
Universidade Estadual de Campinas

Instituto de Computação
■◆❙❚■❚❯❚❖ ❉❊
❈❖▼P❯❚❆➬➹❖

Pedro Henrique Del Bianco Hokama

Algoritmos para Problemas com Restrições de

Empacotamento

CAMPINAS
2016

Pedro Henrique Del Bianco Hokama

Algoritmos para Problemas com Restrições de Empacotamento

Tese apresentada ao Instituto de Computação da
Universidade Estadual de Campinas como parte
dos requisitos para a obtenção do título de Doutor
em Ciência da Computação.

Orientador: Prof. Dr. Flávio Keidi Miyazawa

Este exemplar corresponde à versão final da
Tese defendida por Pedro Henrique Del Bianco
Hokama e orientada pelo Prof. Dr. Flávio
Keidi Miyazawa.

CAMPINAS
2016

Universidade Estadual de Campinas

Instituto de Computação
■◆❙❚■❚❯❚❖ ❉❊
❈❖▼P❯❚❆➬➹❖

Pedro Henrique Del Bianco Hokama

Algoritmos para Problemas com Restrições de Empacotamento

Banca Examinadora:

‚ Prof. Dr. Flávio Keidi Miyazawa
IC/UNICAMP

‚ Prof. Dr. Horacio Hideki Yanasse
ICT/UFSP

‚ Prof. Dr. Reinaldo Morabito Neto
DEP/UFSCAR

‚ Profa. Dra. Kelly Cristina Poldi
IMECC/UNICAMP

‚ Prof. Dr. Luis Augusto Angelotti Meira
FT/UNICAMP

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no processo
de vida acadêmica do aluno.

Campinas, 04 de março de 2016

Agradecimentos

Primeiramente agradeço à minha mãe e a minha irmã por todo apoio incondicional ao longo
dos anos.
Agradeço ao Flávio por tantos anos de paciência e apoio, tanto nos problemas do doutorado
como pessoais.
Agradeço ao Mário e à Mariana por cuidarem de mim.
Agradeço ao Fábio, ao Xein, ao Chineis, à Marcela, ao Esteban, ao Aloisio, ao Vinicius e à
Priscila, por tantos anos de amizade.
Agradeço aos colegas e professores Fábio, Evandro, Rafael, Thiago e Eduardo.
Agradeço à Karen pela companhia.
Agradeço aos professores e funcionários do IC.
Agradeço à CAPES, ao CNPQ e à FAPESP pela infraestrutura e financiamento.

Resumo

Nesta tese investigamos classes de problemas com restrições de empacotamento. Três dife-
rentes problemas foram investigados, e algoritmos foram propostos para cada um deles. O
primeiro é o problema de roteamento de veículos com restrições de empacotamento, em que
um conjunto de veículos parte de um depósito e deve entregar a demanda de itens de todos os
clientes. Cada veículo possui um contêiner retangular, e cada cliente deseja receber uma di-
versidade de itens também retangulares. Consideramos tanto o caso em que contêineres e itens
são bidimensionais, como o caso em que eles são tridimensional. Em cada rota realizada por
um veículo é preciso encontrar uma forma de empacotar os itens de todos os clientes dentro
do contêiner, de modo que a cada visita, a retirada dos itens daquele cliente possa ser realizada
sem que os outros itens precisem ser movidos. O objetivo geral do problema é minimizar o
deslocamento total dos veículos. O segundo é o problema online de empacotamento de círculos
em contêineres. Nesse problema devemos empacotar círculos em recipientes retangulares. Os
círculos chegam de forma online, ou seja, cada círculo que chega deve ser empacotado, e não
se sabe a priori quais os tamanhos dos círculos que virão. O objetivo é minimizar o número
de contêineres utilizados. O terceiro é o problema da mochila bidimensional com conflitos.
Nesse problema é dado um conjunto de itens e um recipiente, bidimensionais e retangulares,
sendo que cada item possui um valor associado e alguns pares de itens são conflitantes, ou seja,
não podem estar simultaneamente dentro do recipiente. O objetivo do problema é escolher um
subconjunto de valor máximo dos itens, mas que seja possível empacotar esses itens dentro do
recipiente. A tese é composta por três artigos, cada um dedicado a um dos problemas. Em
todos eles, diferentes técnicas de projeto de algoritmos foram utilizadas de forma integrada,
dentre as principais estão: programação linear inteira, programação por restrições, heurísticas,
meta-heurísticas e algoritmos aproximados. Além das contribuições de cada um dos artigos, o
conjunto da obra evidencia a eficiência da integração das técnicas citadas, abrindo o caminho
para que as metodologias estudadas possam ser aplicadas a outros problemas.

Abstract

In this thesis we investigate classes of problems with loading constraints. Three different prob-
lems were investigated, and algorithms were proposed for each one of them. The first is the
vehicle routing problem with loading constraints, in which a set of vehicles departs from a de-
pot and have to deliver the items demands of all clients. Each vehicle has a rectangular container
(bin), and each client must receive some rectangular items. We consider both cases, in which
bin and items are two-dimensional or three-dimensional. In each route, it is necessary to find a
packing of all clients’ items in the bin. This packing has to be done in such a way that, in each
visit, the unloading of the current client’s items can be performed without moving the remaining
items. The goal is to minimize the total travel distance of the vehicles. The second is the online
circle packing problem. In this problem we have to pack circles in rectangular bins. The circles
are delivered online, that is, each arrived circle has to be packed, and the sizes of future circles
is unkwown. The goal is to minimize the number of used bins. The third is the two-dimensional
disjunctively constrained knapsack problem, in which a bin and a set of items, rectangular and
two-dimensional, are given. Each item has an associated value and some pairs of items are for-
bidden to be packed together. The goal is to choose a subset of items, with maximum value, that
can be packed in the given bin. The thesis is composed of three articles, each one dedicated to
one of the problems. Different techniques of algorithm design were used combined, such as: in-
teger linear programing, constraint programming, heuristics, meta-heuristics and approximated
algorithms. Besides the contribution of each individual article, efficiency of the combination of
cited techniques is shown, considering that they might provide a good strategy for solving other
problems.

Lista de Figuras

1.1 Exemplo de um empacotamento tridimensional que respeita restrições de des-
carregamento, no qual há apenas um lado para descarregar os itens. 14

1.2 Exemplo de solução para o caso bidimensional. 15
1.3 Árvore de subproblemas. 18
1.4 Poda por limitante. 19

2.1 Two-dimensional packing, envelope and corner points 26
2.2 Example of packing using top-bottom mixfill. 29
2.3 Example of an integer partial solution . 41
2.4 Example of a partial solution with fractional variables 42
2.5 Example of solution for 2L-CVRP . 47

3.1 Bin division . 53
3.2 Circle Packing Lower Bound . 59

Lista de Tabelas

2.1 Classes for the 2L-CVRP instances . 43
2.2 Performance of CP with dicretization points and mixfill 45
2.3 Performance of metaheuristics to the orthogonal packing problem 46
2.4 Performance of metaheuristics to the strip packing problem. 46
2.5 Comparison between a simpler branch-and-cut algorithm and our BNC-Improved 48
2.6 Comparison between our BNC-Improved and BNC. 49

4.1 Information of the instances under consideration. 79
4.2 Comparing F1, F2, F3, and GR for the density equal to 10%. 81
4.3 Comparing F1, F2, F3, and GR for the density equal to 17%. 82
4.4 Comparing F1, F2, F3, and GR for the density equal to 25%. 84
4.5 Results considering the complete shipment constraint for F4. 86

Sumário

1 Introdução 12

1.1 Descrição dos Problemas . 12
1.1.1 Problema de Roteamento de Veículos com Restrições de Empacota-

mento . 13
1.1.2 Problema de empacotamento de círculos 15
1.1.3 Problema da Mochila Bidimensional com Conflitos 15

1.2 Técnicas . 16
1.2.1 Programação por Restrições . 16
1.2.2 Branch-and-bound . 17

1.3 Resultados e Organização da Tese . 20

2 A Branch-and-Cut Approach for the Vehicle Routing Problem with Loading Cons-

traints 22

2.1 Introduction . 23
2.2 Orthogonal Packing Problem With Unloading Constraints 25

2.2.1 Problem Description . 25
2.2.2 Two-dimensional Orthogonal Packing Problem with Unloading Cons-

traints . 27
2.2.3 Heuristic and Hash . 29
2.2.4 Metaheuristic for the Two-Dimensional Orthogonal Packing Problem

With Unloading Constraints . 30
2.2.5 Lower Bounds for the Orthogonal Packing Problem 34
2.2.6 Three-dimensional Orthogonal Packing Problem With Unloading Cons-

traints . 36
2.3 Capacitated Vehicle Routing Problem with Unloading Constraints 37

2.3.1 Problem Description . 38
2.3.2 Formulation . 38

2.4 Branch-and-Cut Algorithm for the DL-CVRP 39
2.4.1 Routing Separation Routine . 39
2.4.2 Packing Separation Routine . 40

2.5 Computational Results . 42
2.5.1 Instances . 43
2.5.2 Efficiency of CP and Discretization Points 44
2.5.3 Efficiency of metaheuristics . 45
2.5.4 Comparison of the 2L-CVRP algorithms 46
2.5.5 Comparison of the 3L-CVRP algorithms 47

2.6 Conclusions and Future work . 49

3 A Bounded Space Algorithm for Online Circle Packings 51

3.1 Introduction . 51
3.2 An Algorithm for Online Circle Packing . 52
3.3 Competitive Ratio Analysis . 56
3.4 Numerical Results . 58
3.5 Final Remarks . 60

4 Two-dimensional Disjunctively Constrained Knapsack Problem: Heuristic and Exact

approaches 61

4.1 Introduction . 62
4.1.1 Literature review . 63

4.2 Preliminary Discussion . 65
4.2.1 Problem description . 65
4.2.2 Lifting item sizes . 66
4.2.3 Finding Independent Sets . 66
4.2.4 Packing items . 67

4.3 A Greedy Randomized Heuristic . 67
4.3.1 Heuristic Overview . 67
4.3.2 Heuristic GR . 68
4.3.3 Constructing a solution in two phases 68
4.3.4 Repacking items . 70

4.4 Integer Formulations for the 2D-DCKP . 71
4.4.1 First model . 72
4.4.2 Location-allocation based model . 72
4.4.3 Bounds and valid cuts . 75

4.5 Complete Shipment of Items . 76
4.6 Computational Experiments . 77

4.6.1 Results . 78
4.6.2 Results for Complete Shipment . 85

4.7 Conclusions . 87

5 Conclusões e Propostas Futuras 88

Capítulo 1

Introdução

Problemas de corte e empacotamento aparecem em diversos contextos dentro das empresas.
Os mais comuns são no aproveitamento de matérias primas, como cortes de madeira, isopor,
couro, tecido, placas de aço etc. Ou ainda na estocagem e transporte de produtos em contêine-
res. Além de surgirem em problemas não tão diretos, como alocação de dispositivos em uma
placa eletrônica, ou escalonamento de recursos em computadores, entre outros. Neste trabalho
investigamos alguns problemas que exigem como subproduto, encontrar empacotamentos com
características particulares. Outro problema bem conhecido, o de roteamento de veículos, é
considerado. Um bom planejamento de transporte, armazenagem e um bom aproveitamento de
materiais podem diminuir significativamente os custos de uma empresa. Nesta seção descreve-
mos brevemente os problemas mais importantes tratados nesta tese, começando pelos problemas
mais essenciais até problemas mais complexos. Também descrevemos brevemente as principais
técnicas utilizadas.

1.1 Descrição dos Problemas

Nesta seção descrevemos os problemas que são abordados nesta tese. Alguns dos problemas se
caracterizam por serem compostos por outros sub-problemas, por isso definimos primeiramente
os problemas bases, para então definir os problemas mais complexos. Na seção 1.1.1 definimos
o problema de roteamento de veículos (Vehicle Routing Problem - VRP), seguido pelo problema
de empacotamento ortogonal com restrições de descarregamento (Orthogonal Packing Problem

with Unloading Constraints - OPPUL). Combinados, esses dois problemas resultam no pro-
blema de roteamento de veículos com restrições de empacotamento (Vehicle Routing Problem

with Loading Constraints), investigados tanto na sua versão bidimensional (2L-CVRP) quanto
na versão tridimensional (3L-CVRP). Na seção 1.1.2 descrevemos o problema de empacota-
mento de círculos em um único contêiner (Single Bin Circle Packing Problem), que é utilizado
posteriormente na definição do problema online de empacotamento de círculos (Online Circle

Packing Problem). Na seção 1.1.3 descrevemos o problema da mochila bidimensional com
conflitos (Two-dimensional Disjunctively Constrained Knapsack Problem - 2D-DCKP).

12

CAPÍTULO 1. INTRODUÇÃO 13

1.1.1 Problema de Roteamento de Veículos com Restrições de Empacota-

mento

Primeiramente definimos o problema de roteamento de veículos (VRP) no qual é dado um
grafo, uma função de custo nas arestas e um número inteiro de veículos. Os veículos partem
e devem retornar ao estacionamento representado por um dos vértices do grafo. De fato o
VRP é uma família de problemas com muitas variantes, diferentes restrições e objetivos, aqui
iremos considerar aquela cujo o objetivo é encontrar um conjunto de rotas de custo mínimo, com
início e fim no estacionamento de forma que todos os outros vértices do grafo sejam visitados
exatamente uma vez. O VRP é vastamente estudado na literatura por se tratar de um problema
desafiador e altamente aplicável no cotidiano. A definição de rota considera uma sequência
que define a ordem em que os vértices serão visitados a partir do depósito. Assim, mesmo que
duas rotas contemplem o mesmo conjunto de clientes, estas rotas podem ter custos diferentes.
Quando o número de veículos é limitado a um, e devemos portanto encontrar uma única rota,
temos o clássico problema do caixeiro viajante (Travelling Salesman Problem - TSP).

Existem inúmeras variantes para o problema de roteamento de veículos. O leitor interessado
poderá consultar o livro editado por Toth e Vigo [90], The Vehicle Routing Problem, que contém
variantes, técnicas, modelos, algoritmos e heurísticas para o VRP.

O segundo problema a ser definido é o do empacotamento ortogonal com restrições de
descarregamento (Orthogonal Packing Problem with Unloading Constraints - OPPUL), nesse
problema recebemos uma lista de conjuntos de retângulos bidimensionais. Também é fornecido
um contêiner bidimensional de dimensões fixas, com uma abertura em apenas um dos lados. O
objetivo é encontrar um empacotamento dos itens dentro do contêiner, de forma que, nenhum
item ultrapasse os limites do contêiner; dois itens quaisquer não se sobreponham; deve ser
possível retirar os conjuntos de retângulos na ordem definida na lista de entrada. Essa retirada
deve ser feita em um único movimento na direção da porta, sem que os demais itens precisem
ser rearranjados.

Foi investigado tanto a versão bidimensional (2OPPUL) descrita, como a versão tridimensi-
onal (3OPPUL) em que os retângulos e o contêiner são substituídos por caixas tridimensionais.
Consideramos um empacotamento ortogonal, em que os itens só podem ser empacotados pa-
ralelos aos lados do contêiner e não são permitidas rotações dos itens. A figura 1.1 mostra um
exemplo de um contêiner carregado que respeita uma ordem de remoção dos itens. As caixas
mais escuras devem ser descarregadas antes das mais claras, e a saída deve ser realizada na
direção indicada pela seta.

CAPÍTULO 1. INTRODUÇÃO 14

Figura 1.1: Exemplo de um empacotamento tridimensional que respeita restrições de descarre-
gamento, no qual há apenas um lado para descarregar os itens.

Finalmente, no problema de roteamento de veículos com restrições de empacotamento
(Vehicle Routing Problem with Loading Constraints - DL-VRP), é dado um conjunto de veícu-
los que partem de um depósito entregando itens aos seus clientes e ao final retornam ao depósito.
Cada veículo possui um contêiner retangular, e cada cliente deseja receber uma diversidade de
itens também retangulares. Em cada rota realizada por um veículo é preciso encontrar uma
forma de empacotar os itens de todos os clientes dentro do contêiner, de modo que a cada visita,
a retirada dos itens daquele cliente possa ser realizada sem que os outros itens precisem ser
movidos. O objetivo geral do problema é minimizar o deslocamento total dos veículos. Nesse
problema além de resolver o problema de roteamento de veículos ainda é necessário encontrar,
para cada rota, se existir, um empacotamento que respeite as restrições de descarregamento
(2OPPUL, 3OPPUL) dos itens de seus clientes dentro do contêiner.

Na versão capacitada do problema (Capacitated Vehicle Routing Problem with Unloading
Constraints - DL-CVRP) os itens possuem um peso associado e cada veículo possui uma ca-
pacidade de peso máximo associado. Consideraremos essa versão do problema. A figura 1.2
exemplifica, para o caso bidimensional, como seria uma solução viável. O círculo branco cen-
tral representa o depósito e os demais círculos representam os clientes. O exemplo apresenta
quatro rotas que partem e chegam no depósito. Dentro de cada uma destas rotas, temos um
empacotamento dos itens em cada contêiner. O descarregamento é feito pela parte superior do
contêiner, os espaços em branco são vazios. Próximo a cada círculo, pintados da mesma cor
que o interior deles, estão os itens que cada cliente deve receber.

CAPÍTULO 1. INTRODUÇÃO 15

Figura 1.2: Exemplo de solução para o caso bidimensional.

1.1.2 Problema de empacotamento de círculos

Primeiramente é necessário definir o problema de empacotamento de círculos em um único con-
têiner. Nesse problema são dados um conjunto de círculos e um contêiner retangular, o objetivo
é encontrar um empacotamento desses círculos no contêiner ou provar que tal empacotamento
não existe. Os raios dos círculos são números racionais e podem ser empacotados em qualquer
posição do contêiner. Para tratar esse problema foi feita uma discretização do contêiner.

O segundo é o problema online de empacotamento de círculos. Nesse problema, a instância
é dada de forma online, ou seja, os círculos só são conhecidos por partes, e não se sabe a priori a
quantidade e dimensões deles. Os círculos devem ser empacotados em contêineres retangulares
a medida que chegam e não podem ser rearranjados posteriormente. O objetivo do problema é
minimizar o número de contêineres utilizados.

1.1.3 Problema da Mochila Bidimensional com Conflitos

No problema da mochila bidimensional com conflitos são dados um conjunto de itens e um
recipiente, todos retangulares, sendo que cada item possui um valor associado e alguns pares
de itens são conflitantes, ou seja, não podem estar simultaneamente dentro do recipiente. O
objetivo do problema é escolher um subconjunto, de valor máximo, dos itens que possam ser
empacotados dentro do recipiente.

O problema da mochila também é um clássico da literatura e largamente utilizado como
exemplo de problema NP-difícil. No problema estudado, além do clássico problema da mo-
chila, é necessário resolver como sub-problema o empacotamento ortogonal bidimensional, que
também é NP-difícil.

Além disso também estendemos o problema para considerar os carregamentos completos,
nos quais os itens são divididos em subconjuntos, que devem ser completamente carregados ou
deixados completamente fora da solução.

CAPÍTULO 1. INTRODUÇÃO 16

1.2 Técnicas

Nesta seção apresentamos resumidamente algumas das técnicas que foram utilizadas na reso-
lução dos problemas. Devido a complexidade dos problemas investigados, é de se esperar que
essas e outras técnicas sejam combinadas, na elaboração de algoritmos rápidos. Outras técni-
cas como heurísticas, meta-heurísticas, são apresentadas nos próximos capítulos na medida do
necessário.

1.2.1 Programação por Restrições

Programação por restrições é uma técnica de programação declarativa que tem se mostrado bas-
tante promissora nas últimas décadas, especialmente para problemas em que uma formulação
em programação linear inteira é grande ou complicada demais. Essa técnica tem se mostrado
bastante eficiente na resolução de grandes problemas combinatórios, especialmente em plane-
jamento e escalonamento. Possui uma forte fundamentação teórica e também atrai o interesse
comercial e prático, particularmente em áreas de modelagem de problemas de otimização e de
problemas de satisfação.

Restrições estão presentes na maioria das áreas do conhecimento, elas formalizam as re-
lações entre o mundo físico e suas modelagens matemáticas de forma natural e transparente.
Uma restrição é simplesmente uma relação lógica entre diversas variáveis. Ela limita os possí-
veis valores que as variáveis podem assumir simultaneamente, representando uma informação
parcial sobre as variáveis do modelo. A principal característica das restrições é sua forma de-
clarativa, ou seja, elas especificam qual relação existe entre as variáveis sem precisar descrever
um procedimento computacional para garantir essa relação.

As primeiras ideias de programação por restrições podem ser encontradas na área de Inte-
ligência Artificial nas décadas de sessenta e setenta. A Programação Lógica foi um de seus
precursores, sendo que esta e outras formas de programação declarativa em geral, utilizam a
ideia de que o usuário estabelece o que deve ser revolvido, e não como resolver.

Satisfação de Restrições

Problemas de Satisfação de Restrições (CSP) são definidos da seguinte forma:

‚ um conjunto de variáveis X “ tx1, . . . , xnu,

‚ um conjunto finito Dompxiq para cada variável xi, com os valores possíveis de serem
atribuídos a cada variável. Chamamos Dompxiq de domínio de xi,

‚ um conjunto de restrições CpXq para os valores que as variáveis podem assumir simulta-
neamente.

Note que os valores não necessariamente precisam ser inteiros consecutivos, ou mesmo
numéricos. Uma solução para um CSP é uma atribuição de valores de cada domínio para cada

CAPÍTULO 1. INTRODUÇÃO 17

uma das respectivas variáveis, de forma que todas as restrições são satisfeitas simultaneamente.
Nós podemos encontrar:

‚ somente uma solução, com nenhuma preferência sobre as outras,

‚ todas as soluções,

‚ uma solução boa ou ótima, dada uma certa função objetivo definida sobre as variáveis.

Soluções para um CSP podem ser encontradas explorando sistematicamente possíveis atri-
buições de valores às variáveis.

Restrições. As restrições são representadas por uma expressão envolvendo um subconjunto
de variáveis. Formalmente, uma restrição C1,...,n entre as variáveis x1, . . ., xn é qualquer sub-
conjunto das possíveis combinações de valores de x1, . . ., xn, isto é, Cijk... Ď Dompx1q ˆ . . .ˆ
Dompxnq. O subconjunto define as combinações de valores que a restrição admite. As restri-
ções práticas não são representadas dessa forma, mas essa definição enfatiza que as restrições
não precisam ser expressões simples, de fato elas também não precisam ser lineares. Alguns
exemplos de restrições seriam, x1 ‰ x2, 2x1 “ 10x2 ` x3 e x1x2 ă x3.

Técnica de Busca. A técnica se baseia em uma busca exaustiva, utilizando um backtracking

associado com uma poderosa propagação de restrições, que reduzem significativamente os do-
mínios das variáveis. Dois níveis de propagação são realizados, a propagação inicial, que vale
para toda a árvore do backtracking, e a propagação durante a busca, que elimina temporaria-
mente valores do domínio a cada escolha feita. O domínio é restaurado caso a escolha se mostre
inviável, sendo realizada uma nova escolha.

A propagação analisa cada restrição individualmente, removendo do domínio escolhas que
não correspondam a atribuições possíveis, ou seja, que violem a restrição. Como a eliminação
de alguns valores do domínio de uma variável podem implicar na redução do domínio de outras
variáveis, repete-se o processo até que não se consiga mais reduzir nenhum dos domínios.

Para mais informações sobre programação por restrições, referenciamos os trabalhos de
Gaschnig [39], Haralick et. al. [44] e Sabin et. al [83].

1.2.2 Branch-and-bound

O método Branch-and-bound é bastante utilizado para buscar soluções em diversos problemas
de otimização. O método visa uma enumeração das soluções possíveis, fazendo isso de forma
sistemática baseada no paradigma de “Divisão e Conquista”, procurando manter a eficiência na
busca. Utilizando limitantes para o custo de uma solução parcial, o método é capaz de encontrar
uma solução ótima sem a necessidade de explorar todo o espaço de busca, i.e., todas as soluções
possíveis.

CAPÍTULO 1. INTRODUÇÃO 18

Para exemplificar o funcionamento do método de Branch-and-bound, considere o seguinte
problema:

min cx (1.1)

sujeito a x P E. (1.2)

Nesse problema, E é o conjunto de todas as soluções viáveis. Agora E é dividido em uma
coleção finita de subconjuntos E1, . . . , Ek, tal que E1 Y . . . Y Ek “ E. E então resolvemos um
subproblema para cada i “ 1, . . . , k:

min cx (1.3)

sujeito a x P Ei. (1.4)

Então é escolhida a melhor solução obtida entre as encontradas nos subproblemas. Cada subpro-
blema pode ser resolvido utilizando o mesmo método, dividindo em subproblemas e resolvendo
problemas menores. Essa é a parte da divisão (branch), e ela pode ser entendida como uma ár-
vore de subproblemas. Na figura 1.3, E foi dividido em E1 e E2, posteriormente E2 foi dividido
em E3 e E4.

Figura 1.3: Árvore de subproblemas.

Além da fase de divisão, também é necessário um algoritmo eficiente capaz de computar
para todo Ei um limitante inferior zpEiq da solução ótima daquele subproblema, ou seja:

zpEiq ď min
xPEi

cx.

Uma forma tradicional de se obter esse limitante inferior é utilizar a relaxação linear do pro-
blema. Da mesma forma, seja zpEiq um limitante superior para a solução ótima de Ei, ou
seja:

zpEiq ě min
xPEi

cx.

Esse limitante pode ser dado por uma solução viável do problema, obtida de forma heurística.
Dessa forma podemos limitar o espaço de busca, podando os subproblemas que não podem
conter a solução ótima. A figura 1.4 exemplifica a poda por limitante. Cada nó Ei da árvore
tem indicado o valor de zpEiq na parte superior e zpEiq na parte inferior. Como 20 “ zpE1q ă

CAPÍTULO 1. INTRODUÇÃO 19

zpE2q “ 21, e se tratando de um problema de minimização, podemos podar o nó E2, ou seja,
não precisamos mais explorar os subproblemas originários de E2, pois a solução ótima desse
subproblema possui um custo maior que a solução viável já obtida em E1

Figura 1.4: Poda por limitante.

Essa parte do método é chamada de poda (bound), na qual limitamos o espaço de busca do
problema, a eficiência dessa parte está diretamente ligada com os limitantes, quanto mais justos
forem, melhor será o desempenho do algoritmo. Infelizmente nem sempre é fácil encontrar
limitantes justos para os problemas de otimização.

Outras podas (além da poda por limitante) e outras formas de exploração também são utili-
zadas nos algoritmos de Branch-and-Bound, para conhecer melhor sobre o método consulte as
referências [96, 97].

Branch-and-Cut. O método de Branch-and-Cut é uma técnica para resolver problemas linea-
res inteiros ou inteiros mistos, e consiste em um método híbrido de planos de corte e do método
Branch-and-Bound. Resolvendo a cada nó da árvore de Branch-and-Bound, uma relaxação
linear do problema.

Na ideia básica do método Branch-and-Cut, quando o número de desigualdades é muito
grande para ser adicionado ao modelo e resolvidas eficientemente, algumas classes de desi-
gualdades válidas podem não ser adicionadas no início da relaxação linear. A maioria dessas
restrições não estará relacionada com a solução ótima, ou dificilmente será violada. Ou ainda
mesmo que o modelo inicial descreva uma solução viável, existem restrições que fortalecem
a formulação, eliminando muitas soluções fracionárias e fazendo o algoritmo convergir mais
rapidamente, essas desigualdades não precisam ser colocadas no modelo a priori. No decorrer
do algoritmo, se uma solução ótima para uma relaxação linear é inviável, um subproblema,
chamado de problema da separação, é resolvido para tentar identificar as inequações violadas.
Se uma ou mais inequações são encontradas, algumas são adicionadas à relaxação linear para
eliminar a solução inviável e então a nova relaxação é re-otimizada. A ramificação (branch)
ocorre quando nenhuma desigualdade violada é encontrada. O Branch-and-Cut é uma genera-
lização do Branch-and-Bound com relaxações lineares, permite que a separação e corte sejam
aplicados na árvore de Branch-and-Bound.

CAPÍTULO 1. INTRODUÇÃO 20

1.3 Resultados e Organização da Tese

Os problemas descritos são difíceis de serem resolvidos na prática, em geral são abordados
como um todo, utilizando algum algoritmo em particular, normalmente programação linear in-
teira ou meta-heurísticas. Nesta tese dividimos os problemas em sub-partes e abordamos cada
parte com uma técnica que gera melhores resultados. De forma geral os problemas aqui apre-
sentados foram divididos em um problema de otimização, resolvido com programação linear
inteira; e um problema de decisão, resolvido com programação por restrições. Mas outras abor-
dagens também foram utilizadas em partes específicas.

Os métodos propostos para os problemas descritos estão apresentados em três artigos que
compõem esta tese. Cada capítulo corresponde a um dos artigos. Os dois primeiros foram
publicados em importantes revistas internacionais [53, 55]. e o terceiro artigo aguarda sua
publicação. A seguir, descrevemos brevemente alguns dos resultados apresentados em cada um
destes artigos.

O primeiro artigo, A branch-and-cut approach for the vehicle routing problem with loa-

ding constraints, foi publicado na revista Expert Systems With Applications. Nesse artigo in-
vestigamos o problema de roteamento de veículos com restrições de empacotamento. Foram
estudados tanto a versão bidimensional quanto a versão tridimensional do problema. Superfici-
almente falando, dividimos o problema em uma parte de roteamento, resolvendo-a pelo método
branch-and-cut, e uma parte de empacotamento, que foi abordada como um problema de de-
cisão utilizando programação por restrições. Essas partes se retroalimentam para garantir uma
solução viável ótima. Dessa forma propomos neste artigo um novo algoritmo branch-and-cut

exato. Além disso propusemos heurísticas e algoritmos exatos para o problema de empaco-
tamento com restrições de descarregamento. Obtivemos resultados competitivos com os da
literatura, conseguindo resultados ótimos em um maior número de instâncias e em um tempo
menor. Esse artigo contou com a co-autoria do Prof. Dr. Flávio K. Miyazawa, e do Prof. Dr.
Eduardo C. Xavier, ambos do Instituto de Computação da Universidade Estadual de Campinas
(IC - UNICAMP).

O segundo artigo, A bounded space algorithm for online circle packing, foi publicado no In-

formation Processing Letters. Nesse artigo investigamos o problema online de empacotamento
de círculos. Propusemos nesse artigo um algoritmo de espaço limitado 2.4394-competitivo e
demonstramos que qualquer algoritmo desse tipo pode ser no melhor caso 2.2920-competitivo.
Para obter esse limitante também realizamos uma divisão do problema, primeiramente em uma
parte que escolhe as combinações de círculos de valor máximo, seguida por uma parte que re-
solve o problema de decisão de encontrar um empacotamento destes círculos no contêiner. A
primeira parte é resolvida por um programa linear inteiro, enquanto a segunda através de um
algoritmo de programação por restrições. Esse artigo teve a co-autoria do Prof. Dr. Flávio
K. Miyazawa, e do Prof. Dr. Rafael C. S. Schouery, ambos do Instituto de Computação da
Universidade Estadual de Campinas (IC - UNICAMP).

O terceiro artigo, Two-dimensional Disjunctively Constrained Knapsack Problem: Heuris-

tic and Exact approaches, foi submetido na revista Computers & Industrial Engineering e nele
investigamos o problema da mochila bidimensional com conflitos. Nesse trabalho propusemos

CAPÍTULO 1. INTRODUÇÃO 21

uma heurística e um novo algoritmo branch-and-cut para o problema. Para isso também divi-
dimos o problema em duas partes principais, a primeira resolve o problema da mochila com
conflitos, por uma modelagem em programação linear inteira, na segunda parte é verificado a
viabilidade dessa configuração de itens através de um algoritmo de programação por restrições.
Obtivemos resultados muito superiores às formulações anteriores. Esse artigo teve a co-autoria
do Prof. Dr. Flávio K. Miyazawa, Prof. Dr. Rafael C. S. Schouery, ambos do Instituto de Com-
putação da Universidade Estadual de Campinas (IC - UNICAMP), e do Prof. Dr. Thiago A. de
Queiroz, do Instituto de Matemática e Tecnologia da Universidade Federal de Goiás - Campus
Catalão.

Todos os algoritmos propostos foram testados com instâncias da literatura ou adaptadas e
mostram a eficiência das metodologias propostas. Além de cada uma dessas contribuições, foi
possível evidenciar a pertinência e eficiência de se agregar diferentes técnicas e modelagens
no esforço de solucionar problemas complexos. Os algoritmos envolveram programação linear
inteira, programação por restrições, heurísticas, meta-heurísticas, algoritmos aproximados entre
outros.

Capítulo 2

A Branch-and-Cut Approach for the

Vehicle Routing Problem with Loading

Constraints *

ABSTRACT

In this paper we describe a branch-and-cut algorithm for the vehicle routing
problem with unloading constraints. The problem is to determine a set of routes
with minimum total cost, each route leaving a depot, such that all clients are visited
exactly once. Each client has a demand, given by a set of items, that are initially
stored in a depot. We consider the versions of the problem with two and tri dimen-
sional parallelepiped items. For each route in a solution, we also need to construct
a feasible packing for all the items of the clients in this route. As it would be too
expensive to rearrange the vehicle cargo when removing the items of a client, it is
important to perform this task without moving the other client items. Such packings
are said to satisfy unloading constraints.

In this paper we describe a branch-and-cut algorithm that uses several techniques to
prune the branch-and-cut enumeration tree. The presented algorithm uses several
packing routines with different algorithmic approaches, such as branch-and-bound,
constraint programming and metaheuristics. The careful combination of these rou-
tines showed that the presented algorithm is competitive, and could obtain optimum
solutions within significantly smaller computational times for most of the instances
presented in the literature.

KEYWORDS. Vehicle routing. Two-dimensional packing. Three-dimensional
packing. Branch-and-cut. Combinatorial Optimization.

*This work was partially supported by CNPq (grants 311499/2014-7, 306358/2014-0, 477692/2012-5) and
FAPESP (grant 2011/13382-3).

22

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 23

2.1 Introduction

Several problems in transportation systems involve route planning for vehicles with containers
attached and accommodation of cargo into these containers. The route planning problem and
the packing problem are well known problems in the research literature, and they were largely
explored separately. However, in recent years there has been some interest in considering both
problems combined, leading to better global solutions.

In the Vehicle Routing Problem with D-Dimensional Unloading Constraints (DL-CVRP),
clients have a demand for goods stored into a depot, represented by D-dimensional parallelepi-
peds, and k vehicles must be used to deliver these goods. Each travel from the depot to a client,
or from a client to a next one has a cost. The problem is to find k routes leaving the depot, one
route for each vehicle, such that all clients are visited exactly once, and such that the items of
clients of a route can be packed in the vehicle’s container. The objective function of the problem
is to minimize the total cost of the routes. As it would be too expensive to rearrange the cargo at
each visit, we add a condition that the goods to be unloaded in a client must be removed without
moving the remaining goods, these are the so called unloading constraints. We consider two
versions of the problem, one with two dimensional items and another with three-dimensional
ones.

The literature in vehicle routing problem is extensive, with different variants including prac-
tical constraints. In the last decade, there has been some interest in variants that include two- and
three-dimensional packing constraints. Iori et al. [58] were the first to present an exact branch-
and-cut approach for the capacitated vehicle routing problem with two-dimensional unloading
constraints (2L-CVRP). To separate infeasible routes, these authors used known separations
routines for the CVRP. To separate routes that lead to infeasible packings, they used an adap-
tation of the exact algorithm, presented in [68], to satisfy unloading constraints. Following this
work, Azevedo et al. [2] also presented an exact method for 2L-CVRP, using a different set of
separation routines for the CVRP, made available by Lysgaard et al. [66]. To cut routes that
lead to infeasible packings, these authors also used an adaptation of the algorithm presented by
Martello et al. [68]. Due to the difficulty of solving this problem exactly, several heuristics were
also proposed. Gendreau et al. [41] presented a tabu search method to the 2L-CVRP. Fuellerer
et al. [37] employed an ant colony method. Zachariadis et al. [101] introduced a guided tabu
search method. Duhamel et al. [28] presented a GRASP approach for the case without unlo-
ading constraints. Silveira and Xavier [21] considered the pick-up and delivery version of the
problem. In this case both loading and unloading constraints must be taken into account when
generating a route. They presented an exact algorithm and also a GRASP heuristic for the pro-
blem. Approximation algorithms for the associated packing problem that considers unloading
constraints were proposed by Silveira et. al. [22, 23, 24].

The heterogeneous fleet variant with unloading constraint , where vehicles containers have
different sizes, was considered by Wei et. al. [94], who present an adaptive variable neigh-
bourhood search metaheuristic for the three dimensional case. Dominguez et. al. [27] presented
a randomised multi-start biased metaheuristic for the two dimensional case.

The capacitated vehicle routing problem with three-dimensional unloading constraints (3L-

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 24

CVRP) was first considered by Gendreau et al. [40]. They presented a tabu search method
to solve the problem. Junqueira et al. [61] presented an exact model for the 3L-CVRP via
an integer linear programming model with practical constraints, namely stability, multidrop
and load-bearing strength. The formulation was able to solve instances of moderate size. The
constraints considered differ from the ones here. For more references on routing and loading
problems we refer to a survey by Iori et al. [57].

In the 2L-CVRP and 3L-CVRP problems we face a packing subproblem of determining if
a set of items of one route can be packed in a bin. This is the so called Orthogonal Packing
Problem (OPP). In this problem it is given a set of items and a bin with bounded dimensions,
and the objective is to find a placement of these items in the bin, or prove that it is unfeasible.
When the items and the bins are two-dimensional objects (resp., three-dimensional), we have the
two-dimensional orthogonal packing problem - 2OPP (resp. the three-dimensional orthogonal
packing problem - 3OPP). Clautiaux et al. [17] presented an efficient method for solving the
2OPP using Constraint Programming. Their work was further extended to include new bounds
by Mesyagutov et al. [70], and to consider the three-dimensional case by Mesyagutov et al.
[71]. Recently the problem was considered with the unloading constraint by Côté et al. [20],
who presented an exact algorithm using branch-and-cut and a set of lower bounds.

The Constraint Programming (CP) paradigm has been proved to be a very efficient method
for solving many different problems [82]. This paradigm was well known by other areas but
just in the last decades was rediscovered by researchers in the combinatorial optimization com-
munity. The Integer Linear Programming (ILP) is probably the most used method for solving
combinatorial optimization problems [95]. The use of both, CP and ILP together is a hot topic
and has obtained good results for many problems [56].

In this paper we propose an exact branch-and-cut algorithm to solve the 2L-CVRP and the
3L-CVRP, following the branch-and-cut approach presented in [2, 58], using more elaborate
cutting plane routines to cut not only routes whose items cannot be packed in one bin, using
CVRP routines [66], but also fast routines that check the feasibility of packings for sub-routes.
These cuts are obtained using algorithms to solve the OPP. To this purpose, we tested a number
of original and adapted algorithms, and also sophisticated lower bounds that can prove that a
set of items cannot be packed in a bin. Besides the adaptation of the exact packing algorithm
in [68], we also adapted and improved the constraint programming algorithm presented by [17].
We also present new heuristics, one is based on the Bottom-Left heuristic, and another one is a
BRKGA metaheuristic.

The declarative approach of the constraint programming technique allowed us to obtain a
packing algorithm for which practical constraints are easily to be incorporated, as opposed to the
branch and bound approach used in [58], such as balancing constraints and weight distribution
[11], grouping items [11] and more specific application constraints.

The efficiency of the proposed algorithms are evaluated by an experimental analysis with
instances from the literature, comparing them with other algorithms from the literature. The
careful application of separation routines, not only made possible to obtain solutions for larger
instances, but also to deal with the three-dimensional problem version, which previous experi-

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 25

mental results showed difficulty to solve.
The proposed use of constraint programming with integer linear programming models, can

be applied to other practical variants, as the multi-depot [64] and cross-docking [75] vehicle
routing problems, among others.

2.2 Orthogonal Packing Problem With Unloading Constraints

In this section we formally describe the Orthogonal Packing Problem with Unloading Constraint
(OPPUL). We present exact algorithms, some heuristics, and lower bounds for the two and
three-dimensional version of this problem.

2.2.1 Problem Description

The orthogonal packing problem with unloading constraint can be defined as follows: It is
given a D-dimensional container B of dimensions pW 1, . . . ,WDq with total volume VpBq “
śD

d“1
W d, where W d P Z`, 1 ď d ď D; n sets of D-dimensional items pI1, . . . , Inq, let

I “ Ťn

v“1
Iv. Each item i P Iv has dimensions pw1

i , . . . , w
D
i q, where wd

i P Z`. The volume
of an item i is denoted by Vpiq “ śD

d“1
wd

i and the volume of a set of items I is denoted by
VpIq “ ř

iPI Vpiq. The problem is to find a packing PI of the items I in the bin B that respects
the unloading constraints in the direction of the last dimension D.

More precisely, a packing PI of items I in a container B “ pW 1, . . . ,WDq that satisfy
unloading constraints is a function PI : I Ñ r0,W 1q ˆ . . . ˆ r0,WDq such that:

(i) The packing must be orthogonal, i.e. the edges of the items must be parallel to the
respective container’s edges.

(ii) The packing must be oriented, i. e., the items must be packed in the original orientation
given in I .

(iii) Items of I must be packed within the container’s boundaries. That is, if the position
where the item is packed is given by PIpiq “ px1

i , . . . , x
D
i q, for each i P I , then

0 ď xd
i ď xd

i ` wd
i ď W d, for 1 ď d ď D. (2.1)

(iv) Items must not overlap. That is, if the region occupied by the item i is given by Dpiq “
rx1

i , x
1
i ` w1

i q ˆ . . . ˆ rxD
i , x

D
i ` wD

i q then

Dpiq X Dpjq “ H, for all pairs i ‰ j P I. (2.2)

(v) Items belonging to a set Iv are not blocked by any item belonging to a set Iu if u ą v.
That is, if item i must be unloaded before item j, j can not be packed in the region between
i and the end of the container, in the unloading dimension D. More precisely consider the
region that includes the item i and its way to the exit of the container defined by Depiq “
D´1
Ś

d“1

rxd
i , x

d
i ` wd

i q ˆ rxD
i ,W

Dq. A packing PI of I “ I1 Y . . . Y In in the bin B respects the

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 26

(a) Packing (b) Envelope (c) Corner Points

Figura 2.1: (a) Example of a two-dimensional packing, (b) its envelope and (c) the corner points
for this packing.

unloading constraints if it satisfy

D
epiq X Dpjq “ H for all i P Iv and j P Iu with 1 ď v ă u ď n, (2.3)

Definitions

An important concept used in several algorithms for packing problems is the envelope of a pac-
king or a partial packing. Let I be a set of items, each item i P I with dimensions pw1

i , . . . , w
D
i q,

and PI a packing of these items in a bin of dimensions pW 1, . . . ,WDq. An envelope of PI is
the region defined by

SpPIq “ tpx1, . . . , xDq P RD
` : Di P I with x1 ă x1

i ` w1
i ^ . . . ^ xD ă xD

i ` wD
i u.

The complement of the envelope S̄pPIq is the region of the Bin B that is not in the envelope.
The complement of the envelope is often considered as a feasible region to pack new items in
different algorithms. The volume of the envelope SpPIq and its complement S̄pPIq is denoted
respectively by VpSpPIqq and VpS̄pPIqq. Figure 2.1 shows an example of a two-dimensional
packing and it‘s envelope.

Another important concept is the set of Corner Points ĈpPIq, which is defined by,

ĈpPIq “ tpx1, . . . , xDq P S̄pPIq : ∄px11, . . . , x1Dq P S̄pPIqztpx1, . . . , xDqu, x11 ď x1^. . .^x1D ď xDu.

Figure 2.1c presents the set of corner points for the packing, the black dots are the corner points.

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 27

2.2.2 Two-dimensional Orthogonal Packing Problem with Unloading Cons-

traints

To solve the Two-dimensional Orthogonal Packing Problem with Unloading Constraints (2OP-
PUL), we consider two different exact algorithms found in the literature, which we modified
to include unloading constraints. The first is the OneBin algorithm presented by Martello et al.
[68]. The second is a constraint programming algorithm presented by Clautiax et al. [17]. Both
algorithms were modified to consider the customer’s order of visit and the associated unloading
constraints when generating a feasible packing.

To make the notation clear, when considering the Two-dimensional Orthogonal Packing
Problems the Bin has dimensions pW,Hq and each item i has dimensions pwi, hiq and it is
packed in the position pxi, yiq in a feasible solution.

Branch-and-Bound algorithm

The algorithm OneBin works as follows: let I be the set of all items, J be a set of packed items
and PJ a packing of these items in J . Let ĈpPJq be the set of corner points defined by PJ

and let J̄ “ IzJ be the set of items not packed yet. At each iteration, ĈpPJq and VpSpPJqq
are computed. For each item j P J̄ and for each corner point c P ĈpPJq, j is assigned at c
and OneBin is called recursively. Whenever VpBq ´ VpSpPJqq ď VpJ̄q happens, backtracking
occurs, because the remaining items cannot be packed. Empty space inside the envelope is not
used by this algorithm. Our algorithm is an adaptation of the OneBin source code provided by
Martello et al. [68].

To deal with the unloading constraint, we modified the algorithm as follows: when an item
is assigned to a corner point, the algorithm verifies if the item blocks any item that will be
removed before it. In this case, the algorithm backtracks. We also modified the initial ordering
of items, ordering first by the customer’s visiting order and then by nondecreasing volume.

CP model

The second exact algorithm was presented by Clautiax et al. [17], based on the constraint
programming paradigm, to which we refer from now on as CP2D. In the CP2D algorithm,
variables Xi and Yi are associated to the bottom left corner of each item i. The domain of
each variable is defined by Xi P t0, . . . ,W ´ wiu and Yi P t0, . . . , H ´ hiu. For each pair
(i, j) of items the following constraints must be satisfied: prXi ` wi ď Xjs or rXj ` wj ď
Xis or rYi ` hi ď Yjs or rYj ` hj ď Yisq. These constraints guarantee that two items do not
overlap. In order to consider the unloading constraints, we adapted the algorithm as follow: if i
will be unloaded before item j, we replace the previous constraints by prXi`wi ď Xjs or rXj `
wj ď Xis or rYj ` hj ď Yisq. With the aim of improving this constraint programming model,
Clautiax et al. [17] proposed a redundant constraint programming model for a non-preemptive
cumulative-scheduling problem associated with two relaxations of 2OPPUL, which are linked
to the original problem. A set of activities tAw

1 , . . . , A
w
|I|u, and a resource Rw are defined. Each

activity Aw
i requires hi of resource Rw, and has processing time wi. The resource Rw has

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 28

maximum capacity H . All activities must be executed by time W , and at any given time all
activities being executed must not exceed the resource’s maximum capacity. Analogously, we
define the set tAh

1 , . . . , A
h
|I|u and resource Rh with maximum capacity W . Each activity Ah

i

requires wi of resource Rh, and has processing time hi and all activities must be executed by
time H .

To link these scheduling problems with the packing problem, the start time of an activity Aw
i

must be equal to Xi and the start time of an activity Ah
i must be equal to Yi. Using this model

Clautiax et al. [17] proposed a series of pruning and propagation methods.

Reducing the Domain of Variables

In the formulation above, for each variable Xi, Clautiax et al. [17] considered all integer values
between 0 and W´wI and for each variable Yi the integer values between 0 and H´hi. This can
be improved by reducing the domain of each variable, reducing the number of choices where
each item can be placed. For each dimension, we must find the discretization points, a reduced
set of coordinates where items can be placed without changing the feasibility of the instance.
The set of discretization points in a certain dimension is defined by all possible combinations of
item’s sizes in that dimension. Following the notation used by Côté et al. [20], consider Iě

i the
set of items to be unloaded with, or after i. These are the only items that can be packed bellow
i. Let PH

i be a set of coordinates over the Y -axis that item i can assume, defined as

PH
i “

$

&

%

y “
ÿ

jPIě

i ztiu
hjξj : 0 ď y ď H ´ hi, ξj P t0, 1u, j P Iě

i ztiu

,

.

-

. (2.4)

Let PW
i be a set of coordinates over the X-axis that item i can assume, defined as

PW
i “

$

&

%

x “
ÿ

jPIztiu
wjξj : 0 ď x ď W ´ wi, ξj P t0, 1u, j P Iztiu

,

.

-

, (2.5)

This way, we define for each item i P I:

DompXiq “ PW
i , (2.6)

DompYiq “ PH
i . (2.7)

Herz [45] shows that any feasible solution for a given instance of the problem, has a corres-
ponding solution over the discretization points, this way we do not lose any solution by reducing
the domain to the discretization points.

The top-bottom mixfill strategy

To take advantage of the unloading constraints we decided to apply the top-bottom mixfill stra-

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 29

Figura 2.2: Example of packing using top-bottom mixfill.

tegy presented by Côté et al. [20] in the formulation of Clautiax et al. [17]. The unloading
order can be explored to fill the bin not only from the bottom to the top, but from the top to the
bottom too. This can be done by dividing the items into those who will be unloaded first, and
the others, to be unloaded later. Let c be the cut point between these two sets, that is, items in
IT “ I1 Y . . .Y Ic will be packed from the top to the bottom, and items in IB “ Ic`1 Y . . .Y In

will be packed from the bottom to the top. This way, we can redefine the coordinates in the
Y -axis where an item can be placed. To this purpose consider IT,ďi the set of items from IT that
will be unloaded with or before i, and I

B,ě
i the set of items from IB that will be unloaded with

or after i. Let PH
i be the new set of coordinates y where item i can be packed, if i P IT :

PH
i “

$

&

%

y1 “ H ´ y : y “
ÿ

jPIT,ď
i ztiu

hjξj, 0 ď y ď H ´ hi, ξj P t0, 1u, j P I
T,ď
i ztiu

,

.

-

. (2.8)

If i P IB:

PH
i “

$

&

%

y “
ÿ

jPIB,ě
i ztiu

hjξj : 0 ď y ď H ´ hi, ξj P t0, 1u, j P I
B,ě
i ztiu

,

.

-

. (2.9)

Figure 2.2 presents an example of packing using the top-bottom mixfill strategy. Côté et al.
[20] proved that if a solution is feasible for a given cut point c, it is feasible for every cut point.
This way we can choose the cut point that generates the least number of discretization points.

2.2.3 Heuristic and Hash

Besides the exact approach, a fast heuristic was employed to help decreasing the time spent
solving the 2OPPUL. The exact algorithms are not called if a feasible packing can be found by
some of our heuristics. One is based on the Bottom Left Decreasing Width heuristic (BLDW)
[3], modified to consider the unloading constraints. The other ones are based on the BRKGA
and will be described later.

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 30

To reduce the computational effort, known routes are stored in a hash table. A route is stored
whether it is feasible or not, therefore the same route will not have its feasibility checked twice.
Two routes will have the same hash, excluding collisions, if they serve the same customers and
have an identical visiting order.

2.2.4 Metaheuristic for the Two-Dimensional Orthogonal Packing Pro-

blem With Unloading Constraints

With the aim to reduce the total processing time of our exact algorithm, we also present some
heuristics to the 2OPPUL based on the Biased Random-Key Genetic Algorithm (BRKGA). We
first give an overview of the BRKGA, and then we show details about our proposed heuristics
for the 2OPPUL problem under this approach.

The BRKGA

The BRKGA presented by [42] is a general search metaheuristic for finding solutions to combi-
natorial optimization problems. This algorithm uses a chromosome of fixed size m of random
keys over the interval r0, 1q, where the value of m depends on the instance of the optimization
problem. An evolutionary process involves crossing-over different chromosomes and exchanges
among different populations. The BRKGA also introduces new chromosomes called mutants
to add variety.

The BRKGA involves the following main parameters:

‚ m is the size of a chromosome;

‚ p is the number of individuals (chromosomes) in a population;

‚ pe is the percentage of elite individuals in a population;

‚ pm is the percentage of new mutants to be introduced in a population at each generation;

‚ ρe is the probability that a gene is inherited from the elite parent;

‚ K is the number of independent populations;

‚ MaxGen is the number of generations evolved;

‚ Exch is the number of generations evolved before Exchange best individuals among po-
pulations;

‚ NExch is the number of best individuals to be exchanged among populations.

The BRKGA initializes each population with p randomly generated chromosomes, each
having m random keys. Then it evolves each population by MaxGen generations. The evolution
of a population is composed of the following steps:

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 31

1. Compute the fitness function for each chromosome. A chromosome when associated with
its fitness is called an individual.

2. Producing the next generation includes:

(a) The elite set of the previous generation with p ¨ pe individuals,

(b) p ¨ pm new randomly generated mutants.

(c) Chromosomes produced by matching two individuals from previous generations,
one from the elite set and another from the non-elite set. Each gene has a probability
ρe to be copied from the elite parent.

To use this metaheuristic as a framework to an optimization problem we need the following
steps: define the number of genes in a chromosome, define a decoder which maps a chromosome
into a solution (feasible or not) to our specific problem, and define the fitness value of the
chromosome, which will measure the quality of the solution. In the subsequent subsections we
describe these steps for some developed heuristics.

Heuristic Bottom-Left

Chromosome Each item i P I has an associated gene gi.

Decoder In this heuristic items are placed in the inverse sequence which they will be unloa-
ded, that is, set Iu is packed before set Iv if u ą v. Within each set Iv items are sorted according
to the corresponding genes’ values in the chromosome, that is, if i P Iv and j P Iv, i is placed
before j if gi ă gj .

Let J be the set of all packed items, initially J is empty, and let be PJ the packing of those
items in the Bin. Consider the set of corner points ĈpPJq as defined in section 2.2.1. We call
an eligible bottom-left corner point, the point p “ pxp, ypq P ĈpPJq, such that, yp is minimum
and xp ` wi ď W . Each item i in the order obtained from the chromosome is placed in the
eligible bottom-left corner point. The order which items are placed guarantee that the unloading
constraints are respected. We allow items to overflow the height H of the bin.

Fitness Value The fitness value of an individual is given by the height used by the packing in
the heuristic. If at any time we have an individual with fitness less than or equal to H we have
a feasible packing.

Heuristic Bottom-Left and Left-bottom

Chromosome Each item i P I has two associated genes g1i and g2i .

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 32

Decoder In this heuristic items are placed in the order given by the genes, item i is placed
before j if g1i ă g1j . Based on the heuristic proposed by Gonçalves et al. [43], items can be
placed in two different positions. Let J be the set of all packed items, initially J is empty, and let
PJ be the packing of those items in the Bin. An item i is placed in the eligible bottom left corner
point p “ pxp, ypq or in the eligible left-bottom corner point denoted by q “ pxq, yqq P ĈpPJq,
such that xq is minimum. Item i is placed in point p or q according to the gene g2i , if g2i ă 0.5 it
is placed in p, otherwise, it is placed in point q. We allow items to overflow the height H of the
bin.

Fitness Value The fitness value of an individual is given by the height used in the packing
given in the heuristic, plus a penalty of value H for each unloading constraint violated, that is,
for each pair of items, if the unloading constraint is violated one penalty is applied. At the end
of the process if we have an individual with fitness less than or equal to H we have a feasible
packing.

Heuristic Tetris

Chromosome Each item i P I has two associated genes g1i and g2i .

Decoder In this heuristic items are placed in the inverse sequence which they will be unloa-
ded, that is, set Iu is packed before set Iv if u ą v. Within each set Iv items are sorted according
to the genes g1, that is, if i P Iv and j P Iv, i is placed before j if g1i ă g1j .

The gene g2i represents the position x where the item i will be packed, and y is the lowest
possible value, respecting the overlapping constraints. That is, item i will have position xi

defined by:

xi “ tg2i pW ´ wi ` 1qu. (2.10)

The order in which items are placed guarantee that the unloading constraints are respected.

Fitness Value The fitness value of an individual is given by the height used in the packing
given in the heuristic. At the end of the process if we have an individual with fitness less than
or equal to H we have a feasible packing.

Heuristic Double-Layer Tetris

This heuristic has two stages. In the outer stage the order that each item will be placed is decided
using the BRKGA, and then for a given sequence, in the inner stage the x positions are decided
also using a BRKGA.

Chromosome In the outer stage each chromosome has size equal to n. Each item i P I has
an associated gene g1i . We will call this a sequence chromosome.

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 33

Decoder Items are placed in the inverse sequence which they will be unloaded, that is, set Iu is
packed before set Iv if u ą v. Within each set Iv items are sorted according to the chromosome,
that is, if i P Iv and j P Iv, item i is placed before item j if g1i ă g1j .

For each sequence chromosome we search for the packing positions by executing another
BRKGA. In this inner stage we call a chromosome by position chromosome, where each item
has an associated gene g2i representing the position x where the item i will be packed, that is,
item i will have position xi defined by:

xi “ tg2i pW ´ wi ` 1qu, (2.11)

and y is the lowest possible value, respecting the overlapping constraints. The fitness value in
this step is given by the height used by the packing obtained. The order which items are placed
guarantee that the unloading constraints are respected.

Fitness Value The fitness value is the height used by the packing given by the best position
chromosome found in the inner stage. At the end of the process if we have an individual with
fitness less than or equal to H we have a feasible packing.

Heuristic Bottom-Left Penalty

Chromosome Each item i P I has an associated gene gi.

Decoder The packing order of item i is given exclusively by the gene gi, that is, if gi ă gj ,
i will be packed before j independently of the unloading order. Items are packed in this order
using the bottom left heuristic. This may lead to an unfeasible solution, so for each violation a
penalty of value H is added to the fitness value.

Fitness Value The fitness value of an individual is given by the height used in the packing
given by the heuristic, plus a penalty for each violated unloading constraint, that is, for each
pair of items, if the unloading constraint is violated one penalty is applied. At the end of the
process if we have an individual with fitness less than or equal to H we have a feasible packing.

Heuristic Absolute Position

Chromosome Each item i P I has two associated genes gxi and g
y
i .

Decoder In this heuristic an item i is placed, if possible, on the position pxi, yiq given by:

xi “ tgxi pW ´ wi ` 1qu, (2.12)

yi “ tgyi pH ´ hi ` 1qu. (2.13)

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 34

Items are packed on the reverse order which they will be unloaded. Items from a same set
Iv are packed in the order given in the input. If item i violates the overlap constraint or the
unloading constraint we do not pack the item i. At the end there might be items not packed. Let
I be the set of all items, J be the set of packed items, and c the total number of conflicts.

Fitness Value The fitness value is given by

|I| ´ |J | ` pc{n2q. (2.14)

If an individual has fitness value 0, then all items are packed and the solution is feasible. The
last term of the fitness value helps to compare two individuals with the same number of packed
items. If one solution has less conflicts, then it is closer to a feasible solution.

Heuristic Best Corner Point

Chromosome Each item i has an associated gene gi.

Decoder Each gene represents the order of the packing, that is, if gi ă gj , i will be packed
before j. For each item i the heuristic packs it in the corner point that generates the minimum
amount of waste, and do not violate the unloading constraints. For each corner point s, it
verifies if i can be placed on s without exceeding the limits of the Bin, and without violating
the unloading constraints with the items already packed. If no violation occurs, s is a candidate
point to i. For each candidate s, the heuristic computes the volume of the complement of the
envelope with item i packed on s, and chooses the one with the biggest volume. An item may
have no candidates, in this case it is not packed.

Fitness Value Let I be the set of all items, J be the set of packed items, and S the total volume
of the envelope. The fitness value is given by

|I| ´ |J | ` pW H ´ Sq{p2WHq. (2.15)

If an individual has fitness value less than 1, them all items were packed and the solution is
feasible. The last term of the fitness value helps to compare two individuals with the same
number of packed items, preferring those who let more remaining space to be used.

2.2.5 Lower Bounds for the Orthogonal Packing Problem

Some lower bounds presented by Côté et al. [20], are used to obtain a minimum dimension size
to pack a set of items in a Bin. If the lower bound is greater than the dimension size of the bin,
then the packing is unfeasible.

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 35

Lower Bound L1

The first Lower Bound, L1, considers the minimum height required do pack all items.

L1 “
Rř

iPI wihi

W

V

. (2.16)

Lower Bound L2

To present the second lower bound, L2, we need the following definitions:

‚ I
ą,W´wi

i is the set of all items to be delivered after i, with width greater than W ´wi, and
řą,W´wi

piq is the total volume of these items.

‚ řą
piq is the total volume of items to be delivered after i.

‚ I
ď,wi

i is the set of items to be delivered before or with i and with width greater than wi.

‚ I
ă,W´wi

i is the set of all items to be delivered before i, with width greater than W ´ wi,
and

řă,W´wi

piq is the total volume of these items.

‚ řă
piq is the sum of volumes of items to be delivered before i.

‚ I
ě,wi

i is the set of items to be delivered after or with i and has width greater than wi.

‚ PH
i is the set of discretization points where item i can be placed.

The bound L2 also uses the values of ymin
i and ymax

i , which are respectively the minimal
position that can be occupied by the bottom of item i and the maximal position that can be oc-
cupied by the top of item i. To calculate ymin

i and ymax
i the following values must be computed:

y
min,1
i “ max

#S

řą,W´wi

piq
W

W

,maxthj : j P I
ą,W´wi

i u
+

, (2.17)

y
min,2
i “

S

rřą
piq ´HpW ´ wiq ` ř

jPIď,wi
i

hjpwj ´ wiqs`

wi

W

, (2.18)

y
max,1
i “ H ´ max

#S

řă,W´wi

piq
W

W

,maxthj : j P I
ă,W´wi

i u
+

, (2.19)

y
max,2
i “ H ´

S

rřă
piq ´HpW ´ wiq ` ř

jPIě,wi
i

hjpwj ´ wiqs`

wi

W

. (2.20)

(2.21)

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 36

This way ymin
i and ymax

i are computed as follow:

ymin
i “ maxtymin,1

i , y
min,2
i , max

jPIą,W´wi
i

tymin
j ` hju,mintt|t P PH

i uu, (2.22)

ymax
i “ mintymax,1

i , y
max,2
i , min

jPIă,W´wi
i

tymax
j ´ hju,maxtt|t P PH

i u ` hiu. (2.23)

Finally using definitions of ymin
i and ymax

i , L2 can be computed as follow:

L2 “ max
iPI

tymin
i ` hi ` pH ´ ymax

i qu. (2.24)

Lower Bound L3

Based on the Cutting Stock Problem we can obtain the lower bound LH
3 . A cutting pattern is

defined as a subset I 1 Ă I , such that
ř

iPI 1 wi ď W . Let KW be the set of all feasible patterns,
and aik “ 1 if item i belongs to pattern k, and aik “ 0 otherwise. The following Integer Linear
Program is constructed, where vk is the variable that represents the number of times pattern k

appears in the solution.

min
ÿ

kPKW

vk (2.25)

ÿ

kPKW

aikvk ě hi i P I (2.26)

vk ě 0, vk P Z k P KW . (2.27)

The Cutting Stock Problem is usually solved by column generation, solving a series of
knapsack problems with reduced costs. The knapsack problem is efficiently solved by Dynamic
Programming. The optimal solution of the Cutting Stock Problem (CSP) gives a lower bound
on the minimum height of the Bin necessary to pack all items. Let LH

3 be the value of the
optimal solution of CSP, if LH

3 ă H we know that the packing of items I into bin B “ pW,Hq
is unfeasible.

Analogously, the bound LW
3 can be defined by doing the same process over the transversal

axis. The resulting Cutting Stock Problem will give a lower bound on the width necessary to
pack the items.

2.2.6 Three-dimensional Orthogonal Packing Problem With Unloading

Constraints

To solve the Three-dimensional Orthogonal Packing Problem With Unloading Constraints (3OP-
PUL), we used two different exact algorithms. The first is the OneBin_General algorithm pre-
sented by Martello et al. [69]. The algorithm was slightly modified to consider the customer’s
items and their unloading order when generating a feasible packing. The second is a natural CP

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 37

model to the problem.

CP based algorithm - relative positions

The first algorithm used to solve the 3OPPUL is the OneBin_General algorithm, introduced by
Martello et al. [69]. This algorithm is based on constraint programming, and uses the following
idea, two items pi, jq do not overlap if item i is left of, right of, under, above, behind, or in front

of item j. To represent this relation between items i and j, it is created a variable rij for each
pair of items, this variable can assume one of the following values tl,r,u,a,b,fu.

The problem is solved recursively by the algorithm OneBin_General. At each recursive
call, two items i, j are considered and one of the relative positions are assigned to rij . The new
assignment must be checked for its feasibility with the previous assignments made.

In each call, after assignments were made in the variables r, the algorithm needs to find
the positions px, yq for the placement of each item. For this purpose it initializes the position
pxi, yiq of each item i with xi “ 0 and yi “ 0. For each relation already assigned, one of the
following assignments is performed: if rij “ l and xj ă xi ` wi, the item j is "pushed"left by
doing xj “ xi ` wi; otherwise if rij “ r and xi ă xj ` wj , item i is "pushed"left by doing
xi “ xj ` wj . A similar assignment is made for the other possible relations. The algorithm
repeats this procedure until no modifications are made. If at any point an item is positioned
such that it exceeds the size of the bin, the last assignment has been proved to be unfeasible.

We have adapted the original algorithm to consider the unloading constraints. For a certain
variable rij , we remove from its domain the value f(front) if i must be unloaded after j, or
remove b(behind) if i must be unloaded before j.

A natural CP model - absolute positions

We now describe a natural constraint programming formulation for the Three-dimensional Lo-
ading problem. Similarly to the CP2D, variables Xi, Yi and Zi are defined for each item i P B,
where pXi, Yi, Ziq is the position where item i will be packed. The initial domains are defined
as Xi P t0, . . . ,W ´ wiu, Yi P t0, . . . , H ´ hiu and Zi P t0, . . . , D ´ diu.

For each pair of items i, j, we include a constraint rXi ` wi ď Xjs or rXj`wj ď Xis or rYi`
hi ď Yjs or rYj ` hj ď Yis or rZi ` di ď Zjs or rZj ` dj ď Zis. To attend the unloading cons-
traint, if i must be unloaded before j, we replace this constraint by rXi ` wi ď Xjs or rXj `
wj ď Xis or rYi ` hi ď Yjs or rYj ` hj ď Yis or rZj ` dj ď Zis. We call this algorithm by
CP3D.

2.3 Capacitated Vehicle Routing Problem with Unloading Cons-

traints

In this section we formally describe the Capacitated Vehicle Routing Problem with Unloading
Constraints (DL-CVRP). We first formally describe the problem, then we present the ILP for-

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 38

mulation considered.

2.3.1 Problem Description

The Capacitated Vehicle Routing Problem with Unloading Constraints (DL-CVRP) can be de-
fined as follows: It is given a complete undirected graph G “ pV,Eq, such that, V is a set of
n ` 1 vertices, where vertex 0 corresponds to the depot, and vertices 1, . . . , n correspond to the
n customers, and E is the set of edges. For each edge e P E there is an associated cost ce P Q`.
It is also given a set of K identical vehicles, each having a weight capacity of M and a contai-
ner of dimensions W 1, . . . ,WD to carry the customer’s items, where D is the dimension of the
problem. Let V` “ V z t0u be the set of customers. Each customer v P V` has a demand of a
set Iv of items with total weight mv. Each item i in I “ Ťn

v“1
Iv has dimensions pw1

i , . . . , w
D
i q.

We need to find a route for each vehicle, where each route has a feasible Packing that
respects the unloading constraints. A feasible route C is a cycle in G that contains the depot
and satisfies the following conditions:

(i) The total weight of all items of customers in C must not exceed the vehicle load capacity.
That is, if VC is the set of customers in C then

ř

vPVC
mv ď M .

(ii) There is a packing PC for the items of the clients in C in the container of the vehicle,
such that this packing respects the unloading constraints.

The DL-CVRP is to find a set of K feasible routes C “ tC1, . . . , CKu, that minimizes the
total routing cost, that is, minimize cpCq “ řk

i“1

ř

ePCi
ce.

2.3.2 Formulation

In this section we present the integer linear programming formulation used to model and solve
the DL-CVRP.

Let qe be a variable that indicates the use of an edge e in the solution, that is, qe is equal
to one if a vehicle travels along the edge e, and zero otherwise. Given a subset of customers
S Ď V`, mpSq is the total weight of all items of the customers in S, i.e., mpSq “ ř

iPS mi.
We denote by VpBq the volume of the container and VpSq the total volume of the items of the
customers in S, i.e, VpSq “ ř

vPS VpIvq. Let δpSq be the set of edges in the cut of G defined
by S, i.e. the edges with exactly one vertex in S. Let rpSq be the minimum number of vehicles
needed to supply the demand of S considering the weight of the demands of the items. Also let
R be the set of routes that are infeasible to be packed respecting the unloading constrains. The
integer programming formulation is:

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 39

minimize
ÿ

ePE
ceqe (2.28)

s.a.
ÿ

ePδptiuq
qe “ 2 @i P V` (2.29)

ÿ

ePδpSq
qe ě 2rpSq @S Ď V`, |S| ě 2 (2.30)

ÿ

ePδpt0uq
qe “ 2K (2.31)

ÿ

ePR
qe ď |R| ´ 1 @R P R (2.32)

qe P t0, 1u @e P E. (2.33)

Constraints (2.29) ensure that each customer is visited exactly once. Constraints (2.30),
the Capacity Inequalities, impose connectivity and capacity conditions. If rpSq is replaced by
kpSq “ maxtrmpSq{M s, rVpSq{VpBqsu, a valid lower bound is achieved. These are known as
Rounded Capacity Inequalities (see [76]).

Constraints (2.31) ensure that exactly K vehicles are used. Constraints (2.32) ensures that
there exists a packing respecting unloading constraints for each route. Note that to compute if
a route R belongs do R is an NP-Hard problem, since it is equivalent to finding the optimal
solution of the Orthogonal Packing Problem with Unloading Constraints (OPPUL), given the
vehicle container and the customers items. Constraints (2.33) impose that the variables must be
binary. Following [58], we do not allow routes with only one customer.

2.4 Branch-and-Cut Algorithm for the DL-CVRP

The DL-CVRP consists of a routing and a packing problem, therefore routing and packing
strategies are needed. Following Azevedo et al. [2] our routing separation routine consists of
separating Capacity Inequalities to ensure connectivity and capacity constraints, and using other
families of inequalities trying to reduce the space to be explored. The packing constraints are
evaluated when no more routing cuts can be found at the current node.

2.4.1 Routing Separation Routine

The formulation has an exponential number of constraints. The algorithm starts with a small
set of constraints and add others by separation routines. Constraints (2.29) and (2.31) gives
rise to a relaxed model that can be easily solved, generating a weak lower bound that can
be strengthened by adding cutting planes. For this reason, the following separation routines
were used: Capacity Inequalities, Framed Capacity Inequalities, Multistar Inequalities, 2-Edges
Extended Hypotour Inequalities and Strengthened Comb Inequalities. Observe that separation

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 40

for Capacity Inequalities take into account not only the capacity of the vehicle, but also its
container’s area. Details on the used cuts can be found in [66] and [76].

Separating Capacity Inequalities is NP-Hard (see [76]), consequently separation is done on
Rounded Capacity Inequalities, obtained by replacing rpSq by kpSq in constraints (2.30). To
separate different CVRP families of inequalities we used the source code provided by [66].

Following Azevedo et al. [2], to allow better chances of finding more cutting planes at
each iteration at the root node, two cyclical approaches based on a separation strategy proposed
by [66] are used. At each iteration, the following separation routines can be called: Rounded
Capacity Inequalities, Framed Capacity Inequalities, Multistar Inequalities, Strenghtened Comb
Inequalities and 2-Edges Extended Hypotour Inequalities. For each separation attempt, every
inequality that was found is added to the LP.

Initially, the algorithm tries to separate Rounded Capacity Inequalities. If there is at least
one cut violated by less than a certain limit, the algorithm attempts the Framed Capacity se-
paration. If no Framed Capacity Inequality is found, two different approaches are used: if the
current iteration is a multiple of five, the algorithm tries to separate Multistar and Strenghtened
Comb Inequalities. Otherwise, a circular strategy is put into action: separation of Multistar,
Strenghtened Comb and Hypotour occurs every third iteration, e.g., if Multistar Inequalities are
found, re-optimization occurs and the algorithm will not try to separate this family again until
both Strenghtened Comb and Hypotour Inequalities are found. The order used was Multistar,
followed by Strenghtened Comb and then Hypotour Inequalities. It should be noted that sepa-
ration is pursued only if the algorithm finds at least one Rounded Capacity Inequality violated
by a predefined limit. This limit is different for each family of inequalities.

Non-root nodes of the branching tree are treated differently from the root node. First the
algorithm calls the routine to separate Capacity Inequalities, then we try to separate Framed
Capacity Inequalities, followed by Multistar Inequalities and Strenghtened Comb Inequalities.
Unlike our approach for the root node, these procedures are called without any conditions (li-
mits). For each subsequent iteration, only Capacity separation is attempted.

2.4.2 Packing Separation Routine

When none of the Routing Separations constraints are found, we can use the information given
by the packing problem to add some extra cuts. Those cuts will also eliminate unfeasible routes,
the ones with clients such that their items cannot be packed in a single vehicle. Given a partial
solution for the integer linear program (2.28-2.33) described in section 2.3.2, it is possible that
not all variables are integer. We propose two methods that can be used to add extra cuts.

In the first method, the Branch-and-Bound is executed until all values are integers, so the
solution to the ILP model is a set of routes. For each of these routes, the algorithm searches for
a feasible packing. Figure 2.3 illustrates a partial solution where all variables are integers. We
will call this method BranchFirst.

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 41

0

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1
1

1

Figura 2.3: Example of a partial solution, packing can be tested for each route.

The second strategy searches for possible cuts even with fractional solutions to the ILP
model, as illustrated in Figure 2.4. We define the problem of finding cuts in this partial solution
as Unpackable Path Problem.

Unpackable Path Problem

The Unpackable Path Problem is the following: given a fractional partial solution to the ILP
model, find a path whose customer’s items cannot be packed in that specific order. This path
can be removed from the solution, by adding a new cut.

Heuristic for Unpackable Path Problem

Initially all edges e whose value of xe is below a certain value p ą 0.5 are removed. In the
example of figure 2.4 we considered p “ 0.7, and removed the dashed edges. The edges
incident to the depot are also removed. We obtain a set of disjoint paths and isolated vertices,
these paths are called sub-routes. Let P be one of these paths, where

ř

ePP
xe ą m ´ 2. The

algorithm then check if the packing of items associated to the path P is feasible. If it is not, we
add the following cut

ř

ePP
xe ď |P | ´1, pruning this sub-route from the set of solutions. We will

call this strategy CutFirst.

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 42

0

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

1

0
.6

1

1

0
.4

1

1

1

1

0.
6

0
.4

0
.2

0.6

0.2

0.4

0
.4

0.4

0
.2

0
.6

0.4

0
.4

0
.4

0
.2

0
.8

1

1

1

1

0.8

Figura 2.4: Example of a partial solution with fractional variables, packing can also be used to
find cuts in this case.

For each route or sub-route of a solution or partial solution, we perform the following steps:
first check if it can be found in the hash table. If so, it means that this route’s packing was
solved previously and its feasibility is known. Otherwise, we try our packing heuristic. The
heuristic attempts to pack the items of customers considering the sequence of visit determined
by the route. If a feasible packing is found, we update the hash table. If it fails, one of the exact
algorithms is called and the hash table is updated with the results found. Thus we avoid multiple
calls to identical packing instances. If there is no feasible packing for the corresponding route,
a cut is added to the model in order to remove this route from the feasible space.

One can also conclude the unfeasibility of routes or sub-routes by looking for unpackable
subsequences. For instance, consider we wish to know if the route (3, 2, 9, 10, 15) is feasible
or not, and we already have concluded and stored that (3, 9, 10) is unfeasible, we can conclude
that the route (3, 2, 9, 10, 15) is also unfeasible. Obviously, the search for this subsequence
may take some time and do not always compensate. Therefore we tested the algorithm with
and without this search procedure. Combined with the strategy CutFirst, we call this search by
SubSeqSearch.

2.5 Computational Results

The proposed algorithms were implemented in c++ language, and compiled with g++ 4.6.4 in
a computer running Linux. The experiments were run on a 2.93GHz Intel Xeon Cpu. With the
exception of the BRKGA metaheuristic, all algorithms runs in a single core. The integer linear
programming solver used was the Cplex 12.5.1, and the constraint programming solver was the
CP Solver 1.7, both from IBM ILOG.

Following Lysgaard et al.[66] and Azevedo et al. [2] the root node separation strategy tries
to separate different families of cuts only if there is at least one Rounded Capacity Inequality
violated by less than a certain limit. These limits are: 0.2 for Framed Capacity Inequalities,
0.05 for Multistar Inequalities, 0.1 for Strengthened Comb Inequalities and 0.1 for the 2-Edges
Extended Hypotour Inequalities.

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 43

2.5.1 Instances

We tested our exact algorithm for the 2L-CVRP on the 60 instances used by Iori et al. [58]
which were based on 12 instances for the CVRP provided by Reinelt [81]. For each one of
these 12 CVRP instances, Iori et al. [58] considered the complete graph connecting the clients,
the weights mv for each client v and the total capacity M of each vehicle. The distances between
each pair of clients is an integer obtained by truncating the corresponding euclidian distances.
For each one of these 12 CVRP instances, 5 classes of instances were created by Iori et al.
[58], differing on how items for each client were generated. In the first class, each original
instance of the CVRP is adapted to the 2L-CVRP in a straightforward way: create a single
item of sides length equal to 1 for each client, and a container with W “ H “ n. For the
remaining classes it was considered vehicles with W “ 20 and H “ 40. The number of
items per client is an uniform random value in the interval r1, rs, where r P t2, . . . , 5u is the
number of the class. For each item its shape is selected with equal probability among: Vertical,
Homogeneous and Horizontal, and its side lengths h and w are randomly generated from the
intervals given in Table 2.1. The number of available vehicles in each instance were obtained
by Iori et al. [58], heuristically solving a Two-dimensional Bin Packing Problem considering
all items, but not considering Unloading Constraints or gathering items of a same customer in
the same container. Then K is as the maximum value between this number and the number of
vehicles in the original CVRP instance. These instances are available at [26].

Tabela 2.1: Classes for the 2L-CVRP instances

Vertical Homogeneous Horizontal

Class Itens per Client h w h w h w

1 1 1 1 1 1 1 1

2 r1, 2s
“

4H
10
, 9H

10

‰ “

W
10
, 2W

10

‰ “

2H
10
, 5H

10

‰ “

2W
10

, 5W
10

‰ “

H
10
, 2H

10

‰ “

4W
10

, 9W
10

‰

3 r1, 3s
“

3H
10
, 8H

10

‰ “

W
10
, 2W

10

‰ “

2H
10
, 4H

10

‰ “

2W
10

, 4W
10

‰ “

H
10
, 2H

10

‰ “

3W
10

, 8W
10

‰

4 r1, 4s
“

2H
10
, 7H

10

‰ “

W
10
, 2W

10

‰ “

H
10
, 4H

10

‰ “

W
10
, 4W

10

‰ “

H
10
, 2H

10

‰ “

2W
10

, 7W
10

‰

5 r1, 5s
“

H
10
, 6H

10

‰ “

W
10
, 2W

10

‰ “

H
10
, 3H

10

‰ “

W
10
, 3W

10

‰ “

H
10
, 2H

10

‰ “

W
10
, 6W

10

‰

To test the efficiency of the modifications done in the constraint programming algorithm
CP2D, we used the instances provided by Côté et al. [20]. These instances were obtained by
first creating extra instances based on 180 2L-CVRP instances reported in [41], by modifying
the dimensions of the container according to 5 different types:

‚ Type 1 : H = 40, W = 20

‚ Type 2 : H = 32, W = 25

‚ Type 3 : H = 50, W = 16

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 44

‚ Type 4 : H = 80, W = 14

‚ Type 5 : H = 130, W = 14

This resulted in 900 2L-CVRP instances, in which they heuristically generate routes of
clients saving those that was not proved unfeasible by some Lower Bounds. They end up with a
total of 2183 2OPPUL instances. Which we use to test the efficiency of our packing algorithms.

The heuristics presented in section 2.2.4 aim to solve hard instances for which the exact
algorithm would take too much time. The instances provided by Côté et al. [20] were easily
solved by the exact methods, so we created a new set of instances for the two-dimensional
orthogonal packing problem. These instances were generated by running our exact algorithm
for the 2L-CVRP, and when the algorithm faces a 2OPPUL that cannot be solved by the
CP2D within 1 second, we save this route as a new 2OPPUL instance. We end up with
a total of 296 instances. These new instances are available at the our Laboratory website
http://www.loco.ic.unicamp.br.

We also use the 3L-CVRP instances presented by Gendreau et al. [40] to verify the behavi-
our of our algorithm in the three-dimensional case.

2.5.2 Efficiency of CP and Discretization Points

The efficiency of using the discretization points and the top-bottom mixfill approach were tested
in the instances of [20]. We compared the efficiency of the original CP2D algorithm, its version
using discretization points and top-bottom mixfill approach and also the adapted Branch-and-
Bound algorithm OneBin that considers unloading constraints. We used a time limit of 600
seconds for the algorithms in the experiments.

We present the results in Table 2.2. Column SOB presents the number of instances solved to
optimality by the adapted OneBin algorithm, while column TOB presentes the average time used
to solve these instances. Columns S and T indicate respectively the number of instances solved
to optimality, and the average time used by the original CP2D algorithm with complete domain.
Analogously columns Sdp and Tdp indicate the number of instances solved to optimality, and the
average time taken by CP2D algorithm using discretization points (see Section 2.2.2). Finally
columns Sdp_mix and Tdp_mix indicates respectively the number of instances solved to optimality
and the average time used by CP2D algorithm using both discretization points and the top-
bottom mixfill approach (see Section 2.2.2). Those combinations of class and type where all
the algorithms were not able to solve any instance were omitted.

The number of solved instances increased by 7.4% when using discretization points in the
CP2D algorithm, when compared to its original version. And the number of solved instances
increased by 8.7% when using both discretization points and the top-bottom mixfill approach.
One important note is that the number of solved instances did not decrease in none of the
instances types, when using these strategies.

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 45

Tabela 2.2: Performance of CP with dicretization points and mixfill

Class Type #inst SOB TOB S T Sdp Tdp Sdp_mix Tdp_mix

1 3 30 27 80.37 29 9.12 30 10.39 30 8.56
1 4 198 64 185.66 185 33.81 190 28.58 190 25.85
1 5 200 3 384.01 68 153.37 79 147.92 81 151.66
2 2 1 1 0.21 1 0.06 1 0.04 1 0.00
2 3 128 122 62.47 128 18.43 128 9.88 128 8.42
2 4 198 89 195.56 187 50.90 194 47.43 194 43.37
2 5 200 5 405.06 55 162.25 61 152.17 63 159.46
3 3 2 2 32.35 2 0.36 2 0.22 2 0.19
3 4 155 30 194.35 144 30.89 148 22.45 148 22.22
3 5 206 2 345.03 59 147.54 75 124.07 75 116.87
4 4 187 2 218.11 68 152.84 85 118.86 92 114.50
4 5 182 0 0.00 1 136.231 3 332.42 4 363.55

2.5.3 Efficiency of metaheuristics

The proposed heuristics to solve the two-dimensional orthogonal packing problem were imple-
mented using the brkgaAPI framework [89], that implements the BRKGA described in section
2.2.4. These heuristics are used to improve the time spent to find a feasible packing that must
respects unloading constraints of some given route. Unfortunately, the set of instances provided
by Côté et al. [20] does not reflect the routes that we desire to solve in the 2L-CVRP instances
considered.

To evaluate the performance of these heuristics, we generated a new set of instances as
follows: for each 2L-CVRP instance proposed by Iori et al. [58], we ran the branch-and-cut
algorithm for 10 seconds, and for each found route, it is first checked its feasibility with the
lower-bounds. If the lower bounds did not prove its unfeasibility, we ran the basic BLDW
algorithm presented in section 2.2.3, and if it does not found a packing, we ran the CP2D
algorithm with a time limit of 1 second. If feasibility or unfeasibility has not been proved by
any of these methods then we store this route in our set of instances. This procedure resulted in
a set of 296 instances to the orthogonal packing problem.

We evaluated the performance of the BRKGA heuristics with this new set of instances. Table
2.3 presents the performance of the Heuristic Absolute Position presented in section 2.2.4, and
Heuristic Best Corner Point presented in section 2.2.4. The column "Class"indicates the class
of the instance, column "#inst"indicates the number of instances of that type and column "avg.
it."the average number of items in these instances. Columns Scp and Tcp represents respectively
the number of feasible instances of that type, and the average time spent by the CP2D algorithm
to solve these instances. Columns Sabs and Tabs represents respectively the number of feasible
solutions found by Heuristic Absolute Position and the average time when the best solution
was found. Analogously, columns Sbcp and Tbcp represents respectively the number of feasible
solutions found by Heuristic Best Corner Point and the average time when the best solution was
found.

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 46

Table 2.4 presents the performance of the remaining heuristics based on BRKGA (see Sec-
tion 2.2.4). For each heuristic he three columns She , The and Hhe indicate respectively, the
number of feasible solutions found by heuristic he, the average time when the best solution was
found, and the average best fitness function value. The heuristics are

‚ bl: Heuristic Bottom-Left presented in Section 2.2.4

‚ bl-lb: Heuristic Bottom-Left and Left-bottom presented in Section 2.2.4

‚ t: Heuristic Tetris presented in Section 2.2.4

‚ d.t: Heuristic Double-Layer Tetris presented in Section 2.2.4

‚ bl-p: Heuristic Bottom-Left Penalty presented in Section 2.2.4

Heuristics Better Corner Point and Double-Layer Tetris achieved the best results. For this
reason we included only these two in the branch-and-cut algorithm, besides the basic BLDW
heuristic.

2.5.4 Comparison of the 2L-CVRP algorithms

Since we did not have acess to the original implementation of Iori et al. [58], we compare
our algorithm with a simpler version of the branch-and-cut, disabling heuristics presented in
Section 2.4.2 and checking if a routing is feasible, using the hash table, the bottom-left heuristic
and the OneBin algorithm limited to 600 second, this is similar to the algorithm proposed by
Azevedo et al. [2]. We refer to this simpler version as BNC, while we refer to our improved
version as BNC-improved. In BNC-improved we limit the time of CP2D in 2 seconds. Which
means that the solution found might not be optimal. We ran our code in a single core of an Intel
Xeon 2.93GHz with 8GB of ram.

Table ?? presents the results. First is presented information about the instances: columns
Name, Class, number of clients (n), total number of items (M) and number of available vehicles
(K). The results of the approach of BNC is presented next: the total time spent by the algorithm

Tabela 2.3: Performance of metaheuristics to the orthogonal packing problem

Class #inst avg. it. Scp Tcp Sabs Tabs Sbcp Tbcp

3 22 13.05 1 2.32 0 0.13 0 0.02
4 67 14.94 9 31.11 0 0.21 2 0.03
5 207 19.84 112 62.19 0 0.39 36 0.09
All 296 18.23 122 50.7 0 0.33 38 0.07

Tabela 2.4: Performance of metaheuristics to the strip packing problem.

Type Sbl Tbl Hbl Sbl-lb Tbl-lb Hbl-lb St Tt Ht Sd.t Td.t Hd.t Sbl-p Tbl-p Hbl-p
3 0 0 53.82 0 0.06 47.05 0 0.16 44.36 0 0.17 43.68 0 0.03 50.18
4 0 0 51.84 1 0.09 47.07 0 0.15 45.03 1 0.22 44.19 0 0.04 50.49
5 4 0.02 49.46 3 0.21 46.79 2 0.27 44.51 17 0.47 43.9 2 0.1 49.67
All 4 0.01 50.32 4 0.17 46.88 2 0.23 44.61 18 0.39 43.95 2 0.08 49.9

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 47

Figura 2.5: Example of solution for 2L-CVRP

(time), and the solution value (z) of the best feasible solution found. Then in the last columns
is presented the results of our algorithm BNC-improved: the total time spent by the algorithm
(time), and the solution value (z) of the best feasible solution found. We set a time limite of
3600 seconds to both algorithms. Figure 2.5 represents a solution for instance E016-03m with
K “ 4.

The results show that, with our improvements, there was a reduction of the time spent in
solving packing sub-problems, and then the BNC-improved was able to find feasible solutions
to all instances in 3600 seconds, while the BNC could not give feasible solutions for 7 of those
instances. The impact of the Rounded Capacity Inequalities and hash tables may be found in
[2].

2.5.5 Comparison of the 3L-CVRP algorithms

We compared our algorithm with a simple version of a branch-and-cut algorithm. We ran our
code in a single core of an Intel Xeon 2.93GHz with 8GB of ram. We set our time limit to 3600
seconds, and the time for each packing sub-problem was limited to 60 seconds. As we do not
consider rotations and fragility of items, we can not compare our algorithm with the tabu search
approach presented by Gendreau et al. [40].

Table 2.6 presents the results for the 3L-CVRP. It presents, for each instance, the time spent
solving the instance and the value of the solution found. We compared a simple Branch-and-
Cut algorithm (BNC), and for our improved Branch-and-Cut (BNC-Improved). The instances
where both algorithms did not found an integer solution were removed.

To solve the 3opp problem we used the simple CP formulation presented in Section 2.2.6.
We strongly believe that adapting the techniques presented to solve the 2opp to the three-
dimensional case will improve the algorithm, increasing the number of solutions found. We
only present results for those instance where our algorithm found an integer solution. We can
see that the BNC-Improved was able to find solutions to two more instances when compared to

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 48

Instance BNC BNC-Improved
Name Class n M K Time z Time z
E016-03m 1 15 15 3 1.14 273 1.19 273

2 15 24 3 21.16 285 10.00 285
3 15 31 3 85.22 280 49.79 280
4 15 37 4 23.97 288 0.08 288
5 15 45 4 600.76 279 0.79 279

E016-05m 1 15 15 5 0.30 329 0.31 329
2 15 25 5 2.76 342 2.63 342
3 15 31 5 7.18 347 3.81 347
4 15 40 5 287.74 336 1.43 336
5 15 48 5 0.54 329 0.25 329

E021-04m 1 20 20 4 0.46 351 0.49 351
2 20 29 5 2275.52 396 10.95 396
3 20 46 5 373.43 387 5.31 387
4 20 44 5 99.07 374 1.41 374
5 20 49 5 520.81 369 5.31 369

E021-06m 1 20 20 6 1.48 423 1.35 423
2 20 32 6 4.15 434 1.23 434
3 20 43 6 4.74 432 5.45 432
4 20 50 6 57.29 438 17.18 438
5 20 62 6 3011.87 423 17.46 423

E022-04g 1 21 21 4 0.05 367 0.05 367
2 21 31 4 2.17 380 2.13 380
3 21 37 4 46.73 373 12.93 373
4 21 41 4 892.87 377 1.19 377
5 21 57 5 605.29 389 2.32 389

E022-06m 1 21 21 6 0.95 488 1.05 488
2 21 33 6 4.33 491 8.34 491
3 21 40 6 35.46 496 13.12 496
4 21 57 6 141.67 489 3.36 489
5 21 56 6 4491.52 488 30.87 488

E023-03g 1 22 22 3 0.02 558 0.03 558
2 22 32 5 3600.01 724 61.75 724
3 22 41 5 98.88 698 19.15 698
4 22 51 5 2120.64 714 56.84 714
5 22 55 6 1035.19 742 0.93 742

E023-05s 1 22 22 5 0.02 657 0.02 657
2 22 29 5 778.18 720 23.50 720
3 22 42 5 3600.00 730 26.24 730
4 22 48 5 1611.09 701 31.64 701
5 22 52 6 601.37 721 0.07 721

E026-08m 1 25 25 8 0.62 609 0.62 609
2 25 40 8 0.47 612 3.60 612
3 25 61 8 1.62 615 20.52 615
4 25 63 8 95.70 626 40.98 626
5 25 91 8 3112.99 609 16.14 609

E030-03g 1 29 29 3 1.25 524 1.20 524
2 29 43 6 3600.00 - 3600.00 687
3 29 49 6 3600.01 637 1450.30 637
4 29 72 7 3600.00 - 3600.03 739
5 29 86 7 3600.00 - 1426.58 706

E033-03n 1 32 32 3 0.15 1909 0.36 1909
2 32 44 7 3600.00 - 3600.00 2715
3 32 56 7 3600.02 2854 3219.52 2574
4 32 78 7 3600.00 - 3603.01 2699
5 32 102 8 3600.90 2621 1246.30 2672

E036-11h 1 35 35 11 218.15 682 249.64 682
2 35 56 11 364.63 682 161.58 682
3 35 74 11 712.04 682 327.16 682
4 35 93 11 3600.07 691 2481.22 691
5 35 114 11 3600.00 - 1003.71 682

Tabela 2.5: Comparison between a simpler branch-and-cut algorithm and our BNC-Improved

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 49

the BNC. It also found solutions of equal or better quality, when compared to BNC.

Tabela 2.6: Comparison between our BNC-Improved and BNC.

Instance BNC BNC-Improved
Name T ime z T ime z
E016-03m.dat 157.35 293 39.04 293
E016-05m.dat 0.28 329 1.17 329
E021-04m.dat 1007.61 357 227.64 357
E021-06m.dat 393.15 423 36.13 423
E022-04g.dat 127.55 424 26.05 424
E022-06m.dat 273.24 488 73.57 488
E023-03g.dat 599.01 761 132.82 761
E023-05s.dat 1891.84 822 458.47 822
E026-08m.dat 687.59 661 1228.21 661
E030-03g.dat 1450.77 797 3600.50 797
E030-04s.dat 268.35 770 686.90 770
E031-09h.dat 2406.83 611 3600.03 611
E033-04g.dat 3668.41 1583 3606.77 1564
E033-05s.dat 3663.25 1537 3609.41 1537
E036-11h.dat 1644.89 700 3134.11 700
E041-14h.dat 3600.60 - 3600.03 849
E051-05e.dat 3357.87 747 3607.65 747
E101-14s.dat 3627.47 - 3601.23 1541

2.6 Conclusions and Future work

In this paper we present a branch-and-cut algorithm for the vehicle routing problem with un-
loading constraints. The algorithm uses known separation routines for the vehicle routing pro-
blems and an exact packing algorithm to separate infeasible routes and subroutes. The packing
algorithm is an adaptation of the two-dimensional packing algorithm presented by Clautiaux
et al. [17], to satisfy unloading constraints. This algorithm was improved, by restricting the
item packing positions to discretization points and applying the top-bottom mixfill approach.
The improved algorithm showed to be more robust and faster than the compared algorithms.
Compared to the straighforward adaptation of the algorithm presented by Clautiaux et al. [17],
the presented algorithm obtained 8.7% more exact solutions for compared instances, and could
solve 190% more instances than the algorithm presented by Azevedo et al. [2]. We also pre-
sented several heuristics for the two-dimensional packing problem with unloading constraints,
as alternatives to the exact algorithm. For example, in a set of 38 instances where the exact
algorithms take more than 1 second each, the Best Corner Point heuristic obtained solutions in
0.07 seconds, on average.

The main algorithm, for the vehicle routing problem with unloading constraints, obtained
optimum solutions within significantly smaller computational times for most of the instances
presented in the literature. We made a computational comparison of the presented algorithm
with the one presented in [2], with computational time limited to 3600 seconds. For all instances
solved to the optimallity by the compared algorithm, the presented algorithm also obtained
optimum solutions and within 5.8% of the total time used by the compared algorithm. For the
13 instances not proven to be optimum by the compared algorithm, the presented algorithm
obtained optimum solutions for 11.

CAPÍTULO 2. A BRANCH-AND-CUT APPROACH FOR THE DL-CVRP 50

Many practical problems are in fact problem combinations, that are better solved with dif-
ferent approaches. This suggest the development of hybrid algorithms that makes use of dif-
ferent algorithmic methods, each one to deal with more appropriate structures. In this paper
we present an hybrid algorithm for a problem that combines routing and packing constraints.
The algorithm combines different approaches, as constraint programming, integer linear pro-
gramming, branch-and-bound and metaheuristics. The computational experiments showed the
presented algorithm could obtain improved results, showing the success of the hybridization
approach. It does not seems that simple partition of a complex problem into subproblems with
different characteristic and the application of specific algorithms for each part will lead to good
algorithms for the main problem. The difficult resides in how to divide the main problem in a
way to guide combined subproblem solutions in the direction of better solutions for the main
problem.

For future improvements of the algorithm, we mention the use of initial primal heuristics,
more efficient packing strategies and improved lower bounds. Directions for future research
may include the integration of the problem with other constraints, as time windows, packing
stability and pickup and delivery constraints. The presented technique can also be applied to
other routing problems where packing constraints can be included, such as the shortest paths,
traveling salesman, multi-depot and cross-docking vehicle routing problems, among others. The
packing algorithms can be easily adapted to solve other packing problems, such as the two- and
three-dimensional knapsack and bin packing problems and their variations.
Acknowledgements: This research was partially supported by CAPES, CNPq (Proc. 477692/2012-
5,311499/2014-7,306358/2014-0 and FAPESP (Proc. 2011/13382-3).

Capítulo 3

A Bounded Space Algorithm for Online

Circle Packings *

ABSTRACT

We study the Online Circle Packing Problem where we need to pack circles that
arrive online in square bins with the objective to minimize the number of bins used.
An online algorithm is said to have bounded space if at any given time, only a cons-
tant number of bins are open, circles are packed only in open bins and once a bin is
closed it cannot be reopened. In particular, we present a 2.4394-competitive boun-
ded space algorithm for this problem and a 2.2920 lower bound on the competitive
ratio of any online bounded space algorithm for this problem.

KEYWORDS. Circle packing, Online algorithms, Worst-case analysis, Computa-
tional geometry

3.1 Introduction

In the Online Circle Packing Problem, one has infinitely many square bins and receives a list
of circles (given by its radii) in an online fashion. When a circle arrives, it must be packed in a
bin, without intersecting other circles or the borders of the bin. Also, after packing the circle, it
cannot be moved to another bin or another position in the bin. The objective is to minimize the
number of bins used.

We say that an online algorithm A has an asymptotic competitive ratio of α if, for every ins-
tance I , ApIq ď αOPTpIq ` C where ApIq is the value of the solution produced by algorithm
A, OPTpIq is the value of an optimal offline solution and C is a constant. In this paper we
present an online algorithm with asymptotic competitive ratio at most 2.4394. This algorithm
has the nice property that it has bounded space, that is, at any time there is at most a constant

*This work was partially supported by CNPq (grants 311499/2014-7, 477692/2012-5) and FAPESP (grant
2011/13382-3, 2013/21744-8).

51

CAPÍTULO 3. ONLINE CIRCLE PACKINGS 52

number of open bins. After a bin is closed, it is not opened anymore and, hence, does not re-
ceive new circles. Also, we present a 2.2920 lower bound on the competitive ratio of any online
bounded space algorithm for this problem.

Previous Works The book of Szabo et al. [88] presents many results regarding finding the
maximum common radius of k circles that can be packed in a unit square for several values
of k along with other related problems. The website maintained by Specht [86] collects even
more results, not only regarding the packing of circles in a unit square but also the packing of
circles in a circle, in an isosceles right triangle, in a semicircle, in a circular quadrant and other
problems. Some applications of circle packing includes obtaining a maximal coverage of radio
towers in a geographical region [88] and construct photo collages [100]. A review on circle
packing problems and methodologies can be found in [48].

For the offline circle packing problem, there is an asymptotic polynomial time approxima-
tion scheme by Miyazawa et al. [73] when we can augment the bin in one direction which can
also be adapted to the circle strip packing problem. Note that, as shown by Demaine et al. [25],
it is NP-hard to decide if a set of circles can be packed into a square bin.

This online problem is already studied in the literature when the objects to be packed are
squares, rectangles and hyperboxes. Epstein and Van Stee [31] developed a bounded space
online algorithm for the d-dimensional online hypercube packing, extended this algorithm for
the d-dimensional online hyperbox packing, for the variable-sized d-dimensional bin packing
problem and for the online bin packing with resource augmentation. Later on, Epstein and Van
Stee [32] presented numerical lower and upper bounds for d-dimensional online bounded space
hypercube for d P t2, . . . , 7u. Epstein [30] presented bounded and unbounded space algorithms
for the two-dimensional online rectangle packing with orthogonal rotations.

3.2 An Algorithm for Online Circle Packing

We start by presenting an algorithm for the Online Circle Packing Problem. For simplicity, we
consider that a bin is a square of side length 1. The algorithm divides the circles into large
circles and small circles. Given some positive integer constant M , a circle is said to be large if
its radius is bigger than 1{M and, otherwise, it is said to be small.

For every positive integer i, let ρ˚
i be the largest value such that i circles of radius ρ˚

i can be
packed in a bin. For example, ρ˚

1 “ 0.5 since we can pack a circle of radius 0.5 in a bin but we
cannot pack a circle of radius 0.5 ` ε in a bin for any ε ą 0. As only some few values of ρ˚

i

are currently known, we will use the best known lower bound on the value of unknown ρ˚
i , by

ρi, obtained from the literature [86]. For algorithms that can compute ρi, we refer to [88]. Let
K be such that ρK ą 1{M ě ρK`1. We will say that a large circle is of type 1 ď i ă K if its
radius is at most ρi and larger than ρi`1 and of type K if its radius is at most ρK and larger than
1{M . We pack large circles of the same type together, packing at most i circles of type i in the
same bin.

Let C ą 1 be a positive integer constant that is a multiple of 3. We say that a small circle

CAPÍTULO 3. ONLINE CIRCLE PACKINGS 53

of radius r is of type i (for M ď i ă CM), subtype k (or, simply that r is of type pi, kq) if
1{pi ` 1q ă Ckr ď 1{i where k is the largest integer such that Ckr ď 1{M . Small circles are
packed using a recursive hexagonal packing defined later.

At a given time, the algorithm maintains at most K bins opened to pack large circles and
pC´1qM bins opened to pack small circles, and thus, it has bounded space. Recall that the area
of a hexagon of side length ℓ is 3

?
3 ℓ2{2. Also, the radius of the inscribed circle of a hexagon

of side length ℓ is
?
3 ℓ{2. That is, it is possible to pack a circle of radius r in a hexagon of side

length 2r{
?
3.

The algorithm generates three types of sub-bins. For 1 ď i ď K, a c-bin of type i is a
circular bin of radius ρi (it is used only for large circles). For M ď i ă CM and k ě 0, an h-

bin of type pi, kq is a hexagonal bin of side 2{p
?
3Ckiq and a t-bin of type pi, kq is a trapezoidal

bin created by cutting an h-bin of type pi, kq in half with a cut parallel to two of its sides. Notice
that h-bins and t-bins are only used to pack small circles. Also, the algorithm will divide a bin
into h-bins of type pi, 0q. This is done by selecting a hexagonal tiling of a bin where there is a
hexagon on the left bottom part of the bin with two of its sides parallel to the bottom of the bin
and by removing the hexagons that are not properly contained in the bin. See Figure 3.1a. The
algorithm also divides h-bins and t-bins in additional sub-bins. In Lemma 3.2.1, we show how
this can be done without losing any area of the original sub-bin.

(a) bin (b) h-bin (c) t-bin

Figura 3.1: In (a), a division of a bin in h-bins of type pi, 0q. In (b), a subdivision of an h-bin of
type pi, kq and in (c) a subdivision of a t-bin of type pi, kq in h-bins and t-bins of type pi, k ` 1q
for C “ 3.

Lemma 3.2.1. For M ď i ă CM and k ě 0, if C is a multiple of 3 then it is possible to

partition an h-bin (or a t-bin) of type pi, kq in h-bins and t-bins of type pi, k ` 1q.

Proof. Consider an h-bin of type pi, kq scaled so that its side length is C and embedded in the

plane with its center at the origin, with two sides parallel to the x-axis. Notice that, after the

scaling, an h-bin of type pi, k ` 1q has side length 1. Finally, consider the hexagonal packing

of the plane where the hexagons has side length 1 and have two sides parallel to the x-axis and,

also, there is a hexagon with its leftmost point at p0, 0q.

Notice that, because C is a multiple of 3, we have that the leftmost point of the h-bin (at

CAPÍTULO 3. ONLINE CIRCLE PACKINGS 54

p´C, 0q) is the leftmost point of a hexagon. Thus, the segment which goes from the h-bins’

leftmost point to the leftmost point of its top (at p´C{2,
?
3C{2q), which has an angle of 60

degrees, either cuts hexagons in half or cuts between hexagons. Again, as C is a multiple of

3, it cuts a hexagon exactly in half at leftmost point of the h-bin’s top, ending at the hexagon

rightmost point of its top. Now, by reflection symmetry over the x-axis, the same is true for

the segment which goes from the h-bins’ leftmost point to the leftmost point of its base (at

p´C{2,´
?
3C{2q). Finally, by rotational symmetry over 120 degrees, the same is true for all

edges of the h-bin. See Figure 3.1b.

For a t-bin of type pi, kq, the result follows from this observation along with the fact that we

will also split the hexagons with y-coordinate 0 horizontally in half. See Figure 3.1c.

Next, we present the algorithm.

When a large circle c of type i arrives:

1. If there is no empty c-bin of type i, close the current bin of type i, if any, and open a
new bin of type i containing i c-bins of type i.

2. Pack c in an empty c-bin of type i.

When a small circle c of type pi, kq arrives:

1. If there is no empty h-bin of type pi, kq or empty sub-bin of type pi, k1q with k1 ă k,
close the current bin of type i, if any, and open a new bin of type i and divide it in
h-bins of type pi, 0q.

2. While there is no empty h-bin of type pi, kq, let k1 be the largest number such that
k1 ă k and there is an empty sub-bin of type pi, k1q. If there is an empty t-bin of
type pi, k1q, then let B be such t-bin, otherwise let B be an empty h-bin of type pi, k1q.
Subdivide B in type pi, k1 ` 1q bins.

3. Pack c in an empty h-bin of type pi, kq.

Theorem 3.2.2. For every ε ą 0, there exists C such that the occupation ratio of a closed bin
used for small circles of type i for some M ď i ă CM is at least

`

1 ´ 5.89
M

˘

π?
12

M2

pM`1q2 ´ ε.

Proof. For a set of circles of area A packed in a bin, we will call the value 1 ´ A by area loss.
We will bound the area loss due to subdividing the bin in hexagons, due to empty sub-bins and
due to packing circles in hexagons. First, notice that when dividing a bin in h-bins of type pi, 0q

CAPÍTULO 3. ONLINE CIRCLE PACKINGS 55

we lose an area of at most 2 ` 1{2 times the side of the h-bin on the left and the right of the bin
plus 1 ` 1{2 times the height of the h-bin on the bottom and the top of the bin. Therefore, the
area loss due to the borders of a bin is at most 2p5{2 ` 3

?
3{2q{pM

?
3q ď 5.89{M .

We say that a sub-bin is a sister of another sub-bin if they were generated by the same
subdivision of a sub-bin. An empty t-bin is said to be good if it has an empty sister h-bin.
Otherwise, we say that such t-bin is bad. Notice that when we generate an h-bin of type pi, kq,
there was no empty h-bin of type pi, kq. That is, every empty h-bin of type pi, kq in a closed bin
was generated by the same subdivision of a sub-bin. Also, notice that every empty good t-bin of
type pi, kq was generated by the same subdivision of a sub-bin, since if two of those t-bins were
generated by different subdivisions, then we would have empty h-bins of type pi, kq generated
by different subdivisions, contradicting the previous argument.

Since every empty h-bin and every empty good t-bin of same type/subtype is in the same
sub-bin, the area loss in level k ą 0 is at most Ak, where Ak is the area of an h-bin of type
pi, kq. Summing over all k ě 1 (since there is no empty h-bin of subtype 0 when we close a
bin) and using the fact that Ak “ A0{C2k and that A0 “ 2

?
3{i2 ď 2

?
3{M2, we have that

the area loss from empty h-bins and empty good t-bins is at most
ř

kě1
Ak “ ř

kě1
A0{C2k “

A0{pC2 ´ 1q ď 2
?
3{pM2pC2 ´ 1qq.

After we remove empty h-bins and empty good t-bins, we are left only with empty bad t-bins
and undivided non-empty h-bins (disregarding all sub-divided sub-bins). Consider a set of bad
t-bins contained in a specific sub-bin. Since such t-bins are bad, by definition there is no empty
h-bin in such sub-bin. Also, since there are empty t-bins in this sub-bin, there is no sub-divided
h-bin in this sub-bin, as the algorithm prioritizes the division of t-bins. That is, in such sub-bin
every h-bin is non-empty and undivided. Let hh and th be the number of h-bins and t-bins
generated by the subdivision of an h-bin and let ht and tt be the number of h-bins and t-bins
generated by the subdivision of a t-bin. We conclude that in this sub-bin, the occupation ratio of
undivided non-empty h-bins is at least min t2hh{p2hh ` thq, 2ht{p2ht ` ttqu, as the area of an
h-bin is twice the area of a t-bin of same type and, by Lemma 3.2.1, the area of a h-bin or a t-bin
is the sum of the area of its sub-bins. Also, notice that in a sub-division of an h-bin of type pi, kq
the number of h-bins of type pi, k ` 1q is at least twice the number of h-bins of type pi, k ` 1q in
a sub-division of a t-bin of type pi, kq, that is, 2ht ď hh. Since the area of an h-bin of type pi, kq
is twice the area of a t-bin of type pi, kq, we have that 2hh ` th “ 2p2ht ` ttq. From this, we
conclude that 2ht{p2ht ` ttq “ 4ht{p2hh ` thq ď 2hh{p2hh ` thq. That is, the occupation ratio
of undivided non-empty h-bins in sub-bins where there are bad t-bin is at least 2hh{p2hh ` thq.

Consider now a small circle of radius r of type pi, kq packed in an h-bin. We have that
the side length of the h-bin is 2{p

?
3Ckiq, from where we conclude that the area of the h-

bin is 2
?
3{pC2ki2q. Also, notice that r ą 1{pCkpi ` 1qq, and we conclude that the area of

the circle is at least π{pC2kpi ` 1q2q. From this, we have that the occupation ratio is at least
pπ{pC2kpi ` 1q2qq{p2

?
3{pC2ki2qq ě πM2{p

?
12pM ` 1q2q. So, we have that the occupation

ratio of small circles in closed bins is at least
ˆ

1 ´ 5.89

M
´ 2

?
3

M2pC2 ´ 1q

˙

2ht

2ht ` tt

π?
12

M2

pM ` 1q2 .

CAPÍTULO 3. ONLINE CIRCLE PACKINGS 56

But now, notice that as C grows, 2
?
3{pM2pC2 ´ 1qq goes to zero and 2ht{p2ht ` ttq goes to

1, since for large C we have a small number of t-bins relative to the number of h-bins in a sub-
divided sub-bin. This happens because the t-bins are generated only at the borders of a sub-bin.
From those observations, we have that, as C goes to infinity, the occupation ratio of a closed bin
used for small circles of type i for some M ď i ă CM goes to p1 ´ 5.89{MqπM2{p

?
12pM `

1q2q.

3.3 Competitive Ratio Analysis

We compute an upper bound for the asymptotic competitive ratio of the algorithm as well a
lower bound for every bounded space online algorithm using a weighting function, as previously
done in [31, 60, 91] for other packing problems.

We start by defining a weighting function w. For a circle of radius r, if it is a large circle
of type i then its weight is 1{i and if it is a small circle of radius r, then its weight is pπr2q{α
where α “

`

1 ´ 5.89
M

˘

π?
12

M2

pM`1q2 . Also, for a set C of circles, let wpCq “ ř

cPC wpcq.

Theorem 3.3.1. The presented algorithm is β-competitive where β is the supremum over the
weights of sets of circles that can be packed in a bin.

Proof. Let C be a set of circles, S be the number of bins used by the algorithm, O be the
number of open bins at the end of the algorithm’s execution and OPTpCq be the number of
bins used by an optimal offline solution. Notice that, for every closed bin generated by the
algorithm, if B is the set of circles of such bin, then wpBq ě 1. In fact, a closed bin has either
i large circles of type i or small circles occupying at least α “

`

1 ´ 5.89
M

˘

π?
12

M2

pM`1q2 of the area
and, for every circle in B, if its area is a then its weight is a{α. From this, we conclude that
S ´O ď wpCq. Also, notice that wpCq{β is a lower bound on the value of OPTpCq, since every
configuration of an optimal solution has weight at most β. Combining those facts, we have that
S ď wpCq `O ď βOPTpCq `O. Notice that O is at most a constant, from where we conclude
that the algorithm is β-competitive.

To compute a lower bound, we also use weights. A circle c has weight ωpcq “ 1{i if we can
pack i copies of c in a bin but we cannot pack i ` 1 copies of c in a bin. As before, for a set C
of circles, let ωpCq “ ř

cPC ωpcq. Also, let Apcq be the area of a circle c and ApCq “ ř

cPC Apcq.

Theorem 3.3.2. If C is a set of circles that can be packed in a bin then every bounded space
online algorithm has competitive ratio at least ωpCq `

?
12 p1 ´ ApCqq {π.

Proof. Let 0 ă ε ă 1 be a constant. We will show that every bounded space online algorithm
has competitive ratio at least ωpCq `

?
12 p1 ´ ApCqq {π ´ ε. For a circle c, let rpcq denote

its radius. Also, let δ “ πε{p2
?
12q and γ be a constant smaller than δ. We will construct a

sequence tC0, C1, . . .u until we obtain a set Ck such that 1 ´ ApCkq ď γ, where C0 “ C and, for
n ě 1, Cn is as described below.

For n ě 1, let ℓn ď γ{p4π ř

cPCn´1
rpcq ` 4π|Cn´1| ` p5 ` 3

?
3q{2q be constants such that

ℓn ă ℓn´1 if n ą 1 and ℓ1 is smaller than the radius of any circle of C0. The idea is to use ℓn

CAPÍTULO 3. ONLINE CIRCLE PACKINGS 57

as the side length of a hexagonal packing used to pack small circles in the empty regions in the
packing generated to Cn´1. Let n ě 1 and suppose that Cn´1 can be packed. Fix a packing of
Cn´1 and consider a hexagonal tilling of the bin with hexagons of side length ℓn where there
is a hexagon on the left bottom part of the bin. We say that a hexagon is feasible if it is not
intersected by the interior of a circle of Cn´1 or the border of the bin. Add to the packing of
Cn´1 circles of radii

?
3 ℓn{2 in every feasible hexagon and let Cn be the union between Cn´1

and the new circles packed in hexagons. Notice that, if Cn´1 can be packed in a bin, then so
do Cn. Notice that the total area of infeasible hexagons that intersect the border of the bin is at
most p5` 3

?
3qℓn{2 (as in Theorem 3.2.2). Also, notice that if a hexagon intersects the interior

of a circle of radius r centered at a point p then it is properly contained in the circle of radius
r ` 2ℓn centered at p. Thus, the total area of feasible hexagons is at least

1 ´ p5 ` 3
?
3qℓn{2 ´

ÿ

cPCn´1

πprpcq ` 2ℓnq2

“ 1 ´ p5 ` 3
?
3qℓn{2 ´ ApCn´1q ´ 4πℓn

ÿ

cPCn´1

rpcq ´ 4πℓ2n|Cn´1|

ą 1 ´ p5 ` 3
?
3qℓn{2 ´ ApCn´1q ´ 4πℓn

ÿ

cPCn´1

rpcq ´ 4πℓn|Cn´1|

ě 1 ´ ApCn´1q ´ γ,

where the first inequality follows from the fact that ℓn ď 1. Now, since every new circle
occupies an area of π{

?
12 of the area of the hexagon, we have that ApCnq ě ApCn´1q ` p1 ´

ApCn´1q ´ γqπ{
?
12. It follows, from induction, that ApCnq ě p1 ´ γqr1 ´ p1 ´ π{

?
12qns.

Now, as p1 ´ π{
?
12qn goes to 0 as n goes to infinity and γ ă δ, there exist k ě 0 such that

ApCkq ě p1 ´ δq. Also, it follows from transitivity that Ck can be packed in a bin and that
C0 Ď Ck.

Consider an instance of the Online Circle Packing Problem composed by the disjoint union
of N copies of the set Ck where the circles are ordered by non-increasing radii. Suppose C0

has qi circles of radii at most ρ˚
i and greater than ρ˚

i`1. Then, ωpCq “ ř

iě1
qi{i. Also, let

t “ |ti : qi ą 0u|, that is, t is the number of different types of circles in C. For 1 ď i ď k, let
ri be the number of circles added to Ci´1 in order to construct Ci and let ai be the area of such a
circle. Notice that, by the choice of ℓi, a circle in CizCi´1 has radius different from the radius of
any other circle not in CizCi´1.

Any online algorithm with bounded space B uses at least Nqi{i ´ B bins for every type
of circle in C0. This follows from the fact that circles are ordered and that one bin can hold at
most i circles of type i. Also, as the hexagonal packing is optimal for packing circles in the
plane, we have that any online algorithm with bounded space B uses at least Nriai

?
12{π ´ B

bins to pack the circles added to Ci´1 in order to construct Ci. Let N ě 2pt ` kqB{ε, any

CAPÍTULO 3. ONLINE CIRCLE PACKINGS 58

algorithm with bounded space B utilizes at least

ÿ

i

ˆ

Nqi

i
´ B

˙

`
k

ÿ

i“1

ˆ

Nriai

?
12

π
´ B

˙

ě N

ˆ

ωpCq `
ˆ

1 ´ ApCq ´ πε

2
?
12

˙

?
12

π

˙

´ pt ` kqB

“ N

ˆ

ωpCq ` p1 ´ ApCqq
?
12

π

˙

´ Nε{2 ´ pt ` kqB

ě N

ˆ

ωpCq ` p1 ´ ApCqq
?
12

π

˙

´ Nε,

while an optimal offline solution uses only N bins, from where the result follows.

3.4 Numerical Results

In order to obtain numerical results for the bounds presented in Sect. 3.3, we combine Integer
Linear Programming with Constraint Programming. Constraint Satisfaction Problems (CSP)
are defined by a set of variables X “ tx1, . . . , xnu, a finite set Dompxiq, for each variable xi,
called domain of xi, with all possible values this variable can assume. Also, a set of constraints
restricts the values variables can simultaneously assume. A solution for this problem is an
assignment of values to all variables within their domains, that satisfy all constraints. Solutions
to a CSP are found by systematically exploring possible assignments. For more information
about constraint programming we suggest [82].

An upper bound for the competitive ratio of the algorithm can be given by the following
integer linear program:

maximize y{α `
K
ÿ

i“1

i
ÿ

t“1

t wi x
t
i

subject to
t

ÿ

i“1

xt
i ď 1 @ 1 ď i ď K

y `
K
ÿ

i“1

i
ÿ

t“1

t ai x
t
i “ 1

xt
i P t0, 1u @ 1 ď i ď K, @ 1 ď t ď i

where xt
i is a binary variable indicating if we have t large circles of type i, y is an upper bound

on the area of small circles, ai is a lower bound on the area of a circle of type i, wi is the weight
of a large circle of type i and α “

`

1 ´ 5.89
M

˘

π?
12

M2

pM`1q2 . We solve this model using a branch-
and-cut algorithm where, whenever an integer solution is found, its feasibility is tested using a
constraint programing model. If such test fails, we cut out this solution.

In order to test if a given set C “ pr1, . . . , rnq of circles can be packed in a bin using

CAPÍTULO 3. ONLINE CIRCLE PACKINGS 59

Figura 3.2: A packing with one circle of type 1 (radius 0.292893), one circle of type 2 (radius
0.254333), two circles of type 4 (radius 0.207106) and one circle of type 25 (radius 0.096362).
The total weight of these circles is 2.04 and they occupy an area of 0.77139. Thus, we obtain
a weight of 0.2520 for the remaining area for a total weight of 2.2920. By choosing γ “
0.9975, we have that W “ 4157 and the circles (after scaling by W) can be packed at positions
p1218, 1247q, p2770, 3098q, p861, 3296q, p3261, 861q, and p3756, 2022q, respectively.

constraint programming, we have to do a discretization of the search space. Let pr1
1, . . . , r

1
nq be

a set of circles such that r1
i “ γri for some 0 ă γ ă 1. Also, let r “ mintri : 1 ď i ď nu and δ

be a constant such that δ ď p1 ´ γ2qr{2. It follows from simple calculations that if pr1
1, . . . , r

1
nq

cannot be packed in a bin using a grid of granularity δ, then pr1, . . . , rnq cannot be packed in
the bin (with general positions). Thus, given a γ ă 1, we scale the 1 ˆ 1 bin to a W ˆ W bin,
such that W “ r1{δs and we scale the radius of each circle to r1

i “ tri γ W u. If these circles do
not have a feasible packing into the W ˆ W bin, the original circles also do not have a feasible
packing into the 1ˆ1 bin. Thus, in the constraint programming model we have, for every circle
i, integer variables xi and yi that indicates the position where circle i is packed. The domain for
each variable is Dompxiq “ Dompyiq “ rr1

i, . . . ,W ´ r1
is. This domain assures that circles do

not exceed the limits of the bin. Non-overlapping constraints are also necessary: For each par
of circles i, j, i ‰ j, we add to the model the constraint pxi ´ xjq2 ` pyi ´ yjq2 ě pr1

i ` r1
jq2.

Also, we break symmetries by considering that the center of largest circle of the set C is in the
first quadrant, the center of second largest circle is above the diagonal, at least one circle is
packed in its left most position, at least one circle is packed in its bottom most position, and
for two circles Ci and Cj having the same radius with i ă j by considering that Ci is at the
left of Cj or below Cj if they have the same x-coordinate. Using this combination of integer
programming and constraint programming with M “ 59 and, thus, K “ 992, we obtained an
upper bound solution with value 2.4394 that is composed by circles of type: 1, 2, 4 (2 circles),
5, 6, 16, 111, 987.

In order to compute the lower bound, we use an integer programming model similar to the
one presented before, with an objective function that minimizes the total area of the circles, with
a cutoff in the value of the set, which we gradually increase. We use the presented constraint
programming method to find a feasible packing of a set C of circles, where the radius of each
circle is scaled to r1

i “ rri W s for a given W . Figure 3.2 presents the lower bound found of
value 2.2920.

CAPÍTULO 3. ONLINE CIRCLE PACKINGS 60

3.5 Final Remarks

In this paper we present a bounded space algorithm for the Online Circle Packing Problem,
which has a competitive ratio of 2.4394. To our knowledge, this is the first algorithm for such
problem in the literature. We also present a lower bound of 2.2920 for any bounded space
algorithm for such problem. Notice that these bounds can possibly be improved using different
techniques. Also, to our knowledge, this is the first paper to use Constrained Programming
as heuristic to test the feasibility of packing a set of circles in a square bin. We believe that
this could be useful for developing algorithms for other applications such as to solve the circle
packing problem in practice. Finally, we believe that the technique used to recursively pack
small circles through the usage of hexagons can be of independent interest.

Capítulo 4

Two-dimensional Disjunctively

Constrained Knapsack Problem: Heuristic

and Exact approaches *

ABSTRACT

This work deals with the 0-1 knapsack problem in its two-dimensional version,
considering a conflict graph, where each edge in this graph represents a pair of
items that must not be packed together. This problem arises as subproblem of
the bin packing problem and in supply chain scenarios. We propose some inte-
ger programming formulations that are solved with a branch-and-cut algorithm.
The formulation is based on location-allocation variables mixing the one- and two-
dimensional versions of this problem. When a candidate solution is found, a fea-
sibility test is performed by a constraint programming algorithm, which verifies if
it satisfies the two-dimensional packing constraints. Moreover, bounds and valid
cuts are also investigated. A heuristic that iteratively generates a solution using a
greedy randomized procedure is also proposed. In order to avoid local optimal so-
lutions, a memory list is used, as well as different packing strategies over a grid of
points for the heuristic. The results are extended in order to consider complete ship-
ment of items, where subsets of items have all to be loaded or left out completely.
This constraint is applied in many real-life packing problems, such that packing
parts of machinery, or when delivering cargo for different clients. Experiments on
several instances derived from the literature indicate the competitiveness of some
algorithms, which solved 99% of the instances to optimality requiring low runtime.

KEYWORDS. two-dimensional 0-1 knapsack problem, conflict graph, disjunctive
constraint, complete shipment, integer programming.

*We would like to thank CNPq, FAPEG and FAPESP (proc. 2011/13382-3 and 2013/21744-8) due to financial
support, and François Clautiaux that provided the source code Clautiaux et al. [16].

61

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 62

4.1 Introduction

This work deals with the 0-1 knapsack problem in its two-dimensional version, considering
a conflict graph, in which each edge in this graph represents a pair of items that must not be
packed together, also referenced as disjunctive constraints. We also consider complete shipment
of items, in which items are partitioned in sets and we either pack all items of one such set
or none at all. The 0-1 knapsack problem is a classical combinatorial optimization problem
that appears in several real-world applications as well as a subproblem of other optimization
problems as the bin packing. Surveys on cutting and packing problems can be found in Bentz
et al. [9], Lodi et al. [65], Sweeney and Paternoster [87], Wäscher et al. [93]. Some variants of
the knapsack problem are the two-dimensional (2D) with the packing in pallets and the cut of
wood sheets; and, the three-dimensional, when dealing with containers [12]. Both variants are
NP-hard [38].

A practical constraint is related with pairs of items that must not be packed together in the
same bin due to various conditions (for example, food and toxic goods), thus we have to select
a subset of non-conflicting items that can be packed in the bin [98, 99]. This constraint is also
referred to as disjunctive constraint and is associated with a conflict graph.

We investigate the 2D 0-1 disjunctively constrained knapsack problem (2D-DCKP). A con-
flict graph is used, so an edge in this graph represents that its vertices (items) are in conflict, and
only one of them may be packed in the bin. The items are rectangular goods with length, width
and a non-negative profit (value). The bin is also rectangular. The aim is to pack orthogonally
to the sides of the bin a subset of non-conflicting items of maximum value. It is required that
items must not overlap each other and have to respect the bin’s dimensions. Rotations of items
are not allowable.

For the 2D-DCKP, some integer formulations, which are solved with a branch-and-cut al-
gorithm improved with valid bounds and cuts, are proposed. First, an initial formulation is
presented, which is then relaxed following a location-allocation model, similar to capacitated
facility-location problems [34], where we first search for subsets of non-conflicting items of
maximum value, and next verify if these subsets can be allocated in the bin. The latter is perfor-
med by searching for a solution to a one-dimensional contiguous bin packing problem, inspired
by the model presented by Côté et al. [19]. If no such solution exists, then there is no solution
to the corresponding two-dimensional orthogonal packing problem. Otherwise, it is solved a
constraint programming based model, which verifies the feasibility of the candidate solution, so
cuts based on them are added in the branch-and-bound tree.

A heuristic is also proposed, where its solutions are generated iteratively using a greedy
randomized procedure. In this heuristic, a memory list is used to prevent repeated solutions and
some strategies to pack items are considered, as well as a diversification criteria that changes
the direction of the search and avoids local optima solutions.

We also extend these algorithms in order to consider complete shipment of items. In this
case, we consider subsets of items that must be packed or left out completely, and conflict hap-
pens between different subsets. The computational results reported here show that the proposed
algorithms found optimal solutions very fast for almost all the instances considered for both the

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 63

2D-DCKP and with the complete shipment constraint.

4.1.1 Literature review

The 0-1 disjunctively constrained knapsack problem has been first investigated in the one-
dimensional version (1D-DCKP). Vance et al. [92] consider it as a sub-problem in a cutting
stock problem. Yamada et al. [99] presents a lower bound obtained by a heuristic that ge-
nerates an initial solution with a greedy procedure, and then improves such a solution with a
neighborhood search procedure based on 2-opt operations. These bounds are used in a branch-
and-bound exact algorithm capable of solving instances with up to 1,000 items and 10,000 pairs
of conflicting items.

Hifi and Michrafy [49] also investigated the 1D-DCKP. They proposed a reactive local se-
arch algorithm that combines a memory list to prevent cycling on solutions with a degrading
strategy to avoid local optimal solutions. This algorithm solved large-sized instances very quic-
kly. On the other hand, Hifi and Michrafy [50] considered exact approaches combined with
heuristics and relaxations of integer programming models in order to solve medium-sized ins-
tances. Two of the three exact approaches are two-phase procedures: first, a reduction phase
that fix decision variables, and next an integer model is solved with a branch-and-bound algo-
rithm. The last is a modified dichotomous algorithm applied over reduced intervals of search,
where dominating and covering constraints are added. Approximation algorithms, including
fully polynomial time approximation schemes, were proposed by Pferschy and Schauer [78] for
special classes of conflict graphs, in particular for chordal, tree and bounded treewidth graphs.

Other approaches for the 1D-DCKP were proposed in Akeb et al. [1], Hifi and Otmani [51].
Akeb et al. [1] developed local-branching based algorithms. Three versions were proposed:
the first one is a rounding procedure, which works on the fractional solution of a given inte-
ger model; the second one is a two-phase method that first tries to fix variables of a fractional
solution, and next an exact solver is applied in the reduced problem; and, the last one is a modi-
fication of the second algorithm considering an intensification procedure. Hifi and Otmani [51]
presented two scatter search based heuristics which differ each other in the way that solutions
are combined. The first uses a greedy strategy based on the structure and the relative profit per
weight-degree values of items, while the second one considers a 3-opt search procedure on the
neighborhood of feasible solutions.

Recently Hifi [47] and Hifi et al. [52] proposed heuristics to tackle the 1D-DCKP. In Hifi
[47], a hybrid guided neighborhood search is presented, in which initial solutions are built from
independent sets and next are converted to a feasible solution for the problem. Then, a descent
method and an ant colony optimization method are applied in order to improve the solution. Hifi
et al. [52] developed a heuristic based on a iterative rounding search. First, fractional variables
of a linear relaxation are rounded to get a feasible solution that is next improved by applying a
neighbor search. Besides that, constraints based on cardinality of valid sets and lower bounds
on the objective function are considered during the resolution.

For the complete shipment constraint, Bortfeldt and Wäscher [12] conclude that this cons-
traint has been neglected by the literature. To the best of our knowledge, there is only the work

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 64

of Eley [29] that considers such constraint with conflicting items, where is proposed a heuris-
tic that generates packing patterns that are next used an integer programming formulation. In
this paper we consider the complete shipment constraint in the 2D-DCKP and show how the
algorithms proposed for the latter can be easily adapted for the former.

Note that approaches for the 2D-DCKP can also be used to solve the case without conflict
graphs, namely the 2D 0-1 knapsack problem (2KP). Moreover, the 2D-DCKP can appear as
a subproblem (in branch-and-price algorithms) when solving the bin packing with conflicts
which was first studied in the one-dimensional version by Jansen and Ohring [59]. Now, special
attention has been given for the 2D version of this bin packing problem. Epstein et al. [33]
considered the version with squares and for specific graph classes, bipartite and perfect, they
proposed approximation algorithms. For bipartite graphs, their algorithm has an approximation
ratio of 2 ` ǫ for ǫ ą 0, while for perfect conflict graphs the approximation factor is at most
3.2744. The first heuristic for such problem was proposed in Khanafer et al. [62]. It is based on
decomposing techniques and is valid for general conflict graphs. The main idea is to compute
a tree-decomposition of the complement of G, called compatibility graph Ḡ, and corresponds
to find a triangulation of Ḡ. Next, each item is assigned to a cluster (which can be viewed as a
reduced instance), however an item may belong to different clusters, so a partitioning problem
is solved with greedy heuristics and a tabu list based algorithm. Finally, partial solutions are
combined on a unique solution, where items of some bins are redistributed for other ones in
order to reduce the total number of used bins.

In the roll of good strategies for 2D cutting and packing problems, Baldacci and Boschetti
[4] solved the two-dimensional orthogonal non-guillotine cutting problem, that generalizes the
2KP. First, they computed a good upper bound applying several reductions on the problem,
based on area and value, so fixing items in the final solution. Their main algorithm is a two-
level method. At the first level, a relaxed version of the problem involving knapsack, dominance
and cover inequalities is solved. When an integer solution is achieved, a feasibility test is then
performed. The feasibility test asks if a set of rectangular items can be arranged orthogonally
in a rectangular bin, and it is referenced in the literature as the NP-complete two-dimensional
orthogonal packing problem (2OPP).

Fekete et al. [36] presented a graph-theoretic approach that relied on interval graphs when
searching for feasible solutions. They provided a branch-and-bound algorithm, in which many
redundancies in the tree search are removed. Clautiaux et al. [15] proposed two algorithms: the
first, a branch-and-bound method based on the algorithm in Martello and Vigo [67], in which
items are packed at the leftmost-downward feasible point; the second is a two-step branch-and-
bound method, in which for all feasible solutions of a relaxed problem, an inner procedure tries
to obtain a solution for the original problem. The relaxation of the second method consists in
slice each item into strips of equal size. All strips of a given item has to be packed at the same
x´position. The inner procedure searches for feasible y´positions that then allows to solve the
original problem.

In Clautiaux et al. [16] there is a branch-and-bound algorithm based on constraint pro-
gramming, in which the 2OPP is modeled as a constraint-based scheduling model. Constraint

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 65

propagation rules for scheduling problems are then derived to tighten the domain of variables
and check for packing inconsistencies. Mesyagutov et al. [72] improved the algorithm in Clau-
tiaux et al. [16] using refined set of points, new branching strategies and pruning tests based on
LP-based rules. Branching strategies were defined on coordinates of the items, domain of the
variables and overlapping relations.

Côté et al. [19] solved the 2OPP version with the addition of unloading constraints, which
appears commonly in integrated vehicle routing and loading problems. The feasibility test
considered in this paper is performed by first solving a relaxed model of the 2OPP, based on
the contiguous bin packing problem [19]. This relaxation may prove that the candidate solution
is unfeasible, and if not, the algorithm in Clautiaux et al. [16] is called, which gives an exact
answer.

The paper is organized as follows: Section 4.2 describes the problem and discusses how to
update item sizes without loss of generality; Our heuristic is detailed in Section 4.3, which
details about the memory list and how the items are packed are presented. In Section 4.4
we present some integer formulations for the 2D-DCKP, which are solved with a branch-and-
cut approach. Moreover, feasibility tests and valid cuts are also presented in this section. In
Section 4.5 we extend the 2D-DCKP and our algorithms to consider the complete shipment
constraint. Computational experiments on the algorithms are reported in Section 4.6 showing
that the algorithms are very competitive. Finally, conclusions and directions for further works
are given in Section 4.7.

4.2 Preliminary Discussion

In this section we formally describe the two-dimensional disjunctively constrained knapsack
problem, how we can lift the items size to reduce computation time and how we discretize the
bin.

4.2.1 Problem description

Given a bin B of dimensions pL,Cq, with area Abin,and a set V of n items, where each item
i P V has dimensions pli, ciq, value (profit) vi and area ai, for i “ 1, . . . , n, and a conflict
graph G “ pV,Eq, where each edge ti, ju P E represents that i and j are conflicting items, the
2D-DCKP is the problem of finding a subset V ˚ Ă V of items of maximum total profit, and a
feasible packing of items V ˚ in B. A solution of the 2D-DCKP is represented in the Cartesian
Plane R2, with the origin at p0, 0q, and the position of an item is given by its bottom left corner
point. An instance of the 2D-DCKP is given by I “ pL,C, V, l, c, Gq, we consider that all input
data are positive integers.

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 66

4.2.2 Lifting item sizes

We adapt the procedure described in Boschetti and Mingozzi [13] to increase the item sizes
without losing optimal solutions, in order to improve the quality of the lower and upper bounds.
For each item i P V consider the problem (4.1) which searches for a subset of non-conflicting
items with i of maximum sum of their lengths satisfying L ´ li.

L˚
i “ max

ÿ

kPV
lkτk

subject to :

piq
ÿ

kPV
lkτk ď L,

piiq τj ` τk ď 1, @ pj, kq P E,

piiiq τi “ 1,

pivq τk P t0, 1u, @ k P V ztiu.

(4.1)

Boschetti and Mingozzi [13] show, when there is no disjunctive constraints, that for any
feasible solution containing item i there is an equivalent solution for i with new length li ` pL´
L˚
i q. After updating the size of i, the items in the optimal solution with value L˚

i will not have
their lengths modified due to constraint (4.1.i). Trying to update as many item sizes as possible,
we sort the set of items in non-increasing order of length and update items in this order without
updating items used in solutions of previous increased items. Similar task can be performed for
updating item widths. From now on, we consider that the instance was preprocessed using the
above procedure.

4.2.3 Finding Independent Sets

A competitive branch-and-bound algorithm to compute the maximum valuable clique in a graph
was proposed in Niskanen and Ostergard [77]. We adapted this algorithm in order to compute
such clique while considering the items’ areas. The algorithm cliquer, with parameter H and
A, finds a clique K of H with maximum value and such that

ř

kPK ak ď A. Thus, one can
find a candidate solution to 2D-DCKP by computing cliquerpḠ, Abinq, where Ḡ represents the
complement of graph G. Notice that if this candidate solution can be packed in the bin, then it
is indeed optimal. This algorithm is shown to be faster than solving 1D-DCKP solely with an
integer programming solver. This algorithm is used used to find valid cuts as showed in section
4.4.3.

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 67

4.2.4 Packing items

In order to arrange a set of items, we discretize the bin in a grid of points, and pack items
at the left-bottom most position of the grid. A position is feasible if an item can be arranged
there generating a packing without overlap between any pair of items and respecting the bin’s
dimensions.

In accordance with Herz [45], there is no loss of generality for considering the discretization

points for the grid of a two-dimensional packing problem. Observe that we can use the discre-
tization points in the 2D-DCKP, since conflict graphs do not impose any restriction on how to
pack items, but that some items must not be packed together in the same bin.

A discretization point of the length (resp., width) is a non-negative integer d ď L (resp.,
e ď C) that is a non-negative binary combination of the sizes in l “ pl1, . . . , lnq (resp., c “
pc1, . . . , cnq). The set of discretization points in the length (resp., width) is denoted by P (resp.,
Q). Note that what we call discretization points, are in fact one-dimensional coordinates.

For guillotinable and L-packing patterns, an improvement of the discretization points was
proposed by Scheithauer and Terno [85] and Queiroz et al. [80], respectively, resulting in the
set of reduced raster points. Reduced raster points are computed from P and Q as:

P̃ :“ txL ´ ryP | r P P u, where xsyP “ maxtt P P | t ď su;
Q̃ :“ txC ´ uyQ | u P Qu, where xayQ “ maxtb P Q | b ď au, (4.2)

where P̃ (from P) and Q̃ (from Q) are the set of reduced raster points of the length and width,
respectively. Queiroz et al. [79] presented the algorithm RRP to compute the reduced raster
points. First, discretization points are computed using a dynamic programming and next the
reduced raster points are obtained from equation (4.2).

Based on Birgin et al. [10] and Queiroz et al. [80], it is believed that there is no loss of
generality when considering the set of reduced raster points for any packing problem, although
no demonstration of this statement has been given in the literature. Nonetheless, in our inte-
ger formulations we use the discretization points, thus guaranteeing that these indeed find an
optimal solution and we use the reduced raster points only in the heuristic proposed.

4.3 A Greedy Randomized Heuristic

In the next subsections we describe a heuristic, which we call of GR. First, we give an overview
and next discuss how it works considering routines for packing and maintain a memory list. A
routine to repack items is discussed, which aims to construct different packings, that is, with
the same profit, but different layouts.

4.3.1 Heuristic Overview

In the GR there is an algorithm called PHASE ONE, which receives a solution of 2D-DCKP for
instance I and tries to add more rectangles to it. We wrap this algorithm in another algorithm

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 68

called TWO PHASE, where we are given a solution and we repeatedly remove an item (accor-
dingly to some criteria), reorganize the items inside the bin (using an algorithm called REPACK)
and then we call the algorithm PHASE ONE in order to improve this solution. In order to avoid
local minima, we use a memory list, which forbids an item to be packed in the same position as
it was before removal by algorithm TWO PHASE for some iterations. Finally, we also wrap al-
gorithm TWO PHASE in algorithm GR, where we repeatedly either consider an empty solution,
discarding the solution from the previous iteration, or the solution from the previous iteration
(after a diversification), which is latter improved using algorithm TWO PHASE.

During the algorithm, a memory list LP is used to keep a list of forbidden items and grid
point combination. For an item i arranged at point p, selected to belong to LP , we consider the
pair tdegreeGpiq, LPiu for which: degreeGpiq states that i cannot be arranged in any solution
for at least the degree of i at G; and, LPi contains the list of blocked points, now including p,
where i cannot be arranged.

During execution of GR, for an item i selected to be packed, first we check if degreeGpiq
is zero, if not, such value is decremented by one, otherwise next we take in consideration the
penalized points of LPi to arrange i at the grid. Follows that LP and LPi (for i “ 1, . . . , n) are
empty at each iteration of the GR’s main loop.

4.3.2 Heuristic GR

For a new iteration, to construct a new solution, GR tries an acceptance probability function in
order to start from an empty solution, or from the current solution after applying a diversification
strategy. The best solution is updated if necessary. Algorithm 1 resumes the GR heuristic.

The diversification is applied if a random value picked off r1, 120s is less than:

prob “ expp´ ∆

0,5ˆT
q ˆ 100. (4.3)

Equation (4.3) follows the acceptance function used in the Simulated Annealing algorithm
[63], for which we consider: ∆ “ profitpbestS q ´ profitpSq, where bestS is the best solution
ever found; T “ MAX ˆ n2, which is decreased of 5% at each iteration.

4.3.3 Constructing a solution in two phases

The routine which constructs a solution iterates in two phases: the first one selects items using
a greedy randomized procedure, and the second selects one item to add in LP .

In the first phase, items are selected from Lists of Candidates (LC) to generate a solution S.
Each LC has a subset of items that are chosen at random from the input instance. So, for each
LC, we select an item i with the largest ratio value/area, the smallest degree in G and that do
not have any conflict with other items in S.

Once we select i, the packing routine is applied observing the memory list. In other words,
if i P LP , we search for the left-bottom most feasible point r not in LPi to arrange i. If no such
r exists, then i is not packed. The detailed routine is presented at Algorithm 2.

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 69

Algorithm 1: GR

Input : Instance I “ pB, V,Gq of the 2D-DCKP; percentage q; sets P̃ and Q̃ of
reduced raster points; value X and MAX of iterations.

Output: Solution for the 2D-DCKP.
1.1 S Ð H; bestS Ð H; LP Ð H.
1.2 rd Ð 0; prob Ð 0; T Ð MAX ˆ n2.
1.3 for c Ð 1 to MAX do

1.4 if rd ě prob then

1.5 S Ð H.

1.6 else

1.7 Diversification: Add t|S|{2u items chosen from S at random to LP .

1.8 S Ð Solution of the Two-phase for input pI, LP, S, q, P̃ , Q̃, Xq.
1.9 if valuepSq ą valuepbestSq then

1.10 bestS Ð S.

1.11 rd Ð a random value in the interval r1, 120s.
1.12 ∆ Ð profitpbestSq ´ profitpSq.
1.13 prob Ð expp´ ∆

0.5ˆT
q ˆ 100.

1.14 LP Ð H; T Ð T ˆ 0.95.

1.15 return bestS.

Algorithm 2: PHASE ONE

Input : Instance I “ pn,B, V,Gq of the 2D-DCKP; memory list LP ; solution
S; percentage q; sets P̃ and Q̃ of reduced raster points.

Output: Solution with value (possibly) improved.
2.1 L Ð V zS.
2.2 while L ‰ H do

2.3 flag Ð false; bestVA Ð 0; bestD Ð n.
2.4 LC Ð choose at random q% items of L.
2.5 foreach i P LC do

2.6 if bestVA ą vi OR bestD ă degreeGpiq OR D pk, jq P E for k P S then

2.7 LC Ð LC ´ tiu.

2.8 else

2.9 bestVA Ð vi; item Ð i; bestD Ð degreeGpiq; flag Ð true.

2.10 L Ð L ´ tiu.

2.11 if flag then

2.12 Pack item in S, if it is possible.

2.13 return S.

For a solution S generated on phase one, now phase two selects an item j that meets the
criteria cr below and adds it in the memory list. Next, it is applied the routine to repack S´tju.

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 70

‚ cr = 1: item with smallest (value/area) ˆ pmintdegreeGuq;

‚ cr = 2: item with largest (value/area) ˆ pmaxtdegreeGuq;

‚ cr = 3: item with smallest (value/area);

‚ cr = 4: item with largest (value/area);

‚ cr = 5: item with smallest value/(area ˆ maxtdegreeGuq;

‚ cr = 6: item with maxtdegreeGu;

‚ cr = 7: item with largest (value/area) ˆ pmaxtdegreeGuq.

Algorithm 3 summarizes the two-phase procedure that aims to construct iteratively good
solutions for the 2D-DCKP. Note that each criteria cr is applied consecutively following the
main loop of lines 3.2 ´ 3.12.

Algorithm 3: TWO PHASE

Input : Instance I “ pn,B, V,Gq of the 2D-DCKP; memory list LP ;
solution S; percentage q; sets P̃ and Q̃ of reduced raster points;
maximum number of iterations X .

Output: Solution for the 2D-DCKP.
3.1 cr Ð 1; type Ð 1; bestS Ð H.
3.2 for c Ð 1 to X do

3.3 pj, pq Ð apply cr in S and return the item j and point p where it is
arranged.

3.4 if exists j then

3.5 LP Ð LP Y tju; LPj Ð LPj Y tpu; S Ð S ´ tju.
3.6 S Ð RepackpI, type, S, P̃ , Q̃q.

3.7 S Ð Phase One for the input pI, LP, S, q, P̃ , Q̃q.
3.8 if valuepSq ą valuepbestSq then

3.9 bestS Ð S.

3.10 if c ě type

5
ˆ X then

3.11 type Ð type ` 1.

3.12 cr Ð c mod 7.

3.13 return bestS.

4.3.4 Repacking items

Algorithm TWO PHASE uses the variable type to indicate how to sort items of the current solu-
tion S before it applies a routine to repack them. Note that only the layout may change, contrary
to the solution profit that remains unchanged. Clearly, this new layout opens possibilities to ar-
range another items out of S. There are five orders under consideration, namely:

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 71

‚ type = 1: sort into non-increasing order of area. Ties are broken placing items with largest
length first;

‚ type = 2: sort into non-increasing order of profit. Ties are broken sorting into non-
increasing order of area;

‚ type = 3: sort into non-increasing order of profit/area. Ties are broken placing items of
largest profit first;

‚ type = 4: choose the order of each item at random;

‚ type = 5: the order is the same as in the input instance.

Algorithm 4 tries to arrange each item, following the type sorting. An item is arranged into
the bin searching for the left-bottom most feasible point on the grid P̃ ˆ Q̃. This search starts
at the length direction, that is, from coordinates t0 Ñ LuP̃ and, continues level-by-level, that
is, t0 Ñ CuQ̃. If exists an item that cannot be arranged, then the initial solution S is returned.
Otherwise, a solution with a possibly new layout is returned. Observe that the memory list is
not considered here.

Algorithm 4: Repack
Input : Instance I “ pn,B, V,Gq of the 2D-DCKP; type to sort the

items; solution S; sets P̃ and Q̃ of reduced raster points.
Output: Solution with possibly a new layout.

4.1 Copy all items from S to S 1.
4.2 Sort items in S 1 accordingly to type.
4.3 foreach item i P S 1 following the sorting order do

4.4 Pack i at the first point p in P̃ ˆ Q̃. If there is no such a point, return

S.

4.5 return S 1.

4.4 Integer Formulations for the 2D-DCKP

In this section, we present integer programming formulations for the 2D-DCKP. We start with
a formulation that considers the packing position of items in a discretized bin. Then, we present
another formulation that now does not define the packing position of the items, but instead uses
feasibility tests in order to consider only feasible solutions. For this, we solve a problem relaxed
from the 2OPP, so called contiguous bin packing problem, and when necessary a constraint
programming algorithm.

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 72

4.4.1 First model

We consider next an integer formulation for the 2D-DCKP supported by the discretization
points, in order to guarantee that the optimal solution can be found. The formulation uses
yi to represent whether item i is in/out the bin, while xip indicates whether item i is arranged at
point p of the grid.

Therefore, let P “ P ˆ Q be the set of all points of the grid in which the set Pi denotes the
points where item i can be packed. Moreover, we denote by Dip the set of points q, so item i

packed at q covers point p. This set does not contain the points q in which i packed at result in
points p on the right and on the top border of i. The integer formulation is as follows.

max

n
ÿ

i“1

vi yi,

subject to :

piq yi ` yj ď 1, @ ti, ju P E,

piiq
n

ÿ

i“1

ÿ

qPDip

xiq ď 1, @ p P P ,

piiiq
ÿ

pPPi

xip “ yi, i “ 1, . . . , n,

pivq yi, xip P t0, 1u, i “ 1, . . . , n; @ p P Pi.

(4.4)

In formulation (4.4), the objective function aims to maximize the total value within the bin,
and constraints: (i) ensure that disjunctive constraints must be respected; (ii) ensure that no
overlapping between pairs of items occur, that is, each point p of the grid has to be covered at
most once by some item; (iii) connect variables xip, for all p P Pi, with yi, for each item i.
Finally, constraints (iv) ensure that all variables are binary.

The integer formulation (4.4) has pseudo-polynomial size in the worst case, since the num-
ber of points depends of the bin and items’ dimensions. Some preliminaries tests show that its
linear relaxation solution has several variables with a fractional value requiring much CPU time
to close the optimality gap, especially due to constraints (4.4.ii) that are hard to solve.

4.4.2 Location-allocation based model

We now consider a relaxed version of formulation (4.4), where we do not prespecify the location
of the items within the bin, but we consider only subsets of items that can, in fact, be packed.

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 73

The resulting formulation is given in eq. (4.5).

max

n
ÿ

i“1

vi yi,

subject to :

piq yi ` yj ď 1, @ ti, ju P E,

piiq
ÿ

iPH
yi ď |H| ´ 1, H P H,

piiiq
n

ÿ

i“1

ai yi ď Abin,

pivq yi P t0, 1u, i “ 1, . . . , n.

(4.5)

where H “ tH : set of items that cannot be all packed together in the binu. Observe that
constraints (4.5.ii) impose a two-dimensional orthogonal packing feasibility test for items in H ,
namely the 2OPP. Constraint (4.5.iii) avoids set of items for which the sum of area is larger
than the bin’s area. We call formulation (4.5) without constraints (4.5.ii) as R2F. Therefore, a
feasibility test has to be executed whenever (an integer) solution of R2F is reached to verify
violated constraints of type (4.5.ii).

Feasibility tests

When solving the R2F, and it reaches an integer solution, we have to verify if the solution is
indeed feasible. Let H be the set of items in this candidate solution from R2F, so we need to
find a packing of H in B or prove that such packing does not exist. To this purpose we use
the constraint programming algorithm presented in Clautiaux et al. [16] reducing the domain of
variables with discretization points [54].

Clautiaux et al. [16] considered, for each item i P H , variables Xi and Yi denoting a feasible
point p “ pXi, Yiq where item i can be packed. Their domains are given by Xi P r0, . . . , L´ lis
and Yi P r0, . . . , C´cis, for each i. With the assumption that all input data are integers, it follows
now that Xi P t0, 1, . . . , L ´ liu and Yi P t0, 1, . . . , C ´ ciu. A basic constraint programming

model requires, for each pair ti, ju of items in H , only non-overlapping constraints:

rXi ` li ď Xjs or rXj ` lj ď Xis or rYi ` ci ď Yjs or rYj ` cj ď Yis. (4.6)

Although the basic model allows to solve the problem, it is very inefficient in practice.
Clautiaux et al. [16] improved this model considering a non-preemptive continuous-scheduling
problem in which AL “ tAL

1 , A
L
2 , . . . , A

L
nu is a set of activities (all items in H) related with

dimension L of the bin. Each activity AL
i has duration li, consumes ci of resource capacity C,

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 74

and can occur in interval rsLi , eLi q “ r0, L ´ lis, where sLi and eLi represent, respectively, the
earliest start time and the latest end time for such activity. A solution for this problem requires
the start time startLi of each activity AL

i while satisfying resource constraints. In other words,
at any point time t P r0, . . . , Ls, the sum of resource consumed by activities with startLi ď t ă
startLi ` li has to be less than or equal to capacity C. The problem is non-preemptive, that
is, each activity must not be interrupted during its execution, and continuous, that is, the same
resource (in this case C) has to supply all activities at time t. Similarly, it is defined a second
non-preemptive continuous-scheduling problem for the set AC “ tAC

1 , A
C
2 , . . . , A

C
n u related

with dimension C. It is easy to see that these two scheduling problems can be connected to the
basic constraint programming model using constraints rstartLi “ Xis and rstartCi “ Yis, for
each item i, allowing to solve the 2OPP.

In the algorithm, the branching in each node u occurs at non-scheduled (non-fixed) varia-
bles. First, among all non-fixed variables startLi , the one with minimum earliest start time is
chosen. Two descendant nodes are created: u1 in which startLimin

is fixed at its lower bound;
and, u2 where the lower bound for the startLimin

domain is increased. Lower bounds based on
dual-feasible functions, energetic reasoning concepts of cumulative-scheduling problems, and
solutions of subset-sum problems are used to strengthen this algorithm.

As previously commented, we do not need to consider all integer positions to pack items,
but, without loss of generality, only those ones over the discretization points. Let PH

i (resp.
QH

i) be the set of discretization points in the dimension L (resp. C) as defined in section 4, but
as non-negative binary combination only of those items in Hztiu. Then, the domain of variables
Xi and Yi, consequently, startLi and startCi , for each item i, is assumed to be the respectively
the sets of discretization points PH

i and QH
i . We call this algorithm of CP2 and its runtime time

is limited by a given time limit.

Contiguous bin packing as a feasibility test

In order to prevent unnecessary calls of the CP2 algorithm, a feasibility test is performed for
each candidate solution in the 2OPP. This test consists of solving a integer linear formulation
based on the contiguous bin packing problem [19], which we call CBP. It receives the set of
items H and the bin B, and returns true if the instance is feasible, and false otherwise. If
it returns false, then the respective instance of 2OPP is indeed infeasible, and then the cut is
added to the R2F. On the other hand, if it returns true we have to call the CP2 to find the packing
or definitively proves its infeasibility.

Let PH “ Ť

iPH PH
i be the set of all discretization points on dimension L for all items in

H , and PH
i ptq be the set of all discretization points t1, such that if item i is packed at t1, then it

covers t. Formally PH
i ptq “ tt1 P PH

i : rt ´ li ` 1s` ď t1 ď t. The formulation of the CBP is

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 75

as follow:

piq
ÿ

iPH

ÿ

t1PPH
i ptq

li yit1 ď L, t P PH ,

piiq
ÿ

t1PPH
i

yit1 “ 1, i P H,

pivq yit P t0, 1u, i P H, t P PH .

(4.7)

For each item i and discretization point t, yit is a decision variable that is 1 if item i is packed
at coordinate t. As it is a feasibility test, the integer program has no objective function. Cons-
traints (4.7.i) prevent that at any given coordinate t the sum of items that covers that coordinate
is less than L. Constraints (4.7.ii) assure that all items in H are packed.

4.4.3 Bounds and valid cuts

Valid upper bounds for the 2D-DCKP can be obtained solving the 1D-DCKP considering the
items area. This corresponds to search for the most valuable clique in Ḡ that respects bin’s area.

Lower and upper bounds Let S̃ be a solution returned by cliquerpḠ, Abinq, where S̃ is the
set of items of maximum value in Ḡ that respects the bin’s area. Next, we apply CP2 with S̃

as input to verify if it is feasibly. If yes, then we stop, since the optimal solution was reached.
Otherwise, note that

ř

jPS̃ vj is a valid upper bound for the maximum value
ř

iPV viyi that can
be packed in any optimal solution.

When exploring a node u of the branch-and-bound tree, we can add some valid cuts over
the tree. First, consider the solution solu of the linear relaxation at node u. For variables fixed
at zero or one in solu, let V 1

u be the set of all items fixed at one, while Ṽu has those fixed at zero.
We only consider variables as fixed when the lower and upper bounds are equal, that is, their
gap on bounds are closed.

Valid cuts from node u With the sets V 1
u and Ṽu, let V̄ be the set of items in V zpV 1

u Y Ṽuq
without conflict with any item in V 1

u and let Ā “ Abin ´ ř

jPV 1
u
aj be the remaining area of the

bin considering that items in V 1
u are packed within the bin.

Given the conflict graph GV̄ of all items in V̄ , let ḠV̄ be its complement. For S̃ a solution
of cliquerpḠV̄ , Āq, apply CP2 in V 1

u Y S̃ to verify its feasibility. If it is feasibly, a valid cut is
ř

jPV vjyj ě ř

jPtV 1
uYS̃u vj . Otherwise, if it is proven to be infeasible, then all items in V 1

u Y S̃

cannot be packed together, that is
ř

jPtV 1
uYS̃u yj ď |V 1

u Y S̃| ´ 1. Note that if
ř

jPtV 1
uYS̃u vj is less

than the value of the best solution ever computed, then node u can be pruned.
It is worth to mention that for several nodes in the branch-and-bound tree, the sets V 1

u and
Ṽu may be repeated, so we use a hash list to avoid unnecessary computation. Also, when ḠV̄

has one vertex or no edges the verification occurs directly, without calling cliquer.

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 76

4.5 Complete Shipment of Items

We now consider a extension of the 2D-DCKP, where the set of items V is partitioned in sets
V1, V2, . . . , VK and we are constrained to, for every 1 ď i ď K, either pack all items or no items
of Vi, that is, if an item of Vi is packed for some 1 ď i ď K, then every item of Vi has to be
packed too. This constraint is called Complete Shipment of Items in the literature and, thus, we
will call set Vi as a complete shipment set.

Without loss of generality, we consider that there is no conflict between two items inside the
same Vi as, otherwise, we cannot pack Vi and thus Vi can be removed from the instance. Also,
notice that if item s P Vi and item t P Vj have conflict, then no item of Vi can be packed with
an item of Vj . Thus, we consider that the vertex set of the conflict graph G is tV1, . . . , VKu, that
is, conflicts happen for complete shipment sets instead of individual items.

In what follows, we discuss briefly how to adapt our approaches in order to consider the
complete shipment constraint. All of these adaptation follows almost directly from the fact that
we are considering complete shipment of items and that conflicts happen between sets of items.

Lifting item sizes In order to adapt the procedure of lifting item sizes (as in Section 4.2.2), we
have to consider a slightly different integer programming formulation. For an item i, let csspiq
be the complete shipment set Vj such that i P Vj , and for a complete shipment set Vj , let Aj be
the sum of the areas of the items in Vj . Also, for an item i, let Si be the set of non-conflicting
items regarding i different than i, that is, Si “ tj P V : pcsspiq, csspjqq R Euztiu. We can lift
item sizes using the following formulation:

L˚
i “ max

ÿ

kPV
lkτk,

subject to :

piq
ÿ

kPV
lkτk ď L,

piiq τk ď ycsspkq, @ k P V,

piiiq yj ` yk ď 1, @ tj, ku P E,

pivq
K

ÿ

j“1

Ajyj ď Abin,

pvq τi “ 1,

pviq τj P t0, 1u, @ j P V ztiu,

pviiq yj P t0, 1u, @ j P t1, . . . ,Ku.

(4.8)

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 77

Adapting the heuristic In order to adapt the heuristic GR to consider complete shipment, we
only consider that, whenever the algorithm decides to remove an item from the packing, then
we remove the whole complete shipment set of that item and, whenever the algorithm decides
to add an item to a packing, we add the whole complete shipment set of that item.

Adapting the formulations It is easy to adapt the formulations from Section 4.4 to consi-
der complete shipment, since the conflicts happens for sets of items. Instead of considering a
variable yi for every item i, we consider a variable yi for every complete shipment set i, for
i “ 1, 2, . . . ,K. The modifications on formulation 4.5 can be seen below. The integer formula-
tion 4.4 can be adapted in the same way.

max

K
ÿ

i“1

yi
ÿ

jPVi

vj,

subject to :

piq yi ` yj ď 1, @ ti, ju P E,

piiq
ÿ

iPH
yi ď |H| ´ 1, H P H,

piii
K

ÿ

i“1

Ai yi ď Abin,

pivq yi P t0, 1u, i “ 1, . . . , K.

(4.9)

Adapting bounds and valid cuts It follows directly from the observation above that we now
pack complete shipment sets instead of items and that conflicts happens between complete
shipment sets.

4.6 Computational Experiments

The algorithms were implemented in the C/C++ programming language and all computational
tests were performed in a computer with Intelr CoreTM i7-2600 3.4 GHz processor with 8 GB
of RAM memory and Linux operating system. We used the standard framework provided by
the ILOG CPLEX 12.5 Callable Library to solve the integer formulations. The algorithm CP2
used the framework provided by the ILOG CP optimizer 12.5 and ILOG CP 1.7. The total CPU
time was limited to 3600 seconds for each instance when using CPLEX, in which each call to
CP2 was limited to 1000 seconds.

The parameters adopted for the heuristic were obtained after some calibration tests. In such
tests we looked for parameters that allowed to obtain good quality solutions. Then, the resulting

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 78

parameters were the following: q “ 30%n; MAX “ 5000; and, X “ 1000. We also imposed a
time limit of 3600 seconds for the heuristic when solving each instance.

The computational tests were carried out using seven sets of instances, totaling 54 ones,
defined in the literature of two-dimensional cutting and packing problems. They are:

‚ cgcut: 3 instances from Christofides and Whitlock [14];

‚ gcut: 13 instances from Beasley [5];

‚ m: 5 instances from Morábito et al. [74];

‚ mw: 5 instances from Hifi [46];

‚ ngcut: 12 instances from Beasley [6];

‚ okp: 5 instances from Fekete et al. [36];

‚ uw: 11 instances from Fayard et al. [35];

For each of these instances, we consider only one copy of each item (that is, we discard the
multiplicity of each item if it exists) in order to generate three classes of conflict graphs. Each
class is associated with one of the following densities for the conflict graph, t10%, 17%, 25%u,
where the number of conflicts in the graph corresponds to a percentage, which is the given
density, of npn´1q

2
, with n as the number of items in the instance. The values assumed for

the density are in accordance with the literature on the knapsack problem with conflict graph
[49, 99]. The pairs of conflicting items were chosen at random.

All instances are available upon request to the authors and some of their details are given in
Table 4.1. This table has the following columns: instance name; number of items; size of the
bin; and, for each density there are: number of items that have the length and width updated,
and number of conflicting items in the instance.

Observing Table 4.1, we note that the percentage of items with sizes updated increases
accordingly to the number of conflicts grows. Then, if there are many conflicts, then there are
few items that can be arranged together (into the bin), so more other items can update their
sizes or even their sizes can increase significantly. For the instances under consideration, when
the density is of 10%, there are 38% of the items with length updated (and 35.05% ones with
width updated). If the number of conflicts in the graph increases, for example, with the density
of 25%, the percentage of items with length updated grows to 42.79% (and to 44.47% for the
width), so representing an elevation of 12.36% (and 26.87%) of items with length (and width)
improved.

4.6.1 Results

As there is no other work about the 2D-DCKP, we consider three different approaches to solve
it that are based on the resolution of the integer formulations discussed in Section 4.4. The ap-
proaches are called as F1, F2 and F3, and all ones use the grid discretized over the discretization
points including the CP2 algorithm. Therefore:

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 79

Tabela 4.1: Information of the instances under consideration.

Instance n pL,Cq Density of 10% Density of 17% Density of 25%
#items updated #conflicts #items updated #conflicts #items updated #Conflicts

cgcut1 7 (15, 10) 3 | 1 2 2 | 0 3 1 | 0 5
cgcut2 10 (40, 70) 3 | 3 4 2 | 2 7 2 | 3 11
cgcut3 20 (40, 70) 6 | 0 19 9 | 3 32 8 | 3 47
ngcut1 5 (10, 10) 0 | 2 1 2 | 2 1 1 | 2 2
ngcut2 7 (10, 10) 0 | 1 2 0 | 2 3 1 | 3 5
ngcut3 10 (10, 10) 1 | 0 4 1 | 2 7 2 | 1 11
ngcut4 5 (15, 10) 0 | 1 1 0 | 2 1 0 | 2 2
ngcut5 7 (15, 10) 5 | 1 2 3 | 1 3 5 | 2 5
ngcut6 10 (15, 10) 0 | 0 4 0 | 0 7 1 | 1 11
ngcut7 5 (20, 20) 1 | 2 1 1 | 2 1 1 | 2 2
ngcut8 7 (20, 20) 1 | 1 2 1 | 0 3 1 | 3 5
ngcut9 10 (20, 20) 2 | 0 4 2 | 0 7 4 | 0 11
ngcut10 5 (30, 30) 3 | 2 1 3 | 1 1 3 | 2 2
ngcut11 7 (30, 30) 4 | 1 2 4 | 1 3 4 | 4 5
ngcut12 10 (30, 30) 0 | 3 4 0 | 3 7 2 | 6 11

gcut1 10 (250, 250) 3 | 5 4 4 | 6 7 5 | 5 11
gcut2 20 (250, 250) 15 | 7 19 13 | 9 32 14 | 9 47
gcut3 30 (250, 250) 12 | 12 43 15 | 14 73 16 | 18 108
gcut4 50 (250, 250) 14 | 17 122 18 | 18 208 23 | 18 306
gcut5 10 (500, 500) 8 | 4 4 8 | 4 7 7 | 6 11
gcut6 20 (500, 500) 16 | 11 19 16 | 13 32 15 | 12 47
gcut7 30 (500, 500) 22 | 17 43 21 | 17 73 20 | 16 108
gcut8 50 (500, 500) 26 | 19 122 25 | 18 208 27 | 19 306
gcut9 10 (1000, 1000) 6 | 6 4 6 | 6 7 7 | 6 11

gcut10 20 (1000, 1000) 14 | 12 19 13 | 12 32 14 | 12 47
gcut11 30 (1000, 1000) 24 | 16 43 24 | 15 73 23 | 15 108
gcut12 50 (1000, 1000) 31 | 33 122 30 | 34 208 31 | 36 306
gcut13 32 (3000, 3000) 0 | 0 49 0 | 2 84 6 | 4 124
m1-1 10 (100, 156) 3 | 3 4 4 | 4 7 3 | 5 11
m2-1 10 (253, 294) 3 | 6 4 2 | 6 7 5 | 7 11
m3-1 10 (318, 473) 5 | 4 4 6 | 6 7 6 | 4 11
m4-1 10 (501, 556) 7 | 4 4 6 | 5 7 6 | 6 11
m5-1 10 (750, 806) 6 | 4 4 6 | 5 7 6 | 6 11
mw1 10 (100, 156) 3 | 3 4 4 | 4 7 3 | 5 11
mw2 10 (253, 294) 3 | 6 4 2 | 6 7 5 | 7 11
mw3 10 (318, 473) 5 | 4 4 6 | 6 7 6 | 4 11
mw4 10 (501, 556) 6 | 4 4 6 | 5 7 6 | 6 11
mw5 10 (750, 806) 6 | 4 4 6 | 5 7 6 | 6 11
okp1 15 (100, 100) 1 | 5 10 1 | 4 17 5 | 6 26
okp2 30 (100, 100) 0 | 5 43 0 | 8 73 0 | 6 108
okp3 30 (100, 100) 0 | 10 43 0 | 11 73 0 | 14 108
okp4 33 (100, 100) 0 | 5 52 0 | 5 89 0 | 9 132
okp5 29 (100, 100) 0 | 5 40 0 | 5 69 1 | 6 101
uw1 25 (500, 500) 12 | 15 30 12 | 14 51 13 | 14 75
uw2 35 (560, 750) 10 | 20 59 13 | 22 101 14 | 19 148
uw3 35 (700, 650) 18 | 16 59 19 | 18 101 18 | 17 148
uw4 45 (1245, 1015) 16 | 11 99 17 | 14 168 21 | 13 247
uw5 35 (1100, 1450) 21 | 22 59 18 | 21 101 17 | 22 148
uw6 47 (1750, 1542) 21 | 24 108 24 | 25 183 28 | 29 270
uw7 50 (2250, 1875) 26 | 22 122 23 | 29 208 27 | 27 306
uw8 55 (2645, 2763) 28 | 23 148 27 | 26 371 32 | 33 252
uw9 45 (3000, 3250) 30 | 25 99 29 | 29 168 29 | 30 247
uw10 60 (3500, 3650) 25 | 31 177 29 | 35 300 35 | 33 442
uw11 30 (555, 632) 3 | 1 43 3 | 3 73 5 | 6 108

#Impr. - - 38% | 35.05% - 38.48% | 39.01% - 42.79% | 44.37% -

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 80

‚ F1 represents formulation (4.4) purely. F1 does not consider CBP, CP2, and neither the
bounds and valid cuts;

‚ F2 considers formulation R2F with CP2, bounds and valid cuts (but without CBP);

‚ F3 considers formulation R2F with CBP called before each call to CP2, and with the
bounds and valid cuts. In fact, F3 has all the improvements considered in this paper.

Approaches F1, F2 and F3 are also compared with the heuristic GR. For that, we apply the
heuristic ten times (for ten different seeds) on each instance and then the best and the worst so-
lution found are presented. For the best solution, we present the iteration where it was obtained
and the CPU time spent in seconds to obtain it. The results below show that the heuristic is
quite competitive in terms of computing the optimal solution, although approach F3 is by far
the best one for solving the instances to optimality.

We present in Tables 4.2, 4.3 and 4.4 the results for the instances with density equal to 10%,
17% and 25%, respectively. Each row of these tables has: name of the instance; output of
F1: value of the solution and total CPU time (in seconds); outputs of F2 and F3: value of the
solution, CPU time (in seconds) of all calls to CP2, and total CPU time (in seconds) required
to solve the instance, which also includes the time of CP2; output of GR: value of the best
solution over the ten executions, iteration (of MAX) where the best solution was computed,
average CPU time (in seconds) for the ten runs, and the value of the worst solution observing
the ten runs. If a solution is proven to be optimal, then an asterisk appears with the respective
value. In the case of the heuristic, we mark with “`”.

Table 4.2 considers the case with conflict graph’s density equal to 10%. All the instances
were solved to optimality with approaches F2 and F3, except for gcut13, for which the time
limit imposed was reached. In terms of solution quality, F3 has the best performance (note
that the solution of gcut13 computed with F3 is better than those of F1, F2 and GR). With this
in mind, the difference in percentage (namely, GAP) comparing with F3 was, respectively, on
average: of 0.89%, for F1; of 0.13%, for F2; and, of 0.74%, for the heuristic.

For the total CPU time in Table 4.2, F3 had the best result too. On average, its time was of
120.71 seconds against 146.41 seconds for F2, 1353.28 seconds for F1, and 1816.75 seconds
for GR. On the other hand, the strategy of calling CBP prior to CP2 shows clearly that CP2
can be time consuming, since the time of CP2 for F2 was of 93.12 seconds, on average, and it
was reduced to 69.12 seconds for F3. We can observe that the CPU time of GR was the worse
even if comparing with F1. However, this is justified by the large number of iterations that we
considered for the heuristic. Note that GR obtained its best solution very quickly, around the
ten first iterations, for 39 out of 54 instances, namely for 72% of the instances. Moreover, for
GR, the worst solution computed over the ten executions coincided with the best solution value
for 39 instances and the overall GR’s GAP is lower than that of F1 (0.74% against 0.89% of
F1).

In therms of non-optimal solutions and comparing with F3 in Table 4.2, we point out that:
F2 did not solve only gcut13 that had a GAP of 0.13%; F1 did not solve 9 out of 54 instances,
where the worst GAP was of 18.94% for gcut13; and, GR did not solve 12 instances, in which

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 81

the worst GAP was of 8.56% for gcut13. Observe that the worst GAP returned with GR is even
better than the worst one for F1, although F1 solved more instances to optimality than GR.

Tabela 4.2: Comparing F1, F2, F3, and GR for the density equal to 10%.

Instance F1 F2 F3 GR heuristic
value time value t. CP2 time value t. CP2 time b. value b. iter. avg. time w. value

cgut1 139* 0.02 139* 0.00 0.00 139* 0.00 0.00 139+ 1 80.25 139+
cgut2 1804* 1.14 1804* 0.00 0.00 1804* 0.00 0.00 1804+ 1 677.75 1804+
cgut3 1620* 10.81 1620* 0.00 1.00 1620* 0.01 1.26 1620+ 2 1562.54 1620+

ngcut1 141* 0.00 141* 0.00 0.00 141* 0.00 0.00 141+ 1 61.82 141+
ngcut2 138* 0.04 138* 0.00 0.00 138* 0.00 0.17 138+ 1 208.20 138+
ngcut3 194* 0.06 194* 0.00 0.02 194* 0.01 0.21 194+ 1 205.38 194+
ngcut4 193* 0.00 193* 0.00 0.00 193* 0.00 0.00 193+ 1 53.52 193+
ngcut5 227* 0.00 227* 0.00 0.00 227* 0.00 0.00 227+ 1 60.21 227+
ngcut6 238* 0.26 238* 0.01 0.01 238* 0.00 0.24 238+ 12 328.22 238+
ngcut7 370* 0.00 370* 0.00 0.00 370* 0.00 0.00 370+ 1 120.30 370+
ngcut8 635* 0.00 635* 0.00 0.00 635* 0.00 0.00 635+ 1 194.63 635+
ngcut9 804* 0.26 804* 0.00 0.00 804* 0.00 0.13 804+ 1 537.42 804+
ngcut10 763* 0.00 763* 0.00 0.00 763* 0.00 0.00 763+ 1 47.70 763+
ngcut11 1114* 0.06 1114* 0.00 0.00 1114* 0.00 0.14 1114+ 1 202.77 1114+
ngcut12 1302* 0.34 1302* 0.00 0.00 1302* 0.00 0.13 1302+ 2 862.44 1302+
gcut1 48368* 0.15 48368* 0.00 0.01 48368* 0.00 0.10 48368+ 1 112.41 48368+
gcut2 59563* 53.79 59563* 0.02 0.10 59563* 0.00 1.11 59563+ 1 1410.70 59563+
gcut3 60080* 82.47 60080* 0.45 25.73 60080* 0.00 28.71 60080+ 46 3600.00 60080+
gcut4 61380 3600.00 61380* 25.51 1957.07 61380* 0.00 1221.21 61380+ 359 3600.00 61380+
gcut5 195582* 0.75 195582* 0.00 0.01 195582* 0.00 0.23 195582+ 1 223.37 195582+
gcut6 236305* 1.54 236305* 0.02 0.13 236305* 0.00 0.78 236305+ 1 999.40 236305+
gcut7 236483* 10.54 236483* 0.29 1.82 236483* 0.00 7.06 236483+ 1 2256.54 236483+
gcut8 240772 3600.00 245758* 8.14 651.03 245758* 0.00 551.00 245758+ 221 3600.00 243466+
gcut9 924503* 0.12 924503* 0.01 0.01 924503* 0.00 0.03 924503+ 1 214.68 924503+

gcut10 937349* 7.32 937349* 0.01 0.07 937349* 0.00 0.52 937349+ 1 778.47 937349+
gcut11 951831* 35.30 951831* 0.28 4.85 951831* 0.00 11.88 951831+ 15 3600.00 951831+
gcut12 976877 3600.00 976877* 1.82 78.07 976877* 0.00 46.50 976877+ 531 3600.00 976877+
gcut13 6511040 3600.00 7464396 3600.00 3600.00 8032214 3600.00 3600.00 7344924 1 3600.00 6511040

m1 13899* 14.18 13899* 0.00 0.01 13899* 0.00 0.27 13899+ 1 566.25 13899+
m2 62169* 174.92 62169* 0.02 0.02 62169* 0.00 0.89 62169+ 2 1042.15 62169+
m3 133085* 22.70 133085* 0.01 0.01 133085* 0.35 0.44 133085+ 1 783.68 133085+
m4 233361* 2.25 233361* 0.00 0.01 233361* 0.00 0.39 233361+ 1 366.53 233361+
m5 538994* 154.18 538994* 0.00 0.01 538994* 0.00 0.35 538994+ 1 751.81 538994+

mw1 3240* 14.33 3240* 0.00 0.00 3240* 0.00 0.31 3240+ 1 654.10 3240+
mw2 15433* 31.49 15433* 0.02 0.02 15433* 0.00 1.05 15433+ 44 1187.93 15433+
mw3 30359* 22.22 30359* 0.01 0.01 30359* 0.00 0.50 30359+ 1 835.73 30359+
mw4 48732* 153.34 48732* 0.00 0.00 48732* 0.00 0.67 48732+ 3 704.76 48732+
mw5 143961* 282.65 143961* 0.00 0.00 143961* 0.00 0.34 143961+ 1 813.09 143961+
okp1 22048 3600.00 22048* 0.02 0.02 22048* 0.00 2.72 22048+ 1 3600.00 22048+
okp2 20892 3600.00 20892* 0.00 0.00 20892* 0.00 17.59 19710 51 3600.00 19019
okp3 23196 3600.00 23196* 2.45 25.87 23196* 0.00 15.12 22801 57 3600.00 22203
okp4 24771 3600.00 25474* 1.54 63.23 25474* 0.00 41.89 25474+ 6 3600.00 24771
okp5 20334 3600.00 20344* 6.67 110.62 20344* 0.66 57.98 20334 12 3600.00 19797
uw1 3973 3600.00 3973* 0.02 0.04 3973* 0.00 0.11 3973+ 48 3600.00 3874
uw2 5019 3600.00 5019* 5.01 2.58 5019* 0.09 3.40 4928 57 3600.00 4753
uw3 3481 3600.00 3481* 0.02 0.13 3481* 0.00 0.21 3481+ 4 3600.00 3481+
uw4 5594 3600.00 5594* 3.73 7.40 5594* 0.03 3.90 5499 2 3600.00 5202
uw5 4291 3600.00 4291* 0.62 0.64 4291* 0.02 2.41 4291+ 41 3600.00 4291+
uw6 5040 3600.00 5040* 22.34 22.60 5040* 0.21 27.18 4847 52 3600.00 4593
uw7 5502 3600.00 5648* 1.82 2.29 5648* 0.01 3.98 5571 1 3600.00 5502
uw8 5024 3600.00 5600* 284.61 285.26 5600* 39.71 89.43 5215 2 3600.00 5024
uw9 4056 3600.00 4113* 5.60 6.07 4113* 0.06 5.73 4056 15 3600.00 3906
uw10 5281 3600.00 5680* 148.07 149.78 5680* 32.42 93.71 5454 1 3600.00 5281
uw11 5367 3600.00 5545* 909.21 909.23 5545* 59.21 676.82 5367 9 3600.00 5123

As reported in Table 4.3, for the density of 17%, F3 again had the best results for the solution
value, time of CP2 and total CPU time.

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 82

Tabela 4.3: Comparing F1, F2, F3, and GR for the density equal to 17%.

Instance F1 F2 F3 Heuristic
value time value t. CP2 time value t. CP2 time b. value b. iter. b. time w. value

cgut1 137* 0.01 137* 0.00 0.00 137* 0.00 0.00 137+ 1 147.34 137+
cgut2 1744* 0.85 1744* 0.00 0.00 1744* 0.00 0.00 1744+ 1 664.96 1744+
cgut3 1500* 6.11 1500* 0.00 0.02 1500* 0.00 0.08 1500+ 2 1141.15 1500+

ngcut1 118* 0.00 118* 0.00 0.00 118* 0.00 0.00 118+ 1 44.89 118+
ngcut2 130* 0.02 130* 0.00 0.01 130* 0.00 0.07 130+ 1 164.28 130+
ngcut3 185* 0.08 185* 0.00 0.01 185* 0.00 0.19 185+ 1 202.35 185+
ngcut4 173* 0.00 173* 0.00 0.00 173* 0.00 0.00 173+ 1 56.18 173+
ngcut5 251* 0.00 251* 0.00 0.00 251* 0.00 0.00 251+ 1 61.32 251+
ngcut6 250* 0.14 250* 0.00 0.00 250* 0.00 0.15 250+ 1 331.14 250+
ngcut7 348* 0.00 348* 0.00 0.00 348* 0.00 0.00 348+ 1 89.58 348+
ngcut8 610* 0.00 610* 0.00 0.00 610* 0.00 0.00 610+ 1 192.90 610+
ngcut9 712* 0.18 712* 0.01 0.01 712* 0.00 0.17 712+ 1 459.36 712+
ngcut10 998* 0.00 998* 0.00 0.00 998* 0.00 0.00 998+ 1 47.65 998+
ngcut11 1077* 0.02 1077* 0.00 0.00 1077* 0.00 0.00 1077+ 1 196.32 1077+
ngcut12 1272* 0.60 1272* 0.00 0.00 1272* 0.00 0.00 1272+ 1 726.11 1272+

gcut1 48368* 0.10 48368* 0.00 0.01 48368* 0.00 0.06 48368+ 1 115.96 48368+
gcut2 58540* 38.52 58540* 0.04 0.12 58540* 0.00 1.25 58540+ 1 1376.67 58540+
gcut3 59827* 73.03 59827* 0.09 1.66 59827* 0.01 17.60 59827+ 1 3600.00 59827+
gcut4 60738 3600.00 60942* 4.81 185.03 60942* 0.00 138.92 60942+ 47 3600.00 60942+
gcut5 192907* 0.33 192907* 0.01 0.01 192907* 0.00 0.11 192907+ 1 220.68 192907+
gcut6 227555* 5.58 227555* 0.03 0.09 227555* 0.00 0.54 227555+ 1 776.78 227555+
gcut7 240143* 16.45 240143* 0.16 0.71 240143* 0.00 3.49 240143+ 3 2078.69 240143+
gcut8 241388 3600.00 243917* 4.00 195.91 243917* 0.00 131.94 243805 316 3600.00 242656
gcut9 835406* 0.12 835406* 0.01 0.01 835406* 0.00 0.06 835406+ 1 213.57 835406+

gcut10 937349* 12.14 937349* 0.01 0.04 937349* 0.00 0.28 937349+ 1 731.14 937349+
gcut11 957270* 23.63 957270* 0.10 0.98 957270* 0.00 4.06 957270+ 68 2865.94 957270+
gcut12 964648* 1215.70 964648* 0.79 29.68 964648* 0.00 27.23 964648+ 4 3600.00 964648+
gcut13 7712154 3600.00 7712154* 0.01 0.01 7712154* 0.00 0.00 6638044 9 3600.00 5957868

m1 13061* 3.60 13061* 0.00 0.01 13061* 0.00 0.40 13061+ 3 526.74 13061+
m2 54434* 26.73 54434* 0.00 0.00 54434* 0.00 0.00 54434+ 1 996.65 54434+
m3 133802* 0.37 133802* 0.00 0.00 133802* 0.00 0.00 133802+ 2 513.36 133802+
m4 220120* 1.03 220120* 0.00 0.01 220120* 0.00 0.11 220120+ 1 355.77 220120+
m5 508345* 21.27 508345* 0.00 0.01 508345* 0.00 0.39 508345+ 2 757.88 508345+

mw1 2948* 3.58 2948* 0.00 0.00 2948* 0.00 0.20 2948+ 3 493.11 2948+
mw2 13074* 21.14 13074* 0.00 0.00 13074* 0.00 0.00 13074+ 1 1020.58 13074+
mw3 29899* 0.37 29899* 0.00 0.00 29899* 0.00 0.22 29899+ 5 424.35 29899+
mw4 45415* 19.31 45415* 0.01 0.01 45415* 0.00 1.02 45415+ 1 517.03 45415+
mw5 126990* 56.67 126990* 0.01 0.01 126990* 0.00 0.41 126990+ 1 600.67 126990+
okp1 17763 3600.00 17763* 0.00 0.06 17763* 0.00 0.14 17763+ 1 3600.00 17763+
okp2 20484 3600.00 20484* 1.05 17.50 20484* 0.00 22.31 19965 1 3600.00 19404
okp3 22531 3600.00 22531* 0.28 3.25 22531* 0.01 11.56 22531+ 4 3600.00 22061
okp4 24695 3600.00 24695* 0.30 2.48 24695* 0.00 10.08 24099 25 3600.00 23850
okp5 19766 3600.00 19766* 0.36 1.48 19766* 0.01 4.81 19536 1 3600.00 19130
uw1 3258 3600.00 3258* 0.01 0.03 3258* 0.00 0.19 3249 1 3600.00 3249
uw2 4784 3600.00 4784* 2.11 2.18 4784* 0.02 11.92 4729 2 3600.00 4628
uw3 3222 3600.00 3222* 0.05 0.17 3222* 0.00 0.23 3222+ 9 3600.00 3222+
uw4 5634 3600.00 5634* 3.97 4.09 5634* 0.03 9.12 5403 17 3600.00 5068
uw5 4217 3600.00 4217* 0.04 0.08 4217* 0.00 0.20 4217+ 45 3600.00 4160
uw6 4708 3600.00 4708* 0.64 0.74 4708* 0.00 4.33 4529 93 3600.00 4418
uw7 5305 3600.00 5305* 0.23 0.30 5305* 0.00 2.17 5037 11 3600.00 4855
uw8 4750 3600.00 4750* 1.55 1.63 4750* 0.06 4.12 4699 1 3600.00 4410
uw9 4167 3600.00 4198* 7.91 8.71 4198* 0.14 22.09 4167 53 3600.00 3995
uw10 4878 3600.00 5201* 19.46 19.99 5201* 0.24 29.02 5013 12 3600.00 4695
uw11 5088 3600.00 5717 3600.00 3600.00 5717 3600.00 3600.00 5287 9 3600.00 5088

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 83

Comparing F1, F2, and GR with F3 in Table 4.3, the difference on average in terms of
solution value was of 0.38%, 0.0%, and 0.88%. Note that F2 and F3 returned the same solutions
for all instances, while F1 was better than the heuristic. Once again, F2 and F3 solved all the
instances to optimality, except for one, see uw11. And, F1 could not prove optimality of 19
instances, although for some of them (14 ones) it obtained the same optimal value, but without
prove optimality due to the time limit that was reached. The worst solution computed with F1
was for uw11 with difference of 11%, while GR had problems with 14 instances (no optimal
solution for them), in which the worst difference was of 13.93% for gcu13.

Observing the total CPU time in Table 4.3, it was on average of 75.21 seconds for F3, of
75.51 seconds for F2, of 1295.32 seconds for F1, and of 1753.91 seconds for GR. Note that if
considering F3 and F2 instead of F1, there is a substantial reduction on the CPU time and this
is even better if comparing with GR. The time of CP2 was very close for both F3 (of 66.67
seconds on average) and F2 (of 67.55 seconds on average), but it still show that CBP is useful.
It is important mentioning that the average CPU time and CP2 time of both F2 and F3 increased
due to instance uw11, which reached the time limit of one hour.

Table 4.4 reports the same conclusions of those cases with 10% and 17% as density for the
conflict graph. Once again F3 and F2 solved all the instances to optimality, while F1 had a
difference on percentage with F3 of 0.19%, on average, and GR had a difference of 0.50%, on
average, comparing with F3. We note that F1 computed for 52 out of 54 instances a solution
equal to optimal one, however for 20 out of these 52 instances it did not prove optimality, since
the time limit was reached. On the other hand, GR computed optimal solutions for 45 instances
and both F1 and GR computed the worst worst solution for the instance uw10 with a difference
of 5.60% compared to F3.

Observing the total CPU time of all approaches in Table 4.4, they required 5.42 seconds for
F3, 8.01 seconds for F2, 1337.41 seconds for F1, and 1639.44 seconds for GR. In therms of CP2
usage, F3 required 0.44 seconds, while F2 required 8.01 seconds. All these results are average
ones. Although the CPU time of GR was the worst one compared with the other approaches, it
was capable of reaching optimal solutions very soon for 38 out of 54 instances (before the tenth
iteration) as well as its worst solutions coincided with its best solutions over the ten executions
for 41 instances.

Comparing the results in Tables 4.2 to 4.4, we observe that the solution value and total CPU
time decreased accordingly the density of the conflict graph increased. On average if comparing
the results for the density of 10% with that of 25%, the value of the solution decreased of
22.59%, while the CPU time decreased 95.51% both for F3, which presented the overall best
results. Moreover, the size of the cliques in Ḡ became small when the number of conflicts in
G increased, consequently the solutions had not so many items and check the feasibility was
quite fast, as noted in the time of CP2 that was very low on average. On the other hand, to find
such cliques was not an easy task, but cliquer was able to perform that very well especially after
applied the strategies to improve the original instance.

Regarding the computational time required by GR, note that it arranges items over a grid of
reduced raster points. Although these number of points is small compared to the discretization

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 84

Tabela 4.4: Comparing F1, F2, F3, and GR for the density equal to 25%.

Instance F1 F2 F3 Heuristic
value time value t. CP2 time value t. CP2 time b. value b. iter. b. time w. value

cgut1 109* 0.02 109* 0.00 0.00 109* 0.00 0.00 109+ 1 105.55 109+
cgut2 1537* 1.21 1537* 0.00 0.00 1537* 0.00 0.00 1537+ 1 669.54 1537+
cgut3 1400* 4.89 1400* 0.00 0.02 1400* 0.00 0.38 1400+ 1 784.42 1400+

ngcut1 118* 0.00 118* 0.00 0.00 118* 0.00 0.00 118+ 1 52.48 118+
ngcut2 148* 0.00 148* 0.00 0.00 148* 0.00 0.02 148+ 1 93.77 148+
ngcut3 183* 0.02 183* 0.00 0.00 183* 0.00 0.00 183+ 1 162.97 183+
ngcut4 146* 0.00 146* 0.00 0.00 146* 0.00 0.00 146+ 1 51.07 146+
ngcut5 233* 0.00 233* 0.00 0.00 233* 0.00 0.00 233+ 1 55.65 233+
ngcut6 225* 0.02 225* 0.00 0.00 225* 0.00 0.00 225+ 1 223.62 225+
ngcut7 370* 0.00 370* 0.00 0.00 370* 0.00 0.00 370+ 1 86.31 370+
ngcut8 358* 0.00 358* 0.00 0.00 358* 0.00 0.00 358+ 1 131.93 358+
ngcut9 681* 0.24 681* 0.00 0.00 681* 0.00 0.03 681+ 1 279.39 681+
ngcut10 763* 0.00 763* 0.00 0.00 763* 0.00 0.00 763+ 1 50.39 763+
ngcut11 872* 0.01 872* 0.00 0.00 872* 0.00 0.00 872+ 1 93.42 872+
ngcut12 1179* 0.12 1179* 0.00 0.00 1179* 0.00 0.06 1179+ 1 399.58 1179+

gcut1 46516* 0.12 46516* 0.00 0.01 46516* 0.00 0.08 46516+ 1 94.82 46516+
gcut2 58705* 42.18 58705* 0.02 0.04 58705* 0.00 0.27 58705+ 5 941.97 58705+
gcut3 59390* 77.69 59390* 0.06 0.42 59390* 0.01 2.72 59390+ 1 3012.25 59390+
gcut4 60388 3600.00 60388* 0.00 61.19 60388* 0.00 26.92 60388+ 62 3600.00 60388+
gcut5 181982* 0.11 181982* 0.01 0.01 181982* 0.01 0.06 181982+ 1 101.95 181982+
gcut6 225229* 14.13 225229* 0.00 0.07 225229* 0.00 0.51 225229+ 1 613.40 225229+
gcut7 234804* 12.79 234804* 0.06 0.14 234804* 0.00 0.83 234804+ 2 1600.47 234804+
gcut8 243838 3600.00 243838* 1.36 52.45 243838* 0.00 40.34 243838+ 3 3600.00 243838+
gcut9 819514* 0.13 819514* 0.00 0.01 819514* 0.00 0.04 819514+ 1 143.03 819514+

gcut10 899316* 9.71 899316* 0.01 0.05 899316* 0.00 0.47 899316+ 1 536.10 899316+
gcut11 957270* 23.13 957270* 0.02 0.35 957270* 0.00 0.92 957270+ 12 2413.63 957270+
gcut12 964648 3600.00 964648* 0.37 37.82 964648* 0.02 16.49 964648+ 2 3600.00 964648+
gcut13 5064537 3600.00 5064537* 0.00 0.00 5064537* 0.00 0.00 5025828 1 3600.00 4875352

m1 13384* 1.22 13384* 0.00 0.00 13384* 0.00 0.00 13384+ 1 447.96 13384+
m2 52777* 2.51 52777* 0.00 0.00 52777* 0.00 0.00 52777+ 1 649.03 52777+
m3 108619* 3.40 108619* 0.00 0.00 108619* 0.00 0.00 108619+ 1 330.32 108619+
m4 238934* 0.36 238934* 0.00 0.00 238934* 0.00 0.10 238934+ 1 286.87 238934+
m5 520844* 5.08 520844* 0.00 0.00 520844* 0.00 0.00 520844+ 1 531.40 520844+

mw1 3039* 1.23 3039* 0.00 0.00 3039* 0.00 0.00 3039+ 1 433.97 3039+
mw2 12813* 3.95 12813* 0.00 0.00 12813* 0.00 0.00 12813+ 2 620.85 12813+
mw3 25317* 3.28 25317* 0.00 0.00 25317* 0.00 0.00 25317+ 1 288.87 25317+
mw4 46458* 7.06 46458* 0.00 0.00 46458* 0.00 0.00 46458+ 1 425.51 46458+
mw5 126304* 5.16 126304* 0.00 0.00 126304* 0.00 0.00 126304+ 1 451.36 126304+
okp1 16422 3600.00 16422* 0.00 0.00 16422* 0.00 0.16 16422+ 1 3600.00 16422+
okp2 19545 3600.00 19545* 0.17 1.62 19545* 0.00 3.22 19545+ 14 3600.00 18854
okp3 22531 3600.00 22531* 0.07 0.42 22531* 0.00 1.76 22531+ 66 3600.00 22073
okp4 23264 3600.00 23264* 0.04 0.19 23264* 0.00 1.08 23150 33 3600.00 22870
okp5 18215 3600.00 18215* 0.19 0.42 18215* 0.00 2.02 18215+ 3 3600.00 18215+
uw1 3360 3600.00 3360* 0.00 0.02 3360* 0.00 0.04 3360+ 2 2965.92 3360+
uw2 4571 3600.00 4571* 0.00 0.02 4571* 0.00 0.00 4571+ 148 3600.00 4486
uw3 3297 3600.00 3297* 0.02 0.04 3297* 0.00 0.07 3297+ 29 3600.00 3297+
uw4 4522 3600.00 4522* 0.31 0.45 4522* 0.01 1.22 4348 87 3600.00 4170
uw5 3701 3600.00 3701* 0.01 0.03 3701* 0.00 0.10 3667 9 3600.00 3545
uw6 4229 3600.00 4229* 0.58 0.78 4229* 0.04 4.10 4229+ 127 3600.00 4092
uw7 4989 3600.00 4989* 0.15 0.21 4989* 0.00 1.87 4945 135 3600.00 4581
uw8 4396 3600.00 4396* 0.20 0.33 4396* 0.01 1.99 4178 47 3600.00 3965
uw9 3694 3600.00 3694* 0.02 0.10 3694* 0.00 0.12 3530 52 3600.00 3453
uw10 4453 3600.00 4717* 0.61 0.78 4717* 0.03 3.27 4453 36 3600.00 4232
uw11 4768 3600.00 5015* 175.30 274.88 5015* 23.81 181.66 4768 14 3600.00 4709

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 85

points as described in the literature [79], this seems not to be a good benefit for the heuristic,
since the number of points still remain large and search for a feasible point may require some
relevant CPU time. Maybe the usage of a set containing only the feasible points on the contour
of the packing [84], instead to observe all points in the grid lead to a better performance.

It is worth mentioning that the approaches here proposed can also be used to solve the 2KP,
although it is not the focus of this paper. Specific algorithms for the 2KP can be found for
example in Baldacci and Boschetti [4]. Moreover, disjunctive constraints may not allow some
classes of valid inequalities and bounds of the 2KP, as those based on knapsack formulations,
conservative scales [8], dual-feasible functions [18] and 1D bar relaxations [7], can be directly
applied on the 2D-DCKP. And, the price of adapting such strategies may not comply with the
expected quality in the final solution.

4.6.2 Results for Complete Shipment

In order to generate instances for this case, for each of the instances discussed previously, we
organize at random items on groups, with one, two, or at most three items per group, due to the
number of items in instances. Next, the conflicts were generated observing these groups instead
of individual items.

Although we mentioned in Section 4.5 how to adapt the integer formulations, bounds, valid
cuts and the heuristic for dealing with complete shipment, we do not provide the results here
for all the approaches like presented before. Instead of this, we only present the results for an
approach similar to F3 (the best one), namely F4, which consists of formulation (4.9) with CBP
called before each call to CP2.

The results for F4 are in Table 4.5 that has the following columns: instance name; number
of groups that the instance has; output of F4 for the density equal to 10%, which are: value
of the solution, total CPU time (in seconds) considering all calls of CP2, and the total CPU
time (in seconds) to solve the instance, for a time limit of 3600 seconds. The same outputs are
considered for the density equal to 17% and 25%.

Accordingly to the results in Table 4.5, F3 solved all the instances to optimality for the
density of 25%, while for the density of 10% only one instance (see gcut13) was not proved
optimal, and two instances (see gcut13 and uw11) for the density of 17%. The total CPU time
was, in seconds, of 85.57 for the density of 10%, of 133.36 for the density of 17%, and of 0.02
for density of 25%. Note that it had an expressive reduction of 99% if comparing for the density
of 10% with that of 25%.

Comparing the results of F3 in Tables 4.2 to 4.4 for the 2D-DCKP without complete ship-
ment constraint with those in Table 4.5, we noted that the solution value decreased of 11.12%
and 8.82 for the densities of 10% and 17%, respectively, whereas it increased of 11.97% for
the density of 25%. These evidence that the number of conflicts can grow if considering the
complete shipment constraint, since the conflicts now occur between groups of items, which
results on more conflicts in the graph.

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 86

Tabela 4.5: Results considering the complete shipment constraint for F4.

Instance #groups density of 10% density of 17% density of 25%
value t. CP2 time value t. CP2 time value t. CP2 time

cgcut1 3 131* 0.00 0.00 131* 0.00 0.00 131* 0.00 0.00
cgcut2 4 1977* 0.00 0.00 1848* 0.00 0.00 1522* 0.00 0.00
cgcut3 7 880* 0.00 0.00 880* 0.00 0.00 880* 0.00 0.00
ngcut1 2 63* 0.00 0.00 63* 0.00 0.00 63* 0.00 0.00
ngcut2 3 158* 0.00 0.00 158* 0.00 0.00 85* 0.00 0.00
ngcut3 4 166* 0.00 0.00 154* 0.00 0.00 154* 0.00 0.00
ngcut4 2 109* 0.00 0.00 109* 0.00 0.00 109* 0.00 0.00
ngcut5 3 248* 0.00 0.00 248* 0.00 0.00 248* 0.00 0.00
ngcut6 4 255* 0.00 0.00 212* 0.00 0.00 212* 0.00 0.00
ngcut7 2 217* 0.00 0.00 217* 0.00 0.00 217* 0.00 0.00
ngcut8 3 557* 0.00 0.00 557* 0.00 0.00 557* 0.00 0.00
ngcut9 4 649* 0.00 0.00 649* 0.00 0.00 649* 0.00 0.00
ngcut10 2 719* 0.00 0.00 719* 0.00 0.00 719* 0.00 0.00
ngcut11 3 941* 0.00 0.00 941* 0.00 0.00 782* 0.00 0.00
ngcut12 4 1383* 0.00 0.00 1310* 0.00 0.00 1256* 0.00 0.00
gcut1 4 21388* 0.00 0.00 21388* 0.00 0.00 21388* 0.00 0.00
gcut2 7 39513* 0.00 0.00 39513* 0.00 0.00 39513* 0.00 0.00
gcut3 11 51158* 0.00 0.00 45662* 0.00 0.01 45662* 0.00 0.01
gcut4 17 51948* 0.01 0.09 51948* 0.00 0.03 51948* 0.00 0.01
gcut5 4 189856* 0.00 0.00 189856* 0.00 0.00 189856* 0.00 0.00
gcut6 7 173682* 0.00 0.00 173682* 0.00 0.00 173682* 0.00 0.00
gcut7 11 177596* 0.00 0.01 177596* 0.00 0.00 177596* 0.00 0.01
gcut8 17 155680* 0.00 0.12 155680* 0.00 0.06 155680* 0.00 0.03
gcut9 4 653793* 0.00 0.00 653793* 0.00 0.00 653793* 0.00 0.00

gcut10 7 659814* 0.00 0.00 659814* 0.00 0.00 659814* 0.00 0.00
gcut11 11 687962* 0.01 0.02 609516* 0.00 0.01 687962* 0.00 0.00
gcut12 17 717188* 0.01 0.03 717188* 0.00 0.03 717188* 0.00 0.02
gcut13 11 7968636 3600.00 3600.00 7951597 3600.00 3600.00 7704177* 0.00 0.01

m1 4 12261* 0.00 0.00 12071* 0.00 0.00 12071* 0.00 0.00
m2 4 63090* 0.00 0.00 63090* 0.00 0.00 63090* 0.00 0.00
m3 4 108094* 0.00 0.00 108094* 0.00 0.00 104694* 0.00 0.00
m4 4 219026* 0.00 0.00 194854* 0.00 0.00 194854* 0.00 0.00
m5 4 477248* 0.00 0.00 467707* 0.00 0.00 467707* 0.00 0.00

mw1 4 2796* 0.00 0.00 2582* 0.00 0.00 2582* 0.00 0.00
mw2 4 15010* 0.00 0.00 15010* 0.00 0.00 15010* 0.00 0.00
mw3 4 22559* 0.00 0.00 24569* 0.00 0.00 22559* 0.00 0.00
mw4 4 42117* 0.00 0.00 41602* 0.00 0.00 41602* 0.00 0.00
mw5 4 116447* 0.00 0.00 116447* 0.00 0.00 116447* 0.00 0.00
okp1 6 20611* 0.00 0.00 15578* 0.00 0.00 16289* 0.00 0.00
okp2 11 18947* 0.01 0.04 18947* 0.00 0.02 18083* 0.01 0.04
okp3 11 18989* 0.00 0.03 22017* 0.00 0.02 18989* 0.00 0.02
okp4 12 19622* 0.02 0.06 19051* 0.01 0.03 18029* 0.01 0.03
okp5 10 17083* 0.01 0.05 17027* 0.06 0.38 17083* 0.00 0.03
uw1 9 2847* 0.00 0.01 2847* 0.00 0.00 2847* 0.00 0.00
uw2 11 3612* 0.34 0.98 3612* 0.04 0.15 3612* 0.01 0.04
uw3 9 2399* 0.00 0.02 2399* 0.00 0.02 2399* 0.00 0.00
uw4 13 3879* 0.01 0.13 3879* 0.02 0.12 3879* 0.00 0.02
uw5 17 2433* 0.00 0.03 2433* 0.00 0.02 2433* 0.00 0.01
uw6 13 3373* 0.03 0.22 3373* 0.00 0.04 2956* 0.00 0.03
uw7 17 3768* 0.11 0.33 3768* 0.01 0.19 3768* 0.00 0.03
uw8 19 3016* 1.77 6.15 3016* 0.04 0.25 3016* 0.01 0.09
uw9 21 3147* 0.02 0.18 3147* 0.01 0.07 3053* 0.00 0.05
uw10 19 3665* 0.31 1.48 3277* 0.11 0.39 3277* 0.01 0.10
uw11 9 5859* 771.26 1011.26 5119 3600.00 3600.00 4424* 0.12 0.60

CAPÍTULO 4. 2D DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM 87

4.7 Conclusions

This paper investigates the 0-1 knapsack problem in its two-dimensional version and conside-
ring a conflict graph that is associated to pairs of conflicting items. A heuristic, with a greedy
randomized routine, a memory list and a diversification strategy to escape from local optima,
was proposed. It allows the heuristic reaches optimal solutions for 79.39% of the instances,
despite of its considerable CPU time that was of 1774.85 seconds on average. Naturally, this
time can be reduced by a factor of ten, since for 95.67% of all instances the best solution was
reached before the 100th iteration.

Among the approaches that consider integer formulations, those based on the location-
allocation model are also decisive, namely F2, F3 and F4. They allow the difficulty of the
problem be scaled by solving a feasibility problem, on contrary of the first model that seems to
have considerable variables with fractional values in its linear relaxation, so it (F1) could not
prove optimality of 35.18% of the instances due to the limit imposed.

The usage of valid cuts over cliques in the compatibility graph allows to prune nodes in
which solutions never reached the lower bound. The combination of these procedures during
the resolution of the integer formulations allowed to solve 98.76%, 98.76%, and 98.14% of the
instances to optimality requiring low CPU time with F2, F3, and F4, respectively. Special atten-
tion has to be given to CBP, since it helped to decrease the number of calls to CP2, consequently
decreasing the time spent with CP2 during the feasibility tests.

Future work will consider the development of accurate upper bounds and other valid ine-
qualities observing the structure of the conflict graph. Also, we expect to design a local search
routine for the heuristic and new diversification strategies to escape of local optima solutions.

Capítulo 5

Conclusões e Propostas Futuras

Nesta tese apresentamos um novo algoritmo branch-and-cut para o problema do roteamento de
veículos capacitados com restrições de descarregamento, o algoritmo usa conhecidas e novas
rotinas de separação. Formulações em programação por restrições para o problema de empaco-
tamento foram melhoradas e adaptadas para considerar as restrições de descarregamento. Além
disso algumas novas heurísticas para o problema de empacotamento foram apresentadas. O
algoritmo se mostrou competitivo, obtendo resultados melhores que a literatura na maioria dos
casos.

Também apresentamos um novo algoritmo de espaço limitado para o problema online de
empacotamento de círculos, com uma razão de competitividade de 2.4394. Também apre-
sentamos um limitante inferior para qualquer algoritmo de 2.2920. Uma nova modelagem e
discretização foram propostas para o problema de decisão de um único contêiner.

Por fim apresentamos um novo algoritmo branch-and-cut exato e uma nova heurística para o
problema da mochila bidimensional com conflitos, e com carregamento completo. O algoritmo
se mostrou muito mais eficiente que antigas formulações em instâncias adaptadas da literatura.

Muitos problemas práticos são de fato combinações de vários problemas, sendo cada um
melhor resolvido com diferentes técnicas. Isso sugere que o desenvolvimento de algoritmos
híbridos que fazem uso delas pode ser bastante promissor.

Não parece simples dividir qualquer problema complexo em subproblemas com diferentes
características e aplicar técnicas específicas em cada parte para obter um bom resultado global.
A dificuldade se dá justamente em como dividir o problema de forma a guiar cada parte em
direção de boas soluções para o problema principal.

Os algoritmos propostos nesta tese podem ainda ser testados em diferentes instâncias reais
ou da literatura, que evidenciem com maior precisão as vantagens e as limitações dos mesmos.
Ainda é possível usar estratégias e formulações parecidas nos problemas considerados e em
variantes, em particular, pode ser interessante combinar a formulação (4.5) com a (4.6) em
um único modelo. Também é possível que o algoritmo apresentado no Capítulo 3 possa ser
generalizado para outros problemas e formas.

88

Referências Bibliográficas

[1] H. Akeb, M. Hifi, and M. E. O. A. Mounir. Local branching-based algorithms for the
disjunctively constrained knapsack problem. Computers & Industrial Engineering, 60:
811–820, 2011.

[2] B. L. P. Azevedo, P. Hokama, F. K. Miyazawa, and E. C. Xavier. A branch-and-cut appro-
ach for the vehicle routing problem with two-dimensional loading constraints. In Proc.

of the XLI Simpósio Brasileiro de Pesquisa Operacional, page 12 pgs, Porto Seguro, BA,
Brazil, September 1-4 2009.

[3] B. Baker, E. Coffman, and R. Rivest. Orthogonal packings in two dimensions. SIAM

Journal on Computing, 9(4):846–855, 1980.

[4] R. Baldacci and M. A. Boschetti. A cutting-plane approach for the two-dimensional
orthogonal non-guillotine cutting problem. European Journal of Operational Research,
183:1136–1149, 2007.

[5] J. E. Beasley. Bounds for two-dimensional cutting. Journal of the Operationsl Research

Society, 36(1):71–74, 1985.

[6] J. E. Beasley. Algorithms for unconstrained two-dimensional guillotine cutting. Journal

of the Operational Research Society, 36(4):297–306, 1985.

[7] G. Belov, V. M. Kartak, H. Rohling, and G. Scheithauer. One-dimensional relaxations
and lp bounds for orthogonal packing. International Transactions in Operational Rese-

arch, 16(6):745–766, 2009.

[8] G. Belov, V. M. Kartak, H. Rohling, and G. Scheithauer. Conservative scales in packing
problems. OR Spectrum, 35(2):505–542, 2013.

[9] C. Bentz, D. Cornaz, and B. Ries. Packing and covering with linear programming: A
survey. European Journal of Operational Research, 227(3):409–422, 2013.

[10] E. G. Birgin, R. D. Lobato, and R. Morabito. An effective recursive partitioning approach
for the packing of identical rectangles in a rectangle. Journal of the Operational Research

Society, 61(2):306–320, 2010.

89

REFERÊNCIAS BIBLIOGRÁFICAS 90

[11] E. Bischoff and M. Ratcliff. Issues in the development of approaches to container loa-
ding. Omega, 23(4):377 – 390, 1995. ISSN 0305-0483.

[12] A. Bortfeldt and G. Wäscher. Constraints in container loading - a state-of-the-art review.
European Journal of Operational Research, 229(1):1–20, 2013.

[13] M. Boschetti and A. Mingozzi. A heuristic algorithm for orthogonal packing problem.
part i: New lower bounds for the oriented case. 4OR, 1(1):27–42, 2003.

[14] N. Christofides and C. Whitlock. An algorithm for two dimensional cutting problems.
Ops. Res., 25:30–44, 1977.

[15] F. Clautiaux, J. Carlier, and A. Moukrim. A new exact method for the two-dimensional
orthogonal packing problem. European Journal of Operational Research, 183:1196–
1211, 2007.

[16] F. Clautiaux, A. Jouglet, J. Carlier, and A. Moukrim. A new constraint programming
approach for the orthogonal packing problem. Computers & Operations Research, 35:
944–959, 2008.

[17] F. Clautiaux, A. Jouglet, J. Carlier, and A. Moukrim. A new constraint programming
approach for the orthogonal packing problem. Computers and Operations Research, 35
(3):944 – 959, 2008.

[18] F. Clautiaux, C. Alves, and J. V. de Carvalho. A survey of dual-feasible and superadditive
functions. Annals of Operations Research, 179:317–342, 2010.

[19] J.-F. Côté, M. Gendrau, and . J.-Y. Potvin. An exact algorithm for the two-dimensional
orthogonal packing problem with unloading constraints. Operations Research, 62(5):
1126–1141, 2014.

[20] J.-F. Côté, M. Gendreau, and J.-Y. Potvin. An exact algorithm for the two-dimensional
orthogonal packing problem with unloading constraints. Operations Research, 62(5):
1126–1141, 2014.

[21] J. L. M. da Silveira and E. C. Xavier. Pickup and delivery problem with two dimensi-
onal loading/unloading constraints. In 5th International Conference in Computational

Logistics, ICCL 2014, volume 8760 of Lecture Notes in Computer Science, pages 31–46,
2014.

[22] J. L. M. da Silveira, F. K. Miyazawa, and E. C. Xavier. Heuristics for the strip packing
problem with unloading constraints. Computers & OR, 40(4):991–1003, 2013.

[23] J. L. M. da Silveira, E. C. Xavier, and F. K. Miyazawa. A note on a two dimensional
knapsack problem with unloading constraints. RAIRO - Theor. Inf. and Applic., 47(4):
315–324, 2013.

REFERÊNCIAS BIBLIOGRÁFICAS 91

[24] J. L. M. da Silveira, F. K. Miyazawa, and E. C. Xavier. Two-dimensional strip packing
with unloading constraints. Discrete Applied Mathematics, 164, Part 2(0):512 – 521,
2014.

[25] E. D. Demaine, S. P. Fekete, and R. J. Lang. Circle packing for origami design is hard.
In Fifth International Meeting of Origami Science, Mathematics, and Education, pages
609–626, 2010.

[26] U. di Bologna. Operations research group. http://www.or.deis.unibo.it/.
Accessed: 2014-07-11.

[27] O. Dominguez, A. A. Juan, B. Barrios, J. Faulin, and A. Agustin. Using biased rando-
mization for solving the two-dimensional loading vehicle routing problem with hetero-
geneous fleet. Annals of Operations Research, 236(2):383–404, 2016.

[28] C. Duhamel, P. Lacomme, A. Quilliot, and H. Toussaint. A multi-start evolutionary local
search for the two-dimensional loading capacitated vehicle routing problem. Computers

& Operations Research, 38(3):617–640, 2011.

[29] M. Eley. A bottleneck assignment approach to the multiple container loading problem.
OR Spectrum, 25(1):45–60, 2003.

[30] L. Epstein. Two-dimensional online bin packing with rotation. Theoretical Computer

Science, 411(31-33):2899–2911, June 2010.

[31] L. Epstein and R. Van Stee. Optimal online algorithms for multidimensional packing
problems. SIAM Journal on Computing, 35(2):431–448, 2005.

[32] L. Epstein and R. van Stee. Bounds for online bounded space hypercube packing. Dis-

crete Optimization, 4(2):185–197, June 2007.

[33] L. Epstein, A. Levin, and R. V. Stee. Two-dimensional packing with conflicts. Acta

Informatica, 45(3):155–75, 2008.

[34] R. Z. Farahani, N. Asgari, N. Heidari, M. Hosseininia, and M. Goh. Covering problems
in facility location: A review. Computers & Industrial Engineering, 62:368–407, 2012.

[35] D. Fayard, M. Hifi, and V. Zissimopoulos. An efficient approach for large-scale two-
dimensional guillotine cutting stock problems. Journal of the Operational Research So-

ciety, 49(12):1270–1277, 1998.

[36] S. P. Fekete, J. Schepers, and J. C. van der Veen. An exact algorithm for higher-
dimensional orthogonal packing. Operations Research, 55(3):569–587, 2007.

[37] G. Fuellerer, K. Doernera, R. Hartla, and M. Iori. Ant colony optimization for the two-
dimensional loading vehicle routing problem. Computers and Operations Research, 36
(3):655–673, 2009.

REFERÊNCIAS BIBLIOGRÁFICAS 92

[38] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. Freeman, San Francisco, 1979.

[39] J. Gaschnig. Performance measurement and analysis of certain search algorithms. Tech-
nical Report, Carnegie-Mellon University, Pittsburgh, PA, 1979.

[40] M. Gendreau, M. Iori, G. Laporte, and S. Martello. A tabu search algorithm for a routing
and container loading problem. Transportation Science, 40:342–350, 2006.

[41] M. Gendreau, M. Iori, G. Laporte, and S. Martello. A tabu search heuristic for the vehicle
routing problem with two-dimensional loading constraints. Networks, 51(1):4–18, 2008.

[42] J. F. Gonçalves and M. G. Resende. Biased random-key genetic algorithms for combina-
torial optimization. Journal of Heuristics, 17(5):487–525, 2011.

[43] J. F. Gonçalves and M. G. Resende. A biased random key genetic algorithm for 2d and 3d
bin packing problems. International Journal of Production Economics, 145(2):500–510,
2013.

[44] R. M. Haralick and G. L. Elliott. Increasing tree search efficiency for constraint satisfac-
tion problems. Artificial intelligence, 14(3):263–313, 1980.

[45] J. C. Herz. A recursive computational procedure for two-dimensional stock-cutting. IBM

J. Res. Dev., pages 462–469, 1972.

[46] M. Hifi. Exact algorithms for large-scale unconstrained two and three staged cutting
problems. Computational Optimization and Applications, 18:63–88, 2001.

[47] M. Hifi. An iterative rounding search-based algorithm for the disjunctively constrained
knapsack problem. Engineering Optimization, 46:1109–1122, 2014.

[48] M. Hifi and R. Hallah. A Literature Review on Circle and Sphere Packing Problems:
Models and Methodologies. Advances in Operations Research, 2009(4):1–22, July 2009.

[49] M. Hifi and M. Michrafy. A reactive local search-based algorithm for the disjunctively
constrained knapsack problem. Journal of the Operational Research Society, 57:718–
726, 2006.

[50] M. Hifi and M. Michrafy. Reduction strategies and exact algorithms for the disjuncti-
vely constrained knapsack problem. Computers & Operations Research, 34:2657–2673,
2007.

[51] M. Hifi and N. Otmani. An algorithm for the disjunctively constrained knapsack problem.
International Journal of Operational Research, 13:22–43, 2012.

[52] M. Hifi, S. Saleh, and L. Wu. A hybrid guided neighborhood search for the disjunctively
constrained knapsack problem. Cogent Engineering, 2(1):1068969, 2015.

REFERÊNCIAS BIBLIOGRÁFICAS 93

[53] P. Hokama, F. K. Miyazawa, and R. C. Schouery. A bounded space algorithm for online
circle packing. Information Processing Letters, 116(5):337–342, 2016.

[54] P. Hokama, F. K. Miyazawa, and E. C. Xavier. A branch-and-cut approach for the vehicle
routing problem with loading constraints. Expert Systems with Applications, 47:1–13,
2016.

[55] P. Hokama, F. K. Miyazawa, and E. C. Xavier. A branch-and-cut approach for the vehicle
routing problem with loading constraints. Expert Systems with Applications, 47:1–13,
2016.

[56] J. N. Hooker. Integrated Methods for Optimization (International Series in Operations

Research & Management Science, Vol. 170). Springer, 2011. ISBN 1461418992.

[57] M. Iori and S. Martello. An annotated bibliography of combined routing and loading
problems. Yugoslav Journal of Operations Research, 23(3), 2013.

[58] M. Iori, J. Salazar-González, and D. Vigo. An exact approach for the vehicle routing
problem with two-dimensional loading constrains. Transportation Science, 41(2):253–
264, 2007.

[59] K. Jansen and S. Ohring. Approximation algorithms for time constrained scheduling.
Information and Computation, 132:85–108, 1997.

[60] D. S. Johnson. Near-optimal Bin Packing Algorithms. PhD thesis, Massachusetts Insti-
tute of Technology, 1973.

[61] L. Junqueira, J. F. Oliveira, M. A. Carravilla, and R. Morabito. An optimization mo-
del for the vehicle routing problem with practical three-dimensional loading constraints.
International Transactions in Operational Research, 20(5). ISSN 1475-3995.

[62] A. Khanafer, F. Clautiaux, and E.-G. Talbi. Tree-decomposition based heuristics for the
two-dimensional bin packing problem with conflicts. Computers & Operations Research,
39:54–63, 2012.

[63] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

[64] J. Li, P. M. Pardalos, H. Sun, J. Pei, and Y. Zhang. Iterated local search embedded
adaptive neighborhood selection approach for the multi-depot vehicle routing problem
with simultaneous deliveries and pickups. Expert Systems with Applications, 42(7):3551
– 3561, 2015. ISSN 0957-4174.

[65] A. Lodi, S. Martello, and M. Monaci. Two-dimensional packing problems: a survey.
European Journal of Operational Research, 141(2):241–252, 2002.

REFERÊNCIAS BIBLIOGRÁFICAS 94

[66] L. A. Lysgaard J. and E. R. A new branch-and-cut algorithm for the capacitated vehicle
routing problem. Mathematical Programming, 100(2):423–445, 2003.

[67] S. Martello and D. Vigo. Exact solution of the two-dimensional finite bin packing pro-
blem. Management Science, 44(3):388–399, 1998.

[68] S. Martello, D. Pisinger, and D. Vigo. The three-dimensional bin packing problem.
Operations Research, 48(2):256–267, 2000.

[69] S. Martello, D. Pisinger, D. Vigo, E. D. Boef, and J. Korst. Algorithm 864: General
and robot-packable variants of the three-dimensional bin packing problem. ACM Trans.

Math. Softw., 33, March 2007. ISSN 0098-3500.

[70] M. Mesyagutov, G. Scheithauer, and G. Belov. {LP} bounds in various constraint pro-
gramming approaches for orthogonal packing. Computers and Operations Research, 39
(10):2425 – 2438, 2012. ISSN 0305-0548.

[71] M. Mesyagutov, G. Scheithauer, and G. Belov. New constraint programming approaches
for 3d orthogonal packing. Technical Report MATH-NM-01-2012, Technische Univer-
sität Dresden, Dresden, Germany, January 2012.

[72] M. Mesyagutov, G. Scheithauer, and G. Belov. Lp bounds in various constraint program-
ming approaches for orthogonal packing. Computers & Operations Research, 39(10):
2425–2438, 2012.

[73] F. K. Miyazawa, L. L. C. Pedrosa, R. C. S. Schouery, M. Sviridenko, and Y. Wakabayashi.
Polynomial-time approximation schemes for circle packing problems. In Proceedings of

the 22th Annual European Symposium on Algorithms, pages 713–724, 2014.

[74] R. Morábito, M. Arenales, and V. F. Arcaro. An and-or-graph approach for two-
dimensional cutting problems. European J. Operational Research, 58:263–271, 1992.

[75] V. W. Morais, G. R. Mateus, and T. F. Noronha. Iterated local search heuristics for the
vehicle routing problem with cross-docking. Expert Systems with Applications, 41(16):
7495 – 7506, 2014. ISSN 0957-4174.

[76] D. Naddef and G. Rinaldi. Branch-and-cut algorithms for the capacitated vrp. toth p.
vigo d., eds. the vehicle routing problem. SIAM Monographs on Discrete Mathematics

and Applications, 9:53–84, 2002.

[77] S. Niskanen and P. R. J. Ostergard. Cliquer user’s guide, version 1.0. Technical Report
T48, Communications Laboratory, Helsinki University of Technology, Espoo, Finland,
2003.

[78] U. Pferschy and J. Schauer. The knapsack problem with conflict graphs. Journal of

Graph Algorithms and Applications, 13(2):233–249, 2009.

REFERÊNCIAS BIBLIOGRÁFICAS 95

[79] T. A. Queiroz, F. Miyazawa, Y. Wakabayashi, and E. Xavier. Algorithms for 3D guillotine
cutting problems: unbounded knapsack, cutting stock and strip packing. Computers &

Operations Research, 39:200–212, 2012.

[80] T. A. Queiroz, F. K. Miyazawa, and Y. Wakabayashi. On the l-approach for generating
unconstrained two-dimensional non-guillotine cutting patterns. 4OR, 13:199–219, 2015.

[81] G. Reinelt. TSPLIB - a traveling salesman problem library. Report. Inst. für Mathematik,
1990. URL http://books.google.com.br/books?id=4ZgLHAAACAAJ.

[82] F. Rossi, P. v. Beek, and T. Walsh. Handbook of Constraint Programming (Foundations

of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA, 2006. ISBN
0444527265.

[83] D. Sabin and E. Freuder. Contradicting conventional wisdom in constraint satisfaction.
In A. Borning, editor, Principles and Practice of Constraint Programming, volume 874
of Lecture Notes in Computer Science, pages 10–20. Springer Berlin / Heidelberg.

[84] G. Scheithauer. Equivalence and dominance for problems of optimal packing of rectan-
gles. Ricerca Operativa, 27:3–34, 1997.

[85] G. Scheithauer and J. Terno. The G4-heuristic for the pallet loading problem. Journal of

the Operational Research Society, 47:511–522, 1996.

[86] E. Specht. Packomania, Mar. 2015. URL http://www.packomania.com.

[87] P. E. Sweeney and E. R. Paternoster. Cutting and packing problems: a categorized,
application-oriented research bibliography. J. Operational Research Society, 43(7):691
– 706, 1992.

[88] P. G. Szabó, M. C. Markót, T. Csendes, E. Specht, L. G. Casado, and I. García. New

Approaches to Circle Packing in a Square. With Program Codes, volume 6 of Springer

Optimization and Its Applications. Springer Science & Business Media, 2007.

[89] R. F. Toso and M. G. C. Resende. brkgaAPI: A c++ application programming interface
for biased random-key genetic algorithms. http://www2.research.att.com/

~mgcr/src/brkgaAPI/. Accessed: 2014-07-11.

[90] P. Toth and D. Vigo, editors. The Vehicle Routing Problem. SIAM Monographs on
Discrete Mathematics and Applications. SIAM, 2002.

[91] J. D. Ullman. The Performance of a Memory Allocation Algorithm. Technical Report
100, Princeton University, Dept. of Electrical Engineering, Computer Sciences Labora-
tory, 1971.

REFERÊNCIAS BIBLIOGRÁFICAS 96

[92] P. H. Vance, C. Barnhart, E. L. Johnson, and G. L. Nemhauser. Solving binary cutting
stock problems by column generation and branch-and-bound. Computational Optimiza-

tion and Applications, 3(2):111–130, 1994.

[93] G. Wäscher, H. Haussner, and H. Schumann. An improved typology of cutting and
packing problems. European Journal of Operational Research, 183(3):1109–1130, 2007.

[94] L. Wei, Z. Zhang, and A. Lim. An adaptive variable neighborhood search for a he-
terogeneous fleet vehicle routing problem with three-dimensional loading constraints.
Computational Intelligence Magazine, IEEE, 9(4):18–30, 2014.

[95] L. A. Wolsey. Integer programming. Wiley-Interscience, New York, NY, USA, 1998.
ISBN 0-471-28366-5.

[96] L. A. Wolsey. Integer Programming. Wiley-Interscience publication, 1998.

[97] L. A. Wolsey and G. L. Nemhauser. Integer and Combinatorial Optimization. Wiley-
Interscience. ISBN 0471359432.

[98] T. Yamada and S. Kataoka. Heuristic and exact algorithms for the disjunctively cons-
trained knapsack problem. In Presented at EURO 2001: Rotterdam, The Netherlands,
2001.

[99] T. Yamada, S. Kataoka, and K. Watanabe. Heuristic and exact algorithms for the disjunc-
tively constrained knapsack problem. Information Processing Society of Japan Journal,
43:2864–2870, 2002.

[100] Z. Yu, L. Lu, Y. Guo, R. Fan, M. Liu, and W. Wang. Content-Aware Photo Collage
Using Circle Packing. IEEE Transactions on Visualization and Computer Graphics, 20
(2):182–195, 2014.

[101] T. C. Zachariadis E. and K. C. A guided tabu search for the vehicle routing problem with
two-dimensional loading constraints. European Journal of Operational Research, 195
(3):729–743, 2009.

	Introdução
	Descrição dos Problemas
	Problema de Roteamento de Veículos com Restrições de Empacotamento
	Problema de empacotamento de círculos
	Problema da Mochila Bidimensional com Conflitos

	Técnicas
	Programação por Restrições
	Branch-and-bound

	Resultados e Organização da Tese

	A Branch-and-Cut Approach for the Vehicle Routing Problem with Loading Constraints
	Introduction
	Orthogonal Packing Problem With Unloading Constraints
	Problem Description
	Two-dimensional Orthogonal Packing Problem with Unloading Constraints
	Heuristic and Hash
	Metaheuristic for the Two-Dimensional Orthogonal Packing Problem With Unloading Constraints
	Lower Bounds for the Orthogonal Packing Problem
	Three-dimensional Orthogonal Packing Problem With Unloading Constraints

	Capacitated Vehicle Routing Problem with Unloading Constraints
	Problem Description
	Formulation

	Branch-and-Cut Algorithm for the DL-CVRP
	Routing Separation Routine
	Packing Separation Routine

	Computational Results
	Instances
	Efficiency of CP and Discretization Points
	Efficiency of metaheuristics
	Comparison of the 2L-CVRP algorithms
	Comparison of the 3L-CVRP algorithms

	Conclusions and Future work

	A Bounded Space Algorithm for Online Circle Packings
	Introduction
	An Algorithm for Online Circle Packing
	Competitive Ratio Analysis
	Numerical Results
	Final Remarks

	Two-dimensional Disjunctively Constrained Knapsack Problem: Heuristic and Exact approaches
	Introduction
	Literature review

	Preliminary Discussion
	Problem description
	Lifting item sizes
	Finding Independent Sets
	Packing items

	A Greedy Randomized Heuristic
	Heuristic Overview
	Heuristic GR
	Constructing a solution in two phases
	Repacking items

	Integer Formulations for the 2D-DCKP
	First model
	Location-allocation based model
	Bounds and valid cuts

	Complete Shipment of Items
	Computational Experiments
	Results
	Results for Complete Shipment

	Conclusions

	Conclusões e Propostas Futuras

