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Dicebat Bernardus Carnotensis
nos esse quasi nanos,
gigantium humeris insidentes,
ut possimus plura eis et remotiora videre,
non utique proprii visus acumine,
aut eminentia corporis,
sed quia in altum subvenimur et
extollimur magnitudine gigantea.

(John of Salisbury)
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Resumo

Demência por doença de Alzheimer (DA) é uma síndrome clínica caracterizada por múlti-
plos problemas cognitivos, incluindo dificuldades na memória, funções executivas, lingua-
gem e habilidades visuoespaciais. Sendo a forma mais comum de demência, essa doença
mata mais do que câncer de mama e de próstata combinados, além de ser a sexta prin-
cipal causa de morte nos Estados Unidos. A neuroimagem é uma das áreas de pesquisa
mais promissoras para a detecção de biomarcadores estruturais da DA, onde uma técnica
não invasiva é usada para capturar uma imagem digital do cérebro, a partir da qual es-
pecialistas extraem padrões e características da doença. Nesse contexto, os sistemas de
diagnóstico assistido por computador (DAC) são abordagens que visam ajudar médicos e
especialistas na interpretação de dados médicos, para fornecer diagnósticos aos pacientes.
Em particular, redes neurais convolucionais (RNCs) são um tipo especial de rede neural
artificial (RNA), que foram inspiradas em como o sistema visual funciona e, nesse sentido,
têm sido cada vez mais utilizadas em tarefas de visão computacional, alcançando resulta-
dos impressionantes. Em nossa pesquisa, um dos principais objetivos foi utilizar o que há
de mais avançado sobre aprendizagem profunda (por exemplo, RNC) para resolver o difí-
cil problema de identificar biomarcadores estruturais da DA em imagem por ressonância
magnética (IRM), considerando três grupos diferentes, ou seja, cognitivamente normal
(CN), comprometimento cognitivo leve (CCL) e DA. Adaptamos redes convolucionais
com dados fornecidos principalmente pela ADNI e avaliamos no desafio CADDementia,
resultando em um cenário mais próximo das condições no mundo real, em que um sis-
tema DAC é usado em um conjunto de dados diferente daquele usado no treinamento. Os
principais desafios e contribuições da nossa pesquisa incluem a criação de um sistema de
aprendizagem profunda que seja totalmente automático e comparativamente rápido, ao
mesmo tempo em que apresenta resultados competitivos, sem usar qualquer conhecimento
específico de domínio. Nomeamos nossa melhor arquitetura ADNet (Alzheimer’s Disease
Network) e nosso melhor método ADNet-DA (ADNet com adaptação de domínio), o qual
superou a maioria das submissões no CADDementia, todas utilizando conhecimento pré-
vio da doença, como regiões de interesse específicas do cérebro. A principal razão para
não usar qualquer informação da doença em nosso sistema é fazer com que ele aprenda
e extraia padrões relevantes de regiões importantes do cérebro automaticamente, que po-
dem ser usados para apoiar os padrões atuais de diagnóstico e podem inclusive auxiliar em
novas descobertas para diferentes ou novas doenças. Após explorar uma série de técnicas
de visualização para interpretação de modelos, associada à inteligência artificial explicável
(XAI), acreditamos que nosso método possa realmente ser empregado na prática médica.
Ao diagnosticar pacientes, é possível que especialistas usem a ADNet para gerar uma di-
versidade de visualizações explicativas para uma determinada imagem, conforme ilustrado
em nossa pesquisa, enquanto a ADNet-DA pode ajudar com o diagnóstico. Desta forma,
os especialistas podem chegar a uma decisão mais informada e em menos tempo.



Abstract

Dementia by Alzheimer’s disease (AD) is a clinical syndrome characterized by multiple
cognitive problems, including difficulties in memory, executive functions, language and
visuospatial skills. Being the most common form of dementia, this disease kills more than
breast cancer and prostate cancer combined, and it is the sixth leading cause of death
in the United States. Neuroimaging is one of the most promising areas of research for
early detection of AD structural biomarkers, where a non-invasive technique is used to
capture a digital image of the brain, from which specialists extract patterns and features
of the disease. In this context, computer-aided diagnosis (CAD) systems are approaches
that aim at assisting doctors and specialists in interpretation of medical data to provide
diagnoses for patients. In particular, convolutional neural networks (CNNs) are a special
kind of artificial neural network (ANN), which were inspired by how the visual system
works, and, in this sense, have been increasingly used in computer vision tasks, achieving
impressive results. In our research, one of the main goals was bringing to bear what is
most advanced in deep learning research (e.g., CNN) to solve the difficult problem of iden-
tifying AD structural biomarkers in magnetic resonance imaging (MRI), considering three
different groups, namely, cognitively normal (CN), mild cognitive impairment (MCI), and
AD. We tailored convolutional networks with data primarily provided by ADNI, and eval-
uated them on the CADDementia challenge, thus resulting in a scenario very close to the
real-world conditions, in which a CAD system is used on a dataset differently from the one
used for training. The main challenges and contributions of our research include devising
a deep learning system that is both completely automatic and comparatively fast, while
also presenting competitive results, without using any domain specific knowledge. We
named our best architecture ADNet (Alzheimer’s Disease Network), and our best method
ADNet-DA (ADNet with domain adaption), which outperformed most of the CADDe-
mentia submissions, all of them using prior knowledge from the disease, such as specific
regions of interest of the brain. The main reason for not using any information from the
disease in our system is to make it automatically learn and extract relevant patterns from
important regions of the brain, which can be used to support current diagnosis standards,
and may even assist in new discoveries for different or new diseases. After exploring a
number of visualization techniques for model interpretability, associated with explain-
able artificial intelligence (XAI), we believe that our method can be actually employed in
medical practice. While diagnosing patients, it is possible for specialists to use ADNet to
generate a diversity of explanatory visualizations for a given image, as illustrated in our
research, while ADNet-DA can assist with the diagnosis. This way, specialists can come
up with a more informed decision and in less time.
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Chapter 1

Introduction

Dementia by Alzheimer’s disease (AD) is a clinical syndrome characterized by multiple
cognitive problems, including difficulties in memory, executive functions, language and
visuospatial skills. Inexorably eroding the lifetime of memories and cognitive capacities
that define us as individuals, AD robs patients of their unique identity, leading them to
complete dependency for basic functions of daily life and ultimately to death.

Being the most common form of dementia, this disease kills more than breast cancer
and prostate cancer combined, and it is the sixth leading cause of death in the United
States [4]. Over a decade ago, nearly 25 million people lived with dementia worldwide,
and 4.6 million new cases arise every year [23]. In Brazil specifically, there is a lack of
general information regarding incidence and prevalence of AD dementia, but previous
studies suggested that around 7% of the aged population is affected, and the incidence
is estimated at 55 000 new cases each year [33]. By far, the single greatest risk for AD
is aging, as there is almost a 15-fold increase in the prevalence of dementia between the
ages of 60 and 85 years [21]. Markedly, the projected burden of the disease represents a
looming healthcare crisis as the population of most industrialized countries continues to
grow older.

The classic neuropathology of AD prominently includes intracellular aggregates of hy-
perphosphorylated tau protein that disrupt microtubule organization, and diffuse extracel-
lular amyloid β-protein (Aβ) deposition [65]. These pathological events are accompanied
by reactive microgliosis, oxidative stress and brain inflammation [31]. The loss of neurons
and synapses result in a slow and progressive degeneration of brain structures, which
can be seen as a dramatic cerebral shrinkage in structural magnetic resonance imaging
(sMRI). Atrophy is especially severe in the hippocampus and temporal structures, which
are areas that play a key role in the formation of new memories, and other cortical regions
are also affected, such as parietal and frontal cortices.

Although there is still not a cure, it is possible to treat both cognitive and behavioral
symptoms of AD. The early diagnosis of the disease is paramount, not to say the most
important hope, since it benefits patients’ treatment and gives them more time to plan for
the future. Moreover, clinical trials in AD tend to enroll subjects at earlier time-points,
before neuronal degeneration has achieved a certain stage and treatment might be more
effective. Even though detecting AD at early stages is difficult, a few biological markers
(biomarkers) have been studied and defined. In short, a biomarker is an objectively
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in (b), we can observe an atrophy mainly in temporal structures, such as the hippocampus,
and posterior parts of the parietal cortex. In particular, the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) [54] certainly is spearheading most of current efforts for data
collection and research goals, and many researchers have used data provided by ADNI in
order to evaluate CAD systems for AD, including techniques from machine learning and
computer vision areas.

In short, machine learning is an area of computer science, which explores algorithms
that can learn patterns from data, and then make further predictions. Considering a
CAD system based on image data, there will typically be a medical specialist explaining
the patterns and characteristics within the images to a computer vision specialist, which
will then translate this knowledge into image processing techniques and machine learning
models.

In general, these systems learn from data by adapting a set of internal parameters,
which are internal configuration variables that define and control the behavior of the al-
gorithm. Usually, models that have a larger number of parameters are capable of learning
more complex patterns and arrangements from the provided data. On the other hand,
having too many parameters will also imply in longer times for training (optimization)
and execution, as well as in an increased chance of overfitting, where a model memorizes
training data, instead of actually learning meaningful patterns. The ability to accurately
predict previously unseen data is referred to as generalization.

Deep learning, an alias for artificial neural networks (ANNs), is a machine-learning
technique inspired by how the brain works. Historically, traditional machine-learning
approaches involved specialists for manually designing hand-crafted features for each task,
which were then fed to a classifier or regressor. On the other hand, ANNs are capable
of taking raw data as input, and automatically learn discriminative representations in a
hierarchical way. This is an interesting approach to both corroborate previous findings
by specialists, and to eventually assist in new discoveries. In particular, convolutional
neural networks (CNNs) are a special kind of ANNs, which were inspired by how the
visual system works, and, in this sense, have been increasingly used in computer vision
tasks, achieving important results.

The primary unit in ANNs is a neuron, which basically receives a value as input, pro-
cesses it by applying a mathematical function, and then outputs the result. A traditional
ANN architecture is composed of a number of layers, where a layer is simply a stack of one
or more neurons. These layers are organized hierarchically, where a given layer receives
input from the previous layer, processes this information, and then passes these values to
the next layer. In general, an ANN has one input layer, which is the provided data, one
output layer, which is the prediction made by the network, and an arbitrary number of
hidden layers between them, where more layers represent higher complexity. For further
information on deep learning, we refer the reader to Goodfellow et al. [29].
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1.1 Related Work

In terms of AD, prior research analyzed a number of classification tasks, including dis-
tinguishing between cognitively normal (CN), MCI, and AD. Additionally, considering
conversions from diagnosed MCI to AD range only from 10.2% to 33.6% in a year [83],
there is also the challenging task of differentiating between MCI patients who will con-
vert to AD (MCI converters, MCIc) and MCI patients who will not convert to AD (MCI
non-converters, MCInc). Even though we do not intend to review CAD systems for AD,
we present here prior research somewhat extensively, in order to emphasize our challenges
and contributions.

Works in this area have recurrently considered only a small number of subjects and
images, often with curated data (i.e., reviewed, prepared and organized by experts), such
as ADNI’s Standardized MRI Data Sets [88]. Additionally, with the lack of a standard
evaluation protocol, each study employed its own criteria, with its own random data
split. This not only hinders comparison between different methods, but it also usually
overestimates their performance in a real-world scenario, where data will not be readily
preprocessed, and will most likely come from different sources. In this sense, a few works
reviewed multiple techniques for the Alzheimer’s biomarker identification task, and, more
recently, a few challenges with standard protocols and hidden test labels were launched,
such as the CADDementia challenge [9]. As a side note, the ineffectiveness in compar-
ing results was our main motivation to focus in describing techniques, rather than their
performance metrics in this work.

Training deep learning systems usually requires large amounts of data, and most
datasets are in the range of a few hundred samples. In order to overcome this limitation,
studies that make use of deep-learning methods usually extract multiple small regions of
the brain, thus generating thousands of input data. Differently from this approach, our
method considers the whole brain when optimizing the networks, in an exploratory fash-
ion, making it particularly interesting for automatically determining the most effective
regions. This was also a reason for our emphasis on dataset sizes and their respective
image dimensions in the description of related works.

1.1.1 Alzheimer’s Disease

Many CAD systems for AD using sMRI have been proposed in prior art, and they usually
achieve promising results. However, most of these works evaluate systems on their own
non-disclosed data, or use their own split of available data, which makes comparisons
between different methods very difficult.

Falahati et al. [22] reviewed several AD classification and MCI conversion prediction
studies, focusing on sMRI. The main idea was to train a system for classification between
CN and AD, and then evaluate them on CN vs. AD, and MCIc vs. MCInc. The authors
indicated that performances for methods using small sample sizes are usually superior
than the ones using larger datasets or external validation sets, which is probably due
to overfitting or very small homogeneous samples. Besides data, different approaches
for feature extraction, feature selection, classification, and, more importantly, validation
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hamper comparisons across different works.
Cuingnet et al. [14] evaluated ten methods, namely, five based on voxel, three based

on cortical thickness, and two based on hippocampus. Using 509 subjects from the ADNI
database, they compared these methods on three different scenarios, which were classi-
fication between CN and AD, CN and MCIc, and MCIc and MCInc. They found that
methods based on voxel or cortical thickness achieved high accuracies on CN vs. AD.
However, CN vs. MCIc had considerably inferior results, while MCIc vs. MCInc did not
perform statistically different from chance. Additionally, the authors noted that most clas-
sification errors were oldest controls and youngest patients, which was partially explained
by the brain atrophy associated with normal aging.

Similarly, Sabuncu and Konukoglu [62] collected 810 samples from ADNI and 415 from
OASIS (cross-sectional study [49]), and analyzed a combination of four feature sets with
three algorithms, to distinguish CN vs. AD, and CN vs. MCI. Features included volumes
of anatomical structures, average thickness within specific cortical parcellations, and cor-
tical thickness, while algorithms included support vector machine (SVM), neighborhood
approximation forest, and relevance voxel machine. Results indicated that accuracy and
relevance of image-derived measurements are more important than the prediction algo-
rithm for the overall performance, but data quality and sample size play even bigger roles.
Moreover, even though cross-validation is an interesting technique to measure accuracy,
it is generally optimistic in terms of generalization, especially when the trained system
is applied to an independent dataset, due to data acquisition protocol, composition of
populations, and application of diagnostic criteria or clinical tests.

Advancing research for comparison of different methods, the Alzheimer’s Disease Big
Data DREAM Challenge #1 [3], in subchallenge 3, proposed a standard evaluation proto-
col, including defined data for training (628 entries from ADNI), and testing (182 entries
from AddNeuroMed [46]). Available data contained sMRI, and other variables, such
as years of education, and genotypes. The objective was to predict Mini-Mental State
Examination (MMSE) scores and diagnostic classes, and the winning method achieved
a correct diagnosis percentage of 60.2%, considering CN, MCI, and AD classes. This
method combined both clinical and image features, with volume of hippocampus being
the most important one.

Equivalently, Bron et al. [9] launched the CADDementia challenge, a standard com-
parison between different methods for classification within CN, MCI, and AD classes, with
the same defined data and evaluation protocol. Teams had only 30 sMRI scans available
for training, and 354 scans with hidden diagnoses (including group priors) for testing. The
main idea was to leverage existing public data to optimize the classification system, which
could then be optimized again or just fine-tuned on a different small dataset, leaving a
larger number of unseen images to evaluate performance. This is a very interesting pro-
tocol, as it more closely relates to a real-world scenario, where an algorithm would need
to be adapted for a practical clinical setting. In this challenge, most approaches used
volume, thickness, intensity, and shape features from specific regions of interest, along
with regression, support vector machine, and random forest for classification.

The winning method [69] achieved an accuracy of 63.0%, using a number of individual
MRI imaging biomarkers, with hippocampal volume, ventricular volume, hippocampal
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texture, and parietal lobe thickness being the most important characteristics. Data from
both ADNI and AIBL [19] were used for training the system, which used a linear dis-
criminant analysis classifier. It is important to note that hippocampal shape scores used
transductive inference, thus needing the CADDementia test data to be calculated. Even
though this is a valid approach, it deviates from the original proposal of a practical clinical
setting. Additionally, their pipeline failed to process three scans from the CADDementia
test set, requiring manual intervention. The analysis of each subject took 19 hours of
computation time.

The second best team [82] employed a domain-adaptation approach. Their idea was
to weight samples from a source dataset according to a target dataset distribution, and
five different weighting techniques were evaluated on 751 subjects from ADNI, and 215

from AIBL. However, the system submitted to the challenge corresponds to the fourth
best accuracy in their experiments, indicating that there is still room for improvement.
More specifically for the challenge, optimization was done on the union of ADNI and
CADDementia training sets, with equal weights for each sample. Classification was done
by a generalized linear model, using volume, cortical thickness, and shape features. The
analysis of each subject took 17.4 hours of computation time.

1.1.2 Deep Learning

One of the first successful real-world applications of convolutional neural networks (CNNs)
was a system to read checks [41, 42]. More recently, a variety of computer vision ap-
proaches have been evaluated at the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) [61], which is held yearly and involves different tasks, such as general object
recognition and localization. Since the first entry using deep CNNs [40], this technique
has dominated the top results in this contest. Thus, it is very interesting to have a better
understanding on how it would behave in the AD task.

Suk and Shen [72] presented one of the first works using ANN for the Alzheimer’s
biomarker identification task, extracting some low-level features, which were then fed to
a stacked auto-encoder (SAE) with three hidden layers. To optimize the parameters, a
greedy layer-wise unsupervised learning approach was used. Then, learned layers were
stacked together with a new output layer, and the whole network was fine-tuned with
labeled data. Next, original low-level features were concatenated with SAE latent feature
representation, i.e., outputs from the last hidden layer, generating an augmented feature
vector. Finally, a multi-task and multi-kernel support vector machine was trained to
predict class labels, MMSE, and AD assessment scale-cognitive subscale (ADAS-Cog)
scores.

Li et al. [44] presented one of the first methods using 3D CNNs for the Alzheimer’s
biomarker identification task, although indirectly. The main idea was to adopt both MRI
and PET scans to perform the diagnosis; however, a number of subjects only had the MRI
modality. Given an MRI, the proposed method used a CNN to predict the corresponding
PET scan. Images were first resized to 64 × 64 × 64, and 50 000 random patches of size
15× 15× 15 were extracted from each image. Finally, with this input patch, a CNN with
two hidden convolutional layers and 37 761 parameters outputs a 3× 3× 3 PET patch.
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Suk et al. [73] introduced an approach using deep Boltzmann machine (DBM), which
comprises restricted Boltzmann machine (RBM) as building blocks. Similarly to previous
methods, both MRI and PET scans were used, being resized to 64×64×64 voxels, with a
final voxel size of 4×4×4 mm3. Discriminative patches of size 11×11×11 were extracted,
and then fed to a Gaussian DBM. This architecture comprised two networks of two hidden
layers each for independent MRI and PET patches processing, which were concatenated
and then followed by three hidden layers for a multimodal DBM (MM-DBM). Features
extracted by this DBM were used in an image-level hierarchical SVM classifier.

Payan and Montana [56] randomly extracted 5×5×5 patches from 68×95×79 images,
which were flattened into an 125 dimensional input array, and fed to an overcomplete
sparse autoencoder with 150 units. Each unit was rearranged into a 5 × 5 × 5 filter,
which was convolutionally applied to the complete original image. Next, outputs went
through max-pooling, and a fully-connected layer, followed by the output layer. Therefore,
even though the proposed is conceptually similar to a 3D CNN, in practice, it was a
reinterpretation of the autoencoder units, followed by a traditional neural network.

Hosseini-Asl et al. [34] employed a stack of unsupervised 3D convolutional autoencoder
(3D-CAE), and used the whole brain. All 30 images from the CADDementia training set
were used as source domain, being preprocessed and normalized to 200 × 150 × 150.
These images were used to greedily train three stacked 3D-CAEs in a layer-wise fashion.
The output of the last layer was flattened and used as features in a traditional fully-
connected layer with two hidden layers, which was trained on a target domain. Even
though this method could be directly applied to the CADDementia challenge, it was only
cross-validated on ADNI.

Sarraf et al. [64] decomposed 4D resting-state functional MRI (rs-fMRI) and 3D struc-
tural MRI into 2D images, with 2× 2× 2 mm3 resolution in standard space. Then, two
2D CNN architectures were evaluated for the CN vs. AD task, namely, LeNet-5 [42] and
GoogLeNet [74]. Despite being a reasonable approach, it is unclear which axis shall pro-
vide best results, and, even if the decomposition is performed along all axes, this method
will still not be able to find discriminative 3D patterns within the data.

Korolev et al. [39] is one of the works that most closely relates to ours. They designed
3D CNNs based on smaller versions of VGG [68] and ResNet [32] architectures, which
were trained on whole-brain images of size 110 × 110 × 110. The 231 images used were
a subset of previously processed MRIs from ADNI, and included CN, early MCI (eMCI),
late MCI (lMCI), and AD subjects. However, they only considered binary classification
tasks, which were evaluated using cross-validation on ADNI, hindering better comparisons
with our method. On the other hand, we proposed a multiclass approach that included
very deep CNN architectures, with large input images, and which was evaluated on the
CADDementia challenge, making our results more reliable.

Dolph et al. [18] were the first group to successfully propose a deep-learning approach
to the CADDementia challenge, with a technique similar to Suk and Shen [72]. Basi-
cally, they extracted sub-cortical features, such as cortical thickness, surface area, and
volumetric measurements, along with texture features from gray-level co-occurrence ma-
trix in fractal dimension. These values were used to greedily layer-wise train a stacked
auto-encoder with three hidden layers, achieving competitive results in the challenge.
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Finally, Brosch and Tam [10] proposed and evaluated a fast training method for CNNs
using fast Fourier transforms (FFTs). The authors stated that this approach made it
practical to train a 3D CNN with two hidden layers, considering input images as large
as 128 × 128 × 128 voxels. This work illustrates the difficulty in training very deep 3D
CNNs, especially with high-resolution images.

The main drawbacks of the aforementioned deep-learning approaches are the small
depth of proposed networks, and the small dimensions of input images. While a network
with only a few hidden layers is not able to identify complex patterns within the data,
having a small resolution image only makes this task even more difficult. These character-
istics are present across different methods largely due to hardware constraints. In order to
reduce computational costs, we custom-tailor specific network architectures herein, and
adapt traditional optimization approaches, making such training practical.

1.2 Contributions

In our research, one of the main goals was bringing to bear what is most advanced in
deep learning research (e.g., CNN) to solve the difficult problem of identifying AD in
MRI, considering three different groups, namely, CN, MCI, and AD. From LeNet-5 [42]
to Residual Nets [32], we explored a number of state-of-the-art CNN architectures, which
are better described in Chapter 2, along with details of our methodology. We tailored
convolutional networks with data primarily provided by ADNI [54], and evaluated them
on the CADDementia challenge [9], thus resulting in a scenario very close to real-world
conditions, in which a CAD system is used on a dataset differently from the one used for
training. Our experimental setup is explained in Chapter 3.

The main challenges and contributions of our research include devising a deep-learning
solution that is both completely automatic and comparatively fast, while also presenting
competitive results, without using any domain-specific knowledge. In the end, our system
does not need any manual intervention, and runs 80× faster than the state of the art,
on average. Our best model outperformed most of the CADDementia submissions, all
of them using prior knowledge from the disease, such as specific regions of interest. The
main reason for not using any information from the disease in our system is to empower it
to automatically learn and extract relevant patterns from important regions of the brain,
which can be used to support current diagnosis standards, and may even assist in new
discoveries for different or new diseases.

Additionally, our generated ADNet and ADNet-DA models will be publicly available
along with this work, including all supporting code to both use them or to train similar
models on new data, which, to the best of our knowledge, has not been done before in
this area. In Chapter 4, we provide more details of our results and the corresponding
discussion, including a number of techniques related to explainable artificial intelligence
(XAI), in order to to visualize and have a better understanding of what the CNN has
learned and how it processes inputs, aiming at biological significance. Finally, we conclude
and present possible further explorations in Chapter 5, with due acknowledgements at the
end.
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Chapter 2

Methodology

To the best of our knowledge, we are the first group to propose an end-to-end deep 3D
CNN for the multiclass AD biomarker identification task. In terms of deep learning, a
number of existing methods rely on a greedy layer-wise learning of stacked (regular or
convolutional) autoencoders, and we believe this is mainly due to the high complexity in
optimizing a very deep 3D CNN with limited data and hardware, even considering current
standards.

In this chapter, we provide details of our pipeline, including image preprocessing, CNN
architectures, and optimization techniques. In particular, it is important to highlight the
reason we did not use images in their original space, and the need for a fixed brain
size. Even though convolutional layers can operate on data with variable dimensions,
optimizing a deep-learning system using images without any standard requires it to learn
discriminative patterns invariant to a number of transformations, such as translation,
scaling, and rotation. This would demand larger models, with increasing training times,
and an even larger number of samples, with all expected variations. By registering our
images to a standard template, we can expect similar structures to be roughly in the
same spatial location, hence we can handle the entire image at once, and automatically
determine the most important regions of interest.

2.1 Brain Extraction and Normalization

We used the Advanced Normalization Tools (ANTs) [5] version 2.1.0 to extract and nor-
malize brain images. Since this is not the focus of our research, our pipeline was based on
previously defined scripts1 [6, 80], and we made use of the provided default parameters,
including transformation types, sequence, and metrics. We refer the reader to the code
repository for more details on these parameters. Essentially, our brain extraction and
normalization pipeline comprises the following steps:

1. Winsorize image intensities on 1% and 99.9% quantiles

2. Bias field correction using N4 [79], a variant of the popular nonparametric nonuni-
form intensity normalization (N3) algorithm

1Specifically, scripts antsBrainExtraction.sh and antsRegistrationSyNQuick.sh







25

reader to the specific papers for a more detailed description. The most natural adaptation
was to convert all 2D operations, such as convolution or pooling, to 3D ones, since these
networks were originally designed for 2D color images, while we are dealing with 3D
grayscale MRIs.

Given such adaptations, we were unable to directly employ a transfer learning ap-
proach [66] with the original networks. In short, the idea is to pre-train a network on a
different problem with a different set of images, and then take advantage of this network
on a new task, either as a feature extractor, or as a good starting point for another op-
timization, also known as fine-tuning, instead of using random weights. In principle, we
could make an odd adaptation of the first convolutional layer from a traditional 2D CNN
trained on color images, since it has a 3D shape; however, these filters will most likely
be optimized to find 2D color patterns, instead of 3D patterns. Additionally, we could
not find any publicly available trained model for the AD task. As such, with this work,
we are releasing one of the first models ready to be used, encouraging open science and
reproducible research, while also setting a starting point for researchers working with 3D
MRIs.

Architecture Layers Parameters
(in millions)

LeNet-5 7 0.3
VGG 2048 11 89.8
VGG 512 11 26.8

GoogLeNet 22 14.6
ResNet A 18 33.0
ResNet B 18 33.2

Table 2.1: Description of evaluated CNN architectures.

A common attribute to all considered architectures is that spatial dimension is reduced
as information flows to deeper layers. This is usually achieved with max-pooling layers,
or with larger strides in convolutional layers. In order to accommodate our different
data shapes that were not necessarily divisible by two, we adopted an ad-hoc approach
by zero-padding each layer as needed, so no information was lost. We also added batch
normalization [35] to every convolutional and fully-connected layers. All activation func-
tions were rectified linear units (ReLU) [55], defined as f(x) = max(0, x), except for the
classification output, which was a softmax function. Finally, the exact number of layers
or depth varied according to the adopted network standard. In Table 2.1, we took into
account the original approach for each network, highlighting eventual differences along
with their descriptions.

We started with a small network, based on the LeNet-5 [41, 42] architecture. Con-
sidering that this network was significantly older than the others, it went through the
most modifications. Basically, it was composed of the following layers: convolution, sub-
sampling, convolution, subsampling, fully connected (originally implemented as convolu-
tional), fully connected, and output. As subsampling layers had learnable parameters, we
converted them to convolutions, with filter (kernel) size and stride equal to 2×2×2, thus
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apply this technique to the VGG architecture. For comparison, in Table 2.1 we also
include our VGG-A with 512 units in the fully-connected layers.

While VGG achieved second place in ILSVRC-2014, GoogLeNet secured the first place
in the classification task [74], proposing a deep convolutional neural network architecture
named Inception. The basic idea was to increase both depth and width, while keeping
computational requirements constrained, which led to a deeper model, with fewer param-
eters, and better performance. We adapted directly from their GoogLeNet architecture,
i.e., only discarding the local response normalization [40] layer and the auxiliary networks.
We also adjusted the last average pooling layer, following the output shape of the previous
layer, and kept dropout rate at 40%. In this architecture, the number of layers actually
came from depth, where single convolutional or fully-connected layers counted as one,
while inception modules counted as two. However, each inception module internally had
six individual convolutional layers, which is depicted in Figure 2.3.

In ILSVRC-2015, Residual Network [32] won first place for classification, localization,
and detection tasks. Continuing analyses from VGG, the authors wanted to understand
whether learning better networks meant simply to stack more layers. With this study,
they found the degradation problem, where traditional models similar to VGG stopped
improving performance after a certain number of layers, and even started getting worse
afterwards. To overcome such problem, they proposed the residual function, which is
the basic building block of a Residual Network (ResNet), presented in Figure 2.4. The
idea was to create a shortcut connection between the input of a layer and the output of
the following one, in a way that these layers could simply learn nothing, and the input
would still be preserved, thus making it feasible to train very deep layers, even with
more than a hundred layers, and diminishing the degradation problem. However, due to
hardware constraints, we considered only smaller Residual Networks. We adapted ResNet
directly from the non-bottleneck 18-layer architecture, in which shortcuts with increasing
dimensions were either (A) identity shortcuts, i.e., padding with zero, or (B) projection
shortcuts, i.e., convolutions with 1 × 1 × 1 filter (kernel) size. Similarly to VGG, the
number of layers came from convolutional and fully-connected layers, with projection
convolutions not being considered in the layer count.

In summary, we adopted four main CNN architecture designs, namely, LeNet-5, VGG,
GoogLeNet, and ResNet. LeNet-5 is considerably older and smaller, so it shall have a lower
probability of overfitting. The VGG network is known for its uniformity, which makes it
relatively simple to adapt, inspect and use for a number of different tasks; however, this

identity
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Figure 2.4: Building block of Residual Network (ResNet) CNN architecture. Image
from He et al. [32].
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characteristic also makes it large in number of parameters and in hardware requirements.
These drawbacks were overcome in both GoogLeNet and ResNet architectures, which
also adopted very specific building blocks, making it possible to extract more complex
patterns from data, while also increasing the number of layers and reducing the number
of parameters. The idea was to explore different architectures and understand how they
would behave in the AD task.

To avoid overfitting, we adopted regularization with L1 and L2 norms. In L1, this
effect is achieved by minimizing the absolute values of the weights, while in L2, this is
done with their squared values. In principle, L2 norm tends to produce diffuse and small
numbers, while L1 tends to produce sparse numbers. This property makes L1 particularly
interesting to handle noisy data, acting as a feature selection algorithm, which could help
us better visualize and explain what the CNN has actually learned. However, in general,
L2 can be expected to provide superior results over L1.

All network architectures, and their optimization were implemented using upstream
(i.e., latest version from the code repository) Lasagne [15], which is a deep learning
framework based on Theano [1]. At the time this research was performed, we used a
development version of Lasagne 0.2, and a development version of Theano 0.9.0, with
Python 2.7.6, CUDA 7.5, and CuDNN 5. We additionally used scikit-learn 0.18.1 [57]
and numpy 1.11.3 [81].

2.3 Domain Adaptation

In addition to the brain processing and CNN pipelines, we also considered a domain adap-
tation approach. In our method, we trained a system using one dataset, and evaluated
it on a different dataset (i.e., CADDementia). Even though they are related, such dif-
ference means that the source data distribution could be different from the target data
distribution. Thus, it should be possible to improve results further by adapting the pre-
viously trained system to the new dataset, even if using a small number of samples from
this target domain. It comes as no surprise that the best methods in the CADDementia
challenge, at some point, did use available data from both its training and test sets in
their optimization pipeline.

In our domain adaptation approach, we started with our previously optimized CNN.
Then, we used this CNN to extract features from the complete target dataset (i.e., CAD-
Dementia), using one of the last layers in the network as output. After, we normalized
these features to zero mean and unit variance, using only the target training set to compute
the parameters, which more closely relates to a real-world scenario. With the normalized
data, we optimized a one-versus-rest logistic regression [52] on the complete target train-
ing set. In order to find the best parameters for this classifier, we used grid search with
leave-one-out cross-validation. Then, we finally had a system that was enhanced for the
target domain, making it possible to output improved classification probabilities for each
sample in the target domain. This pipeline is similar to a transfer-learning approach [66].
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Chapter 3

Experimental Setup

Given that training a CNN from scratch usually requires massive amounts of data, we
gathered as many different imaging sources as possible. To the best of our knowledge,
we collected the largest AD sMRI dataset ever, comprising 23 165 images, which is orders
of magnitude larger than commonly analyzed sets, as we discuss next. We additionally
describe our optimization approach, including associated parameters.

3.1 Data

In our data collection process, we considered the following datasets:

• ADNI [54], including ADNI1, ADNIGO, ADNI2, and ADNIDOD [8] studies

• AIBL [19]

• CADDementia [9]

• MIRIAD [48]

• OASIS, including cross-sectional [49], and longitudinal [50] studies

• AddNeuroMed [46]

ADNI1 originally included three participant groups: CN, MCI and AD. Starting in
ADNIGO, the MCI stage was split into two: early MCI (eMCI) and late MCI (lMCI).
Later, in ADNI2, a significant memory concern (SMC) group was added. We refer the
reader to Beckett et al. [8] for more details.

Similarly to ADNI1, both AIBL and CADDementia sets were composed of CN, MCI,
and AD stages, whereas both MIRIAD and OASIS sets contained only CN and AD.
Unfortunately, ADNIDOD did not have Alzheimer’s diagnoses information, thus we did
not include the corresponding images in our analyses. We also did not use AddNeuroMed
due to agreement restrictions.

Since one of our main goals was achieving a good result in the CADDementia challenge,
we adopted only equivalent diagnoses. As such, eMCI and lMCI stages were grouped along
with MCI, and SMC was not considered. From these datasets, we downloaded all available
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Dataset Subjs. Group Images
Age (years) Female

(%)
1.5 T
(%)Med Avg ± Std Min Max

Dset.
1 845

All 9 149 76.6 76.3± 6.9 54.6 93.0 42.2 82.2
CN 2 701 76.7 77.2± 5.1 60.0 92.8 50.2 80.5
MCI 4 845 76.5 76.0± 7.4 54.6 90.9 35.3 83.0
AD 1 603 76.5 76.1± 7.9 55.2 93.0 49.5 82.5

Dset.
1

Train.
591

All 6 314 76.5 76.2± 6.9 54.6 93.0 43.4 82.6
CN 1 809 77.2 77.3± 4.9 60.0 90.8 49.5 81.3
MCI 3 399 76.1 75.7± 7.3 54.6 90.9 36.3 83.0
AD 1 106 75.9 76.1± 7.9 55.2 93.0 55.3 83.5

Dset.
1

Val.
84

All 951 76.4 75.8± 6.8 56.2 89.2 40.5 82.8
CN 301 75.7 76.5± 4.8 65.2 88.6 58.5 79.7
MCI 501 78.2 76.7± 6.7 56.2 89.2 28.5 83.8
AD 149 72.0 71.2± 8.6 56.5 85.0 44.3 85.2

Dset.
1

Test
170

All 1 884 77.2 77.0± 6.9 56.7 92.8 38.7 80.4
CN 591 76.2 77.2± 5.6 63.3 92.8 47.9 78.5
MCI 945 77.7 76.5± 7.8 56.7 90.9 35.1 82.4
AD 348 79.7 78.0± 6.3 63.1 87.7 33.0 78.2

Dset.
2 1 503

All 15 885 75.8 75.4± 7.3 54.6 95.8 44.0 53.3
CN 4 646 76.8 76.9± 5.8 56.3 95.8 50.0 56.5
MCI 8 940 75.0 74.6± 7.7 54.6 93.5 40.0 50.5
AD 2 299 76.4 75.8± 7.8 55.2 93.0 47.5 57.5

Dset.
3 1 715

All 18 303 75.8 75.5± 7.4 54.6 95.8 43.5 48.2
CN 5 361 76.7 76.9± 6.0 56.3 95.8 50.0 52.5
MCI 10 306 75.0 74.6± 7.7 54.6 93.6 39.5 45.5
AD 2 636 76.2 75.8± 7.9 55.2 93.0 45.9 50.2

Dset.
4 2 984

All 23 165 75.0 73.5± 11.7 18.0 98.0 46.5 55.5
CN 8 462 75.0 71.3± 16.1 18.0 97.0 53.9 62.8
MCI 10 460 75.0 74.7± 7.7 54.6 96.0 39.6 45.1
AD 4 243 75.4 75.3± 7.9 55.0 98.0 48.4 66.3

CADD.
Train. 30

All 30 65.0 65.2± 6.9 54.0 80.0 43.3 0.0
CN 12 62.0 62.3± 6.1 55.0 79.0 25.0 0.0
MCI 9 68.0 68.0± 8.2 54.0 80.0 44.4 0.0
AD 9 67.0 66.1± 5.0 57.0 75.0 66.7 0.0

CADD.
Test 354 All 354 65.0 65.1± 7.8 46.0 88.0 39.8 0.0

Table 3.1: Datasets summaries: number of subjects, number of images, descriptive age
statistics, image-wise percentage of females (vs. males), and image-wise percentage of 1.5
T field strength (vs. 3.0 T).
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raw T1-weighted sMRI scans associated with Alzheimer’s, i.e., we did not download any
pre- or post-processed image.

To isolate possible confounding factors, we made a distinction between MP-RAGE
and IR-SPGR/IR-FSPGR sequences, and aggregated different data sources and sequence
techniques in steps. While all ADNI sets had both MP-RAGE and IR-SPGR/IR-FSPGR,
AIBL and OASIS had only MP-RAGE, and MIRIAD had only IR-FSPGR. For more
details on MP-RAGE and IR-SPGR/IR-FSPGR, we refer the reader to Jack et al. [36], Lin
et al. [45]. The resulting datasets, summarized in Table 3.1, are:

• Dataset 1: ADNI1 (MP-RAGE only)

• Dataset 2: ADNI1, ADNIGO, and ADNI2 (MP-RAGE only)

• Dataset 3: ADNI1, ADNIGO, and ADNI2 (all)

• Dataset 4: ADNI1, ADNIGO, ADNI2, AIBL, MIRIAD, and OASIS (all)

For each dataset, we created training, validation, and test splits, which was done as
follows. In Dataset 1, we randomly split the corresponding subjects, trying to keep the
original age, sex, and diagnostic stratification across each set, with 70% of subjects for
training, 10% for validation, and 20% for testing. In each subsequent dataset, we first
assigned images from previous subjects to the respective set, then we proceeded with the
stratified random split considering only new subjects. We also present split summaries
for Dataset 1 in Table 3.1. It is important to note that we removed a few questionable
images, for instance, with more than one image for the same identifier, mismatch between
identifier and folder name, as well as corrupted images or without diagnosis information.

3.1.1 ADNI

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (https://adni.loni.usc.edu). The ADNI
was launched in 2003 by the National Institute on Aging (NIA), the National Institute
of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies and non-profit organizations, as a $60 million,
5-year public-private partnership. The primary goal of ADNI has been to test whether
serial MRI, PET, other biological markers, and clinical and neuropsychological assessment
can be combined to measure the progression of MCI and early AD. Determination of
sensitive and specific markers of very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor their effectiveness, as well as lessen
the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical
Center and University of California - San Francisco. ADNI is the result of efforts of many
co-investigators from a broad range of academic institutions and private corporations,
and subjects have been recruited from over 50 sites across the U.S. and Canada. The
initial goal of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-
GO and ADNI-2. To date these three protocols have recruited over 1500 adults, ages 55
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to 90, to participate in the research, consisting of cognitively normal older individuals,
people with early or late MCI, and people with early AD. The follow up duration of
each group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects
originally recruited for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2.
For up-to-date information, see http://www.adni-info.org.

3.1.2 AIBL

Data was collected by the AIBL study group. AIBL study methodology has been reported
previously [19].

3.2 Metrics and Optimization

To compare different methods, the CADDementia challenge adopted a number of metrics.
The main evaluation measure was the traditional classification accuracy, which is basically
the number of correctly classified samples divided by the number of all samples. Even
though this performance value does not take into account class priors, the challenge
organization considered that class sizes were not very different, regarding this metric
as a better approach for the overall classification accuracy. Additionally, the receiver
operating characteristic (ROC) curve and the respective area under the curve (AUC)
were considered, as they provide metrics that are independent of the threshold chosen for
classification. Also, since AUC does not traditionally depend on class sizes, the challenge
adopted an AUC measure that does not rely on class priors. Finally, the true positive
fraction (TPF) for each class was calculated, which is the number of correctly classified
samples of a given class divided by the number of all samples from that class. According
to the authors, TPFs for diseases (AD and MCI) can be interpreted as the two-class
sensitivity, while TPF for CN corresponds to the two-class specificity. For more details
on the challenge’s metrics, we refer the reader to Bron et al. [9].

As we optimized and trained our networks, we compared them and selected the best
ones using the average of TPFs, since it more closely relates to the accuracy, which was
the main metric, and it does not depend on class priors. To perform the training process,
we used Adam optimizer [38], with default parameters, i.e., β1 = 0.9, β2 = 0.999, and
ǫ = 10−8. With a small sample of images, we empirically decided to begin with a learning
rate of α = 10−4, and settled to a batch size of three (for VGG architectures) or nine (for
all the others), mainly due to GPU memory limitations, even though we only used GPUs
with 12 GB of dedicated memory. Finally, we adopted Glorot uniform initialization [28]
with scaling factor of

√
2, i.e.,

a =
√
2 ·

√

6

fanin + fanout

(3.1)

W ∼ U [−a, a] (3.2)

where fanin is the number of input units of the weight tensor and fanout is the number
of output units of the weight tensor.
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Chapter 4

Results and Discussions

Accountability has become an important aspect in machine learning lately [30], and it
is even more critical in the medicine area. Automatic systems that present impressive
results no longer suffice, being necessary to also explain how and why they achieved such
performances, and determine when they are applicable, thus actually helping specialists
in their tasks.

Given that, we now dive into more details of our study. We better describe our
optimization process, specifying steps taken to handle overfitting problems. Then, we
report performance results, including previously described metrics, along with efficiency
measurements. Finally, we discuss our best CNN model, providing further insights into
its functionality, and how it processes data to make predictions.

4.1 Optimization

As stated earlier, we determined the initial learning rate of α = 10−4, and varied a
number of configurations in each architecture, trying to achieve the best accuracy in the
CADDementia training set. These options included regularization with L1 and L2 norms,
regularization strength λ, number of units in fully-connected layers, dropout rates, and
eventually the batch size, or multi-class hinge loss, instead of the traditional categorical
cross-entropy loss.

The parameters for regularization strength, number of units, and dropout rates were
also used for regularization, acting as trade-offs between model complexity and bias, thus
managing the probability to overfit. This was a major concern for us due to the large
size of our networks, and relatively small amount of data. The different batch size was
an experiment to compare the behavior of all networks with the same batch size of three.
Given that support vector machine (SVM) [13] classifiers usually present interesting re-
sults, and had also been successfully used for Alzheimer’s biomarker identification before,
we also experimented with the multi-class hinge loss.

In general, we varied regularization strength λ in powers of 10, between 10−5 and 102,
number of units in fully-connected layers in powers of 2, between 32 and 2048, and dropout
rate with steps of 10 percentage points, between 40% and 90%, including 95%, 99%, and
99.9%. Note that some networks had specific parameters, i.e., these variations did not
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GPU Median Avg ± Std Min Max

TITAN X 0.122 0.152± 0.100 0.098 1.011
Tesla K40c 0.298 0.348± 0.101 0.295 0.855

Table 4.2: Efficiency break down for our best network (VGG 512) processing time, in
seconds.

GTX TITAN X, and 81 epochs on Tesla K40c. The grid search for domain adaptation
took less than one minute to complete, while the classification of all 354 samples from
CADDementia test set happened in about one millisecond.

In summary, our method is expected to provide an output for an input volume in less
than 15 minutes, with extreme cases taking a little longer than 2 hours. To put it into
perspective, this processing time contrasts with the current best method in CADDementia
challenge, which needs 19 hours of computation [69]. In other words, our method is nearly
10× faster, considering the worst case scenario, or almost 80× faster, on average. We
understand that, given the challenge date, such execution time comparison is not always
fair, considering most methods of that time did not employ deep learning approaches.
However, we also understand that all these techniques are solving essentially the same
problem, i.e., AD diagnosis, and, in this sense, such comparison remains valid, and it is
part of method evolution.

Regarding performance metrics in terms of results, we present our best configuration
for each network architecture in Table 4.3. The best VGG had 512 units in each fully-
connected layer, and the best ResNet used the projection shortcut (B). We also include our
main optimization metric, average TPF (avgTPF), for the training set of CADDementia,
with our top value being 75.9%, which translated to 76.7% in accuracy. All these results
were found while optimizing the networks with Dataset 1.

Architecture avgTPF Norm λ Dropout

LeNet-5 56.5% L2 10−2 40%
VGG 512 75.9% L2 10−4 50%
GoogLeNet 58.3% L1 10−3 80%
ResNet B 60.2% L2 10−2 −

Table 4.3: Performance results (average TPF) of our best CNN architectures, and respec-
tive configurations.

As initially expected, L2 norm performed better for almost all architectures. The best
GoogLeNet using L2 achieved 57.4%, which is pretty close to the one using L1 (58.3%),
while the L1 norm performed considerably worse for the other networks. ResNet with
identity shortcuts (A) achieved 57.4%, which is slightly inferior to the projection shortcut
(B), with 60.2%, being a similar difference found in the original work [32]. we hypothesize
that deeper architectures did not achieve the highest scores because they tend to take
advantage of larger datasets, which is not exactly our scenario.

A batch size of three, instead of nine, only produced significantly worse results, in-
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Model Dataset Split Accuracy
TPF AUC

CN MCI AD All CN MCI AD

ADNet Dset.
1

Train. 60.6 89.6 36.7 86.8 87.9 90.3 80.6 88.8
Val. 44.1 71.1 22.4 62.4 68.9 72.2 56.9 72.5
Test 43.6 67.3 21.1 64.7 68.0 73.9 57.0 68.9

ADNet CADD
Train. 76.7 83.3 55.6 88.9 90.3 92.1 83.1 96.3
Test 51.4 77.5 27.9 46.6 68.5 70.5 61.2 73.6

ADNet
-DA CADD

Train.* 76.7 75.0 55.6 100.0 88.5 90.7 79.4 95.8
Train. 90.0 83.3 88.9 100.0 98.0 95.8 97.9 100.0
Test 52.3 68.2 37.7 49.5 70.9 72.8 60.5 79.0

Table 4.4: Multiple performance results of our best CNN, in percentage. Train.* refers
to leave-one-out cross-validation results.

dicating that our best VGG model could potentially achieve even better results, using
GPUs with larger memory or a multi-GPU framework implementation. Similarly, multi-
class hinge loss did not improve our results. Most surprisingly, Dataset 1, our smaller,
presented the best performances, with Dataset 2 achieving as high as 72.2% on average
TPF. We hypothesize that this happened due to the higher diversity of data sources and
conditions in larger sets, indicating that a smaller but more cohesive dataset should be
sufficient for optimization.

Considering our best network model (VGG 512), we present all performance metrics in
Table 4.4. We named our CNN approach ADNet (Alzheimer’s Disease Network), with the
domain adaptation method being ADNet-DA, and submitted our prediction scores to the
CADDementia challenge. As of this writing, there were 48 different submissions, including
ours1. Similarly to reported results [9], we did expect a drop in results for the test set,
when comparing to the training set. However, with so few samples to estimate accuracy,
our evaluation was overly optimistic, even if optimizing our method on a completely
different dataset.

In general, ADNet presented promising results in the CADDementia training set, with
the exception of MCI TPF. However, the decrease in MCI and AD TPFs between training
and test sets were higher than expected. As such, this method achieved an interesting
two-class specificity, with a modest two-class sensitivity, meaning it performs better at
determining healthy patients. Regarding accuracy in the test set, ADNet ranked in 25th,
tied with two other systems, meaning it outperformed 22 submissions. Also, this result is
only statistically different, with a 95% confidence interval, from the first one, and the last
three systems. Considering the fact that, to the best of our knowledge, we were the first
group that did not use any domain specific information for this task, we can affirm that our
CNN method did learn meaningful patterns automatically. The corresponding receiver
operating characteristic (ROC) for CADDementia test set is displayed in Figure 4.3, and
the respective confusion matrix is in Table 4.5.

As for the domain adaptation approach, we extracted 512 features from the second-

1https://caddementia.grand-challenge.org/results_all/ [Online; accessed 2019-01-27]
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input image, so we could have a better visualization. To this end, we first resized the
5× 6× 5 image to 145× 182× 155 with nearest neighbor interpolation, then we applied
a Gaussian filter with kernel size of 25× 25× 25 and σ = 3, in order to reduce pixelation
effects on voxel borders, thus improving visualization. Lastly, we multiplied this image
with the original input image, so we could analyze how important voxels in this pooling
layer roughly related to the brain regions, and then zero-padded to 193× 229× 193.

We generated this visualization for the same previously selected patients, considering
the output with maximum total activation, out of 256, and depicted resulting images in
Figure 4.7. These outputs represent some of the final patterns that the network learned
to be the most relevant for this task, which are still then non-linearly combined with
additional and more complex patterns before the final classification. In this visualization,
a brighter region indicate that one or more 3 × 3 × 3 patterns within this region were
considered relevant throughout the network processing pipeline.

From these images, we can observe that for the CN, there were activations in the white
and grey matter of bilateral posterior, bilateral frontal, and left temporal regions; whereas
for MCI, higher activations occurred in white and grey matter of the bilateral occipital,
temporal and frontal regions, including the transverse cistern, the medulla and the lower
pons. AD activations mainly occurred in the white and grey matter of the right frontal
and temporal regions, as well as cerebellum.

It is hard to speculate upon these findings, especially because the last convolutional
layer is at a more abstract and complex level. Moreover, the grid pattern is not anatom-
ically correlated with brain structures. Therefore, the partial volume effect definitely
impacts the observations, precluding more precise discussions.

4.3.3 Occlusions

Occlusion is a technique to visualize how and where the input image affects the output
of the network. The basic idea is to systematically hide (occlude) some regions of the
input image, making the network not activate in these specific regions, and then storing
the probabilities output. Given a class of interest, for instance AD, it is possible to
create a heatmap with the corresponding prediction for each occluded region, where most
important ones will present highest impact (with low probability), due to the occlusion.
This was originally proposed by Zeiler and Fergus [89].

There is a number of ways to hide a region of the input image and try to avoid
activations in a network. The simplest and most direct one would be to set input values
to their respective averages, which, in our case, is zero. Considering images in a range
from zero to 255, it is possible to occlude with the average value (gray), with zero (black),
with 255 (white), and even more sophisticated approaches, such as different forms of noise.

For each selected patient, we occluded (i.e., set to zero) regions of 30× 30× 30 voxels,
with a stride of 30 between regions, and created a heatmap for each corresponding diag-
nosis class. Since lower probabilities represented higher impact, we inverted these values,
and linearly normalized them between zero and one. Then, we proceeded with the same
previous steps for smoothing, padding, and multiplication by the original input image.
Resulting images are shown in Figure 4.8, where brighter regions imply higher influence,
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meaning that, when occluded, these regions caused more confusion to the classifier.
From the resulting images, we can see that the whole brain was equally activated

in the CN case. This happened basically because our network interprets regions with
zero as indicative of CN, thus only reassuring the previous classification, and producing
a less than ideal visualization for occlusion. For MCI, we see higher activations in the
occipital lobe, the medial superior region of the cerebellum, frontal lobe regions (e.g.,
the prefrontal cortex and a in the right hemisphere comprising the inferior, medial and
superior frontal cortex and their underlying white matter) and a posterior region of the
right parietal cortex. For AD, we see that activation patterns were more symmetrical, with
more intense activations in caudal parts of the brain such as the brainstem and ventral
areas of the temporal and frontal lobes. It is important to highlight once again that
the grid pattern has no direct correlation with anatomical structures, hindering further
speculations regarding the biological meaning of such findings.

4.3.4 Backpropagation

Finally, we investigated an approach that more closely related to the actual output deci-
sion of the network. Backpropagation [60] is a traditional technique to optimize neural
networks. In short, we calculate the gradient of the network with respect to the input,
which is used to update the network’s internal parameters. These gradients may also be
plotted, and interpreted as how much the output is affected by changes in input values;
however, this simple approach produces rather noisy visualizations. Zeiler and Fergus [89]
proposed an improvement to this technique, called deconvolution, which can be interpreted
as reversing the operations performed by the network. Even though this is an interest-
ing approach, the guided backpropagation method, originally proposed by Springenberg
et al. [71], produces even sharper visualizations. Interestingly, guided backpropagation
combines calculations from both backpropagation and deconvolution, resulting in more
detailed images. In Figure 4.9, activations are shown in hot colormap overlaid on top of
the respective registered MRI, where changes in brighter regions mean larger effect on the
prediction output.

For the CN, we can see activations distributed in a diffuse pattern, but mainly re-
stricted to cortex in the right temporal lobe (majorly in the medial temporal gyrus and
the parahippocampal gyrus), the central portion of the occipital lobe, the posterior cin-
gulum, and the posterior parietal cortex. For MCI, we can see activations in the left
posterior parietal cortex, the right anterior cingulum and the right dorsolateral prefrontal
cortex. For AD, larger activations were detected in the left posterior parietal cortex, right
temporal pole, cerebellum and more diffusively in the spherical surface of the brain.

It is interesting to note the diffuse pattern of activations in all groups, but mainly in
temporal and posterior regions of the brain. We can attempt to interpret such activations
in the context of neuroimaging findings. Although no single structure is able to differ-
entiate AD patients from CN subjects, atrophy in temporal regions is widely important
in the context of AD. The medial temporal lobe regions might be the first ones affected
in the course of the disease, presenting very early signs of neurodegeneration [37] and
correlates well with clinical symptoms even in the prodromal stage, i.e., MCI [26]. As in
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Chapter 5

Conclusions

AD is a critical disorder, to which there is still no cure, killing more people than breast
cancer and prostate cancer combined; between 2000 and 2015, deaths from AD have
increased 123% [4]. Early diagnosis is currently the most fundamental hope for patients,
benefiting their treatment and plans for the future. Magnetic resonance imaging is one
such approach that could assist specialists to diagnose this disease as soon as possible,
with the computer-aided diagnosis of dementia (CADDementia) [9] challenge launching a
standardized evaluation protocol for this difficult task.

Using data from ADNI [54], we optimized a 3D convolutional neural network with
the whole brain image as input, and the best accuracy was achieved with a network
architecture based on VGG [68]. Our method, named ADNet, achieved interesting results,
outperforming a number of other systems in prior art. Additionally, our method with
domain adaptation, called ADNet-DA, reached 52.3% in accuracy on the CADDementia
challenge test set, outperforming most submissions to this challenge, all of which using
prior information from the disease. It is important to note that these approaches are
completely automatic (i.e., there is no need for manual intervention), and, in comparison
to the state of the art, are also considerably fast.

In summary, ADNet is an adapted version of architecture VGG-A, with 11 weight
layers. The main differences, besides 3D convolutions, were halving all numbers of filters
in convolutional layers, and setting the numbers of units in fully-connected layers to
512. Considering all evaluated parameters, the best configuration used L2 norm, with
regularization strength λ equal to 10−4, and 50% of dropout rate. We hypothesize that this
particular network architecture configuration surpassed all the others in our experiments
mainly due to the fact that it tends to present strong results when evaluated alone, i.e.,
not in an ensemble. Additionally, this was a network with 11 weight layers, while the best
VGG configuration had 19 weight layers; for comparison, the best ResNet had 152 layers,
and we only considered its shorter version, with 18 layers, so the smaller difference could
also be a contributing factor. Further experiments are necessary to track down the root
cause for this finding.

Since our method did not use any domain-specific knowledge from AD, we believe
it could be directly applied to other disorders that could benefit from computer-aided
diagnosis system using sMRI as input data. In this sense, we understand our approach is
able to automatically determine meaningful patterns within data, and thus could corrob-
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orate previous findings by specialists, assist in diagnosis scenarios, and eventually help
with different or new diseases. This is supported by our explainable artificial intelligence
(XAI) techniques, including accountability visualizations.

Similarly to our ADNet-DA approach, we believe that our publicly released learned
model could be directly applied to different datasets even with very few samples. Ad-
ditionally, outputs from either an internal representation space or the final probabilities
could be used in combination with different approaches to further improve results, or
even applied to novel problems, such as The Alzheimer’s Disease Prediction Of Longitu-
dinal Evolution (TADPOLE) challenge [51], which aims at predicting future evolution of
individuals at risk.

In this research, we have learned that it is indeed possible to train a deep learning
system to help with the challenging AD biomarker identification task. Even though
we faced some difficulties with hardware, software and data limitations, our proposed
solutions proved to be satisfactory. As such, we believe that our method can be actually
employed in medical practice. While diagnosing patients, it is possible for specialists to
use ADNet network to generate a diversity of explanatory visualizations for a given image,
while ADNet-DA can assist with the diagnosis. This way, specialists can come up with a
more informed decision and in less time.

Continuing our work, there is a number of possible improvements and alternative
paths. In terms of accountability and visualization techniques, a more straightforward
next step would be to explore additional patients, which could also be achieved with group
aggregation approaches, such as calculating the mean or the median across a specific
diagnostic group. Additionally, our CNN optimization pipeline could be used with a
more recent deep learning framework, which enables multiple GPU support, for instance,
so larger batches or even larger CNN architectures are possible. Another modification
could be to use more recent network architectures, such as Inception-v4 or Inception-
ResNet-v2 [75]. Moreover, since ADNet learned an internal embedding space, it would be
possible to explicitly enforce it with a distance metric learning approach [86], for instance,
using triplet loss. It would also be interesting to explore research paths that consider the
native MRI as input, rather than going through a pre-processing pipeline that normalizes
images to a standard dimension and, as such, could potentially alter important brain
characteristics and structures.

Considering we have a relatively small dataset, when we think of data-driven meth-
ods, exploring alternatives to increase it is another promising research path. Simpler
approaches could include additional information [20], such as age, sex, mini-mental state
examination (MMSE), years of education, and genotypes. In a more complex option, it
is also possible to generate synthetic data. Given that, in principle, AD symmetrically
affects the brain [84], it is possible to simply flip input images [20]. Data augmentation
could be done at a more abstract level, by extracting MRI features similarly to ADNet-
DA, approximating these features to select distributions, and then sampling new data.
It could also be done at input image level, using techniques such as generative adver-
sarial networks (GANs) [67]. Finally, methods for learning with few samples are also
promising [27]. �
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