.3 Description and qualitative behaviour

Inspired by Yang-Mills theories, we propose an extension to the Standard Model

of Particle Physics by a SUpNcq flavourless group not coupled to the Standard Model. This

extension provides a WIMP candidate for dark matter whose phase transition can generate a

mechanism for Inflation in the Early Universe.

As seen in section 2.3, SUpNcq groups represent quarks and gluons that self-interact

through the strong force, with Nc number of colours. Their Lagrangian is analogous to the QCD

Lagrangian, where Nc “ 3, but, within our model, Nc is a free parameter. As a flavourless

-without quarks- group, we expect that its lightest stable bosonic states are glueball particles.

This particle is our candidate for dark matter, having all characteristics a WIMP must possess: it

is stable, it does not interact with photons - being non-luminous, non-absorbing and electrically

neutral - and it does not self-interact. Also, our assumption that this particle does not interact

with standard matter except gravitationally can explain the lack of direct detection of dark matter.

Our SUpNcq extension presents a deconfinement transition, as all Yang-Mills the-

ories. As described in section 2.1, at a specific critical temperature and barionic density, free

quarks and gluons -in our case, only gluons-, that composed a plasma, condensate into particles

-in our case, glueballs. This dramatically changes the equation of state of the fluid, as its degrees

of freedom are reduced and the bulk viscosity peaks. It is our hypothesis that this phenomenon

produces a negative pressure in the equation of state of the early Universe which is responsible

for its exponential expansion, the Inflationary period.

To successfully explain Inflation through this mechanism we also have to find that

this expansion lasted enough to produce an isotropic and homogeneous universe, in other words,

that it generated a reasonable number of efoldings. In addition, the transition from this regime to

a decelerated Friedmann expansion must happen and it must be smooth. We highlight that, within

this scenario, there is no scalar field and, therefore, no reheating period in the Early Universe.

Consequently, all baryonic production and entropy generation must take place at the Big Bang,

being diluted later by Inflation to the values known nowadays.

It is also crucial that the phase transition takes place at very high energies, of the

order of 1016 GeV. Otherwise, this model would fail to reproduce data from nucleosynthesis

models and galaxy surveys, in other words, structure would not have enough time to form. The

critical energy at which this transition occurs marks the deconfinement scale. As mentioned

in section 2.1, this is the one parameter not specified by the Lagrangian of SUpNcq theories.

It is also directly related to the mass of the glueballs because it specifies the range of gluons’
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interactions. Within our model, this is a free parameter as well.

Among the many checks that must be performed to ascertain the validity of this

model as a viable explanation to the Inflationary period, in this work we dedicate ourselves

to find the produced number of efoldings and a graceful exit to inflation. The first step in this

process is to study the new equation of state for the Early Universe.

3.4 Equation of state

3.4.1 Early Universe

It can be shown [4] that, according to the Standard Model of Particle Physics, in the

radiation dominated Early Universe, the energy density is given by:

εr “ κT 4 (3.4)

κ “ π2

30

ˆ

gb ` 7

8
gf

˙

(3.5)

where gb represents the bosonic degrees of freedom and gf , the fermionic degrees of freedom of

the relativistic particles. In addition, pressure p and energy density ε are related by:

pr “ εr

3
(3.6)

Note that we can only account for the degrees of freedom of the relativistic particles

in equilibrium. This means that gb and gf are functions of temperature, because, as the universe

cools, more particles decouple from the plasma. This phenomenon is illustrated in figure 8.

In this context, the addiction of extra particles would increase the number of degrees

of freedom of the primordial plasma if, at some point, they were in thermal equilibrium. This is

only possible if they interacted. In our model this is not the case, so we must account separately

for the contributions from the plasma and dark matter particles, forcing us to write new equations

of state:

pTěTc
“ pSUpNcq ´ 3ζ

9a

a
` κT 4

εTěTc
“ εSUpNcq ` 3κT 4

(3.7)

The terms pSUpNcq and εSUpNcq in the expressions above represent, respectively, the

pressure and energy density of the SUpNcq fluid before and during the deconfinement transition.

In addiction, as already discussed in section 1.2, the presence of the bulk viscosity ζ modifies
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Figure 8 – Degrees of freedom in terms of temperature in GeV. Adapted figure from [31].

the energy-momentum tensor of the perfect fluid by adding an extra term. It can be rewritten

as a perfect fluid tensor (1.22) if the pressure p is replaced by an effective pressure p˚. In the

equation above, p˚ “ ´3ζ
9a

a
` κT 4.

For completeness, we also write the equation of state for the primordial plasma of the

Early Universe after the deconfinement transition takes place. Because the SUpNcq glueballs are

stable and they do not interact with standard matter, their total number of particles is conserved.

This information is translated in the differential equation below.

pTăTc
“ n

T

m
` κT 4

εTăTc
“ 3

nT

2
` 3κT 4

n0 “ m2TcK2

ˆ

m

Tc

˙

dn

dt
` n

9a

a
“ 0

(3.8)

Note that K2 stands for the modified Bessel function of the second kind.

3.4.2 SUpNcq plasma

To solve the adapted Friedmann equations for an imperfect energy-momentum tensor

(1.22), we must first find analytical or numerical expressions for the equation of state of the Early

universe with the SUpNcq plasma (3.7). In particular, we must find the quantities pSUpNcq and
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Figure 9 – Trace of the energy-momentum tensor normalized by the Steffan-Boltzmann limit

of p{T 4 over temperature T 4 in terms of temperature over critical temperature for

different colour configurations. A comparison with an holografic model is performed.

Results and figure from [21].

εSUpNcq. They are related to s, the entropy density, and ∆, the trace of the energy-momentum

tensor of this fluid, by [5]:

∆ “ ε ´ 3p (3.9)

s “ dp

dT
“ ε ` p

T
(3.10)

We begin by taking the data of the trace of the energy-momentum tensor from the

lattice. These specific simulations were performed on a four-dimensional Euclidean hypercubic,

isotropic lattice with periodic boundary conditions in all directions, for number of colours

Nc “ 3, 4, 5, 6, 8 [21]. The results were normalized so that they could be represented on a same

graph and compared.

We repeat here figure 5b for a more detailed explanation of its features. Note that the

y axis represents ∆{rpπ2q ˚ RI ˚ pN2

c ´ 1qT 4{45s and the x axis, T {Tc. RI is a dimensionless

numeric factor equal to 1.2129 that corrects the deviation from the continuum limit introduced

by lattice cut-off effects.

We analyzed the data from each colour separately and fitted a function for each trace

of the energy-momentum tensor, focusing on the peak around the critical temperature Tc. Results

are illustrated in figure 10. All numerical calculations in this research were performed with the

software Mathematica c©, version 10.4 and the codes are available at the appendices.
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Figure 10 – Normalized trace of the energy-momentum tensor over T 4 in terms of temperature

over critical temperature for the number of colours: a) Nc “ 3, b) Nc “ 4, c) Nc “ 5,

d) Nc “ 6 and e) Nc “ 8.

The normalization performed by [21] renders equivalent to work with any of the fits

produced, so we chose to work with the results from SUp3q simulations, due to the bigger amount

of data available, which results in a more accurate fit to the trace of the energy-momentum tensor

and, consequently, to all other thermodynamic quantities of interest.

The expression found for the fit of the normalized trace of the energy-momentum

tensor was:

f

ˆ

T

Tc

˙

“ ´0.14460

ˆ

T

Tc

˙

43.29179 „

1 ` tanh

ˆ

27.91175

ˆ

1 ´ T

Tc

˙˙

`

` 0.85284

pT {Tcq2.0323
„

1 ` tanh

ˆ

27.91175

ˆ

´1 ` T

Tc

˙˙
(3.11)

Considering that:

T
d

dT

´ p

T 4

¯

“ 1

T 3

dp

dT
´ 4

p

T 4
(3.12)

and using relation 3.10, the expression 3.12 can be rewritten as:

T
d

dT

´ p

T 4

¯

“ ε ´ 3p

T 4
“ ∆

T 4
(3.13)
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It is evident that this fit only reproduces the behaviour of the function for the region

e{ec ě 3, 7.10´2. However, this accuracy is sufficient because its asymptotic behaviour for

e ă ec must be added by hand, regardless of the quality of the fit, since the data points do not

get much of that region. The fit we found previously describes well e{ec ě 10´1, while the

asymptotic behaviour ppeq “ e{3 dominates for e{ec ă 10´1. Therefore, the final expression for

pSUpNcq is:

pSUpNcq

ˆ

e

ec

˙

“ p1
SUpNcq

ˆ

e

ec

˙

«

1 ` tanh
`

650 ´ e
ec

˘

2

ff

` e

3

«

1 ` tanh
`

´650 ` e
ec

˘

2

ff

(3.16)

3.5 Results

3.5.1 Rewriting the Friedmann equations

Despite the simplifications performed in the equation of state of the SUpNcq plasma

in the previous section, it is still computationally demanding to solve the Friedmann equations.

The system has to deal with intricate, although analytic, expressions and derivatives of first and

second order in coupled equations. To mitigate this situation, we rewrite Friedmann equations

(1.15) in terms of the conformal time dτ “ dt

aptq . Noting that:

9aptq “ da

dτ

dτ

dt
“ 1

a

da

dτ
“ a1

a

:aptq “ d

dt
p 9aq “

ˆ

1

a

˙

2
d2a

dτ 2
´ 1

a3

ˆ

da

dτ

˙

2
(3.17)

and defining
da

dτ
“ a1 [28], we find:

ˆ

a1

a

˙

2

“ 2αεa2 ´ k

a2

a
“ αpε ´ 3pqa2 ´ k

ε1` 3
a1

a
pε ` pq “ 0

(3.18)

where α stands for the constant
4πG

3
. The third relation in 3.18 comes from the equation of

conservation of energy 1.17. This system can be further simplified:

f “ a1

a

f 1 ` f 2 “ 1

2

ˆ

ε ´ 3p

ε

˙

pf 2 ` kq ´ k

(3.19)
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It is now necessary to replace pressure p for the effective pressure p˚ to account for

the bulk viscosity peak. In conformal time coordinates this is:

p˚ “ pSUpNcq ´ 3gpεqε3{4f

a
` ε

3
(3.20)

Now, the adapted Friedmann equations for an universe with bulk viscosity in con-

formal time are given by equation 3.21. This is the system of equations one has to solve to find

the evolution of the scale factor a with time and calculate the number of efoldings for a specific

equation of state.

f “ a1

a

f 1 ` f 2 “ ´3αa2
ˆ

pSUpNcq ´ 6gpεqf 2αε7{4

f 2 ` k

˙

´ k

(3.21)

Here, gpεq represents the bulk viscosity peak. As mentioned in section 2.3, we

do not have enough experimental data to parametrize this quantity, therefore, we will use a

Gaussian function as a first approximation (3.22). We know it peaks at the critical temperature

Tc, represented here by the critical energy εc. A and B are free parameters, corresponding,

respectively, to the Gaussian’s height and width.

gpεq “ A exp

«

´B
ˆ

ε

εc
´ 1

˙

2
ff

(3.22)

3.5.2 Solving the Friedmann equations

It can be shown that the expression for the number of efoldings does not change in

conformal time, remaining equation 1.29. Therefore, we solve Friedmann equations 3.21 to find

apτf q and apτiq, τf representing the conformal time Inflation ended and τi, the conformal time

Inflation began. We are also interested in the evolution of the effective pressure with conformal

time, because we want to investigate whether there is a graceful exit for Inflation.

Graphically, the Inflationary and the decelerating Friedmann expansions can be

identified by the behaviour of the effective pressure. When this quantity gets negative, it means

that the bulk viscosity peak is bigger than the SUpNcq pressure, producing Inflation. As the bulk

viscosity peak diminishes, the effective pressure should return to positive values, indicating that

Inflation is over. However, this reasoning can not be reversed to find the desirable parameters for

the bulk viscosity peak because, as seen in equation 3.20, the bulk viscosity term in the effective

pressure is multiplied by the scale factor and its derivative. We also highlight that, although the

quantities A and B in equation 3.22 are somehow related to the number of colours Nc of the

equations of state considered, this dependence is not obvious and it was not investigated in this

study.
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Initial conditions

The last information we need to provide the software for the resolution of the

Friedmann equations are the initial conditions of the system. As mentioned in section 1.4, the

initial time for Inflation is usually set to Planck time. Following this indication, we consider

τi “ ´10´20MeV´1 « tP . Note that conformal times before and during Inflation are negative

due to the choice of the origin of the coordinate system [28].

To find the initial conditions for the scale factor a and the auxiliary function f “
da

dτ

1

a
, we must solve Friedmann equations for τi “ ´10´20, this is, in the asymptotic limit of the

equation of state. Note that in this limit the bulk viscosity Gaussian tends to zero. This system

can be further simplified if we choose the curvature of the manifold k “ 0, in agreement with

experimental data from CMB radiation [1]. Thus, the system of equations 3.21 becomes:

f “ da

dτ

1

a

f 1 “ ´3f 2

2

(3.23)

It can be solved analytically resulting in:

f “ 2

3τ

a “
´ τ

1038

¯

2{3 (3.24)

The constants were chosen such that apτ0 “ 1038q “ 1, where τ0 represents nowa-

days conformal time. Therefore, fi “ ´2{3 ˚ 1020MeV and ai “ p´10´58q2{3, a dimensionless

quantity. Finally, we set the initial energy density to be the Planck energy divided by the Planck

volume:

εi “ Ep

l3p
“ 1022MeV

10´69MeV´3
“ 1091MeV4 (3.25)

Our free parameters Nc and Tc translate themselves in this set of equations as,

respectively, the Gaussian parameters A and B and the critical energy density εc. We set εc to

εi, εi ˚ 10´1, εi ˚ 10´2, εi ˚ 10´3 and εi ˚ 10´4, varying each time the height of the Gaussian,

from 105 to 10´5 in intervals of the power of 10 and holding fixed the width of the Gaussian

B “ 100. This parameter was chosen not to be varied at this moment because it was found that

the number of efoldings Nc does not depend much on it. The final time τf was set individually to

each configuration of A, B and εc because different combinations of these values allowed for

different regions where the equations were solvable.

The calculation of the number of efoldings, from initial time τi to final time τf , in

this conditions is illustrated in figure 16. Note that there is a region, around A ě 10´1, for which
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Figure 16 – Number of efoldings in terms of A, the height of the Gaussian representing the bulk

viscosity peak, for its width B “ 100 and critical energy density ec varying from εi
to εi ˚ 10´4.

Figure 17 – Number of efoldings in terms of A, the height of the bulk viscosity peak, for its

width B “ 100 and critical energy density εc “ εi ˚ 10´4.

the number of efoldings is approximately 60. To further investigate this phenomenon, we fixed

the critical energy to εc “ εi ˚ 10´4 and recorded the effective pressure and their respective

number of efolds for the same values of the amplitude A investigated previously. The result is

shown in figures 17 and 18.

For values of A ě 1, the effective pressure gets negative but it never returns to

be positive, even after the importance of the bulk viscosity peak is reduced with time. These

scenarios fail to reproduce a Friedmann expansion, thus they can not represent our universe. In
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4 Conclusions and perspectives

The inflationary model proposed by this work was proven to generate a negative

effective pressure, which produced a period of exponential expansion. In addition, in some

scenarios, the number of efoldings calculated was compatible with the number produced by

the scalar-field Inflation model and a smooth transition from this expansionary regime to a

decelerated Friedmann expansion was found. This proves that the model proposed here is

equivalent to the Standard Inflationary model, regarding the number of efoldings produced, the

presence of two regimes of expansion and a smooth transition between them.

As expected, the number of efoldings and the effective pressure for the different con-

figurations tested were more sensitive to the amplitude A of the Gaussian function representing

the bulk viscosity peak than to its width B. This is consistent with the localized nature of the

deconfinement transition -consequently, of the bulk viscosity peak- at the the critical temperature

Tc. It was also noted that not all configurations of A and B produce negative effective pressure,

which indicates that the bulk viscosity peak must overcome the equation of state of the Standard

Model pr “ ε{3 to change the effective pressure. Finally, we point out that, within the range

1087 ď εc ď 1091, it was observed little sensibility in the number of efolds to the critical energy

density.

We also highlight that the tests performed by this research are preliminary and there

are many open questions to be investigated within this proposal. First of all, it is possible that

the successful cases described above represent only some points in regions of viable scenarios,

found by varying slightly the relevant parameters. It is crucial to specify those regions and their

dependence with the gaussian parameters. From this information, one can try to identify the

sensibility of the number of efoldings and the smooth transition to the variable parameters.

Another relevant path of investigation is to specify the relation between the free

parameters of the model, Nc and Tc, to the variables εc and the ones related to the Gaussian,

A and B. If this is accomplished, one can use the results found in this work to discover the

parameters of the generic Yang-Mills theory proposed here. This allows for a more complete

description of the model, in specific regarding the properties of the glueballs, the dark matter

candidates.

So far, the extension to the Standard Model proposed by this work has only re-

produced indirect consequences of Inflation, therefore, no results in this thesis provide direct

evidence of this model correctness. However, even at this initial stage of research, it is possible

to falsify this proposal. One of our strongest hypothesis, that this extension is not coupled to the

Standard Model, guarantees that no indirect detection of dark matter will ever occur. Any experi-

mental evidence contrary to this claim will force us to revisit one of our central assumptions. In
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this same direction, in the future, it is necessary to study the equation of state of the Yang-Mills

fluid after the deconfinement transition to calculate the expected density of dark matter particles

nowadays. This is an experimentally accessible quantity, determined by CMB observations, thus,

reproducing its values would be a test for this model.



62

Bibliography

1 AL, P. A. R. A. et. Planck 2013 results. xvi. cosmological parameters. Astronomy and

Astrophysics, v. 571, n. A16, November 2014. Disponível em: <https://arxiv.org/pdf/1303.5076.

pdf>.

2 WEINBERG, S. Gravitation and cosmology: principles and applications of the general

theory of relativity. Cambridge: John Wiley & Sons, 1972. ISBN 0-471-92567-5.

3 CARROLL, S. Spacetime and Geometry: An Introduction to General Relativity. San

Francisco: Addison Wesley, 2004. ISBN 0-8053-8732-3.

4 MUKHANOV, V. Physical Foundations of Cosmology. Cambridge: Cambridge University

Press, 2005.

5 LIDDLE, A.; LYTH, D. Cosmological Inflation and Large-Scale Structure. Cambridge:

Cambridge University Press, 2000. (Cosmological Inflation and Large-scale Structure). ISBN

9780521575980.

6 JI, X. Introduction to qcd and the standard model. Disponível em: <http://www.physics.umd.

edu/courses/Phys741/xji/chapter1.pdf>.

7 GROSS, D. J. Gauge theory-past, present, and future? Chinese Journal of Physics, v. 30, n. 7,

p. 955–972, Dec 1992. ISSN 0577-9073. Disponível em: <http://psroc.org/cjp/issues.php?vol=

30&num=7>.

8 GATTRINGER, C. B. L. a. C. Quantum Chromodynamics on the Lattice: An Introductory

Presentation. 1. ed. Heidelberg: Springer-Verlag Berlin Heidelberg, 2010. (Lecture Notes in

Physics 788). ISBN 3642018491,9783642018497.

9 SATZ, H. The thermodynamics of quarks and gluons. In: . Heidelberg: Springer

Berlin Heidelberg, 2009. (Lecture Notes in Physics, The Physics of the Quark-Gluon Plasma:

Introductory Lectures), cap. 1, p. 1–21. ISBN 978-3-642-02286-9.

10 KARSCH, F.; LAERMANN, E.; PEIKERT, A. The pressure in 2, 2+1 and 3 flavour

qcd. Physics Letters B, v. 478, n. 4, p. 447 – 455, 2000. ISSN 0370-2693. Disponível em:

<http://www.sciencedirect.com/science/article/pii/S0370269300002926>.

11 PAQUET, J.-F.; SHEN, C.; DENICOL, G. S.; LUZUM, M.; SCHENKE, B.; JEON, S.;

GALE, C. Production of photons in relativistic heavy-ion collisions. Physical Review C,

American Physical Society (APS), v. 93, n. 4, Apr 2016. ISSN 2469-9993. Disponível em:

<http://dx.doi.org/10.1103/PhysRevC.93.044906>.

12 PAQUET, J.-F. Characterizing the non-equilibrium quark-gluon plasma

with photons and hadrons. Tese (Doutorado) — McGill University, Mon-

treal, September 2015. Disponível em: <http://digitool.library.mcgill.ca/R/

8CXERVXY2MYIK9CVQG394628MSFHQKUHME67N2V83QE5KTVLYH-09382?func=

results-jump-full&set_entry=000001&set_number=001612&base=GEN01>.



Bibliography 63

13 KAJANTIE, K.; KAPUSTA, J.; MCLERRAN, L.; MEKJIAN, A. Dilepton emission and

the qcd phase-transition in ultrarelativistic nuclear collisions. Physical Review D, v. 34, n. 9, p.

2746–2754, nov. 1986.

14 AL, K. et. The review of particle physics. Chin. Phys. C, v. 38, n. 090001, 2014. Disponível

em: <http://pdg.lbl.gov/2015/>.

15 LUCINI, B.; PANERO, M. Introductory lectures to large-n qcd phenomenology and

lattice results. Progress in Particle and Nuclear Physics, v. 75, n. Supplement C, p. 1 – 40,

2014. ISSN 0146-6410. Disponível em: <http://www.sciencedirect.com/science/article/pii/

S0146641014000027>.

16 VERA, M. F. G. Investigating the large N limit of SU(N) Yang-Mills gauge theories

on the lattice. Tese (Doutorado) — Humboldt-Universitat zu Berlin, Mathematisch-

Naturwissenschaftliche Fakultat, Berlin, June 2017. Disponível em: <https://edoc.hu-berlin.de/

handle/18452/18793>.

17 LUCINI, B.; TEPER, M. Su(n) gauge theories in four-dimensions: Exploring

the approach to n = infinity. JHEP, v. 06, p. 050, 2001. Disponível em: <https:

//arxiv.org/pdf/hep-lat/0103027.pdf>.

18 LUCINI, B.; TEPER, M.; WENGER, U. Properties of the deconfining phase

transition in su(n) gauge theories. JHEP, v. 02, p. 033, 2005. Disponível em: <https:

//arxiv.org/pdf/hep-lat/0502003.pdf>.

19 LUCINI, B.; RAGO, A.; RINALDI, E. Su(nc) gauge theories at deconfinement. Phys. Lett.,

B712, p. 279–283, 2012. Disponível em: <https://arxiv.org/pdf/1202.6684.pdf>.

20 DATTA, S.; GUPTA, S. Continuum thermodynamics of the gluonc plasma. Phys. Rev., D82,

p. 114505, 2010. Disponível em: <https://arxiv.org/pdf/1006.0938.pdf>.

21 PANERO, M. Thermodynamics of the qcd plasma and the large-n limit. Phys. Rev. Lett.,

v. 103, p. 232001, 2009. Disponível em: <https://arxiv.org/pdf/0907.3719.pdf>.

22 KARSCH, F.; KHARZEEV, D.; TUCHIN, K. Universal properties of bulk viscosity

near the qcd phase transition. Phys. Lett., B663, p. 217–221, 2008. Disponível em:

<https://arxiv.org/pdf/0711.0914.pdf>.

23 MEYER, H. B. A calculation of the bulk viscosity in su(3) gluodynamics. Phys. Rev. Lett.,

v. 100, p. 162001, 2008. Disponível em: <https://arxiv.org/pdf/0710.3717.pdf>.

24 KHARZEEV, D.; TUCHIN, K. Bulk viscosity of qcd matter near the critical

temperature. Journal of High Energy Physics, v. 2008, n. 09, p. 093, 2008. Disponível em:

<http://iopscience.iop.org/article/10.1088/1126-6708/2008/09/093/pdf>.

25 PAECH, K.; PRATT, S. Origins of bulk viscosity in relativistic heavy ion collisions.

Phys. Rev. C, American Physical Society, v. 74, p. 014901, Jul 2006. Disponível em:

<https://arxiv.org/pdf/nucl-th/0604008.pdf>.

26 HARUTYUNYAN, A.; RISCHKE, D. H.; SEDRAKIAN, A. Transport coefficients of

two-flavor quark matter from the kubo formalism. Phys. Rev., D95, n. 11, p. 114021, 2017.

Disponível em: <https://arxiv.org/pdf/1702.04291.pdf>.



Bibliography 64

27 MEYER, H. B. A calculation of the shear viscosity in su(3) gluodynamics. Phys. Rev., D76,

p. 101701, 2007. Disponível em: <https://arxiv.org/pdf/0704.1801.pdf>.

28 BAUMANN, D. Cosmology, part iii mathematical tripos. Disponível em: <http:

//www.damtp.cam.ac.uk/user/db275/Cosmology/Lectures.pdf>.

29 GARRETT, K.; DUDA, G. Dark Matter: A Primer. Adv. Astron., v. 2011, p. 968283, 2011.

30 ROTT, C. Status of dark matter searches (rapporteur talk). PoS ICRC, n. 1119, 2017.

Disponível em: <https://arxiv.org/abs/1712.00666>.

31 KOLB, E.; TURNER, M. The Early Universe. [S.l.]: Avalon Publishing, 1994. v. 69.

(Frontiers in physics, v. 69). ISBN 9780813346458.



Appendix



66

APPENDIX A – Codes for the

numerical calculations



SU3data = {{0.801742, 0.001074}, {0.811087, 0.025189}, {0.820493, 0.051497},

{0.829959, 0.025627}, {0.839485, 0.000632}, {0.849072, 0.013656},

{0.858719, 0.091965}, {0.868426, 0.076393}, {0.878192, 0.036275},

{0.888019, -0.01272}, {0.897904, 0.002379}, {0.90785, 0.059816},

{0.917854, 0.034798}, {0.927917, 0.05017}, {0.938039, 0.089943},

{0.94822, 0.060019}, {0.95846, 0.125736}, {0.968758, 0.146868},

{0.979114, 0.193744}, {0.989528, 0.396226}, {1., 0.721148},

{1.01053, 0.962336}, {1.021117, 1.128489}, {1.031762, 1.230001},

{1.042464, 1.258942}, {1.053223, 1.331593}, {1.064039, 1.374322},

{1.074912, 1.287931}, {1.085841, 1.328149}, {1.096827, 1.345659},

{1.107869, 1.289628}, {1.118968, 1.289898}, {1.130122, 1.296408},

{1.141332, 1.272211}, {1.152597, 1.251725}, {1.163918, 1.257515},

{1.175294, 1.237645}, {1.186726, 1.213716}, {1.198212, 1.17597},

{1.209754, 1.145387}, {1.22135, 1.169127}, {1.233, 1.123933}, {1.244705, 1.072},

{1.256465, 1.088117}, {1.268278, 1.052175}, {1.280146, 1.062387},

{1.292067, 1.019255}, {1.304043, 1.006715}, {1.316071, 0.989344},

{1.328154, 0.976319}, {1.34029, 0.956389}, {1.352479, 0.902937},

{1.364721, 0.900721}, {1.377017, 0.907807}, {1.389365, 0.847448},

{1.401767, 0.868257}, {1.414221, 0.801243}, {1.426728, 0.812699},

{1.439288, 0.787744}, {1.4519, 0.807947}, {1.464565, 0.782323},

{1.477283, 0.765474}, {1.490053, 0.705317}, {1.502875, 0.698136},

{1.515749, 0.680372}, {1.528676, 0.694201}, {1.541656, 0.703567},

{1.554687, 0.691247}, {1.567771, 0.65708}, {1.580907, 0.656823},

{1.594096, 0.651981}, {1.607336, 0.63649}, {1.620629, 0.611744},

{1.633974, 0.614611}, {1.647372, 0.610956}, {1.660822, 0.623653},

{1.674324, 0.582151}, {1.687879, 0.550757}, {1.701487, 0.573398},

{1.715147, 0.545812}, {1.72886, 0.563714}, {1.742626, 0.54762},

{1.756444, 0.513408}, {1.770316, 0.504704}, {1.784241, 0.504296},

{1.798219, 0.497836}, {1.81225, 0.483539}, {1.826336, 0.462899},

{1.840474, 0.479329}, {1.854667, 0.457971}, {1.868914, 0.48051},

{1.883215, 0.467682}, {1.897571, 0.451446}, {1.911981, 0.440689},

{1.926447, 0.442527}, {1.940967, 0.414185}, {1.955543, 0.406184},

{1.970175, 0.37693}, {1.984863, 0.381541}, {1.999606, 0.382047},

{2.014407, 0.406013}, {2.029264, 0.408479}, {2.044179, 0.410644},

{2.059151, 0.374339}, {2.074181, 0.394612}, {2.089269, 0.364649},

{2.104415, 0.380211}, {2.119621, 0.339312}, {2.134886, 0.368773},

{2.150211, 0.360224}, {2.165597, 0.373108}, {2.181043, 0.391337},

{2.19655, 0.350445}, {2.212118, 0.357035}, {2.227749, 0.35291},

{2.243443, 0.339672}, {2.2592, 0.320994}, {2.27502, 0.34895},

{2.290905, 0.316548}, {2.306854, 0.311759}, {2.322869, 0.32495},

{2.33895, 0.312037}, {2.355097, 0.302527}, {2.371312, 0.312755},

{2.387594, 0.29494}, {2.403945, 0.279982}, {2.420366, 0.31139},

{2.436856, 0.289751}, {2.453417, 0.284341}, {2.470049, 0.289815},

{2.486754, 0.266598}, {2.503531, 0.294358}, {2.520382, 0.2736},

{2.537308, 0.265359}, {2.554309, 0.267216}, {2.571386, 0.250913},

{2.58854, 0.259511}, {2.605773, 0.259524}, {2.623084, 0.246865},

{2.640474, 0.235416}, {2.657946, 0.262268}, {2.675499, 0.218737},

{2.693135, 0.236759}, {2.710855, 0.218018}, {2.728659, 0.247995},
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{2.746549, 0.238522}, {2.764526, 0.217894}, {2.782591, 0.198552},

{2.800744, 0.236603}, {2.818988, 0.221255}, {2.837324, 0.202357},

{2.855752, 0.226609}, {2.874273, 0.175664}, {2.89289, 0.209898},

{2.911603, 0.226011}, {2.930414, 0.198542}, {2.949323, 0.187839},

{2.968332, 0.18637}, {2.987443, 0.173721}, {3.006657, 0.196118},

{3.025975, 0.178129}, {3.045399, 0.154842}, {3.06493, 0.173641},

{3.08457, 0.150514}, {3.10432, 0.183898}, {3.124182, 0.173504},

{3.144157, 0.173424}, {3.164247, 0.173324}, {3.184453, 0.160808},

{3.204778, 0.161083}, {3.225223, 0.189858}, {3.245789, 0.175179},

{3.266479, 0.116076}, {3.287293, 0.141001}, {3.308235, 0.156441},

{3.329306, 0.138471}, {3.350507, 0.170139}, {3.371841, 0.157327},

{3.393309, 0.149694}, {3.414914, 0.141905}, {3.436657, 0.110058}};

SU3error = {0.018787, 0.033356, 0.031306, 0.026917, 0.034604, 0.027728, 0.027815,

0.019878, 0.020881, 0.030212, 0.024332, 0.021534, 0.022975, 0.02678, 0.016324,

0.032323, 0.031724, 0.053071, 0.048587, 0.099183, 0.035906, 0.059078, 0.032809,

0.032754, 0.015116, 0.020192, 0.013569, 0.029283, 0.02245, 0.012014, 0.012332,

0.01524, 0.02166, 0.012161, 0.016245, 0.015226, 0.015885, 0.017655, 0.012538,

0.020704, 0.017557, 0.014745, 0.015301, 0.017371, 0.018573, 0.023682, 0.007466,

0.018229, 0.010446, 0.020911, 0.018078, 0.031046, 0.021827, 0.022625, 0.021786,

0.025026, 0.030749, 0.018882, 0.018723, 0.026785, 0.015677, 0.02412, 0.026118,

0.017227, 0.023937, 0.026415, 0.023033, 0.015797, 0.014072, 0.012144, 0.014988,

0.021954, 0.01685, 0.020172, 0.023724, 0.010682, 0.017848, 0.0186, 0.023984,

0.01622, 0.015919, 0.018467, 0.023742, 0.014241, 0.020862, 0.026435, 0.01966,

0.018321, 0.012384, 0.020431, 0.01993, 0.007451, 0.015144, 0.016943, 0.017901,

0.023223, 0.01456, 0.019299, 0.018255, 0.017668, 0.018569, 0.021977, 0.017858,

0.014817, 0.010884, 0.013159, 0.005978, 0.015366, 0.012744, 0.019274, 0.012446,

0.008912, 0.016025, 0.013166, 0.019093, 0.010801, 0.009405, 0.013794,

0.011625, 0.014733, 0.012078, 0.016136, 0.015554, 0.01458, 0.016562, 0.021586,

0.010583, 0.011091, 0.017093, 0.017061, 0.00866, 0.019435, 0.012149, 0.016967,

0.015269, 0.021453, 0.008995, 0.021126, 0.021491, 0.01656, 0.015382, 0.016379,

0.01068, 0.015295, 0.014404, 0.013583, 0.010035, 0.01165, 0.013251, 0.013763,

0.014495, 0.013899, 0.012627, 0.014292, 0.01315, 0.014578, 0.016968, 0.019408,

0.008625, 0.015302, 0.020574, 0.014381, 0.015943, 0.018389, 0.017381, 0.016045,

0.017144, 0.016685, 0.016202, 0.01413, 0.020431, 0.015291, 0.008146, 0.014739,

0.014784, 0.014499, 0.015389, 0.015421, 0.011557, 0.019841, 0.012443};

Clear f, g, h, x, a, b, c, d, e, fit

f[x_] := Tanh[(x - 1) / a] + 1 2;

g[x_] := Tanh[(1 - x) / a] + 1 2;

h[x_] := b (x^c) g[x] + d (x^-e) f[x];

SU3error2 = 1 / (SU3error^2);

fit = NonlinearModelFit SU3data, h[x], a, b, c, d, e ,

x, VarianceEstimatorFunction (1 &), Weights SU3error2

FittedModel -0.144608x43.2918 (1+Tanh[27.9118 (1-x)])+
0.852846 (1+Tanh[27.9118 (-1+x)])

x2.03235

2     SU3_sucess.nb
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Show ListPlot SU3data , Plot fit[x], {x, -2, 4} , Frame True

1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fit "AdjustedRSquared"

0.998708

SU3_sucess.nb     3
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(*finding an inverse function for e(T), using the unfitted expressions*)

Clear f, g, h, h2, energy, press, pressure, inv, u, data, data2, merged, fit, fit2

f[x_] := -0.14460764377951374 x43.29179403782954 1 + Tanh[27.911759831465123 (1 - x)] +

0.8528461795749493 1 + Tanh[27.911759831465123 (-1 + x)] x2.032352696537285

(* trace of energy-momentum tensor from SU(3) data *)

g[x_] := f[x] x

press y_?NumberQ := NIntegrate g[x], {x, 0, y}, Method -> "LocalAdaptive"

pressure[T_] := (T^4) press[T] (*pressure from numerical integration*)

energy[T_] := f[T] (T^4) + 3 pressure[T] (*energy, from numerical integration*)

LogPlot {energy[T], pressure[T], pressure[T] / energy[T]},

{T, 0, 6}, PlotLegends "Expressions", PlotRange All

1 2 3 4 5 6

10-14

10-9

10-4

10

106

energy(T )

pressure(T )

pressure(T)

energy(T)

LogLogPlot energy[T], {T, 10^(-6), 10^2}, PlotRange All,

PlotLabel "Energia x temperatura", AxesLabel {T, e}

0.5 1 5 10 50 100
T

10-9

10

1011

e

Energia x temperatura

(*as f(x) was fitted with Exp(x), we must continue to use that here*)
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LogPlot {energy[Exp[T]], pressure[Exp[T]], pressure[Exp[T]] / energy[Exp[T]]},

{T, 0, 6}, PlotLegends "Expressions", PlotRange All

1 2 3 4 5 6

1

1000

106

109

1012

energy(exp(T ))

pressure(exp(T ))

pressure(exp(T))

energy(exp(T))

inv f_, s_ := Function {t}, s /. FindRoot f - t, {s, 1}

(*code from Mathematica to invert the functions*)

u = inv[energy[Exp[T]], T] (*T[energy]*)

Function t$ ,

T /. FindRoot 3 4 T press T + 4 T -0.144608 T 43.2918
1 + Tanh 27.9118 1 - T +

0.852846 1 + Tanh 27.9118 -1 + T

T 2.03235
- t$, {T, 1}

u[energy[Exp[0.1]]] (*it seems good*)

0.1

LogPlot u[x], {x, 10^(-8), 10^2}, PlotRange All,

PlotLabel "Temperatura x energia", AxesLabel {e, T}

20 40 60 80 100
e

10-4

0.001

0.010

0.100

1

T

Temperatura x energia

2     InverseFunctionE(T).nb
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(*u[x] is the inverse function and it looks very much like a tanh[x]*)

LogPlot Tanh[0.5 * x] 3, {x, 0, 10}, PlotRange All

2 4 6 8 10

10-7

10-5

0.001

0.100

(*let's try to fit it*)

data = Table[u[x], {x, 10^(-3), 10, 0.05}];

data2 = Table[x, {x, 10^(-3), 10, 0.05}];

Do

Sow

Flatten ReplacePart a, b , 1 Take data2, {u} , 2 Take data, {u}

,

{u, 1, 161, 1}

// Reap // Last;

InverseFunctionE(T).nb     3
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merged = %[[1]]

{{0.001, -0.127971}, {0.051, -0.0567367}, {0.101, -0.044241}, {0.151, -0.0366665},

{0.201, -0.0311066}, {0.251, -0.0266442}, {0.301, -0.0228694},

{0.351, -0.0195628}, {0.401, -0.0165928}, {0.451, -0.0138741}, {0.501, -0.011348},

{0.551, -0.00897201}, {0.601, -0.00671437}, {0.651, -0.00455043},

{0.701, -0.00246055}, {0.751, -0.000428583}, {0.801, 0.001559},

{0.851, 0.00351387}, {0.901, 0.0054463}, {0.951, 0.00736551}, {1.001, 0.00928002},

{1.051, 0.0111978}, {1.101, 0.0131264}, {1.151, 0.0150734}, {1.201, 0.0170458},

{1.251, 0.0190511}, {1.301, 0.0210964}, {1.351, 0.0231891}, {1.401, 0.0253367},

{1.451, 0.0275466}, {1.501, 0.0298263}, {1.551, 0.032183}, {1.601, 0.0346238},

{1.651, 0.0371551}, {1.701, 0.0397824}, {1.751, 0.0425101}, {1.801, 0.0453409},

{1.851, 0.0482756}, {1.901, 0.0513128}, {1.951, 0.0544484}, {2.001, 0.0576762},

{2.051, 0.0609877}, {2.101, 0.0643727}, {2.151, 0.0678195}, {2.201, 0.0713163},

{2.251, 0.074851}, {2.301, 0.0784121}, {2.351, 0.081989}, {2.401, 0.0855722},

{2.451, 0.0891536}, {2.501, 0.0927262}, {2.551, 0.0962841}, {2.601, 0.0998226},

{2.651, 0.103338}, {2.701, 0.106827}, {2.751, 0.110287}, {2.801, 0.113718},

{2.851, 0.117116}, {2.901, 0.120482}, {2.951, 0.123814}, {3.001, 0.127113},

{3.051, 0.130378}, {3.101, 0.133608}, {3.151, 0.136805}, {3.201, 0.139968},

{3.251, 0.143097}, {3.301, 0.146192}, {3.351, 0.149255}, {3.401, 0.152284},

{3.451, 0.155281}, {3.501, 0.158247}, {3.551, 0.16118}, {3.601, 0.164083},

{3.651, 0.166955}, {3.701, 0.169796}, {3.751, 0.172608}, {3.801, 0.17539},

{3.851, 0.178143}, {3.901, 0.180868}, {3.951, 0.183565}, {4.001, 0.186234},

{4.051, 0.188877}, {4.101, 0.191492}, {4.151, 0.194081}, {4.201, 0.196644},

{4.251, 0.199182}, {4.301, 0.201695}, {4.351, 0.204183}, {4.401, 0.206647},

{4.451, 0.209087}, {4.501, 0.211504}, {4.551, 0.213897}, {4.601, 0.216268},

{4.651, 0.218617}, {4.701, 0.220944}, {4.751, 0.223249}, {4.801, 0.225533},

{4.851, 0.227796}, {4.901, 0.230039}, {4.951, 0.232261}, {5.001, 0.234464},

{5.051, 0.236647}, {5.101, 0.238811}, {5.151, 0.240956}, {5.201, 0.243082},

{5.251, 0.24519}, {5.301, 0.24728}, {5.351, 0.249352}, {5.401, 0.251407},

{5.451, 0.253444}, {5.501, 0.255465}, {5.551, 0.257469}, {5.601, 0.259456},

{5.651, 0.261428}, {5.701, 0.263383}, {5.751, 0.265323}, {5.801, 0.267247},

{5.851, 0.269157}, {5.901, 0.271051}, {5.951, 0.272931}, {6.001, 0.274796},

{6.051, 0.276646}, {6.101, 0.278483}, {6.151, 0.280306}, {6.201, 0.282115},

{6.251, 0.28391}, {6.301, 0.285693}, {6.351, 0.287462}, {6.401, 0.289218},

{6.451, 0.290962}, {6.501, 0.292693}, {6.551, 0.294412}, {6.601, 0.296118},

{6.651, 0.297813}, {6.701, 0.299495}, {6.751, 0.301166}, {6.801, 0.302825},

{6.851, 0.304473}, {6.901, 0.30611}, {6.951, 0.307736}, {7.001, 0.309351},

{7.051, 0.310955}, {7.101, 0.312548}, {7.151, 0.314131}, {7.201, 0.315703},

{7.251, 0.317265}, {7.301, 0.318817}, {7.351, 0.320359}, {7.401, 0.321892},

{7.451, 0.323414}, {7.501, 0.324927}, {7.551, 0.326431}, {7.601, 0.327925},

{7.651, 0.329409}, {7.701, 0.330885}, {7.751, 0.332352}, {7.801, 0.33381},

{7.851, 0.335259}, {7.901, 0.336699}, {7.951, 0.33813}, {8.001, 0.339554}}
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Show LogPlot {u[x]}, {x, 10^(-3), 10},

PlotLegends "Expressions", PlotRange All , ListLogPlot merged
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Show LogPlot {u[x]}, {x, 10^(-3), 0.8},

PlotLegends "Expressions", PlotRange All , ListLogPlot merged
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(*try to fit with hiperbolic tangent*)

h[x_] := c1 * Tanh[c2 * (x^c3)] + c4 * x^c5 + c6

fit = NonlinearModelFit merged, h[x], {c1, c2, c3, c4, c5, c6}, x

FittedModel -0.156213+0.319384x0.379692 -0.201485Tanh 1.06554x0.984876

fit "AdjustedRSquared" (*seems good, the drop is not perfect, but it shall do*)

0.999712

InverseFunctionE(T).nb     5
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Show LogPlot fit[x] , {x, 10^(-3), 10},

PlotLegends "Expressions", PlotRange All , ListLogPlot merged
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Show LogPlot fit[x] , {x, 10^(-3), 2},

PlotLegends "Expressions", PlotRange All , ListLogPlot merged
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h2[x_] := c1 * Tanh[c2 * (x^c3) + c4] + c5

fit2 = NonlinearModelFit merged, h2[x], {c1, c2, c3, c4, c5}, x

General::ovfl : Overflow occurred in computation.

General::ovfl : Overflow occurred in computation.

General::ovfl : Overflow occurred in computation.

General::stop : Further output of General::ovfl will be suppressed during this calculation.

NonlinearModelFit::sszero :

The step size in the search has become less than the tolerance prescribed by the PrecisionGoal

option, but the gradient is larger than the tolerance specified by the AccuracyGoal option.

There is a possibility that the method has stalled at a point that is not a local minimum.

FittedModel 249.422-249.254Tanh 57.9242+
377.982

x10308.4

6     InverseFunctionE(T).nb
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fit2 "AdjustedRSquared"

General::ovfl : Overflow occurred in computation.

General::ovfl : Overflow occurred in computation.

General::ovfl : Overflow occurred in computation.

General::stop : Further output of General::ovfl will be suppressed during this calculation.

0.656751

(*it's probably fitting around the drop and forgetting the other points*)

(*we could weight them, but do we need to?*)

InverseFunctionE(T).nb     7
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(*still trying to fit p(e)*)

Clear f, g, T, press, pressure, p, data, data2, data3,

data4, data5, data6, dataT1, dataT2, merged, h, fit, h2, fit2,

h3, fit3, h4, fit4, h5, fit5, h6, fit6, h7, h8, fit8, ss, e, ssfit

f[x_] := -0.14460764377951374 x43.29179403782954 1 + Tanh[27.911759831465123 (1 - x)] +

0.8528461795749493 1 + Tanh[27.911759831465123 (-1 + x)]

x2.032352696537285

(* trace of energy-momentum tensor from SU(3) data *)

g[x_] := f[x] x

press y_?NumberQ := NIntegrate g[x], {x, 0, y}, Method -> "LocalAdaptive"

pressure[T_] := (T^4) press[T] (*pressure from numerical integration*)

T[e_] :=

-0.15621341243069656` + 0.319384339937831` e0.379692013638506` - 0.20148504091364955`

Tanh 1.065539056023176` e0.9848761711059851` (*temperature in terms of energy*)

p[e_] := pressure[Exp[T[e]]] (*pressure in terms of energy*)

data = Table[p[e], {e, 10^(-3), 3 * 10^(-1), 5 * 10^(-3)}];

data2 = Table[p[e], {e, 3 * 10^(-1), 3 * 10^0, 5 * 10^(-3)}];

data3 = Table[p[e], {e, 3 * 10^0, 10^(2), 5 * 10^(0)}];

dataT1 = Join data, data2, data3 ;

data4 = Table[e, {e, 10^(-3), 3 * 10^(-1), 5 * 10^(-3)}];

data5 = Table[e, {e, 3 * 10^(-1), 3 * 10^0, 5 * 10^(-3)}];

data6 = Table[e, {e, 3 * 10^0, 10^(2), 5 * 10^(0)}];

dataT2 = Join data4, data5, data6 ;

Do

Sow

Flatten ReplacePart a, b , 1 Take dataT2, {u} , 2 Take dataT1, {u}

,

{u, 1, 621, 1}

// Reap // Last;

merged = %[[1]];

h[e_] := (c1 * (e^c2)) + (c3 * (e^4)) + c4 * Tanh[c5 * e] + (c6 * e)

fit = NonlinearModelFit merged, h[e],

{c1, c2, c3, c4, c5, c6}, e, MaxIterations 10 000

FittedModel 0.173122e+0.00517911e2.24207 +1.12672×10-6 e4 -0.312762Tanh[0.5535e]
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Show LogLogPlot fit[e], {e, 10^(-3), 1.009 * 10^(2)}, PlotLegends "Expressions" ,

ListLogLogPlot merged , PlotRange All
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(*this is the best fit to the moment*)

h2[e_] := (c1 * (e^c2)) + (c3 * (e^4)) + c4 * Tanh[c5 * e] + (c6 * e) Tanh[10^4 * (e - 1)]

fit2 = NonlinearModelFit merged, h2[e],

{c1, c2, c3, c4, c5, c6}, e, MaxIterations 10 000

FittedModel Tanh[10000 (-1+e)] 0.165723e+0.00551846e2.22794 +1.13634×10-6 e4 -0.271251Tanh[0.70853e]

Show LogLogPlot fit2[e], {e, 10^(-3), 1.009 * 10^(2)}, PlotLegends "Expressions" ,

ListLogLogPlot merged , PlotRange All
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h3[e_] :=

(c1 * (e^c2)) + (c3 * (e^4)) + c4 * Tanh[c5 * e] + (c6 * e) Tanh[10^4 * (e - 1)] + (c7 * e)

fit3 = NonlinearModelFit merged, h3[e],

{c1, c2, c3, c4, c5, c6, c7}, e, MaxIterations 10 000

FittedModel

0.0184423e+Tanh[10000 (-1+e)] -0.448888e+0.0504871e1.79379 +1.29546×10-6 e4 +5.87678Tanh[0.069227e]

2     P(E)VI.nb

Printed by Wolfram Mathematica Student Edition



Show LogLogPlot fit3[e], {e, 10^(-3), 1.009 * 10^(2)}, PlotLegends "Expressions" ,

ListLogLogPlot merged , PlotRange All
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h4[e_] := (c1 * (e^c2)) + (c3 * (e^4)) + c4 * Tanh[c5 * e] + (c6 * e) Tanh[10^4 * (e - 1)] +

(c7 * e + c8 * e^(-3))

fit4 = NonlinearModelFit merged, h4[e],

{c1, c2, c3, c4, c5, c6, c7, c8}, e, MaxIterations 10 000

FittedModel

-
2.27022×10-14

e3
+ 21 e+Tanh[10000 (-1+e)] 0.156454e+0.00526725e2.23833 + 23 e4 -0.299621Tanh[0.594053e]

Show LogLogPlot fit4[e], {e, 10^(-3), 1.009 * 10^(2)}, PlotLegends "Expressions" ,

ListLogLogPlot merged , PlotRange All
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h5[e_] := ((c1 * (e^c2)) + (c3 * (e^4)) + (c4 * e)) Tanh[10^4 * (e - 1)] + (c5 * e + c6 * e^(-1))

fit5 = NonlinearModelFit merged, h5[e],

{c1, c2, c3, c4, c5, c6}, e, MaxIterations 10 000

FittedModel -
5.13097×10-6

e
+0.0354037e+ 0.00202089e+0.0165757e1.98421 +1.30073×10-6 e4 Tanh[10000 (-1+e)]

P(E)VI.nb     3

Printed by Wolfram Mathematica Student Edition



Show LogLogPlot fit5[e], {e, 10^(-3), 1.009 * 10^(2)}, PlotLegends "Expressions" ,

ListLogLogPlot merged , PlotRange All

0.010 0.100 1 10 100

10-6

10-4

0.01

1

100

h6[e_] := ((c1 * (e^c2)) + (c3 * (e^4)) + (c4 * e)) Tanh[10^4 * (e - 1)] +

(c5 * e + c6 * (e^(-2))) + (c7 * e) Tanh[10^4 * (e - 0.07)]

fit6 = NonlinearModelFit merged, h6[e],

{c1, c2, c3, c4, c5, c6, c7}, e, MaxIterations 10 000

FittedModel
-
6.78315×10-12

e2
+0.0251497e+

0.00202447e+0.0165759e 19 +1.30073×10-6 e4 Tanh[ 1 ] +0.0102489eTanh[10000 (-0.07+e)]

fit6[x]

-
6.78315 × 10-12

x
2

+ 0.0251497 x +

0.00202447 x + 0.0165759 x1.9842 + 1.30073 × 10
-6
x
4

Tanh[10 000 (-1 + x)] +

0.0102489 x Tanh[10 000 (-0.07 + x)]

Show LogLogPlot fit6[e], {e, 10^(-3), 1.009 * 10^(2)}, PlotLegends "Expressions" ,

ListLogLogPlot merged , PlotRange All

0.001 0.010 0.100 1 10 100

0.001

1

h9[e_] := ((c1 * (e^c2)) + (c3 * (e^4)) + (c4 * e)) Tanh[10^4 * (e - 1)] +

(c7 * e) + (c8 * e^(0.5)) Tanh[10^4 * (e - 0.07)]
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fit9 = NonlinearModelFit merged, h9[e],

{c1, c2, c3, c4, c7, c8}, e, MaxIterations 10 000

FittedModel 0.213529e+ -0.0338544e+0.00645463e2.18902 +1.17414×10-6 e4 Tanh[10000 (-1+e)]-0.185036e0.5 Tanh[1000

Show LogLogPlot fit9[e], {e, 10^(-3), 1.009 * 10^(2)}, PlotLegends "Expressions" ,

ListLogLogPlot merged , PlotRange All

0.001 0.010 0.100 1 10 100

0.001

1

(*this seems a good one, let's try to smooth the transitions*)

h7[e_] := (2 / (1 + Exp[-1 (e - 20)])) - 1

h7[x]

-1 +
2

1 + 20-x

Plot h7[e], Tanh[10^4 * (e - 10)], Tanh[0.8 * (e - 10)] ,

{e, 10^(-3), 1 * 10^2}, PlotRange All

20 40 60 80 100

-1.0

-0.5

0.5

1.0

h8[e_] := (((c1 * (e^c2)) + (c3 * (e^4)) + (c4 * e)) * (2 / (1 + Exp[-1 * (e - 1)]) - 1)) +

(c6 * e + c7 * (e^(-2))) + (c8 * e) Tanh[10^4 * (e - 0.07)]
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fit8 = NonlinearModelFit merged, h8[e],

{c1, c2, c3, c4, c5, c6, c7, c8}, e, MaxIterations 10 000

NonlinearModelFit::sszero :

The step size in the search has become less than the tolerance prescribed by the PrecisionGoal

option, but the gradient is larger than the tolerance specified by the AccuracyGoal option.

There is a possibility that the method has stalled at a point that is not a local minimum.

FittedModel

-
1.10317×10-9

e2
-0.252736e+ -370980. e0.999999 +370979. e+1.93956×10-6 e4 ( 1 )+0.532744eTanh[10000 (-0.07+e)]

Show LogLogPlot fit8[e], {e, 10^(-3), 1.009 * 10^(2)}, PlotLegends "Expressions" ,

ListLogLogPlot merged , PlotRange All

0.001 0.010 0.100 1 10 100

10-6

10-4

0.01

1

100

test[e_] := -
6.783153306196406`*^-12

e2
+ 0.02514966036755684` e +

0.002024471323836417` e + 0.016575874026457587` (e^(1.9842)) +

1.3007294150974632`*^-6 e4 * ((2 / (1 + Exp[-1 (e - 1)])) - 1) +

0.010248900088404221` e * ((2 / (1 + Exp[-1 (e - 0.07)])) - 1)

Show LogLogPlot test[e], {e, 10^(-3), 1.009 * 10^(2)}, PlotLegends "Expressions" ,

ListLogLogPlot merged , PlotRange All

0.001 0.010 0.100 1 10 100

10-4

0.01

1

100

(*let's try one more time to fit this*)
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ClearAll a, conf1, confmax, a01, f01, g, pym, elarge, steplarge, peff, diff, diffe, cn,

er1, ec, k, Nym, C1, C2, confmax2, a, e, f2, g2, C12, peff2, diff2, diffe2, g3, C13,

peff3, diff3, diffe3, g4, C14, peff4, diff4, diffe4, g5, C15, peff5, diff5, diffe5,

g6, C16, peff6, diff6, diffe6, g7, C17, peff7, diff7, diffe7, g8, C18, peff8,

diff8, diffe8, g9, C19, peff9, diff9, diffe9, s, s2, s3, s4, s5, s6, s7, s8, s9, N1,

N2, N3, N4, N5, N6, N7, N8, N9, Amp, LAmp, merged, ColorList, bList, aux6, aux7

k = 0; (*dimensionless*)

conf1 = 10^(-20);(*MeV^(-1)*)

a01 = (10^(-58))^(2 / 3); (*dimensionless*)

f01 = (2 / 3) * 10^(20); (*MeV*)

g[e_] := C1 * Exp[-C2 * (e / ec - 1)^2 / 2]

elarge = 650 * ec;

steplarge[e1_] := 1 + Tanh[e1 / ec] 2

pym[e_] := -0.0701780768934142` + 0.012829768279227724`
e

ec

2.10542207822587`

+

0.0016223939423977366`
e

ec

2.2`

-
1.1874523382499435`*^-6 e4

ec4
+

0.018853186484192017` e

ec
Tanh 0.12809510086441414` 0.45` -

e

ec
-

0.10893510953199945` Tanh 1.0802023944400028` -0.71` +
e

ec
+

1.6557877362105378` + 0.3864140819569308`
e

ec

0.3`

Tanh 0.05613355687245168` -0.01` +
e

ec
*

steplarge elarge - e + (e / 3) * steplarge e - elarge

peff e_, f_ := pym[e] - 3 * g[e] * f * Sqrt 2 * cn * e f^2 + k * (e^(3 / 4)) + e / 3

diff e_, f_ := e - 3 * peff e, f * f^2 + k (2 * e) - k - f^2

diffe e_, f_ := -3 * e + peff e, f * f

cn = 4 N Pi * (0.000670861 * 10^(-41)) 3 ; (*MeV^(-2)*)

er1 = 10^(91);

confmax = 10^15;

(*set of parameters we change*)

ec = er1 * 10^(-4);

C2 = 100;

C1 = 10^(5);

confmax2 = 2.9 * 10^(-19);
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Plot pym e6 conf2 , peff6 e6 conf2 , f26 conf2 ,

e6 conf2 3, aux6 e6 conf2 , f26 conf2 ,

conf2, conf1, confmax2 , PlotLegends "Expressions",

AxesLabel ConfTime, pym , AxesStyle Black, ImageSize Large

1.×10-19 1.5×10-19 2.×10-19 2.5×10-19
ConfTime

-1×1087

1×1087

2×1087

3×1087

4×1087

5×1087

pym

pym(e6

peff6(

e6(conf2

3

aux6(

LogPlot peff6 e6 conf2 , f26 conf2 , -aux6 e6 conf2 , f26 conf2 ,

conf2, conf1, confmax2 , PlotLegends "Expressions",

AxesLabel ConfTime, pym , AxesStyle Black, ImageSize Large

5.×10-20 1.×10-19 1.5×10-19 2.×10-19 2.5×10-19
ConfTime

10-140

10-90

10-40

1010

1060

10110

pym

peff6(

-aux6
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LogPlot peff7 e7 conf2 , f27 conf2 , conf2, conf1, confmax2 ,

PlotLegends "Expressions", AxesLabel ConfTime, pym ,

AxesStyle Black, ImageSize Large, PlotRange All

5.×10-20 1.×10-19 1.5×10-19 2.×10-19 2.5×10-19
ConfTime

1084

1087

1090

pym

N7 = Log a7[1.1 * 10^(4)] a7 conf1

58.3699

Nextra = Log a7[2 * 10^(-19)] a7 conf1

2.38074

(*the peak is not the responsible for inflation*)

aux7 e7_, f27_ := -3 * g7[e7] * f27 * Sqrt 2 * cn * e7 f27^2 + k * (e7^(3 / 4));
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LogPlot pym e7 conf2 , peff7 e7 conf2 , f27 conf2 , e7 conf2 3 ,

conf2, conf1, confmax2 , PlotLegends "Expressions",

AxesLabel ConfTime, pym , AxesStyle Black, ImageSize Large, PlotRange All

5.×10-20 1.×10-19 1.5×10-19 2.×10-19 2.5×10-19
ConfTime

1010

1030

1050

1070

1090

pym

pym(e7

peff7(

e7(conf2

3

LogPlot -peff7 e7 conf2 , f27 conf2 , -aux7 e7 conf2 , f27 conf2 ,

conf2, conf1, confmax2 , PlotLegends "Expressions",

AxesLabel ConfTime, pym , AxesStyle Black, ImageSize Large, PlotRange All

5.×10-20 1.×10-19 1.5×10-19 2.×10-19 2.5×10-19
ConfTime

10-300

10-200

10-100

1

10100

pym

-peff7

-aux7
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bList = {#} & /@ merged

{{{5, 8.6966}}, {{4, 7.42975}}, {{3, 7.5012}}, {{2, 8.33762}}, {{1, 10.0623}},

{{0, 7.64595}}, {{-1, 58.3699}}, {{-2, 59.2532}}, {{-3, 58.8067}}}

ListPlot bList, AxesLabel Log Ampl , NEfolds ,

AxesStyle Black, PlotStyle ColorList, ImageSize Large

-2 2 4
log(Ampl)

10

20

30

40

50

60

NEfolds

Export "N1.pdf", %

N1.pdf

(*contar tempo q fica negativa a pressao e esperar power law=

linha reta num gráfico loglog*)

(*variar amplitude ao redor do ponto A=10^3*)

(*endireitar casos k=1 e k=-1, dimensões e condições iniciais*)
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(*graph w multiple lines changing B*)

ClearAll a, conf1, confmax, a01, f01, g, pym, e, elarge, steplarge,

peff, diff, diffe, cn, er1, ec, k, confmax2, Nym, C1, C2, merged, s,

N1, f2, g2, peff2, diff2, diffe2, g3, peff3, diff3, diffe3, g4, peff4,

diff4, diffe4, g5, peff5, diff5, diffe5, g6, peff6, diff6, diffe6, g7,

peff7, diff7, diffe7, g8, peff8, diff8, diffe8, g9, peff9, diff9, diffe9

k = 0; (*dimensionless*)

conf1 = 10^(-20);(*MeV^(-1)*)

a01 = (10^(-58))^(2 / 3); (*dimensionless*)

f01 = (2 / 3) * 10^(20); (*MeV*)

g[e_] := C1 * Exp[-C2 * (e / ec - 1)^2 / 2]

elarge = 650 * ec;

steplarge[e1_] := 1 + Tanh[e1 / ec] 2

pym[e_] := -0.0701780768934142` + 0.012829768279227724`
e

ec

2.10542207822587`

+

0.0016223939423977366`
e

ec

2.2`

-
1.1874523382499435`*^-6 e4

ec4
+

0.018853186484192017` e

ec
Tanh 0.12809510086441414` 0.45` -

e

ec
-

0.10893510953199945` Tanh 1.0802023944400028` -0.71` +
e

ec
+

1.6557877362105378` + 0.3864140819569308`
e

ec

0.3`

Tanh 0.05613355687245168` -0.01` +
e

ec
*

steplarge elarge - e + (e / 3) * steplarge e - elarge

peff e_, f_ := pym[e] - 3 * g[e] * f * Sqrt 2 * cn * e f^2 + k * (e^(3 / 4)) + e / 3

diff e_, f_ := e - 3 * peff e, f * f^2 + k (2 * e) - k - f^2

diffe e_, f_ := -3 * e + peff e, f * f

cn = 4 N Pi * (0.000670861 * 10^(-41)) 3 ; (*MeV^(-2)*)

er1 = 10^(91);

confmax = 10^15;

(*set of parameters we change*)

ec = er1 * 10^(-4);

C1 = 10^(2);

confmax2 = 2.9 * 10^(-19);

C2 = 10^(5);
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Plot pym e conf2 , Log peff e conf2 , f2 conf2 , Log e conf2 3 ,

conf2, conf1, 1.1 * 10^4 , PlotLegends "Expressions",

AxesLabel ConfTime, pym , AxesStyle Black, ImageSize Large, PlotRange All

2000 4000 6000 8000 10 000
ConfTime

-20

20

40

60

pym

pym(e

log(peff

log e(

g2[e_] := C1 * Exp[-C22 * (e / ec - 1)^2 / 2]

peff2 e2_, f22_ :=

pym[e2] - 3 * g2[e2] * f22 * Sqrt 2 * cn * e2 f22^2 + k * (e2^(3 / 4)) + e2 / 3

diff2 e2_, f22_ := e2 - 3 * peff2 e2, f22 * f22^2 + k (2 * e2) - k - f22^2

diffe2 e2_, f22_ := -3 * e2 + peff2 e2, f22 * f22

C22 = 10^4;

ClearAll a2, e2, f22, s2
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Plot pym e2 conf2 , peff2 e2 conf2 , f22 conf2 , e2 conf2 3 ,

conf2, conf1, 3.2 * 10^(-19) , PlotLegends "Expressions",

AxesLabel ConfTime, pym , AxesStyle Black, ImageSize Large

1.×10-19 1.5×10-19 2.×10-19 2.5×10-19 3.×10-19
ConfTime

2×1087

4×1087

6×1087

8×1087

pym

pym(e2

peff2(

e2(conf2

3

peff3 e3_, f23_ :=

pym[e3] - 3 * g3[e3] * f23 * Sqrt 2 * cn * e3 f23^2 + k * (e3^(3 / 4)) + e3 / 3

diff3 e3_, f23_ := e3 - 3 * peff3 e3, f23 * f23^2 + k (2 * e3) - k - f23^2

diffe3 e3_, f23_ := -3 * e3 + peff3 e3, f23 * f23

g3[e_] := C1 * Exp[-C23 * (e / ec - 1)^2 / 2]

C23 = 10^3;

ClearAll a3, e3, f23, s3
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Plot pym e3 conf2 , peff3 e3 conf2 , f23 conf2 , e3 conf2 3 ,

conf2, conf1, 3.2 * 10^(-19) , PlotLegends "Expressions",

AxesLabel ConfTime, pym , AxesStyle Black, ImageSize Large

1.×10-19 1.5×10-19 2.×10-19 2.5×10-19 3.×10-19
ConfTime

2×1087

4×1087

6×1087

8×1087

1×1088

pym

pym(e3

peff3(

e3(conf2

3

peff4 e4_, f24_ :=

pym[e4] - 3 * g4[e4] * f24 * Sqrt 2 * cn * e4 f24^2 + k * (e4^(3 / 4)) + e4 / 3

diff4 e4_, f24_ := e4 - 3 * peff4 e4, f24 * f24^2 + k (2 * e4) - k - f24^2

diffe4 e4_, f24_ := -3 * e4 + peff4 e4, f24 * f24

g4[e_] := C1 * Exp[-C24 * (e / ec - 1)^2 / 2]

C24 = 10^2;

ClearAll a4, e4, f24, s4
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Plot peff9 e9 conf2 , f29 conf2 ,

pym e9 conf2 , e9 conf2 3, aux9 e9 conf2 , f29 conf2 ,

conf2, conf1, 9.28 * 10^(-20) , PlotLegends "Expressions",

AxesLabel ConfTime, PEff , AxesStyle Black, ImageSize Large

4.×10-20 6.×10-20 8.×10-20
ConfTime

-1×1089

1×1089

2×1089

3×1089

4×1089

PEff

peff9(

pym(e9

e9(conf2

3

aux9(

LogPlot -peff9 e9 conf2 , f29 conf2 , -aux9 e9 conf2 , f29 conf2 ,

conf2, conf1, 9.28 * 10^(-20) , PlotLegends "Expressions",

AxesLabel ConfTime, PEff , AxesStyle Black, ImageSize Large

2.×10-20 4.×10-20 6.×10-20 8.×10-20
ConfTime

1072

1077

1082

1087

PEff

-peff9

-aux9
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N8 = Log a8[1.2 * 10^(-19)] a8 conf1

3.46093

N9 = Log a9[9.2 * 10^(-20)] a9 conf1

5.07908

Nym = {N1, N2, N3, N4, N5, N6, N7, N8, N9};

Amp = {C2, C22, C23, C24, C25, C26, C27, C28, C29};

LAmp = Log10[Amp];

Do

Sow

Flatten ReplacePart a, b , 1 Take[LAmp, {u}], 2 Take[Nym, {u}]

,

u, 1, Length[Nym], 1

// Reap // Last;

merged = %[[1]];

ListPlot merged, AxesLabel Log Ampl , NEfolds ,

AxesStyle Black, ImageSize Large, PlotRange All

-2 2 4
log(Ampl)

10

20

30

40

50

NEfolds

(*but no graceful exit*)

g10[e_] := C1 * Exp[-C210 * (e / ec - 1)^2 / 2]
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Plot pym e10 conf2 , peff10 e10 conf2 , f210 conf2 , e10 conf2 3 ,

conf2, conf1, 3.2 * 10^(-5) , PlotLegends "Expressions",

AxesLabel ConfTime, pym , AxesStyle Black, ImageSize Large

5.×10-6 0.00001 0.000015 0.00002 0.000025 0.00003
ConfTime

2.0×1031

4.0×1031

6.0×1031

8.0×1031

1.0×1032

1.2×1032

1.4×1032

pym

pym(e10

peff10

e10(conf2

3
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