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Resumo

Melanoma é a forma mais letal de cancer de pele. Devido a possibilidade de metastase,
o diagnostico precoce é crucial para aumentar a taxa de sobrevivéncia dos pacientes. A
analise automatizada de lesoes de pele pode ter um papel importante ao alcancar pes-
soas sem acesso a especialistas. Porém, desde que técnicas de aprendizado profundo se
tornaram o estado-da-arte para analise de lesoes de pele, os dados se tornaram um fator
decisivo para avancar as solugoes. O objetivo principal dessa tese de mestrado é tratar
dos problemas que surgem por lidarmos com poucos dados nesse contexto médico. Na
primeira parte, usamos redes generativas adversariais para gerar dados sintéticos para
aumentar o conjunto de treino dos nossos modelos de classificagao para elevar a perfor-
mance. Nosso método é capaz de gerar imagens de lesao de pele em alta-resolucao com
significado clinico, que quando usadas para compor o conjunto de treino de redes de classi-
ficag@o, consistentemente melhoram a performance em diferentes cenérios, para diferentes
dados. Também investigamos como nossos modelos de classificacao interpretam as amos-
tras sintéticas, e como elas sao capazes de ajudar na generalizacao do modelo. Finalmente,
analisamos um problema que surge por termos poucos, relativamente pequenos conjuntos
de dados que sao reusados repetidamente na literatura: bias. Para isso, planejamos expe-
rimentos para estudar como nossos modelos usam os dados, verificando como ele explora
correlagoes corretas (com base em algoritmos médicos), e espurias (com base em artefatos
introduzidos durante a aquisicao das imagens). Surpreendentemente, mesmo sem contar
com nenhuma informacao clinica sobre a lesao sendo diagnosticada, nossos modelos de
classifica¢ao apresentaram performance muito melhor que o acaso (competindo até mesmo
com benchmarks de especialistas), sugerindo performances altamente infladas.



Abstract

Melanoma is the most lethal type of skin cancer. Due to the possibility of metastasis,
early diagnosis is crucial to increase the survival rate of those patients. Automated skin
lesion analysis can play an important role by reaching people that do not have access
to a specialist. However, since deep learning became the state-of-the-art for skin lesion
analysis, data became a decisive factor to push the solutions further. The core objective
of this Master thesis is to tackle the problems that arise by having limited datasets.
In the first part, we use generative adversarial networks (GANSs) to generate synthetic
data to augment our classification model’s training datasets to boost performance. Our
method is able to generate high-resolution clinically-meaningful skin lesion images, that
when compound our classification model’s training dataset, consistently improved the
performance in different scenarios, for distinct datasets. We also investigate how our
classification models perceived the synthetic samples, and how they are able to aid the
model’s generalization. Finally, we investigate a problem that usually arises by having
few, relatively small datasets that are thoroughly re-used in the literature: bias. For this,
we designed experiments to study how our models’ use of data, verifying how it exploits
correct (based on medical algorithms), and spurious (based on artifacts introduced during
image acquisition) correlations. Disturbingly, even in absence of any clinical information
regarding the lesion being diagnosed, our classification models presented much better
performance than chance (even competing with specialists benchmarks), highly suggesting
inflated performances.
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Chapter 1

Introduction

Melanoma is the most dangerous form of skin cancer. It causes the most deaths, repre-
senting about 1% of all skin cancers in the United States', and 3% in Brazil®>. The crucial
point for treating melanoma is early detection. The estimated 5-year survival rate of
diagnosed patients rises from 15%, if detected in its latest stage, to over 97%, if detected
in its earliest stages [4].

The standard method to evaluate a skin growth to rule out melanoma is by biopsy,
followed by a histopathological examination. The challenge lies in identifying the lesions
that have the highest probability of being melanoma. Such lesions should be biopsied,
and their histopathology appropriately evaluated at the earliest possible time in their
development [81].

Automated classification of skin lesions using images is a challenging task owing to
the fine-grained variability in the appearance of skin lesions (see Figure 1.1).

| uid

Figure 1.1: Extracts of skin lesions from the Interactive Atlas of Dermoscopy dataset [6].
Melanomas (top row) are difficult to differentiate from benign lesions (bottom row) for
both human and machine. Reproduced from Fornaciali et al. [31].

An automated solution for classification of skin lesions could be beneficial in multiple
scenarios. If we think of a device to identify patients in risk, it could reach people that
do not have access to specialists (by geographic, or financial reasons). Since time is a
critical factor for treating skin cancer, the highest the reach of the technology, the higher

Thttp: //www.cancer.net /cancer-types/melanoma/statistics
Zhttps: //www.inca.gov.br /publicacoes/livros /estimativa-2018-incidencia-de-cancer-no-brasil
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are the benefits for the people. Also, it could be operated by non-specialists with little
training to properly collect images of the lesions, broadening its benefits even more. A
device with the same capabilities used in the hospital can alleviate specialists’ stress and
fatigue, redirecting to them only risky patients.

Finally, an explainable, transparent, and accountable device can aid specialists by
exposing a different point of view for difficult cases, highlighting portions of the lesion
that it identifies as a sign of malignancy.

In any of those scenarios, we see the technology replacing specialists. It is quite the
opposite: more risky patients would consult with dermatologists, and the overall quality of
the diagnosis and life of specialists could improve, enabling them to focus on positive cases.

Despite the possibilities of the use of this technology, we first need to achieve high
confidence in our solutions output. Of course, false negatives are also a huge problem, since
it could potentially kill the patient by discouraging them from seeking proper treatment for
such a time-dependent disease. Also, high amounts of false positives could be disastrous
(especially in the first before mentioned scenario, where the amount of people reached
is the highest), crowding hospitals with alarmed healthy patients seeking for treatment
(excision), wasting money and specialists’ time.

Since the adoption of Deep Neural Networks (DNNs), the state of the art improved
rapidly for skin cancer classification [15,28,32,34,95|. The ISIC Challenge on Skin Lesion
Analysis is responsible for this progress [24,25,62|. It is an annual event (organized by
the International Skin Imaging Collaboration (ISIC)) that started in 2016, where different
teams compete to achieve the best performance under the controlled supervision of the
organizers. For every edition, the organization of the challenge makes more data publicly
available, and by designing the tasks of the challenge, help to guide the directions of skin
lesion research. Since its creation, challengers’ works helped to boost skin lesion analysis,
establishing state-of-the-art solutions.

Some techniques are already consensual among researchers in this area. Due to the
smaller datasets when compared to general-purpose datasets, all winning solutions employ
techniques to mitigate this limitation. Transfer learning [64] and data augmentation [78|
are the most common and successful ones: Transfer learning attempts to take advan-
tage of the generalization achieved by a DNN in a more general and vast dataset like
ImageNet [83] to smaller and specific datasets like skin lesions’; and data augmentation
increases the dataset size by inflating it with transformations (e.g., rotations, flips, scales,
color alterations) of the original training set.

When designing those solutions, the architecture choice used to play an important role.
However, the gap between the computer vision state-of-the-art and skin lesion solutions
decreased significantly since 2016 when the challenge started, and today, it is possible
to affirm that it is not as important. As long as the chosen architecture is deep enough
and is state-of-the-art of a main computer vision classification task, it is suitable for skin
lesion classification [77].

The core objective of this Master Thesis is to boost both the performance and our
understanding of skin lesion classification models. The first problem we decided to ap-
proach is the lack of annotated data [95], which is expensive and require much effort from
specialists. To bypass this problem, we propose to use Generative Adversarial Networks
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(GANSs) [35] for generating realistic synthetic skin lesion images.

GANs aim to model the real image distribution by forcing the synthesized samples
to be indistinguishable from real images. In Chapter 2, we review the GAN literature,
describing the evolution of this growing family of techniques. Skin lesion images that
compose datasets for classification are high-definition and ideally, offer high variability
to guide the network’s learning. Also, they present multiple fine-grained patterns called
dermoscopic attributes, that are crucial for dermatologists to diagnose melanoma. Ideally,
synthetic samples must display the same level of detail and variability. However, skin
lesion images are very distinct in comparison to mainstream general-purpose datasets
and are very scarce, making the generation task extra challenging.

Built upon these generative models, many methods were proposed to generate syn-
thetic images based on GANs [46,80,85]. In 2018, we generated synthetic skin lesion im-
ages using different GANs architectures and inflated the training dataset of a skin lesion
classification network [15]. Our synthetic skin lesion generation process takes advantage
of dermoscopic attributes. These attributes are local patterns in the lesion that are core
to different medical algorithms [5,66]. Their addition to the solution not only sharply
increased the quality of the synthetic samples but also delivered meaningful information
to the generation improving their clinical relevance (see Figure 1.2).

N b
, ‘ g
. 8 Ys v

Figure 1.2: Comparison between our synthetic samples (top row) and real samples from
the ISIC Archive (bottom row).

We achieved the improvement of 1 p.p. over the baseline Area under the ROC curve
(AUC) (network trained only with real images) after augmenting our classification net-
works’ training set. The included synthetic images were generated by different meth-
ods, enabling us to combine variety (from PGAN [50]) with fine-grained details (from
Pix2pixHD [96]). We detail our method and evaluate our synthetic images in Chapter 3.

To validate the synthetic samples and their influence when inflating the training set of
a classification network, we employed visualization methods, and dermoscopic attributes
analysis. Only by using this diversified evaluation, we can identify and benchmark the
synthetic images’ qualities and flaws.

Finally, we build upon dermoscopic attributes and medical algorithms [5,71] to im-
prove our understanding of our classification models. We verify if they are learning with
clinically-meaningful information, or are exploiting artifacts in the skin lesion images.
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For this, we contrast two experiments: in the first we build upon dermoscopic attributes,
progressively adding information; in the second we progressively destroy information ac-
cording to the ABCD rule [71], until a point where there is no clinically-meaningful
information left. The results shocked ourselves and the community, showing that our
classification models achieve high levels of performance without any lesion information.
We detail this procedure and analyze the results in Chapter 4.

1.1 Contributions

We summarize our main contributions as follows:
e We provide a comprehensive up-to-date GAN state-of-the-art.

e Our work “Skin Lesion Synthesis with Generative Adversarial Networks” [15] is the
state-of-the-art for skin lesion synthesis. In this work, we investigated the effects of
augmenting our classification network’s training data with synthetic images.

e We identified an urgent problem of bias in skin lesion datasets, raising awareness to
this fact in the research community [13].

e All our work is publicly available on GitHub, enabling other people to reproduce
our results: https://github.com/alceubissoto/gan-skin-lesion and https:
//github.com/alceubissoto/deconstructing-bias-skin-lesion.

1.2 Achievements
We summarize our main achievements as follows:

e First author of Skin Lesion Synthesis with Generative Adversarial Networks [15],
published at the ISIC Skin Image Analysis Workshop, at the International Confer-
ence on Medical Image Computing and Computer Assisted Intervention (MICCAI
2018).

e First author of (De)Constructing Bias on Skin Lesion Datasets |13], published at
the ISIC Skin Image Analysis Workshop, at the Conference on Computer Vision
and Pattern Recognition (CVPR 2019). This work received the Best Paper Award.

e Winner of the Google Latin America Research Awards (Google LARA 2018) with the
project Improving Skin Cancer Classification with Generative Adversarial Networks.

o 2" Best Poster Award at the International Educational Symposium of The Melanoma
World Society, with the poster Generating High Quality Synthetic Skin Lesions for
Boosting Automated Screening.

e Main contributor of RECOD Titans participation [14] in the Task 2 — Lesion At-
tribute Detection of the ISIC 2018: Skin Lesion Analysis Towards Melanoma De-
tection challenge [25], ranking the 6" best submission.
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1.3 Outline

We organized this Master thesis as follows:

e Chapter 2 - GAN Literature Review: We review the extensive GAN literature,
dividing the advancements into topics to create a comprehensive view of the scenario,
enabling the reader to understand how the techniques evolved and combined to get
to its current state.

e Chapter 3 — Skin Lesion Image Synthesis: We describe dermoscopy attributes,
and detail how we take advantage of this annotation to build a method for high-
quality clinically-meaningful skin lesion image generation. We also show our meth-
ods and results to evaluate the synthetic images concerning its quality, and how
they impact classification when used for data augmentation.

e Chapter 4 — Bias in Skin Lesion Datasets: We investigate bias on skin lesion
datasets, designing experiments to verify the network’s performance when we expose
it to correct or spurious correlations.

e Chapter 5 — Conclusion: Finally, we summarize and analyze our findings and
propose future directions for the approached problems.
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Chapter 2

(AN Literature Review

In this chapter, we review the literature of Generative Adversarial Networks (GANs). This
story started in 2014 when Goodfellow et al. [35] introduced the GAN framework. This
idea drew the attention of influential academics in machine learning such as Yan LeCunn
(Turing Award 2018), which stated that “GANSs is the most interesting idea in the last ten
years in machine learning.” Since 2014, the volume of works grew exponentially through
the years, improving the GAN framework significantly through theoretical understanding,
architecture enhancements, and applications.

We divide the advancements in six fronts — Architectural (Section 2.3), Conditional
Techniques (Section 2.4), Normalization and Constraint (Section 2.5), Loss Functions
(Section 2.6), Image-to-image Translation (Section 2.7), and Validation (Section 2.8) —
providing a comprehensive notion of how the scenario evolved through the years, show-
ing trends of thought that resulted to where we are today, where GANs are capable of
generating face images that are almost indistinguishable from real photos (see Figure 2.1).

Figure 2.1: Synthetic human face generated with StyleGAN. Reproduced from Karras et
al. [51].

Since we choose to give an evolutionary view of the GAN literature, sometimes the
chronological information is inevitably lost in the process. To also communicate the time
dimension of the extensive GAN literature, we chronologically organize the GANs we
comment during the review in Figure 2.2 but also categorize them with respect to their
main contribution, linking them to a section of this chapter.
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Figure 2.2: Timeline of the GANs covered in this GAN literature review. Just like our
text, we also split it in six fronts (architectural, conditional techniques, normalization and
constraint, loss functions, image-to-image translation and validation), each represented
with a color. Our work in skin lesion synthesis is in orange.
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2.1 Basic Concepts

Before introducing the formal concept of GANs, we start with an intuitive analogy pro-
posed by Dietz [27]. The scenario is a boxing match, with a coach and two boxers. Let’s
call the fighters Gabriel and Daniel. Both boxers learn from each other during the
match, but only Daniel has a coach. Gabriel only learns from Daniel. Therefore, at
the beginning of the boxing, Gabriel keeps himself focused, observing his adversary and
his moves, trying to adapt every round, guessing the teachings the coach gave to Daniel.
After many rounds, Gabriel was able to learn the fundamentals of boxing during the
match against Daniel and ideally, the boxing match would have 50/50 odds.

In the boxing analogy, Gabriel is the generator (G), Daniel is the discriminator
(D), and the coach is the real data — larger the data, more experienced the coach.
Goodfellow et al. [35] introduced GANs as two deep neural networks (the generator G' and
the discriminator D) that play a minimax two-player game with value function V (D, G)
as follows:

min max V (D, G) = By 08 D(@)] + Benp o log (1= DG, (21)

where z is the noise, p, is the noise distribution, x is the real data, and pg., is the real
data distribution.

The goal of the generator is to create samples as they were from the real data distribu-
tion pgata. To accomplish that, it learns the distribution of the real data and applies the
learned mathematical function to a given noise z from the distribution p.. The goal of the
discriminator is to be able to discriminate between real (from the real data distribution)
and generated samples (from the generator) with high precision.

During training, the generator receives feedback from the discriminator’s decision (that
classify the generated sample as real or fake), learning how to fool the discriminator better
next time. In Figure 2.3, we show a simplified GAN pipeline.

Real Images

’ Discriminator

[l

Real

Generator
Fake

Synthetic image

Figure 2.3: Simplified GAN Architecture. GANs are composed of two networks that
are trained in a competition. While the generator learns to transform the input noise
into samples that could belong to the target dataset, the discriminator learns to classify
the images as real or fake. Ideally, after enough training, the discriminator can not
differentiate between real and fake images, and the generator is synthesizing good quality
images with high variability.
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2.2 GAN’s Challenges

In 2017, GANs suffered from high instability and were considered hard to train |7]. Since
then, different architectures, loss functions, conditional techniques, and constrain meth-
ods were introduced, easing the convergence of GAN models. However, there are still
hyperparameter choices that may highly influence training. The batch size and layers
width were recently in the spotlight after BigGAN [18]| showed state-of-the-art results for
ImageNet image synthesis by increasing radically these, among other factors. Aside from
its impressive results, it showed directions to improve the GAN framework further.

Is the gradient noise introduced when using small mini-batches more impactful than
the problems caused by the competition between discriminator and generator? And of
course, how much can GAN benefit (if it can at all) from scaling to very deep architectures
and parallelism, and vast volumes of data? It seems that the computational budget can
be critical for the future of GANs. Lucic et al. [60] showed that given enough time
for hyperparameter tuning and random restarts, despite multiple proposed losses and
techniques, different GANs can achieve the same performance.

However, even in normal conditions, GANs achieve incredible performance for specific
tasks such as face generation, but the same quality is not perceived when dealing with
more general datasets such as ImageNet. The characteristics of the dataset that favor
GANSs performance still uncertain. A possibility is the regularity (using the same object
poses, placement on the image, or using different objects with the same characteristics)
are easier than others where variation is high such ImageNet.

A factor that is related to data regularity and variability is the number of classes.
GANSs suffer to cover all class possibilities of a target dataset if it is unbalanced (e.g.,
medical datasets) or if the class count is too high (e.g., ImageNet). This phenomenon
is called “mode collapse” |7], and despite efforts from the literature to mitigate the issue
[58, 85], modern GAN solutions still display this undesired behavior. If we think in the
use case where we want to augment a training dataset with synthetic images, which is the
case for this Master thesis, it is even more impactful once the object classes we want to
generate are usually the most unbalanced ones.

Validating synthetic images is also challenging. Qualitative evaluation, where grids
of low-resolution images are compared side-by-side, was (and still is) one of the most
used methods for performance comparison between different works. Authors also resort
to services like the Amazon Mechanical Turk (AMT), which enable to perform statistical
analysis on multiple human annotators’ choices over synthetic samples. However, except
for the cases where the difference is massive, the subjective nature of this approach may
lead to wrong decisions.

Ideally, we want quantitative metrics that consider different aspects of the synthetic
images, such as the overall structure of the object, the presence of fine details, and variabil-
ity between samples. The most accepted metrics, IS and FID, both rely on the activations
of an ImageNet pre-trained Inceptionv3 network to output its scores. This design causes
scores to be unreliable, especially for contexts that are not similar to ImageNet’s.

Other metrics such as GANtrain and GANtest can analyze those mentioned aspects,
however we have to consider the possible flaws of the used classification networks —
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especially bias — which could reinforce its presence in the synthetic images. Thus, only
by employing diversified metrics, evaluation methods, and content-specific measures, we
can truly assess the quality of the synthetic samples.

2.3 Architectural Methods

The works that followed the original Goodfellow et al.’s paper compound the framework
with architectural changes, enabling GANs to be explored in different contexts. At this
time, GANs were capable only of generating low resolution samples (32 x 32) from simpler
datasets like MNIST [56] and Faces [89]. However, in 2016, crucial architectural changes
were proposed, boosting GANs research and increasing the complexity and quality of the
synthetic samples.

Deep Convolutional GAN (DCGAN) [80] proposed detailed architectural guidelines
that stabilized GAN’s training, enabling the use of deeper models and achieving higher
resolutions (see Figure 2.4). The proposals to remove pooling and fully-connected layers
guided the future models’ design; while the proposal of using batch normalization inspired
other normalization techniques [50,69] and still is used in modern GAN frameworks |70].
DCGAN caused such an impact in the community that it is still used nowadays when
working with simple low-resolution datasets and as an entry point when applying GANs
in new contexts.
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Figure 2.4: DCGAN'’s generator architecture reproduced from Radford et al. [80]. The
replacement of fully-connected and pooling layers with (strided and fractional-strided)
convolutional layers enabled GANs architecture to be deeper and more complex.

At the same period, Denton et al. [26] proposed Laplacian Pyramid GAN (LAPGAN):
an incremental architecture where the resolution of the synthetic sample is progressively
increased across the generation pipeline. This modification enabled the generation of
synthetic images up to 96 x 96 resolution.

In 2018, this type of architecture gained popularity, and it is still employed for
improved stability and high-resolution generation. Progressive GAN (PGAN) [50] im-
proved the incremental architecture to generate human faces of 1024 x 1024 resolution.
While the spatial resolution of the generated samples increases, layers are progressively
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Figure 2.5: Simplified PGAN’s Incremental Architecture. PGAN starts by generating and
discriminating low-resolution samples, adjusting the generation’s coarse details. Progres-
sively, the resolution is increased, enhancing synthetic image’s fine details. Reproduced
from Karras et al. [50].

added for both Generator and Discriminator (see Figure 2.5). Since older layers remain
trainable, generation happens for different resolutions for the same image. It enables
coarse/structural image details to be adjusted in lower resolution layers, and fine details
in higher resolution layers.

Very recently, StyleGAN [51] showed remarkable performance when generating human
faces, dethroning PGAN in this task. Despite keeping the progressive training procedure,
several changes were proposed (see Figure 2.6). The authors changed how information is
usually fed into the generators: In other works, the main input of noise passes through
the whole network, being transformed layer after layer until becoming the final synthetic
sample. In StyleGAN, the generator receives information directly in all its layers. Before
feeding the generator, the input label data goes through a mapping network (composed
of several sequential fully-connected layers) that extract class information. This informa-
tion, called “style” by the authors, is then combined with the input latent vector (noise).
Then, it is incorporated in all the generator’s layers by providing the Adaptive Instance
Normalization (AdalN) [42] layer’s parameters for scale and bias.

Also, authors added extra independent sources of noise that feeds different layers of the
generator. By doing this, authors expect that each source of noise can control a different
stochastic aspect of the generation (e.g., placement of hair, skin pores, and background)
enabling more variation and higher detail level.

An effect of these modifications, specially the mapping network, is the disentanglement
of the relations between the noise and the style. This enables subtle modifications on the
noise to reflect on subtle changes to the generated sample while keeping it plausible,
improving the quality of the generated images, and stabilizing training.

The same idea of disentangling the class and latent vectors was first explored by Info-
GAN [20], where the network was responsible for finding characteristics that could control
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Figure 2.6: Comparison between generators on PGAN [50] (on the left) and StyleGAN (on
the right). First, a sequence of fully-connected layers is used to extract style information
and disentangle the noise and class information. Next, style information feeds AdalN
layers, providing its parameters for shift and scale. Also, different sources of noise feed
each layer to simplify the task of controlling stochastic aspects of generation (such as
placement of hair and skin pores). Reproduced from Karras et al. [51].

generation and disentangle this information from the latent vector. This disentanglement
allows discovered (by the network itself) features, which are embedded in the latent vec-
tor, to control visual aspects of the image, making the generation process more coherent
and tractable.

Another class of architectural modifications consists of GANs that were expanded to
include different networks in the framework. Encoders are the most common component
aside from the original generator and discriminator. Their addition to the framework cre-
ated an entire new line of possibilities doing image-to-image translation [47] (detailed later
in Section 2.7). Also, super-resolution and image segmentation solutions use encoders in
their architecture. Since encoders are present in other generative methods such as Varia-
tional Autoencoders (VAE) [52], there were also attempts of extracting the best of both
generative methods [55] by combining them. Finally, researchers also included classifiers
to be trained jointly with the generator and discriminator, improving generation [72], and
semi-supervised capabilities [22].

2.4 Conditional Techniques

In 2014, Mirza et al. [67] introduced a way to control the class of the generated samples:
concatenate the label information to the generator’s input noise. Despite simple, this
method instigated researchers to be creative with GAN inputs, and enabled GANs to
solve different and more complex tasks.
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The next step was to include the label in the loss function. Salimans et al. [85]
proposed to increase the output size of the discriminator, to include classes, for semi-
supervised classification purposes. Although having a different objective, it inspired future
works. Odena et al. [73| focused on generation with Auxiliary Classifier GAN (ACGAN),
splitting both tasks (label and real/fake classification) for the discriminator, while still
feeding the generator with class information. It greatly improved generation, creating
128 x 128 synthetic samples (surpassing LAPGAN’s 96 x 96 resolution) for all 1000 classes
of ImageNet. Also, authors showed that GANs benefit from higher resolution generation,
which increases discriminability for a classification network.

The next changes happened again modifying how the class information is fed to the
network. On TripleGAN [22| the class information is concatenated in all layers’ feature
vectors, except for the last one, on both discriminator and generator. Note that sometimes
the presented approaches can be combined: concatenation became the standard method
of feeding conditional information to the network, while using ACGAN’s loss function
component.

Next, Miyato et al. |[70] introduced a new method to feed the information to the
discriminator. The class information is first embedded, and then integrated to the model
through an inner product operation at the end of the discriminator. In their solution,
the generator continued concatenating the label information to the layers’ feature vectors.
Although the authors show the exact networks used in their experiments, this technique
is not restricted and can be applied to any GAN architecture for different tasks.

Recently, an idea used for style transfer was incorporated to the GAN framework. In
style transfer the objective is to transform the source image in a way it resembles the
style (especially the texture) of a given target image, without losing its content compo-
nents. The content comprehends information that can be shared among samples from
different domains, while style is unique to each domain. When considering paintings for
example, the “content” represent the objects in the scene, with its edges and dimensions;
while “style” can be the artists’ painting (brushing) technique and colors used. Adap-
tive Instance Normalization (AdaIN) [42] is used to infuse a style (class) into content
information. The idea is to first normalize the feature maps according to its dimensions’
mean and variance evaluated for each sample, and each channel. Intuitively, Huang et
al. explained that at this point (which is called simply Instance Normalization), the style
itself is normalized, being appropriate to receive a new style. Finally, AdaIN uses statis-
tics obtained from a style encoder to scale and shift the normalized content, infusing the
target style into the instance normalized features.

This idea was adapted and enhanced for current state-of-the-art methods for plain
generation [43,51], image-to-image translation [75], and to few-shot image-translation [59].
Authors usually employ an encoder to extract style that feeds a multi-layer perceptron
(MLP) that outputs the statistics used to control scale and shift on AdaIN layers.

In Spatially-Adaptive Normalization (SPADE) [75], a generalization of previous nor-
malizations (e.g., Batch Normalization, Instance Normalization, Adaptive Instance Nor-
malization) is used to incorporate the class information into the generation process, but it
focuses at working with input semantic maps for image-to-image translation. The param-
eters used to shift and scale the feature maps are tensors that preserve spatial information
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from the input semantic map. Those parameters are obtained through convolutions, then
multiplied and summed element-wise to the feature map. Since this information is in-
cluded in most of the generator’s layers, it prevents the map information to fade away
during the generation process.

2.5 Normalization and Constraint Techniques

On DCGAN |[80], authors advocated the use of batch normalization [45] layers on both
generator and discriminator to reduce internal covariate shift. It was the beginning of the
use of normalization techniques, which also developed with time, for increased stability.
In batch normalization, the output of a previous activation layer is normalized using
the current batch statistics (mean and standard variation). Then, it adds two trainable
parameters to scale and shift the normalization result.

For PGAN [50] authors, the problem is not the internal covariate shift, but the signal
magnitudes that explode due to competition between the generator and discriminator.
To solve this problem, they moved away from batch normalization, and introduced two
techniques to constrain the weights. On Pizelwise Normalization (see Equation 2.2), they
normalize the feature vector in each pixel. This approach is used in the generator, and
do not add any trainable parameter to the network.

N-1

1 .
br,y - ax,y/ N Z((lgs,y)Q + €, (22)

J=0

where € = 107%, N is the number of feature maps, and a,, and b, , are the original and
normalized feature vector in pixel (z,y), respectively.

The other technique introduced by Karras et al. [50] is called Equalized Learning Rate
(see Equation 2.3).

where w; are the weights and c is the per-layer normalization constant from He’s initial-
izer [37]. During initialization, weights are all sampled from the same distribution A(0, 1)
at runtime, and then scaled by c. It is used to avoid weights to have different dynamic
ranges across different layers. This way, the learning rate impacts all the layers by the
same factor, avoiding it to be too large for some, and too little for others.

Spectral Normalization [69] also acts constraining weights, but only at the discrimi-
nator. The idea is to constrain the Lipschitz constant of the discriminator by restricting
the spectral norm of each layer. By constraining its Lipschitz constant, it limits how
fast the weights of the discriminator can change, stabilizing training. For this, every
weight W is scaled by the largest singular value of W. This technique is currently present
in state-of-the-art networks [75,101], being applied on both generator and discriminator.

So far, the presented constraint methods concern about normalizing weights. Dif-
ferently, Gradient penalty [36] enforces 1-Lipschitz constraint to make all gradients with
norm at most 1 everywhere. It adds an extra term to the loss function to penalize the
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model if the gradient norm goes beyond the target value 1.

Some methods did not change loss functions or added normalization layers to the
model. Instead, those methods introduced subtle changes in the training process to deal
with GAN’s general problems, such as training instability and low variability on the
generated samples. Minibatch Discrimination [85] gives the discriminator information
around the mini-batch that is being analyzed. Roughly speaking, this is achieved by
attaching a component! to an inner layer of the discriminator. With this information, the
discriminator can compare the images on the mini-batch, forcing the generator to create
images that are different from each other.

Similarly with respect of giving more information to the discriminator, PacGAN [58]
packs (concatenates in the width axis) different images from the same source (real or
synthetic) before feeding the discriminator. According to the authors, this procedure
helps the generator to cover all target labels in the training data, instead of limiting itself
to generate samples of a single class that are able to fool the discriminator (a problem
called mode collapse [7]).

2.6 Loss Functions

Theoretical advances towards understanding GANs training and the sources of its training
instabilities |7| pointed that the Jensen-Shannon Divergence (JSD) (which is used in
the GAN’s formulation to measure similarity between the real data distribution and the
generator’s) is responsible for vanishing the gradients when the discriminator is already
well trained. This theoretical understanding contributed to motivate next wave of works,
that explored alternatives to the JSD.

Instead of JSD, authors proposed using the Pearson x? (Least Squares GAN) [61], the
Earth-Mover Distance (Wasserstein GAN) [8], and Cramér Distance (Cramér GAN) [11].
One core principle explored was to penalize samples even when it is on the correct side of
the decision boundary, avoiding the vanishing gradients problem during training.

Other introduced methods choose to keep the divergence function intact and introduce
components to the loss function to increase image quality, training stability, or to deal with
mode collapse and vanishing gradients. Those methods often can be employed together
(and with different divergence functions) evidencing the many possibilities of tuning GANs
when working on different contexts.

An example that shows the possibility of joining different techniques is the Boundary-
Seeking GAN (BSGAN) [40], where a simple component (which must be adjusted for
different f-divergence functions) tries to guide the generator to generate samples that
make the discriminator output 0.5 for every sample.

Feature Matching [85] comprises a new loss function component for the generator
that induces it to match the features that better describe the real data. Naturally, by
training the discriminator we are asking it to find these features, which are present in
its intermediate layers. Similarly to Feature Matching, Perceptual Loss [49] also uses
statistics from a neural network to compare real and synthetic samples and encourage

Vector of differences between the sample being analyzed and the others present in the mini-batch.
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them to match. Differently though, it employs ImageNet pre-trained networks (VGG [8§]
is often used), and add an extra term to the loss function. This technique is commonly
used for super-resolution methods, and also image-to-image translation [96].

Despite all the differences between the distinct loss function, and methods used to
train the networks, given enough computational budget, all can reach comparable per-
formance [60]. However, since solutions are more urgent than ever, and GANs have
the potential to impact multiple areas, from data augmentation, image-to-image transla-
tion, super-resolution and many others, gathering the correct methods that enable a fast
problem-solver solution is essential.

2.7 Image-to-image Translation Methods

The addition of encoders in the GAN architecture enabled GANs for the task of image-to-
image translation. In 2016, Yoo et al. [99] started using GANs for this task. The addition
of the encoder to the generator’s network transformed it into an encoder-decoder network
(autoencoder). Now, the source image is first encoded into a latent code, which is then
mapped to the target domain by the generator. The changes in the discriminator are not
structural, but the task changed. In addition to the traditional adversarial discriminator,
the authors introduce a domain discriminator that analyze pairs of source and target
(real and fake) samples and judge if they are associated or not.

Up until this time, the synthetic samples follow the same quality of plain genera-
tion’s: low quality and low resolution. This scenario changes with pix2pix [47]|. Pix2pix
employed a new architecture for both the generator and the discriminator, as well as a
new loss function. It was a complete revolution! We reproduce a simplification of the
referenced architecture in Figure 2.7. The generator is a U-Net-like network [82], where
the skip connections allow to bypass information that is shared by the source-target pair.
Also, the authors introduce a patch-based discriminator (which they called PatchGAN) to
penalize structure at scale of patches of a smaller size (usually 70 x 70), while accelerating
evaluation. To compose the new loss function, authors proposed the addition of a term
that evaluates the L1 distance between synthetic and ground truth targets, constraining
the synthetic samples without killing variability.

Despite advances on conditional plain generation techniques such as ACGAN [73],
which allowed generation of samples up to 128 x 128 resolution, the quality of synthetic
samples reached a new level with its contemporary pix2pix. This model is capable to
generate 512 x 512 resolution synthetic images, comprising state-of-the-art levels of detail
for that time. Overall, feeding the generator with the source sample’s extra information
simplify and guide generation, impacting the process positively.

The same research group responsible for pix2pix later released CycleGAN [102], further
improving the overall quality of the synthetic samples. The new training procedure (see
Figure 2.8) enforces the generator to make sense of two translation processes: from source
to target domain, and also from target to source. The cyclic training also uses separate
discriminators to deal with each one of the translation processes. The architectures on
the discriminators are the same from pix2pix, using 70 x 70 patches, while the generator
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Figure 2.7: Pix2pix’s training procedure. Source-target domain pairs are used for training;:
the generator is an autoencoder that translates the input source domain to the target
domain; the discriminator critic pairs of images composed of the source and (real or fake)
target domains. Reproduced from Isola et al. [47].
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Figure 2.8: (a) CycleGAN uses two Generators (G and F') and two discriminators (D
and Dy) to learn to transform the domain X into the domain Y and vice-versa. To
evaluate the cycle-consistency loss, authors force the generators to be able to reconstruct
the image from the source domain after a transformation. That is, given domains X and
Y, generators G and F' should be able to: (b) X — G(X) — F(G(X)) = X and (c)
Y - F(Y)— G(F(Y)) =Y. Reproduced from Zhu et al. [102].

receives the recent architecture proposed by Johnson et al. [49] for style transfer.

CycleGAN increased the domain count managed (generated) by a single GAN to two,
making use of two discriminators (one for each domain) to enable translation between
both learned domains. Besides the architecture growth needed, another limitation is
the requirement of having pairs of data connecting both domains. Ideally, we want to
increase the domain count without scaling the number of generators or discriminators
proportionally, and have partially-labeled datasets (that is, not having pairs for every
source-target domains). Those flaws motivated StarGAN [21]. Apart from the source
domain image, StarGAN’s generator receives an extra array containing labels’ codification
that informs the target domain. This information is concatenated depth-wise to the
source sample before feeding the generator, which proceeds to perform the same cyclic
procedure from CycleGAN, making use of a reconstruction loss. To deal with multiple
classes, without increasing the discriminator count, it accumulates a classification task to
evaluate the domain of the analyzed samples.

The next step towards high-resolution image-to-image translation is pix2pixHD (High-
Definition) [97], which was widely used during this Master thesis to generate realistic
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Figure 2.9: Summary of Pix2pixHD generators. G, is the global generator and G, is
the local generator. Both generators are first trained separately, starting from the lower-
resolution global generator, and next, proceeding to the local generator. Finally, both are
fine-tuned together to generate images up to 2048 x 1024 resolution. Reproduced from
Wang et al. [97].
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clinically-meaningful skin lesions. Pix2pixHD obviously is based upon pix2pix’s work but
includes several modifications while adopting changes brought by CycleGAN with respect
to the generator’s architecture.

The authors propose using two nested generators to enable the generation of 2048 x
1024 resolution images (see Figure 2.9), where the outer “local” generator enhances the
generation of the inner “global” generator. Just like CycleGAN; it uses Johnson et al. [49]
style transfer network as global generator, and as base for the local generator. The output
of the global generator feeds the local generator in the encoding process (element-wise
sum of global’s features and local’s encoding) to carry information of the lower resolution
generation. They are also trained separately: first they train the global generator, then
the local, and finally, they fine-tune the whole framework together.

In pix2pixHD, the discriminator also receives upgrades. Instead of working with lower-
resolution patches, pix2pixHD uses three discriminators that work simultaneously in dif-
ferent resolutions of the same images. This way, the lower resolution discriminator will
concern more about the general structure and coarse details, while the high-resolution
discriminators will pay attention to fine details. The loss function also became more ro-
bust: besides the traditional adversarial component for each of the discriminators and
generators, it comprises feature matching and perceptual loss components.

Other less structural aspects of generation, but maybe even more important, were
explored by Wang et al. [97]. Usually, the input for image-to-image translation networks
is semantic maps [57]. It is an image where every pixel has the value of its object class
and it is commonly seen as a result of pixelwise segmentation tasks. During evaluation,
the user can decide and pick the desired attributes of the result synthetic image by craft-
ing the input semantic map. However, pix2pixHD authors noticed that sometimes this
information is not enough to guide the network’s generation. For example, let us think
of the semantic map containing a queue of cars in the street. The blobs corresponding to
each car would be connected, forming a strange format (for a car) blob, making it difficult
for the network to make sense of it.

The authors’ proposed solution is to add an instance map to the input of the networks.
The instance map [57] is an image where the pixels combine information from its object
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class and its instance. Every instance of the same class receives a different pixel value.
The addition of instance maps is one of the factors that affected the most our skin lesion
generation, as well as other contexts showed in their paper.

A drawback of pix2pixHD and the other methods so far is that generation is determin-
istic (e.g., in test time, for a given source sample, the result is always the same). This is
an undesired behavior if we plan to use the synthetic samples to augment a classification
model’s training data, for example.

Huang et al. introduce Multimodal Unsupervised Image-to-image Translation (MU-
NIT) [43] to generate diverse samples with the same source sample. For each domain, the
authors employ an encoder and a decoder to compose the generator. The main assump-
tion is that it is possible to extract two types of information from samples: content, that
is shared among instances of different domains, controlling general characteristics of the
image; and style, that controls fine details that are specific and unique to each domain.
The encoder learns to extract content and style information, and the decoder to take
advantage of this information.

During training, two reconstruction losses are evaluated: the image reconstruction loss,
which measure the ability to reconstruct the source image using the extracted content and
style latent vectors; and the latent vectors reconstruction loss, which measure the ability
to reconstruct the latent vectors themselves, comparing a pair of source latent vectors
sampled from a random distribution, with the encoding of a synthetic image created
using them (see Figure 2.10).
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Figure 2.10: MUNIT’s training procedure. (a) Reconstruction loss with respect to the
images of the same domain. Style “s” and content “c” information are extracted from the
real image, and used to generate a new one. The comparison of both images composes the
model’s loss function. (b) For cross-domain translation, the reconstruction of the latent
vectors containing style and content information also compose the loss function. The
content is extracted from a source real image, and the style is sampled from a Gaussian
prior. Reproduced from Huang et al. [43].

MUNIT’s decoder (see Figure 2.11) incorporate style information using AdalIN [42]
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Figure 2.11: The generator’s architecture from MUNIT. The authors employ different
encoders for content and style. The style information feeds a Multi-Layer Perceptron
(MLP) that provide the parameters for the AdaIN normalization. This process incorpo-
rates the style information to the content, creating a new image. Reproduced from Huang
et al. [43].

(we detailed AdaIN, and the intuitions behind using this normalization in Section 2.4),
and it directly influenced current state-of-the-art GAN architectures |51, 59, 75|.

One of the influenced works deals with a slightly different task: few-shot image-to-
image translation. Few-shot translation attempts to translate a source image to a new
unseen (but related) target domain after looking into just a few (2 or so) examples during
test time (e.g., train with multiple dog breeds, and test for lions, tigers, cats, wolves). To
work on this problem, Liu et al. [59] introduce Few-shot Unsupervised Image-to-Image
Translation (FUNIT). It combines and enhances methods from different GANs we al-
ready described. Authors propose an extension of CycleGAN’s cyclic training procedure
to multiple source classes (authors advocate that the higher the amount, the best the
model’s generalization); adoption of MUNIT’s encoders for content and style, that are
fused through AdalN layers; enhancement of StarGAN’s procedure to feed class infor-
mation to the generator in addition to the content image, where instead of simple class
information, the generator receives a set of few images of the target domain. The discrim-
inator also follows StarGAN’s, in a way that it performs an output for each of the source
classes. This is an example of how works influence each other, and of how updating an
older idea with enhanced recent techniques can result in a state-of-the-art solution.

So far, every image-to-image translation GAN generator’s assumed the form of an
autoencoder, where the source image is encoded into a reduced latent representation, that
is finally expanded to its full resolution. The encoder plays an important role to extract
information of the source image that will be kept in the output. Often, even multiple
encoders are employed to extract different information, such as content and style.

On Spatially-Adaptive Normalization (SPADE) [75] authors introduce a method for
semantic image synthesis (e.g., image-to-image translation using a semantic map as the
generator’s input). It can be considered pix2pixHD [97] successor, in a way that it deals
with much of the previous work flaws. Although the authors call their GAN as SPADE
in the paper (they call it GauGAN now), the name refers to the introduced normaliza-
tion process, which generalizes other normalization techniques (e.g., Batch Normalization,
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Instance Normalization, AdaIN). Like AdaIN, SPADE is used to incorporate the input
information into the generation process, but there is a key difference between both meth-
ods. On SPADE, the parameters used to shift and scale the feature maps are tensors that
contain spatial information preserved from the input semantic map. Those parameters are
obtained through convolutions, then multiplied and summed element-wise to the feature
map (see Figure 2.12a). This process takes place in all the generator’s layers, except for
the last one, which outputs the synthetic image. Since the input of the generator’s decoder
is not the encoding of the semantic map, authors use noise to feed the first generator’s
layer (see Figure 2.12b). This change enables SPADE for multimodal generation, that is,
given a target semantic map, SPADE can generate multiple different samples using the

same map.
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(a) SPADE normalization process. (b) SPADE’s generator.

Figure 2.12: (a) At the SPADE normalization process, the input semantic map is first
projected into a feature space. Next, different convolutions are responsible for extracting
the parameters that perform element-wise multiplication and sum to the normalized gen-
erator’s activation. (b) A sampled noise is modified through the residual blocks. After
each block, the output is shifted and scaled using AdaIN. This way, the style information
of the input semantic map is present in every stage of the generation, without killing the
output variability that comes with the sampled noise at the beginning of the process.
Reproduced from Park et al. [75].

2.8 Validation of Synthetic Methods

Inception Score (IS) [85]: it uses an Inceptionv3 network pre-trained on ImageNet to
compute the logits of the synthetic samples. The logits are used to evaluate Equation 2.4.
The authors say it correlates well with human judgment over synthetic images. Since the
network was pre-trained on ImageNet, we rely on its judgment of the synthetic images
with respect to the ImageNet classes. This is a big problem because skin lesion images
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do not relate to any class on ImageNet. Thus, this method is inappropriate to evaluate
synthetic samples from any dataset that is not ImageNet.

IS(G) = exp ( xwp, Drr( p(ylx) | 2(y) ) ),
py) = / P(y1%)p, (%),

where x ~ p, indicates that x is an image sampled from p,, p, is the distribution learned

(2.4)

by the generator, Dk (pllq) is the Kullback Leibler divergence between the distributions
p and ¢, p(y|x) is the conditional class distribution (logit of a given sample), and p(y) is
the marginal class distribution (mean logits over all synthetic samples).

Frechét Inception Distance (FID) [39]: like the Inception Score, the FID relies
on Inception’s evaluation to measure quality of synthetic samples and suffer from the
same problems. Differently though, it takes the features from the Inception’s penultimate
layer from both real and synthetic samples, comparing them. The FID uses Gaussian
approximations for these distributions, which makes it less sensitive to small details (which
are abundant in high-resolution samples).

Sliced Wasserstein Distance (SWD) [50]: Karras et al. introduced the SWD
metric to deal specifically with high-resolution samples. The idea is to consider multiple
resolutions for each image, going from 16 x 16 and doubling until maximum resolution
(Laplacian Pyramid). For each resolution, slice 128 7 x 7 x 3 patches from each level,
for both real and synthetic samples. Finally, use the Sliced Wasserstein Distance [79] to
evaluate an approximation to the Earth Mover’s distance between both.

GANtrain and GANtest [87]: the idea behind these metrics align with our ob-
jective of using synthetic images as part of a classification network, like a smarter data
augmentation process. GANtrain is the accuracy of a classification network trained on
the synthetic samples, and evaluated on real images. Similarly, GANtest is the accu-
racy of a classification network trained on real data, and evaluated on synthetic samples.
The authors compare the performance of GANtrain and GANtest with a baseline net-
work trained and tested on real data. We explored this idea of employing a classification
network to evaluate the synthetic samples before Shmelkov et al. formally proposed it,
and we reported our results in our work [15] presented at the ISIC Skin Image Analysis
Workshop at MICCAI 2018.

Borji [16] analyzed the existing metrics in different criteria: discriminability (capacity
of favoring high-fidelity images), detecting overfitting, disentangled latent spaces, well-
defined bounds, human perceptual judgments, sensitivity to distortions, complexity and
sample efficiency. After an extensive review of the metrics literature, the author compares
the metrics concerning the presented criteria, and among differences and similarities, can
not point the definitive metric to be used. The author suggests future studies to rely on
different metrics to better assess the quality of the synthetic images.

Theis et al. [93], in a study of quality assessment for synthetic samples, highlighted
that the same model may have very different performance on different applications, thus,
a proper assessment of the synthetic samples must consider the context of the application.
In this Master thesis, we follow in the same direction, employing tests that are specific
for skin lesions to evaluate their clinical information.
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Chapter 3

Skin Lesion Image Synthesis

GANSs aim to model the real image distribution by forcing the synthesized samples to be
indistinguishable from real images. Just recently works have shown promising results for
high-resolution image generation [50,51,75,96]. At the time of this work, the scenario
was wholly dominated by low-resolution GANs (32 x 32 data generation, e.g., [8,61,80]).
However, for skin cancer classification, the images must have a higher level of detail (high-
resolution) to be able to display malignancy markers (Section 3.1) that differ a benign from
a malignant skin lesion. The scenario started to shift towards high-resolution generation,
especially with Karras et al.’s Progressive GAN (PGAN) [50], and architectural advances
on image-to-image translation [96].

PGAN’s [50] progressive training procedure generates celebrity faces up to 1024 x 1024
pixels. At the beginning of the training phase, authors feed the network with low-
resolution samples. Progressively, the network receives increasingly higher resolution
training samples while amplifying the respective layers’ influence to the output. In the
same direction, Pix2pixHD [96] generates high-resolution images from semantic and in-
stance maps. The authors propose to use multiple discriminators and generators that
operate in different resolutions to evaluate fine-grained detail and global consistency of
the synthetic samples. We investigate both networks for skin lesion synthesis, comparing
the achieved results.

In this Master thesis, we proposed a GAN-based method for generating high-definition,
visually-appealing, and clinically-meaningful synthetic skin lesion images. This work was
the first that successfully generates realistic skin lesion images (for illustration, see Fig-
ure 3.1). To evaluate the relevance of synthetic images, we trained a skin cancer clas-
sification network with synthetic and real images, reaching an improvement of 1 per-
centage point. Also, we analyze the synthetic images, comparing our modifications of
PGAN and Pix2pixHD. Our full implementation is available at https://github.com/
alceubissoto/gan-skin-lesion.

We highlight that the main contribution of this chapter was published at the ISIC Skin
Image Analysis Workshop at the International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAIT 2018), and still is up today the state-of-
the-art for skin lesion images synthesis.
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Figure 3.1: Our approach successfully generates high-definition, visually-appealing,
clinically-meaningful synthetic skin lesion images. All samples are synthetic. Details
can be found in Section 3.3.

3.1 Related Concepts — Dermoscopy

In this Master thesis, we take advantage of a very special annotation called dermoscopic
attributes to our generation process. In this section, we give some details of its capabilities,
and about the way it is currently presented on skin lesion datasets.

Dermoscopic attributes are only visible in dermoscopic images. Differently to clinical
images, which can be captured with standard cameras, dermoscopic images are captured
with a device called dermatoscope, that normalize the light influence on the lesion, allow-
ing to capture deeper details (see Figure 3.2).

This special image enables the application of medical algorithms to skin lesions. Med-
ical algorithms are used to evaluate a score that can support the diagnostic. There are al-
gorithms based on more straightforward characteristics of the lesion. The ABCD rule [71],
for example, takes into consideration the Asymmetry, Border, Color, and Diameter of the
lesion.

Specialists diagnose melanoma with a technique called Dermoscopy, which analyzes
the dermoscopic attributes present in the lesion. These attributes are only visible in
dermoscopic images. Algorithms such as the 7-points are built upon the dermoscopic
attributes. The algorithm accumulates the assigned score of each present feature, and
compare the final number to a threshold, which determines if the lesion should be excised
or not.
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Figure 3.2: Clinical (left) versus dermoscopic (right) images. In dermoscopic images the
details are enhanced, easing the process of analyzing colors and borders, and enabling
dermoscopic attribute analysis. Reproduced from Argenziano et al. [6].

3.1.1 Dermoscopic Attributes

There is a big variety of dermoscopic attributes — also called local features — and each
of them can stratify with respect to their regularity, color, and other specific details. We
show the dermoscopic attributes annotation of the Atlas Dataset [6] in Table 3.1 and some
examples in Figure 3.3.

lesions with dots/globules i Typical pigment network
() . T — /
/
/
(a) regular streaks, (b) irregular streaks Atypical pigment network

Figure 3.3: Example of dermoscopic attributes present in skin lesion images. Specialists
rely on these patterns to diagnose melanoma. Image adapted from [84].

This annotation, despite crucial for human specialists, is present only for small sub-
sets of data available for machine learning. Only recently, at ISIC 2017 and ISIC 2018
Challenges, the organizers made available a subset of dermoscopic images with this spe-
cial annotation to support the task for dermoscopic features segmentation. The provided
annotation is a map for each of the five interest attributes: pigment network, negative
network, streaks, globules, and milia-like cysts. This way, we not only know if an attribute
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Atlas Dermoscopic Attributes Annotation

Global feature cobblestone, globular, homogeneous, lacunar, multicompo-
nent, parallel, reticular, starburst, unspecific

Dots and globules regular, irregular

Streaks regular, irregular

Blue white veil present

Pigmentation diffuse irregular, diffuse regular, localized irregular, local-

ized regular

Hypopigmentation diffuse, focal, multifocal

Regression structures blue areas, white areas, combination

Vascular structures arborizing, comma, dotted, hairpin, linear, irregular,
within regression, wreath

Other criteria central white patch, comedo-like openings, exophytic papil-
lary structures, leaf-like areas, milia-like cysts, red lacunas

Table 3.1: Atlas dataset dermoscopic attributes annotation. The annotation is very

detailed, enabling the application of pattern-based medical algorithm such as 7-point
checklist [5].

is present but also the portion of the lesion that displays it. Despite rich, this metadata is
not sufficient for the application of the 7-points [5] medical algorithm because it does not
contain other critical local features, and it lacks detail about each attribute. For example,
to apply the 7-points algorithm, we need to know if the pigment network is regular or
irregular. If it is not sufficient to apply medical algorithms, maybe deep learning models
could also benefit from a more detailed annotation. However, we do not expect to see this
improvement soon, since the ISIC 2019 Challenge did not include a similar task. Thus,
the number of lesions annotated with their dermoscopic features did not increase.

Atlas, which is the only other source of skin lesion images that contains this annota-
tion, was created as an educational source for dermatologists, enabling them to diagnose
melanoma using dermoscopy. However, because of the original purpose of Atlas, it is
biased with respect to the presented dermoscopic features. For educational purposes, the
dermoscopic features are very well-defined, or the data include several lesions that are rare
exceptions to the general rule. Differently from ISIC annotation, Atlas contains enough
details of each dermoscopic attribute to apply the 7-points. Also, the annotation is binary
(present or absent), not showing the lesion regions that display the patterns.

The dominant presence of a local feature and specific combinations or arrangement
of them form global features. There are different types of global features: Globular Pat-
tern contains numerous, diverse-sized globules; The Reticular Pattern presents pigment
network covering most parts of the lesion; Starbust Pattern presents streaks arranged in
a radial form; Homogeneous Pattern presents brown /gray/blue/reddish-black pigmenta-
tion with absence of local patterns; Unspecific patterns cannot be categorized into any
global pattern.

Multiple global patterns can be present in a single lesion. Lesions that display more
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than three global features are highly suggestive of melanoma. Although some patterns
are characteristic of a specific diagnostic, there is almost always a particular case which
compounds the difficulty of diagnosing skin cancer.

The characteristic of having multiple patterns (local or global) that can be combined
within each other and be identified through visual inspection, is what makes skin lesion
analysis a good candidate of a problem to be solved with deep learning. However, deep
learning solutions benefit from voluminous data with rich metadata, and in this particular
matter, we have a long way to thrill. In this Master thesis, we present a method for
mitigating this requirement, pushing the results further.

3.2 PGAN Conditional Update

In this work, we want to augment a classification network’s training dataset with labeled
synthetic data. For this, we need to perform conditional generation of synthetic images.
PGAN’s [50] original implementation insert class information in the GAN pipeline by fol-
lowing ACGAN’s procedure |73], where the discriminator accumulates the task to classify
the images it receives. This way, the class information is incorporated through the loss
function only.

However, when we performed preliminary tests with CIFAR-10 [53] to verify the net-
work’s conditional generation capabilities, the generator failed to learn the class repre-
sentations even in this simpler dataset. In our literature review (Section 2.4) we detailed
different methods to control the class of the synthetic images. In this case, we keep the
ACGAN’s loss and concatenate the class information in every layer of the generator and
discriminator (except for the last one), similarly to TripleGAN [22].

Thus, we incorporate the class information in the generator after every pixel normal-
ization that is applied after a convolution. In the discriminator, we apply it after every
average pooling. For both networks, we concatenate it to the activation map channel-
wise. Since the label is a single integer, and the network’s activation maps are tensors,
we reshape the label to match the activation map dimensions, repeating the label over all
the matrix positions. This modification enabled conditional generation with PGAN on
CIFAR-10, and also for skin lesion datasets.

3.3 Proposed Approach

We aim to generate high-resolution synthetic images of skin lesions with fine-grained
detail. To explicitly teach the network the malignancy markers while incorporating the
specificities of a lesion border, we feed this information directly to the network as input.
Instead of generating the image from noise (usual procedure with GANs), we synthesize
from a semantic label map (an image where each pixel value represents the object class)
and an instance map (an image where the pixels combine information from its object class
and its instance). Therefore, our problem of image synthesis specified to image-to-image
translation. We detail our idea in the following sections.
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3.3.1 GAN Architecture: The pix2pixHD Baseline

We employ Wang’s et al. [96] pix2pixHD GAN, which improve the pix2pix network [46]
(a conditional image-to-image translation GAN) by using a coarse-to-fine generator, a
multi-scale discriminator architecture, and a robust adversarial learning objective function
(see Section 2.7). The proposed enhancements allowed the network to work with high-
resolution samples.

For generating 1024 x 512 resolution images, we only take advantage of the global
generator from pix2pixHD. This generator’s output resolution fits with the minimum
common size of our dataset images. It is composed of a set of convolutional layers,
followed by a set of residual blocks [38] and a set of deconvolutional layers.

To handle global and finer details, we employ three discriminators as Wang et al. [96].
Each of the three discriminators receives the same input in different resolutions. This way,
for the second and third discriminator, the synthetic and real images are downsampled by
2 and 4 times, respectively. Figure 3.4 summarizes the architecture of the GAN network.

The loss function incorporates the feature matching loss [85] (Section 2.6) to stabilize
the training. It compares features of real and synthetic images from different layers of
all discriminators. The generator learns to create samples that match these statistics of

the real images at multiple scales. This way, the loss function is a combination of the
conditional GAN loss and feature matching loss.
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Figure 3.4: Summary of the GAN architecture. In the bottom-left, we show the pipeline.
We detail both discriminator and generator, and the blocks that compose them. We
show the parameters for each convolutional layer: k is the kernel size; n is the number of
channels; and s is the stride. The number that follows both Downsample and Upsample
blocks are the numbers of channels. Reproduced from Bissoto et al. [15].



41

3.3.2 Modeling Skin Lesion Knowledge

Modeling meaningful skin lesion knowledge is the crucial condition for synthesizing high-
quality and high-resolution skin lesions images. In the following, we show how we model
the skin lesion scenario into semantic and instance maps for image-to-image translation.

Semantic map [57| is an image where every pixel has the value of its object class
and is commonly seen as a result of pixel-wise segmentation tasks.

To compose our semantic map, we propose to use masks that show the presence of
five malignancy markers and the same lesions’ segmentation masks. The skin without
lesion, the lesion without markers, and each malignancy marker are assigned a different
label (Figure 3.5a). To keep the aspect ratio of the lesions, while keeping the size of the
input constant as the same of the original implementation by Wang et al. [96], we assign
another label to the borders, which do not constitute the skin image.

Instance map [57] is an image where the pixels combine information from its object
class and its instance (Figure 3.5b). Every instance of the same class receives a different
pixel value. When dealing with cars, people, and trees, this information is straightforward,
but to structures within skin lesions, it is subjective.
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Figure 3.5: Simplification of our semantic and instance maps. While the semantic map’s
pixels’” values are only ruled by the class, instance maps’ take in consideration class and
the individual instance defined by superpixels.

To compose our instance maps, we take advantage of superpixels [3]. Superpizels
capture redundancy in the image, creating visually meaningful instances by clustering
similar pixels. Naturally, the algorithm splits objects according to their boundaries into
different superpixels.

In our case, we want to feed the generator with information on individual instances of
each of our classes. However, this is hard due to the subjectivity and differences in the
shape and size of different dermoscopic attributes. For example, it is easier to think about
splitting different units of the globules pattern, since they are often contained in small
circled-shaped structures; however, it is harder to define or contain individual instances of
pigmented networks, since the whole structure is usually connected. An alternative found
during the annotation process of Task 2 in the ISIC 2017 Challenge is to use superpixels
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to group similar regions of the image.

If we are using a specialist’s time to annotate medical images, we want to make sure
this process has the perfect balance between efficiency (more images) and quality (more
precise annotations). If we transform the pixel-annotation task into superpixel annotation,
we are sacrificing a bit of detail to be able to have more annotated images.

Since SLIC (Simple Linear Iterative Clustering) superpixels [3] are used during the
annotation process to create instances to be individually annotated by specialists, we
thought they were the perfect candidate to help the generator to make sense of these highly
specific attributes. In Figure 3.6 we show a lesion’s semantic map, and its superpixels
representing its instance map.

s

(a) Real image (b) Superpixels (¢) Semantic label map

Figure 3.6: A lesion’s semantic map, and its superpixels representing its instance map.
Note how superpixels change its shape next to hairs and capture information of the lesion
borders, and interiors.

We summarize our pipeline in Figure 3.7.

Discriminators
\\
Extract Maps \\\ — Real
pa T—
{ g ]
T TTTT T Maps ol L Synthetic
Generator

Figure 3.7: Our Pipeline. We feed the generator with maps extracted from real images,
resulting the synthetic images. The discriminator is fed with batches combining real
images and its maps, or synthetic images and the maps used to generate them. The
output of the discriminators (there are three, each operating in a different resolution) is
finally backpropagated to train the whole pipeline.

Next, we conduct experiments to analyze our synthetic images and compare the dif-
ferent approaches introduced to generate them.
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Experiments

In this section, we evaluate GAN-based approaches for generating synthetic skin lesion
images: 1) DCGAN [80], 2) our conditional version of PGAN [50], and 3) our versions of
pix2pixHD [96] using only semantic map, and 4) using semantic and instance maps. We

choose DCGAN to represent low-resolution GANs because of its traditional architecture.

Results for other low-resolution GANs do not show much of an improvement.

3.4.1 Datasets

For the following experiments in this chapter, we use different gold-standard datasets.

Although they contain different classes, we always consider a melanoma versus benign

(others, except for basal cell carcinoma) scenario for classification.

ISIC 2018 Challenge! — Task 2 (Lesion Attribute Detection). This dataset is com-
posed of 2,594 images from the ISIC Archive (nevus, melanoma, and seborrheic
keratosis), and all contain masks for each of five dermoscopic attributes (pigment
network, negative network, streaks, milia-like cysts, and globules). This annotation
with map representation is unique to this set.

ISIC 2018 Challenge — Task 1 (Lesion Boundary Segmentation). This dataset is
composed of the same images from the same year’s ISIC challenge, containing each
lesion segmentation mask.

ISIC 2017 Challenge with 2,000 dermoscopic images [23| (nevus, seborrheic keratosis,
and melanoma).

ISIC Archive with 13,000 dermoscopic images (nevus, seborrheic keratosis, melanoma,
actinic keratosis, basal cell carcinoma, squamous cell carcinoma, dermatofibroma,
vascular lesion.) This dataset is also the most general, being collected by different
institutions around the world, with different devices.

Dermofit Image Library [9] with 1,300 images from different classes (nevus, sebor-
rheic keratosis, melanoma, actinic keratosis, basal cell carcinoma, squamous cell car-
cinoma, intraepithelial carcinoma, pyogenic granuloma, haemangioma, dermatofi-
broma.)

PH2 dataset [63] with 200 dermoscopic image (nevus, melanoma).

Interactive Atlas of Dermoscopy [6]. The Atlas is an educational source of skin
lesion images (nevus, seborrheic keratosis, melanoma, basal cell carcinoma, der-
matofibroma, vascular lesion, lentigo). It contains clinical and dermoscopic versions
of the same lesions (but we use only dermoscopic in this Master thesis.)

To train and evaluate pix2pixHD, we need specific masks that show the presence or

absence of clinically-meaningful skin lesion patterns. For this reason, we use lesion images

https://challenge2018.isic-archive.com
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and masks from the training dataset of task 2 (2,594 images) of 2018 ISIC Challenge. The
lesions’ segmentation masks, that are used to compose both semantic and instance maps,
were obtained from task 1 of ISIC 2018 Challenge. We split the data into train (2,346
images) and test (248 images). We use the “test” set to generate images using masks the
network has never seen before.

For training DCGAN and our version of PGAN, we use the ISIC 2017 Challenge
with 2,000 dermoscopic images [23|, ISIC Archive, Dermofit Image Library [9], and PH2
dataset [63].

For training the classification network, we only use the ’train’ set (2,346 images). For
testing in a cross-dataset scenario, we use all 900 dermoscopic images from the Interactive
Atlas of Dermoscopy [6].

3.4.2 Experimental Setup

For pix2pixHD, DCGAN (official PyTorch implementation) and PGAN (except for the
modifications listed below), we keep the default parameters of each implementation.

We modified PGAN by concatenating the label (benign or melanoma) in every layer
except the last on both discriminator and generator (Section 3.2). For training, we start
with 4 x 4 resolution, always fading-in to the next resolution after 60 epochs, from which
30 epochs are used for stabilization. To generate images of resolution 256 x 256, we trained
for 330 epochs. We ran all the experiments using the original Theano version.

For skin lesion classification, we employ the network (Inception-v4 [90]) ranked first
place for melanoma classification [65] (our research group) at the ISIC 2017 Challenge. As
Menegola et al. [65], we apply random vertical and horizontal flips, random rotations, and
color variations as data augmentation. Also, we keep test augmentation with 50 replicas
but skip the meta-learning Support Vector Machine (SVM).

3.4.3 Qualitative Evaluation

In Figure 3.8 we visually compare the samples generated by GAN-based approaches.

DCGAN (Figure 3.8a) is one of the most employed GAN architectures. We show that
samples generated by DCGAN are far from the quality observed on our models. It lacks
fine-grained detail, being inappropriate for generating high-resolution samples.

Despite the visual result for PGAN (Figure 3.8b) is better than any other work we
know of (at June/2018), it lacks cohesion, positioning malignancy markers without proper
criteria. We cannot pixelwise compare the PGAN result with the real image. This syn-
thetic image was generated from noise and had no connection with the sampled real image,
except it was part of the GAN’s training set. But, we can compare the sharpness, the
presence of malignancy markers, and their fine-grained details.

When we feed the network with semantic label maps (Figure 3.8¢) that inform how to
arrange the malignancy markers, the result improves remarkably. When combining both
semantic and instance maps (Figure 3.8d), we simplify the learning process, achieving the
overall best visual result. The network learns patterns of the skin, and of the lesion itself.
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Figure 3.8: Results for different GAN-based approaches: (a) DCGAN [80], (b) Our version
of PGAN, (c) Our version of pix2pixHD using only semantic map, (d) Our version of
pix2pixHD using both semantic and instance map, (e) Real image. In the first row, we
present the full image while in the second we zoom-in to focus on the details.

3.4.4 Quantitative Evaluation

To evaluate the complete set of synthetic images, we train a skin classification network
with different combinations of synthetic and real data (including only reals, only synthet-
ics, and combinations of both) to compose our training dataset. We compare the achieved
area under the ROC curve (AUC), testing always with only real images. It is interesting
to note that the procedure of training with synthetic only data and testing with reals, was
later formalized by Shmelkov et al. [87] and called “GANtrain”. We use three different
synthetic images for this comparison: Instance are the samples generated using both se-
mantic and instance maps with our version of pix2pixHD [96]; Semantic are the samples
generated using only semantic label maps; PGAN are the samples generated using our
conditional version of PGAN [50]. For statistical significance, we run each experiment
10 times.

For every individual set, we use 2,346 images, which is the size of our training set
(containing semantic and instance maps) for pix2pixHD. For PGAN, we can generate
unlimited amounts of data, but we keep it the same maintaining the ratio between benign
and malignant lesions. Our results are in Table 3.2. To verify statistical significance
(comparing ‘Real + Instance + PGAN’ with other results), we include the p-value of a
paired samples t-test. With a confidence of 95%, all differences were significant (p-value
< 0.05).

The synthetic samples generated using instance maps are the best among the synthet-
ics. The AUC follows the visual quality perceived.

The results for synthetic images confirm they contain features that characterize a lesion
as malignant or benign. Even more, the results suggest the synthetic images contain fea-
tures that are beyond the boundaries of the real images, which improves the classification
network by an average of 1.3 percentage point and keeps the network more stable.

To investigate the influence of the instance images over the achieved AUC for ‘Real
+ Instance + PGAN’, we replace the instance images with new PGAN samples (‘Real
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Training Data AUC (%)  Training Data Size p-value
Real 83.44+0.9 2,346 2.5 x 1073
Instance 82.0 £ 0.7 2,346 2.8 x107°
Semantic 78.1+1.2 2,346 6.9 x 1078
PGAN 73.3+ 1.5 2,346 2.3 x 1079
Real +Instance 82.84+0.8 4,692 1.1 x 107*
Real+Semantic 82.6 0.8 4,692 1.2 x 1074
Real+PGAN 83.7+ 0.8 4,692 2.6 x 1072
Real+2xPGAN 83.6 £1.0 7,038 2.0 x 1072
Real+Instance+PGAN  84.7 +0.5 7,038 -

Table 3.2: Performance comparison of real and synthetic training sets for a skin cancer
classification network. We train the network 10 times with each set. The features present
in the synthetic images are not only visually appealing but also contain meaningful infor-
mation to classify skin lesions correctly.

+ 2xPGAN’). Although both training sets have the same size, the result did not show
improvements over its smaller version ‘Real + PGAN’. Hence, the improvement over the
AUC achieved suggests it is related to the variations the ‘Instance’ images carry, and not
(only) by the size of the train dataset.

3.4.5 Synthetic Images Evaluation

One advantage of our method is that it explicitly learns about dermoscopic attributes,
which are biological structures visible in dermoscopic images that are core to many diag-
nose methods [5,66|. To assess the presence of these features in our synthetic samples,
we employed winning solutions of Task 2 of ISIC 2018 Challenge for lesion attribute de-
tection. Since our synthetic samples are generated based on maps extracted from real
images, we use the same map used to generate them as ground-truth for the same image
in the semantic segmentation task.

Thus, we employed a Deeplabv3+ network [54], which is the state-of-the-art for skin
lesion segmentation to compare the output synthetic images, and their real counterparts
annotation. We show the results in Table 3.3.

Attribute Real Synthetic

Pigment Network 0.469 0.424
Negative Network 0.205 0.001

Streaks 0 0
Milia-like Cysts 0.178 0.071
Globules 0.201 0.188

Table 3.3: Jaccard between Deeplab’s output mask when analyzing real and synthetic
samples, using the same ground-truth.
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L

(a) Evaluation of Pigment Network in real (middle column) and synthetic images (last column).

F

(b) Evaluation of Globules in real (middle column) and synthetic images (last column).

Figure 3.9: Comparison between Deeplabv3+’s [54] semantic segmentation network of
real and synthetic images with respect to dermoscopic attributes. The image read as
follows. White: true positive regions; Gray: false positive regions; Red: false negative
regions; Black: true negative regions. We show the real image in the first column, and
Deeplabv3+'s evaluation on the next two — real image on the second column, and syn-
thetic image on the last. We show that synthetic images can display correctly placed,
distinctive dermoscopic attributes for the two classes (pigment network and globules).
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The dermoscopic attribute segmentation proved to be a very hard task: In the ISIC
2018 Challenge, the best result for the “Lesion Attribute Detection” task achieved a 0.302
Jaccard mean over the 5 attributes. For comparison, the best result for lesion segmenta-
tion in the same challenge (“Lesion Boundary Segmentation” task) achieved 0.802 Jaccard.

Analyzing the results, it is clear that the generation process worked a lot better for
pigment network and globules than the other attributes (mode collapse). This is no
surprise, since those attributes are the most present in this very unbalanced dataset,
while streaks and negative network are present in less than 5% of the images. This not
only makes it difficult for the GAN to generate these attributes, but also for the semantic
segmentation network to learn these patterns.

3.4.6 ISIC 2018 Challenge Participation

In our ISIC 2018 Challenge participation, we included the synthetic images described
in this master thesis (from both PGAN and Pix2pixHD) to our training datasets. The
experiments contained much more data than our initial experiments, and also was used
in a context to solve a harder task since we are exploring multiple sources of skin lesion
images. For a complete review of our participation, please refer to our report [14]. In this
section, we focus on the classification task, which featured a highly unbalanced dataset
with seven classes (melanoma, melanocytic nevus, basal cell carcinoma, actinic keratosis,
benign keratosis, dermatofibroma, and vascular lesion).

For this challenge, we explored three different factors to design our models: three archi-
tectures (Inception-v4 [90], ResNet-152 [38], and DenseNet-161 [41]), three data sources
(full, challenge only, and synthetic), and five splits, resulting in 45 models.

Our data sources have a significant influence on our results since they are very different
between each other. We describe each set below:

e Full, composed of 30,324 images from different sources: ISIC 2018 Challenge train-
ing set [25], ISIC Archive [1], Interactive Atlas of Dermoscopy [6], Dermofit Im-
age Library [9], PH2 Dataset [63]. To attempt to alleviate the influence of the
high unbalancing between classes of the dataset, we also resorted to online public
sources: the web sources were Dermatology Atlas (www.atlasdermatologico.com.br),
Derm101 (www.derm101.com), DermIS (www.dermis.net/dermisroot). The online
sources sum 631 images, being 414 basal cell carcinoma, 26 actinic keratosis, 132
dermatofibroma, and 59 vascular lesions.

e Challenge Only, composed only by the 10,015 images from the ISIC 2018 Chal-
lenge Task 3 training set.

e Synthetic, composed of the full dataset, adding the synthetic images in a 1:1
proportion, for each class. Thus, we doubled the training set and kept the class
distribution the same.

We trained the networks using SGD with momentum 0.9, batch size of 32, starting
learning rate of 1073, which is then multiplied by 0.1 when the validation loss failed to im-
prove for 10 epochs, until it reaches a minimum value of 107°. To deal with the unbalanced
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nature of our data, we employed weighted loss. We normalize our data according to Im-
ageNet’s mean and standard variation, and apply the augmentation procedure described
in [78| (scenario J): random crops (preserving 0.4 — 1.0 of the original area, and 3/4-4/3
of the original aspect ratio); random vertical /horizontal flips; rotation (0 — 90°); shear
(0 —20°); area scaling (0.8 — 1.2); random color transformations on saturation,brightness,
contrast, and hue. We applied the transformations to the validation (single replica), hold-
out (32 replicas), and final test (128 replicas), taking the decision as the average of the
replicas.

To measure the performance of all our models, we used a holdout set. The holdout
set contains 10% of the full dataset images, being selected before splitting the train-
ing/validation sets. In Table 3.4, we report the mean accuracy of our results for each
training dataset, on both the challenge validation and on our holdout set.

Train Dataset ~ Train Dataset Size Challenge Validation = Holdout

Full 30, 064 0.69 =+ 0.07 0.59 + 0.16
Challenge Only 10,015 0.77 + 0.09 0.43 = 0.09
Synthetic 60, 128 0.70 = 0.09 0.76 = 0.09

Table 3.4: Mean accuracy achieved by our models trained with each of our datasets,
tested on the challenge’s validation and our holdout. The differences between the result
on challenge’s validation and our holdout show how different both data distributions are.
Nevertheless, augmenting our training data in a 1:1 proportion with synthetic images
leaded to the best result in our holdout set by far.

A problem that became visible with our experiments is the difference between the
challenge validation and our holdout. Our holdout contains more images (3,000 versus
150 from validation) of different sources, being more general, closer to a real-life scenario.

However, despite the success in our holdout set, our models trained with synthetics
were not the best ranked among our test submissions. The challenge’s validation set
distribution seems to be closer to test’s, causing our ensemble containing “Challenge Only”
trained models to be our best submission, ranking 9** in the overall leaderboard. Our
ensemble of our eight best models in our holdout set (all used synthetic data) ranked only
39" while “Full” ranked 32t".

This result shows the potential of using synthetic images to augment classification
network training sets, and also the importance of using good quality (gold-standard an-
notation, from different sources, captured with different devices) datasets to evaluate the
performance. Finally, with this complementary result, we show that augmenting the train-
ing dataset with synthetic images can significantly impact the performance in a scenario
(more) similar to the real world.

3.5 Feature Visualization

Visualization is a process used to explain deep neural network results, often translating
its internal features to images. Neural networks are often seen as black boxes, and it is
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essential to make sense of their results. For the deployment of deep learning solutions in
the real world, it is often necessary to gain the trust of the users of these solutions. This is
especially true for contexts that may put a human’s life at risk, such as the medical (which
is the focus of this Master thesis). Visualizations can also lead to a deeper understanding
of the models, being useful for identifying models’ flaws and biases, ultimately leading to
better, more robust solutions.

Next, we briefly describe three methods for visualization and show results when they
are applied on a skin lesion classification network, analyzing real and synthetic samples.

GradCAM [86]: Gradient-weighted Class Activation Mapping (GradCAM) evaluates
the gradients on a target layer (with backpropagation) according to a target label. The
gradients in the target layer multiply the same layer’s activation map, and the result is
accumulated through the channels, forming a two-dimensional saliency map that is the
same size as the target layer’s result activation map. Since layers of interest are usually
next to the end of the network, where the concepts encapsulated are directly related to
the target classes, the output is often in a lower resolution than the input of the network.
Thus, the information presented is not precise, only providing general, coarser details of
the network’s decision. Also, since the gradients are accumulated through the channels,
much information is lost in the process.

Occlusions [100]: Occlusion methods attempt to find the regions of an input image
that when perturbed, affect the most the classification result. The particular method
used for these preliminary experiments was introduced by Fong et al. [29]. The occluded
region is learned through an iterative process that blurs the perturbed image, and the
objective is to reach 99% of the score of a fully-blurred image.

Feature visualization [74,100]: Feature visualization methods attempt to create ar-
tificial images that maximally activate a target neuron/filter in the network. By analyzing
this artificial image, and the training set images that also maximally activate the target
neuron, it is possible to learn concepts being encapsulated by different filters. Because of
the enormous amount of filters in the network, it is almost impossible to analyze every fil-
ter qualitatively. Also, the same concept is often encapsulated in multiple filters [30], and
some concepts even require multiple complimentary filters to be fully encapsulated, com-
plicating this analysis. The comparison between methods is hard because it lacks ways to
evaluate them better. Since the evaluation of the visualization images is often qualitative,
it can be damaged by humans expectations of the results. Quantitative analysis is rare.
It often depends on a benchmark dataset containing extra information about the scenes
and concepts being learned by the network, such as BRODEN [10]. This requirement
limits the reach of quantitative analysis, since most applications, including ours, do not
have this kind of information available.

In the following, we show our results when using the before mentioned techniques to
analyze how our classification networks perceive real and synthetic samples.

In Figure 3.10 we show how our classification model, trained only with real images,
perceive real and synthetic samples. Even though they look very similar, real and synthetic
images are perceived differently. This experiment sheds a light on how could the synthetic
samples improved our classification results despite looking so similar to the training set.
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(a) Real/Synthetic Image (b) GradCAM (¢) Occlusion

Figure 3.10: Saliency maps results from (b) GradCAM [86] and (c¢) Occlusion [29] for real
(first rows) and synthetic (second rows) images using the same model, trained only with
real images. The saliency maps highlight (in hot colors) the portions of the image that
contributed the most to the prediction. That is, when highlighted areas are perturbed
or altered, the classification network’s prediction was highly affected. Although synthetic
images are almost identical (at least to our eyes) to real ones, the network perceives
differences between them, causing the saliency maps to output differently between real
and synthetic. This raises awareness to researchers (including ourselves) when using
synthetic lesions to augment the model’s training datasets. We need to make sure the
synthetic images included are contributing positively to the result, while not reinforcing
any possible spurious correlation already present in the data.
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In Figure 3.11 we show that the filters that compose our classification network can
encapsulate concepts for analyzing skin lesion images. Although those filters content are
very similar to the ones present in ImageNet pre-trained networks, these filters can pos-
sibly identify meaningful patterns to base their decisions, once they are concerned about
simple structures and objects. However, using feature visualization is very inefficient to
verify this property because of the vast amounts of filters present in state-of-the-art clas-
sification models. Also, as we visualize filters closer to the top of the network, where more
complex concepts are learned (and where the more interesting conclusions are situated),
the visualizations’ information decrease greatly.

(b) 60" neuron from layer mixed4a. The neuron is apparently attracted to black corners and its
curved lines.

Figure 3.11: Our preliminary results when visualizing features on a skin lesion classifica-
tion network. On the left we show images of the training set that maximally activate the
target neuron. On the right, we show an artificially created image that maximally acti-
vate the same neuron. The green canvas display benign lesions, while red canvas display
malignant ones.

It is necessary to evaluate our network to help us understand its predictions. In the
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medical context, it is especially critical since the decisions made can directly influence the
treatment of a patient. Also, interpretability is critical to gain the trust of specialists,
that can take advantage of this technology to aid difficult decisions.

The interpretation of these methods can sometimes be subjective, and we use to project
our expectations to the visualizations. The differences between the saliency methods for
real and synthetic images help us understand the performance improvement for classifi-
cation, but also raises several questions: by augmenting our training set with synthetic
images that do not exist, are we inserting biologically correct correlations? Does it matter
as long as it improves the models’ generalization? Are our test datasets, in their current
state, sufficient to measure generalization?

The same questions are present even disregarding synthetic images. Adversarial ex-
amples [12,92] are noise-looking inputs that when added to an image, do not alter them
visually (to our eye), but are enough to change the model’s prediction completely. To the
network, there are no patterns that are “correct” or “incorrect” to be exploited. Recent
work [44] investigated the adversarial examples and advocated that they are actually fea-
tures that contain highly-predictive power (and therefore are learned by the models), but
since we can not make sense of them they seem incorrect to exist. Since our models learn
from these (for now) incoherent patterns, they must also be present in our visualizations’
saliency maps, failing our expectations that our models are fully human-meaningful.

We believe that although we can not fully understand and make sense of the network’s
decision process, we need to continue investigating and applying visualization methods.
By carefully designing experiments, we can verify other dangerous aspects of classification
networks, such as bias (see Chapter 4), that may be prejudicial to real-world solutions.

3.6 Conclusion

In this chapter, we show GAN-based methods to generate realistic synthetic skin lesion
images. We visually compare the results, showing high-resolution samples (up to 1024 x
512) that contain fine-grained details. Malignancy markers are present with coherent
placement and sharpness, which result in visually-appealing images. We evaluate the
synthetic images using visualization techniques, dermoscopic attribute segmentation, and
classification networks.

Despite the qualities presented, we point out some aspects to improve. Attributes
without much representatives in the dataset are harder for the GAN to learn, causing
mode collapse. The clear examples are negative networks, streaks, and milia-like cysts.
This deficiency was detected when evaluating the synthetic images using the semantic
segmentation network.

The synthetic images also present low variation concerning their real counterparts.
This limitation comes with our design choices, and the current state-of-the-art of image-to-
image translation in the middle of 2018 (the period where we produced this work). First,
state-of-the-art image-to-image translation models were able to create a single synthetic
image given an input (segmentation mask, for example). At that time, literature was still
researching a way to make good use of noise to add variation over the synthetic images.
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Note that if the noise is not carefully incorporated into the generation procedure, the
network can learn to ignore it. Recent works [51, 75| introduced new architectures that
incorporate class information more efficiently, enabling sampled noise to influence the final
generated image.

Also, despite greatly helping to improve the overall quality of the synthetic samples,
the use of perceptual loss to guide the generation to match synthetic and real images
(which is common even in current state-of-the-art solutions [75]) causes lack of diver-
sity between real and synthetic images. More recent works attempted to approach this
problem, suggesting the use of normalized feature loss [43].

Even if we can generate multiple outputs given a single input, these outputs are nat-
urally similar to each other, since they respect the same input mask. To create a more
diverse dataset to train our classification models, we still need more lesions to provide
the semantic and instance maps. A possible solution to this problem is incorporating
a semantic segmentation network to the GAN pipeline that is trained with the gener-
ator and discriminator. During training, it provides meaningful gradients generated in
the dermoscopic attribute segmentation process, that guide generation towards adding
clinical-relevant patterns and improving quality.

Finally, we need to investigate how our classification models are receiving synthetic
information and make sure they are providing correct correlations to improve general-
ization. Nevertheless, our results when augmenting our training datasets with synthetic
images show that this technique can significantly aid classification for small datasets.
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Chapter 4

Bias 1in Skin Lesion Datasets

Despite our success when generating high-resolution images containing clinically-meaning-
ful information, our synthetic samples are deterministic, with a single lesion for a given set
of semantic and instance maps (see Chapter 3). This is an undesired model characteristic,
since ideally, we want to increase the variance over our training examples to lead the
classification network to better generalization.

Image-to-image translation models in the literature suffer from the same problem, and
creating a stochastic process of translation that can generate varied samples from a single
set of inputs is still an open and challenging problem.

On traditional GANs, the noise that feeds the generator enables to generate varied
samples. For image-to-image translation methods, naively including sources of noises in
the architecture failed to add more variation in the generation process, since the network
learns to ignore it [47].

Manipulating semantic maps, which simply maps the location of the different dermo-
scopic attributes is easy. We could generate an infinite number of those (e.g., with a
GAN, or even with a simpler method, with enough manual effort). However, we can not
say the same for instance maps. They are extracted from real images and depend on the
image’s superpixels, which group nearby pixels concerning color and the formed shapes.
Simple transformations or manipulations are not enough to create a new instance map
that does not resemble a previous example.

Thus, our solution to the lack of variation in our synthetic samples (with respect to the
training set) was to combine different lesions’ instance and semantic maps, creating new,
unseen skin lesion images (see Figure 4.1). Since skin lesion combination is a phenomenon
that occurs in nature, if we can generate those combinations, they can be appropriate to
compose a skin lesion classification network. If we succeed in this procedure, we can
create infinite variations, without using any source of noise or architectural modification
by manipulating the semantic map while using other lesions’ instance maps.

There are noticeable variations in the sampled distribution. Despite keeping the over-
all lesion structure, we can visually see differences over the attributes they contain. The
synthetic lesion’s overall structure (e.g., border shape, and size) is defined by the orig-
inal lesion used to evaluate the model’s perceptual loss, while instance maps controlled
fine-grained details content information, and semantic maps controlled the displayed der-
moscopic attributes. Since lesions and attributes in those maps can have different sizes
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Figure 4.1: Different examples of new images created keeping the instance map the same,
while using different lesions’ semantic maps. By combining different lesions’ maps, we
create variation between samples. However we do not know the new image’s diagnostic,
and therefore they are meaningless for classification purposes.

and occupy different locations, the position of the dermoscopic attributes in the resultant
synthetic lesion is uncertain.

Despite the apparent success, a new problem arises when inflating a classification
network training dataset with those new synthetic images. What are their labels? Dur-
ing generation we are dealing with labels — the dermoscopic attributes — but they are
not the ones used for classification: we want the diagnostic of the images (e.g., nevus,
melanoma, seborrheic keratosis; or malignant and benign). From a data augmentation
point of view (which is the purpose of generating skin lesion images), we want the trans-
formation learned (from map to image) to carry the original label, creating a link between
the different lesions’ source maps and the result combination of them. We know that the
attributes within each lesion are the main information used by dermatologists for diag-
nostic. It is also core for medical algorithms, such as the 7-points [5], which evaluate a
score according to the presence or absence of dermoscopic attributes (see Section 3.1.1).

Since dermoscopic attributes are so important for human specialists, they should be
also important for the neural network. To investigate our assumption, we designed an
experiment to verify the importance of these attributes for classification. Finally, if by
controlling the present attributes in the synthetic images, we are also controlling the
diagnostic, then we solved our problem of infinite skin lesion image synthesis.

In this chapter, we detail our experiments and results that were strongly based on
our published work “(De)Constructing Skin Lesion Dataset Bias” [13], presented at the
ISIC Skin Image Analysis Workshop at the Conference on Computer Vision and Pat-
tern Recognition (CVPR 2019). In that opportunity, this work received the Best Paper
Award. All our source code is readily available on https://github.com/alceubissoto/
deconstructing-bias-skin-lesion.
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4.1 Construction Experiments

Specialists can infer the diagnosis of a skin lesion analyzing its dermoscopic attributes. We
want to know if our classification models can do the same. That is, can the neural network
exploit the same correlation exploited by specialists to infer diagnosis with dermoscopic
attributes information?

To answer this question, we design a construction experiment, where we train and
evaluate a classification network with different variations of the same dataset. We call
it “construction experiment” because we are increasingly feeding the network with more
information, expecting it to have better performance in each step.

These variations were designed to guide the network’s learning to exploit dermoscopic
attributes. Despite the same motivation, within each set, we feed the network presenting
dermoscopic attributes in a different way, exploring to find the best way to display this
crucial information.

4.1.1 Constructing Data

To determine how important dermoscopic attributes are for automated skin lesion anal-
ysis, we perform constructive actions in the dataset, building from clinically-meaningful
information (dermoscopic attributes) to guide the network’s learning (see Figure 4.2).

We introduce modifications that are only possible with the dermoscopic attributes
masks available on the ISIC dataset. The ISIC Archive (ISIC) dataset [1] is a large
and generic dataset, composed of more than 13,000 images collected from different lead-
ing clinical centers internationally, using a variety of devices for acquisition. Since the
first ISIC Challenge in 2016 [62], this dataset is increasing in size and in the amount of
information available for each lesion.

Segmentation masks and maps over five dermoscopic attributes (pigment network,
negative network, streaks, globules, and milia-like cysts!) are available for smaller subsets
of the dataset. This is crucial for our experiment and the main reason we choose to use
it. These images and their respective maps are also used to train our GAN for skin lesion
synthesis [15] (Chapter 3). We build our dataset modifications using the 2,594 images
that contain dermoscopic attributes maps.

We summarize the datasets used below. For our classification experiments, we always
consider a melanoma versus benign (others) scenario:

e ISIC 2018 Challenge? — Task 2 (Lesion Attribute Detection), composed of 2,594
images from the ISIC Archive (nevus, melanoma, and seborrheic keratosis). All
images contain masks for each of five dermoscopic attributes (pigment network,
negative network, streaks, milia-like cysts, and globules). This annotation, that
maps the presence of each attribute to a location in the lesion, is unique to this set.

e ISIC 2018 Challenge — Task 1 (Lesion Boundary Segmentation), composed of the
same images from Task 2, but containing each lesion’s segmentation mask.

1Please refer to Section 3.1.1 for more details.
’https://challenge2018.isic-archive.com
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Figure 4.2: Samples from each of the variations created for the information construction
experiment. We build from the dermoscopic attribute and segmentation information,
gradually adding information until the samples contain all image’s pixels plus an addi-
tional channel containing extra dermoscopic attribute and segmentation information.

Next, we detail our modified datasets and the intuition used for their design. Please
refer to examples in Figure 4.2.

Traditional: This dataset contains the usual information used for training and eval-
uating skin lesion analysis networks. The images contain all pixels’ information, and we
expect it to have the highest scores in our tests, being our upper bound baseline.

Grayscale Attributes: To compose each image in this set, we use a lesion’s masks
from ISIC that show the location of five dermoscopic attributes and the same lesions’
segmentation masks. The skin without lesion, the lesion without markers, and each
dermoscopic attribute are assigned a different value, equally spaced from each other.
Dermatologists look for this information to diagnose skin lesions, and it is the basis for
different medical algorithms, therefore being one of the most critical parts of the image.

RGB Attributes: This dataset only shows the RGB values of the regions of the
image that belongs to an annotated dermoscopic attribute, and mask the others. This
way, the network does not know in principle what are the skin patterns in the image
or how many of them are present, but it gains access to their RGB values. We keep
the segmentation mask information from Grayscale Attributes in this set to display some
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information for cases that do not present any skin patterns. ISIC’s annotation over the
dermoscopic attributes is not as detailed as Atlas’. By letting the network analyze the
RGB pixels that belong to a dermoscopic attribute, we are forcing the network to focus
on the attributes, to discover more details about them (e.g., typical or atypical, regular
or irregular, etc.), and to rely the classification on this information.

Traditional+Grayscale Attributes: Here, we aim to guide the learning process by
giving to the network extra information that is very relevant to dermatologists. We con-
catenate a fourth channel to the Traditional image, containing the information described
in the Grayscale Attributes. We need to adapt the network to receive the extra channel in
the input. We add an extra convolutional layer at the beginning of the network, initial-
ized to prioritize receiving information from the RGB channels, and progressively learn
to make use of the mask provided. We expected the results to be better than Traditional
since we are adding clinically-meaningful information to guide the network to a better
understanding of the process according to human knowledge.

4.1.2 Training and Evaluation Setup

For every experiment, we use 10 splits that we keep the same throughout all sets of images
(Traditional, Grayscale Attributes, RGB Attributes, Traditional+ Grayscale Attributes) to
make comparisons fair.

We use the same network architecture and hyperparameters for all experiments. We
employ an Inception-v4 network [91], widely used for computer vision, and well-established
for skin lesion analysis. To train each network, we use Stochastic Gradient Descent (SGD)
with momentum 0.9, weight decay 0.001 and learning rate 10~2, which we reduce to 10~*
after epoch 25. We use a batch size of 32, shuffling the data before each epoch.

We fine-tune the ImageNet [83] pre-trained network to the target dataset. We resize
the input images to 299 x 299 to fit the input size of Inception-v4. To augment the
dataset [78|, we apply random horizontal and vertical flips, random resized crops that
contain from 75% to 100% of the original image, random rotations between —45 and 45
degrees, and random hue changes between —20% to 20% We apply the same augmen-
tations on both train and test. For the evaluation, we average the predictions over 50
augmented versions of each image. We normalize the input using the z-score, computed
on ImageNet’s training set mean and standard deviation. For all experiments, we report
the Area Under the ROC Curve (AUC).

Since our datasets are relatively small, we choose not to use a validation set, using the
weights after the 60" epoch for test evaluation.

4.1.3 Results and Discussion

We show in Figure 4.3 our results evaluating all different sets on the ISIC dataset.

Our attempt to guide the network’s learning process, verifying if the network’s behavior
mimics human specialists when diagnosing skin lesions revealed important insights that
we discuss next.
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Figure 4.3: Performance comparison of the different sets of images with the ISIC dataset.
Surprisingly, when we try to simplify the learning process, feeding the network with
dermoscopic attributes that are clinically-meaningful, the result does not improve.

Starting from Grayscale Attributes, we are feeding the network with enough informa-
tion to verify global patterns present in the lesion, and location of some local features
(pigment network, globules, streaks, negative network, and milia-like cysts). We note
that the dermoscopic attributes information is not as detailed as the ones used in medical
algorithms such as the 7-points [5], and this may affect the capability of the network to
make correct predictions exploring clinically-meaningful correlations.

In RGB Attributes, we add pixel information to the images. That enables the network
to learn details about each different dermoscopic attribute, reaching the same annotation
detail used in 7-points [5], and improving classification. However, we did not observe that
behavior. The extra information did not help the network to improve its understanding
of the problem.

In Traditional+ Grayscale Attributes, where we are adding clinical relevant information
to the usual classification procedure to guide the learning process, the result did not
improve as well in comparison to the Traditional baseline.

The way dermatologists learn to interpret dermoscopic attributes, analyzing global
and local patterns, and even the way that medical algorithms are designed [5], simply
evaluating the presence of different dermoscopic attributes and assigning a score to each
one, suggests that this task is suitable for a convolutional neural network. Not only that,
but also that it should perform well, learning these clinically-meaningful correlations.
However, our experiments showed the contrary behavior. We believe that this result
shows that our classification networks are not exploiting correct, meaningful correlations,
and that studying dataset bias over our skin lesion datasets are crucial for the deployment
of those solutions in the real world.

In the next section, we discuss dataset bias and investigate its presence in the two
most used datasets for skin lesion analysis. Then, we perform destruction experiments to
investigate the information the network is exploiting when classifying skin lesion images.
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4.2 The Problem of Bias in Skin Lesion Datasets

Due to the scarcity of good-quality, annotated skin lesion images, two datasets dominate
research on automated skin lesion analysis: the Interactive Atlas of Dermoscopy [6] and the
ISIC Archive [1]. The Atlas is an educational medical resource, with many standardized
metadata over the cases it contains, while the ISIC Archive is a much larger, but also less
controlled dataset, with images of different sources. Nowadays nearly every reproducible
work in the field refer to these datasets for training, evaluating or comparing its models
[15,17,19,95], and the ISIC Archive deserves special mention as the source of the images
used in the ISIC Challenge (24,25, 62|, an annual event where different teams compare
the performance of their algorithms under the controlled supervision of the organizers.

The problem of having so few, relatively small datasets dominating much of research
in automated skin analysis, is the risk of datasets biases. Indeed, the (re)use of relatively
small datasets by a research community poses particular risks for research on Machine
Learning [76]. Dataset biases may both inflate the performance of models (presenting
them features that are not truthful to real-world data), or play down their performance
(by destroying correlations that occur in real-world data, and thus preventing models
from exploiting them).

If we think of general datasets, there can be bias over the scenes (rural or urban),
acquisition methods (professional or amateur), amount of objects in the scene, angles
of views, among other factors [94]. If bias is present even in bigger and more diverse
datasets [94] like ImageNet [83], it is naive to think it is not present in the smaller and
harder to obtain skin cancer datasets, where we lack works identifying the possible sources
of dataset bias. We know, however, that there are visible artifacts introduced during the
image acquisition process (e.g., dark corners, marker ink, gel bubbles; color charts, ruler
marks, skin hair) [68] that could inflate models performances due to spurious correlations.

Despite being impossible to eliminate wholly, it is important to understand bias and its
sources to improve our image acquisition processes and deep learning models further. A
useful way to measure a possible effect of a dataset bias (undue inflation of performances
due to spurious correlations in the dataset), is a counterfactual experiment, which destroys
the cogent information in the data, and measures how much the performance of models
drops. Therefore, our destructive set of experiments follows that procedure, gradually
removing information from skin lesion images, and measuring the network performance.
We perform single- (training and testing on the same dataset) and cross-dataset (training
on ISIC and testing on Atlas) experiments, and find that in both cases, the networks are
able to maintain a surprising amount of accuracy, even after almost all cogent information
has been destroyed.

Finally, we contrast the results from both destruction (where we study the model’s
exploitation of spurious correlations) and construction experiments (where we evaluate
the model’s capabilities of exploiting correct clinically-meaningful correlations) to help us
understand how our classification models learn with current skin lesions datasets.
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4.3 Destruction Experiments

In this section, we detail our information destruction experiments. In our construction
experiments, we could verify that the network is not learning from correct correlations,
which is also a characterization of bias. In this section, we investigate the presence of
dataset bias by gradually removing cogent information. To make the results comparable
between these two experiments, the network architecture, augmentation strategies, and
model selection, are the same used in the previous design.

First, we introduce the disrupted datasets used and proceed to show and discuss our
results.

4.3.1 Destructing Data

To evaluate the presence and effect of dataset bias in Atlas and ISIC, we propose to:

e Perform destructive actions (see Figure 4.4) in the dataset to analyze if the network
can still learn patterns to correctly classify skin lesions, even without clinically-
meaningful information available.

e Apply the 7-point checklist algorithm [5] to the Atlas dataset, and analyze the result
comparing it with the recent melanoma classification benchmark for AT [17] to verify
how biased it is due to its educational purposes and acquisition methods.

To compose our modified sets, we use two different data sources: a subset of the
ISIC Archive [1], and the Interactive Atlas of Dermoscopy [6]. To keep constructive
(Section 4.1) and destructive experiments comparable, we use the same ISIC dataset of
our construction experiments (2,594 images from the 2018 ISIC Challenge — Task 1,
which provides segmentation masks for every sample).

The Atlas [6] is a medical educational dataset composed of +1, 000 cases of pigmented
skin lesions. Each case is associated with clinical and dermoscopic images. Each skin
lesion has clinical data (e.g., location, diameter, elevation), histopathological results, di-
agnosis, and the presence or absence of dermoscopic attributes. The presence of those rich
metadata corresponds to the pedagogical objectives of the Atlas of teaching dermoscopy
through reliable and understandable medical algorithms (e.g., the 7-point checklist). The
Atlas also groups the lesions according to their level of diagnostic difficulty (low, medium
or high), which indicates how difficult it is to identify the medical attributes (e.g., net-
works, dots-and-globules, etc.) in the lesions. The difficulty relies on the morphological
variability of a given criterion, which explains the sometimes low intra- and interobserver
agreement of such medical algorithm.

We are especially interested in the dermoscopic attributes annotation. Lesions’ der-
moscopic attributes analysis (through pattern-based medical algorithms) is crucial for
dermatologists to diagnose skin cancer. This information enables us to verify bias by
comparing the medical algorithm performance (7-points), the network performance, and
an Artificial Intelligence benchmark for melanoma classification [17].

For our experiments, we select only the dermoscopic samples from the Atlas, remove
“duplicates” (some medical cases have multiple images), and include only the classes
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Figure 4.4: Samples from each of our disrupted datasets. We gradually remove cogent
information, until there is no information left to apply any aspect of medical score algo-
rithms [5,33]. Next, we use those sets to evaluate if the network can still learn patterns
with the information left to correctly classify skin lesions. Best seen in digital format.

present in the dataset of Task 2 of ISIC 2018 Challenge (melanoma, nevus, and seb-
orrheic keratosis). Those alterations result in a dataset containing 872 images. Unlike the
ISIC dataset, the Atlas dataset does not provide the lesions’ ground truth segmentation
masks. To obtain them, we choose to use the SeGAN model [98|, which placed 4" on the
segmentation task at the ISIC 2018 Challenge making use of a generative approach for
skin lesion segmentation.

It is import to note that the dermoscopic attributes annotations in ISIC and Atlas
differ in two ways. First, in ISIC the annotation is a mask that maps the dermoscopic
attributes in the original images. In the Atlas dataset, we only have the information
about the presence or absence of each dermoscopic attribute. Second, the two datasets
annotated information about different dermoscopic attributes, with different levels of
detail. Unfortunately, only the patterns present in the Atlas dataset allow to apply (and
evaluate) the medical pattern-based algorithms.

Next, we present the different datasets modifications made for our first experiments
and our motivations behind each one. In Figure 4.4 we show examples of each variation.
We point out that we keep the same modifications for both training and testing our
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networks.

Traditional: This dataset contains the usual information used for training and eval-
uating skin lesion analysis networks. The images contain all pixels’ information, and we
expect it to have the highest scores in our tests, being our upper bound baseline.

Only Skin: To create this dataset, we take advantage of segmentation masks. We
apply the mask in the samples from the Traditional dataset, removing the pixels’ informa-
tion (they turn black) inside the actual lesion. We keep only the silhouette of the lesion
and the skin of the image. Our intention when creating this dataset is to destroy the
lesion information while verifying if the network could still make sense of the remained
pixels to classify the samples correctly.

Bounding Box (Bbox): The lesion border is an essential feature to diagnose skin
lesions. The classic ABCD medical algorithm [71]| consider this feature, which accounts
border symmetry and border regularity. To destroy this information from the dataset, we
cover the silhouette of the lesion with a black bounding box. At this point, we already re-
moved the lesion and its borders information. Only healthy skin and artifacts reminiscent
from the image acquisition process are available for the network to learn.

Bounding Box 70% (Bbox70): The diameter (size) of the lesion is considered by
dermatologists to diagnose skin lesions since melanomas are usually bigger (start with a
diameter of more than 6mm [33] than benign lesions. The diameter is the last clinical
feature we attempt to remove from the network’s learning possibilities. For this purpose,
we define that every bounding box must at least have the size of a 250 x 250 square (note
that images are 299 x 299). We keep intact bounding boxes that need to be bigger to
cover the lesion. The 250 x 250 square is sufficient to cover 70% of the pixels. We place
this square at the center of the lesion. If the lesion is not in the center of the image, part
of the box is not visible. In these specific cases, the bounding boxes may cover less than
70% of the pixels. At this point, there is no information left to apply any of the factors
from the ABCD [33,71], ABCDE [2] or any pattern-based algorithm [5].

4.3.2 Training and Evaluation Setup

Since both construction and destruction experiments are useful for detecting and under-
standing bias on skin lesion datasets, we make them comparable. For both designs, we
use the same network architecture, hyperparameters, augmentation strategies, and data
splits (each adapted with its respective modification). For more details of our network
setup, please refer to Section 4.1.2.

Since we do not require dermoscopic attributes maps (differently from our construction
experiments), we have the opportunity to perform a cross-dataset design employing both
ISIC Archive and Atlas datasets. However, since we want this destructive experiment to
be comparable with the construction one, we keep ISIC with the same set of 2, 594 images
used in our construction experiments.

Next, we introduce our ideas to exploit deep neural network learning capabilities.

Destructing Atlas-dataset: We employ the Atlas dataset with our disruptive ac-
tions for both training and testing the network in the destruction of information ap-
proach. We use the same 10 splits used in the construction experiments, keeping it the
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same throughout all sets of images ( Traditional, Only Skin, Bounding Box, Bounding Box
70% ) to make comparisons fair. To compose each training split, we randomly select 70%
of the images of each diagnostic difficulty present in the Atlas dataset (low, medium, and
high). We compose the corresponding test split using the 30% that is left. Following this
procedure, we reduce the possibility of biasing our results with a split that is especially
good for a given set of images. Since the training and test sets come from the same data
distribution (same dataset), we expect these results to be optimistic, and that motivates
our three next designs.

Destructing ISIC-dataset: We also apply the destruction of information approach
to the ISIC dataset. We do that to confirm the behavior verified in Atlas in a more generic
dataset, with fewer effects of human bias. We apply the same 10 split generation procedure
we described for this experiment, except for the diagnostic difficulty stratification (the
information is not present for the ISIC dataset).

Destructing Cross-dataset: We increase the difficulty by experimenting with a
cross-dataset fashion. We train with all 2, 594 samples from the ISIC dataset and evaluate
on the complete 872 images set from Atlas. The differences between the statistics between
those two datasets make this task harder, and better reflect a real-world setting [94]. We
repeat that experiment 10 times, for statistical significance.

4.3.3 Results and Discussion

We employ the melanoma classification benchmark [17] to measure the expected per-
formance for dermatologists, in an unbiased scenario. This benchmark is the result of a
study with 157 German dermatologists to be a reliable benchmark for artificial intelligence
algorithms. Brinker et al.’s [17] procedure was to send an electronic questionnaire to der-
matologists containing 100 dermoscopic images (80 nevi and 20 biopsy-verified melanoma)
randomly chosen from the ISIC Archive, asking for their evaluation. The AUC achieved
by dermatologists for dermoscopic images (which is the case for our Atlas set) is 67%.

We employ 7-point checklist [5], a score-based medical algorithm, to verify bias in
the Atlas dataset. This way we can isolate the neural network’s learning capabilities.
Dermatologists use attribution pattern analysis to diagnose malignant cases. The 7-point
medical algorithm assigns a score to each of the dermoscopic attributes. The medical
practitioner needs to accumulate the scores over the detected present attributes. If this
score surpasses a threshold, the lesion is assigned as a melanoma. Dermatologists use this
information in addition to clinical information (if the lesion is growing, if it itches, if it
bleeds, if it hurts, its location and patient’s age and sex), to diagnose skin lesions. We
use the 7-points checklist score available as metadata of the Atlas dataset®. It achieves
91.7% AUC over all selected Atlas samples (see Figure 4.5).

The huge gap between the 7-point checklist performance with the melanoma classifi-
cation benchmark reveals it is biased due to the characteristics and educational objectives
of the Atlas dataset. Low and medium difficulty cases selected to compose the dataset are
probably hand-picked to be good examples to teach new medical practitioners to identify

3http://derm.cs.sfu.ca
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Figure 4.5: Performance of the 7-point checklist algorithm on the Atlas dataset. It shows
a huge gap to the performance of dermatologists evaluated in 100 random dermoscopic
samples from the ISIC Archive, which is 67% [17]. The results for 7-point checklist applied
on Atlas is optimistic considering the dataset’s bias towards its educational aspects.

and classify dermoscopic attributes, while hard cases are exceptions to the pattern-based
analysis.

Next, we try to find the source of bias, by gradually destructing clinical-meaningful in-
formation from the images, and assessing the network’s performance on them. Figures 4.6
and 4.7 show the network’s performance for the different sets in the Atlas, Cross-dataset,
and ISIC experiments respectively.

High difficulty lesions classification seem to be a very hard and specific task to the
network, as it is for dermatologists. It could not learn clinical patterns properly with the
training set, and destroying information do not influence the results. We understand that
the network is probably exploiting image acquisition artifacts and dataset bias.

When experimenting in a cross-dataset fashion, the performance drops as expected,
because of the differences between the statistics of Atlas and ISIC. The behavior of the
network is similar in all experiments, and the following analysis can be generalized.

Traditional has the best overall performance, as expected. The network results follow
the annotation of difficulty to diagnose by dermatologists. The results start to drop in
Only Skin, where we start to deconstruct the information. When we remove the pixel
information inside the lesion, we are removing all the information about dermoscopic
attributes. The only clinically-meaningful information present is the border of the lesion,
that could be used to verify its symmetry and irregularity, and skin features, such as
vascularization.

When we remove the information of the borders, on Bboz, the performance lower, even
more, revealing that we removed an essential feature for classification. An explanation,
referring to medical algorithms like ABCD [71], is that the diameter of the box contains the
information on the size of the lesion, which is also relevant information when diagnosing
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Figure 4.6: Models’ performance over the disturbed datasets. We first remove all the pixel
colors inside the lesion (only skin), proceeding to remove border information (bbox), and
finally, removing the size (diameter) of the lesion (bboz70). Surprisingly, even when we
destruct all clinical-meaningful information, the network finds a way to learn to classify
skin lesion images much better than chance.
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Figure 4.7: The differences over the disturbed datasets, stratifying the performance into
the different diagnostic difficulties. High difficulty diagnostic present resilience to the
removal of cogent information. Despite not presenting as high numbers as the other
difficulties, they are still much better than chance, revealing the patterns learned are not
clinical. Other difficulties are more affected by the disturbances, but the overall result
for bbox, and even bbox70, shockingly surpasses melanoma classification benchmark [17]
of 67%. This result suggests that dataset bias inflates our model’s results.
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skin lesions.

At Bbox70, we remove 70% of all pixels in the image and all medical relevant features
that could aid the classification. Still, surprisingly, the network can make sense of visual
features to make decisions that are much better than chance. There is a pattern within
the available pixels that contain information that leads to the correct label. This is shock-
ing. The numbers achieved by the network at this point even surpass the AUC achieved
by dermatologists on the melanoma classification benchmark. As a sanity check, we per-
formed an experiment hiding all image information, feeding the network (for training and
testing) only zero-filled images. We achieved an AUC of 50%, which is expected since
AUC is insensitive to class balance.

We believe that dataset bias is the culprit for inflating the network’s performance
in our destructive experiments, introducing artifacts [68] that undesirably can deviate
the network’s attention from more critical features. We also verify that bias is not only
present in the smaller educational purpose Atlas dataset, but also the most diversified
ISIC dataset. Even performing the experiments in a cross-dataset fashion (the network
is trained on ISIC, and tested on Atlas), the unnatural behavior persists, attesting to the
fact that these two datasets may also share the same bias. We will address the exact
causes and artifacts in future works.

Another possibility is that there is meaningful information at the borders of the images
(parts that were not affected by the destruction procedures). This is unlikely because
according to medical algorithms [2,5,71], there is no information left to account.

4.4 Conclusion

If we hide the same lesion information from the networks, can it still learn patterns
that help differentiate benign from malignant lesions? We believe that when a model
learns to classify malignant lesions by analyzing only the skin — without information
on the borders, biological markers or lesions’ diameter — it strongly relies on patterns
introduced during image acquisition and general dataset bias.

Surprisingly, the result when feeding the network with clinically-meaningful informa-
tion from the dermoscopic attribute maps ( Grayscale Attributes and RGB Attributes sets)
is worse than feeding it only with healthy skin information (Only Skin and Bounding Box
sets). That leads us to believe that also our networks’ results towards both datasets is
optimistic, not only the performance of 7-points over Atlas (which is expected).

That problem is critical for deploying automated skin lesion analysis. When perform-
ing in the real world, we want the network to be as unbiased as possible to make decisions
based on clinical features. Therefore, it is urgent to understand the current bias in the
datasets used to train and evaluate our works.
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Chapter 5

Conclusion

In this chapter, we review our findings, covering the major topics discussed in this Master
thesis. Also, we discuss future directions to improve our results and the skin lesion analysis
area as a whole.

5.1 Contributions

e GAN literature review: The GAN literature is fast-paced, with the number of
works in the topic raising sharply after every year since 2014 when it was proposed.
To enable the reader to have a grasp of it, we provide, in Chapter 2, a comprehensive
GAN state-of-the-art, splitting it into six topics, showing how works influenced each
other until we arrive at the stage we are today.

e Skin lesion image synthesis: We proposed, in Chapter 3, a method for skin
lesion synthesis that generates high-definition clinically-meaningful synthetic skin
lesions. The incorporation of dermoscopic attributes to compose the maps that
are translated to the new image is the main factor that aided generation. Not
only the quality of the images increased, since we are feeding the model with more
information to guide the generation, but also it forced the presence of dermoscopic
attributes in the final output. The presence of those attributes is crucial because
they are used by dermatologists to diagnose melanoma, and can contribute to the
classification models by delivering correct correlations. Although our method still is
up today the current state-of-the-art for skin lesion synthesis, we have many paths
to investigate to increase the quality and variability of our synthetic samples.

e Interpretability: We studied, in Section 3.5, and applied methods for visualization
and interpretability of our classification models, analyzing the networks’ behavior
when feeding them with both real and synthetic data. Due to the fine-grained
requirements of our problem, where the lack of detail on the visualizations can lead
to a very different analysis, or by the high complexity of our skin lesion classifiers,
the results are far from what we expect from a system that can be used to aid
specialists when diagnosing melanoma.
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¢ Bias on skin lesion datasets: Finally, in Chapter 4, we investigated the data used
for both synthesis and classification models. The performance of the model even
when no clinically-meaningful information is presented to it (according to medical
algorithms [5, 66, 71]) is shockingly high, surpassing benchmarks that quantify a
specialist’s performance [17]. This is not a good sign for Al research. We think
that the network learned to exploit artifacts that are introduced during the images
acquisition, which caused inflated performances. Our work in this matter raised
awareness in the community to this matter, and we hope it can be approached soon.

5.2 Limitations and Future Works

We believe our work contributed to the skin lesion analysis scenario with innovative
techniques to deal with data. Data augmentation using synthetic skin lesions generated by
a GAN has much room for improvement, pushed forward by a rapidly evolving literature.
Our solution’s main drawback is the lack of variety of the generated images, which look
too similar to the training dataset. This happened because GANs at the time were unable
to insert noise into the generation process in a way to positively affect it. Very recently,
SPADE [75] managed to change this scenario by combining image-to-image translation
with a noise component to increase variability. However, the performance of these models
in general-purpose datasets, which are often vast and diversified, is usually better than
the performance of the same models in limited, specific, unbalanced data (e.g., medical
context).

Another limitation is related to the dermoscopic attributes annotation, which the
inclusion granted a higher level of details and a clinical meaning to our solution. This
annotation is rare in skin lesion datasets, being present for a tiny subset of our data
(less than 10%). Skin lesion synthesis could benefit from having more images annotated
(concerning dermoscopic attributes), and also from the stratification of the current labels
(e.g., regular, irregular). GANs benefit from having a higher number of labels available
during training |59, 73|, and it would also enable classification networks to compare their
performance on large datasets with medical algorithms. Applying recent GANs’ strengths
by experimenting with recent models, and exploring new ones dedicated to deal with
limited and unbalanced data, can impact classification even more deeply.

Classification also needs to be studied so we can make sure we are moving towards a
solution that can be used in the real world (generalization), instead of building a solution
which is optimal only for our current datasets. The ISIC 2019 Challenge contributed for
this purpose this year by including an “unknown class” to the task that was exclusively
present in the closed test dataset. The new unknown class mimics a real-world scenario
where the solution must be robust to work even with previously unseen labels, without
assigning an incorrect diagnostic to it.

Since efforts for a complete Al solution for skin lesion analysis are increasing in the
last few years, we need to make sure the datasets we use are delivering correct correlations
to our models, as seen in our dataset bias investigation (Chapter 4). When evaluating
our models, we need to worry about the challenges those solutions will face when being
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applied in the real world and try to mitigate the data limitations we face. For this, we
need to understand our models, investigating the artifacts that are being exploited. This
knowledge can guide us to avoid our overfitting to too narrow data distributions (from
which currently, most train and test datasets are coming from), until the point where
datasets are vast and diverse.

Interpretability also is beneficial to create trust with dermatologists, which is crucial
to take full advantage of the technology’s potential. Interpretability would also enable
AT solutions for skin cancer analysis to assist specialists in hard cases. However, current
methods for visualizing our classification models are not robust enough to present good
performance on complex networks and contexts [29,48|, the output saliency maps are not
precise enough to be useful to understand the predictions [86], or their result is subjective
to human interpretation |74]. Better visualization methods can improve our understanding
of the problems we are facing, and maybe guide future modifications on our solutions.

Finally, we witnessed the difference that the incorporation of dermoscopic attributes
had in our skin lesion synthesis solution, and we think that working with different meta-
data can highly benefit future results. However, it is very challenging to acquire, organize,
and annotate this data. For the machine learning point of view, we also need to learn
how to extract the most of each information while combining different domains (text from
medical records, dermoscopic and histopathologic images, and genomics), but we believe
it can be the next revolution for skin cancer analysis.
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