
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Letícia Mara Berto

Exploring Cognitive Functions in Robotics

Explorando Funções Cognitivas em Robótica

CAMPINAS

2020



Letícia Mara Berto

Exploring Cognitive Functions in Robotics

Explorando Funções Cognitivas em Robótica

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestra em Ciência da
Computação.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Master in Computer Science.

Supervisor/Orientadora: Profa. Dra. Esther Luna Colombini

Este exemplar corresponde à versão final da
Dissertação defendida por Letícia Mara
Berto e orientada pela Profa. Dra. Esther
Luna Colombini.

CAMPINAS

2020





Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Letícia Mara Berto

Exploring Cognitive Functions in Robotics

Explorando Funções Cognitivas em Robótica

Banca Examinadora:

• Profa. Dra. Esther Luna Colombini
Instituto de Computação - Universidade Estadual de Campinas

• Prof. Dr. Ricardo Ribeiro Gudwin
Faculdade de Engenharia Elétrica e de Computação - Universidade Estadual de
Campinas

• Profa. Dra. Roseli Aparecida Francelin Romero
Instituto De Ciências Matemáticas e de Computação - Universidade de São Paulo

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 27 de abril de 2020



Acknowledgements

I thank God for the opportunity of completing this Master’s degree program.
I am very grateful to my family for always supporting me and for encouraging me to

follow my dreams. I thank you for always being there, showing me that I was capable
and giving me strength in the most challenging moments, for trusting me when I didn’t
trust myself, for supporting my every decision, and for never letting me give up. I love
them, and I am grateful for the life they have given me.

I thank my fiance, André, for being beside me daily, for comforting me during my
moments of frustration, but also for sharing my happiness. Thank you so much for your
companionship, love, and understanding throughout this period. I also thank your family
for always motivating me.

I am extremely grateful to my advisor, Esther. She has always shown her passion for
what she does and has become a great example. Esther has always been very patient,
motivating, and spared no effort to help me when I was having difficulties. Thank you
so much, Esther, for all the knowledge, for the conversations, for believing in me and
encouraging me to always look for more.

I would also like to thank my roommates, Carol and Dani. Girls, thank you so much
for everything, for the dance and pizza nights, for all the jokes and stories. Thank you so
much for all the time we spent together over these years. You made my days lighter.

I would also like to thank my friends, Caroline Nogueira and Amanda Guigen, for all
the help they gave me in the area of psychology, child development, and all the theoretical
human background necessary for this research.

I am also grateful for my professors at UFSCar, who introduced me to research and
academic life, especially to Tiemi, Luciana, Cândida, and Gustavo. You have always
shown me how beautiful knowledge is and how important science is.

I would like to thank my friends at UNICAMP. My laboratory team, LaRoCs, for all
the exchange of knowledge. Special thanks to my friends Carol, Sara, Andressa, Renan,
Luã, and Fabricio for being with me daily, for each coffee we had, each lunch, the advice.
Thank you for the fellowship and for making my days happier.

I also want to thank my friends outside UNICAMP. Special thanks go to Elisa, Is-
abela, Ana Paula, Bruno, Joao, Elaine, Davilla, Lucas, Maiara, Matheus, Pedro, Luciano,
Mariana, and Camila. They always cared for our friendship with love and attention. They
were always by my side.

I would also like to thank professors Alexandre, Eric, Ricardo, and Paula for their
contributions to my research and all the knowledge transmitted by you during these
years.

I also thank UNICAMP and all Institute of Computing (IC) staff who gave me all the
necessary support during these two years.

This study was financed in part by the Coordination for the Improvement of Higher
Education Personnel - Brazil (CAPES) - Finance Code 001.



Resumo

O avanço da inteligência artificial trouxe muitos benefícios à robótica. Hoje, é possível
desenvolver robôs que não apenas executam o que foram pré-programados para fazer, mas
que aprendem de acordo com a interação com o ambiente e outros agentes. Para isso,
os robôs devem ter funções cognitivas, como memória, tomada de decisão, aprendizado,
atenção, planejamento e outras suportadas em sua estrutura. Até o momento, não existem
maneiras padrões na literatura de avaliar arquiteturas cognitivas. Nesse contexto, neste
trabalho, estudamos funções cognitivas com o objetivo de identificar quais componentes
são necessários para validar um projeto que implementa uma arquitetura cognitiva. Es-
tudamos o desenvolvimento de crianças de 0 a 2 anos e a teoria construtivista de Piaget
acerca da construção do conhecimento e desenvolvimento da inteligência. A partir dos
estudos realizados, conseguimos classificar os estudos da area de Developmental Robotics
nos estágios definidos por Piaget. Com isso, construimos um conjunto de experimentos
incrementais levando em consideração o desenvolvimento motor e intelectual das crianças
no período de 0 a 2 anos, bem como uma metodologia para o design desses experimentos.
Para o desenvolvimento desta pesquisa, o CONAIM (Conscious Attention-based Integra-
ted Model), um modelo formal para consciência de máquina com base em um esquema
atencional para a cognição de agentes semelhantes aos humanos e o CST (Cognitive Sys-
tems Toolkit), um kit de ferramentas geral para a construção de arquiteturas cognitivas,
foram usados. Demos inicio a implementação dos experimentos propostos a partir da me-
lhoria do módulo atencional bottom-up baseado em saliencia (fator que guia o aprendizado
da criança em suas fases iniciais) do CONAIM modelado no CST, e utilizando a metodo-
logia proposta fizemos a implementação de um agente atencional inteligente aprendendo
sob o espaço atencional usando Aprendizado por Reforço. Os testes foram realizados em
simulação e conseguimos controlar com sucesso o robô Pioneer P3-DX, aprendendo com
seu espaço atencional.



Abstract

The advancement of artificial intelligence has brought many benefits to robotics. Today,
it is possible to develop robots that not only perform what they were pre-programmed
to do but also learn according to the interaction with the environment and other agents.
For this, robots should have cognitive functions, such as memory, decision making, learn-
ing, attention, planning, and others supported in their structure. To date, there are no
standard ways in the literature to evaluate cognitive architectures. In this context, in this
work, we studied cognitive functions aiming to identify which components are necessary to
validate a project that implements a cognitive architecture. We studied the development
of children aged 0 to 2 years and Piaget’s constructivist theory about the construction
of knowledge and intelligence development. Based on the studies carried out, we were
able to classify the studies in the Developmental Robotics area in the stages defined by
Piaget. With that, we built a set of incremental experiments taking into account the
motor and intellectual development of children from 0 to 2 years. We also described a
methodology for the design of these experiments. For the development of this research,
the CONAIM (Conscious Attention-based Integrated Model), a formal model for ma-
chine consciousness based on an attentional schema for human-like agent cognition and
the CST (Cognitive Systems Toolkit), a general toolkit for the construction of cognitive
architectures were used. We started the implementation of the proposed experiments
by improving the bottom-up attentional module, an essential drive to child’s learning in
early stages, of CONAIM modeled on CST. Then, by using the proposed methodology,
we implemented an intelligent, attentive agent learning over the attentional space using
Reinforcement Learning. The tests were performed in simulation, and we were able to
successfully control the Pioneer P3-DX robot, learning from its attentional space.
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Chapter 1

Introduction

With the advancements of artificial intelligence and robotics, there is an interest in increas-
ingly introducing robots into daily activities that involve interaction with other agents
(robots or humans). This insertion is known as service robotics and, according to the
International Organization for Standardization [32], represents robots that perform useful
tasks for humans or equipment, excluding industrial automation applications. This defini-
tion implies autonomous robots operating in more complex scenarios (partially unknown,
unpredictable, and unstructured), which makes preprogramming impossible and requires
robots to have a superior capability of performing tasks.

Through this challenge, questions such as how to incorporate new knowledge and
skills through interaction with the world have emerged, resulting in the research area of
Cognitive Robotics, which is intrinsically related to other fields of science such as psy-
chology, philosophy, and neuroscience. Cognitive Robotics are intrinsically related to
Cognitive Architectures, that represent comprehensive computer models providing theo-
retical frameworks to work with cognitive processes in the search for complex behavior.

Inspired by the way humans construct knowledge through interaction with the world,
scientists seek to reproduce the same with artificial creatures. However, although there is
progress in the area, we are still far from having the same behavior as humans. Indeed,
cognitive skills development requires the coordination of a complex set of mechanisms
that depend on each other. That is, to develop more complex skills, it is necessary to
have developed some basic skills. The process of developing these skills is incremental
and evolutionary, and as presented by Piaget, a child’s way of thinking is different from
that of an adult. But then, what are the basic skills needed, how to develop them, how do
they relate, and how do they serve as a basis for boosting and developing higher cognitive
skills?

As Turing [86] once said, "Instead of trying to produce a program to simulate the
adult mind, why not rather try to produce one which simulates children? If this was then
subjected to an appropriate course of education, one would obtain the adult brain." and
to investigate what these skills are, the area of Developmental Robotics (DevRobotics)
has emerged. The goal of DevRobotics is to enable robots to develop in the same way as
humans, inspired by the cognitive development of children. For this purpose, incremen-
tal and multimodal experiments are carried out, based on child development, sometimes
based on the stages of development defined by Piaget. These experiments, usually, are
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performed over cognitive architectures. However, although a multitude of cognitive archi-
tectures exists, it lacks clear experimentation and evaluation processes to fulfill the goal
of DevRobotics.

1.1 Objective

In this work, we aimed at investigating which modules in a cognitive architecture are
necessary to control a robot that interacts with its environment while performing a set
of sensorimotor experiments. The experiments have increasing difficulty levels while the
robot learns new knowledge in procedural memory (how to behave to solve a task) over
the attentional space.

More specifically, to achieve this goal, we aimed:

• Built a corpus of experiments inspired by developmental robotics and Piaget’s equiv-
alent to the sensorimotor stage

• Defined the set of sensors and actuators required to perform such experiments in a
physical (real or simulated) robot

• Built the test scenarios to perform such experiments

• Defined the minimal body of knowledge and behaviors that can support learning
through interaction

• Specified the operating components in a cognitive architecture necessary for imple-
menting this knowledge and behavior base

• Specified the metrics that will be used to evaluate the experiments

• Implemented and tested the proposed framework in the reported scenarios

Based on these objectives, we formulated two hypotheses to confirm if we succeeded
with our objectives:

• H1: It is possible to propose equivalents to Piagetian experiments to assess the level
of development of robots in DevRobotics

• H2: A robot could learn how to make decisions from attentional maps and not
through sensory maps directly.

By the end of this work, we aim at contributing to the area by having a protocol
to investigate how learning procedures evolve in a robot that interacts with its environ-
ment through sensorimotor experiments with increasing difficulty levels. We also will
contribute with a set of cognitive modules implemented for a specific cognitive architec-
ture/framework.
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1.2 Contributions

As the main contributions of this work, we emphasize:

• The design and implementation of the bottom-up pathway of CONAIM in CST;

• The design and implementation of a learner attentional agent in CST;

• The evaluation of the possibility of learning over the attention space;

• The definition of cognitive experiments, inspired by Piaget’s theory, that could be
used to assess the agent’s learning in DevRobotics.

1.3 Text Organization

We organized the remaining of this text as follows:

• Chapter 2 introduces the area of Developmental Robotics (DevRobotics), and its
main research focuses along with Piaget’s Theory of how learning develops, that
was used as pillars of our research;

• Chapter 3 addresses cognitive functions and memories present in humans that can
be modeled in robots, defines the concept of cognitive architecture, presents the
attentional model that supports our proposal and the toolkit used as the basis for
our work;

• Chapter 4 presents the related works and a summary containing the main charac-
teristics associated with DevRobotics in each of them;

• Chapter 5 presents the sensorimotor experiments inspired by Piaget proposed in
this thesis and a methodology to design these experiments;

• Chapter 6 shows the experiments made to validate the attentional module developed
associating CONAIM + CST;

• Chapter 7 presents the extension of the architecture that allows learning over the
attentional space instead of the feature space;

• Chapter 8 assess the final considerations and presents the possibilities of extensions
in future work;

• Appendix A shows the experiments conducted to tune the parameters of the low-
level controllers used in the robots.
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Chapter 2

Developmental Robotics

Developmental robotics (also known as epigenetic robotics or DevRobotics) is an inter-
disciplinary field to robotics including psychology, neuroscience and computer science [89]
[49]. Inspired by the developmental principles and mechanisms observed in children’s de-
velopment [17], the projects in the field typically focus on having robots develop the same
skills as human infants.

Developmental robotics (DevRobotics) is interested in the development of an individ-
ual machine’s capabilities (single robot) through experience over time. The most notable
characteristics researched are:

• The robot deals with signals that come directly from its sensors

• The robot learns what to do in new situations by trial-and-error

• The robot learns from its own mistakes

• There is an interaction between robots and other agents (other robots or humans)

• The robot acquires new skills based on the skills it already has

In DevRobotics, the human engineer creates a developmental architecture that can
autonomously learn [11], not merely solving a specific task, which allows the robot to
construct its representation of its body and environment [55]. According to [55], the
absence of pre-defined tasks, and no external goals makes the developmental approach
differ from previous AI approaches. They further claim that the robot is self-motivated
to choose its actions.

According to [3], the developmental process consists of two phases: the individual
development at an early stage and the social development through interaction between
individuals later on. Whereas the former relates mainly to internal mechanisms, the latter
refers to behavior observation.

As in humans, learning is expected to be cumulative [12] and of progressively increasing
complexity [17]. It is also the result of self-exploration of the world in combination with
social interaction [49].

Non-social interaction is characterized by a strong coupling between sensory and motor
processes over the surrounding environment. It does not involve interaction with other
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agents [50]. Learning to grasp [42], perceptual categorization [10] and visually-guided
manipulation [44] are some examples. On the other hand, socially oriented interactions
relate to robots that learn skills via interaction with other robots or humans [50]. Imitation
[74][73] [39] [6] and attention sharing [63] [35] are examples of the later.

Typical tasks of DevRobotics usually involve challenges related to:

• Reinforcement Learning: It is inspired by Skinner [78], who proposed the oper-
ant conditioning, in which the behavior is followed by a consequence and the nature
of the consequence changes the organism’s tendency to repeat the behavior in the
future. So, Reinforcement Learning is learning through trial and error by inter-
acting with a dynamic environment that provides rewards or punishment to each
interaction. The tasks to be achieved are not specified, and the agent’s job is to find
a policy that maps states to actions to maximize some measure of reinforcement
[46]. Usually, the environment is non-deterministic.

• Imitation: Learning by observing the behavior of other agents acting in the envi-
ronment. This approach needs a teacher to demonstrate the actions, which allows
teaching the new behaviors to the robot by showing instead of telling. According
to [74], true imitation is present only if (1) the imitated behavior is new for the im-
itator, (2) the same task strategy as that of the demonstrator is employed, and (3)
the same task goal is accomplished. A prerequisite for imitation is the connection
between the sensory and motor systems [74]. Finally, imitation requires perceptual
and cognitive abilities, but understanding many of these abilities is still an open
problem in psychology, robotics, and artificial intelligence [6].

• Affordance: The term was introduced by the American psychologist Gibson [33],
who defined the affordances of the environment as what it offers the animal, what
it provides or furnishes, either for good or ill. It refers to all action possibilities on a
certain object, concerning the actor’s capabilities, which promotes learning through
interaction with the world. Therefore, the affordance concept is a kind of perception
based on actions [58].

2.1 Piaget’s Theory

For Piaget [67], knowledge does not depend solely on social relations or hereditary genetic
baggage. It also results from interactions of the subject with objects that will enable
the construction of knowledge and development of intelligence structures. In his view,
children are the active builders of knowledge themselves, continually creating and testing
their theories about the world.

The Piagetian theory has two main concepts:

• Assimilation: Attempt of the subject to solve a given situation, using an already
formed mental structure, that is, by assimilating the new situation into an already-
ready system. It refers to the process of using schemes to understand experiences.
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• The circular reaction implies the discovery and conservation of novelty, and in this,
it differs from pure reflection.

• The only difference between secondary and primary reactions is that in the sec-
ondary, the interest is centered on the external result and no longer on the activity.

• The difference between tertiary and secondary reactions is that in the secondary, the
child repeats the movements that led to an interesting result, while in the tertiary,
the child repeats these movements, not literally, but grading them and varying them
from to discover the fluctuations of the result itself.

To examine the process of thought development, Piaget observed his children and
other children, concluding that the child’s way of thinking is qualitatively different from
the idea of adults. Thus, to understand the logic of the adult, Piaget studied infantile
thought development and reached periods that he called stages of cognitive development.
These stages are described below and briefly illustrated in Figure 2.2.

0 - 2
years

Senses and motor
skills
Object permanence

Symbolic thought
Strong imagination
and intuition

Concrete situation
Operational thought
Space, quantity are
understood

Abstract logic and
reasoning
Social and moral
issues

2 - 6
years

7 - 11
years

12+
years

SENSORIMOTOR PREOPERATIONAL CONCRETE
OPERATIONAL

FORMAL
OPERATIONAL

Figure 2.2: Piaget’s four stages.

2.1.1 Sensorimotor Stage (0 - 2 years)

Babies are born with reflexive, innate, and automatic actions and are, at first, passive
subjects who construct simple schemes that work in isolation circularly and repetitively
(catch, look, beat, suck). During this period, one develops voluntary and conscious be-
haviors, and chain actions towards an inevitable end become an active subject (domain
and variation of operations). Schemes become complicated with invention and creation
of actions (pick up, listen, look/listen, pick up, look/lift, walk, pick up, suck).

Piaget affirms that these behaviors are intelligent acts and that it is in the sensorimotor
period that the birth of the child’s intelligence occurs. Thus, the process of a child’s
adaptation at the sensorimotor stage is marked by assimilation, which occurs in three
ways:

• Functional assimilation: Repetition of the scheme. Example: If children see an
object falling and bouncing like a ball, they will want to repeat this entire process.
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• Generalized assimilation: Use of the scheme in different situations. Example: if we
hide an object somewhere and remove it from this place, a child will look for where
the object was placed first.

• Cognitive assimilation: Recognition of schemes. Example: a child will not look for
the object where it was first placed, but rather for the last place where it was placed.

According to Piaget, the sensorimotor stage is composed of six substrates that en-
compass how children coordinate and organize information about their environment to
progress with learning.

• 1st Substage (birth to 1 month): Formation of the first schemes through the exercise
of reflexes. By exercising their innate reflexes, the baby constructs a control over
them. Therefore, all stimuli are incorporated (assimilated) into reflex and modified
schemes (accommodation) as a result of their repetitive (circular) use and interaction
with the environment. Limited imitation, inability to integrate information from
different senses.

• 2nd Substage (1 to 4 months): At this moment, there is a change of reflexive behav-
iors in the function of the experience (circular repetition), and the genetic adaptation
happens to an acquired adaptation. Results obtained by chance are conserved by
repetition, and the first habits are formed: the child repeats an action that has
worked (primary circular reaction).

Another relevant aspect is that the movement of objects begins to be followed by
the eyes (coordination of the vision), and the head moves towards the sounds (co-
ordination of vision-hearing). Although advances have taken place, there is still no
intentionality - the act of initiating behavior towards a particular end—the begin-
ning of the coordination of schemes of the different senses.

• 3rd Substage (4 to 8 months): The infant has secondary circular reaction or re-
productive assimilation - the child repeats interesting results obtained by chance
with intention. There is coordination between vision - apprehension. Imitation can
occur, but only from schemes that already exist in the baby’s repertoire. About
the concept of an object, the child does not have the notion of a permanent object,
which depicts a phase of transition from pre-intelligent (random) acts to intelligent
acts (intention).

• 4th Substage (8 to 12 months): The formation of sensorimotor intelligence occurs.
Some behaviors constitute actual acts of intelligence, that is, the application of
means already known to solve new situations. The child is already able to vary,
coordinate, generalize different actions, or the mechanisms to reach an end. There
are intentionality and desire. However, it does not create a new means to an end.
Imitation of new behaviors occurs.

The child constructs the notion of a permanent object, seeks the object taken from
his/her visual field, and sees the moment when it is hidden. However, if hidden a
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second time in another place (under your sight), he/she will look in the first place
again, repeating what went right.

• 5th Substage (12 to 18 months): The baby presents a tertiary circular reaction, that
is, repeats an action to know and explore the properties of the object. They thus
begin to experiment with new behaviors to see what happens. Through trial and
error, they experiment with behaviors until they find the best way to achieve a goal.

Concerning the notion of object, they take into account the successive displacements
of the object, search for it at the point where it was last seen, but know of its
existence. If they do not find it, they will look for it in other places.

• 6th Substage (18 to 24 months): This is a moment of transition, marked by the
end of the sensory-motor stage and the beginning of the preoperational stage. At
this point, actions will also be represented as imaginative events. Thus, developing
the representational capacity, that is, the ability to mentally represent objects and
actions through symbols (words and images). By doing so, it leaves attempts by
trial and error to anticipate events by combining mental actions rather than physical
actions. This moment is marked by the passage from explicit action to mental
representation, with the appearance, for example, of language. Besides, deferred
imitation is made possible because it requires the ability to represent the event to
be imitated internally.

Figure 2.3 illustrates a summary of these substages.

1st 2nd 3rd 4th 5th 6th
Sensorimotor substages

Reflex Exercise
Simple schemes
Reflex activity

Primary circular
reaction
First
differentiations

Secondary
circular reaction
Reproduction of
interesting events

Permanent
object
Coordination of
schemes
Birth of
intelligence

Tertiary circular
reaction
Invention of
new means

Transition phase
Representation

Figure 2.3: Sensorimotor substages.

2.1.2 Preoperational Stage (2 - 6 years)

In the preoperational stage, children evolve from a sensory-motor functioning, expressed
through actions, into a conceptual and representational mode. Thus, this period marks
the passage of sensory-motor intelligence or practice for representative intelligence, and
the child becomes apt to represent objects and events. From the age of two, the child has
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a function of thought, a symbolic or semiotic function, which enables the representation
of an absent object, which they express in several ways.

Thus, there are several types of representation that have development relevance in this
period. In order of appearance, they are imitation, symbolic play, drawing, mental image,
language, or verbal evocation.

• Deferred imitation: the child’s ability to mentally represent (remember) a behavior
imitated in the absence of the model. Children imitate objects and events, away
from the situation or the imitation object, after their occurrence.

• Symbolic play : children construct symbols that represent anything that they desire,
meaning they can go to the real world through symbols, gestures, and simulation
games. Although it has an imitative character, it is also a form of self-expression,
since it does not address the other, only the self. Symbolic play is a make-believe
game in which the child attributes meaning to things and plays with them in a
magical and imaginary context.

• Drawing or graphic image: The first forms of the drawing are not imitative of the
real but an exercise game in which the child has fun scrawling the wall, floor, or
paper in large and repetitive movements.

Around two years old, they begin to give a meaning to scribbles, recognize shapes
in her scribbles, tries to repeat a model from memory. There is a commitment
to represent things through drawing realistically. Therefore, the intention to serve
reality through graphics, imitation, and mental image (memory) arises.

• Mental Image: These are internal representations (symbols) of preceding perceptual
objects or experiences, through mental images (interiorized imitation).

• Language spoken: Around two years, the child begins to use the words to repre-
sent objects. This form of symbolic representation allows cognitive development in
children because it will enable: exchange with people and, therefore, the socializa-
tion; internalization of the world and the appearance of thought; internalization of
actions that, from perception and motion, become representative (conceptual).

Also, in conversations between children, Piaget observed two forms of language in
the preoperational stage: egocentric speech and socialized speech.

2.1.3 Concrete operational (7 - 11 years)

The main characteristic of this stage is that the thinking stops being pre-logical and
becomes operative. That is, children have the cognitive ability to logically coordinate
different points of view, expressing more elaborate cognitive actions. However, although
they have the possibility of a higher expression of thought, to be able to use it reasonably, it
is necessary to handle and observe concrete objects. This is because dealing with purely
abstract and hypothetical ideas will acquire the next stage of formal operations. The
operative child can consider different references simultaneously, identify the reversibility
of internal/mental action, conserve quantities, classify, and sequential.
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A significant mark of this period is that the child is freed from intellectual and social
egocentrism, capable of new coordinations since the foundations of logical intelligence are
founded, that is, the coordination of points of view among themselves (from different
people as well as from one person). From the social and affective point of view, this will
imply the beginning of the morality of cooperation and autonomy. Morality moves toward
autonomy.

2.1.4 Formal operational (12+ years)

At this stage, the subject can form abstract conceptual schemes (love, justice) and perform
mental operations according to a more sophisticated formal logic in terms of content and
flexibility of reasoning.

From this stage, they are able to discuss moral values with parents, build their values,
acquire autonomy, raise hypotheses, and express propositions. Then, they test them,
reflect on their thoughts, and seek logical justifications for their judgments, leading to the
construction of autonomy and identity.

In this way, occurs the transition from inductive logic to deductive logic. The subject
has the cognitive ability to think from a general principle, arriving at the anticipation of
an experience (walking from the general to the particular).

One can then synthesize the three essential acquisitions of this fourth and last Pi-
agetian stage, abstract operations: formal thought, the achievement of personality, and
insertion in adult society.

2.2 Sensorimotor stage specifics

Due to the incremental nature of our experiments, we focused on the sensorimotor

stage.
Regarding the senses in this stage, we have the following initial sensory capabilities:

• Sight: the newborn’s eyes focus better at a distance of 30cm. Newborns blink in
the presence of bright light. Its peripheral field of view is very narrow; it is already
well developed in the 3rd month.

At birth, visual acuity is approximately 20/400 and reaches the 20/20 level around
eight months. "20/20" means that you can see and identify something 20 feet (609
centimeters) away from that an average person is also able to see at 20 feet—the
higher the second number, the worse the person’s visual acuity.

The Binocular vision: the use of both eyes to focus, making it possible to perceive
depth and distance - usually does not develop before the 4th or 5th month.

• Intermodal perception: formation of a single perception of a stimulus based on
information from two or more senses. For example, the processes of recognizing only
by touch a toy that you have already seen but never touched. It is possible already
in the first month and becomes common at six months. With four months, children
can relate sound rhythms to movements.
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• Hearing: 3-day-old babies can distinguish new speech sounds from those they have
heard before. At one month of age, the baby can distinguish sounds as similar to
ba and pa.

• Touch: It is the first sense to develop, and in the first few months, it is the most
mature sensory system.

• Smell and taste: They start to develop in the womb. The preference for pleas-
ant odors seems to be learned in the womb and during the first days after birth.
Newborns prefer sweet flavors to sour or bitter.

Besides that, one of the most important things in this stage is related to motor devel-
opment. In this period, babies learn how to move the parts of their bodies and integrate
these parts to achieve goals. In the following, we briefly describe three skills developed
by babies.

• Head control: At birth, they can turn their heads from side to side while lying on
their backs. While lying face down, they can lift their heads high enough to turn
them over, raising your head higher and higher in the first 2 or 3 months. Around
four months, they can keep their head erect when held or supported in a sitting
position.

• Hand control: At around 3.5 months they can grasp a moderately sized object,
but have difficulties with small objects. Then they start taking objects with one
hand and transferring them to the other and then holding (but not picking up)
small objects. Between 7 and 11 months, they pick up small objects using the
pincer grasp. Around 15 months, they know how to build a tower with two cubes.
Between 5 and 7 months, develop tactile perception (ability to acquire information
by handling objects).

• Locomotion: After three months, the baby starts to roll deliberately. They can
sit without support at around six months and assume a sitting position without
assistance at around 8.5 months. Between 6 and 10 months, babies start moving
on their own by dragging themselves or crawling. Babies can stand by holding
someone’s hand or leaning on furniture shortly after seven months and can drop the
support and stand by themselves around 11 months. A few weeks after the 1st year,
they can walk reasonably well.

Table 2.1 shows the milestones of the child’s motor development up to 2 years of age,
while Table 2.2 presents milestones of motor development using the Denver scale [28] for
the same period. The data presented in these tables are one of the bases used to design
the experiments described in Chapter 5.

2.3 Psychosocial Development - Emotions

Emotional development is an ordered process from which complex emotions unfold from
simpler ones. The baby shows signs of contentment, interest, and distress right after
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Age
(months)

General motor skills Fine motor skills

1 Gait reflex; slightly raise your head Hold object placed in hand

2 to 3 Lift your head to a 90-degree angle when
lying face down

Start hitting objects in sight

4 to 6 Turn the body; sit with support; move on
hands and knees (dragging yourself); keep
your head upright while sitting

Reach and grasp objects

4 to 6 Turn the body; sit with support; move on
hands and knees (dragging yourself); keep
your head upright while sitting

Reach and grasp objects

7 to 9 Sit without support; crawl Transfer objects from one hand to
another

10 to 12 Stand up and walk on the furniture; then
walk alone; crouch and leans; play clap
games

Show signs of preference in the use of
hands; hold a spoon with palm, but
don’t have good aim when bringing
food to mouth

13 to 18 Walk back and sideways. run (14 to 20
months); rolls the ball back to adult; clap
hands

Stack two blocks; put objects in a
smaller container and dump them

19 to 24 Up and downstairs, two feet per step;
jump off the ground with both feet

Use a spoon to feed; stacks 4 to 10
blocks

Table 2.1: Milestones of motor development in the first two years. Extracted from [14].

Skills 50% 90%

To roll 3.2 months 5.4 months

Get a rattle 3.3 months 3.9 months

Sit without support 5.9 months 6.8 months

Stand upright leaning on something 7.2 months 8.5 months

Pick up with thumb and forefinger 8.2 months 10.2 months

Stand upright alone firmly 11.5 months 13.7 months

Walk well 12.3 months 14.9 months

Assemble a tower with 2 cubes 14.8 months 20.6 months

Climbing stairs 16.6 months 21.6 months

Jump in the same place 23.8 months 2.4 years

Table 2.2: Approximate age at which 50% and 90% of children can perform each skill,
according to Denver Training Manual II. Extracted from [65].

birth. These are diffuse, reflexive responses, mostly physiological, to sensory stimulation
or internal processes. In the first six months, these initial emotional states differ in genuine
emotions: happiness, surprise, sadness, disgust, anger, and fear. The emergence of these
basic emotions is related to neurological maturation.

Emotions can be:

• Primary or basic emotions: Emotions such as happiness, surprise, sadness, aver-
sion, anger, fear. It appears during the first six months.

• Self-conscious emotions: Emotions such as embarrassment, empathy, and jeal-
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needs will be met first. But that raises some questions: the hierarchy of needs may be
unique to each creature (free will)? How to prioritize, ponder, and suppress some needs?
Can (and how) the hierarchy of needs change during the creature’s existence? Can new
needs be created and inserted into the hierarchy? These points still need to be explored.

Figure 2.5: Maslow’s Hierarchy of Needs. Extracted from [54].

Emotions and motivation are connected, but this connection is still not well defined
in the literature.

We will consider that emotion arises to express the motivational state, so it is possible
to have motivated behavior without having emotion. The states would be "rewards"
(or reinforcements) used in the learning of actions to cause the reduction of drives of
the motivational system, and we propose that there should be different types of rewards
associated with the different needs of the creature.

2.5 Summary

In this chapter, we presented the reference background that supports the DevRobotics
area as well as the Piagetian theory that is usually associated with the experiments carried
out in DevRobotics. This formalization, along with the literature review conducted in the
area, will work as the basis for our contribution regarding the formalization of experiments
that could assess the development level of agents built in DevRobotics.
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Chapter 3

Cognition and Cognitive Architecture

Cognition is our ability to assimilate and process the information we receive from different
sources, converting it into knowledge [19]. It includes different cognitive processes that are
part of our intellectual development and experiences. Different cognitive functions play
a role in these processes. Each of these cognitive functions works together to integrate
new knowledge and create an interpretation of the world around us. The more relevant
cognitive functions are described next.

• Reasoning: Ability to organize and structure data to build a logical chain. Formulate
ideas, deduce something from one or more premises.

• Planning: Ability to analyze information, evaluate all possible actions, and choose
the one that best meets the objective. It represents an internal simulation of the
agent with the environment through its actions and its consequences [12].

• Emotion: Some investigators define emotions as states elicited by reinforcement [83]
while others consider that emotions are involved in the conscious (or unconscious)
evaluation of events [4]. According to [25, 26], there are six universal emotions:
anger, fear, happiness, aversion, sadness, and surprise, and he focuses on these basic
emotions, but there are more deep definitions that extend this set to comprise moral
ones [59] like pride. Social effects and past experiences can generate it. The same
stimulus can generate different emotions in different agents [84]. This is because it
depends on their knowledge.

• Learning: The learning processes require short-term and long-term memories [11].
It is the process of understanding the data received and stored in long-term memory.
Learning occurs by taking small steps and building on what is already known [12].
It is one of the most important capabilities of cognition. There are different kinds of
learning: Reinforcement learning, imitation, attentional learning, etc. Interactivity
is an important element in the learning process.

• Motivation: Degree of interest in performing a certain action supported by emotion.
It is a condition that energizes behavior and guides it. There are two types of mo-
tivation: extrinsic motivation, which seeks external rewards and avoids punishment
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and intrinsic motivation, which is the desire to be efficient and to perform a behavior
by yourself (like curiosity) [58].

• Volition: Ability to use motivation and decision making to perform a particular
action to fulfill your goals. It is the process of transforming the agent’s intention into
a goal [76]. It concerns the translation of existing goals into action and, specifically,
the regulation of these processes [77]. It turns motivation into action.

• Attention: Capacity of filtering information received according to parameters of
interest and objectives, reducing the agent state space [76][21]. Attention is an
essential function to promote learning. From it, information that has higher values
of attention passes to higher layers of the architecture, allowing learning. The higher
the attentional level dedicated to a feature, the more likely it is to learn it.

• Perception: Capacity of processing sensory data. Through perception, the objects
of the world gain representation to be stored in memory. It refers to the recognition
and interpretation of sensory stimuli. It is a process whereby an agent is informed
about the state of its environment [10].

• Sensing: Ability to receive information from the environment through sensors [66].
Sensing is fundamental so that the agent can know where it is since it is responsible
for receiving the data from the environment, allowing, later, the fulfillment of other
cognitive functions.

• Language: Ability to communicate. Ability to express yourself to other individuals
and to understand them.

• Behavior : There are many processes involved in behavior execution. Some of them
are:

– Decision-making: To select a single behavior from the available ones. It consists
of sets of attentional, emotional, evaluation, and proprioceptive states, a list
of goals, set of tasks, working memory, set of motivations, planning function,
and body schema [76].

– Action selection: To select the steps (intermediate actions) that must be taken
to complete the execution of the chosen action.

– Execution of Tasks: To perform the chosen action.

• Prediction: Ability to predict future actions from similar events that occurred pre-
viously. It is the ability to foresee consequences of actions [12].

3.1 Memory

Memory is essential for the development of cognitive functions and consequently, cogni-
tion, and it is usually divided into short-term memory and long-term memory.
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Short-term memory is limited in size. It stores data from the real-time interaction of
the agent with its environment for a short period. In most cases can be considered as:

• Sensory: It is a short-term memory that allows retaining impressions of sensory
information after the original stimulus has ceased. It buffers the stimuli received.
This memory usually contains uninterpreted data used in the first steps of perception
[66].

• Working: It is a short-term memory with limited capacity [66]. It is a mental rep-
resentation of current situations, which stores information for reasoning in progress.
It receives information from the map of projections and sensory memory. It feeds
long-term memories and several modules of the cognitive system (for example, plan-
ning).

• Motor: It is equivalent to sensory memory, but for the system’s actuators [66].
It knows how to manipulate the actuators. It is connected directly to procedural
memory.

Long-term memories are higher-level memories. They store the knowledge acquired
by the agent during its lifetime, information obtained after the analysis of the real data
stored in short term memories. In most cases, they can be classified as:

• Perceptual: Contains categories of things and the ability to interpret incoming stim-
uli by recognizing individuals, by categorizing them, and by noting relationships
between such individuals and categories [13].

• Episodic: Refers to specific events (what, when, and where) localized in time and
space, allowing the association to particular details [69]. It is a constructive process,
which each time an event is assimilated, it reconstructs past episodes. However, they
are reconstructed a little differently each time [89]. It is a memory of the self. It
stores, for instance, the first time you traveled by plane, your first day at a new job,
etc.

• Semantic: Stores general and abstract facts, common sense knowledge, not con-
textualized in time and space. It deals with facts and their meaning [69], and it
is intrinsically related to perceptual memory. Authors claim that episodic mem-
ory highly influences the semantic one once the experience acquired over situations
enhance the semantic knowledge.

• Procedural: It is a long-term memory responsible for knowing how to do things, also
known as motor and behavioral skills [29][69], such as walking, talking, and riding a
bike. It is the long-term memory that stores information on how to perform certain
procedures.

3.2 Cognitive Architectures and frameworks

Ron Sun [81] defines cognitive architectures as "the overall, essential structure and pro-
cess of a broadly-scoped domain-generic computational cognitive model, used for broad,
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multiple-level, multiple-domain analysis of cognition and behavior." Usually, a cognitive
architecture comprises a composition of modules responsible for the implementation of
different cognitive capabilities, allowing the study of the interaction between them. The
architecture defines what the system should have, but does not determine how it should
be done. A hallmark of cognitive science is developing a theory of cognition powerful
enough to encompass all human mental abilities [47].

There are several cognitive architectures described in the literature with distinct mod-
els of functionally. Some of the best known architectures are: SOAR [48], ACT-R [1],
Clarion [80], LIDA [30] and OpenCog [34]. In particular, our research group has proposed
in the last years the CST [66] and CONAIM [76, 21], which will be used as the focus of
our work and are presented next.

3.2.1 CONAIM

The Conscious Attention-Based Integrated Model (CONAIM) [21, 76] is a formal model
based on an attentional schema to machine consciousness. The model provides an agent
based on consciousness that performs computations over attention-directed schemes, sig-
nificantly reducing the space of the model’s input dimensions. It has both a top-down and
a bottom-up attentional pathway, such that the first refers to decision-making processes
and goals, and the second comes from the stimuli that the environment promotes in the
system. In this work, we will cover only the bottom-up component. Figure 3.1 depicts
the model architecture, composed of two main systems:

• An attentional system (illustrated in Figure 3.2) in that follows the selection for
perception components of the model proposed in [21]. This architecture incorporates
several aspects of other related projects and is capable of handling multiple sensory
systems, multiple extracting characteristics processes, decision making, and learning
support. It comprises sensory memory, feature maps, weights associated with feature
maps, combined feature maps, saliency map, and attentional map. The model
formalization is described ahead, and the attentional course’s dynamics are detailed
in [21].

• A cognitive system that comprises decision-making, short-term memory (work-
ing memory), Long-term memory (Episodic memory, Semantic memory, Procedural
memory), and evaluation components (goals, evaluator, evaluation state, task, vo-
lition, individuality component). The Working Memory receives information from
the Attentional System (Salience Map and Sensory Memory) and provides infor-
mation for the blocks: motivation, emotions, decision making, performance, and
other cognitive processes. Semantic, Episodic, and Procedural Memories exchange
information with Working Memory in a bidirectional flow. The cognitive cycle and
model operation are described in [76].

To complete the model, a set of processes with various purposes, running in the
background, is defined. The system operates under the central paradigm that any function
or process of the cognitive system can request information from any other module and/or
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Figure 3.2: CONAIM attentional system.

change the agent’s internal states. Therefore, the flow of information through the Decision-
Making module is not mandatory.

The model has a formal description of its variables and functions defined in [21], and
the cognitive cycle and model operation is described in [76]. We described here in more
detail the Bottom-up path of attention in the model, which will be the focus of our
work.

Bottom-up

Data from various sensors are expected to be captured at each attentional cycle and stored
in sensory memory. This data is combined to produce the feature maps. These maps are
then combined to produce a single combined feature map, which has all features of the
same dimension on that map and is made using the weighted value. This single map will
contribute to generating the saliency map (the result of multiplying the attentional map
with the combined feature map).

From the bottom-up perspective, the feature map serves as an indication of what
should be perceived in the environment, as it provides information that represents the
state salience to which attention should be directed. The Winner Takes All (WTA)
approach is used to choose a region for which directs attention, and the winner is added
to a list of winners, and their attentional cycle begins. Over some time, the attentional
map will highlight the corresponding region and then enter an inhibitory period. This
process is called Inhibition Of Return (IOR) and is a mechanism that makes it difficult
for a certain period to keep an agent’s attention on the same location.
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Model Formalization

According to [21] the model is described by:

• A set of ns sensors {s1, s2, ..., sns} ∈ S;

• A set of ns sensor dimensions {sd1, sd2, ..., sdns} ∈ Sd, with each sdi ∈ Sd associated
to sensor si ∈ S;

• A set of observations of sensors, denoted by {O1,O2, ...,Oi} ∈ O, where Oijk
denotes

the observation of j−th dimension of the i−th sensor in time k, with j ∈ {1, . . . , sdi},
k ∈ [t− k, t] and t is time of current observation;

• A number of feature dimensions d ∈ N
∗ in which bottom-up features can emerge or

top-down features can actuate;

• A set of d bottom-up feature dimension functions {φBU1
, φBU2

, ..., φBUd
} ∈ ΦBU ;

• A set of d top-down feature dimension functions {φTD1
, φTD2

, ..., φTDd
} ∈ ΦTD;

• A set of 2d n-dimensional Feature Maps F ∈ ℜn, with elements denoted by
{F1,F2, ...,F2d}, with each feature map Fi represented by {fi1 , fi2 , ..., fin};

• A 2d-dimensional Features Weight Vector Wf ∈ ℜd, with elements denoted by
{wf1, wf2, ..., wf2d};

• An n-dimensional Combined Feature Map C ∈ ℜn, with elements denoted by {c1, c2,

..., cn};

• An n-dimensional Saliency Map L ∈ ℜn, with elements denoted by {l1, l2, ..., ln};

• An n-dimensional Attentional Map M ∈ ℜn, with elements denoted by {m1,m2, ...,

mn}, all initialized with ones;

• A set of winners B, with elements denoted by {b1, b2, ..., bz}. Each element bi ∈ B

is a 3-tuple {ξ, t, (0, 1)} where the elements are: an index ξ that refers to a winner
li ∈ L, a firing time t and a binary element ∈ {0, 1} that indicates if the firing was
caused by an exogenous or endogenous process;

• A set of goals {g1, g2, ..., gt} ∈ G;

• A decision making function α that maps the current saliency map (L) and the
current goal gt into a winner index;

• A top-down weights mapping function ζWf

• A top-down feature dimension mapping function ζΦTD
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3.2.2 CST

The Cognitive Systems Toolkit (CST) [66] is a general toolkit for the construction of
cognitive architectures, which allows the use and integration of various technologies. The
cognitive functions are classes, which can be combined in different ways.

The CST architecture is codelet oriented since all main cognitive functions are codelets
or groups of codelets interacting together. Codelets are small pieces of code that run in
parallel, each one responsible for a well-defined task. They are running constantly and
cyclically, with a specific time interval. Codelets have two main inputs and two outputs
that are specified by default. One input is the local (LI) and the other global (GI). One
output is the default (O) and the other an activation level (A). They are similar to the
special-purpose processes described in Baar’s Global Workspace Theory [5]. Below are
the specifics of each input and output.

• LI: Receives information about selected Memory Objects. It is a standard and
favorite source of information.

• GI: Used to get information from the Global Workspace.

• O: Used to change or create new information in the Raw Memory.

• A: Indicates the relevance of the information provided at the output, and is used by
the Global Workspace mechanism to select information to be destined to the global
workspace.

Memory Objects (MO’s) are objects used by codelets to store and access data. The
MO holds its Information (I), a timestamp (T), which is a marker indicating MO last
update, and an evaluation (E), which has many different uses. The Information (I) is the
main property, while others can be ignored depending on the application.

A container, called Coderack, stores the codelets, whereas the Raw Memory container
stores the MO’s set, composing the CST core (Figure 3.3) and modeling the Mind.
Codelets interact with each other through Memory Objects, which can generate coalitions
(for example, one MO is output from one codelet, but input from another).

proc() O

A

LI

GI

Memory Object (Sign)

Coalition

Codelet
Coderack Raw Memory

T  I

Figure 3.3: The CST Core. Extracted from [66].

Some cognitive functions require more priority than others, and specific processes must
be performed before others (e.g., sensory process before perceptual ones). With this, CST
provides real thread codelets and pseudo-thread codelets.
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As in CST, many different codelets can write in the same MO at the same time. It
is necessary to have a Subsumption Architecture [16] to determines which information
should be used at each moment.

The original subsumption architecture was a control architecture developed by Rodney
Brooks [16] that gave rise to the field of Behavior-Based Robotics [2]. While the tradi-
tional Artificial Intelligence fields proposed a pipeline approach for processing information,
subsumption brought the option of parallel data processing.

In standard Subsumption Architectures, modules are grouped into competency layers,
being the lower layers associated with survival, while higher oriented to the agent’s ob-
jectives. Modules in a layer can inhibit or override output behaviors of other layers. But
a downside to this classical subsumption method is that once a layer is set to a higher
priority level, it will always prioritize setting up its behavior. Even though this is desir-
able in some situations, it is always possible to envision situations in which this priority
should be reversed, at least on special occasions. To deal with this kind of situation, we
have a Dynamic Subsumption scheme [64, 43, 41], in which there is no fixed dominant
input in a suppression node. Still, this dominance can be changed dynamically in time,
according to specific situations.

In a Dynamical Subsumption, each control message (xi) comes with an evaluation
tag (ei), which is generated by its behavior. Instead of using fixed priorities to choose an
output value, the dynamic model chooses the xi with the greatest ei. Figure 3.4 illustrates
the Standard and Dynamic Subsumption schemes.

Figure 3.4: The Standard (fixed priority levels) and Dynamical (updatable priority levels)
Subsumption Schemes. Extracted from [38].

CST implements the Dynamical Subsumption. It provides the Memory Container,
which is a boosted Memory Object where multiple codelets might write simultaneously,
and the Memory Container will hold separate objects for input a standard mechanism for
output. The Selection Codelet, which is implicitly embedded into a Memory Container,
selects the Memory Object, which holds the maximum eval (E) field, which can be set
by the codelet, which generated the Memory Object [38]. The mechanism of the Memory
Container is illustrated in Figure 3.5.

Finally, CST is a tool that allows the creation of multi-agent systems is running
entirely asynchronously and in parallel. Also, the standard modules in a cognitive system
are already implemented as codelets in the CST architecture, as can be seen in Figure
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Figure 3.7: UML scheme from CST’s main classes

• 3rd Substage: Create/change/use and coordinate Cognits to form plans and meet
objectives (intention) (secondary circular reaction - the child repeats interesting
results obtained by chance with intention).

• 4th Substage: Reuse plans and generalize them. Learn the concept of permanent
objects (application of means already known to solve new situations. The child is
already able to vary, coordinate, generalize different actions, or the mechanisms to
reach an end.).

• 5th Substage: Systematic exploration of the affordances of objects (tertiary cir-
cular reaction, that is, repeats an action to know and explore the properties of the
object).

• 6th Substage: Perform imagination and mental simulation (develop the represen-
tational capacity and anticipate events by combining mental actions rather than
physical actions).

3.3 Summary

In this chapter, we presented the CONAIM cognitive architecture and the CST toolkit
that will be used as reference models for this work. The bottom-up pathway of CONAIM
is described in more detail, as it will support the extraction of information passed to other
levels of decisions in the system.
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Chapter 4

Related Work

The development of artificial agents with autonomous and adaptive behavior [8], roles of
embodiment [8][10] and developmental learning are objectives of the research in cognitive
robotics and DevRobotics. As biological agents provide the best examples of such behav-
ior in the real world, they are the sources of concepts and design principles for artificial
agents [8][11][12]. One such principle is that biological cognition can be described as fun-
damentally related to the manipulation and utilization of memory, perception, thinking,
and action [88].

Based on that, we prepared a literature review studying works that use Piaget’s theory
as a basis, cumulative learning and progressively increasing complexity, self-exploration of
the world, social interaction, and cognitive architectures. In this chapter, we present these
studies according to the classification we produced according to the Piagetian stages.

The end of each subsection contains a table that presents a summary of the works
reported. In this summary, we describe the DevRobotics aspect treated in each work, the
robot architecture used (sensors and actuators), the cognitive functions that were, directly
or indirectly, presented, and the cognitive architecture where they are implemented.

4.1 Sensorimotor stage - 1st substage

The work performed by [8], uses the Memory-Based Cognitive Framework (MBCF) and
its associated computational architecture EMA (Embodied MBCF Agent) to evaluate
the performance of the agent, whose objective was to explore the environment, as much
as possible, within 500 time-steps. Experiments were performed with the benchmark
random walker and three types of EMA configurations, which in computational aspects
are identical but undergoing changes in morphological (sensory and motor) aspects. The
results obtained by the EMA were higher than those of the random walker regarding
area covered, but for distance traveled were more equivocal (due to the small size of
the motor space used). The work demonstrates the dependence of the development of
behavior on physical embodiment and that sensory-motor capabilities can form the basis
for higher-order cognitive functions.

The ability to represent and perceiving the body of the self is one of the most in-
teresting issues in cognitive robotics since it is essential to enable the development of
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higher cognitive abilities. Given the importance of learning this representation, [93] stud-
ied the body scheme acquisition by cross model map learning among tactile, visual, and
proprioceptive (joints) spaces. In their experiments, they use the upper body of a robot
that touches itself. The cross-modal map is learned by Hebbian rule, which activates the
similarity units simultaneously in the experience.

A humanoid robot called iCub [57][56] was designed to test the embodied cognition
hypothesis: that human-like manipulation plays a vital role in the development of human
cognition. It has perceptual and motor systems of a small child that enables the interac-
tion with the world in the same way a child does. Using the iCub simulator, the research
made by [27] explores Reinforcement Learning (RL) while studying the autonomous de-
velopment of robot controllers to perform complex actions in complex scenarios through
learning. To test the methods from its own proprioceptive experience and guided with
internal perception-based reward signals and external ones, the complicated tasks for the
iCub utilized are: hit the ball and throw a cube in the target. The results demonstrate
an RL algorithm’s ability to act and learn in complex, highly stochastic environments to
control a significant number of Degrees of Freedom (DoF), without any previous knowl-
edge. The authors conclude that perception-based reward signals that utilize embodiment
features can perform better than external ones.

Table 4.1 presents the summary of the works in this stage.

Work DevRobotics
Aspect

Cognitive
functions

Sensorial modality/
physical architecture

Goal Cognitive Ar-
chitecture

[8] Learn by inter-
action

Sensorial Mem-
ory/Motor
Memory

ultrasonic sensors with mul-
tiple arrangements wheeled
robot

To explore the interplay be-
tween development and em-
bodiment.

Memory-Based
Cognitive
Framework -
MBCF

[93] Learning by in-
teraction

Sensorial Mem-
ory /Perceptual
Memory /Asso-
ciative Memory

The upper body of a robot
with a pair of stereo cam-
eras, touch sensors on its
body surfaces including the
end-effectors of its arms

Learn to represent own
body scheme by touching it-
self

Defined by the
authors (similar-
ity units)

[27] Learn by in-
teraction (Re-
inforcement
Learning)

Sensorial and
Motor Mem-
ory/Reward
Module

A child-like humanoid
(iCub) robot 1,05m tall,
with 53 degrees of freedom
distributed in the head,
arms, hands, and legs
are used. A camera is
positioned in the robot.

The robot must learn a pol-
icy for controlling four De-
grees of Freedom (DoF) of
the robot’s right arm to hit
a ball positioned in a spe-
cific and permanent place
on a table, with the mini-
mum number of joint move-
ments. It also should learn
how to throw the cube in
the target

YARP (Yet An-
other Robotics
Protocol)

Table 4.1: Comparison among works related to Sensorimotor stage - 1st substage in
DevRobotics in the literature.

4.2 Sensorimotor stage - 2nd substage

The study performed by [71] used the iCub simulator to test if the interaction with the
world along with experience limited by constraints imposed by the physical characteristics
of the arm (two and then four degrees of freedom), can help the learning process if this is
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segmented. The authors cite the property of overcompleteness existing in limbs of natural
systems (such as humans), which turns the problem of controlling a limb more complex
in computational terms. However, it also can represent an advantage in terms of finding
solutions that allow executing more than one action at the same time (like reaching a
target at the same time that an obstacle is avoided).

In [75], the problem involving grasp stability was studied. Using a humanoid robot
ARMAR-IIIb and Support Vector Machine (SVM) to classify the grasp as either stable
or unstable, the robot learned to grasp stability from labeled data. Also, the authors
extended the SVM based grasp stability classifier with the use of filters to classify the
whole grasp sequence instead of just the end of the grasp sequence, which allows faster
decisions for stable grasps.

Ogino et al. [53] propose a model for a robot to acquire new communication based
on the reward prediction. The system keeps the sensor data in short term memory and
puts into the long term memory when the value of the internal state corresponding to the
emotion is increased. Once the memory is formulated, the sensor data is compared with
it, and the robot expects the regular response of the caregiver. With this model, the robot
acquires early communication. The experiments were realized with and without memory.

Table 4.2 presents the summary of the works in this stage.

Work DevRobotics
Aspect

Cognitive
functions

Sensorial modality/
physical architecture

Goal Cognitive Ar-
chitecture

[71] Learning by in-
teraction

None explicit in
the architecture

Simulated iCub with cam-
era and head (tilt and pan
joints positions)

Reach a red ball by progres-
sively unlocking DOFs

not defined

[75] learning by in-
teraction

None explicit in
the architecture

Joint encoders and pressure
sensors in ARMAR-IIIb’s
right hand

Learn coupling between au-
ditory perception and mo-
tor production to imitate
speech sounds

not defined

[53] Attention and
Learning by
interaction
(human and
reward)

Long and Short
term Memories/
Reward predic-
tion module/
Internal state/
Emotion

Computer simulation
(robot modeled as the
computer graphics using
OpenGL) with camera and
microphone

Acquire the early communi-
cation

defined by the
authors

Table 4.2: Comparison among works related to Sensorimotor stage - 2nd substage in
DevRobotics in the literature.

4.3 Sensorimotor stage - 3rd substage

In [60], several experiments were conducted to illustrate the capability of the system using
Bayesian networks integrated within a general developmental architecture to discover af-
fordances associated with manipulation actions (grasp, tap, and touch), applied to objects
with different properties (color, size, shape). Also, the robot recognizes actions performed
by a human, and play simple interaction games (the robot observes a human performing
an action on an object. Then, it is presented another object and the robot has to perform
a compatible action). The approach was able to deal with uncertainty, redundancy, and
irrelevant information since it detects the features that matter for each affordance and
allows social interaction by learning from others.
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The study reported in [92] developed a computational model that learns a coupling
between motor parameters and their sensory consequences in vocal production during a
babbling phase. They conducted experiments to explore how the sensorimotor coupling
alters perception and production during a babbling period and how the presence of sounds
that are not produced by the model itself shapes its perceptual and model properties. The
study was based on the evidence that the coupling between auditory perception and motor
production forms the basis for the imitation of speech sounds in infants.

Involving the speech aspect, [85] using the iCub simulator showed that it could acquire
behavioral, cognitive, and linguistic skills through individual and social learning. They re-
alized experiments involving reaching (with neural network configured as a feed-forward
controller), grasping (with a neural controller configured as a Jordan neural network).
They focused on object manipulation capabilities, where refined motor control is inte-
grated with speech understanding (with the Sphinx-3 system, which is a hidden Markov
model-based speech recognition system). The output of speech was: idle, reach, grasp, and
drop. As a result, the robot could learn to handle and manipulate objects autonomously,
to understand basic instructions, and to adapt its abilities to changes in internal and
environmental conditions.

Table 4.3 presents the summary of the works in this stage.

Work DevRobotics
Aspect

Cognitive functions Sensorial
modality/
physical archi-
tecture

Goal Cognitive Ar-
chitecture

[60] Affordance,
Learning by
interaction (en-
vironment) and
Imitation

Sensorial Memory/Motor
Memory/Perceptual
Memory/Behavior Se-
lection/Action Selection/
Long-term memory (no
distinction of models)/
Planning/ Visual recogni-
tion

The humanoid
robot Baltazar
with camera

Learn affordance by interac-
tion with the world and hu-
man actions imitation

developmental
architecture

[92] Learning by
interaction and
Imitation

None explicit in the archi-
tecture

Hearing sensor Learn coupling between au-
ditory perception and mo-
tor production to imitate
speech sounds

Defined by the
authors (neural
receptive fields,
Hebbian connec-
tions)

[85] learning by in-
teraction (envi-
ronment and hu-
man)

Long and Short term Mem-
ories/ Sensorial Memory
/Procedural Memory /Per-
ceptual Memory/ Motor
Memory /Action selection

Simulated iCub
with vision,
touch, audition,
and propriocep-
tive sensorial

Learn to handle and manip-
ulate objects, and to under-
stand basic instructions

defined by the
authors using
YARP support

[53] Attention and
Learning by
interaction
(human and
reward)

Long and Short term Mem-
ories/ Reward prediction
module/ Internal state/
Emotion

Computer sim-
ulation (robot
modeled as
the computer
graphics using
OpenGL) with
camera and
microphone

Acquire the early communi-
cation

defined by the
authors

Table 4.3: Comparison among works related to Sensorimotor stage - 3rd substage in
DevRobotics in the literature.
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4.4 Sensorimotor stage - 4th substage

In the studies [11] and [12], the authors described an approach using a cognitive archi-
tecture called Multilevel Darwinist Brain (MDB). It permits an automatic acquisition of
knowledge (models) in a real robot through the interaction with its environment so that
it can autonomously adapt its behavior to achieve its design objectives. The structure
of MDB has two different time scales: reactive, which is devoted to the execution of the
actions in the environment, and deliberative, which deals with learning of the models and
behaviors. The most relevant information in MDB is the action-perception pair because
all the learning processes (short and long-term memory are required) depend on it. Also,
in these papers, the authors study the relationship between short-term memory and long-
term memory. The main difference between the MDB to other cognitive architectures for
real robots is that MDB agents acquire knowledge through evolutionary techniques.

Hart and Grupen [42] utilized an approach that is consistent with Piaget’s processes
of assimilation and accommodation [67], governed by the robot’s intrinsic drive for affor-
dance discovery. They propose a framework in which the robot is intrinsically motivated
to control interactions with the environment, providing a mechanism to guide both au-
tonomous skill development and the acquisition of knowledge about the world. They
examined three phases of learning in which the proposed intrinsic reward function can
build knowledge: skill acquisition, skill generalization, and world modeling. They demon-
strated how a fixed intrinsic reward function could guide a robot to acquire generalizable
control programs (called schema) that it can then use to model the conditions in which
these schemas apply intelligently.

Macura et al. [51] used the iCub simulator to train a robot to use objects using
different manipulation modalities (e.g., precision grip (for small objects) vs. power grip
(for big objects)), and to be able to replicate psychological experiments where the objects
can be categorized using different grips (e.g., precision grip for artifacts (big and small
cubes) and power grip for natural objects (big and small balls)). The results showed that
the reaction times for larger objects were faster than for smaller objects. This indicates
that the robot was able to generalize a grasping sequence for each task and object, hence
learning to appropriately grasp and categorize objects based on their shapes and sizes.
Table 4.4 presents the summary of the works in this stage.

4.5 Sensorimotor stage - 5th substage

By focusing on the first twelve months of a human infant, the study described in [44] re-
produced on humanoid or anthropomorphic robot systems the following behavioral com-
petencies: active vision, visual attention, hand-eye coordination, and simple object ma-
nipulation (reaching and grasping). The experiments validated the approach towards the
integration of reaching, grasping, and active vision, demonstrating how the object features
determine visual search, besides how visual and non-visual object features define the sys-
tem’s attention concerning fixation patterns. They also noted that gaze space mapping
could only be learned after the eye-saccade mapping is correctly learned, like in infants,
who first establish eye-saccades and much later start to master hand-eye coordination.
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Work DevRobotics

Aspect

Cognitive functions Sensorial modality/

physical architecture

Goal Cognitive

Architec-

ture

[11] Learn by in-
teraction (en-
vironment)

Sensorial Mem-
ory/Motor Mem-
ory/Perceptual
Memory/Behavior
Selection/Action Se-
lection/Satisfaction
Model/ Long-term
memory (no distinc-
tion of models)

AIBO robot. In this exam-
ple, we are using the cam-
era data, and the head angle
as sensorial information and
a predefined gait for the ac-
tions the robot can execute,
in this case, just moving.

Learn the basic behavior of
catching its pink ball

Multilevel
Darwinist
brain (MDB)

[42] Affordance
and Learning
by interaction
(environ-
ment)

Perceptual Enti-
ties/Motor Vari-
ables/Intrinsic reward
function/ Declara-
tive and Procedural
memories

Dexter robot have a two
degree of freedom pan/tilt
head equipped with two
Sony color cameras and two
7-DOF whole-arm manip-
ulators. Each WAM is
equipped with a 3-finger
Barrett Hand with an F/T
load cell on each fingertip.
Each hand has four degrees
of freedom(one for each fin-
ger and one for the spread
angle between two of these
fingers).

To perform skill acquisi-
tion, skill generalization,
and world modeling

not defined

[51] Affordance
and Learning
by interaction

Sensorial Mem-
ory/Motor Mem-
ory/Perceptual Mem-
ory /Visual Memory
/Procedural Memory
/Action Selection
/Long-term memory
(no distinction of
models)

Simulated iCub with cam-
era and proprioceptive
(arm, hand)

To learn different manipu-
lation modalities and cate-
gorise objects

Combination
of the epige-
netic robotics
methodolo-
gies with the
embodied
connectionist

[12] Learn by
demonstra-
tion

Sensorial Mem-
ory/Motor Mem-
ory/Perceptual
Memory/Behavior
Selection/Action Se-
lection/Satisfaction
Model/ Long-term
memory (no distinc-
tion of models)

Pioneer 2 wheeled robot
(has a sonar sensor array
around its body and a lap-
top placed on its top plat-
form. The laptop provides
two more sensors, a mi-
crophone and the numerical
keyboard) and Sony’s AIBO
(digital camera, the micro-
phones and the speaker)

To build an autonomous
robot with real time learn-
ing capabilities and the
capability for continuously
adapting to changing cir-
cumstances in its world,
both internal and external,
with minimal intervention
of the designer

Multilevel
Darwinist
brain (MDB)

Learn by in-
teraction (en-
vironment)

Hermes II hexapod robot
has six legs with two de-
grees of freedom (swing and
lift), six infrared sensors,
each one placed on top of
each leg, two whiskers, incli-
nometers and six force sen-
sors.

[27] Learn by in-
teraction (Re-
inforcement
Learning)

Sensorial and Motor
Memory/Reward
Module

A child-like humanoid
(iCub) robot 1,05m tall,
with 53 degrees of freedom
distributed in the head,
arms, hands, and legs
are used. A camera is
positioned in the robot.

The robot must learn a pol-
icy for controlling four DoF
of the robot’s right arm to
hit a ball positioned in a
permanent place on a table,
with the minimum number
of joint movements. It also
should learn how to throw
the cube in the target

YARP (Yet
Another
Robotics
Protocol)

Table 4.4: Comparison among works related to Sensorimotor stage - 4th substage in
DevRobotics in the literature.
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In [72], the authors demonstrated that a robot could first acquire knowledge by sens-
ing and self-exploring its surrounding environment by interacting with available objects
and building up an affordance representation (associates verbal descriptions to the phys-
ical interactions) of the interactions and their outcomes. After, the robot is capable of
generalizing its acquired knowledge when it observes (gesture recognition) another agent
(human person) performing the same motor actions (grasp, tap, and touch the objects on
a table) previously executed during training.

Mar et al. [52], aiming at allowing a robot to autonomously discover the set of distinct
affordances that a group of tools provides, condcuted a study using iCub and its simulator.
The study takes into account both how tools are grasped, and how actions are performed,
enabling the robot to predict which will be the affordance of a grasped tool based on
the tool’s functional features. They used seven different tools for the experiments on the
simulator and 4 for those on the real robot, and each tool has the end-effector oriented in
three different ways: to the front, to the right and the left.

Table 4.5 presents the summary of the works in this stage.

4.6 Sensorimotor stage - 6th substage

In [45], the authors proposed a dynamic deep neural network model called Visuo-Motor
Deep Dynamic Neural Network (VMDNN) that consists of three types of subnetworks
(one for processing dynamic visual images, one for controlling the robot’s action and
attention and another to dynamically integrates them). In this study, the robot was
trained to recognize human gestures and to grasp the target object (tall object and a long
object placed with five different orientations at ten positions symmetrically distributed
on the XY-plane of the task space) indicated by the gestures. This task thus required
a set of cognitive skills such as visual perception, intention reading, working memory,
action preparation, execution, and attention. In the learning stage, the robot learned a
task in the supervised end-to-end manner, while in the testing stage, it was examined the
model’s learning and generalization capabilities. Furthermore, the robot was examined
under a visual occlusion experimental paradigm to verify whether the proposed model
was equipped with a sort of memory capability for maintaining task-related information.

Using the upper body of a small-sized humanoid robot, [62] addresses how the body
schema changes as a result of tool use-dependent experience. The model implemented
enables a robot to reach and touch a target with a tool as the tool is the robot’s hand.
Knowledge about the tool is a priori unavailable, and the robot autonomously incorporates
the tool and learns to use it. As a result of this study, the robot was able to judge whether
the target is reachable by the hand or by the stick.

Infants are suggested to acquire joint attention by 18 months of age, which means
that they develop their perceptual, motor, and memory functions as they learn to achieve
joint attention [63]. In this study, the authors propose a developmental learning model
by which a robot develops its visual function as it learns to gain joint attention based
on an adaptive evaluation by a human caregiver. The task changes in difficulty, from
easy to difficult, by reducing the tolerance against the robot’s output error according to
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Work DevRobotics
Aspect

Cognitive functions Sensorial modal-
ity/ physical archi-
tecture

Goal Cognitive Ar-
chitecture

[44] Attention Spatial memory/ Vi-
sual memory/ Action
Selection/ Feature
Space / Sensorial and
Motor Memory

Active vision, visual
attention, hand-eye
coordination, and
simple object manip-
ulation (reaching and
grasping)

To learn hand-eye coordina-
tion and the cognitive com-
petence of multimodal vi-
sual attention

Defined by the
authors

[72] Learning by
interaction
(environment
and humans),
Language and
Affordances

Sensorial Mem-
ory/Motor Mem-
ory/Perceptual Mem-
ory /Visual Memory
/Procedural Memory
/ Episodic Memory
/Action Selection
/Long-term memory
(no distinction of
models)

iCub with camera and
depth sensor

Combine knowledge ac-
quired from interacting
with elements of the
environment with the ob-
servation of another agent’s
actions

Bayesian Net-
work and Hid-
den Markov
Models

[52] Affordance None explicit in the
architecture

iCub with force-
torque, joint angle,
and inertial sensors,
binocular vision

Select, given a tool, the best
action to achieve a desired
effect

YARP, SVM,
Kmeans

[12] Learn by demon-
stration

Sensorial Mem-
ory/Motor Mem-
ory/Perceptual
Memory/Behavior
Selection/Action Se-
lection/Satisfaction
Model/ Long-term
memory (no distinc-
tion of models)

Pioneer 2 wheeled
robot (has a sonar
sensor array around
its body and a laptop
placed on its top
platform. The laptop
provides two more
sensors, a microphone
and the numerical
keyboard) and Sony’s
AIBO (digital camera,
the microphones and
the speaker)

To build an autonomous
robot with real time learn-
ing capabilities and the
capability for continuously
adapting to changing cir-
cumstances in its world,
both internal and external,
with minimal intervention
of the designer

Multilevel Dar-
winist brain
(MDB)

Learn by inter-
action (environ-
ment)

Hermes II hexapod
robot has six legs with
two degrees of freedom
(swing and lift), six
infrared sensors, each
one placed on top of
each leg, two whiskers,
inclinometers and six
force sensors.

Table 4.5: Comparison among works related to Sensorimotor stage - 5th substage in
DevRobotics in the literature.

improvements in the robot’s performance. This adaptive evaluation accelerated the speed
of learning, and, as in infants, the experiments showed that visual development helped
the robot to learn to establish joint attention first horizontally and then vertically.

Table 4.6 presents the summary of the works in this stage.

4.7 Preoperational stage

In [10], the agent’s behavior is controlled by a continuous-time recurrent neural network
(CTRNN). Its task is to catch circular objects while avoiding diamond-shaped ones. The
analysis of the work indicates that only when there are embodiment and situatedness
within the environment in which the CTRNN evolved, the distinction about the difference
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Work DevRobotics
Aspect

Cognitive functions Sensorial modality/
physical architecture

Goal Cognitive Ar-
chitecture

[62] Learning by
interaction
(inverse kine-
matics)

Sensorial Mem-
ory/Motor Mem-
ory/Perceptual Mem-
ory/ Planning/
Associative Memory

The upper body of a small-
sized humanoid robot with
one camera (color CCD )
and two touch sensors (lo-
cated in its hand)

Learn to reach the tar-
get using the hand or
a tool as an extension
arm

not defined

[63] Attention and
Learning by
interaction
(human)

Sensorial Memory
/Perceptual Memory/
Motor Memory /
Attention /Action
perception

Physical robot with camera Learn joint attention not defined

Table 4.6: Comparison among works related to Sensorimotor stage - 6th substage in
DevRobotics in the literature.

between circles and diamonds arises. It occurs through the interaction of the subsystems
(environment, body, and nervous system). As a result of the study, the authors show that
sensory inputs can influence the agent’s behavior. Still, they do not place it in a state
that corresponds solely to a given stimulus, since dynamic agents follow a path specified
by their current state and by their dynamics. As the behavioral consequences of a given
sensory input may differ significantly depending on the agent’s internal state when it
occurs, continuous neural activity sets a context for perceptual processing.

Vernon et al. [89] identified ten desiderata to endow a cognitive architecture with
a capacity for development that is driven by both exploratory and social motives, as
espoused by Piaget. The desiderata are value systems and motivations, physical embod-
iment, sensorimotor contingencies, perception, attention, perspective action, declarative
and procedural memory, multiple modes of learning, internal simulation, and constitutive
autonomy.

Table 4.7 presents the summary of the works in this stage.

Work DevRobotics
Aspect

Cognitive functions Sensorial modal-
ity/ physical archi-
tecture

Goal Cognitive Ar-
chitecture

[61] Learning by
interaction
(environment
and humans),
Language and
Affordances

Sensorial Mem-
ory/Motor Mem-
ory/Perceptual Mem-
ory/Episodic Mem-
ory/ Goals/ Plan-
ning/Perception/Action
Selection/ Behav-
iors/Needs

iCub with a camera,
speakers and body
DOFs

To solve the Symbol
Grounding Problem, i.e.,
how a cognitive agent
forms an internal and
unified representation of
an external world referent
from the continuous flow of
low-level sensorimotor data
generated by its interaction
with the environment.

DAC-h3

[87] learning by in-
teraction (envi-
ronment and hu-
mans) and Lan-
guage

Not explicit in the ar-
chitecture

iCub with a camera,
speakers and body
DOFs

To assess the robot capac-
ity to choose the single novel
object using a novel label
and to evaluate the implica-
tions of having more com-
petitor objects in retaining
labels.

Epigenetic
Robotics Archi-
tecture (ERA)

Table 4.7: Comparison among works related to Preoperational stage in DevRobotics in
the literature.
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4.8 Summary

From the works presented in this chapter, it is possible to notice that, although there are
plenty of Cognitive Architectures in the literature and that DevRobotics is a rising topic
inspired by Piaget’s theory, there is no universal protocol to either conduct or to evaluate
the acquisition of cognitive abilities by robots. It is in this context that we conducted
this research.
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Chapter 5

Proposed Sensorimotor Experiments

As presented in Chapters 2 and 4, experiments in cognitive architectures in the field of
DevRobotics are heavily based on child development. Still, one of the common points in
these experiments is the lack of standardization of the evaluation. So, this work aimed to
contribute to the development of a set of experiments, defining them clearly and identify-
ing evaluation criteria that can be used in equivalents to the robotics scenario, according
to the Piaget stages.

After careful review of the literature [14, 65, 40, 17], inspired by the activities proposed
in [36] to evaluate the cognitive development of children based on Piagetian experiences
and the experiments realized by Piaget with babies described in [67] and considering
scenarios that we could mimic with robots [27, 44, 42, 12, 11, 8, 45, 51, 72, 71, 52, 60, 62,
92, 75, 53, 85, 63, 17], we organized the experiments according to following abilities:

• Track objects: experiments related to the ability of learning how to track objects
in a scene (Table 5.1). As the goal is for the robot to learn to track objects, it must
have visual information. Considering the development of the child’s visual acuity,
activities in this category involve objects positioned at different distances from the
robot but which are visible according to the visual acuity presented by the baby
at the specified age (Sensorimotor substage). Along the substages, the distances
become longer, and the visual acuity improves. Besides, we also use the development
of the child’s ability to turn his head to follow objects that are entering and leaving
the field of view by varying the speed at which these objects move (consequently,
increasing the level of difficulty). Finally, we created initial experiments involving
the learning of depth and distance, that will be dominated only from the 4th or
5th substage, which correspond to the period in which the child develops binocular
vision.

• Search for touch and sound source: experiments related to the ability to search
for multimodal event sources in a scene (Table 5.2). Given that touch and hearing
are developed rapidly during the first months of the child, we do not use the progres-
sive improvement of the sensors for these experiments. Through the experiments
proposed in this category, the robot learns its body scheme incrementally, start-
ing from reflex movements to circular reactions when touched on different parts of
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its body. The robot learns to incrementally coordinate vision and hearing through
sounds emitted from different places in the environment.

• Handle objects (Affordance): experiments related to the ability of learning how
to handle objects and to identify affordances (Tables 5.3 and 5.4). In this category,
the robot learns incrementally how to manipulate objects. The experiments start
with the robot learning to hold an object placed in your hand through the reflex
movement of closing the hand when touched and will evolve throughout the stages.
Following the child’s motor development, the objects must initially be of moderate
size and light, considering that the child does not yet have the movement to close his
hands well developed and does not have the strength to hold heavy objects. These
factors are developed over the experiments by modifying the sizes of the objects
involved. There is also the first stage of coordination of vision and other parts of
the body, which then develops the coordination of vision and hand to bring objects
within the visual field. Initially, the objects are placed close to the robot, because
the objective is that it learns first to pick up the objects. Still, then the objects are
placed with greater distances to promote the learning of the use of auxiliary tools to
reach the desired object and later develop the coordination of vision, locomotion, and
catching schemes to reach this object. Also, the ability to pick up occluded objects,
combine objects with building new ones, correctly fitting them, and changing hands
during object manipulation is also developed.

• Inter-modal perception: experiments related to learning inter-modal perception
(Table 5.5). Intermodal perception corresponds to the formation of a single percep-
tion of a stimulus based on information from two or more senses. Although it is
possible in the first month, it becomes common only in the 6th month. In our ex-
periments, we developed activities considering the skills developed during the third
sub-stage (4 to 8 months), as it is the moment when the skill is most common.
The activities aim to develop intermodal perception involving sensory information
of vision-touch and vision-hearing (relate sound rhythms to movements).

• Concept of Object Permanence: experiments related to the process of learning
the concept of object permanence (Table 5.6). Given that the Concept of Object
Permanence starts developing in the third substage, our experiments also begin in
that period. As described in Chapter 2, in the 3rd substage, the child does not yet
have the concept of the object’s permanence, so when the object is not within its
visual field, it ceases to exist for the child. From the 4th substage, we start the
displacement and occlusion of objects within the agent’s visual field. Concerning
occlusion, the child can find the object, which demonstrates that the concept of
permanent object is beginning to be established, but not 100% given that at this
stage, the child is not yet able to follow the displacements of that object, which
is achieved in 5th substage. Finally, in the 6th substage, the child can search for
objects that have been moved out of his field of vision, which demonstrates that the
concept of a permanent object has been completely acquired. In this category, it
is essential to note that the size and position of the object must be possible to be
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manipulated and seen by the child considering its motor development and vision.
Otherwise, if the child does not see the object, he/she will not be able to store it in
his memory and, consequently, develop the concept of Object Permanence. These
details are listed in the Comments column.

• Perceptual constancy: experiments related to the ability of learning perceptual
constancy of form and greatness (Tables 5.7 and 5.8). Perceptual constancy is the
tendency to perceive objects as unchanged, despite sensory differences and must
be acquired by the child to make sense of the physical world around him. Once
we have formed a stable perception of the object, we will recognize it from almost
any angle. Constants develop from the first five weeks and are fully developed
at approximately four years of age. In our experiments, we elaborate activities
from the 3rd substage, as it is the period in which the child begins to develop the
concept of object permanence that we have seen to be essential for the development
of perceptual constancy. There are several classifications of constancy, but in this
work, we created experiments involving only the constancy of form and greatness.

Constancy of greatness is responsible for recognizing that an object remains the
same or has the same dimension despite the retinal image becoming larger as the
object is closer. When you watch a person walk away, the projection of the person
on your retina decreases, although it did not decrease in size, we know that it moved
away.

Constancy of form is responsible for recognizing the shape of known objects (re-
gardless of variations in their orientation, position, size, colors, texture) despite the
constantly changing shape of the retinal image. Example: when we open the door
at 45◦ and later at 90◦, we know that it remains rectangular even when viewed from
different angles.

We encompass all experiments in the sensorimotor stage, but not all of them make
sense for each sub-stage. Hence, they are described incrementally whenever suitable for
a sub-stage or a sequence of sub-stages. In the beforementioned experiments, we define
which sensors we require for each test and what we expect as an outcome. We also
considered the Bayley Child Development Scales [9]: the best known and most widely
used child intelligence test that mainly evaluate sensory and motor skills.

The Sub-stage column contains the sensorimotor substage that comprises the activity
described in the Activity column. In the Expected result column we show the expected
result of each activity taking into account the development of sensory capabilities, psy-
chosocial development, the increase in complexity incrementally, the Circular Reactions
and skills developed in the specific Sensorimotor substage that comprises this activity,
as seen in detail in the Chapter 2. The Comments column contains specific details for
each activity described considering the development of sensory capabilities, motor devel-
opment, and skills developed by babies referring to the corresponding substage. Finally,
in Sensors column are the sensors that capture the data needed to carry out the activity.
It is important to note that it is not necessary to use the described sensor specifically,
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being able to be exchanged for some other sensor that allows the extraction of equivalent
data.

Due to the complexity of the experiments already defined and the fact that they related
to the early stages of child development, at this point, we decided not to consider language
formation.

Following this structure, André Barros de Medeiros (student of scientific initiation su-
pervised by Profa. Dra. Paula Dornhofer Paro Costa) designed the experiments involving
expression of emotion. Those experiments are organized according to:

• Indirect Learning: Learning through the actions and expressions of others (Table
5.9).

• Inherent and Non-Inherent Fears and their Modification throughout Time:
Modification of knowledge through emotional interaction (Table 5.10).

• Object Modification as to Avoid Pain/Fear: using new information to avoid/
prevent unwanted emotions (Table 5.11).

5.1 Methodology to conduct the experiments

To carry out these proposed experiments, we created a methodology (Figure 5.1) composed
of 6 steps:

1. Define the
purpose

3. Cognitive
architecture

2. Define robotics
equivalent

4. Temporary
course

5. Deploy to CST

6. Evaluate

Figure 5.1: Sequence of activities necessary for the development of each experiment

1. Define the purpose of the experiment : Define what we want to analyze and evaluate
in each experiment, i.e., its basic proposition, the classification of the experiment,
and the correspondent activity on the proposed sensorimotor experiments described
above.
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2. Define robotics equivalent : Identity in which sensors and actuators are needed ac-
cording to the sensors indicated on the activity description of the table chosen above.

3. Cognitive architecture: Identity which sub-set of modules of CONAIM are involved
in each experiment. Particularly, Piaget’s theory of cognitive development and
related literature must be guides for the selection of modules and the specifications
of these modules.

Example: Figure 5.2 shows the components of CONAIM that are active during the
experiment conducted in [21] to explore learning semantic information in CONAIM.

4. Define the temporary course: To determine the temporal course of interactions
among the modules. An example is shown in Figure 5.3. It depicts the equivalent
temporal attentional and conscious courses to the experiment presented in Figure
5.2.
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Figure 5.2: Model elements active while learning semantic information in CONAIM.

5. Deploy to CST : It consists of developing the code (codelets and Memory Objects
(MO’s)) referring to the CONAIM modules in the CST.

Example: Figure 5.4 illustrates the CONAIM bottom-up attentional module im-
plemented in the CST. It shows the MO’s and codelets required for the system
to receive the sensor data, construct the feature maps, the combined feature map,
and the salience map. Finally (through the Winner Takes All approach) choose the
region to which to direct attention.

6. Evaluate: This step is divided in 3 sub-tasks:
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Figure 5.3: CONAIM system dynamics for the experiment of learning semantic informa-
tion while interacting with the environment.
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CST architecture.

• Define evaluation criteria: Identify the metrics that will evaluate each experi-
ment, i.e., the scenario overcoming criteria using the column ’Expected result’
on the table of abilities chosen previously.

• Implement the experiments: It consists of carrying out the tests of the imple-
mentation in a simulated or real environment.

• Perform the tests and evaluate results: Refers to performing the tests that will
allow us to analyze what was proposed and to evaluate the results according
to the criteria defined.

5.2 Summary

In this chapter, we presented the proposed sensorimotor experiments classified according
to the development of abilities, as well as a methodology for the design of each experiment.

After studying human development, we observed that salience seems to be very impor-
tant at the beginning of the learning process, guiding children’s early stages. With that
in mind, we aimed to evaluate through experiments if a robot could be guided only by
the salience and how this process would adjust its behavior. Therefore, a computational
framework that supports the attentional model is needed, so we created the CONAIM
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model (which adopts saliency-based attention) in the CST framework.
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Track objects
Sub-
stage

Activity Expected result Comments Sensors

1 Position robot in front
of an object at 25 cm

Staring at the object Object within the visual field,
in a fixed position, and of pri-
mary color. Visual acuity:
20/400. Small FOV.

Vision

1 Position robot in front
of an object at 25 cm

Track object with the
look

Object within the visual field,
moving slowly and primary
color. Visual acuity: 20/400.
Small FOV.

Vision

1 Position robot in front
of an object at 25 cm

Do not follow the ob-
ject with the look

Object within the visual field,
moving quickly and of primary
color. Visual acuity: 20/400.
Small FOV.

Vision

2 Position robot in front
of an object at 80 cm

Track object with the
look

Object within the visual field,
moving at medium speed and
primary color. Visual acuity:
20/100. Increase FOV.

Vision

2 Position robot next to
an object at 60 cm

Does not look at the
object

Object outside the visual field,
in a fixed position and of pri-
mary color. Visual acuity:
20/100. Increase FOV.

Vision

2 Position robot next to
an object at 60 cm

Accompany object
while looking within
visual field

Object entering the visual
field, moving in medium speed
and primary color. Visual acu-
ity: 20/100. Increase FOV.

Vision

2 Position robot next to
an object at 60 cm

Accompany object
while looking within
visual field

Object exiting the visual field,
moving at medium speed and
primary color. Visual acuity:
20/100. Increase FOV.

Vision

3 Position robot in front
of an object at 1.5m

Track object with the
look

Object within the visual field,
moving at medium speed and
primary color. Visual acuity:
20/20. Increase FOV.

Vision

3 Position robot in front
of an object at 1.5m

Accompany object
with the look (turns
the head to continue
accompanying the
object)

Object coming out of the vi-
sual field, moving at medium
speed and primary color. Vi-
sual acuity: 20/20. Increase
FOV.

Vision

3 Position the robot in
front of two equal ob-
jects, but with differ-
ent distances

Note that the object
that looks smaller is
further away than the
one that looks larger

The objects must be in fixed
positions, one closer to the
robot and the other another
more distant. Must be equal
in size.

Vision

3 Position the robot in
front of two objects,
one copper part of an-
other

Observe that the ob-
ject that is partially
occluded is further
than what is possible
to see completely

The objects must be in fixed
positions, being one in front of
the other.

Vision

3 Position the robot in
front of an object ini-
tially stopped at 1.5m

Note that the object
is heading towards it
and when it is close
enough to the robot to
try to defend itself or
catch the object

The object must move towards
the robot

Vision

Table 5.1: Experiments related to the ability to learn how to track objects in a scene
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Search for touch and sound source
Sub-
stage

Activity Expected result Comments Sensors

1 An external
source touches
the robot

Random moves Touch the robot on sev-
eral parts of the body and
on both sides

Tact
(pressure
sensors)

1 An external
source emits a
beep near the
robot

Do not identify the sound
source

The sound source shall
be emitted from different
places

Hearing
(micro-
phone)

2 An external
source touches
the robot

The robot must learn to
perform the action with
the associated function of
"look at the source" of
the touch, but without
intention

Touch the robot on sev-
eral parts of the body and
on both sides

Tact
(pressure
sensors)

2 An external
source emits a
beep near the
robot

The robot must learn to
perform the action with
the associated function of
"looking at the source"
of the sound, but with-
out intention. First there
is the accommodation of
the head towards the
sound and then the co-
ordination between sight
and the ear

The sound source shall
be emitted from different
places

Hearing
(micro-
phone)

3 An external
source touches
the robot

The robot organizes the
cognits to fulfill the goal
of looking at the touch
source

Touch the robot on sev-
eral parts of the body and
on both sides

Tact
(pressure
sensors)

3 An external
source emits a
beep near the
robot

The robot organizes the
cognits to fulfill the goal
of looking at the sound
source

The sound source shall
be emitted from different
places

Hearing
(micro-
phone)

Table 5.2: Experiments related to the ability of searching for multimodal event sources
in a scene
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Handle objects

Sub-
stage

Activity Expected result Comments Sensors

1 An external source in-
serts an object (or a
slight pressure) into the
robot’s palm

Close the hand - Tact (pres-
sure sen-
sors)

2 An external source in-
serts an object into the
robot’s hand

Grab and hold the object
in hand without seeing it.

Gripping. Moderately sized
object

Tact (pres-
sure sen-
sors)

2 An external source in-
serts an object into the
robot’s hand

Has difficulty grasping
small objects

Gripping. Small size object Tact (pres-
sure sen-
sors)

2 Position robot close to
objects

Shaking any body, shaking
fingers, hands or arms

Tactile and kinesthetic reac-
tions

Tact (pres-
sure sen-
sors)

2 Observe the own actua-
tors

Coordination between vi-
sion and the same general
movements (look at hands
and fingers)

- Vision

3 An external source in-
serts an object into the
robot’s hand

Grab to look Moderately sized object Tact (pres-
sure sen-
sors) and
vision

3 Position robot in front
of an object at 30 cm

Catch the perceived ob-
jects (reach and catch)

Object of moderate size,
within the visual field, and
in a fixed position. The ob-
ject and the hand must be
perceived simultaneously

Vision

3 Position robot in front
of an object at 70 cm

Grab the objects you see.
Can rotate to explore ob-
ject properties

Object of moderate size,
within the visual field and
in a fixed position. Coor-
dination between vision and
grasping

Vision

3 An external source in-
serts an object into the
robot’s hand

Hold (but do not catch) Small size object Tact (pres-
sure sen-
sors)

3 An external source of-
fers a stick to the robot,
with enough distance
that it can pick up

Make most of the adjust-
ment of hand to object af-
ter contact

Use as object a stick, within
the visual field

Vision

3 Evaluate the ability to
transfer objects between
hands

Transfer objects from one
hand to the other

Use an object of moderate
size, which can be held with
only one hand

Tact (pres-
sure sen-
sors) and
vision

3 Position the robot in
front of an object at 50
cm

Push the object, hit the ob-
ject.

Use objects of any size that
move easily to the touch
(like a ball). Here the robot
moves the object, but still
does not understand the dy-
namics

Vision

3 Position the robot in
front of two objects at
70 cm

Catch the new object (you
can transfer the object you
are holding to the other
hand if the occupied object
is closer to the new object)

Objects of moderate size,
within the visual field. One
of the objects may already
be in the robot’s hand, or he
can pick both of them from
the beginning

Vision

Table 5.3: Experiments related to the ability of learning how to handle objects - part 1
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Handle objects
Sub-
stage

Activity Expected result Comments Sensors

4 Position robot in front
of an object at 30 cm

Catch object using tip
prehension

Object of small size, within
the visual field and in fixed
position

Vision

4 Position robot in front
of an object at 80 cm
and then hide it under
a cloth

Use grasp to remove
the cloth and then
pick up the object

Object of any size, within
the visual field and in a fixed
position; a cloth that can
cover it completely

Vision

4 Position robot in front
of the desired object
at 1.5m and an auxil-
iary object next to the
robot (∼10cm)

Use auxiliary object to
achieve the desired ob-
ject

Desired object: moderate
size; auxiliary object: the
size must be close to the dis-
tance between the robot and
the desired object. Both ob-
jects must be within the vi-
sual field, in a fixed position
and have different colors

Vision

4 Position robot in front
of the object at 3 m

Walk to the object to
get it (Scheme Coordi-
nation)

Object of any size, within
the visual field, and in fixed
position

Vision

4 An external source of-
fers a stick to the
robot, with enough
distance that it can
pick up

Rotate the hand to
make adjustments be-
fore picking up the ob-
ject

Use as object a stick, within
the visual field

Vision

4 Position the robot in
front of three objects
at 70 cm

Pick up the new ob-
ject using the stor-
age strategy in which
the robot empties one
hand by placing the
object on its side or on
the lap to be able to
pick up another object

Objects of moderate size,
within the visual field. Two
of the objects may already
be in the robot’s hand, or he
can pick up the three from
the beginning

Vision

5 Assess ability to iden-
tify affordance of stack

Assemble a tower with
2 cubes

Use 2 cubes of moderate size
as objects, within the visual
field, and in fixed position

Vision

5 Position robot in front
of an empty container
at 50 cm and with ob-
jects to the side.

Place objects in a
large container and
clear them

Small to moderate-sized ob-
jects and large and un-
opened container

Vision

6 Position robot close to
objects

Stack the objects Use 4-10 moderately sized
cubes as objects

Vision

6 Position the robot fac-
ing objects

Fit the object cor-
rectly

Provide a box-fit with sev-
eral shapes to fit

Vision

6 An external source of-
fers a book in the hori-
zontal position for the
robot

Flip the object up-
right so it can pass
through the grid

Use a lightweight book. A
grid must separate the robot
and the external source. The
book must be smaller than
the distance between the
bars of the grid, so it is pos-
sible to pass it between them

Vision

Table 5.4: Experiments related to the ability of learning how to handle objects - part 2
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Inter-modal perception
Sub-
stage

Activity Expected result Comments Sensors

3 An external source
places an object in
the robot’s hand

Recognition by touch-
ing only the object

Use an object that the robot
has seen but never touched.

Tact
(pressure
sensors)

3 An external source
displays two movies
simultaneously for
the robot. A speaker
positioned between
the movies performs a
rhythmic sound that
matches the rhythm
of one of the videos

Prefers to watch the
movie whose rhythm
matches the sound

Uses two similar movies but
at different speeds. In an ex-
periment conducted by Eliz-
abeth Spelke (1979) [79],
she exhibited a movie show-
ing a toy kangaroo jumping
up and down and another
showing a donkey jumping
up and down, with one of
the animals jumping faster.
The rhythmic sound should
match only one of the videos

Hearing
(micro-
phone)
and
vision

3 Show two movies side
by side, each show-
ing a train riding on
rails. Through a
loudspeaker, play en-
gine sounds of various
types

Look longer for the
train’s movie whose
movement matched
the pattern of engine
sounds. This demon-
strates that there is
some understanding
of the link between
the sound pattern and
the kinetic pattern

Originally performed by Jef-
fery Pickens (1994) [68]. For
the sounds of the engine, he
used a sound that was get-
ting louder (appearing to be
approaching) or lower and
lower (appearing to be dis-
tancing itself)

Hearing
(micro-
phone)
and
vision

Table 5.5: Experiments related to the ability of learning inter-modal perception
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Concept of Object Permanence
Sub-
stage

Activity Expected result Comments Sensors

3 1st: Position the robot in
front of an object and let
manipulate it for a while.
2nd: An external source
covers the object with a
handkerchief

Withdraw the hand as
if it had disappeared

Medium-sized object
and handkerchief that
can cover it in full

Vision

4 1st: Position the robot in
front of an object and let
manipulate it for a while.
2nd: An external source
covers the object with a
handkerchief

Raise the handkerchief
in search of the object

Object of any size
and handkerchief that
manages to cover it
completely

Vision

4 An external source picks up
the object and, inside the
robot’s visual field, places
it under the tissue A on its
right, and then moves it to
the tissue B on its left

Find the object in A,
ignoring the offsets

Object of any size and
wipes that can cover it
in full

Vision

5 An external source picks up
the object and, inside the
robot’s visual field, places
it under the tissue A on its
right, and then, it moves it
to the tissue B on its left

Searches for the ob-
ject in the function
of its displacements.
Looking at the last
place you saw him hid-
den, however, you will
not search in a place
where you did not see
him hidden

Object of any size and
wipes that can cover it
in full

Vision

6 An external source picks up
the object and, out of the
robot’s visual field, places it
under the handkerchief and
then adds a pillow over the
handkerchief

Lift the cushion, lift
the handkerchief and
find the object. The
permanence of the ob-
ject is fully conquered;
he seeks an object
even if he has not seen
it hidden. Can master
various combinations

Object of any size,
handkerchief that can
cover it completely
and cushion that cov-
ers the scarf

Vision

Table 5.6: Experiments related to the process of learning the concept of object permanence
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Perceptual constancy - Constancy of form
Sub-
stage

Activity Expected result Comments Sensors

3 An external
source delivers
one object at
a time to the
robot

Do not position the
received object in the
appropriate model
among those that are
positioned in front of
it

Position 4 objects with different
shapes (triangle, circle, square
and rectangle) in front of the
robot, in a fixed position. These
objects will be used as templates.
The external source has more ob-
jects equal to the models, but
also varying the color. Then, de-
liver these objects to the robot
by changing the angle on objects
that allow

Vision

4 An external
source delivers
one object at
a time to the
robot

Position the received
object in the appro-
priate model from the
ones that are posi-
tioned in front of it

Position 4 objects with different
shapes (triangle, circle, square
and rectangle) in front of the
robot, in a fixed position. These
objects will be used as templates.
The external source has more ob-
jects equal to the models, but
also varying the color. Then, de-
liver these objects to the robot
by changing the angle on objects
that allow

Vision

Table 5.7: Experiments related to the ability of learning perceptual constancy - Constancy
of form
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Perceptual constancy - Constancy of greatness
Sub-
stage

Activity Expected result Comments Sensors

4 1st: An external source several
times, places a familiar object for
the robot inside the larger box
so that he gets used to choos-
ing the larger of the two boxes
when looking for the object. 2nd:
Replace the larger box with one
that is smaller than the small one.
3rd: Place the object under the
larger box between the two and
check which of the two the robot
chooses

It is confusing and of-
ten errs when choosing

The boxes should be similar,
but of different sizes. Stay-
ing at each stage of the ex-
periment for a period that
is sufficient for the robot
to adapt and observe the
changes

Vision

5 1st: An external source several
times, places a familiar object for
the robot inside the larger box
so that he gets used to choos-
ing the larger of the two boxes
when looking for the object. 2nd:
Replace the larger box with one
that is smaller than the small one.
3rd: Place the object under the
larger box between the two and
check which of the two the robot
chooses

Trained to choose the
largest of two boxes,
the robot continues to
choose correctly, even
if the larger box is
moved away and this
corresponds, then, to
a smaller retinal image

The boxes should be sim-
ilar, but of different sizes.
Staying at each stage of the
experiment for a period of
time that is sufficient for the
robot to adapt and observe
the changes

Vision

Table 5.8: Experiments related to the ability of learning perceptual constancy - Constancy
of greatness

Indirect Learning
Sub-
stage

Activity Expected result Comments Sensors

2 Place two
Robots together

Each one begins exploring
the environment indepen-
dently

Objects placed within reach,
that either o nothing, cause
a good reaction or cause a
bad reaction.

Vision

2 Objects in en-
vironment affect
the robots emo-
tional state

Robot expresses the altered
emotional state

Use LED or something of the
sort to express the current
emotional state

Vision

2 Emotional state
expressed by the
robot

Robot learns about the ob-
ject the other was interact-
ing with through the emo-
tion that was expressed

This is possible since both
robots are the same (anal-
ogy to being of the same
"species"). So it is safe
for one robot to assume
that what affects the other
will affect him in the same
way (also possible because
we are considering the prim-
itive emotions: joy and
fear/anger)

Vision

Table 5.9: Experiments related to the ability of indirect learning
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Inherent and Non-Inherent Fears and their Modification throughout Time
Sub-
stage

Activity Expected result Comments Sensors

2 Place two Robots to-
gether

Each one begins ex-
ploring the environ-
ment independently

Each robot has inherent
fears (for example to a color
or shape)

Vision

2 Objects in environ-
ment affect the robots
emotional state and
(or) inner state

Robot expresses the
altered emotional
state

Depending on the effect the
object has, it can positively
or negatively reinforce the
inherent fear. Also, depend-
ing on the object, it can in-
troduce (a) new fear(s)

Vision
and
Battery
life

2 Emotional state ex-
pressed by the robot

Robot learns about
the object the other
was interacting with
through the emotion
that was expressed

This can cause positive or
negative fear reinforcement
(indirectly). Observations in
the last line of Table 5.9 col-
umn Comments remain of
importance

Vision

3 Continue exploring Robots are less or
more inclined to in-
teract with different
types of objects

This is due to the rein-
forcement (direct or indi-
rect) which previously oc-
cured

Vision
and
Battery
life

Table 5.10: Experiments related to the ability of inherent and non-inherent fears and
their modification throughout time
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Object Modification as to Avoid Pain/Fear
Sub-
stage

Activity Expected result Comments Sensors

2 Place two
Robots together

Each one begins exploring
the environment indepen-
dently

Each robot has inherent
fears (for example to a color
or shape)

Vision

2 Objects in en-
vironment affect
the robots emo-
tional state and
(or) inner state

Robot expresses the altered
emotional state

Depending on the effect the
object has, it can positively
or negatively reinforce the
inherent fear. Also, depend-
ing on the object, it can in-
troduce (a) new fear(s)

Vision
and
Battery
life

2 Emotional state
expressed by the
robot

Robot learns about the ob-
ject the other was interact-
ing with through the emo-
tion that was expressed

This can cause positive or
negative fear reinforcement
(indirectly). Observations in
the last line of Table 5.9 col-
umn Comments remain of
importance

Vision

3 Continue explor-
ing

Robots are less or more in-
clined to interact with dif-
ferent types of objects

This is due to the rein-
forcement (direct or indi-
rect) which previously oc-
curred

Vision
and
Battery
life

4 Continue explor-
ing

Robots learn what charac-
teristic identifies an object
with negative effects

Maybe all objects of a cer-
tain color or a certain shape
are "bad"

Vision
and
Battery
life

5 Eliminating the
Threat

The Robots at least avoid
the "bad" objects, but
if possible, eliminate the
threat by either changing
them as to not cause harm
or eliminating them entirely

Vision

Table 5.11: Experiments related to the ability of object modification as to avoid pain/fear
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Chapter 6

Attentional framework experiments

Although there are many modules of cognition implemented in CST [70][18][37], the at-
tentional pathway that was considered an essential element for cognition, and that has
been proposed by a recent work of our group [23, 22], needed some adjusts to fit this
work (such as normalization of sensor readings and their combination for specific feature
maps) purposes. Also, it required improvements related to the time interval used to cal-
culate the inhibitory and excitatory periods, which was done throughout this work. In
this chapter, we show the implementation, deployment, and validation of the attentional
system of CONAIM in CST, modeling the components and the cycle of one architecture
to another. The validation environment, the sensors we used, the features we chose, CST
modeling, and results are detailed next.

6.1 CONAIM+CST Attentional System

In this work, we enhanced an initial implementation of the CONAIM attentional system
in CST. Figure 6.1 presents the general diagram with components of the bottom-up
attentional elements of CONAIM implementation over the CST architecture. Note that
this diagram minimizes the multiplicity of relationships by assigning cardinalities of 1 or
n to them.

In CONAIM, the attentional cycle starts when the sensors of the agent receive infor-
mation from the environment. The sensor data is captured by the Get Sensor codelets
and stored in the respective MO’S at each cycle, and a limited quantity of them is stored
in Buffers forming the Sensory Memory [66]. The next step is the construction of Feature

Maps through Feature Map Extractors (responsible for the process of object identification
through features as shape, motion, color, etc [20]) that composes the Perceptual Codelets.
Continuing the flow in CONAIM+CST, the next step is to compose the Combined Fea-
ture Map. This map is calculated by a weighted sum of the values in each Feature Map,
considering the weights presented in WeigthMO. This Combined Map is multiplied (point
to point multiplication) with the Attentional Map (which is initialized with unitary values,
simulating an environment without winners) to compute the Saliency Map. Then, the
DecisionMaking codelet updates: a) the Attentional Map values and define the winner
of that timestamp using the Winner Takes All (WTA) approach (this procedure may be



67

SaliencyMap
Computer

LI

GI

O

A

SensorBuffer
Generator

O

A

LI

GI
FeatureMap
Extractor

O

A

LI

GI

CombinedFeat
MapComputer

LI

GI

O

A

Decision
Maker

O

A

LI

GI

Sensor
MO

SensorBuffer
MO

FeatMap
MO

CombFeatMap
MO

SalMap
MO AttMap

MO

1 1 1 n n

1

1
1

n

11111

1

1
1 1

1

1
1

Get
Sensor

O

A

LI

GI

1 1

Memory Object

Perceptual Codelet

Sensorial Codelet

Attentional Codelet

Sensory Memory

Perceptual Memory

Attentional Memory
Decision
MO

n
1

Environment
(V-REP with RemoteAPI)

Memory Container

Weights
MO

n

1

Figure 6.1: The bottom-up attentional elements of CONAIM implementation over the
CST architecture.

extended by the user); b) the Saliency Map and c) the inhibitory and excitatory cycles of
the Bottom-up model. This process comprises the Attentional codelets implemented.

It is important to remark that this diagram refers to the general representation in
CST to any bottom-up pathway based on CONAIM and implemented in CST. In the
next section, we will present an implementation of these new framework elements for the
sake of our application.

6.1.1 Deploy to CST

After the modeling presented in the last section, three new classes were built and im-
plemented within the new CST sensory package. These were SensorBuffer Codelet, Fea-
tureMap Codelet, and CombinedFeatureMap Codelet. The UML diagram of these 3
classes can be seen in Figure 6.2.

When detailing the structure of these classes, it should be noted that they all inherit
from Codelet, so they must all implement their abstract methods, the most important
of which is proc(), which is Codelet’s logical process. However, FeatureMap and Com-
binedFeatMap Codelets are also abstract. This is because semantically, it is much more
robust to let each application choose and build its features on FeatureMap. Same for
CombinedFeatMap, where there may be different types of data for which it is not possible
to construct a generic concrete method.

For the SensorBuffer, on the other hand, a generic method for deep copies of the MOs
related to the sensor data was implemented. These copies are made through existing seri-
alizer objects within the Java language. As the MemoryObject class already implements
this interface, it is enough that the information stored inside an instantiated MO also
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Figure 6.2: Diagram classes of Sensorial package

implements it.
From this, we implemented the attentional process (Figure 6.3) itself: Attentional Map

generation, bottom-up Inhibition of Return (IOR) calculation, Salience Map calculation,
and the election of winners, closing the cycle that influences the Attentional Map.

Functions that implement IOR are always based on negative exponentials as a function
of time to generate a decay of attention. They are regulated by constant parameters,
influencing the excitatory or inhibitory course of the agent’s attention. More details on
the modeling of IOR in CONAIM can be found in [21].

Figure 6.3: Diagram classes of Attentional package

6.2 Validation Scenario

The experiments were performed in a simulated environment. The chosen simulator is
V-REP (Virtual Robot Experimentation Platform) [24]. This simulator is exceptionally
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accessible and user-friendly with an intuitive scene editor, flexible remote API, and mul-
tiple alternatives for the physical back-end. Mainly, V-REP’s dynamics module currently
supports Vortex Dynamics, a physics engine that produces high fidelity physics simula-
tions. Pioneer P3-DX robot was used as our reference robot architecture. More details
about the robot configuration are presented next.

6.2.1 Sonars

The original Pioneer P3-DX model in V-REP has sixteen proximity sensors (8 of them
in the front 180o, and the other 8 in the rear 180o). These sensors rely on ultrasonic
propagation to produce data. By emitting and receiving pulses, the sonar is capable of
calculating a distance to an obstacle based on the pulse’s echo.

(a) (b) (c)

Figure 6.4: (a) Sonar readings (Extracted from [21]); (b) Example of sonar sensors overlap
(yellow) and blindspots (black); (c) V-REP modeled Pioneer P3-DX.

As it can be seen in Figure 6.4 the Pioneer’s sonars positioning produces no overlapped
data. Since the sensor’s capturing spectrum is broad and cone-shaped, there will be noise
in the acquired data. Another concern is the blind-spots in which no information is
captured, thus, making it a risky situation for the robot’s safety.

6.2.2 Laser

Since using sonars can generate an extensive amount of noise in the point-clouds acquired,
the 2D laser scanner was an option used to cope with this situation. Therefore, this piece of
hardware can be described as a non-collision high-resolution sensor. Although also basing
its information on obstacle distance, it is possible to see in Figure 6.5 that the positioning
of the laser rays emitted do not overlap each other, but cover well the surroundings of the
robot. Is is also a sensor with a larger scanner range than sonars.

(a) (b)

Figure 6.5: (a) 2D laser scanner emission (Extracted from [21]); (b) V-REP modeled 2D
laser scanner.
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6.3 Data Observation

To conduct the experiments proposed in this work, we used a combination of sonars and
laser sensors. Although both measure distance, we positioned them at different heights
in the robot, thus capturing distinct data and having different ranges (sonar ranges up
to 1m and laser ranges up to 10m). This allows us to simulate inter-modal perception (a
combination of data from different sources). Pioneer P3-DX is already equipped with 16
sonars, but we used only the eight-front sonar readings (sonarn with n ∈ [1, 8]). The 2D
Laser Scanner sensor was positioned in the top-center of the robot body, which was able
to obtain 180 readings (rangen with n ∈ [1, 180]) each cycle, referring to the data from
the front of the robot. Figure 6.6 illustrates the final disposition of the sensors and their
measurements and ranges in the robot.

Figure 6.6: Disposition and labels for the eight sonar measurements (F1-F8) and 180
range scanner measurements (F0 - F179). Extracted from [76]

The observation spaces represent the data collected from the sensor and they are
defined as:

• O1 represents the observation space for sonar readings, defined by: o1nt
= sonarnt

with n ∈ [1, 8]

• O2 represents the observation space for range scanner readings, defined by: o2nt
=

rangent
with n ∈ [1, 180]

Where t represents the current time.

6.4 Feature Extraction

For the following experiments, two feature maps that aim at detecting saliences in their
specific domain were constructed from data from multiple observation spaces: direction
and distance. The first feature map, F1, represents saliences over the relative direction
from objects in the scene to the attentive robot (the robot running the CST+CONAIM
system). The second feature map, F2, is concerned with saliences in the static displace-
ment of objects relative to the attentive robot.

• F1: Direction
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Considering the Attentive Robot as a reference and 3 possible directions: 1) approx-
imation to the robot; 2) remoteness from it and 3) no change of direction. Because
the direction feature map employs sonar and range scanner readings to compute the
corresponding feature map, we will need to combine them to form the final direction
feature map. First, we compute for all sonars:

tf 1

1nt
=











1 if ∆s1n
∆t

> 0

−1 if ∆s1n
∆t

< 0

0 otherwise.

(6.1)

where ∆s1n = o1nt
− o1nt−1

is the sonar reading between time t and t− 1 (∆t), with
n ∈ [1, 8]. Then, to measure the level of discrepancy, each tf 1

1nt
is used to compute:

zO1nt
=

count(tf 1
1nt

)

8
(6.2)

where count(tf 1
1nt

) is a function that determines the number of occurrences of the
value -1, 1 or 0 for all tf 1

1nt
. Then, we perform the same calculation to compute

tf 2
1nt

for the range scanner readings. However, now n ∈ [1, 180], ∆s2n = o2nt
− o2nt−1

and zO2nt
is given by:

zO2nt
=

count(tf 2
1nt

)

180
(6.3)

Finally, we compute each f1nt
∈ F1, with n ∈ [1, 8] by:

f1nt
= max(zO1nt

, zmax
O2nt

) (6.4)

where zmax
O2nt

is the maximum value for zO2it
with i varying in the intervals [1, 22],

[23, 44] , ..., [155, 180] for n ∈ [1, 8], respectively, This reduces the dimension of the
final feature map to 8.

• F2: Distance

This feature is responsible for extracting information concerning the disposal of ele-
ments around the attentive agent. We compute it using the range scanner readings
according to:

f2nt
= |o2nt

−

180
∑

k=1

o2kt

180
|/mr (6.5)

where n ∈ [1, 180], and mr is the saturation value of the range scanner, 10m in this
case.
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6.5 Modeling at CST

To implement the attentional model proposed with the Sensor, Observation Spaces, and
Feature Maps described in CST, we extended the framework presented in Figure 6.1 with
the attentional module structured as shown in Figure 6.7.
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Figure 6.7: Validation Attentional Module CONAIM implementation over the CST ar-
chitecture.

The most primitive codelets are represented by Motor Codelet, Get Sonar Codelet,
and Get Laser Codelet. These components are directly connected with the V-REP sim-
ulator remote API and communicate directly with the Pioneer robot. Therefore, the raw
distance data is passed directly to the Sonar Buffer Generator and Laser Buffer Gen-

erator Codelets that output Memory Objects that will be used to compute the robot’s
distance and direction values by the Direction FM Generator and Distance FM Generator

Codelet. The Distance (Equation 6.5) is a direct calculation of the values computed by
the laser (measurements are only normalized before the computation of distance), while
the direction (Equations 6.1 - 6.4) is obtained by a combination of laser and sonar values
(both normalized before the computation of direction), and its final dimension is equal to
the sonar dimension: eight, relating to the front sonars.

The UML diagram of the classes implemented for this application can be seen in
Figure 6.8. The two key components of the application are the AgentMind classes and
OutsideCommunication, which were adapted from the material available at [38]. Agent-
Mind is inherited from Mind class, which aggregates Raw Memory and Coderack to form
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the cognitive system. Thus AgentMind will be the creator of all MOs and Codelets of the
application. In turn, OutsideCommunication deals with the robot’s external communica-
tion, i.e., its sensors and actuators. This class is designed to have specific implementations,
depending on the simulation program used or if it is communicating with a real robot.

Figure 6.8: Validation application class diagram

In this sense, minimal Sensor and Motor interfaces have been created, thinking of
Pioneer P3DX robots, which have two motors, one for each wheel. These interfaces define
methods such as getData() to get sensor data and setSpeed() to change motor speed.

6.6 Attentional Modules Validation Experiment

As a first validation of the deployment of CONAIM in CST, we proposed to experiment
with one immobile attentive Pioneer robot (equipped with laser and sonar sensors) stand-
ing in an environment and running the CST+CONAIM system. Along with this robot,
there are static obstacles in the scene (walls and colored objects) and a moving robot
(equipped only with sonars) running the Braitenberg algorithm [15], as shown in Figure
6.9. This experiment aimed to test the functioning of the framework attentional modules,
and verify if they were working as proposed.

The most basic Sensor codelets (Sonar and Laser) must collect environmental infor-
mation, which is stored in limited quantity in the Sensory Memory (Buffer codelets) and
then used to construct the Feature Map (Distance, Direction and Combined Feature). The
codelet that assembles the Salience Map must be correctly multiplying the Combined Fea-
ture Map with the Attentional Map (which is initialized with unit values, simulating an
environment without winners).

Finally, the Decision-Making codelet must correctly assemble the next Attentional
Map and define the winner of that timestamp, based on the Salience Map and the in-
hibitory and excitatory cycles of the Bottom-Up model.
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Chapter 7

Attentional learner agent

In this Chapter, we aim to extend the framework proposed in Chapter 6 to allow an agent,
running the bottom-up course of attention, to learn how to improve its behavior. This
new set of experiments will assess the importance of attention in the learning process
by evaluating the possibility of learning over the attentional space. For this purpose, we
modeled the essential cognitive functions necessary to learn and used bottom-up attention
as input to a reinforcement learning (RL) algorithm. More details will be presented next.
For all experiments, we will use the same robot, sensors, observation spaces, and feature
maps described in the last chapter.

To design this experiment, we used the methodology presented in Section 5.1.

7.1 Purpose of the experiment

In this experiment, the goal of the robot is to learn to detect and react to saliences in
the environment, which corresponds to the objectives of the activities of second sub-stage
for the ability Search for touch and sound source using the classification of our proposed
sensorimotor experiments (Chapter 5) and it is highlighted in the Table 7.1.

7.2 Robotics equivalent experiment

As the Pioneer robot has no microphone and tact sensors, we employed other sensors
to obtain data simulating the multimodal experience. The sensors used and their ar-
rangement was the same as in the previous Chapter (sonars and laser) with the addition
of the Ground Truth sensor to capture the real position of the attentive robot in the
environment.

The actuators also remain the same (left and right wheels). However, in this experi-
ment, the wheels speeds are not fixed as in the previous Chapter.

7.3 Cognitive architecture modeling

In this step, we identified which sub-set of modules of CONAIM are involved (Figure 7.1).
We used two sensors (laser and sonar) to capture the data from the environment, and
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Search for touch and sound source
Sub-
stage

Activity Expected result Comments Sensors

1 An external
source touches
the robot

Random moves Touch the robot on
several parts of the
body and on both
sides

Tact
(pressure
sensors)

1 An external
source emits a
beep near the
robot

Do not identify the sound source The sound source shall
be emitted from differ-
ent places

Hearing
(micro-
phone)

2 An external
source touches
the robot

The robot must learn to perform the
action with the associated function of
"look at the source" of the touch, but
without intention

Touch the robot on
several parts of the
body and on both
sides

Tact
(pressure
sensors)

2 An external
source emits a
beep near the
robot

The robot must learn to perform the
action with the associated function of
"looking at the source" of the sound,
but without intention. First there is
the accommodation of the head to-
wards the sound and then the coordi-
nation between sight and the ear

The sound source shall
be emitted from differ-
ent places

Hearing
(micro-
phone)

3 An external
source touches
the robot

The robot organizes the cognits to ful-
fill the goal of looking at the touch
source

Touch the robot on
several parts of the
body and on both
sides

Tact
(pressure
sensors)

3 An external
source emits a
beep near the
robot

The robot organizes the cognits to ful-
fill the goal of looking at the sound
source

The sound source shall
be emitted from differ-
ent places

Hearing
(micro-
phone)

Table 7.1: Sensorimotor experiment ability chosen.

their values compose the Sensory Memory. As described in section 3.2.1, in this work we
covered only the bottom-up component of attention. CONAIM’s bottom-up attentional
cycle is composed of the Feature Maps and the weights associated with each (all have the
same importance here), Combined Feature Map, Salience Map, and Attentional Map. So,
we used these modules. For decisions, it is necessary to use the Decision-Making module.
Concerning the memories, we used the Working Memory and Procedural Memory. Finally,
the actuators module must perform the robot’s actions in the environment.

7.4 Temporary course and Deploy to CST

For the learning experiment, a codelet called Learner Codelet has been implemented to
use the class QLearning [91, 7, 82] (that implements the Q-Learning algorithm in CST)
and gather the memory components necessary to make the attentive agent learn. Figure
7.2 shows the final scheme of codelets and memory objects (the temporary course starts
with the sensorial codelets and follows the order of the arrows).

This diagram differs from the one in the last Chapter (Figure 6.7) in two points:
(1) the addition of Ground Truth sensorial codelet and its respective Memory Object,
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Figure 7.1: Modules of CONAIM involved in the experiment.

(2) the addition of the Learner and Behavioral codelets with their respective Memory
Objects, and the change of input to the Motor Codelet (left and right wheels speed) to
WheelsContainer.

With the information of the Winner (output of Decision Maker codelet) and the
salience levels, we can use it to feed the Learner Codelet that implements an intelli-
gent algorithm to learn what action the agent must take at each time step. Finally, this
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action is passed to the Behavioral Codelets, which fulfills each of their behavior. It sends
the action instructions to the Memory Container (Subsumption Architecture [16]), which
decides which action must be performed by the Motor Codelet and save the values in the
Motor Memory [66].

In this learning agent, Q-Learning requires the specification of the associated MDP
(Markov Decision Process) in terms of actions, states, and rewards. The list of actions is
directly related to the task the agent must learn to perform, and it will differ among our
experiments.
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Figure 7.2: CONAIM deployed in CST with Learning

All these actions are translated into the robot’s behavior, so the action learned in each
cognitive cycle is saved in ActionListMO. The behavioral codelets implement the wheel’s
speed calculation specifically for their behavior regardless of the action that came from
the learner. However, in every cognitive cycle, each behavioral codelet verifies if the action
received corresponds to its specific behavior. If positive, it sets the parameter eval (E)
of its corresponding Memory Object in WheelsContainer to 1 (maximum); otherwise to
0 (minimum). As the WheelsContainer (a Memory Container) has an internal selection
structure that selects the information (I) of MO with the highest value in each cognitive
cycle, only the speeds corresponding to the action determined by the learner will proceed
further in the cognitive cycle as an input to the Motor codelet. Finally, through the Motor
codelet, the agent updates and moves around the environment, restarting the cycle. Figure
7.3 illustrates this process.
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When an action selected by the algorithm is to Move Forward, the same speed
(greater than 0) is passed to the left and right wheels. When the action is Do nothing,
a velocity equal to zero is passed to these wheels.

To decide which side the agent should Rotate when the corresponding action is se-
lected, it is necessary to have access to Pioneer’s current orientation and the sonar angular
position referring to the feature Vt (index of the winner feature of the attentional focus in
instant t selected by the Decision Maker codelet). Vt ∈ [0, 7] (dimension of Salience

Map). To acquire the agent’s orientation via V-REP, a new codelet was created. The
GroundThruth, which could capture these values in the simulator and stores in the mem-
ory object GroundTMO. Once these values are obtained, the target angle is calculated
as pioneerOrientation + SonarAngles(Vt), and a P Controller that controls the angular
velocity is executed (until the learner sends a new action). The Controller has Kp = 8
(Kp is the Proportional gain), and the error to the desired angle allowed is 0.0349066
rad. The experiments executed to define the controller variables are shown in appendix
A. Figure 7.4 shows how the target angle is computed.

Vt
PioneerOrientation

�

Vt

PioneerOrientation

�

Figure 7.4: Scheme illustrating robot rotation decision logic

The states (E) designed for our experiments are directly linked to the Salience Map
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Figure 7.5: Scheme illustrating single-state Salience Map discretization process.

(S). If the map has t possible dimensions (t = 8 in this case, the same dimension as
the Salience Map), it is necessary to map these values to one that represents the current
state: St =⇒ Et.

As indicated in Figure 7.5, to perform the mapping procedure, we first normalize each
of the St values between 0 and 1, according to:

ni =
si −min(St)

max(St)−min(St)
(7.1)

Each element ni is discretized into one of τ possible values, that are defined according
their values inside the range λ ∗ τi|1 ≤ i ≤ τ , giving rise to the intermediate map Nt.
Each value of this map is multiplied by its respective τ t, and when added they return
the state Et. It is important to note that St, Nt e Et have the same dimension t. In our
experiments we chose τ = 5 and λ = 0.2. This allows us to work with a fixed uniform
discretirzation over the continuous input received from the Salience Map.

Therefore, given a Salience Map, we can infer its state. The states, for τ = 5, range
from 0 to 58 − 1, which is one of the dimensions of the QLearnig algorithm table. The
other dimension is the same as Actions.

To perform the learning, that is, to update the table in each iteration, the algorithm
still needs the reward function, and it will vary among our experiments.

At the beginning of each Learner Codelet iteration, the state and action of the previous
instant et−1 and at−1 were first acquired. With these variables, and calculating the reward
rt that the current instant provides, the learning table is updated at position et−1 and
at−1 with the value computed considering rt. After the update, the next action is selected,
and et is the new state.

7.5 Evaluation

Each experiment executed and presented in the following section had a specific objective:
either to explore more regions of the environment without crashing, to approach or to keep
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away from the salience detected in the environment during the simulation. They employed
different rewards, state and action spaces, but they also shared a common structure. An
RL process can be divided into two parts: learning and testing. To the agent learn, it is
necessary to make a series of simulation rounds by randomly drawing the agent’s starting
position and setting a stop condition to reset the round and start a new simulation while
updating table Q. We employed 1,000 episodes with a maximum of 700 actions each. We
defined a simulation round to start again when the robot collided with any object or when
it completed 700 actions. The analysis of whether the agent struck any object is made
using a threshold value over its sensor readings.

In addition, some QLearning parameters were common among learning experiments.
These parameters and their values are: ǫ = 0.95, α = 0.5 and γ = 0.9. ǫ refers to the
probability that the algorithm will choose a random action over the best one. It decays
linearly with the episodes to zero. The α value refers to the learning rate and γ to the
temporal discount factor.

Figure 7.6 illustrates the scenes used in the experiments described next.

(a) (b)

Figure 7.6: Scenes used in the experiments. (a) EXP01, EXP02 and EXP03, (b) EXP04,
EXP05 and EXP06.

Each experiment involving the attentional agent (EXP02, EXP03, EXP05, and EXP06)
had three modes of execution, differing in the data used to calculate the states. They are:

1. Mode Salience: uses the Salience Map to compute the states.

2. Mode Sonar: the states are calculated using the sonar readings.

3. Mode Salience + Sonar: the states are calculated using the Salience Map and
the Sonar readings. Here t = 9, τ = 5 so the states range from 0 to 59 − 1.
All the calculations illustrated in Figure 7.5 remain the same, except the process
between St8 and Nt8 , which corresponds to the sonar. In this part, we used only the
combination of 4 frontal sonars, discretized in 2 possible values (1 if sonar reading
is ≤ 0.5, 0 otherwise).
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The sensors employed in the experiments are the Sonar and Laser sensors deployed in
the Pioneer P3-DX robot (as depicted in Figure 6.6). In total, the data from 8 frontal
sonars and 180 readings of the laser, also covering the frontal 180o, were captured. While
the sonar scanning range varied from [0-1]m, the laser was in the [0-10]m interval.

All the experiments described next follow the purpose presented in Section 7.1, but we
separate them into two experimental sets modifying the dynamics of the salience source
between them. While in the experiments EXP01, EXP02 and EXP03 (first experimental
set) the salience source is static (only fixed objects in the environment), in EXP04, EXP05
and EXP06 (second experimental set) the salience source can be static (fixed objects in
the environment) or dynamic (presence of a second robot in the environment using the
Braitenberg algorithm to move). In the latter case, we have a more complex environment,
as it involves the attentive robot operating in a scenario with both static and dynamic
elements.

Each experiment described next used a set of actions and their respective rewards
according to their objective. However, the fundament for the reward functions was the
same: the robot should not stay immobile in the environment for a long time. Therefore
the associated values for this action are null (minimum). Furthermore, we do not want
the robot to turn for a long time, so the cost associated with this action is intermediate.
Finally, as the objective of the experiments is for the robot to explore more regions of the
environment without crashing, the action of moving forward is the one that promotes the
most significant movement of the robot in the environment considering the space traveled,
so this action is associated with a higher score.

7.5.1 EXP01: Non-attentive agent

The goal of this experiment was to make the robot learn to explore the environment to
the fullest (explore more regions of the environment without crashing) using the set of
actions listed in Equation 7.2 but without any influence of an attentional system. The
states were computed using the sonar readings. The reward function was defined according
to Equation 7.3.

A ={a1, a2, a3, a4}

a1 −→ Move forward

a2 −→ Turn Left

a3 −→ Turn Right

a4 −→ Do nothing

(7.2)

rt = {1, Move forward

0.5, Turn Left, Turn Right,

0, Do nothing}

(7.3)

Figure 7.7 shows the average and standard deviation of rewards and actions during
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that the robot indeed has learned either to go-to or move away from salient elements,
according to the experiment goal.

Looking at the trajectories performed by a non-attentive robot (Figure 7.9(d) and
7.14(d)), it can be observed that the agent almost showed a linear path, with little curves.
This can indicate that the robot learned to move forward and turn when it is indispensable
(avoid an obstacle).

Considering the testing executions of each configuration to action Turn away from

Winner, the action average in EXP03 is 271.66 to Salience, 238 to Sonar, 226 to Salience
+ Sonar and 261.66 to non-attentive. For EXP06, this value is 257 for Salience, 222.6 for
Sonar, 122.3 for Salience + Sonar, and 125.6 for the non-attentive. While to action Turn

Towards the Winner in EXP02 is 1692.66 to Salience, 692.66 to Sonar, 365 to Salience +
Sonar, and 261.66 to non-attentive. Finally, in EXP05, these values are 590 to Salience,
320 to Sonar, 242.3 to Salience + Sonar, and 125.6 to non-attentive. Therefore, the
Salience Map experiment offered the best results.

An interesting event was that even with better rewards during the learning phase in the
second test set (EXP04 to EXP06), the number of actions in the trajectories performed
during the testing phase in that set was worse than those in the first test set (EXP01 to
EXP03). It is important to remark that the decision making learned over the salience
map considers information from both laser and sonar readings once they were used to
create the feature maps that were combined to detect Salience. With this, it was possible
to promote a state-space reduction that, if not possible, would prevent us from using laser
data in the same way that the sonar readings were applied. In this case, the proposed
learned model was able to learn a better policy over a state space that is a 95% reduction
of its original sensorial space. It is also important to remember that when looking for the

source of sound and touch, as proposed as our basic experiment, the salience based model
would be the most successful approach as it keeps track of the salience in the environment
by turning towards the winner.
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Chapter 8

Conclusions and future works

In this work, we aimed at investigating which modules in a cognitive architecture are
necessary to control a robot that interacts with its environment while performing a set of
sensorimotor experiments with increasing difficulty. We also aimed to evaluate whether
it was possible to successfully learn how to behave to solve a task over the attentional
space.

To achieve this goal, we deployed the bottom-up attention module of CONAIM in the
CST framework and validated the attentional modules involved. We also have successfully
extended the architecture to encompass learning. We carry out experiments involving
learning over the features and attentional spaces. The reported experiments show that
using the attentional map, specifically the salience map, as input to a Reinforcement
Learning algorithm leads to results as close as those achieved when using the original
sensorial space, but with a sensitive reduction on the search space. Indeed, the state space
reduction promoted by the attentional system without information loss (95% reduction
on sonar+laser experiment with salience) is crucial to the use of multiple or redundant
sensors without impairing the system feasibility. One drawback happens when no salience
is identified in the scene, and the robot behavior is erratic.

Considering the lack of formalization on how to conduct and assess agents learning
in DevRobotics, we conducted a theoretical study on human development and the stages
and concepts defined by Piaget related to it. Since learning is cumulative and the most
complex cognitive functions emerge after the simplest ones, we focused our studies on the
sensorimotor stage defined by Piaget, which corresponds to children aged 0 to 2 years.
As a result, we proposed a set of incremental experiments, in different categories, to be
applied in robots, which follow the same development observed in humans. The definition
of a set of cognitive experiments inspired by Piaget’s theory that could be used to assess
agents learning in DevRobotics is an important contribution of this work.

Through all the material generated in this research, it is possible to map the cognitive
functions involved and their activation dynamics for each experiment. Besides, it becomes
possible to explore what are the functions required for each activity and the impact of
the presence or absence of these functions on the agent.

As future work, we suggest tackling the drawbacks of using the attentional space to
include a Top-down mechanism that would act in the absence of salient stimuli. Another
possibility of improvement is associating observations over the original sensory data de-
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scribed in higher levels of encoding (as we did in the experiment using Salience and Sonar
to compute the states) to the attentional space to allow for more complex decisions. Also,
when comparing the experiments described in sections 7.5.2, 7.5.3, 7.5.5 and 7.5.6, it is
possible to note that the set of actions directly affects the quality of learning and driving
the robot towards salient stimuli, such as formulated, led to crashes. Future work could
explore further configurations involving Salience maps and sensory data for the state space
representations while developing the Top-down attentional mechanism for more complex
decision-making.

Also, we suggest exploring new features derived from vision and evaluating the impor-
tance of emotion and motivation in learning. Besides, as one of the critical and essential
factors related to learning and cognitive development observed in humans is sleep, we
should address such aspects.

Finally, we should conduct the proposed experiments in the same incremental way as
we proposed in our Piaget’s inspired experiments.
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Appendix A

Controller

We used a closed loop controller to control the angular velocity of the robot with the
actions Rotate towards the winner and Rotate in the opposite direction of the winner

implemented on behavioral codelet Rotate.
The goal of the robot is turn the angle defined in each experiment. The set of angles

was [10,90] degrees, varying the values of the interval in 10 degrees.
The controller chosen to test were Proportional (P). It is the simplest type of feedback

control and the control variable is proportional to the measured error as is illustrated in
Figure A.1. Multiplying factor Kp (Proportional gain) allows to control how quickly we
get to the desired point (Algorithm 1). The experiments were with Kp = 1 to 12.

P = Kp * e(t) Process OutputSetpoint Error e(t)+

-

Figure A.1: Generic closed loop control system with a P controller.

Algorithm 1: P Controller

1 error = reference – measured;
2 u = Kp * error;;
3 motor(u);

The results are shown in Figure A.2 and it’s possible to see that the best value was
Kp = 8, because it didn’t has overshoot, different from others. So this value was used in
all experiments described in this thesis.

Obs: The graph has some steps between values. This is because the values were
obtained in each cognitive cycle, and this cycle time is faster than the time needed to
start turning.
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Appendix B

Resulting Publications

Three publications have been produced or are being produced as a result of this work:

• BERTO, L. M; ROSSI, L. L; ROHMER, E., COSTA, P. D. P.; SIMOES, A. S.;
GUDWIN, R. R.; COLOMBINI, E. L. Learning over the Attentional Space with
Mobile Robots. Submitted to IEEE International Conference on Development and
Learning (ICDL) 2020.

• BERTO, L. M; ROSSI, L. L; ROHMER, E., COSTA, P. D. P.; SIMOES, A. S.;
GUDWIN, R. R.; COLOMBINI, E. L. An Attentional Model for CST. Ready to be
submitted to the Cognitive Systems Research Journal.

• BERTO, L. M; ROSSI, L. L; ROHMER, E., COSTA, P. D. P.; SIMOES, A. S.;
GUDWIN, R. R.; COLOMBINI, E. L. Piagetian Experiments for Robots in DevRo-
bitcs. Under construction.
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