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Resumo

Nés mostramos que diversos ingredientes cruciais para o Modelo Padrao Cosmol6gico, como
Inflacdo e Matéria Escura, podem ter uma origem comum em uma teoria de Yang-Mills de-
sacoplada do Modelo Padrao das Particulas Elementares. Vérios aspectos da teoria de Yang-Mills
em temperatura finita, em particular o comportamento ndo-trivial da viscosidade volumétrica
com a temperatura, t€m o potencial de fornecer um candidato para a matéria escura, na forma de

particulas de glueballs, e de gerar Inflacio com uma transi¢ao de deconfinamento.

Nessa dissertacao, nds resolvemos as equagdes de Friedmann utilizando a equacao de estado de
Yang-Mills SU(N,) e o comportamento conjecturado da viscosidade volumétrica, com parimetro
de quebra de simetria conforme e nimero de cores genéricos. Nos calculamos o nimero de
efoldings produzido nos cendrios investigados e checamos a existéncia de uma transi¢do suave

no fim do periodo Inflacionério. Um caso vidvel é detalhado.

Palavras-chave: Teoria de Yang-Mills, Universo inflacionério, Transicao de deconfinamento.



Abstract

We show that several ingredients crucial to the Standard Cosmological Model, such as Inflation
and Dark Matter, could have a common origin in a Yang-Mills theory decoupled from the
Standard Model of Particle Physics. Several aspects of finite temperature Yang-Mills theory,
in particular the non-trivial behavior of bulk viscosity with temperature, have the potential to
provide a candidate for dark matter, in the form of glueball particles, and to generate Inflation

with a deconfinement transition.

In this thesis, we solve the Friedmann equations using the SU(N,) Yang-Mills equation of
state and conjectured bulk viscosity behaviour, with generic conformal symmetry breaking
parameter and number of colors. We calculate the number of efoldings generated in the scenarios
investigated and we check the existence of a smooth transition at the end of the Inflationary

period. A viable case is detailed.

Keywords: Yang-Mills theorie, Inflationary universe, Deconfinement transition.
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Introduction

The Standard Model of Particle Physics describes all elementary particles and
their interactions through the Strong, Weak and Electromagnetic forces. It has been extremely
successful in explaining phenomena from the microscopical to the galatic scales, from the Early
times, few seconds after the Big Bang, to nowadays. However, the recent discoveries of dark
matter and dark energy, unpredicted and unexplained by the Standard Model, have led to the

suspicion that a more fundamental theory of Particle Physics is yet to be discovered.

Many theories beyond the Standard Model have been proposed aiming to complete
our picture of the understanding of nature. Although many of these theories dedicate themselves
to the proposal of candidates for dark matter and the unification of the gravitation with the
remaining forces, few theories attempt to address another important issue of the Standard
Model: the elusive nature of the Inflaton. The Inflaton is a scalar field assumed to permeate the
whole Universe and be responsible for the Inflationary period in the Early Universe. Later, its
oscillations accounted for the production of all barionic matter in the Universe, in a process known
as reheating. Despite its predictions having been indirectly confirmed through observational data,
many open questions remain for this model, for example, the exact format of this field or how to

falsify this theory.

In this work, we present an extension to the Standard Model of Particle Physics that
explains the Inflationary period of the Early Universe without recurring to a scalar field. We
hypothesize the existence of a Yang-Mills SU(V,) fluid, non-coupled to the standard matter,
whose deconfinement transition at a critical temperature 7. generates this exponential expansion
of the scale factor of the Universe. Yang-Mills theories are generalizations of the mathematical
formulation of the Quantum Chromodynamics, or QCD, the theory of the strong forces. This
theory presents several distinguished proprieties, such as color confinement and asymptotic
freedom. In particular, at the deconfinement transition, a plasma of free elementary particles,
such as quarks and gluons, transforms into a hadronic gas of composed particles, such as protons
and neutrons. It is our hypothesis that a transition like this could generate the Inflationary period

of the universe and the hadronic SU(N,) particles formed could be the dark matter particles.

In chapter 1, we introduce some useful results from General Relativity to derive the
Friedmann equations, that determine the evolution of the universe with time. We study their
formulation with perfect and imperfect fluids and we detail the Inflationary model, its justification
and current formulation. In chapter 2, we review Yang-Mills theories starting from QCD and we
introduce techniques such as lattice QCD and the large-N limit to study their non-perturbative
limit. This is the basis for our inflationary model, introduced in chapter 3. In this chapter we

motivate our model, describe it and find the new equations of state for the primordial plasma of
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the Early Universe. We also solve the Friedmann equations and calculate the number of efolds
for some configurations of the free parameters of the model. A viable scenario for the description

of our universe is found and discussed.
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1 Understanding Friedmann’s equa-
tions

In this chapter, we derive Friedmann’s equations from Einstein’s equations and a
specific metric, one that describes an isotropic and homogeneous universe. We start with a generic
energy-momentum tensor and then analyze the specific cases where this tensor represents an
ideal fluid (section 1.1) and a non-ideal fluid (section 1.2). We interpret how these scenarios differ
in determining the evolution of the universe with time and introduce the principal features of the
AC' DM model, the Standard Cosmological Model, specially its inflationary period. We assume
the reader is familiarized with Lorentzian Geometry, General Relativity and Fluid Mechanics.

We start by introducing some useful quantities. Given that:

ds® = g, datdx” and ¢"g,, = S, (1.1)

A

we have the Christoffel symbols 1",

determined from the metric g, by:

1
F/);u = 59)\0(6#9110 + al/gau - aag;w) (1.2)

They help us to find the Ricci tensor R, from the connection R, (the Riemann

tensor). The Ricci tensor, in turn, determines the Ricci scalar R:

Rgpl/ = aﬂrga - aVPZo‘ + FZ)\F?)O_ - Fllj)\Ff\Laﬂ
R = R &
R= ¢"R,

Having all these quantities for a specific metric in a determined set of coordinates,

one can solve Einstein’s equations:

1
R, — §ng, + Ag = 87GT,,, (1.4)

where A represents a cosmological constant and 7),,, stands for the energy-momentum tensor.

Here G is the gravitational constant and we’re using units such that b = ¢ = ky = 1.
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The following metric in spherical coordinates was proposed by Friedmann and
Lemaitre independently and then further studied by Robertson and Walker. Its model is constantly
referred to by the FRLW metric:

dr?
1 —kr?

ds® = —dt* + a*(t) + 17 (0 + sin® 0d¢?) (1.5)

This represents a space-time where the time coordinate is ¢ and the space coordinates
are r, 0 and ¢. The term a(t), also called the scale factor, determines how these three last
coordinates change with time. Their evolution is completely specified by this quantity and the

curvature of the manifold £, therefore, this space-time is spatially isotropic and homogeneous.

This structure reflects our universe’s and among several experiments that investigated
this, we highlight the Planck telescope, which measured CMB (cosmic microwave background)
radiation from 2009 to 2013. It was able to determine the degree of isotropy and homogeneity
of the early universe with accuracy of 0.1 percent as well as its flatness, with accuracy of 0.5

percent [1].

Because this space-time evolves with time, it does not represent a maximally sym-
metric universe, but one that can be decomposed in 3D space-like slices, each one maximally
symmetric. This immensely simplifies the calculations of the quantities defined above. To find

them, we first identify the metric tensor.

From equation (1.1) and remembering Einstein’s sum convention (repeated indexes

on top and bottom of a expression are to be summed), we identify:

-1 0 0 0
2
a
0 0
0 0 a’r? 0
0 0 0 a*r’sin’®d

Then, we find, from equation (1.2), all non-zero Christoffel symbols. Due to symme-

try properties (such as I'j, = I'75), they can all be found from this list:

o aa s 1
M =7 Lo =7
1Y, = aar’ 2, = —sinfcosf
9 = aar®sin® 0 I3, = cotd
kr a
Fh:l——kr? F(1)1=1;32=F33=5

[y = —r(1—kr?)sin®6
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We then find the Ricci tensor:

e
_ 0 0 0
a .. .
ad + 2a* + 2k 0 0
R = 1 — kr?
0 r?(ad + 2a° + 2k) 0
0 r?(ad + 2a° + 2k) sin 0

As well as the Ricci scalar, both from the equations (1.3) :

a >  k
R = QOOROO + gan + 922322 + 933R33 =6 (5 + + )

a? a2

Plugging this in the expression of the Einstein’s tensor,

1
G}u/ = Ruy - §Rguua (16)
-\ 2

k
3 <9> +3= 0 0 0

a a

—2aa — a* — k
G = 0 1 — kr? 0 0
r?(—2ad — a* — k) 0
0 r?sin? 0(—2ad — a* — k)

Because we want this metric to solve Einstein’s equations (1.4) and assuming, for
now, that there’s no cosmological constant, we find the energy-momentum tensor in terms of the

Einstein’s tensor:

G
T, = =2
K G

Thus, for the metric (1.5), we have found an expression for the energy-momentum

(1.7)

tensor without special considerations for its format. There’s one other important generic relation
we can find for this tensor. The energy-momentum tensor describes the energy content of the
universe, therefore, it’s reasonable to ask for its conservation. As we are in a Lorentzian manifold,
we write this requirement as:

v, " =0, (1.8)

where V, stands for a covariant derivative. Thus:

VT = 0,7 + T T + T, T =0 (1.9)
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The equality V,G" = 0 is equivalent to the above for a universe without cosmolog-
ical constant. It is a rewritten Bianchi identity (VAR s + V,Roauw + Ve Ry = 0). Because
this identity describes intrinsic symmetries of the Riemann tensor, we know it is already satisfied
by the metric. However, it’s interesting to explicitly state it and contrast it against this equation

for a Euclidean space-time: 0,7"" = 0.

Later, we will show how this expression (1.9) can be rewritten in terms of the

components of the energy-momentum tensor. This will clarify its interpretation.

1.1 Perfect fluid energy-momentum tensor

The homogeneity and isotropy of the FLRW metric require the energy-momentum
tensor to be form-invariant with respect to coordinate transformations that leave the metric
form-invariant [2], equation (1.10). Therefore, T must transform as a three-scalar, 7% as a
three-vector and 7% as a three-tensor, where we used the indexes i and j to represent spatial

coordinates, thus running from 1 to 3.

Ty) = T,,(y) (1.10)

This implies that the energy-momentum tensor must have the form of:

Too = aft) T =0 Ty =g;; B(t) (1.11)

where «(t) and ((t) are unknown functions that must depend only on ¢ and g?j represents the

spatial part of the metric tensor. This tensor can be conveniently written as:

T = (a+ B)UU, + By, (1.12)

with U® = 1 and U’ = 0. If we take o = p = energy density and 3 = p = pressure, we find that
this tensor takes the form of a perfect fluid: 7, = (p + p)U,U, + pg,.,. Therefore, the symmetry
properties of the FLRW metric only allow energy-momentum tensors that can be written like
this.

Regarding the vector U* = (1,0, 0,0), one can interpret it as follows: an isotropic
and homogeneous metric in a certain reference frame gives rise to a tensor in the form of an
isotropic and homogeneous fluid in a certain reference frame, thus, the reference frame of the
metric and the fluid must be the same. This information is encoded in the vector U", as it

represents the fluid at rest in relation to those coordinates.
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These specific coordinates are called comoving coordinates and the vector U* is the

velocity four-vector. It is normalized such that:

9, UMUY = —1 (1.13)

Replacing the energy-momentum tensor of a perfect fluid in equation (1.7) and
having (1), one can find relations between the scale factor a(t) and p(t), p(t). These relations are

called the Friedmann equations:

([ /a\?  k
3 <—) +35 = 87Gp(t)

a
—2aa — a? — k a’
R U (1.14)

r*(—2ad — a* — k) = 87Gp(t)a’r?
\7’2 sin? 0(—2ad — a®> — k) = 87Gp(t)a®r?® sin® 0

They can be resumed to two equations, more commonly written as:

3 a?’

() =

(1.15)
G

U "0)

From those equations, one can find the evolution of the scale factor a(t) with time,
depending only on the energy density p(t), pressure p(¢) and curvature k. It’s possible to choose
a normalization where a(t) is dimensionless or where it has dimension of length. This happens

because the metric (1.5) is invariant to transformations as:

a— M la
r— Ar (1.16)
E— M2k

In this work, we chose to use a dimensionless scale factor, thus, r has dimensions of

distance and k has dimensions of (length) 2.

Plugging the perfect fluid energy-momentum tensor in equation (1.9), we find, for
v = 0, the conservation of energy equation (1.17). We keep from writing this expression for
v = (1,2, 3), which represents the conservation of momentum equations, because those explicit

equations are not very clarifying.

8" + DY, 7 + T, T = 0 = 4+ 3% (p(t) + p(t)) = 0 (1.17)
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In most studied cases, it’s possible to write p(t) = wp(t), where w is a function
that doesn’t depend on time. This is called the equation of state. Note that equations (1.15
and 1.17) are not independent, they’re related by Bianchi’s identity. Therefore, to solve for
a specific scenario (a specific w), we don’t need all three equations, as they get redundant.
Specially for simple cases, it suffices to solve the first equation in (1.15), also known as the
first Friedmann equation. Some examples will be given later in section (1.3), where we solve

Friedmann equations for matter, radiation and vacuum dominated scenarios.

1.2 Imperfect fluid energy-momentum tensor

Different from perfect fluids, imperfect fluids exhibit pressure, density and/or velocity
varying considerably in distances of the order of the mean free path or times of the order of the
mean free time [2]. In other words, they represent fluids whose constituents interact with each
other. Thus, the easiest way to write an energy-momentum tensor for this configuration is to add

a correction in the perfect fluid energy-momentum tensor, to account for the interactions:

T" = pg"” + (p+ p)UHU” + ATH (1.18)

We can model the internal structure of those fluids as blocks of particles moving in a
certain direction with a specific velocity. Therefore, we expect that the correction will quantify
the possibility of particles moving between blocks and of their kinetic energy being dissipated
in this process. It can be shown [2] that the most generic way of writing this correction in a

Lorentzian manifold is:

,
ATH = —nH" H""W,, — x (H*U” + H"U") Q, — CH””% (1.19)
where
HW = ¢ + UUY,
L, our our 2, 0U"
WH = + - 59" (1.20)

or, Oz, 37 0x7’

oT our
ne T
© ox,, - ox?

U’Y

for x,n,¢ = 0 and T is the temperature per particle. x is called the coefficient of heat conduction;
7 is the shear viscosity coefficient, accounting for the fluid’s resistance to adjacent parallel layers

of fluid at different speeds; and ( is the bulk viscosity coefficient, expressing the resistance of the
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fluid to be compressed or expanded evenly. Following the same logic, W*" is called the shear

tensor and Q" is the heat-flow vector. /" is a projector tensor on the hyperplane normal to U,,.

For a FLRW metric, two of the three terms in the correction are annulled. Also,

ou”
because in this metric PR 33, we can rewrite equation (1.19) as:
x a
ou” '
ATH = —¢H" S = 3¢ (¢ + UrU) L (1.21)
oxY a

Therefore, the complete energy-momentum tensor is:

™" = pg" + (p + p)U*U" —BCS (g™ + U*UY) = (p - 34%) 9"+ (p - 34“% + p) uru”
(1.22)

Note that it has the same form of the perfect fluid energy-momentum tensor. In

fact, we can rewrite it as that tensor if we replace the original pressure for an effective pressure

p* = (p—3Cg>-

We proved in the previous section (1.2) that only tensors that can be written as (1.12)
originate Friedmann equations. Thus, these equations can only be solved for the perfect fluid

energy-momentum tensor and the imperfect fluid with bulk viscosity energy-momentum tensor.

All expressions we found previously, such as equations (1.15 and 1.17), remain valid
if instead of writing pressure p, we use effective pressure p*. So, for example, equation (1.17)

becomes:

0T + DT + 10,17 = 0 — 4 3= (p(t) + (p(t) =3 g)) =0 (1.23)

-\ 2
. . . a .
Using the first Friedmann equation, we can replace the term <—) and rewrite
a

equation (1.23) as:

. . .
p+3p (3 - 87rGC> +3p2 4 9¢= =0 (1.24)
a a a

This poses a restriction on the a(¢) we can have when ¢ # 0. It also highlights that,
for the limit where ¢ = 0, a(t) should behave as if it’s immersed in a perfect fluid, because we
recover equation (1.17). Finally, one should note that, as we are dealing with imperfect fluids,
equation (1.23) doesn’t represent the conservation of energy equation anymore. When ¢ # 0, we
should expect dissipation of energy generated by viscosity, therefore, equation (1.23) is only one
of the four expressions of Bianchi’s identity, a restriction imposed on the metric tensor due to

symmetries of the Riemann tensor.
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1.3 Possible solutions for Friedmann equations

Let’s now attempt to solve equations (1.15) assuming the universe is filled with a
perfect fluid and that we can write its equation of state: p(¢) = wp(t). Thus, we have the set of

equations:

(2) - o)k

3 a?’
O 0+ su) (1.25)

0 = p+ 3p(t)g(1 + w)

Integrating in time the final equation of this set, we find that:

0\ 30w 0\ 30w
p(t) = pe (—) = p(t) = wp. (—) (1.26)

Qe Qe

where p, is a constant with dimension of energy density and a. is a dimensionless constant. Note
that since we chose h = ¢ = k;, = 1, p(t) and p(t) have the same units. With the information in
(1.26), we only need a value for & to find a(t), the evolution of the scale factor with time. To
simplify its calculation, let’s put k£ = 0, an experimentally confirmed value, as discussed in (1.1).
Then, by solving the first equation of the set (1.25), we find:

w 3/2(1+w) 1/2 1/2
q3/2(1+w) Qe _ 87TGp 30+w) / ; 87TGp 3(1+w) / " (1.27)
S1+w) 31+w) \ 37 3 )
where a., and ?. are integration constants. Choosing ¢, = 0,
8 G ]_/2 3 3(1+w)
alt) = ( Wg—pcai”*”)) S (L w)t+al 2 (1.28)

Thus, we can see that for fluids with this simple equation of state it’s relatively easy
to find analytic solutions for the Friedmann equations. Before exploring some fluids that satisfy

this condition, let’s define a very useful quantity: the number of efoldings, /V. It is given by:
tf a
N = f —dt (1.29)
ti a

It quantifies how much the scale factor varies for a given time interval. According

to inflationary theories, the size of the observable universe nowadays pose an inferior limit on
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this number. We will discuss this in section (1.4), for now let’s find its generic expression for a

perfect fluid and its equation of state. Replacing equation (1.28) in (1.29), we find:

(143w)

2 _Utow) 2
; At 30+w) 3(T+w)
a t (I+w)
a _ 30+w) ; — N = (_f) (1.30)
a $30+w) t;

Note that we put a., = 0 to make the calculation easy, which represents a normaliza-
tion such that a(t = 0) = 0. If necessary, this can be changed to more convenient values without

modifying the power of ¢ in the expression above.

Matter dominated universe

In a matter dominated universe, the fluid is collisionless and the particles are non-

relativistic. Thus, p(t) = 0 = w = 0. We have, then:

12, 13
(%pcag) §t] | (1.31)

" 2
3

eN= (L

(tz‘>

The energy density p(t) falls as a~, which suggests that the energy decreases as the

number of particles is being diluted with the expansion of the universe.

Radiation dominated universe

A fluid composed mainly of radiation is formed by relativistic particles, such as
photons or anything massive moving at v ~ c. Following the derivation of [3], an isotropic gas

of those particles will behave as a perfect fluid and it will also obey:

1
T = FIFY = 29" P Py (1.32)

where F*" represents the electromagnetic field strength. But the trace of this tensor is null,

T} = 0, while the trace of the perfect fluid energy-momentum tensor is 7 = —p + 3p. Thus,
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p = p/3 = w = 1/3. Therefore, we have:

12 7z
(% pcaﬁ) Qt] | (1.33)

" 1
2

N (L
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We are interested in these two scenarios because they provide scale factors that grow

with time, thus, they are mathematically fit to describe the early universe, which is expected to
expand. Although both of these scenarios could generate an expansion, it is believed that the
universe after the Big Bang could not be matter dominated because of its high temperature and
density. Besides, for reasons that will be discussed in section (1.4), an exponential expansion is

expected, not a power law expansion. So, we present one other scenario that provide us that.

Vacuum dominated universe

In a vacuum dominated universe, we assume there is an energy that fills the empty
space. Because this energy is expected to be isotropic, then the energy-momentum tensor
corresponding to it must be proportional to the metric. The simplest tensor we can build in this
condition is T"" = —pg"”.

Comparing to the perfect fluid energy-momentum tensor, 7" = pg"” + (p+p)UHU",

we must have that p(t) = —p(t) = w = —1. Therefore, we will have:
p(t) = pe
8nC
a(t) = aee (Vo 57) (1.34)
N = PC—SWG(U —t;) == e( Vo5t 1)
3

Note that, for a perfect fluid with equation of state, this is the only case where an
exponential expansion is possible. This inspired us to look for negative pressure in non-perfect

fluids and check if that is a sufficient condition for this kind of evolution.

1.4 The inflationary model

The current accepted model to describe the evolution of the universe is called the
Standard Cosmological Model or AC'D M. Based on General Relativity and the Standard Model
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of Particle Physics, it describes the synthesis of light elements, the formation of atoms and
nuclei and the origin of CMB (cosmic microwave background) radiation, among other things. It
assumes the universe was originated at the Big Bang, an event where the space-time structure
was created. In this work, we’re interested in the period right after the Big Bang called the

“inflationary period”.

Redshift measuring detected that the majority of the galaxies are receding from us,
an indication that the universe is expanding. This reinforced the belief that the young universe
was smaller than today’s and that it began expanding right after the Big Bang. This allowed for
several different scenarios, as we showed in section (1.3), that could present an expansion of
some sort. Later, satellites measurements of the CMB radiation indicated that, in large scales,
the early universe was extremely isotropic and homogeneous, a result also confirmed by galaxy

counts measurements.

This pointed to a perfect-fluid universe from the beginning, because inhomogeneities
cannot be dissolved through a power law expansion, according to General Relativity [4]. However,
this assumption wasn’t enough to explain why non-causal regions (regions far enough that light
going from one of them wouldn’t have time to reach the other one) had the same temperature to

one part in 10™*. This is known as the horizon problem.

The horizon problem

Following [4], we can estimate the number of causally disconnected regions that had
to agree in temperature to generate the universe today, if the scale factor grows as a power law.
We know the universe today remains highly isotropic and homogeneous, at least until the particle
horizon scale [y = ¢ty ~ 10*® cm. But the original size of this domain was [; ~ ctoﬂ, also

ap
assumed to be isotropic and homogeneous. Comparing this to the initial causal region [, = ct;,

SENp (1.35)
Estimating the initial time as Planck’s time ¢, = 10™* s, and that a(T)oc 1/T, then,

l; ty Ty 107 1

~ ~ 28
A TEr AT T (139

where we used that today’s time ¢, ~ 10'"s and today’s temperature of the CMB radiation

Ty ~ 1K. In estimating initial temperature, we assumed the universe was radiation dominated.

Thus, we found that I; ~ 10%%l., therefore, the initial horizon was 28 orders of
magnitude bigger than the initial causal horizon. Since no information travels faster than light,
this means that no physical process could have occurred to smooth the temperatures in all those

regions. Also, if we assume that the scale factor grows as a power law with time and that gravity
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was always attractive, thus decelerating this expansion, since the Big Bang the causal horizon
was always smaller than the homogeneous horizon. On the other hand, to assume all regions in
the homogeneous horizon coincidentally had the same temperature to a degree of 10~ * seems

fine-tuned.

There is still another problem with this scenario, called the flatness problem.

The flatness problem

The distribution of matter plays an important role in the evolution of the universe.
Because we’re assuming gravity is always attractive, the initial distribution of velocities of matter
particles can determine the curvature of the universe. Again following [4], for a large spherically

symmetric cloud of matter, its total energy is:

E" = EF + E? = E} + E} (1.37)

where E* stands for kinetic energy and EP, for potential energy. Note that the total energy is
conserved. We assume the velocity of the particles is proportional to a, otherwise the homogeneity

of the universe would be quickly spoiled. Then,

. 2 . 2
, ET EF+E? [a
o o e VI e VY i} 1.38
P (cio) > (139
For E* ~ |EP| and, using a result from the previous subsection = ~ 10~%, we find
Q;
that:
ET
5 < 107 (1.39)

this means that the kinetic and potential energies of the matter particles in the early universe
should be balanced to a factor of 107°%. Also, it can be shown that Q = |E?|/E*. Thus,

E" do\" _ -

= (Qy—1) (—) <1079 (1.40)

8rG 1 . . .
Because () = pp—5————3. the second Friedmann equation can be written as

5 (2)

a

k .
Q0o — 1 = —. Therefore, we found that the curvature of the universe must be extremely close to
a
zero, which again seems fine-tuned.
The horizon problem and the flatness problem expose the fact that, from all possible
configurations of energy density, pressure and distribution of velocities the particles at the early

universe could have, they presented incredibly specific values. In order to explain those values
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(and the density of particles nowadays), another explanation was provided [4, 5]. They postulated
the universe (or at least the universe contained in the event horizon) was entirely generated from
a causal part of the early universe. This could only be possible if the scale factor expanded
exponentially instead of according to a power law, or, in other words, if gravity acted repulsively
instead of attractively for a period of time. As we saw in section (1.3), this is only possible when

p < 0.

It can be shown [4] that the causal part from which the universe originated does
not need to be homogeneous and isotropic. Inflation can expand the universe enough to dilute
possible initial anisotropies. According to the inflationary model, this expansion was generated
by a scalar field that encompasses all causal early universe. Its format would be the simplest
possible to present negative pressure, generate the minimum necessary number of efoldings and

have a smooth transition to a Friedmann expansion, where the scale factor grows as a power law.

1.4.1 The slow-roll scalar field

Let’s consider the energy-momentum tensor of a scalar field. In a Minkovski mani-

fold, it can be written as [4]:

TS =

82 (Ludbls

oxY 0xP 27" 0wt o V(¢)) % (141)

Comparing it with the energy-momentum tensor of a perfect fluid (1.12), we can

identify energy density and pressure as:

:1 v5a_¢a_¢_ :1 w(’)_gb@_gb

v |74 1.42
29" 9x8 oz (9) 29" 9xb oz (9) (142)
: )
If the scalar field ¢ is homogeneous, that is, — = 0, then,
ozt
1 [(0p\? 1 [/0p\?
= Z) - == 1.43
=3 (%) -ve e-3(%) +ve (143
But, as shown previously (section 1.3), we need p = —p to generate an exponential
expansion. Thus, we need:
o) 2
0
vl > (%) (144)
ot

This is known as the first slow roll condition. It is a basic condition an homogeneous

scalar field has to fulfill to produce an expansion faster than a power law. We also know this field
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has to obey the conservation law (1.17), this is,

0p % OV 0o a (00>
———t —— = -3- = 1.4
Gor T aeat - Cal\d (1.45)
This equation is most commonly written as:
% aop IV
LTI S S T A 1.46
2 T T a0 (1.46)

Note that it resembles the movement equation for a damped harmonic oscillator. As
previously mentioned, in addition to an exponential expansion, we need a smooth transition from
this regime to a power-law-expansion regime. This can be accomplished by demanding that:

a op

3= 27
a ot >

i

pre (1.47)

This is the second slow roll condition.

Initially, it was expected that experimental evidences would be able to determine the
shape of the scalar field, but there have been some claims that any ¢ obeying those conditions
would provide a viable universe in this context. Other critic to this model is that the scalar
field cannot be explained from first principles using particle theory. Given this situation, many
proposals started to emerge recently, attempting to answer these questions with or without scalar
fields.

We conclude this chapter by pointing out that the ACDM model has this name
to emphasize the presence of cold dark matter (CDM) representing ~ 26% of the energetic
content of the universe and the presence of dark energy, treated as a cosmological constant (A),
representing 70% of this content. Although the model did not predict these quantities or even the
existence of the dark sector, it was able to incorporate them. This is a very active area of both
theoretical and experimental research, to find the constituents of dark matter and the nature of
dark energy.

Our cosmological model proposes a candidate for dark matter and sheds some light
on its interactions while at the same time providing a more physical origin to the inflationary
period, without a scalar field. In chapter 3, we will present its details along with a highlight of
the most relevant experimentally found characteristics of dark matter. But first let’s make a quick
review of SU(N) theories.
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2 Some results of non-perturbative
QCD

In this chapter we introduce the theory that describes the strong force, Quantum
Chromodynamics. We highlight techniques to study its non-perturbative limit, such as lattice
QCD and the large-N limit and we present their most important findings for our research. We also
present the results of a research internship period, at McGill University, dedicated to provide an
alternative view on the importance of viscous coefficients in the description of the quark-gluon

plasma.

2.1  Quantum Chromodynamics

Up until now, only four forces have been necessary to explain all known phenomena
in physics, from the subatomic to the extragalatic level: the gravitational force, the electromag-
netic force, the weak force and the strong force. While the gravitational force can be explained
by Einstein’s theory of General Relativity, all other three forces are described by the Standard
Model of Particle Physics as quantum field theories. In this section, we focus on the strong force

and its formalization, the theory of Quantum Chromodynamics, QCD.

The strong force describes the interactions between all particles with color charge,
this 1s, quarks and gluons (the elementary particles that form protons, neutrons, etc). Gluons are
the mediators of this force, but because they have color charge as well, they feel the force by
self-interacting. Following [6], we present an heuristic derivation of the mathematical formalism
behind this theory.

Quarks have spin 1/2, thus, if they were free particles in a relativistic quantum

scenario, they would obey Dirac’s equation, that can be deducted from the Lagrangian (2.1):

L(z) = ¥(x)(id —m)i;(x) (2.1)

Here, ¢ = 70, where " are Dirac matrices; j is an index that stands for color; v
is a 4-dimensional spinor and m represents quarks’ masses, if quarks were free particles. We

demand this Lagrangian to be invariant to the transformation:

V() — Up(x) 2.2)

where U is a 3x3 unitary matrix acting on the color index. Because U has a real determinant that

obeys |Det U| = 1, this matrix is part of a group called SU (3), a subgroup of U(3) - the group of
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unitary matrices. Matrices obeying these conditions depend only on 8 real free parameters, which
is another way of saying that there are 8 generators for the SU(3) group. Generally speaking,
the generators for the SU(N,) groups are N? — 1 gauge bosons.

We chose the matrix U to have these characteristics because we know quarks present
themselves in three colors: red, blue or green. SU(3) is the symmetry group that represents the
Lagragian invariance to these colors (as well as the 3 anticolors for the antiquarks). In other

words, these three color states form a basis in the quark’s color vector space.

The fact that gluons are the mediators of this interaction can be shown by identifying
them as the gauge fields introduced for the demanded invariance in the Lagrangian [6]. In other
words, to be invariant to (2.2), the Lagrangian (2.1) has to be modified such that it doesn’t
represent quarks as free particles anymore, but as particles coupled with gauge fields, the gluons.
Thus, the Lagrangian (2.1) £(z) corresponds only to Lqua«s and the Lagragian representing QCD

will now be called Lgcp.

Because gluons also have energy and momentum, these additional degrees of freedom
must be accounted for in an extra term (Lgyons) in the Lagrangian Lgcop, so that Loop =
L quarks + Leiuons- Demanding this extra term to be invariant to the transformation (2.2) as well,
we find that it depends on non-linear terms in the gauge fields. In other words, color rotations
don’t commute, for SU(3) is a non-abelian group. Physically, this translates as self-interacting
gluons. Because the modified Lagrangian Locp accounts for all the experimentally observed
characteristics of the strong force, we conclude it’s an accurate description. It’s worth mentioning
that quarks are organized by flavours, to represent their different quantum numbers, as charge and
mass. Until now, six flavours have been found: up(u), down(d), charm(c), strange(s), top(t) and
bottom(b). This was the final information missing in our Lagrangian, so now we can explicitly

write it:
1 I . U «
Locp = =7 Fe” = 3 0l(imd" + my — gy, A7y (2.3)
f

Fi, = 0,A, — 0, A — gf,chZAfj (2.4)

AZ stands for the gluon field of color a and W;, the quark field of colour v and
flavour f. The effective quark masses are represented by m, g is the coupling constant for this
interaction and f;. are the structure constants of SU(3), which tell us each component of the

SU (3) generators as well as their commutative relations.

The procedure of imposing local symmetries of compact Lie groups (such as U(N)
and SU(N)) to a Lagrangian, as we just did, originated the Yang-Mills theories. Those theories
describe non-linear gauge fields, self-interacting particles, thus, they were used to formalize
QCD and the electroweak theory. Note that this gauge symmetry does not imply new symmetries

in nature, they only represent a constrain in the action that generates the Lagrangian. Therefore,
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one can interpret gauge symmetries as a specification in the form of the interaction felt by the
particles [7].

Gluons’ self-interaction is responsible for many characteristics exclusive to the
strong force, such as the phenomena of asymptotic freedom and color confinement. Asymptotic
freedom is the fact that the coupling between quarks and gluons becomes smaller as the distance
between the interacting quarks gets shorter. This is also known as the anti-screening effect.
Therefore, at small distances of the order of 0.8fm, one can study quarks interactions using
perturbative techniques (pQCD) [7].

Color confinement stands for the experimental fact that isolated free quarks were
never detected in nature. One can extend the reasoning of asymptotic freedom and conclude
that as the interacting quarks get distant, the coupling between quarks and gluons gets bigger,
thus it becomes energetically unfavourable to isolate one quark. Although this has not been
mathematically proved yet, this energetic limit could not be described by a perturbative treatment,

indicating that we entered the regime of strong coupling.

2.1.1 Lattice QCD

One of the techniques to further our understanding of QCD in the non-perturbative
limit is lattice QCD. Within this technique, one studies the action that generated the Lagrangian
by calculating Feynman’s integrals in a finite lattice. Each vertex of the lattice represents a quark
and each edge, a gluon. To get physically valid behaviours in this configuration, one extrapolates
its results to zero lattice spacing, which is the continuum limit. This procedure works well for
baryochemical potential ;2 = 0 but technical difficulties arise as one tries to investigate ;1 > 0.
Lattice QCD is an active area of research, of which we will summarize here only its most relevant

findings for our work.

There are strong indications that a deconfinement transition takes place for certain
values of temperature and baryon density. This means that hadrons (particles composed of
quarks) become a fluid of deconfined quarks and gluons at a given region of the phase diagram
[8]. This fluid is called the quark-gluon plasma. For . = 0, the transition is a cross-over that
happens at 7, ~ 170 MeV. For 11 # 0, it is believed that, above a critical point in temperature
and baryon density, the transition becomes first-order. A sketch of this phase diagram is shown

in Figure 1.

We are specially interested in the quark-gluon plasma and its transition to a hadronic
phase, thus, we illustrate the behaviour of the energy density of this fluid near deconfinement
in Figure 2a. There’s a clear distinction in the values of energy density for the fluid and for
the hadronic gas. In particular, the sudden jump in energy density at 7, is proportional to the
latent heat of deconfinement [9]. Note also that all values are below the Stefan-Boltzmann

limit - the expected value for an ideal gas of massless quarks and gluons - which highlights the
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cross—over
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Figure 1 — Sketch of the phase diagram of nuclear matter when p # 0. From [9].

importance of quarks’ mass in this simulation. This result was obtained by lattice simulations of

[10], considering two and three flavours of quarks with p = 0.

Other useful quantity to analyze is the expectation value for the trace of the energy-
momentum tensor, A = (p — 3p)/T*. It measures the degree of interaction of the constituents of
a fluid, such that, for example, for an ideal gas of massless particles, that behaves as radiation,
p = p/3 = A = 0. In the Figure 2b, from the same simulations of [10], we can see that the strong
interaction effects, expected to vanish at 7' = 7T, remain for 7, < T' < 2T, which is evident
from the peak’s considerable width. This can be an indication that during the deconfinement

transition there’s a mixed phase of deconfined plasma and hadron gas [9].

Finally, we highlight the result that, for lattice QCD simulations with varied number
of flavours, the deconfinement transition is always present, although the critical temperature may

vary with the parameters considered.
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(a) Energy density over temperature 7% in terms of tem-(b) A, defined in the main text, in terms of temperature
perature over critical temperature for different flavour ~ over critical temperature for different flavour configu-
configurations. rations.

Figure 2 — Simulations in the lattice for two (n; = 2) and three (n; = 3) flavours of light quarks
and two flavours of light quarks plus one flavour of heavy quark (n; = 2 + 1) with
i = 0. Results from [10] and adapted figures from [9].
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2.2 Bulk viscosity in the quark-gluon plasma

A parallel study, under the supervision of Professor Charles Gale and Professor
Sangyong Jeon at McGill university, was performed to further our understanding of the quark-
gluon plasma and the role of bulk viscosity therein. This aggregated on the mathematical

description of viscous coefficients, explicit in the previous chapter 1, to provide physical intuition.

Several experiments on heavy-ion collisions have shown that, soon after the event
for a short period of time in a localized region, the formation of a quark-gluon plasma occurs.
Although the evolution of this plasma can be well described by ideal hydrodynamics and the
experimentally found factor U (shear viscosity over entropy) seems to be very small - pointing
that the plasma behaves very closely to an ideal fluid - there’s still room for small viscous
corrections. Those corrections provide better agreement of the rates of photon production with
data [11].

In our work, we extended the approach of [11, 12] to dilepton (lepton-antilepton
pairs) production. We understand that dileptons, as photons, are good probes for the properties
and evolution of the quark-gluon plasma because they do not interact strongly. Thus, as they
are produced, they are naturally transparent to the strong interactions of the medium, keeping a

memory of instants after the collision and providing a clearer picture of that environment.

2.2.1 Dilepton emission rate

We start by deriving an expression for the dilepton emission rate without viscous
corrections. Following the approach of [13], we study the reaction ¢* + ¢~ — [* + [, where ¢

represents a quark and /, a lepton.

But for the similar reaction e* + ¢~ — p* + p~, from Quantum Electrodynamics

(QED), we know that the cross-section o is:
4 2 2 2 4 2\ 1/2
O-(M):_Wa_ <1+ ml) ( o ml) (2.5)

where m; represents the dilepton mass, M, the center-of-mass energy and « stands for the
coupling constant of QED. Because we want to deal with quarks instead of electrons, we must

modify the expression above to account for colour effects. Thus,

0(M) = Fo(M)  Fy = Ne(2s +1)° ) e 2.6)
f
The factor I}, accounts for all missing degrees of freedom in the previous expression.
N, represents the number of colours; s, the spin and ey, the fractional electric charges of

each flavour. Considering only two flavours of massless quarks (u, d), we use that N, = 3,

5
(25 +1)* = 4 and Z efc =9 therefore this factor is numerically equal to [/}, = 3
!
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From kinetic theory, the number of dileptons produced per unit time per unit volume

is:

AN /d'z = R(qtq~ —1*17) = J (27T>3f(p?) (27T>3f(p3)0(q+q* — 1717 p1, P2) Vel

[(p1 - p2)* — mg]'?

BBy

Urel =

(2.7)

Note that p; and p, are the relativistic four-momenta and f(p7)/f(p3) are the occu-
pation probabilities in the momentum space. Because quantum effects are not important, we use

the relativistic energy and the Boltzmann distribution:

B imd  f e FT e 2.8)

To evaluate this integral, one can analytically integrate in five of the six variables

and, assuming massless quarks, get the simplified temperature-dependent expression:

T [*
R(T) = —4f o(2)2 Ky (2)dz z=M/T (2.9)
Note that K7 (z) stands for the modified Bessel function of the second kind. Although

the rate of production is not experimentally accessible, it is the basis to calculate the quantities
dN

dyd M?

squared - and

- the number of particles produced per unit rapidity per unity center-of-mass energy

dN

dydM?dEr
of-mass energy squared per unit total energy - which are more convenient and experimentally

1 E+p,
available. The rapidity y is defined by y = 3 In ( 7 P
— Dz

the z direction, along the beam line of the accelerator.

- the number of particles produced per unit rapidity per unity center-

) where p. stands for momentum in

2.2.2 Dilepton emission rate with bulk viscosity correction

To account for bulk viscous corrections in this scenario, we follow the approach of

[11], so that the corrections are represented by an additional term in the occupation probability:

@) = fOP) +5f(p) (2.10)
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Thus, from:

1 d*m d*pa d’ps
t S ) = 2m)*
R(q"q ) 2(27?)3f 21 (2m)3 2B (2m)3 2E3(27r)3< " (2.11)

54(P1 + Py — P3 — P4)]M|2f(p?)f(p§)

That is the same of equation (2.7), considering the following identity, for a generic
reaction 1 + 2 — 3 + 4 [14],

27)4 2 3 3
do_ _ ( ﬂ.) |M‘ 54(P1 + P2 . P3 . P4) d D3 - d P4 -
4/ (p1 - p2)2 — m3m3 2F5(21)3 2E,(27)

(2.12)

Different physical processes are represented by the different cross sections (o) or,
equivalently, by the different scattering matrices (M). We assume that f(p1) = £ (p1) +df(p7)
and f(p3) = fO(p3) + 5 f(p3), such that, in first order,

Rys- = RO+

1 d3 d3 d3
J P P2 DS (900468 (Py + Py — Py — Py)| M2

2(2m)3 ) 2E,(27)3 2E5(2m)3 2E3(2m)3

[FOp1)5f (53) + FOp3) f (p1)]
(2.13)

Rl(g)l, stands for the dilepton production rate without corrections. Taking in account

only bulk viscous corrections,
Sf(P,X) =TI(X) ) BY(X)Bi, (P, T) (2.14)
J

II(X') represents the bulk pressure, defined as II = —(V,u" where ( is the bulk viscosity and
u* is the fluid four-velocity. B’ (X) and B, (P, T) are functions that depend, respectively, on

space-time position X, four-momentum P and temperature 7'. Thus,

(2m)*

. 1 d3 a3 d3
R - RO, +H<X)ZB?X<X>[ [P e
J

2(2m)3 ) 2E,(27m)3 2E5(2m)3 2E3(2m)3

5 P+ Py — Py — Py M (fOR) B (P, T) + fOp3) B, (P, T))
(2.15)
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From [11],
1m? 1
Bx(X) = —%H By(P,T) = f(o)(P)g%m
(2.16)
2 . 11 1 2 2 . (0) —P-u
Bx(X) = _? g_cs By (P,T) = f9(P) T

where ¢, is the velocity of sound and 7y; is the relaxation time, a transport coefficient related to

the bulk viscosity. Therefore, we can explicitly write the modified rate of dilepton production as:

1 d3 d? d?
(0) b1 D2 P3 44 2
Ri+- = R, _+ 2 P+P—-P—P
M il 2(2m)3 J 2F,(2m)3 2E5(2m)3 2E3(27r)3( J'o (B 2 3 1)IM|

o) (2 1000 |37 (s + s ) +

¢ 372 Pz-u—l_Pl-u

(2.17)

Note that the only dependence in the fluid velocity is in the term P - u, a scalar.
Because scalars are invariant quantities, we can choose to calculate this term in the rest referential,
thus, P - u = Fy = E. As before, the occupation probabilities are Boltzmann distributions
(ﬁ2+m(21)1/2
f@) = e BT = e
To compare the importance of this correction with the former value of the dilepton
production rate, we need more realistic estimates for the transport coefficients and bulk pressure.
Also, an extra effort will need to be made to find experimentally accessible quantities from this

rate.

A non-zero bulk viscosity in the quark-gluon plasma represents that this fluid is
not as ideal as previously thought. In other words, microscopic inelastic collisions are taking
place inside it. We show in the next section how this phenomenon also happens during the
deconfinement transition and its microscopical explanation. Before that, we introduce another

approach in the non-perturbative study of QCD: the large-N limit.
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Figure 3 — An example of a Feynmann diagram illustrating a strong interaction. Adapted figure
from [16].

2.3 The large-N limit

Although lattice QCD was a breakthrough in the study of non-perturbative QCD, its
limitations, such as the increasing need of computational power to perform intricate calculations,

stimulated the utilization of other approaches in this problem.

One of them is the Large-N limit. Within this technique, we consider the number
of colors N, as an arbitrary value in the Lagrangian (2.3). Then, we take the limit N, — o
at the same time that the coupling constant g — 0, such that the quantity A = g*> N, remains
finite. This guarantees that observables that grow with N, do not diverge in this limit [15]. The
term ) is called the ’t Hooft coupling, after Gerard ’t Hooft, who proposed this technique and
proved that the finiteness of A suffices to guarantee reasonable results in the calculations. He
also fixed the number of flavours n s, which is called the ’t Hooft limit. Instead, one can choose
to hold the quantity ns/N. finite, the Veneziano limit. This also produces finite calculations but

its properties are more complex [15], so here we focus on the results of the former limit.

The greatest contribution of the large-N limit to the study of non-perturbative QCD
was the finding that, in this regime, the calculations of the amplitudes of the processes become
easier. Remember that particle physics reactions can be graphically represented by Feynmann
diagrams (for example, Figure 3), allowing for their clear and concise visualization and simpli-
fying the calculations of their probabilities. For any given reaction, a multitude of Feynmann
diagrams can be drawn, representing multiple interactions that participate in that specific process.
Quantifying the probability that a particular reaction occurs, this is, calculating its amplitude,
is an intricate procedure that, in principle, demands the consideration of all related Feynmann

diagrams.

However, it was shown that, for N, — o0, only a small class of Feynmann diagrams
gives a non-negligible contribution to the calculation of the amplitude of a reaction [15]. This
happens because, for each diagram, there are effects proportional to V., that grow as N, — o0,
and effects proportional to g, that diminish as ¢ — 0. Even so, it’s not possible to calculate all
those contributions exactly because the number of diagrams that should be taken in account

grows exponentially with the power of the coupling to which they correspond [15]. Thus, to
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take valid results from this approach, one needs to appeal to the lattice technique. Note that
due to the reduced number of Feynmann diagrams that must be considered in one reaction, the
computational power demanded from lattice simulations is considerably lessened, despite the

increase on degrees of freedom at larger N, [16].

The lattice description in subsection (2.1.1) remains valid, but now, instead of
investigating in the lattice the action that generates QCD, one shall use it to study the action that
generates a SU(N,) theory. This is also an active area of research, so, in this thesis, we limit

ourselves to the summary of some results that will be important for us in the next chapters.

For lattices with 4 = (3 spatial dimensions + 1 temporal dimension ) and 3 =
(2 spatial dimensions +1 temporal dimension ) Euclidean spacetime dimensions, SU(N..) Yang-
Mills theories were proved to be confining [15]. This means that they were able to describe
quarks and gluons confined within particles, outside the limit of asymptotic freedom. Although
this is a first step to describe experimentally accessible quantities (like the mass of hadrons, for
example), it should be remarked that this conclusion is valid for big lattice spaces, thus, it is
not obvious that they will hold in the continuum limit, even though there are indications in this
direction [15].

Those theories were also proved to generate finite mass for the lightest physical state
in the spectrum. In the case of a pure Yang-Mills theory - this is, a theory without quarks, such
that n; = 0 - the lightest stable state are glueballs. This is an hypothetical particle, composed
only of gluons. According to lattice simulations for N, > 2, their masses, mq++, exhibit a mild

dependence on the number of colours, such that the following relation is obeyed for any N, [17]:

Mo++
Vo

This quantity is normalized by the string tension o, a parameter for lattice calculations

1.93(85)
Ng

= 3.37(15) + (2.18)

and the numbers in parenthesis represent simulations’ uncertainties. For lattice studies including
temperature through Monte-Carlo simulations, it has been proved that all SU(N..) Yang-Mills
theories undergo a physical deconfining transition at a critical temperature 7, [15]. Also, for
N, > 3, this transition is of first order, which is associated to the finiteness of the latent heat L;,,
that grows like [18]:

L 0.34(1.60
ﬁ = 0.766(40) — % (2.19)

The critical temperature 7, has a small dependence on the number of colours N,
such that [19]:

T, 0.458(18)
= 0.5949(17 _
NG N+

(2.20)
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Also, it has been verified that the thermodynamic quantities (pressure p, energy
density p, entropy s and the trace of the energy-moment tensor A) present the same behaviour
for T > T, in all SU(N,) theories with N, > 3. Some results are shown in Figures 4 and 5,
product of simulations from [20] and [21].
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(b) Energy density over temperature 7 normalized by its
Steffan-Boltzmann limit in terms of temperature over
critical temperature for different colour configurations.
A comparison with an holografic model is performed.
Results and figure from [21].

(a) Energy density and pressure normalized by their re-
spective Steffan-Boltzmann limits in terms of tem-
perature over critical temperature for different colour
configurations. Results and figure from [20].

Figure 4 — Simulations in the lattice for energy density and pressure in several colour configura-
tions with ny = 0. Results and figures from [20, 21].
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(b) Trace of the energy-momentum tensor normalized by
the Steffan-Boltzmann limit of p/T"* over temperature
T* in terms of temperature over critical temperature
for different colour configurations. A comparison with
an holografic model is performed. Results and figure
from [21].

(a) Trace of the energy-momentum tensor normalized by
the quantity 74 = N? — 1 over temperature 7% in
terms of temperature over critical temperature for dif-
ferent colour configurations. Results and figure from
[20].

Figure 5 — Simulations in the lattice for the trace of the energy-momentum tensor in several
colour configurations with ny = 0. Results and figures from [20, 21].

The existence of those patterns is an indication that the large-N limit can generate
results valid for N, = 3, describing QCD. It also suggests that the conclusions obtained with
these simulations may remain valid for N, — co. In particular, one interested in studying the
SU(N.,) theories when N, > 3 may grow on the knowledge obtained for QCD. For example, the
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physical explanations of the features demonstrated here for N, > 3 -like the peak in the energy

density - are probably the same as QCD - in this example, the finiteness of the latent heat.

This extension, however, has to be cautious, for some experimental results of QCD
fail to match the predictions from the large-N limit, which may be explained by non-trivial
dynamics in QCD [15]. Also, the lattice presents several technical subtleties which may compro-
mise the generalization of some results, specially regarding the continuum limit. Nonetheless, the
large-N limit has proven to be a valuable technique in the study of SU(N,) Yang-Mills theories.

One final result we want to highlight is the bulk viscosity peak. Numerical estimates
[22] and lattice simulations [23] for SU(3) prove that, close to the deconfinement transition
(T ~ T,), the bulk viscosity coefficient ( presents a non-negligible value. For temperatures

T > 2T., however, it becomes almost zero. This is shown in Figure 6 below.
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(b) The quantity ¢/s in terms of (¢ — 3P)/(e + P), which
(a) The quantity (/s in terms of temperature over criti-  measures the system’s interaction. Uncertainties and
cal temperature for different ansatz in the estimates. bounds shown. The line represents a perturbative pre-
Results and figure from [22]. diction. Results and figure from [23].

Figure 6 — Bulk viscosity ¢ over entropy density s for estimates (Figure 6a) and lattice simulation
(Figure 6b) in SU(3). Results and figures respectively from [22, 23].

It is believed that this phenomenon is directly related to the peak in the trace of
the energy-momentum tensor [22, 23, 24], thus, it is reasonable to assume that it happens for
SU(N,) theories [24] as well. Microscopically speaking, this generalization is justified by the
following explanation: considering that the bulk viscosity peak happens at a deconfinement
transition region, one can interpret it as a change in the degrees of freedom of the substance [25].
During deconfinement, there is a mixed phase of a plasma of quark-gluons and a gas of hadrons,
such that inelastic collisions are expected to happen. Those collisions are quantified by the bulk
viscosity coefficient. Because deconfinement transitions happen for all SU(N,) theories, it is

expected that in all of them a bulk viscosity peak around 7" = 7. will be present.

It is important to note that the study of viscous coefficients in Yang-Mills theories is
very recent, partially due to the difficulty of simulating these quantities in the lattice [23, 26].
Also, there are many uncertainties in their calculation, such that the exact shape of the peak (/s,

for example, is still unknown. For completeness, we briefly mention that lattice simulations of



Chapter 2. Some results of non-perturbative QCD 40

shear viscosity, 7, for SU(3), have obtained a small value for 7" > 27, which grows increasingly
important as the temperature approaches the critical temperature [26, 27]. This is an indication

of the strong interacting nature of the system.
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3 Our cosmological model

In this chapter, we will motivate and describe a cosmological model pictured by us.
It provides a microscopical explanation to the inflationary period of the Universe as well as a
candidate for dark matter, while being heavily based on pure Yang-Mills theories, described in
chapter 2.

3.1 Motivation

As mentioned in section 1.4, at early times the Universe went through a phase of
exponential expansion called Inflation. According to the Standard Cosmological Model, this
was generated by a scalar field. However, as already mentioned, there is no consensus in the
scientific community that this field is the most plausible way to generate this phenomenon.
In addition, there have been claims that, once a scalar field obeys the slow roll conditions, it
becomes impossible to find its exact format experimentally. From a microscopical point of view,
the scalar field explanation is not a complete one either. In particular, in the Standard Model of

Particle Physics, there is no prediction of its properties.

Addressing this issue was one of our motivations to propose a cosmological model.
Within our model, we intended to propose a mechanism for inflation that did not rely on a scalar
field. In particular, we wanted particle interactions to account for this phenomenon. The natural
candidate in this case are dark matter particles because we know Standard particles’ interactions
could not mimic a repulsive effect at the energy range inflation is expected to happen (around
10" GeV) [5].

This perspective allowed us to investigate another interesting open question: the
nature of dark matter. Ever since its first experimental evidence of existence, all efforts to directly
detect it have been in vain. Within our model, we propose a candidate for this matter whose only
interaction with the particles of the Standard Model is through the gravitational force, therefore,

explaining the lack of direct detection.

Proposing a candidate for dark matter and describing its interactions whilst micro-
scopically explaining the inflationary model was our main motivation and goal in this project.
Before describing our model in details, we will explicit some restrictions to which we’ve been

submitted in its construction in the next section.
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Figure 7 — Pictorial representation of the evolution of our Universe, explicitly showing the energy
scales involved. Image by the Particle Data Group at Lawrence Berkeley National
Lab, 2015.

3.2 Restrictions

3.2.1 Inflationary period

All information we have on the inflationary period of our Universe was obtained
indirectly. The oldest register of the Early Universe available to us nowadays is the CMB
radiation, which was freed long after the inflationary period had finished (see Figure 7 for an idea
of the time scales involved). However, based on models of the thermal history of the Universe

and structure formation simulations, we can estimate some characteristics of this period.

In specific, to account for the high degrees of homogeneity, isotropy and flatness of
the universe measured by CMB radiation, there is an inferior limit in the amount of time this

expansion must last. This can be translated in an inferior limit in the number of efoldings V.

Note that we can rewrite equation 1.29 as:

af
N = f Lia = (ﬂ) =V = (ﬂ) (3.1)
a; a a; a;

Also, let’s introduce the Hubble factor H = a/a. The very least we can demand of
the observable universe today is that it fits the Hubble radius of the universe at the beginning of

inflation, (agHy) ™' < (a;H;)"'. Assuming, just for estimation purposes, that after the end of
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inflation until now the universe was radiation dominated,

agHy Qe Ty 28
~—~—~ 10 3.2
CLeHe ao Te ( )

Because, for this scenario a(t)oc Y/ 2 as demonstrated in section 1.3, then Hoc a 2.

As before, we assumed that a(T)oc T, Ty ~ 1K and T, ~ 10*® GeV. Thus,

(a;Hy) ™' > 10%(a H,)™* (3.3)

For H constant during inflation, H; = H., therefore a./a; > 10%. This implies
that " > 10%® — N > 64. This derivation followed [28] and represented only one possible
reasoning. Other derivations with other estimates can arrive at slightly smaller or bigger number
of efoldings, but all agree that N ~ (O(10). This represents the minimum amount of time inflation

is expected to last.

Besides that, we also have an expectation on how much time after the Big Bang
inflation ended, ¢;. It comes from the expected durations of the reheating period and of the
Friedmann expansion period of the universe. The reheating period is an hypothesized phase, to
happen shortly after Inflation. It is responsible for the baryonic abundance and entropy generation,
both phenomena being a result of the scalar field’s oscillations at its point of minimal energy
in the potential V'(¢). The Friedmann expansion corresponds to a period when the universe
was primarily composed of radiation, thus it expanded and cooled at a slower rate than in
the inflationary period. It accounts for the production of atoms and light elements. Based on

evidences from this period, it is estimated that ¢; ~ 1073 — 107305 [4].

Although these resources provide a reasonable estimate for the final time of inflation,
there’s no tool for the estimation of the initial time, ¢;. This is a consequence of our ignorance of
the mechanism of the Big Bang, which is believed to have happened in the regime of quantum
gravity, starting around the Planck scale (t ~ 1073 s, when the Big Bang is set tgjg Bang = 0).
Inflation is outside this regime, however their proximity and the lack of direct experimental data
from this period turn any estimates of the initial time of inflation into speculation. Therefore,
despite this quantity being related to N and ¢ through equation 1.29, it is normally considered
a free parameter in any inflationary model. Usually, it is set to be at the limit of the Planckian
scale, thus, t; = 107%3 s.

The last restriction one can take from indirect evidences of the inflationary period
is the fact that it ended smoothly. In other words, the transition from an exponential expansion
to a power law expansion must have happened continuously, otherwise the homogeneity of
the universe would be spoiled [4]. As described in section 1.4, the slow roll scalar field model

guarantees this restriction by its second condition, equation 1.47.
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3.2.2 Dark matter characteristics

Over 85 years have passed since the first experimental hint of the existence of dark
matter [29]. Although we still have not directly detected the particle that composes this substance,
we can infer some of its characteristics. First, let’s clarify that we are referring here to cold dark
matter instead of hot dark matter. The latter is assumed to be relativistic and it can be part of this
matter, but not its major component because, if this was the case, no galaxies would be able to
form [14].

It is believed that initial quantum fluctuations on the primordial plasma of the universe
were amplified by Inflation and, later, further increased as dark matter particles agglutinated there.
At this stage, these particles must have been non-relativistic and they must have had decoupled
from the primordial plasma of the Early Universe much sooner than everything else. As the other
components of the plasma decoupled, they were gravitationally attracted to dark matter rich
regions, which became even bigger with the aggregation of matter. They became proto-galaxies
that eventually grew to be galaxies. This picture is a result of simulations of structure formation
and data from galaxy surveys [29] and it justified the search for cold dark matter (CDM).

The lack of direct detection of this matter from astrophysical observations implies
that it is non-luminous and non-absorbing, in other words, it does not emit or absorb light.
This raised the hypothesis that it could be Massive Astrophysical Compact Halo Objects, or
MACHO:s. This denomination represents non-relativistic, non-luminous, baryonic matter such as
black holes, neutron stars or planets. These objects can account for as most as 8% of the mass of
the galatic halo of a galaxy [14], according to the EROS collaboration, so they certainly do not
represent CDM’s main component. This directed the searches for non-baryonic cold dark matter.

As the laboratory search for these particles proceeds, more limits on their properties
can be set. For example, we know that non-baryonic cold dark matter particles must be stable or
long-lived, otherwise the products of their decay would have already been detected - as an excess
of gamma rays or charged cosmic rays, for instance [30]. Following the same argument, these
particles must be neutral of electromagnetic charge and their most important -maybe unique-
interaction with other particles of the Standard Model is gravitational. Finally, from collisions of
galaxies and their resultant distribution of matter and dark matter, it can be concluded that cold
dark matter particles do not self-interact or they self-interact very weakly. Candidates with these

characteristics are known as Weakly Interacting Massive Particles (WIMPs).

The last model-independent characteristics of dark matter we can take from experi-
ments are its distribution in a galaxy and its abundance in the universe. The latter can be found
through CMB radiation to be, according to Planck data [1], Q.h% = 0.1199 + 0.0027 where
Q.h?* stands for cold dark matter density today. In this expression, h = H /100 km s~' Mpc ™,
H being the Hubble constant, Hy = (67.3 + 1.2) km s~ Mpc ™.

A WIMP candidate for dark matter must have all the characteristics highlighted in
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this section. In addition, its mechanism of production must account for its density in the universe
and galaxy distribution today, and finally, its thermal history must be compatible with structure

formation models.

3.3 Description and qualitative behaviour

Inspired by Yang-Mills theories, we propose an extension to the Standard Model
of Particle Physics by a SU(N,) flavourless group not coupled to the Standard Model. This
extension provides a WIMP candidate for dark matter whose phase transition can generate a

mechanism for Inflation in the Early Universe.

As seen in section 2.3, SU(N,) groups represent quarks and gluons that self-interact
through the strong force, with N, number of colours. Their Lagrangian is analogous to the QCD
Lagrangian, where N, = 3, but, within our model, N, is a free parameter. As a flavourless
-without quarks- group, we expect that its lightest stable bosonic states are glueball particles.
This particle is our candidate for dark matter, having all characteristics a WIMP must possess: it
is stable, it does not interact with photons - being non-luminous, non-absorbing and electrically
neutral - and it does not self-interact. Also, our assumption that this particle does not interact

with standard matter except gravitationally can explain the lack of direct detection of dark matter.

Our SU(N,) extension presents a deconfinement transition, as all Yang-Mills the-
ories. As described in section 2.1, at a specific critical temperature and barionic density, free
quarks and gluons -in our case, only gluons-, that composed a plasma, condensate into particles
-in our case, glueballs. This dramatically changes the equation of state of the fluid, as its degrees
of freedom are reduced and the bulk viscosity peaks. It is our hypothesis that this phenomenon
produces a negative pressure in the equation of state of the early Universe which is responsible

for its exponential expansion, the Inflationary period.

To successfully explain Inflation through this mechanism we also have to find that
this expansion lasted enough to produce an isotropic and homogeneous universe, in other words,
that it generated a reasonable number of efoldings. In addition, the transition from this regime to
a decelerated Friedmann expansion must happen and it must be smooth. We highlight that, within
this scenario, there is no scalar field and, therefore, no reheating period in the Early Universe.
Consequently, all baryonic production and entropy generation must take place at the Big Bang,

being diluted later by Inflation to the values known nowadays.

It is also crucial that the phase transition takes place at very high energies, of the
order of 10'® GeV. Otherwise, this model would fail to reproduce data from nucleosynthesis
models and galaxy surveys, in other words, structure would not have enough time to form. The
critical energy at which this transition occurs marks the deconfinement scale. As mentioned
in section 2.1, this is the one parameter not specified by the Lagrangian of SU(N..) theories.

It is also directly related to the mass of the glueballs because it specifies the range of gluons’
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interactions. Within our model, this is a free parameter as well.

Among the many checks that must be performed to ascertain the validity of this
model as a viable explanation to the Inflationary period, in this work we dedicate ourselves
to find the produced number of efoldings and a graceful exit to inflation. The first step in this

process is to study the new equation of state for the Early Universe.

3.4 [Equation of state

3.4.1 Early Universe

It can be shown [4] that, according to the Standard Model of Particle Physics, in the

radiation dominated Early Universe, the energy density is given by:

g, = kTH (3.4)

2 7
_ L 3.5
=30 <9b + 89f) (3.5)

where g, represents the bosonic degrees of freedom and gy, the fermionic degrees of freedom of

the relativistic particles. In addition, pressure p and energy density ¢ are related by:

Er

pr=3 (3.6)

Note that we can only account for the degrees of freedom of the relativistic particles
in equilibrium. This means that g, and g, are functions of temperature, because, as the universe

cools, more particles decouple from the plasma. This phenomenon is illustrated in figure 8.

In this context, the addiction of extra particles would increase the number of degrees
of freedom of the primordial plasma if, at some point, they were in thermal equilibrium. This is
only possible if they interacted. In our model this is not the case, so we must account separately
for the contributions from the plasma and dark matter particles, forcing us to write new equations

of state:

a
PT>T, = DSU(N.) — 3(& + KT
(3.7)

ET>T. = ESU(N.) T kT

The terms psy(v,) and €5y (n.) in the expressions above represent, respectively, the
pressure and energy density of the SU(N,) fluid before and during the deconfinement transition.

In addiction, as already discussed in section 1.2, the presence of the bulk viscosity ¢ modifies
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Figure 8 — Degrees of freedom in terms of temperature in GeV. Adapted figure from [31].

the energy-momentum tensor of the perfect fluid by adding an extra term. It can be rewritten
as a perfect fluid tensor (1.22) if the pressure p is replaced by an effective pressure p*. In the
equation above, p* = —3( g + kT*.

For completeness, we also write the equation of state for the primordial plasma of the
Early Universe after the deconfinement transition takes place. Because the SU(N,) glueballs are
stable and they do not interact with standard matter, their total number of particles is conserved.

This information is translated in the differential equation below.

Pr<r, = N— + KkT*
m

T
ET<T, = 3% + 3:‘€T4

(3.8)
m
Ng = mQTcKQ (i)
dn a
—+ n==0
dt * na

Note that K, stands for the modified Bessel function of the second kind.

3.4.2 SU(N.) plasma

To solve the adapted Friedmann equations for an imperfect energy-momentum tensor
(1.22), we must first find analytical or numerical expressions for the equation of state of the Early

universe with the SU(N,) plasma (3.7). In particular, we must find the quantities pgy(x,) and
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different colour configurations. A comparison with an holografic model is performed.
Results and figure from [21].

esu(n.)- They are related to s, the entropy density, and A, the trace of the energy-momentum
tensor of this fluid, by [5]:

A=¢ec—3p (3.9)
- dp _e+p
S_dT_ T (3.10)

We begin by taking the data of the trace of the energy-momentum tensor from the
lattice. These specific simulations were performed on a four-dimensional Euclidean hypercubic,
isotropic lattice with periodic boundary conditions in all directions, for number of colours
N, = 3,4,5,6,8 [21]. The results were normalized so that they could be represented on a same

graph and compared.

We repeat here figure 5b for a more detailed explanation of its features. Note that the
y axis represents A/[(7?) + Ry + (N? — 1)T*/45] and the x axis, T/T.. R; is a dimensionless
numeric factor equal to 1.2129 that corrects the deviation from the continuum limit introduced

by lattice cut-off effects.

We analyzed the data from each colour separately and fitted a function for each trace
of the energy-momentum tensor, focusing on the peak around the critical temperature 7. Results
are illustrated in figure 10. All numerical calculations in this research were performed with the

software Mathematica©, version 10.4 and the codes are available at the appendices.
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Figure 10 — Normalized trace of the energy-momentum tensor over 7 in terms of temperature
over critical temperature for the number of colours: a) N. = 3,b) N. = 4,¢) N, = 5,
d) N.=6ande) N. = 8.

The normalization performed by [21] renders equivalent to work with any of the fits
produced, so we chose to work with the results from SU(3) simulations, due to the bigger amount
of data available, which results in a more accurate fit to the trace of the energy-momentum tensor

and, consequently, to all other thermodynamic quantities of interest.

The expression found for the fit of the normalized trace of the energy-momentum

tensor was:
T T 43:29179 T
— | = —0.144 — 1+ tanh ( 27.911 1-——
0.85284 T '
Considering that:
d [/p 1 dp D
7L (-) . 12
dT \T* 3 dT T4 (3.12)
and using relation 3.10, the expression 3.12 can be rewritten as:
P e—=3p A
T— (&) -t - 1
dTr \T4 T4 T4 (3.13)
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Figure 11 — Logarithm of pressure (p) and energy density (¢) over £y = 10”'eV* of the SU(NN..)
fluid in terms of temperature over critical temperature.

Thus, to find the quantities € and p, it suffices to calculate:

T
A
p= T4J ﬁdT’
p 0 (3.14)
P
- L
T oart P

These operations were performed numerically, resulting in the non-analytical tem-
perature dependent expressions illustrated in figure 11. This is the expected behaviour of these
quantities, as we can see in figure 12, where we repeated two figures from section 2.3. As
discussed in that section, the jump in the energy density around .. is proportional to the number
of colours N.. However, our data was normalized to compare results from several numbers of

colours, so this information is not evident in our expression for £(7).

Because our goal is to solve the Friedmann equations - which are time dependent
- it becomes useful to rewrite the equations of state to make their temperature dependence
implicit. To simplify the numerical resolution of this system of differential equations, we chose
to write pressure in terms of energy density. Thus, we inverted the function p(7") to obtain 7'(p),
temperature in terms of pressure. Afterwards, we composed this function with the expression £(7")
to find £(p). These numerical expressions are illustrated in figure 13 and 3.13. A disadvantage
of rewriting the equations of state like this is that we lost any chance of easily recovering the

number of colours from their features, like the energy density jump.

The last step in the calculation of this equation of state is to find an analytic expression
for the function £(p). This is another attempt to simplify the solving of the Friedmann equations,
to be performed next. We took special care to reproduce the non-trivial behaviour of this function
around the critical temperature 7., as it represents the deconfinement transition. The fitting is

illustrated in figure 15 and the expression found is explicited in equation 3.15.
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Figure 12 — Energy density (Figure 12a) and pressure (Figure 12b) in terms of temperature for
different colour configurations. A comparison with an holografic model is performed.

Results and figures from [21].
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It is evident that this fit only reproduces the behaviour of the function for the region
e/e. = 3,7.107%. However, this accuracy is sufficient because its asymptotic behaviour for
e < e, must be added by hand, regardless of the quality of the fit, since the data points do not
get much of that region. The fit we found previously describes well e/e, > 107!, while the

asymptotic behaviour p(e) = ¢/3 dominates for e/e, < 10~*. Therefore, the final expression for

Psu(n.) 18:

e e 1 + tanh (650 — £ e | 1+ tanh (=650 + &
DPSU(N.) (g) = Psu(v) <e_) [ g EC)]Jrg [ (2 ) (3.16)

3.5 Results

3.5.1  Rewriting the Friedmann equations

Despite the simplifications performed in the equation of state of the SU(N,) plasma
in the previous section, it is still computationally demanding to solve the Friedmann equations.
The system has to deal with intricate, although analytic, expressions and derivatives of first and

second order in coupled equations. To mitigate this situation, we rewrite Friedmann equations

dt
(1.15) in terms of the conformal time d7 = ——. Noting that:

a(t)
dadr lda d

()~ dadr _ lda
a(t) dr dt adr a

3.17
i = Loy (2 a1 (da\? G17
W @ \e) a2 @ \ar
. da ,
and defining pr a [28], we find:
T
a\?
<—> = 2aea’—k
a
n
L ale-3p)a®—k (3.18)
a

!/

e+ 3%(5+p) =0

ArG . L .
where « stands for the constant ——. The third relation in 3.18 comes from the equation of

conservation of energy 1.17. This system can be further simplified:

~

a
- a 3.19
/ 2 _ 1 5_3p 2 _ 19
Frf= g~ ) +h-k
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It is now necessary to replace pressure p for the effective pressure p* to account for

the bulk viscosity peak. In conformal time coordinates this is:

* g
p* = psov. — 39(e)e 4£ +3 (3.20)

Now, the adapted Friedmann equations for an universe with bulk viscosity in con-
formal time are given by equation 3.21. This is the system of equations one has to solve to find
the evolution of the scale factor a with time and calculate the number of efoldings for a specific

equation of state.

g\

f =
(3.21)
f/ ‘|’f2

69(€)f2a67/4) -,

2
—3aa (pSU(Nc) Y

Here, g(¢) represents the bulk viscosity peak. As mentioned in section 2.3, we
do not have enough experimental data to parametrize this quantity, therefore, we will use a
Gaussian function as a first approximation (3.22). We know it peaks at the critical temperature
T., represented here by the critical energy .. A and B are free parameters, corresponding,

respectively, to the Gaussian’s height and width.

2
_B (3 - 1) ] (3.22)
Ec

3.5.2 Solving the Friedmann equations

g(e) = Aexp

It can be shown that the expression for the number of efoldings does not change in
conformal time, remaining equation 1.29. Therefore, we solve Friedmann equations 3.21 to find
a(7y) and a(7;), 7y representing the conformal time Inflation ended and 7;, the conformal time
Inflation began. We are also interested in the evolution of the effective pressure with conformal

time, because we want to investigate whether there is a graceful exit for Inflation.

Graphically, the Inflationary and the decelerating Friedmann expansions can be
identified by the behaviour of the effective pressure. When this quantity gets negative, it means
that the bulk viscosity peak is bigger than the SU(V,) pressure, producing Inflation. As the bulk
viscosity peak diminishes, the effective pressure should return to positive values, indicating that
Inflation is over. However, this reasoning can not be reversed to find the desirable parameters for
the bulk viscosity peak because, as seen in equation 3.20, the bulk viscosity term in the effective
pressure is multiplied by the scale factor and its derivative. We also highlight that, although the
quantities A and B in equation 3.22 are somehow related to the number of colours V. of the
equations of state considered, this dependence is not obvious and it was not investigated in this

study.
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Initial conditions

The last information we need to provide the software for the resolution of the
Friedmann equations are the initial conditions of the system. As mentioned in section 1.4, the
initial time for Inflation is usually set to Planck time. Following this indication, we consider
7; = —1072°MeV ! ~ tp. Note that conformal times before and during Inflation are negative
due to the choice of the origin of the coordinate system [28].

To find the initial conditions for the scale factor a and the auxiliary function f =

dal ) ) . C e
T we must solve Friedmann equations for 7; = —107%, this is, in the asymptotic limit of the
Ta

equation of state. Note that in this limit the bulk viscosity Gaussian tends to zero. This system
can be further simplified if we choose the curvature of the manifold £ = 0, in agreement with

experimental data from CMB radiation [1]. Thus, the system of equations 3.21 becomes:

dal
I

%%2 (3.23)
==

It can be solved analytically resulting in:

2
I= 3

T s (3.24)
o= (i)

The constants were chosen such that a(7, = 10°®) = 1, where 7, represents nowa-
days conformal time. Therefore, f; = —2/3 * 10**MeV and a; = (—107°%)%/3, a dimensionless
quantity. Finally, we set the initial energy density to be the Planck energy divided by the Planck

volume:

e — % _ —101_0;2;\/[4;\;3 — 10" MeV* (3.25)

Our free parameters N, and 7T, translate themselves in this set of equations as,
respectively, the Gaussian parameters A and B and the critical energy density .. We set €. to
g i x 107 g, %1072, ; » 1073 and &; = 1074, varying each time the height of the Gaussian,
from 10° to 10° in intervals of the power of 10 and holding fixed the width of the Gaussian
B = 100. This parameter was chosen not to be varied at this moment because it was found that
the number of efoldings N, does not depend much on it. The final time 7 was set individually to
each configuration of A, B and . because different combinations of these values allowed for

different regions where the equations were solvable.

The calculation of the number of efoldings, from initial time 7; to final time 7, in

this conditions is illustrated in figure 16. Note that there is a region, around A > 1071, for which
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Figure 16 — Number of efoldings in terms of A, the height of the Gaussian representing the bulk
viscosity peak, for its width B = 100 and critical energy density e. varying from ¢;
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Figure 17 — Number of efoldings in terms of A, the height of the bulk viscosity peak, for its
width B = 100 and critical energy density ¢, = &; * 10™*.

the number of efoldings is approximately 60. To further investigate this phenomenon, we fixed
the critical energy to ¢, = ¢; * 10~* and recorded the effective pressure and their respective
number of efolds for the same values of the amplitude A investigated previously. The result is

shown in figures 17 and 18.

For values of A > 1, the effective pressure gets negative but it never returns to
be positive, even after the importance of the bulk viscosity peak is reduced with time. These

scenarios fail to reproduce a Friedmann expansion, thus they can not represent our universe. In
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Figure 18 — Logarithm of effective pressure (PEff) in terms of conformal time (ConfTime).
Parameter A varying from 107> to 10°, B = 100 and €, = &; » 10™*.

addition, they generate a very low number of efoldings, around N = 6. For values of A < 107",
the obtained number of efoldings is around the expected, but the effective pressure never gets
negative. This indicates that the height of the bulk viscosity peak is too small compared to the
asymptotic limit. Therefore, this expansion is generated by the radiation, which can not expand

the universe fast enough to explain its homogeneity and isotropy.

Finally, there is a configuration that produces a reasonable number of efolds (/V = 58)
and where the effective pressure gets negative, eventually returning smoothly to be positive.
This happens for A = 107!, B = 100 and ¢, = ¢; * 10~*. However, as the effective pressure is
negative for a period of time much smaller than 7y — 7; - the interval in which we calculated the
number of efolds - it is important to re-perform the calculation of the number of efolds, now only

accounting for the period where this peak is negative. These results are shown in figure 19.

We can see that for A ~ 0.33 it is possible to achieve values of N ~ O(10),
which is reasonable to describe our universe. The existence of those scenarios proves that our
inflationary model is capable of generating Inflation with the same characteristics of a scalar-field
Inflation regarding the number of efoldings produced and the presence of a smooth transition to

a Friedmann expansion.

Further scenarios have been investigated, varying the critical energy density €. (figure
20) and the width of the gaussian B (figure 21). Note that, as we vary those parameters, the
amplitude at which a minimum value of NV = 10 is achieved, A., also varies. This is particularly

evident in figure 22.
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Figure 19 — Number of efoldings in terms of A, the height of the bulk viscosity peak, for its
width B = 100 and critical energy density £, = &; * 10™*, calculated only where the
effective pressure is negative.
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Figure 20 — Number of efoldings in terms of A, the height of the bulk viscosity peak, for width
B = 10 and critical energy densities €, = ¢; * 1072, &; * 107*, ¢; * 107°, calculated
only where the effective pressure is negative.
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4 Conclusions and perspectives

The inflationary model proposed by this work was proven to generate a negative
effective pressure, which produced a period of exponential expansion. In addition, in some
scenarios, the number of efoldings calculated was compatible with the number produced by
the scalar-field Inflation model and a smooth transition from this expansionary regime to a
decelerated Friedmann expansion was found. This proves that the model proposed here is
equivalent to the Standard Inflationary model, regarding the number of efoldings produced, the

presence of two regimes of expansion and a smooth transition between them.

As expected, the number of efoldings and the effective pressure for the different con-
figurations tested were more sensitive to the amplitude A of the Gaussian function representing
the bulk viscosity peak than to its width B. This is consistent with the localized nature of the
deconfinement transition -consequently, of the bulk viscosity peak- at the the critical temperature
T.. It was also noted that not all configurations of A and B produce negative effective pressure,
which indicates that the bulk viscosity peak must overcome the equation of state of the Standard
Model p, = /3 to change the effective pressure. Finally, we point out that, within the range
10%7 < ¢, < 10, it was observed little sensibility in the number of efolds to the critical energy

density.

We also highlight that the tests performed by this research are preliminary and there
are many open questions to be investigated within this proposal. First of all, it is possible that
the successful cases described above represent only some points in regions of viable scenarios,
found by varying slightly the relevant parameters. It is crucial to specify those regions and their
dependence with the gaussian parameters. From this information, one can try to identify the

sensibility of the number of efoldings and the smooth transition to the variable parameters.

Another relevant path of investigation is to specify the relation between the free
parameters of the model, N, and T, to the variables ¢, and the ones related to the Gaussian,
A and B. If this is accomplished, one can use the results found in this work to discover the
parameters of the generic Yang-Mills theory proposed here. This allows for a more complete
description of the model, in specific regarding the properties of the glueballs, the dark matter

candidates.

So far, the extension to the Standard Model proposed by this work has only re-
produced indirect consequences of Inflation, therefore, no results in this thesis provide direct
evidence of this model correctness. However, even at this initial stage of research, it is possible
to falsify this proposal. One of our strongest hypothesis, that this extension is not coupled to the
Standard Model, guarantees that no indirect detection of dark matter will ever occur. Any experi-

mental evidence contrary to this claim will force us to revisit one of our central assumptions. In
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this same direction, in the future, it is necessary to study the equation of state of the Yang-Mills
fluid after the deconfinement transition to calculate the expected density of dark matter particles
nowadays. This is an experimentally accessible quantity, determined by CMB observations, thus,

reproducing its values would be a test for this model.
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su3data = {{0.801742, 0.001074}, {0.811087, 0.025189}, {0.820493, 0.051497},
{0.829959, 0.025627}, {0.839485, 0.000632}, {0.849072, 0.013656},
{0.858719, 0.091965}, {0.868426, 0.076393}, {0.878192, 0.036275},
{0.888019, -0.01272}, {0.897904, 0.002379}, {0.90785, 0.059816},
{0.917854, 0.034798}, {0.927917, 0.05017}, {0.938039, 0.089943},
{0.94822, 0.060019}, {0.95846, 0.125736}, {0.968758, 0.146868},
{0.979114, 0.193744}, {0.989528, 0.396226}, {1., 0.721148},
{1.01053, 0.962336}, {1.021117, 1.128489}, {1.031762, 1.230001},
{1.042464, 1.258942}, {1.053223, 1.331593}, {1.064039, 1.374322},
{1.074912, 1.287931}, {1.085841, 1.328149}, {1.096827, 1.345659},
{1.107869, 1.289628}, {1.118968, 1.289898}, {1.130122, 1.296408},
{1.141332, 1.272211}, {1.152597, 1.251725}, {1.163918, 1.257515},
{1.175294, 1.237645}, {1.186726, 1.213716}, {1.198212, 1.17597},
{1.209754, 1.145387}, {1.22135, 1.169127}, {1.233, 1.123933}, {1.244705, 1.072},
{1.256465, 1.088117}, {1.268278, 1.052175}, {1.280146, 1.062387},
{1.292067, 1.019255}, {1.304043, 1.006715}, {1.316071, 0.989344},
{1.328154, 0.976319}, {1.34029, 0.956389}, {1.352479, 0.902937},
{1.364721, 0.900721}, {1.377017, 0.907807}, {1.389365, 0.847448},
{1.401767, 0.868257}, {1.414221, 0.801243}, {1.426728, 0.812699},
{1.439288, 0.787744}, {1.4519, 0.807947}, {1.464565, 0.782323},
{1.477283, 0.765474}, {1.490053, 0.705317}, {1.502875, 0.698136},
{1.515749, 0.680372}, {1.528676, 0.694201}, {1.541656, 0.703567},
{1.554687, 0.691247}, {1.567771, 0.65708}, {1.580907, 0.656823},
{1.594096, 0.651981}, {1.607336, 0.63649}, {1.620629, 0.611744},
{1.633974, 0.614611}, {1.647372, 0.610956}, {1.660822, 0.623653},
{1.674324, 0.582151}, {1.687879, 0.550757}, {1.701487, 0.573398},
{1.715147, 0.545812}, {1.72886, 0.563714}, {1.742626, 0.54762},
{1.756444, 0.513408}, {1.770316, 0.504704}, {1.784241, 0.504296},
{1.798219, 0.497836}, {1.81225, 0.483539}, {1.826336, 0.462899},
{1.840474, 0.479329}, {1.854667, 0.457971}, {1.868914, 0.48051},
{1.883215, 0.467682}, {1.897571, 0.451446}, {1.911981, 0.440689},
{1.926447, 0.442527}, {1.940967, 0.414185}, {1.955543, 0.406184},
{1.970175, 0.37693}, {1.984863, 0.381541}, {1.999606, 0.382047},
{2.014407, 0.406013}, {2.029264, 0.408479}, {2.044179, 0.410644},
{2.059151, 0.374339}, {2.074181, 0.394612}, {2.089269, 0.364649},
{2.104415, 0.380211}, {2.119621, 0.339312}, {2.134886, 0.368773},
{2.150211, 0.360224}, {2.165597, 0.373108}, {2.181043, 0.391337},
{2.19655, 0.350445}, {2.212118, 0.357035}, {2.227749, 0.35291},
{2.243443, 0.339672}, {2.2592, 0.320994}, {2.27502, 0.34895},
{2.290905, 0.316548}, {2.306854, 0.311759}, {2.322869, 0.32495},
{2.33895, 0.312037}, {2.355097, 0.302527}, {2.371312, 0.312755},
{2.387594, 0.29494}, {2.403945, 0.279982}, {2.420366, 0.31139},
{2.436856, 0.289751}, {2.453417, 0.284341}, {2.470049, 0.289815},
{2.486754, 0.266598}, {2.503531, 0.294358}, {2.520382, 0.2736},
{2.537308, 0.265359}, {2.554309, 0.267216}, {2.571386, 0.250913},
{2.58854, 0.259511}, {2.605773, 0.259524}, {2.623084, 0.246865},
{2.640474, 0.235416}, {2.657946, 0.262268}, {2.675499, 0.218737},
{2.693135, 0.236759}, {2.710855, 0.218018}, {2.728659, 0.247995},
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{2.746549, 0.238522}, {2.764526, 0.217894}, {2.782591, 0.198552},
{2.800744, 0.236603}, {2.818988, 0.221255}, {2.837324, 0.202357},
{2.855752, 0.226609}, {2.874273, 0.175664}, {2.89289, 0.209898},
{2.911603, 0.226011}, {2.930414, 0.198542}, {2.949323, 0.187839},
{2.968332, 0.18637}, {2.987443, 0.173721}, {3.006657, 0.196118},
{3.025975, 0.178129}, {3.045399, 0.154842}, {3.06493, 0.173641},
{3.08457, 0.150514}, {3.10432, 0.183898}, {3.124182, 0.173504},
{3.144157, 0.173424}, {3.164247, 0.173324}, {3.184453, 0.160808},

{3.204778, 0.161083}, {3.225223,
{3.266479, 0.116076}, {3.287293,

.189858}, {3.245789,
.141001}, {3.308235,

.175179},
.156441},

0 0

0 0
{3.329306, 0.138471}, {3.350507, 0.170139}, {3.371841, 0.157327},

0 0

{3.393309, 0.149694}, {3.414914,

.141905}, {3.436657, 0.110058}};

SU3error = {0.018787, 0.033356, 0.031306, 0.026917, 0.034604, 0.027728, 0.027815,

0.
.032323, 0.031724, 0.053071, 0.048587, 0.099183, 0.035906, 0.059078, 0.032809,
.032754, 0.015116, 0.020192, 0.013569, 0.029283, 0.02245, 0.012014, 0.012332,
.01524, 0.02166, 0.012161, 0.016245, 0.015226, 0.015885, 0.017655, 0.012538,
.020704, 0.017557, 0.014745, 0.015301, 0.017371, 0.018573, 0.023682, 0.007466,
.018229, 0.010446, 0.020911, 0.018078, 0.031046, 0.021827, 0.022625, 0.021786,
.025026, 0.030749, 0.018882, 0.018723, 0.026785, 0.015677, 0.02412, 0.026118,
.017227, 0.023937, 0.026415, 0.023033, 0.015797, 0.014072, 0.012144, 0.014988,
.021954, 0.01685, 0.020172, 0.023724, 0.010682, 0.017848, 0.0186, 0.023984,
.01622, 0.015919, 0.018467, 0.023742, 0.014241, 0.020862, 0.026435, 0.01966,
.018321, 0.012384, 0.020431, 0.01993, 0.007451, 0.015144, 0.016943, 0.017901,
.023223, 0.01456, 0.019299, 0.018255, 0.017668, 0.018569, 0.021977, 0.017858,
.014817, 0.010884, 0.013159, 0.005978, 0.015366, 0.012744, 0.019274, 0.012446,
.008912, 0.016025, 0.013166, 0.019093, 0.010801, 0.009405, 0.013794,

.011625, 0.014733, 0.012078, 0.016136, 0.015554, 0.01458, 0.016562, 0.021586,
.010583, 0.011091, 0.017093, 0.017061, 0.00866, 0.019435, 0.012149, 0.016967,
.015269, 0.021453, 0.008995, 0.021126, 0.021491, 0.01656, 0.015382, 0.016379,
.01068, 0.015295, 0.014404, 0.013583, 0.010035, 0.01165, 0.013251, 0.013763,
.014495, 0.013899, 0.012627, 0.014292, 0.01315, 0.014578, 0.016968, 0.019408,
.008625, 0.015302, 0.020574, 0.014381, 0.015943, 0.018389, 0.017381, 0.016045,
.017144, 0.016685, 0.016202, 0.01413, 0.020431, 0.015291, 0.008146, 0.014739,
.014784, 0.014499, 0.015389, 0.015421, 0.011557, 0.019841, 0.012443};

O O O O O O O O O O OO OO © O o o o o o

019878, 0.020881, 0.030212, 0.024332, 0.021534, 0.022975, 0.02678, 0.016324,

Clear[f, g, h,x,a,b,c, d, e, fit]

fx_]1:

glx_] :
hix_] :

(Tanh[(x-1) /a]l +1) /2;
(Tanh[(1-x) /al +1) /2;
b (xAc) g[x] +d (xh-e) £[x];

SU3error2 =1/ (SU3errorA2);

fit = NonlinearModelFit[SU3data, h[x], {a, b, ¢, 4, e},
X, VarianceEstimatorFunction -» (1 &), Weights - SU3error2]

FittedModel [ -0.144608 x*3-2918 (1 + Tanh[27.9118 (1 - x)]) +

0.852846 (1 +Tanh[27.9118 (-1 +X)]) ]
X2.03235
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Show|[ListPlot [SU3data], Plot[fit[x], {x, -2, 4}], Frame - True]

14 .

08|

fit["AdjustedRSquared“]

0.998708
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(*»finding an inverse function for e(T), using the unfitted expressions#)
Clear[f, g, h, h2, energy, press, pressure, inv, u, data, data2, merged, fit, fitz]

£[x_] :=-0.14460764377951374 x*3-29179403782954 (1 , panh[27.911759831465123 (1-x)]) +
(0.8528461795749493 (1 +Tanh[27.911759831465123 (-1 +x)])) /x? 032352696537285

(* trace of energy-momentum tensor from SU(3) data =*)

g[x_] := £[x] /x

press[y_?NumberQ] t= NIntegrate[g[x] , {x, 0, y}, Method -> "LocalAdaptive“]

pressure[T_] := (TA4) press[T] (*pressure from numerical integrationw)

energy[T_] := £[T] (TA4) +3 pressure[T] (*energy, from numerical integrations)

LogPlot[{energy[T] , pressure|[T], pressure[T] / energy[T]},
{T, 0, 6}, PlotLegends -» "Expressions", PlotRange - All]

10°
10} /—/'
10| — energy(T)
i pressure(T)
-9
1077 pressure(T)
[ energy(T)
10-14
R

LogLogPlot[energy[T] , {T, 10A(-6), 10A2}, PlotRange » All,
PlotLabel -» "Energia x temperatura", AxesLabel - {T, e}]

Energia x temperatura

1011 =

Eoo . P E SRR . PR H R
r 0.5 1 5 10 50 100

(xas f(x) was fitted with Exp(x), we must continue to use that herex)
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LogPlot [ {energy[Exp[T]], pressure[Exp[T]], pressure[Exp[T]] / energy[Exp[T]]}.,
{T, 0, 6}, PlotLegends -» "Expressions", PlotRange - All]

1012,
10°
Josl —— energy(exp(T))
pressure(exp(T))
1000 - pressure(exp(T))
energy(exp(T))
’
S S T S S S S S S S [ S S S S Y S S ST SO SN S ST S |
- 1 2 3 4 5 6

inv[f_, s_] := Function[{t}, s /. FindRoot[f-t, {s, 1}]]
(xcode from Mathematica to invert the functionsx)
u = inv[energy[Exp[T]], T] (*T[energy]*)

Function[{t$},

T /. FindRoot|[ |3 e*” press[e?] +e*" [—0.144608 (€7)***?°*® (1+Tanh[27.9118 (1-€7)]) +

0.852846 (1+Tanh[27.9118 (-1 +e”)])

2.03235
(e7)

]]tss. {(r, 1}]]

u[energy[Exp[0.1]]] (*it seems goodx)
0.1

LogPlot[u[x], {x, 10A (-8), 1072}, PlotRange » All,
PlotLabel -» "Temperatura X energia", AxesLabel - {e, T}]

Temperatura x energia

0.100 F

0.010

0.001

10—4 -

20 40 60 80 100
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(*»u[x] is the inverse function and it looks very much like a tanh[x]*)

LogPlot[Tanh[0.5%x] /3, {x, 0, 10}, PlotRange » All]

0.100 -

0.001 |

10-5}

10-7

(xlet's try to fit itw)

data = Table[u[x], {x, 10A (-3), 10, 0.05}];
data2 = Table[x, {x, 10A(-3), 10, 0.05}];

Do [
sow|

H
11

{(u, 1, 161, 1}
] // Reap // Last;
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merged = %[[1]]

{{0.001, -0.127971}, {0.051, -0.0567367}, {0.101, -0.044241}, {0.151, -0.0366665},
{0.201, -0.0311066}, {0.251, -0.0266442}, {0.301, -0.0228694},
{0.351, -0.0195628}, {0.401, -0.0165928}, {0.451, -0.0138741}, {0.501, —-0.011348},
{0.551, -0.00897201}, {0.601, -0.00671437}, {0.651, -0.00455043},
{0.701, -0.00246055}, {0.751, -0.000428583}, {0.801, 0.001559},

{0.851, 0.00351387}, {0.901, 0.0054463}, {0.951, 0.00736551}, {1.001, 0.00928002},
{1.051, 0.0111978}, {1.101, 0.0131264}, {1.151, 0.0150734}, {1.201, 0.0170458},
{1.251, 0.0190511}, {1.301, 0.0210964}, {1.351, 0.0231891}, {1.401, 0.0253367},
{1.451, 0.0275466}, {1.501, 0.0298263}, {1.551, 0.032183}, {1.601, 0.0346238},
{1.651, 0.0371551}, {1.701, 0.0397824}, {1.751, 0.0425101}, {1.801, 0.0453409},
{1.851, 0.0482756}, {1.901, 0.0513128}, {1.951, 0.0544484}, {2.001, 0.0576762},
{2.051, 0.0609877}, {2.101, 0.0643727}, {2.151, 0.0678195}, {2.201, 0.0713163},
{2.251, 0.074851}, {2.301, 0.0784121}, {2.351, 0.081989}, {2.401, 0.0855722},
(2.451, 0.0891536}, {2.501, 0.0927262}, {2.551, 0.0962841}, {2.601, 0.0998226},
{2.651, 0.103338}, {2.701, 0.106827}, {2.751, 0.110287}, {2.801, 0.113718},
{2.851, 0.117116}, {2.901, 0.120482}, {2.951, 0.123814}, {3.001, 0.127113},
{3.051, 0.130378}, {3.101, 0.133608}, {3.151, 0.136805}, {3.201, 0.139968},
{3.251, 0.143097}, {3.301, 0.146192}, {3.351, 0.149255}, {3.401, 0.152284},
{3.451, 0.155281}, {3.501, 0.158247}, {3.551, 0.16118}, {3.601, 0.164083},
{3.651, 0.166955}, {3.701, 0.169796}, {3.751, 0.172608}, {3.801, 0.17539},
{3.851, 0.178143}, {3.901, 0.180868}, {3.951, 0.183565}, {4.001, 0.186234},
{4.051, 0.188877}, {4.101, 0.191492}, {4.151, 0.194081}, {4.201, 0.196644},
{4.251, 0.199182}, {4.301, 0.201695}, {4.351, 0.204183}, {4.401, 0.206647},
{4.451, 0.209087}, {4.501, 0.211504}, {4.551, 0.213897}, {4.601, 0.216268},
{4.651, 0.218617}, {4.701, 0.220944}, {4.751, 0.223249}, {4.801, 0.225533},
{4.851, 0.227796}, {4.901, 0.230039}, {4.951, 0.232261}, {5.001, 0.234464},
{5.051, 0.236647}, {5.101, 0.238811}, {5.151, 0.240956}, {5.201, 0.243082},
{5.251, 0.24519}, {5.301, 0.24728}, {5.351, 0.249352}, {5.401, 0.251407},
{5.451, 0.253444}, {5.501, 0.255465}, {5.551, 0.257469}, {5.601, 0.259456},
{5.651, 0.261428}, {5.701, 0.263383}, {5.751, 0.265323}, {5.801, 0.267247},
{5.851, 0.269157}, {5.901, 0.271051}, {5.951, 0.272931}, {6.001, 0.274796},
{6.051, 0.276646}, {6.101, 0.278483}, {6.151, 0.280306}, {6.201, 0.282115},
{6.251, 0.28391}, {6.301, 0.285693}, {6.351, 0.287462}, {6.401, 0.289218},
{6.451, 0.290962}, {6.501, 0.292693}, {6.551, 0.294412}, {6.601, 0.296118},
{6.651, 0.297813}, {6.701, 0.299495}, {6.751, 0.301166}, {6.801, 0.302825},
(6.851, 0.304473}, {6.901, 0.30611}, {6.951, 0.307736}, {7.001, 0.309351},
{7.051, 0.310955}, {7.101, 0.312548}, {7.151, 0.314131}, {7.201, 0.315703},
{7.251, 0.317265}, {7.301, 0.318817}, {7.351, 0.320359}, {7.401, 0.321892},
{7.451, 0.323414}, {7.501, 0.324927}, {7.551, 0.326431}, {7.601, 0.327925},
{7.651, 0.329409}, {7.701, 0.330885}, {7.751, 0.332352}, {7.801, 0.33381},
(7.851, 0.335259}, {7.901, 0.336699}, {7.951, 0.33813}, {8.001, 0.339554}}
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Show [LogPlot [{u[x]}, {x, 10A(-3), 10},
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PlotLegends - "Expressions", PlotRange -» All], ListLogPlot[merged]]

1k

0.100 ¢

0.010 ¢

0.001

10—4 -

10-5 L

1 n n n 1 n n n 1 n n n 1 n n n 1

2 4 6 8 10

Show[LogPlot [{u[x]}, {x, 10A(-3), 0.8},

PlotLegends -» "Expressions", PlotRange - All] ’ ListLogPlot[merged]]

108 L

104 L

1

- 0.765

1

0.770

1

0.775

1

0.780

1

0.785

1

0.790

1

0.795

1

0.800

(*try to fit with hiperbolic tangents)

h[x_] := cl*Tanh[c2 * (xAc3)] +c4 *xxAc5 +cb

fit = NonlinearModelFit[merged, h[x], {cl, ¢2, ¢3, c4, c5, c6}, x|

FittedModel | -0.156213+0.319384 x%3796%2 _0,201485 Tanh[1.06554 x°984876] | |

fit["AdjustedRSquared“] (*seems good, the drop is not perfect, but it shall dox)

0.999712

Printed by Wolfram Mathematica Student Edition



6 | InverseFunctionE(T).nb

Show[LogPlot[{fit[x]}, {x, 10A (-3), 10},
PlotLegends - "Expressions", PlotRange -» All], ListLogPlot[merged]]

1k

0.100

0.010

oy

0.001
10—4 L

105k

Show[LogPlot[{fit[x]}, {x, 10A (-3), 2},
PlotLegends - "Expressions", PlotRange -» All], ListLogPlot[merged]]

0.100 ¢
0.010

0.001

1074

105k

106k

h2[x_] := cl*Tanh[c2 * (xAc3) +c4] +c5

fit2 = NonlinearModelFit[merged, h2[x], {cl, c2, c3, c4, c5}, x]
: Overflow occurred in computation. >
: Overflow occurred in computation. >
: Overflow occurred in computation. >

: Further output of will be suppressed during this calculation. >

The step size in the search has become less than the tolerance prescribed by the PrecisionGoal
option, but the gradient is larger than the tolerance specified by the AccuracyGoal option.
There is a possibility that the method has stalled at a point that is not a local minimum. >

377.982 ]

FittedModel || 249.422-249.254 Tanh[57.9242 + )
10308,

Printed by Wolfram Mathematica Student Edition



InverseFunctionE(T).nb | 7

fit2 [ "AdjustedRSquared" ]

: Overflow occurred in computation. >
: Overflow occurred in computation. >

: Overflow occurred in computation. >

. Further output of will be suppressed during this calculation. >
0.656751

(x*it's probably fitting around the drop and forgetting the other pointsx)
(*we could weight them, but do we need to?x)
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(#still trying to fit p(e)*)

Clear[f, g, T, press, pressure, p, data, data2, data3,
data4, datab, data6, dataTl, dataT2, merged, h, fit, h2, £it2,
h3, £fit3, h4, £it4, h5, £it5, h6, £it6, h7, h8, £fit8, ss, e, ssfit]

£[x_] :=-0.14460764377951374 x*3-29179403782954 (1 , panh[27.911759831465123 (1-x)]) +
0.8528461795749493 (1 +Tanh[27.911759831465123 (-1+x)])

x2-032352696537285

(*» trace of energy-momentum tensor from SU(3) data =)

glx_] := £[x] /x
press[y_?NumberQ] := NIntegrate[g[x], {x, 0, ¥y}, Method -> "LocalAdaptive"|
pressure[T_] := (TA4) press[T] (xpressure from numerical integrationx)

T[e_] :=
-0.15621341243069656 +0.319384339937831" g0-379692013638506" _ 0 20148504091364955"
Tanh|[1.065539056023176  °-?8487617110598517] (,temperature in terms of energys)

pl[e_] :=pressure[Exp[T[e]]] (*pressure in terms of energyx)
data = Table[p[e], {e, 10A(-3), 3 *10A (-1), 5%10A(-3)1}];
data2 = Table[p[e], {e, 3 *10A(-1), 3 x*10A0, 5%x10A(-3)1}];
data3 = Table[p[e], {e, 3*10A0, 10A(2), 5%x10A(0)}]:

dataTl = Join[data, data2, data3];

data4 = Table[e, {e, 10A(-3), 3 *10A(-1), 5%*10A(-3)}]1;
data5 = Table[e, {e, 3 %*10A(-1), 3%*10A0, 5%x10A(-3)1}1]1;

data6 = Table[e, {e, 3%*10A0, 10A(2), 5%10A(0)1}]:

dataT2 = Join[data4, data5, data6];

Do
sow|
Flatten|[ReplacePart[{a, b}, {1 » Take[dataT2, {u}], 2 » Take[dataTl, {u}]

H
11

{u, 1, 621, 1}
] // Reap // Last;

merged = %[[1]];

hle_] :

(cl* (eAc2)) + (c3 % (end)) + (c4 »Tanh[c5 xe]) + (c6 x e)

fit = NonlinearModelFit [merged, hle],
{cl, c2, c3, c4, c5, c6}, e, MaxIterations » 10 000]

FittedModel || 0.173122e+0.00517911 224207 4112672 x 10 e*~0.312762 Tanh[0.5535 ¢] ||
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Show [LogLogPlot [fit[e], {e, 107 (-3), 1.009 104 (2)}, PlotLegends - "Expressions"],
ListLogLogPlot [merged]|, PlotRange - All]

100

0.01 |-
104 L

106 L

L L L
0.010 0.100 1 10 100

(*this is the best fit to the momentx)
h2[e_] := ((cl= (efc2)) + (c3 » (eN4)) + (c4 »Tanh[c5*e]) + (c6 xe)) Tanh[10A4 * (e-1)]

£it2 = NonlinearModelFit[merged, h2[e],
{cl, ¢c2, ¢c3, c4, c5, c6}, e, MaxIterations » 10 000]

FittedModel [ Tanh[10000 (-1+€)](0.165723 e +0.00551846 e2227%4 +1.13634 x 1075 e# - 0.271251 Tanh[0.70853 €]) ]

Show|[LogLogPlot[fit2[e], {e, 10A (-3), 1.009 x10A (2)}, PlotLegends - "Expressions"],
ListLogLogPlot [merged] , PlotRange » All]

100

10—4 L

L
L 0.010 0.100 1 10 100

h3[e_] :=
((cl#* (enc2)) + (c3 % (end)) + (c4 »Tanh[c5*e]) + (c6 xe)) Tanh[10A4 x (e-1)] + (c7 xe)

fit3 = NonlinearModelFit [merged, h3[e],
{cl, c2, ¢3, c4, ¢c5, c6, c7}, e, MaxIterations » 10 000]

FittedModel[

0.0184423 e +Tanh[10000 (-1 +&)] (0.448888 e +0.0504871 179379 + 1.20546 x 105 e* +5.87678 Tanh[0.069227 e]) | |
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Show [LogLogPlot [fit3[e], {e, 10A (-3), 1.009 %104 (2)}, PlotLegends - "Expressions"]|,
ListLogLogPlot [merged]|, PlotRange - All]

100

T n | n L n Lo n L
0.010 0.100 1 10 100

h4[e_] := ((clx (ehc2)) + (c3 = (eAd)) + (c4 Tanh[c5*e]) + (c6 xe)) Tanh[10A4 * (e-1)] +
(c7*e+c8xeNh(-3))

fit4 = NonlinearModelFit [merged, hdf[e],
{cl, ¢c2, ¢3, c4, ¢c5, c6, c7, c8}, e, MaxIterations -» 10 000]

Fitted_Model[

2.27022x107
-, +<21»e+Tanh[10000(-1+e)] (0.156454 e +0.00526725 e223833 + 23> e* -0.299621 Tanh[0.594053 €]) ]
e

Show[LogLogPlot[fit4[e], {e, 10A (-3), 1.009 »10A (2)}, PlotLegends - "Expressions"],
ListLogLogPlot [merged|, PlotRange - All]

100 -

104 -

L
0.001 0.010 0.100 1 10 100

h5[e_] := ((cl* (enc2)) + (c3 x (eNd)) + (c4d xe)) Tanh[10A4d x (e-1)] + (cB*xe+cb6bxeN(-1))
fit5 = NonlinearModelFit [merged, h5[e],
{cl, c2, c3, c4, c5, c6}, e, MaxIterations » 10 000]

5.13097x107°

FittedModel [ = +0.0354037 e+(0.00202089 e +0.0165757 e198421 +1.30073 x 10~° €#) Tanh[10 000 (-1 +€)] }

e
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Show [LogLogPlot [fit5[e], {e, 10A (-3), 1.009 % 10A (2)}, PlotLegends - "Expressions"]|,
ListLogLogPlot [merged]|, PlotRange - All]

100

L
10 100

L L
r 0.010 0.100

—_

hé[e_] := ((cl* (ehrc2)) + (c3 % (eNd)) + (c4dxe)) Tanh[10NA4 x (e-1)] +
(c5xe+cb*x (en(-2))) + (c7*e) Tanh[10A4 % (e-0.07)]

fit6 = NonlinearModelFit [merged, hé[e],
{cl, c2, c3, c4, c5, c6, ¢c7}, e, MaxIterations » 10 000]

6.78315x 10712

+0.0251497 e+ ]

FittedModel]| ~ o2

(0.00202447 e +0.0165759 e<19>,1.30073x107° e4) Tanh[«1>>]+0.0102489 e Tanh[10000 (-0.07 +e)]

£it6[x]

6.78315x 10712

X2

(0.00202447 x +0.0165759 x**?#*? + 1.30073 x 10 ® x*) Tanh[10000 (-1 +x)] +
0.0102489 x Tanh[10000 (-0.07 +x) ]

+0.0251497 x +

Show [LogLogPlot [fit6[e], {e, 10A (-3), 1.009 %104 (2)}, PlotLegends - "Expressions"],
ListLogLogPlot [merged] , PlotRange -» All]

0.001 -

L L
+0.001 0.010 0.100

L
10 100

—_

h9[e_] := ((cl* (efhc2)) + (c3 % (eNd)) + (c4 xe)) Tanh[10A4 % (e-1)] +
((c7%e) + (c8xeA (0.5)) Tanh[10A4 » (-0.07)])
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fit9 = NonlinearModelFit [merged, h9[e],
{cl, c2, c3, c4, c7, c8}, e, MaxIterations » 10 000]

FittedModel || 0.213529e+(-0.0338544 e+0.00645463 €218%02 +1,17414 x10° e#) Tanh[10000 (-1 + )] - 0.185036 % Tanh[10'

Show [LogLogPlot [fit9[e], {e, 10A (-3), 1.009 %104 (2)}, PlotLegends - "Expressions"],
ListLogLogPlot [merged] , PlotRange - All]

0.001 -

L
r0.001 0.010 0.100

10 100

—_

(xthis seems a good one, let's try to smooth the transitionsx)
h7[e_] := (2/ (L +Exp[-1 (e-20)])) -1
h7[x]

2

-1+

1+e20x

Plot[{h7[e], Tanh[10A4 % (e -10)], Tanh[0.8 » (e-10)]},
{e, 10A (-3), 1x10A2}, PlotRange—»All]

1.0

0.5

-1.0F

h8[e_] := (((cl#* (enc2)) + (c3 % (end)) + (cdxe)) * (2/ (L+Exp[-1%(e-1)])-1)) +
(c6xe+cT7* (en(-2))) + (c8 xe) Tanh[10A4 % (e-0.07)]
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fit8 = NonlinearModelFit [merged, h8[e],
{cl, c2, c3, c4, c5, c6, c7, c8}, e, MaxIterations -» 10 000]

The step size in the search has become less than the tolerance prescribed by the PrecisionGoal
option, but the gradient is larger than the tolerance specified by the AccuracyGoal option.
There is a possibility that the method has stalled at a point that is not a local minimum. >

Fitted_Model[

1.10317x107°
-—————-0252736 e+(~370980. e%9999% £ 370979, e+ 1.93956 x 107° e*) («<1>>) + 0.532744 e Tanh[10 000 (-0.07 +€)] ]
@

Show[LogLogPlot[fit8[e], {e, 10A (-3), 1.009 »10A (2)}, PlotLegends - "Expressions"],
ListLogLogPlot [merged|, PlotRange - All]

100 [

1,
0.01
1074 |-
1076 F

0.001 0.010 0.100 1 10 100
6.783153306196406 *A-12 }

test[e_] := - +0.02514966036755684" e +

e2

(0.002024471323836417 e +0.016575874026457587 (e (1.9842)) +
1.3007294150974632  xA-6 e*) % ((2/ (1 +Exp[-1 (e-1)])) -1) +
0.010248900088404221 e * ((2/ (L +Exp[-1 (e-0.07)])) -1)

Show[LogLogPlot[test[e], {e, 10A (-3), 1.009 x10A (2)}, PlotLegends - "Expressions"],
ListLogLogPlot [merged|, PlotRange - All]

100

0.01 |-

L
0.001 0.010 0.100 1 10 100

(x*let's try one more time to fit thisx)
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ClearAll[a, confl, confmax, a0l, £01, g, pym, elarge, steplarge, peff, diff, diffe, cn,
erl, ec, k, Nym, C1, C2, confmax2, a, e, £2, g2, C12, peff2, diff2, diffe2, g3, C13,
peff3, diff3, diffe3, g4, Cl4, peff4, diff4, diffed, g5, C15, peff5, diff5, diffe5,
g6, Cl6, peff6, diff6, diffe6, g7, C17, peff7, diff7, diffe7, g8, C18, peffs,
diff8, diffe8, g9, C19, peff9, diff9, diffe9, s, s2, s3, s4, s5, s6, s7, s8, s9, N1,

N2, N3, N4, N5, N6, N7, N8, N9, Amp, LAmp, merged, ColorList, bList, aux6, aux7]

k=0; (xdimensionlessx*)

confl = 10A (-20); (*MeVA(-1) )

a0l = (10A(-58))Nn(2/3); (xdimensionless*)
£01 = (2/3) *10A (20); (*MeVx)

gle_] :=Cl*Exp[-C2% (e/ec-1)A2/2]
elarge = 650 x ec;
steplarge[el_] := (1 +Tanh[el/ec]) /2

e )2 .10542207822587"
+

pym[e_] := (—0.0701780768934142‘ +0.012829768279227724" (—
ec

©1.1874523382499435 xA-6 e*

+

e 2.2
(0.0016223939423977366‘ (—) :

ec
0.018853186484192017 e

ec

e
] Tanh[O.12809510086441414‘ (0.45‘ - —)] -

ec ec

e
0.10893510953199945" Tanh[1.0802023944400028‘ (—0.71‘ + —)] +
ec

e \0.3°
(1.6557877362105378‘ +0.3864140819569308" (—) )
ec

e
Tanh[0.05613355687245168‘ (-0.01‘ + —)]) *
ec

steplarge [elarge - e] + (e/3) »steplarge [e - elarge]

peffe_, £_] :=pym[e] -3 +g[e] xf+Sart[2+cnxe/ (EA2+k)] * (eA(3/4)) +e/3
diff[e_, £_] := (e-3 xpeffe, £]) « ((EA2+k) /(2%e)) -k-£A2
diffe[e_, £_] := -3« (e+peff[e, £]) £

cn = ((4N[Pi] » (0.000670861 % 10A (-41))) /3); (+MeVA(-2)x)
erl =10A (91);
confmax = 10A15;

(#set of parameters we changex)

ec =erlx10A (-4);
C2 =100;
Cl=10A(5);

confmax2 = 2.9 *10A (-19);
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s = NDSolve|
{£2 ' [conf2] = diff[e[conf2], £2[conf2]], e'[conf2] == diffe[e[conf2], £2[conf2]],
£2 [confz] =a' [conf2] /a[confz] ’ a[confl] = all, f2[conf1] = £01, e[confl] == erl},
{f2[conf2] ’ e[confz], a[confz]}, {conf2, confl, confmax}, Method -» {Shooting}]

At conf2 == 2.992044298291134 «"~-19, step size is effectively zero; singularity or stiff system suspected. >

o 20 19
{{fZ [conf2] - InterpolatingFunction[ U CD)OTaItn. {{1|.><10 ,2.99x107}} } [conf2],
utput: scalar
. 20 -19
e[conf2] - InterpolatingFunction[ L gozna'tn' {{1IIX10 +2.99x107°} } [conf2],
utput: scalar
. 20 -19
alconf2] - Interpolatianunction[ J gomam. {{1IIX10 12.99x107}} } [conf2] }}
utput: scalar

a[conf2_] = a[conf2] /. s[[1]1]

A -20 -19
InterpolatingFunction{ J Domain: {1.x107*%, 2.99x 107} } [conf2]
Output: scalar
e[conf2_] = e[conf2] /. s[[1]]
e -20 -19
InterpolatingFunction[ L Domain: {{1.x107*?, 2.99x107}} } [conf2]
Output: scalar
£2[conf2_] = £2[conf2] /. s[[1]]
in- -20 -19
InterpolatingFunction{ U Domain: {{1.x107*?, 2.99x107}} } [conf2]
Output: scalar

N1 =Log[a[2.99 #+10A (-19)] /a[confl]]
8.6966
g2[e_] :=Cl2 xExp[-C2* (e/ec-1)A2/2]

peff2[e2_, £22_] :=

pym[e2] -3 xg2[e2] x£22 +Sqrt[2+cn+e2 / (£22A2+k)] » (e2A (3 /4)) +e2/3
diff2[e2_, £22_] := (e2-3 xpeff2[e2, £22]) # ((£2272+k) / (2 +e2)) -k - £22A2
diffe2[e2_, £22_] := -3 » (e2 +peff2[e2, £22]) » £22

Cl2 =10n4;

ClearAll[aZ, e2, f22, sz]
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s2 = NDSolve[{£22'[conf2] == diff2[e2[conf2], £22[conf2]],
e2'[conf2] == diffe2[e2[conf2], £22[conf2]], £22[conf2] == a2 ' [conf2] /a2[conf2],
a2[confl] =a01, £22[confl] == £01, e2[confl] = erl},
{f22[conf2] ' e2[conf2] , a2 [confz]}, {conf2, confl, confmax}, Method -» {Shooting}]

At conf2 == 3.017375529160673 «"~-19, step size is effectively zero; singularity or stiff system suspected. >

. o -20 -19
{{fZZ [conf2] -» InterpolatingFunction U Domain: {{1.x107*?, 3.02x107}) } [conf2],
- Output: scalar

Domain: {{1.x107%%, 3.02x107°}}

e2[conf2] > InterpolatingFunction[ L | [conf2],
Output: scalar :
i -20 o |,
a2[conf2] - InterpolatingFunction[ J Domain: {{1. x107, 3.02x 10"} [conf2] }}
Output: scalar .

a2[conf2_] = a2[conf2] /. s82[[1]]

o -20 -19
InterpolatingFunction{ J gOTa'tn' {{ll.X1O +3.02x107}) } [conf2]
utput: scalar

e2[conf2_] = e2[conf2] /. s2[[1]]

e -20 -19
InterpolatingFunction[ L Domain: {1.x107*%, 3.02x 107} } [conf2]
Output: scalar
£22[conf2_] = £22[conf2] /. s2[[1]]
in- -20 -19
InterpolatingFunction{ U Domain: {{1.x107*?, 3.02x107}} Mcoan}
Output: scalar

N2 = Log[a2[3.01+10A (-19)] /a2[confl]]
7.42975

peff3[e3_, £23_] :=

pym[e3] -3 +g3[e3] «£23 »Sqrt[2xcn«e3 / (£23A2+k)] » (e3A(3/4)) +e3/3
diff3[e3_, £23_] := (e3-3 »peff3[e3, £23]) « ((£2372+k) / (2xe3)) -k - £23A2
diffe3[e3_, £23_] := -3 » (e3 +peff3[e3, £23]) » £23

g3[e_] :=Cl3 xExp[-C2* (e/ec-1)A2/2]
Cl3 =10A3;

ClearAll[a3, e3, £23, s3]
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s3 = NDSolve[{£23 ' [conf2] == diff3[e3[conf2], £23[conf2]],
e3 '[conf2] == diffe3[e3[conf2], £23[conf2]], £23[conf2] == a3 '[conf2] /a3 [conf2],
a3[confl] =a01, £23[confl] == £01, e3[confl] = erl},
{f23[conf2] ' e3[conf2] , a3 [confz]}, {conf2, confl, confmax}, Method -» {Shooting}]

At conf2 == 3.0469975829703546 «"~-19, step size is effectively zero; singularity or stiff system suspected. >

. o -20 -19
{{f23 [conf2] -» InterpolatingFunction U Domain: {{1.x107*?, 3.05x 107} } [conf2],
- Output: scalar

Domain: {{1.x107%%, 3.05x107*°}}

e3[conf2] > InterpolatingFunction[ L | [conf2],
Output: scalar :
a0 -20 -19 B
a3 [conf2] - InterpolatingFunction{ J Domain: {{1. x107, 3.05x10"}} [conf2] }}
Output: scalar .

a3[conf2_] = a3[conf2] /. s3[[1]]

o -20 -19
InterpolatingFunction{ J gOTa'tn' {{ll.X1O +3.05x107}) } [conf2]
utput: scalar

e3[conf2_] = e3[conf2] /. s3[[1]]

e -20 -19
InterpolatingFunction[ L Domain: {1.x107*%, 3.05x 107} } [conf2]
Output: scalar
£23[conf2_] = £23[conf2] /. s3[[1]]
in- -20 -19
InterpolatingFunction{ U Domain: {{1.x107*?, 3.05x 107} Mcoan}
Output: scalar

N3 = Log[a3[3.04 +10A (-19)] /a3[confl]]
7.5012

peff4fed_, £24_] :=

pym[ed4] -3 xg4[ed] » £24 *Sqrt[z *cn*e4/ (f24l\2 +k)] * (edN(3/4)) +e4 /3
diff4[e4_, £24_] := (e4-3 xpeffd[ed, £24]) « ((£2472+k) / (2 xe4)) -k - £24A2
diffed[ed_, £24_]| := -3 » (e4 +peffd[ed, £24]) »£24

g4[e_] :=Cl4 xExp[-C2* (e/ec-1)A2/2]
Cl4 =101n2;

ClearAll[a4, ed4, £24, s4]
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s4 = NDSolve[{£24 '[conf2] == diff4[e4[conf2], £24[conf2]],
e4 '[conf2] == diffe4[e4[conf2], £24[conf2]], £24[conf2] == a4 ' [conf2] /a4 [conf2],
a4 [confl] =a01, £24[confl] == £01, e4[confl] = erl},
{f24[conf2] ' e4[conf2] , a4 [confz] }, {conf2, confl, confmax}, Method -» {Shooting}]

At conf2 == 3.083101487109392"«"-19, step size is effectively zero; singularity or stiff system suspected. >

. o -20 -19
{{f24 [conf2] -» InterpolatingFunction U Domain: {{1.x107*?, 3.08x107°}} } [conf2],
- Output: scalar

Domain: {{1.x107%%, 3.08 x107*°}}

ed[conf2] > InterpolatingFunction[ L | [conf2],
Output: scalar :
i -20 o |,
a4 [conf2] - InterpolatingFunction[ J Domain: {{1. x107, 3.08x10"}} [conf2] }}
Output: scalar .

a4[conf2_] = a4[conf2] /. s4[[1]]

Frevo -20 -19
InterpolatingFunction[ J (E;O:qa'tn' {{1|.><10 »3.08x107°} } [conf2]
utput: scalar

e4[conf2_] = e4[conf2] /. s4[[1]]

e -20 -19
InterpolatingFunction[ L Domain: {1.x107*%, 3.08x107}} } [conf2]
Output: scalar
£24[conf2_] = £24[conf2] /. s4[[1]]
in- -20 -19
InterpolatingFunction{ U Domain: {{1.x107*?, 3.08x 107} Mcoan}
Output: scalar

N4 = Log[a4[3.08 + 10A (-19)] /a4[confl]]
8.33762

peff5[e5_, £25_] :=

pym[e5] -3 +g5[e5] « £25 x Sqrt[2xcn#e5 / (£25A2+k)] » (e5A (3/4)) +e5/3
diff5[e5_, £25_] := (e5-3 xpeff5[e5, £25]) « ((£25A2+k) / (2xe5)) -k - £25A2
diffe5[e5_, £25_] := -3 » (e5 +peff5[e5, £25]) » £25

g5[e_] :=Cl5 xExp[-C2* (e/ec-1)A2/2]
Cl5 =10A1;

ClearAll[aS, e5, £25, 55]
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s5 = NDSolve[{£25 ' [conf2] == diff5[e5[conf2], £25[conf2]],
e5'[conf2] == diffe5[e5[conf2], £25[conf2]], £25[conf2] == a5 ' [conf2] /a5[conf2],
a5[confl] =a01, £25[confl] == £01, e5[confl] = erl},
{f25[conf2] ' e5[conf2] ’ a5[conf2]}, {conf2, confl, confmax}, Method -» {Shooting}]

At conf2 == 3.130569370187667 «"~-19, step size is effectively zero; singularity or stiff system suspected. >

. o -20 -19
{{fZS [conf2] -» InterpolatingFunction U Domain: {{1.x107*?, 3.13x107}) } [conf2],
- Output: scalar

Domain: {{1.x107%%, 3.13x107°}}

e5[conf2] > InterpolatingFunction[ L | [conf2],
Output: scalar :
a0 -20 -19 B
a5[conf2] - InterpolatingFunction{ J Domain: {{1. x107, 3.13x 10"} [conf2] }}
Output: scalar .

a5[conf2_] = a5[conf2] /. s5[[1]]

Frevo -20 -19
InterpolatingFunction[ J (E;O:qa'tn' {{1|.><10 »3.13x107°} } [conf2]
utput: scalar

e5[conf2_] = e5[conf2] /. s5[[1]]

e -20 -19
InterpolatingFunction[ L Domain: {1.x107%%, 3.13x 107} } [conf2]
Output: scalar
£25[conf2_] = £25[conf2] /. s5[[1]]
in- -20 -19
InterpolatingFunction{ U Domain: {{1.x107*?, 3.13x 107} Mcoan}
Output: scalar

N5 = Log[a5[3.13 # 10A (-19)] /a5[confl]]
10.0623

peff6[e6_, £26_] :=

pym[e6] -3 +g6[e6] « £26 x Sqrt[2xcn+e6 / (£26A2+k)] » (e6A (3/4)) +e6/3
diff6[e6_, £26_] := (e6-3 xpeff6[e6, £26])  ((£2672+k) / (2+e6)) -k - £26A2
diffe6[e6_, £26_| := -3 » (e6 +peff6[e6, £26]) » £26

g6[e_] :=Clé xExp[-C2* (e/ec-1)A2/2]
Cl6 =10M0;

ClearAll[aG, e6, £26, s6]
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$6 = NDSolve[{£26 ' [conf2] == diff6[e6[conf2], £26[conf2]],
e6 ' [conf2] == diffe6[e6[conf2], £26[conf2]], £26[conf2] == a6 ' [conf2] /a6 [conf2],
a6[confl] =a01, £26[confl] = £01, e6[confl] = erl},
{f26[conf2] ' e6[conf2] ’ a6[conf2]}, {conf2, confl, confmax}, Method -» {Shooting}]

At conf2 == 3.206684058172536 «"~-19, step size is effectively zero; singularity or stiff system suspected. >

. o -20 -19
{{f26 [conf2] -» InterpolatingFunction U Domain: {{1.x107*?, 3.21x107}} } [conf2],
- Output: scalar

Domain: {{1.x107%%, 3.21x107°}}

e6b[conf2] > InterpolatingFunction[ L | [conf2],
Output: scalar :
a0 -20 -19 B
a6 [conf2] - InterpolatingFunction{ J Domain: {{1. x107, 3.21x 10~} [conf2] }}
Output: scalar .

a6[conf2_] = a6[conf2] /. s6[[1]]

Frevo -20 -19
InterpolatingFunction[ J (E;O:qa'tn' {{1|.><10 +3.21x107°} } [conf2]
utput: scalar

e6[conf2_] = e6[conf2] /. s6[[1]]

e -20 -19
InterpolatingFunction[ L Domain: {1.x107%%, 3.21x 107} } [conf2]
Output: scalar
£26 [conf2_] = £26 [conf2] /. s6[[1]]
in- -20 -19
InterpolatingFunction{ U Domain: {{1.x107*?, 3.21x107}} Mcoan}
Output: scalar

aux6[e6_, £26_] := -3 xg6[e6] x£26 +Sqrt[2+cnxe6 / (£26A2+Kk)] » (e6A (3/4));
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Plot[{pym[eG [confz] ] , peff6 [e6 [confz] , £26 [confz] ] ,
e6[conf2] /3, aux6[e6[conf2], £26[conf2]]},
{confz, confl, confmaxz}, PlotLegends -» "Expressions",
AxesLabel - {ConfTime, pym}, AxesStyle » Black, ImageSize -» Large]

pym
5x1087 [
4,(1087;
peff6
2x1087 |- eb(con
| 3
[ —— auxb
1x10%7
— N ConfTime
1.x1071° 1.5x\0°"° 2.x1071° 2.5x1071°
_1x1087
LogPlot[{peffG [e6 [confz] , £26 [confz] ] , —aux6 [e6 [confz] , £26 [confz] ] },
{confz, confl, confmaxz}, PlotLegends -» "Expressions",
AxesLabel - {cOnfTime, pym}, AxesStyle » Black, ImageSize - Large]
pym
10110,
1
1060;
1010,
L — peff6é
I —aux
10-40;
10—90;
n n n 1 n n n n 1 n n n n 1 n n n n 1 n n n n 1 n n n n ConfTime
1010 | 5.x10-2 1.x10-19 1.5%10-1° 2.x10-10 2.5%x10-1°
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N6 = Log[a6[3.20 104 (-19)] /a6 [confl]]
7.64595

peff7[e7_, £27_] :=

pym[e7] -3 #g7[e7] « £27 » Sart[2xcn+e7 / (£27A2+k)] » (e7A (3/4)) +e7/3
Aiff7[e7_, £27_] := (e7-3 xpeff7[e7, £27]) # ((£27A2+k) / (2xe7)) -k - £27A2
diffe7[e7_, £27_] := -3 » (e7 +peff7[e7, £27]) » £27

g7[e_] := C17 «Exp[-C2 % (e /ec - 1) A2 /2]
C17 = 10A (1) ;
ClearAll[a7, e7, £217, s7]

s7 = NDSolve[{f27 ' [conf2] =diff7 [e7 [confz] , £27 [confz] ] ’
e7'! [conf2] =diffe7 [e7 [confz] , £27 [conf2] ] , £27 [confz] =a7' [confz] /a7 [confz] ,
a7[confl] =a01, £27[confl] == £01, e7[confl] = erl},
{f27[conf2] P e7[conf2] P a7[conf2]}, {confz, confl, confmax}, Method -» {Shooting}]

At conf2 == 11085.070537421268", step size is effectively zero; singularity or stiff system suspected. >

. -20
{{f27 [conf2] - InterpolatingFunction U gozna\tn. {{1I.><10 »11100.} [conf2],
: utput: scalar .

L 20
e7[conf2] —» InterpolatingFunction{ L goTaLn' {{1|'x10 »11100.}} J [conf2],
utput: scalar

A -20
a7[conf2] - InterpolatingFunction{ J go:wtn. {{ll.xlo ,11100.}} } [conf2] }}
utput: scalar

a7[conf2_] = a7[conf2] /. s7[[1]]

. -20
InterpolatingFunction[ J CD)OTaItn. {{1|.><10 »11100.} } [conf2]
utput: scalar

e7[conf2_] = e7[conf2] /. s7[[1]]

. 20
InterpolatingFunction[ L CD)OTaItn. {{1I'x10 ,11100.}} } [conf2]
utput: scalar

£27[conf2_] = £27[conf2] /. s7[[1]]

Domain: {{1.x1072°, 11100.}}

| [conf2]
Output: scalar

InterpolatingFunction’ U

peff7[e7[1.6 % 10A (-19)], £27[1.6 x10A (-19)1]
~-3.6887x10°%
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LogPlot[{peff7[e7[conf2], f27[conf2]]}, {confz, confl, confmaxz},
PlotLegends-e"Expressions“,AxesLabel-e{ConfTime,pym},
AxesStyle » Black, ImageSize » Large, PlotRange - All]

pym

10%

1087

1084

ConfTime

P T S S S S S B
5.x10-20 1.x1071° 1.5x1071° 2.x1071° 2.5x1071°

N7

Log[a7[1.1%10A (4)] /a7[confl]]
58.3699

Nextra = Log[a7[2 %104 (-19)] /a7[confl]]
2.38074

(*the peak is not the responsible for inflationx)

aux7[e7_, £27_] := -3 xg7[e7] » £27 »Sart[2xcnxe7 / (£27A2+k)] » (e7A (3/4));
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LogPlot[{pym[e7 [confz] ] , peff7 [e7 [confz] , £27 [confz] ] , e’ [confz] /3},
{confz, confl, confmaxz}, PlotLegends -» "Expressions",
AxesLabel - {ConfTime, pym}, AxesStyle » Black, ImageSize -» Large, PlotRange - All]

pym
1090 -
1070 I
— pym(
1050 peff7
L e7(con
3
1030 [
1010 \\
n n n 1 n n n n 1 n n n n 1 n n n n 1 n n n n 1 n n n n ConfTime
- 5.x10-20 1.x1071° 1.5x107"° 2.x1071° 2.5%x1071°

LogPlot [{-peff7[e7[conf2], £27[conf2]], -aux7[e7[conf2], £27[conf2]]},
{conf2, confl, confmax2}, PlotLegends - "Expressions",
AxesLabel - {ConfTime, pym}, AxesStyle » Black, ImageSize -» Large, PlotRange - All]

pym
10100 [
1k
[ — —peff
10-100 )
[ —aux
10-200
10-300 [
[ L L L L L L L L L L L L L L L L L L L L L L L L L L L L ConfTime
F 5.x1020 1.x1071° 1.5x1071° 2.x1071° 2.5%x1071°
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LogPlot[{—aux7 [e7 [confz] , £27 [confz] ] , —aux6 [e6 [confz] , £26 [conf2] ] },
{conf2, confl, confmax2}, PlotLegends - "Expressions",
AxesLabel -» {ConfTime, pym}, AxesStyle » Black, ImageSize -» Large, PlotRange —» All]

pym
10100
1|
— —aux
10—100
—auxi|
10—200
107300
T T T S L — ConfTime
5.x10720 1.x10719 1.5x1071° 2.x10719 2.5%x1071°

c1earA11[a8, e8, £28, se]

peff8[e8_, £28_] :=

pym[e8] -3 xg8[e8] x£28 x Sqrt[2+cn+e8 / (£28A2+k)] » (e8A(3/4)) +e8/3
diff8[e8_, £28_] := (e8-3 xpeff8[e8, £28]) « ((£2872+k) / (2 e8)) -k - £28A2
diffe8[e8_, £28_] := -3 » (e8 +peff8[e8, £28]) » £28

g8[e_] :=Cl8 xExp[-C2* (e/ec-1)A2/2]
Cl8 =10A (-2);

s8 = NDSolve[{£28 ' [conf2] == diff8[e8[conf2], £28[conf2]],
e8! [conf2] == diffe8 [e8 [confz] , £28 [confz] ] , £28 [confz] = a8’ [confz] /a8 [confz] ,
a8[confl] = a01, £28[confl] = £01, e8[confl] == erl},
{f28[conf2] ’ e8[conf2] ’ a8[conf2]}, {conf2, confl, confmax}, Method -» {Shooting}]

At conf2 == 11335.16812174941", step size is effectively zero; singularity or stiff system suspected. >

- Are -20 4
{{f28 [conf2] - InterpolatingFunction U Domain: {{1.x107*?, 1.13x10%)} } [conf2],
- Output: scalar
[ -20 4 .
e8[conf2] - InterpolatingFunction{ L DS {{1'x10 »1.13x10 }} [conf2],
Output: scalar -
. -20 4 B
a8[conf2] -» InterpolatingFunction{ J D2l ik {{1'x10 »113x10 }} [conf2] }}
Output: scalar -
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a8[conf2_] = a8[conf2] /. s8[[1]]

ine -20 4
InterpolatingFunction[ J (E))O:qaltn. {{1I.X1O »1.13x10%) } [conf2]
utput: scalar

e8[conf2_| = e8[conf2] /. s8[[1]]

Ho -20 4
InterpolatingFunction[ L Domain: {{1.x107, 1.13x10%}} } [conf2]
Output: scalar
£28[conf2_] = £28[conf2] /. s8[[1]]
o -20 4
InterpolatingFunction[ U Domain: {{1.x107*?, 1.13x10%)} J [conf2]
Output: scalar

N8 = Log[a8[1.13 +10A (4)] /a8[confl]]
59.2532

LogPlot[{pym[eS [confz] ] , peff8 [e8 [confz] , £28 [confz] ] , e8 [confz] /3},
{confz, confl, 3.2 %10A (-19) }, PlotLegends -» "Expressions",

MultipleSameEoS.nb | 13

AxesLabel - {ConfTime, pym}, AxesStyle » Black, ImageSize -» Large, PlotRange - All]

pym

1090 f=

1070

10%0

10%

1010

—

ConfTime

1 1 I I 1 1 1 1 1 1 I 1 I I 1 1 1 I I 1 1 1 1 1 1 1 1 I
5.x10720 1.x1071° 1.5%x1071° 2.x1071° 2.5x1071° 3.x1071°
ClearAll[aQ, e9, £29, 59]

peff9[e9_, £29_] :=

pym[e9] -3 +g9[e9] « £29 »Sqrt[2xcn+e9 / (£2972 +k)] » (e9A (3/4)) +e9 /3
diff9[e9_, £29_] := (e9 -3 xpeff9[e9, £29]) * ((£2972+k) / (2+e9)) -k - £29A2

diffe9[e9_, £29_] := -3 » (e9 +peff9[e9, £29]) » £29

g9[e_] :=Cl9 xExp[-C2* (e/ec-1)A2/2]
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Cl9 =10A (-3);

s9 = NDSolve[{£29 ' [conf2] == diff9[e9[conf2], £29 [conf2]],
e9!’ [conf2] == diffe9 [e9 [confz] , £29 [confz]], £29 [confz] =a9" [confz] /a9 [confz] ,
a9[confl] =a01, £29[confl] = £01, e9[confl] == erl},
{f29[conf2] ’ e9[conf2] , ag [confz]}, {confz, confl, confmax}, Method -» {Shooting}]

At conf2 == 11354.965101854486", step size is effectively zero; singularity or stiff system suspected. >

i -20
{{f29 [conf2] - InterpolatingFunction U goina\tn. {{II.X10 »11400.1 [conf2],
: utput: scalar .

T -20
e9[conf2] - InterpolatingFunction{ L go:‘a't”' {{1|'x10 »11400.}} } [conf2],
utput: scalar

Ao -20
a9 [conf2] - InterpolatingFunction{ J (E))oinmtn. {{1|.><10 ,11400.}} } [conf2] }}
utput: scalar

a9[conf2_] = a9[conf2] /. s9[[1]]

Domain: {{1.x107%°, 11400.}}

InterpolatingFunction conf2
p g { J Output: scalar } : ]
e9[conf2_] = e9[conf2] /. s9[[1]]
A -20
InterpolatingFunction[ L Domain: {{1.x107*°, 11400.}} } [conf2]
Output: scalar
£29[conf2_] = £29[conf2] /. s9[[1]]
e -20
InterpolatingFunction’ U Domain: {1.x107%, 11400} ‘ [conf2]
Output: scalar

N9 = Log[a9[1.13 x10A (4)] /a9 [confl]]
58.8067
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LogPlot [{peff9d[e9[conf2], £29 [conf2]],
peff8[e8[conf2], £28[conf2]], peff7[e7[conf2], £27[conf2]],
peff6[e6[conf2], £26 [conf2]], peff5[e5[conf2], £25[conf2]],
peff4[e4[conf2], f24[conf2]], peff3[e3[conf2], f23[conf2]],
peff2[e2[conf2], £22[conf2]], peff[e[conf2], £2[conf2]]},
{conf2, confl, confmax2}, PlotLegends - SwatchLegend|
{c1, ci12, c13, ci14, ci5, ci16, C17, C18, C19}, LegendLabel » "B=100, A="],
AxesLabel -» {ConfTime, Log[PEff]}, AxesStyle » Black, ImageSize-aLarge]

log(PEF)

109 B=100, A:
10000t
10000
1000
100

10

1087

H O I EEEEEN

1

L
10
4
100
4

84 |
10 1000

PR T S S S SR B S ! . [ . P I P S R
5.x10°%0 1.x1071° 1.5x1071° 2.x1071° 2.5x1071°

ConfTime

(*Export[“peff.PDF“,%]*)

(*#:0%)
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LogLogPlot[{e9[conf2] /ec, e8[conf2] /ec, e7[conf2] /ec, e6[conf2] / ec,
e5[conf2] /ec, e4[conf2] /ec, e3 [conf2] /ec, e2[conf2] /ec, e[conf2] /ec},
{conf2, confl, confmaxz}, PlotLegends - SwatchLegend[
{c1, c12, c13, cl4, c15, c16, C17, C18, C19}, LegendLabel » "B=100, A="],
AxesLabel - {Log[ConfTime|, Log[Energy / Ec]}, AxesStyle » Black, ImageSize - Large]

Energy
lo (—)
9 Ec

104
B=100, A:
10000t
10000
1000
100

10

1000 |

100 |-

1

L
10
=4
100
-1

H 0 I EEEENEN

1000

0.1}

log(ConfTime)

L | L L L |
5.x10"20 1.x1071°

(#Export["e.PDF", %] *)
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ParametricPlot[{{Log[peff[e[conf2], £2[conf2]]], Log[e[con£f2] /ec]},

{Log[peffz [e2 [conf2] , £22 [conf2] ] ] ’ Log[e2 [confz] /ec]},
{Log[peff3 [e3 [conf2] , f23[ ]] , Log[e3 [confz] /ec]},
{Log[peff4[e4[conf2], f24[conf2]]], Log[e4[conf2] /ec]},
{Log[peffS[eS[coan], f25[ ]], Log[e5[conf2] /ec]},
{Log[peffG[eG[coan], f26[ ]], Log[e6[conf2] /ec]},
{Log[peff7[e7[conf2], f27[conf2]]], Log[e7[conf2] /ec]},
{Log[peffS[eS[confz], f28[conf2]]], Log[e8[conf2] /ec]},
{Log[peff9 [e9 [conf2] , £29 [confz] ] ] ’ Log[e9 [confz] /ec] }},

{conf2, confl, confmax2}, PlotRange - All, AxesLabel - {Log[peff], Log[Energy /Ec]},

PlotLegends -» SwatchLegend[{Cl, cl2, c13, ci14, ci15, Cc16, C17, C18, C19},
LegendLabel -» "B=100, A="], AxesStyle » Black, ImageSize - Large]

Energy
lo (—)
9 Ec

8 B=100, A:
I 100 00!
10000
1000
100
Al 10

1

10
a1
100

.
—— A 1000
210

195 200 205

2+

(+Export ["ExPeff.PDF", %] *)

Nym = {N1, N2, N3, N4, N5, N6, N7, N8, N9};
Amp = {C1, Cc12, c13, c14, cl15, Cc16, C17, C18, C19};
LAmp = Logl0[Amp];
Do [
sow|
Flatten|[ReplacePart[{a, b}, {1 » Take[LAmp, {u}], 2 » Take[Nym, {u}]

H
11

{u, 1, Length[Nym], 1}
] // Reap // Last;
merged = %[[1]];

ColorList = {Blue, Blue, Blue, Blue, Blue, Blue, Green, Blue, Blue};
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bList = {#} & /@merged

{{{5, 8.6966}}, {{4, 7.42975}}, {{3, 7.5012}}, {{2, 8.33762}}, {{1, 10.0623}},
{{0, 7.64595}}, {{-1, 58.3699}}, {{-2, 59.2532}}, {{-3, 58.8067}}}

ListPlot[bList, AxesLabel - {Log [Ampl] , NEfolds},
AxesStyle » Black, PlotStyle » ColorList, ImageSize - Large]

NEfolds

° L 60 7
50 —
40
30 —
20 —
10‘; ° . . . o

- ‘ ‘ I ‘ ‘ \ : \ ‘ ‘ " log(Ampl)

Export ["Nl .pdf", 95]
N1.pdf

(x»contar tempo q fica negativa a pressao e esperar power law=
linha reta num grafico loglogx)

(x»variar amplitude ao redor do ponto A=10A3x)

(xendireitar casos k=1 e k=-1, dimensdes e condigdes iniciaisx)
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(xgraph w multiple lines changing Bx*)

ClearAll[a, confl, confmax, a0l, £01, g, pym, e, elarge, steplarge,

peff, diff, diffe, cn, erl, ec, k, confmax2, Nym, C1, C2, merged, s,

N1, £2, g2, peff2, diff2, diffe2, g3, peff3, diff3, diffe3, g4, peff4,
diff4, diffe4, g5, peff5, diff5, diffe5, g6, peff6, diff6, diffe6, g7,
peff7, diff7, diffe7, g8, peff8, diff8, diffe8, g9, peff9, diff9, diffe9]

k =0; (xdimensionlessx*)

confl = 10A (-20) ; (*MeVA (-1) *)

a0l = (10A(-58))A(2/3); (*dimensionless*)
£01 = (2/3) *10A (20); (*MeVx)

gle_] :=Cl*Exp[-C2x% (e/ec-1)A2/ 2]
elarge = 650 x ec;
steplarge[el_] := (1+Tanh[el/ec]) /2

e )2 .10542207822587"
+

pym[e_] := (—0.0701780768934142‘ +0.012829768279227724" (—
ec

1.1874523382499435 xA-6 e

+

e \2.2°
(0.0016223939423977366 ) (—)
ec

0.018853186484192017 e

ect

e
] Tanh[O.12809510086441414‘ (0.45‘ - —)] -

ec ec

e
0.10893510953199945" Tanh[l.0802023944400028‘ (—0.71‘ + —)] +
ec

e \0.3°
(1.6557877362105378‘ +0.3864140819569308" (—) )
ec

e
Tanh[o.05613355687245168‘ (—0.01‘ + _)]) *
ec
steplarge[elarge - e] +(e/3) * steplarge[e - elarge]

peffle_, £_] :=pym[e] -3 +g[e] xfxSart[2xcnxe/ (EA2+k)] * (eA(3/4)) +e/3
e £_] (e -3 xpeffe, f])*((fl\2+k)/(2*e))—k—fl\2
diffe[e_, £_] := -3+ (e+pefffe, £f]) £

cn = ((4N[Pi] % (0.000670861 % 10A (-41))) /3); (+MeVA (-2)*)
erl =10A(91);
confmax = 10A15;

(»set of parameters we changex)

ec

erl «*10A (-4);

Cl

107 (2);
confmax2 =2.9 %*10A (-19);

€2 = 10A (5);
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s = NDSolve|
{£2 ' [conf2] = diff[e[conf2], £2[conf2]], e'[conf2] == diffe[e[conf2], £2[conf2]],
f2[conf2] =a' [confz] /a[confz], a[confl] =all, f2[conf1] = £f01, e[confl] == erl},
{£2[conf2], e[conf2], a[conf2]}, {conf2, confl, confmax}, Method - {Shooting}]

NDSolve::ndsz :
At conf2 == 11357.123406873614", step size is effectively zero; singularity or stiff system suspected. >

A -20
{{fz [conf2] - InterpolatingFunction{ U CD)OTaItn. {{1|.><10 ,11400.}} } [conf2],
utput: scalar

i -20
el[conf2] - InterpolatingFunction{ L Domain: {{1.x107, 11400.} } [conf2],
Output: scalar
i -20
a[conf2] -» InterpolatingFunction [ J Domain: {{1.x10%?, 11400.}} } [conf2] }}
Output: scalar

a[conf2_] =a[conf2] /. s[[1]]

Ao -20
InterpolatingFunction[ J gozqa'tn' {{1|.><10 ,11400.}} } [conf2]
utput: scalar

e[conf2_] = e[conf2] /. s[[1]]

Domain: {{1.x1072°, 11400.}}

InterpolatingFunction conf?2
P < { L Output: scalar } [ ]
£2[conf2_] = £2[conf2] /. s[[1]]
in- -20
InterpolatingFunction[ U Domain: {{1.x107*?, 11400.}} }[coan]
Output: scalar
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Plot[{pym[e[confz] ] , Log [peff [e[confz] , £2 [confz] ] ] , Log[e[confz] /3] },
{confz, confl, 1.1%10 /\4}, PlotLegends - "Expressions",

AxesLabel -» {ConfTime, pym}, AxesStyle » Black, ImageSize - Large, PlotRange - All]

pym

60 -

401

20 -

L L L L L ConfTime
2000 4000 6000 8000 10000

=20+

g2[e_] :=Clx*Exp[-C22* (e/ec-1)A2/2]

peff2[e2_, £22_] :=

pym[e2] -3 +g2[e2] »£22 »Sqrt[2xcn*e2 / (£22A2+k)] » (e2A (3/4)) +e2/3
diff2[e2_, £22_] := (e2-3 »peff2[e2, £22]) * ((£2272+k) / (2%e2)) -k - £22A2
diffe2[e2_, £22_] := -3 » (e2 +peff2[e2, £22]) » £22

C22 =10Mn4;

c1earA11[a2, e2, £22, sz]
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s2 = NDSolve[{£22'[conf2] == diff2[e2[conf2], £22[conf2]],
e2'[conf2] == diffe2[e2[conf2], £22[conf2]], £22[conf2] == a2 ' [conf2] /a2[conf2],
a2[confl] =a01, £22[confl] == £01, e2[confl] = erl},
{f22 [conf2] , €2 [confz] , a2 [confz] }, {conf2, confl, confmax}, Method -» {Shooting}]

At conf2 == 3.297375020781971 «"~-19, step size is effectively zero; singularity or stiff system suspected. >

{{fZZ [conf2] - InterpolatingFunction:

e2[conf2] - InterpolatingFunction[

L

az2[conf2] -» InterpolatingFunction[

_J

a2[conf2_] = a2[conf2] /. s82[[1]]

J

InterpolatingFunction{ o :
utput: scalar

e2[conf2_] = e2[conf2] /. s2[[1]]

-

InterpolatingFunction{ o I
utput: scalar

£22[conf2_] = £22[conf2] /. s2[[1]]

U

InterpolatingFunction{ Outout |
utput: scalar

U

Domain: {{1.x1072°, 3.3x107°}}

Domain: {{1.x1072°, 3.3x1079}}

Domain: {{1.x1072°, 3.3x107%9}}

Domain: {{1.x1072, 3.3x1079}}

| [conf2],
Output: scalar

Domain: {{1.x107%°, 3.3x107'°}}

| [conf2],
Output: scalar

Domain: {{1.x107%°, 3.3x107'°}}
Output: scalar

}[conf21}}

| [conf2]

| [conf2]

| [conf2]
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Plot[{pym[ez [confz] ] , peff2 [e2 [conf2] , £22 [confz] ] , e2 [confz] /3},
{confz, confl, 3.2 %10A (-19) }, PlotLegends - "Expressions",
AxesLabel - {ConfTime, pym}, AxesStyle » Black, ImageSize - Large]

pym

8x1087 |-
6x10%7 -

» — pym(

I eff2
4x1087 |- P

L e2(con

L 3
2x 1087 [

L L L L L ConfTime
| 1.x10719 1.5x10719 2.x10719 25%x10°1° 3.x1071°

peff3[e3_, £23_] :=

pym[e3] -3 +g3[e3] «£23 »Sqrt[2xcnxe3 / (£23A2+k)] » (e3A(3/4)) +e3/3
diff3[e3_, £23_] := (e3-3 »peff3[e3, £23]) * ((£2372+k) / (2#e3)) -k -£23A2
diffe3[e3_, £23_] := -3 » (e3 +peff3[e3, £23]) »£23

g3[e_] :=Cl*xExp[-C23 x (e/ec-1)A2/2]
C23 =10A3;

c1earA11[a3, e3, £23, s3]
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s3 = NDSolve[{£23 ' [conf2] == diff3[e3[conf2], £23[conf2]],
e3 '[conf2] == diffe3[e3[conf2], £23[conf2]], £23[conf2] == a3 '[conf2] /a3 [conf2],
a3[confl] =a01, £23[confl] = £01, e3[confl] = erl},
{f23 [conf2] , €3 [confz] , a3 [confz] }, {conf2, confl, confmax}, Method -» {Shooting}]

At conf2 == 3.2394828304398226 «"~-19, step size is effectively zero; singularity or stiff system suspected. >

{{f23 [conf2] - InterpolatingFunction:

e3[conf2] - InterpolatingFunction[

.

a3 [conf2] -» InterpolatingFunction[

_J

a3[conf2_] = a3[conf2] /. s3[[1]]

J

InterpolatingFunction{ o :
utput: scalar

e3[conf2_] = e3[conf2] /. s3[[1]]

-

InterpolatingFunction{ o I
utput: scalar

£23[conf2_] = £23[conf2] /. s3[[1]]

U

InterpolatingFunction{ o |
utput: scalar

U

Domain: {{1.x107%°, 3.24x107*°}}

Domain: {{1.x1072°, 3.24x1071°}}

Domain: {{1.x1072°, 3.24x1071°}}

Domain: {{1.x1072°, 3.24x1071°}}

} [conf2],
Output: scalar
Domain: {{1.x107%°, 3.24x107%}} |} [conf2]
Output: scalar ) ,
Domain: {{1.x107%°, 3.24x107%}} |} [conf2] }}
Output: scalar .

| [conf2]

| [conf2]

| [conf2]
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Plot[{pym[e3 [confz] ] , peff3 [e3 [conf2] , £23 [confz] ] , e3 [confz] /3},
{confz, confl, 3.2 %10A (-19) }, PlotLegends - "Expressions",
AxesLabel - {ConfTime, pym}, AxesStyle » Black, ImageSize - Large]

pym

1x10%8 -
8x 1087 [
6 x 1087 [

. — pym(

L peff3
4x1087 |- e3d(con

L 3
2x 1087 [

L L L L L ConfTime
| 1.x10719 1.5x1071? 2.x10719 2.5x10719 3.x10719

peffdfed_, £24_] :=

pym[e4] -3 +g4[ed] »f24 »Sqrt[2xcnxed / (£2472+k)] » (e4A (3/4)) +ed /3
diffd[e4_, £24_] := (e4 -3 »peffd[ed, £24]) * ((£2472+k) / (2+e4)) -k -£24A2
diffed[ed_, £24_] := -3 « (e4 +peffa[ed, £24]) »£24

g4[e_] :=ClxExp[-C24x (e/ec-1)NA2/2]
C24 =10A2;

c1earA11[a4, e4, £24, s4]
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s4 = NDSolve[{£24 '[conf2] == diff4[e4[conf2], £24[conf2]],
e4 '[conf2] == diffe4[e4[conf2], £24[conf2]], £24[conf2] == a4 ' [conf2] /a4 [conf2],
a4 [confl] =a01, £24[confl] == £01, e4[confl] = erl},
{f24[conf2] ' e4[conf2] , a4 [confz] }, {conf2, confl, confmax}, Method -» {Shooting}]

At conf2 == 3.083101487109392"«"-19, step size is effectively zero; singularity or stiff system suspected. >

. o -20 -19
{{f24 [conf2] -» InterpolatingFunction U Domain: {{1.x107*?, 3.08x107°}} } [conf2],
- Output: scalar

Domain: {{1.x107%%, 3.08 x107*°}}

ed[conf2] > InterpolatingFunction[ L | [conf2],
Output: scalar :
i -20 o |,
a4 [conf2] - InterpolatingFunction[ J Domain: {{1. x107, 3.08x10"}} [conf2] }}
Output: scalar .

a4[conf2_] = a4[conf2] /. s4[[1]]

Frevo -20 -19
InterpolatingFunction[ J (E;O:qa'tn' {{1|.><10 »3.08x107°} } [conf2]
utput: scalar

e4[conf2_] = e4[conf2] /. s4[[1]]

e -20 -19
InterpolatingFunction[ L Domain: {1.x107*%, 3.08x107}} } [conf2]
Output: scalar
£24[conf2_] = £24[conf2] /. s4[[1]]
in- -20 -19
InterpolatingFunction{ U Domain: {{1.x107*?, 3.08x 107} Mcoan}
Output: scalar

peff5[e5_, £25_] :=

pym[e5] -3 xg5[e5] » £25 *Sqrt[z *cn*eS/ (fzsAz +k)] * (e5A(3/4)) +e5/3
diff5[e5_, £25_] := (e5-3 xpeff5[e5, £25]) « ((£25A2+k) / (2xe5)) -k - £25A2
diffe5[e5_, £25_] := -3 « (e5 +peff5[e5, £25]) » £25

g5[e_] :=Cl *xExp[-C25* (e/ec-1)A2/2]
C25 =10An1;

ClearAll[aS, e5, £25, s5]
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s5 = NDSolve[{£25 ' [conf2] == diff5[e5[conf2], £25[conf2]],
e5'[conf2] == diffe5[e5[conf2], £25[conf2]], £25[conf2] == a5 ' [conf2] /a5[conf2],
a5[confl] =a01, £25[confl] = £01, e5[confl] = erl},
{f25[conf2] ' e5[conf2] , ab [confz] }, {conf2, confl, confmax}, Method -» {Shooting}]

At conf2 == 2.7481865783328945 +"~-19, step size is effectively zero; singularity or stiff system suspected. >

. o -20 -19
{{fZS [conf2] -» InterpolatingFunction U Domain: {{1.x107%?, 2.75x107°}} } [conf2],
- Output: scalar

Domain: {{1.x107%%, 2.75x107°}}

e5[conf2] > InterpolatingFunction[ L | [conf2],
Output: scalar :
a0 -20 -19 B
a5[conf2] - InterpolatingFunction{ J Domain: {{1.x107, 2.75x 10~} [conf2] }}
Output: scalar .

a5[conf2_] = a5[conf2] /. s5[[1]]

Frevo -20 -19
InterpolatingFunction[ J (E;O:qa'tn' {{1|.><10 ,2.75x107°} } [conf2]
utput: scalar

e5[conf2_] = e5[conf2] /. s5[[1]]

e -20 -19
InterpolatingFunction[ L Domain: {1.x107%%, 2.75x 107} } [conf2]
Output: scalar
£25[conf2_] = £25[conf2] /. s5[[1]]
in- -20 -19
InterpolatingFunction{ U Domain: {{1.x107*?, 2.75x 107} Mcoan}
Output: scalar
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Plot[{peff5[e5[conf2]|, £25[conf2]], peff4[e4[conf2], £24[conf2]],
peff3[e3[conf2], £23[conf2]], peff2[e2[conf2], £22[conf2]],
peff[e[conf2], £2[conf2]]}, {conf2, confl, 2.7 x10A (-19)},
PlotLegends - SwatchLegend[{CZ, Cc22, €23, C24, €25}, LegendlLabel -» "A=100, B=“] ,
AxesLabel - {ConfTime, PEff}, AxesStyle » Black, ImageSize - Large]

PEff

3x1 8 [
A=100, B:
(
v W 10000
1 10000
= 1000
W 100
W10
1 %1088
e usx;o}“\ prtoni2 potots conftime
Plot[peff[e[conf2], £2[conf2]], {conf2, confl, 1.1x10n4},
PlotLegends - SwatchLegend[{C2}, LegendLabel » "A=100, B="],
AxesLabel - {ConfTime, PEff}, AxesStyle » Black, ImageSize - Large]
PEff
0.05F
004l
0.03f A=100, B:
I 10000t
002|
001
L L L L - L - - - 1 - - - L - - ConfTime
2000 4000 6000 8000 70000
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(»Export ["peffIIa.PDF",%]+)

peff6[e6_, £26_] :=

pym[e6] -3 +g6[e6] « £26 » Sqrt[2xcn+e6 / (£2672+k)] » (e6A (3/4)) +e6/3
diff6[e6_, £26_] := (e6-3 xpeff6[e6, £26])  ((£2672+k) / (2+e6)) -k - £26A2
diffe6[e6_, £26_] := -3 » (e6 +peff6[e6, £26]) » £26

g6[e_] :=Cl *xExp[-C26* (e/ec-1)A2/2]
C26 = 10A0;
ClearAll[a6, e6, £26, s6]

$6 = NDSolve[{£26 ' [conf2] = diff6[e6[conf2], £26 [conf2]],
e6! [conf2] == diffe6 [e6 [confz] , £26 [confz] ] , £26 [confz] = a6’ [confz] /a6 [confz] ,
a6[confl] =a01, £26[confl] == £01, e6[confl] = erl},
{f26[conf2] ’ e6[conf2] ’ a6[conf2]}, {confz, confl, confmax}, Method -» {Shooting}]

At conf2 == 2.248860607177961"«~-19, step size is effectively zero; singularity or stiff system suspected. >

A -20 -19
{{f26 [conf2] - InterpolatingFunction U goina\tn. {{II.X10 »2:25%107}) J [conf2],
* utput: scalar
T -20 -19 5
e6[conf2] - InterpolatingFunction{ L go:“a'tn' {{1|'x10 ,2.25x1077}} [conf2],

utput: scalar :
Ao -20 -19 5

a6[conf2] - InterpolatingFunction{ J goina't”' {{1|-"10 ,2.25x1077}) [conf2] }}
utput: scalar :

a6[conf2_] = a6[conf2] /. s6[[1]]

NS -20 -19
InterpolatingFunction[ J Domain: {{1.x107%?, 2.25x107}} } [conf2]
Output: scalar
e6[conf2_] = e6[conf2] /. s6[[1]]
A -20 -19
InterpolatingFunction[ Domain: {{1.x107*?, 2.25x107}} J [conf2]
Output: scalar
£26[conf2_] = £26 [conf2] /. s6[[1]]
e -20 -19
InterpolatingFunction’ U Domain: {1.x107%%, 2.25x 107} ‘ [conf2]
Output: scalar

peff7[e7_, £27_] :=

pym[e7] -3 xg7[e7] * £27 *Sqrt[z *cn*e7/ (f27l\2 +k)] * (e7A(3/4)) +e7/3
diff7[e7_, £27_] := (e7-3 xpeff7[e7, £27]) * ((£27A2+k) / (2xe7)) -k - £27A2
diffe7[e7_, £27_] := -3 » (e7+peff7[e7, £27]) » £27

g7[e_] :=Cl *xExp[-C27* (e/ec-1)A2/2]
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C27 =10An (-1);
ClearAll[a7, e7, £27, s7]

s7 = NDSolve[{£27 ' [conf2] == diff7[e7[conf2], £27[conf2]],
e7'! [conf2] ==diffe’7 [e7 [confz] , £27 [confz] ] , £27 [conf2] =a7! [confz] /a7 [confz] ’
a7[conf1] =all, f27[conf1] = £01, e7[conf1] == erl},
{f27[conf2] ' e7[conf2] ’ a7[conf2]}, {conf2, confl, confmax}, Method -» {Shooting}]

At conf2 == 1.7240538015877827 «"~-19, step size is effectively zero; singularity or stiff system suspected. >

. . -20 -19
{{f27 [conf2] - InterpolatingFunction u go:na\tn. {{ll.xlo »1.72x10°7} } [conf2],
- utput: scalar
. -20 BN
e7[conf2] —» InterpolatingFunction[ L goina'tn' {{1|'x10 »1.72x107°} [conf2],

utput: scalar .
i -20 RN

a7[conf2] » InterpolatingFunction[ J gotma'tn' {{1|'x10 »172x10°7} [conf2] }}
utput: scalar :

a7[conf2_] =a7[conf2] /. s7[[1]]

o -20 -19
InterpolatingFunction[ Domain: {1.x107*?, 1.72x 107} } [conf2]
Output: scalar
e7[conf2_] = e7[conf2] /. s7[[1]]
NS -20 -19
InterpolatingFunction[ Domain: {{1.x1077, 1.72x10-°}} } [conf2]
Output: scalar
£27[conf2_] = £27[conf2] /. s7[[1]]
A -20 -19
InterpolatingFunction[ u Domain: {{1.x107*%, 1.72x107}} J [conf2]
Output: scalar

ClearAll[aB, e8, £28, sa]

peff8[e8_, £28_] :=

pym[e8] -3 xg8[e8] » £28 » Sqrt[2 xcnxe8/ (£28A2 +k)] « (e8A(3/4)) +e8/3
diff8[e8_, £28_] := (e8-3 xpeff8[e8, £28]) « ((£2872+k) / (2+e8)) -k - £28A2
diffe8[e8_, £28_] := -3 « (e8 +peff8[e8, £28]) » £28

g8[e_] :=Cl *xExp[-C28* (e/ec-1)A2/2]
C28 =10A (-2);

confmax2 =9.2%10A (-20);
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s8 = NDSolve[{£28 ' [conf2] == diff8[e8[conf2], £28[conf2]],
e8 ' [conf2] == diffe8[e8[conf2], £28[conf2]], £28[conf2] == a8 ' [conf2] /a8[conf2],
a8[confl] =a01, £28[confl] == £01, e8[confl] = erl},
{f28[conf2] ' e8[conf2] ’ a8[conf2]}, {conf2, confl, confmax}, Method -» {Shooting}]

At conf2 == 1.2770637838439793 +"~-19, step size is effectively zero; singularity or stiff system suspected. >

. o -20 -19
{{f28 [conf2] -» InterpolatingFunction \j Domain: {{1.x107*?, 1.28x107°}} } [conf2],
- Output: scalar

Domain: {{1.x107%°, 1.28x107%}} |} [conf2]

e8[conf2] - InterpolatingFunction[ L Outout I
utput: scalar

a0 -20 -19 B
a8[conf2] - InterpolatingFunction{ J gomam. {{1|'x10  1.28x10}} [conf2] }}
utput: scalar :

a8[conf2_] = a8[conf2] /. s8[[1]]

A -20 -19
InterpolatingFunction{ Domain: {1.x107*%, 1.28x107}} } [conf2]
Output: scalar
e8[conf2_] = e8[conf2] /. s8[[1]]
e -20 -19
InterpolatingFunction[ Domain: {{1.x107*?, 1.28x107}} } [conf2]
Output: scalar
£28[conf2_] = £28[conf2] /. s8[[1]]
in- -20 -19
InterpolatingFunction{ d Domain: {{1.x107*?, 1.28x107}} } [conf2]
Output: scalar

ClearAll[aQ, e9, £29, 59]

peff9[e9_, £29_] :=

pym[e9] -3 +g9[e9] « £29 » Sqrt[2xcn+ed / (£2972+k)] » (e9A (3/4)) +e9 /3
diff9[e9_, £29_] := (e9-3 xpeff9fe9, £29]) # ((£2972+k) / (2+e9)) -k - £29A2
diffe9[e9_, £29_] := -3« (e9 +peff9[e9, £29]) » £29

g9[e_] :=Cl *Exp[-C29* (e/ec-1)A2/2]

€29 = 10A (-3);
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s9 = NDSolve[{£29 ' [conf2] == diff9[e9[conf2], £29 [conf2]],
e9 '[conf2] == diffe9[e9[conf2], £29[conf2]], £29[conf2] == a9 ' [conf2] /a9 [conf2],
a9 [confl] =a01, £29[confl] = £01, e9 [confl] = erl},
{f29 [conf2] , €9 [confz] , ag [confz] }, {conf2, confl, confmax}, Method -» {Shooting}]

At conf2 == 9.285804278075301 «"~-20, step size is effectively zero; singularity or stiff system suspected. >

. o -20 -20
{{f29 [conf2] -» InterpolatingFunction \J Domain: {{1.x107*?, 9.29x107*°}) } [conf2],
- Output: scalar

Domain: {{1.x107%°, 9.29x10°}}

e9[conf2] » InterpolatingFunction[ \_ | [conf2],
Output: scalar :
a0 -20 -20 B
a9 [conf2] - InterpolatingFunction{ J Domain: {{1. x107, 9.29x 10~} [conf2] }}
Output: scalar .

a9[conf2_] = a9[conf2] /.s89[[1]]

A -20 -20
InterpolatingFunction{ Domain: {1.x107*%, 9.29x107"}} } [conf2]
Output: scalar
e9[conf2_] = e9[conf2] /. s9[[1]]
e -20 -20
InterpolatingFunction[ \_ Domain: {1.x107%%, 9.29x 107"} } [conf2]
Output: scalar
£29[conf2_] = £29 [conf2] /. s9[[1]]
in- -20 -20
InterpolatingFunction{ \j Domain: {{1.x107*?, 9.29x107*%}} } [conf2]
Output: scalar

aux9[e9d_, £29_] :=-3xg9[e9] »£29 +Sqart[2+cn+ed / (£29A2+k)] » (e9A (3/4))
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Plot [{peff9[e9[conf2], £29 [conf2]],
pym[e9 [conf2]], e9[conf2] /3, aux9[e9[conf2], £29 [conf2]]},
{confz, confl, 9.28 *10A (—20)}, PlotLegends - "Expressions",
AxesLabel - {ConfTime, PEff}, AxesStyle » Black, ImageSize - Large]

PEff
4x108 |-
|
3x1089 1
2x1089 - —_— peff9
pym(
r e9(con
1x108 | 3
— aux9
L - - - . . . . . ConfTime
471020 6.x10720 8.x10720
-1 x1039 [
LogPlot [{-peff9[e9[conf2], £29[conf2]], -aux9[ed[conf2], £29[conf2]]},
{confz, confl, 9.28 x10A (-20) } , PlotLegends -» "Expressions",
AxesLabel -» {ConfTime, PEff}, AxesStyle » Black, ImageSize - Large]
PEff
ol
1082 ;
| — —peff
[ —aux'
1077 |
1072 ;
= : : : . L . . . L . . . L ConfTime
2.x10720 4,x10720 6.x10720 8.x10720
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Plot[{peff6[e6[conf2], £26 [conf2]],
peff7[e7[conf2], £27[conf2]], peff8[e8[conf2], £28[conf2]],
peff9[e9[conf2], £29[conf2]]}, {conf2, confl, 9 x10A (-20)},

PlotLegends - SwatchLegend[{CZG, Cc27, €28, C29}, LegendLabel -» "A=100, B=“] ,

AxesLabel - {ConfTime, PEff}, AxesStyle » Black, ImageSize - Large]

PEff

5x10%

4x10%

3x10%

2x10%

1x10%°

-1x108

(*Export ["pef£IIb.PDF",%]«)

(*#:0%)

8.x10°%0
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LogPlot [{e5[conf2] / ec, e4[conf2] /ec, e3[conf2] /ec, e2[conf2] / ec, e[conf2] /ec},
{conf2, confl, 2.7 %104 (-19)},
PlotLegends - SwatchLegend[{CZ, Cc22, €23, C24, €25}, LegendlLabel -» "A=100, B=“] ,
AxesLabel - {ConfTime, Log [Energy / Ec] }, AxesStyle » Black, ImageSize - Large]

Energy

Iog(F—C)

104

1000

100

A=100, B:
| 10000t
@ 10000
@ 1000
W 100
m 10

ConfTime

. 1 . . L L . . . . I . . . . 1 . . . L 1 L
5.x10720 1.x1071° 1.5x1071° 2.x1071° 2.5%x1071°

(#Export ["EnergyIIa.PDF", %] *)
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LogPlot [{e9[conf2] / ec, e8[conf2] /ec, e7[conf2] /ec, e6[conf2] /ec},
{conf2, confl, 9104 (-20)},
PlotLegends - SwatchLegend[{CZG, Cc27, €28, C29}, LegendLabel -» "A=100, B=“] ,
AxesLabel - {ConfTime, Log [Energy / Ec] }, AxesStyle » Black, ImageSize - Large]

Energy
lo (—)
9 Ec

104

A=100, B
R
=

LTy

100 [~ u 51(5

1000 |-

1 1 L 1 1 L L 1 1 1 1 1 1
2.x10720 4.x107%0 6.x10720 8.x10720

ConfTime

(*Export ["EnergyIIb.PDF", %] *)
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ParametricPlot[{{Log[peff[e[conf2], £2[conf2]]], Log[e[con£f2] /ec]},
{Log[peffz [e2 [conf2] , £22 [conf2] ] ] ’ Log[e2 [confz] /ec]},
{Log[peff3 [e3 [conf2] , £23 [confz] ] ] , Log[e3 [confz] /ec]},
{Log[peff4 [e4 [conf2] , £24 [confz] ] ] ’ Log[e4 [confz] /ec] },
{Log[peffS [e5 [conf2] , £25 [conf2] ] ] ’ Log[e5 [conf2] /ec] }},
{conf2, confl, 2.7 %104 (-19)}, PlotRange - All,
AxesLabel - {Log [peff] , Log [Energy / Ec] },
PlotLegends -» SwatchLegend[{CZ, c22, C23, C24, C25}, LegendLabel » "A=100, B=“] ,
AxesStyle » Black, ImageSize - Large]

Energy
lo (—)
9 Ec

A=100, B:

100 00!
_ 10000
ar 1000
100
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L L L T L 1 L ' L X 1 n L . n 1 . n L L I log(peff)
I 195 / 200 205 210
2+

(»Export ["ExPeffIIa.PDF", %] )
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ParametricPlot[{{Log[peff6[e6[conf2], £26 [conf2]]], Log[e6[conf2] /ec] }

{Log[peff7 [e7 [conf2] , £27 [conf2] ] ] ’ Log[e7 [conf2] /ec] },
{Log[peffS [e8 [conf2] , £28 [confz] ] ] , Log[e8 [confz] /ec]},
{Log[peffS [e9 [conf2] , £29 [confz] ] ] , Log[e9 [confz] /ec] }},

{conf2, confl, 9 x10A (-20) }, PlotRange -» All,

AxesLabel » {Log [peff] , Log [Energy / Ec] },

PlotLegends -» SwatchLegend[{ClG, Cc17, €18, C19}, LegendLabel » "B=100, A=“] ,

AxesStyle » Black, ImageSize » Large]

Energy
lo (—)
9 Ec

B=100, A-

aker

1000

195 200 205

! log(peff)
210

(*Export ["ExPeffIIb.PDF", %] *)

N1 =Log[a[10A (4)] /a[confl]]
55.5999

N2 = Log[a2[3.2%10A (-19)] /a2[confl]]
5.02062

N3 = Log[a3[3.2%10A (-19)] /a3[confl]]
5.88909

N4 = Log[a4[3 104 (-19)] /a4[conf1l]]
5.04944

N5 = Log[a5[2.7 # 10A (-19)] /a5[con£1l]]
5.37331

N6 = Log[a6[2.2 %104 (-19)] /a6 [conf1]]
4.97626

N7 = Log[a7[1.7 #+10A (-19)] /a7[con£1l]]
5.18268
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N8 = Log[a8[1.2%10A (-19)] /a8[confl]]
3.46093

N9 = Log[a9[9.2 %104 (-20)] /a9 [confl]]
5.07908

Nym = {N1, N2, N3, N4, N5, N6, N7, N8, N9};
Amp = {C2, C22, C23, C24, C25, C26, C27, C28, C29};
LAmp = Logl0 [Amp];
Do
Sow[
Flatten[ReplacePart[{a, b}, {1 » Take[LAmp, {u}], 2 » Take[Nym, {u}]

H
11

{u, 1, Length[Nym], 1}
| 77/ Reap // Last;
merged = %[[1]];

ListPlot[merged, AxesLabel -» {Log [Ampl] ’ NEfolds},
AxesStyle » Black, ImageSize -» Large, PlotRange - All]

NEfolds
r [}
50
40 -
30
20
10
° L] ® ® ° ° °
® p
| L L L L L L | L L L | L L |O (Am |)
-2 2 4 g(Amp

(x*but no graceful exitx)

gl0[e_] :=Cl *Exp[-C210 % (e /ec-1)A2/ 2]
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peff10[el0_, £210_] :=

pym[el0] -3 xg10[el0] « £210 » Sqrt[2+cn+el0/ (£210A2 +k)] » (e10A(3/4)) +el0/3
diff10[el0_, £210_] :=

(10 -3 +peff10[el0, £210]) # ((£210A2+k) / (2% e10)) -k - £210A2
diffel0[el0_, £210_] := -3 % (e1l0 +peff10[el0, £210]) » £210

C210 = 1016;
ClearaAll[al0, el0, £210, s10]

$10 = NDSolve[{£210 ' [conf2] = diff10[el0[conf2], £210[conf2]],
€10 ' [conf2] == diffel0[el0[conf2], £210[conf2]], £210[conf2] ==
al0'[conf2] /al0[conf2], al0[confl] == a01l, £210[confl] == £01, el0[confl] = erl},
{f210 [confz] , elo [confz] , alo [confz] }, {confz, confl, confmax}, Method - {Shooting}]

At conf2 == 11357.123406873614", step size is effectively zero; singularity or stiff system suspected. >

. 20
{{fZlO [conf2] - InterpolatingFunction{ U (D)o;naltn. {{1|'x10 ,11400.}} J [conf2],
utput: scalar

L Domain: {{1.x1072°, 11400.}}

e10[conf2] - InterpolatingFunction| L
utput: scalar

| [conf2],

Domain: {{1.x107%°, 11400.}}

al0[conf2] - InterpOIatingFunCtion{ J Buliaie eal
utput: scalar

}[confz]}}

alO[conf2_] = al0[conf2] /. s10[[1]]

- -20
InterpolatingFunction[ J gort“a'tn' {{1I'x10 »11400.1} } [conf2]
utput: scalar

el0[conf2_] = el0[conf2] /. s10[[1]]

Domain: {{1.x107%°, 11400.}}

InterpolatingFunction conf?2
P g [ L Output: scalar } : ]
£210[conf2_| = £210[conf2] /. s10[[1]]
. -20
InterpolatingFunction’ U Domain: {1.x107%, 11400} ‘ [conf2]
Output: scalar
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Plot[{pym[elo [confz] ] , peff10 [elO [confz] , £210 [confz] ] , el0 [confz] /3},
{confz, confl, 3.2 %10A (-5) }, PlotLegends - "Expressions",
AxesLabel - {ConfTime, pym}, AxesStyle » Black, ImageSize - Large]

pym

1.4x10%
1.2x10% |
1.0x10%

I — pym(
8.0x10% 5 peffi

I £10(co
6.0x10%" - 3
4.0x10% |-
2.0x10%" -

" " " " Il " " " " Il " " " " Il " " " n 1 T 1 1 n Il n n n " | " " ConfTime
t 5.x1076 0.00001 0.000015 0.00002 0.000025 0.00003
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