
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Eva Maia Malta

Selecting Efficient Virtual Machines for Training Deep
Learning Models on the Cloud

Seleção de Máquinas Virtuais Eficientes para o
Treinamento de Modelos de Aprendizado Profundo na

Nuvem

CAMPINAS
2021



Eva Maia Malta

Selecting Efficient Virtual Machines for Training Deep Learning
Models on the Cloud

Seleção de Máquinas Virtuais Eficientes para o Treinamento de
Modelos de Aprendizado Profundo na Nuvem

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestra em Ciência da
Computação.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Master in Computer Science.

Supervisor/Orientador: Edson Borin
Co-supervisor/Coorientadora: Sandra Eliza Fontes de Avila

Este exemplar corresponde à versão final da
Dissertação defendida por Eva Maia Malta e
orientada pelo Edson Borin.

CAMPINAS
2021



Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

    
  Malta, Eva Maia, 1993-  
 M298s MalSelecting efficient virtual machines for training deep learning models on the

cloud / Eva Maia Malta. – Campinas, SP : [s.n.], 2021.
 

   
  MalOrientador: Edson Borin.
  MalCoorientador: Sandra Eliza Fontes de Avila.
  MalDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.
 

    
  Mal1. Computação em nuvem. 2. Aprendizado de máquina. 3. Computação de

alto desempenho. I. Borin, Edson, 1979-. II. Avila, Sandra Eliza Fontes de,
1982-. III. Universidade Estadual de Campinas. Instituto de Computação. IV.
Título.

 

Informações para Biblioteca Digital

Título em outro idioma: Seleção de máquinas virtuais eficientes para o treinamento de
modelos de aprendizado profundo na nuvem
Palavras-chave em inglês:
Cloud computing
Machine learning
High performance computing
Área de concentração: Ciência da Computação
Titulação: Mestra em Ciência da Computação
Banca examinadora:
Edson Borin [Orientador]
João Paulo Papa
Lúcia Maria de Assumpção Drummond
Data de defesa: 10-03-2021
Programa de Pós-Graduação: Ciência da Computação

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-2085-122X
- Currículo Lattes do autor: http://lattes.cnpq.br/3183898522744068  

Powered by TCPDF (www.tcpdf.org)



Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Eva Maia Malta

Selecting Efficient Virtual Machines for Training Deep Learning
Models on the Cloud

Seleção de Máquinas Virtuais Eficientes para o Treinamento de
Modelos de Aprendizado Profundo na Nuvem

Banca Examinadora:

• Prof. Dr. Edson Borin
Universidade Estadual de Campinas

• Prof. Dr. João Paulo Papa
Universidade Estadual Paulista

• Profa. Dra. Lúcia Maria de Assumpção Drummond
Universidade Federal Fluminense

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 10 de março de 2021



Acknowledgements

This study was financed by Petrobras, FAPESP (CEPID 2013/08293-7), and Coorde-
nação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance
Code 001/PROCAD 2966/2014. E. Borin is partially funded by CNPq (313012/2017-2)
and S. Avila is partially funded by Google Research Awards for Latin America 2018, 2019,
2020 and FAPESP (2017/16246-0). The authors also thank the High-Performance Geo-
physics Lab (HPG), the Center for Computing in Engineering & Sciences (CCES), and
the Laboratório Multidisciplinar de Computação de Alto Desempenho (LMCAD) team
for technical support.



Resumo

Modelos de Aprendizado Profundo têm sido cada vez mais utilizados para a resolução de
problemas complexos. Sua característica de análise hierárquica da informação permite a
extração de relações complexas existentes em um conjunto de dados. No entanto, com o
aumento da complexidade dos modelos e da quantidade de dados, o treinamento destes
modelos tem exigido o uso de sistemas computacionais cada vez mais poderosos e com
alto custo de aquisição. A Nuvem Computacional é um modelo de negócios que permite
o acesso a diversos tipos de sistemas computacionais, incluindo sistemas de alto desem-
penho, mediante o pagamento pelo uso, sem que o usuário tenha que arcar com o custo
de aquisição do equipamento. Contudo, escolher corretamente o sistema computacional
mais adequado para o treinamento de um modelo de Aprendizado Profundo na nuvem é
um desafio, pois a escolha deve levar em consideração fatores como tempo de execução
e custo, por exemplo. Pensando nisso, este trabalho apresenta um estudo sobre o com-
portamento do treinamento de modelos de Aprendizado Profundo em máquinas virtuais
com GPU na nuvem computacional. Neste estudo, nós observamos que a configuração do
batch size afeta o tempo de treinamento do modelo e o número de épocas necessárias para
que a acurácia do modelo estabilize. Além disso, observamos que os tempos de execução
das iterações e dos processos de validação de cada época do treinamento são estáveis, com
exceção da primeira iteração e da validação da primeira época. A partir destas obser-
vações, propusemos duas metodologias para identificar o tipo de máquina virtual mais
adequada para treinar um dado modelo de Aprendizado Profundo na nuvem computaci-
onal. Por fim, validamos a acurácia das metodologias propostas com duas aplicações de
Aprendizado Profundo distintas e mostramos que, em ambos os casos, as metodologias
foram capazes de identificar o tipo de máquina virtual com menor custo e/ou mais rápida
para realizar o treinamento.



Abstract

Deep Learning models are a popular tool to solve complex problems. Their analysis based
on hierarchical analysis of information allows us to extract complex correlations among
data. However, with the rise of models’ complexity and amount of data, training these
models is requiring powerful computational systems with high acquisition costs. Cloud
Computing technology is a business model that allows us to access many computational
systems, including high-performance systems, in a pay-per-use model, not requiring the
user to pay for the equipment acquisition. Nevertheless, correctly choosing the appropriate
computational system to train a Deep Learning model on the cloud is a challenge since
the choice must consider variables like the execution time and cost. This work presents
a behavior study of training Deep Learning models on virtual machines equipped with
GPUs on the cloud. In this study, we observed that the batch size affects the training time
and the necessary number of epochs to stabilize the model accuracy. We also observed
that each epoch’s iterations and validation times are stable, except for the first iteration
and first epoch’s validation. Based on these observations, we proposed two low-cost
methodologies to identify the ideal virtual machine to train a Deep Learning model on
cloud virtual machines. Finally, we validated the accuracy of the proposed methodologies
with two Deep Learning applications, and we showed that, in both cases, the methods
were capable of identifying the virtual machine types that provide the smallest cost and
the shortest runtime to train the Deep Learning model.



List of Figures

2.1 Example of a Deep Neural Network applied to an image classification prob-
lem. Figure reproduced from Zeiler and Fergus [39]. . . . . . . . . . . . . . 18

2.2 Example of a parallel training using a parameter server and two GPUs. Fig-
ure reproduced from https://www.tensorflow.org/tutorials/images/
deep_cnn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Dashboard of Amazon SageMaker from June 2020. . . . . . . . . . . . . . 27
3.2 Dashboard of Azure Machine Learning Studio from June 2020. . . . . . . . 29

4.1 Seismic dataset examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 CIFAR-10 dataset examples. Figure reproduced from Krizhevsky et al. [16]. 34
4.3 Runtime vs Batch size for the seismic dataset for all instances. . . . . . . . 35
4.4 Runtime vs Batch size for the CIFAR-10 dataset for all instances. . . . . . 36
4.5 Final accuracy for seismic dataset and CIFAR dataset problems with dif-

ferent batch sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6 Cost vs runtime for the seismic dataset for all instances. . . . . . . . . . . 39
4.7 Cost vs runtime for the CIFAR-10 dataset for all instances. . . . . . . . . . 39
4.8 Epoch time for the seismic image dataset experiments for all instances. . . 41
4.9 Comparison between the real runtime and the estimated runtime for the

seismic dataset experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.10 Estimated runtime vs estimated cost for the seismic dataset experiments. . 44
4.11 Comparison between the real runtime and the estimated runtime for the

MNIST dataset experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 MNIST dataset sample. Figure reproduced from Goodfellow et al. [10]. . . 47
5.2 Iteration per time in seconds for the seismic data experiments on a p2.xlarge

instance for batch sizes of 256 and 512 images. . . . . . . . . . . . . . . . . 49
5.3 Time per validation for the seismic data experiments on a p2.xlarge instance. 50
5.4 Simulated runtime for the seismic data experiments with batch size of 256

images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5 Simulated runtime for the MNIST data experiments with batch size of 2048

images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

https://www.tensorflow.org/tutorials/images/deep_cnn
https://www.tensorflow.org/tutorials/images/deep_cnn


List of Tables

2.1 Comparison between our research and the most correlated works. (NA:
Not Applied, NF: Not Found) . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Main features of AWS EC2 instances types used. Prices on February 2021. 25
3.2 Main features of AWS SageMaker instances types used. Prices on February

2021. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Main features of Azure instance types with GPU. Prices on February 2021. 28
3.4 Main features of Google Compute Engine instances with GPU and TPU.

Prices on February 2021. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Average runtime and cost of using each instance with a seismic image
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Average runtime and average cost for the CIFAR-10 dataset in all in-
stances.The baseline for the speedup is the fastest configuration from p2.xlarge
instance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Number of epochs and iterations required for each batch size on both ap-
plications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Cost of performing the seismic data experiments with and without the
proposed methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Cost of performing the MNIST data experiments with and without the
proposed methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Number of iterations and epochs for each batch size for seismic and MNIST
datasets. The iterations column is the number of iterations in each epoch. . 47

5.2 Comparison between the real runtime of an application with the estimated
runtime based on Equation 4.1 for the p2.xlarge instance with seismic data
experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Comparison between the real runtime of an application with the estimated
runtime based on Equation 5.3, that takes into account the iterations time,
for the p2.xlarge instance with seismic data experiments. The values in
the table are the average execution time of three experiments done for each
batch size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Comparison between the real runtime of an application with the estimated
runtime based on Equation 5.3, that takes into account the iterations time,
for the p2.xlarge instance with seismic data experiments without using the
validation time. The values in the table are the average execution time of
three experiments done for each batch size. . . . . . . . . . . . . . . . . . . 51



5.5 Comparison between the real runtime of an application with the estimated
runtime based on Equation 5.3, that takes into account the average time
of iterations the 2 to 10, for the p2.xlarge instance with seismic data ex-
periments without using the validation time. The values in the table are
the average execution time of three experiments done for each batch size. . 52

5.6 Comparison of strategies to determine the best instance for a batch size of
256 images for the FCN/seismic data experiments. . . . . . . . . . . . . . . 53

5.7 Instances correlation of the simulated runtime for a batch size of 256 images
for the seismic/FCN experiments. . . . . . . . . . . . . . . . . . . . . . . . 54

5.8 Comparison of strategies to determine the instance that has the best cost
for a batch size of 256 images for the seismic/FCN experiments. . . . . . . 54

5.9 Comparison between the real runtime of an application with the estimated
runtime based on Equation 5.3, that takes into account the iterations time,
for the p2.16xlarge instance with MNIST experiments. The values in the
table are the average execution time of three experiments done for each
batch size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.10 Comparison of strategies to determine the best instance for a batch size of
256 images for the MNIST dataset. . . . . . . . . . . . . . . . . . . . . . . 56

5.11 Comparison of strategies to determine the instance that has the smallest
cost for a batch size of 256 images for the MNIST dataset. . . . . . . . . . 57

5.12 Comparison of strategies to determine the best instance for a batch size of
2048 images for the MNIST dataset. . . . . . . . . . . . . . . . . . . . . . 57

5.13 Comparison of strategies to determine the instance that has smallest cost
for a batch size of 2048 images for the MNIST dataset. . . . . . . . . . . . 59

5.14 Cost of performing the MNIST data experiments with and without the
methodology proposed in this chapter. . . . . . . . . . . . . . . . . . . . . 59

A.1 Comparison of strategies to determine the best instance for a batch size of
512 images for the seismic/FCN experiments. . . . . . . . . . . . . . . . . 66

A.2 Comparison of strategies to determine the best instance for a batch size of
1024 images for the seismic/FCN experiments. . . . . . . . . . . . . . . . . 67

A.3 Comparison of strategies to determine the best instance for a batch size of
2048 images for the seismic/FCN experiments. . . . . . . . . . . . . . . . . 67

B.1 Comparison of strategies to determine the best instance for a batch size of
512 images for the MNIST dataset. . . . . . . . . . . . . . . . . . . . . . . 68

B.2 Comparison of strategies to determine the cheapest instance for a batch
size of 512 images for the MNIST dataset. . . . . . . . . . . . . . . . . . . 69

B.3 Comparison of strategies to determine the best instance for a batch size of
1024 images for the MNIST dataset. . . . . . . . . . . . . . . . . . . . . . 69

B.4 Comparison of strategies to determine the cheapest instance for a batch
size of 1024 images for the MNIST dataset. . . . . . . . . . . . . . . . . . . 70



Contents

1 Introduction 13

2 Fundamental Concepts and Related Work 16
2.1 Machine Learning & Deep Learning . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Training a Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Parallelization of a Neural Network . . . . . . . . . . . . . . . . . . 19
2.3 Cloud Computing Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Cloud Computing Services for Deep Learning 24
3.1 Amazon WEB Services (AWS) . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Elastic Compute Cloud (EC2) . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Amazon SageMaker . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 Other Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Microsoft Azure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 VMs for Machine Learning . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Azure Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.3 Azure Machine Learning Studio . . . . . . . . . . . . . . . . . . . . 28
3.2.4 Other Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Google Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 Compute Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 AI Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.3 Other Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Selecting the Best GPU Instance through Epoch Time 32
4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Deep Learning on GPU Instances and the Batch Size Influence . . . . . . . 34
4.3 Description of the Proposed Methodology . . . . . . . . . . . . . . . . . . . 38
4.4 Methodology’s Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Cost of Applying the Proposed Methodology . . . . . . . . . . . . . . . . . 42
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Selecting the Best GPU Instance through the Iteration Time 46
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Describing the Time-consuming Tasks of a Deep Learning Problem . . . . 48
5.3 Proposed Methodology’s Description and Formalization . . . . . . . . . . . 51
5.4 Methodology’s Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.5 Cost of Applying the Proposed Methodology . . . . . . . . . . . . . . . . . 57
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



6 Conclusions 60

Bibliography 62

A All Results for the Seismic Data/FCN Experiments 66

B All Results for the MNIST Dataset Experiments 68



13

Chapter 1

Introduction

The constant growth of available data from all different kinds of subjects is allowing com-
panies and the government to make decisions based on complex data analysis insights.
Data-driven researches are no longer supporting knowledge but plays a leading role in
industry decision-making. The International Data Corporation (IDC) presented a re-
search that suggests that, by around 2025, the world will have 175 ZB of data available,
representing twice what we have today [27].

Two components have gained attention in this situation. The first one is the develop-
ment of new algorithms and strategies to extract complex insights from these data. The
second one is the development of new hardware systems to support the processing of such
an amount of data.

Regarding the algorithms and strategies, we can mention Machine Learning as one of
the main strategy used to acquire information from the data. This strategy has many
different algorithms that can learn from data to identify patterns within the data and
generalize them for new ones. Among all the Machine Learning algorithms, the Deep
Learning approach is more suited to problems that deals with many variables [10].

On the one hand, Oussous et al. [25] argues that the hierarchical learning feature
of Deep Learning is one of the main factors of why this strategy is so recommended to
deal with large datasets since it simplifies the analysis of complex features “into a suit-
able internal representation or feature vectors”. On the other hand, using Deep Learning
techniques to learn from large datasets only became possible due to another factor: com-
putational power growth. This factor, combined with code parallelization strategies and
new types of hardware, such as Graphic Process Units (GPUs), allows us to train and use
Deep Learning models with such an amount of data.

Cloud Computing is a business model that facilitates access to high-performance com-
putational resources. The IDC’s report [27] puts Cloud Computing as the new companies
data center, shifting from the traditional one. Also, IDC predicts that in 2025 around
49% of the world’s data will be in Cloud environments.

There are many advantages of using Cloud Computing infrastructures. We can cite
minimizing operational costs for the companies, easy access to different computational
resources, and a pay-per-use charging model. However, there are some challenges in
the use of Cloud services as well. One of them is identifying the best practices when
using Cloud Computing resources, especially when considering the services’ cost-benefit



14

correlation.
For Deep Learning applications, these challenges are not different. The Amazon Web

Services (AWS) cloud provider, for example, offers many services to run Deep Learning
algorithms. One of them, the Elastic Compute Cloud (EC2), is based on the Infrastructure
as a Service (IaaS) model and allows users to instantiate different virtual machines (VMs),
with varying hardware types, to run their application. The IaaS service model plays a
core role in Machine Learning application processing since it is the model that provides
more autonomy to the user [22]. Additionally, it is usually used to develop other software
and platforms to run Machine Learning programs on the cloud, as we can see in the work
of Pop [26].

AWS provides several VM types, which are grouped in families according to their
features. The p2 and p3 families, for example, contain virtual machine types that are
equipped with K80 and V100 GPU models, respectively. We use VMs from these families
to perform our study because they contain GPUs that are more appropriated to train
Deep Learning models. The GPU type and the number of GPUs of each virtual machine
instance also imply a difference in price per hour.

In total, AWS provides 22 instance types with GPU grouped in six families. The p2
and p3 families have a total of seven VM types. Given this amount of options, users have
the challenge of choosing the instance that provides the best cost-benefit correlation to
run their applications. Selecting the proper VM type is essential because, as indicated
by our results in Chapter 4, a poor choice may lead to a high financial cost, or extended
execution time, when training a Deep Learning model. Finally, selecting the best instance
requires a strategy that can determine it at a low cost.

Therefore, this work’s primary goal is to develop low-cost methods that allow users to
determine the best cloud computing virtual machine type to train Deep Learning models.
In this context, the best VM type depends on the Deep Learning model and the user
interest, which may include reducing the execution time or the cost to train the model.

To achieve this goal, we started by analyzing the behavior of two Deep Learning ap-
plications on AWS VM instances and their impact on cost and execution time. We also
observed the influence of variables related to the training on the execution time, like accu-
racy stabilization and sample batch size. Then, we proposed and validated a methodology
to estimate the cost and the performance relationship of VM types taking into account
different batch sizes. This methodology requires the user to perform the whole training
process for each batch size at least once, in one of the VM types, to determine the number
of epochs required to train the model with each batch size. Since this process may be too
expensive depending on the Deep Learning model and the training dataset, we propose a
second methodology capable of estimating the cost and the performance relationship of
VM types without performing the full training process. This new methodology assumes
a fixed batch size; however, it costs much less since it does not require the entire training
process to be performed before choosing the best VM type. We validated the accuracy
of the proposed methodologies with two Deep Learning applications and showed that,
in both cases, the methods were capable of identifying the virtual machine types that
provide the smallest cost and the shortest runtime to train the Deep Learning model.

The remaining of this text is organized as follows: Chapter 2 introduces the fundamen-



15

tal concepts to understand our results and related work. Chapter 3 discusses the services
for Deep Learning provided by AWS, Microsoft Azure, and Google Cloud. Chapters 4
and 5 present the two methodologies proposed in this work and their evaluation. Finally,
Chapter 6 summarizes our conclusions and discusses future work.



16

Chapter 2

Fundamental Concepts and Related
Work

This chapter explains the main concepts of Machine Learning used in this work, narrowed
to Deep Learning models and Cloud Computing. Section 2.1 presents the main idea and
definitions of Machine Learning and Deep Learning areas. Section 2.2 describes the main
components of a training model, which influences the model quality and the application
runtime, and briefly explain the parallelization of a Deep Neural Network implementation
in the context of popular frameworks. Section 2.3 introduces the Cloud Computing terms
and service models.

2.1 Machine Learning & Deep Learning

Machine Learning is an Artificial Intelligence subset in which the algorithm must learn
patterns through a dataset. The Mitchell [23] definition of Machine Learning is “A com-
puter program is said to learn from experience E with respect to some class of tasks T
and performance measure P , if its performance at tasks in T , as measured by P , improves
with experience E.”

In other words, a Machine Learning algorithm learns from a dataset a model or hy-
pothesis that is capable of relating the data’s example features received as input to the
output variable. An example, following the definition of Goodfellow et al. [10], “is a col-
lection of features that have been quantitatively measured from some object or event that
we want the machine learning system to process”. Additionally, the algorithm must be
capable of generalizing; this means that the same model must correctly relate different
data features than the data presented to it initially.

Goodfellow et al. [10] define the task T of Machine Learning as tasks that ”are too
difficult to solve with fixed programs written and designed by human beings”. It can be a
prediction task that follows supervised learning or a description task that uses unsuper-
vised learning. See the description of each type of problem.

• Prediction task: This kind of problem can be solved using the supervised learning
approach, which means that the dataset’s examples must have a label. This label



17

will serve as the problem’s target variable, which is the baseline for the model out-
put. The prediction tasks can be classification and regression. In the classification
problem, the target variable is a discrete value, while in the regression problem, it
is a continuous value.

• Description task: In a description task, the goal is to identify the intrinsic features
of a dataset and qualify it based on these features. This category usually uses
unsupervised learning, which means that it does not require labeled dataset samples.
Clustering, Association, and Summarization are the tasks of this category.

Regarding the performance measure P , it is common to use the accuracy for tasks
like classification. Accuracy is the proportion of examples with correct outputs made by
the model. The error rate measures the proportion of examples with incorrect outputs.
It is also a common performance measure P .

Based on a brief survey on Machine Learning researches [11] and blogs content found
on the Internet [3] [18], we identified a pattern on Data Scientists (including Machine
Learning researches) workflow, and we defined it as the sequence of four steps: data
preparation, training, evaluation, and inference.

The data preparation is the process where the data scientist prepares the dataset
for the training process, which may include cleaning missing data, changing variable
types, removing features, among others. The training process is when the algorithm is
adjusting the model parameters based on the information present on the dataset. This
step is followed by the evaluation, where the resulting model is assessed to measure its
quality. If the evaluation indicates that the model is generalizing, the model is considered
complete and can be used for inference with new data; otherwise, it must be trained
again. Therefore, the inference step is when the model is ready to be used in the real world.

Deep Learning is a field of Artificial Intelligence that is popular because, among other
things, it is capable of building complex concepts out of simpler ones. The beginning of
ideas that would culminate in Deep Learning as we know it today starts from back to the
1940s. At that time, the use of function approximation techniques was explored to solve
few problems. From 1980 to 1990, researchers started to use back-propagation to train
Neural Networks and initiated a study field called Connectionism. Only in 2006, the idea
of Deep Learning, as we know it, has gained public attention, putting a new light on the
subject [13].

We can summarize Deep Learning as a way to express object representations in terms
of simpler ones. Neural Network is the core model of Deep Learning. It is composed
of layers, where each one of them is a mathematical function that maps input values
to output values. A Neural Network must have many layers, in other words, it must
be a Deep Neural Network to be considered a Deep Learning model. The first layer is
called the input layer, the last one is the output layer, and all other layers between the
input and the output layers are the hidden layers [10]. Figure 2.1 shows an example of
a Deep Neural Network architecture applied to an image classification problem. Notice
how the components represented by each layer simplify complex features of an image into
simpler ones.



18

Figure 2.1: Example of a Deep Neural Network applied to an image classification problem.
Figure reproduced from Zeiler and Fergus [39].

2.2 Training a Neural Network

The Feedforward Neural Network is called Feedforward because the connections among
layers happen from the neurons of one layer towards neurons on subsequent layers. There-
fore, the input flows in only one direction. Since it is the basis for other Deep Neural
Networks, we use the Feedforward Neural Network as an example to explain essential
concepts to understand the functioning of a Neural Network.

The goal of a Neural Network is to find a function f that maps the inputs x to the
outputs y. The function can be defined as y = f(x, θ). Training a Neural Network model
consists of finding the θ values — that we call parameters — to compose the function to
be combined with the inputs x and discover the right output y.

The process of finding the parameters that optimize the model performance P is the
training process. During this process, we are dealing with the training set, which is
a subset of our dataset. The training is done by steps, also called iterations. In each
iteration, a subset of the training set, known as a batch, is used to adjust the model
parameters to improve its performance (e.g., accuracy) accordingly to this subset. The
amount of examples in the batch is known as the batch size.

Once the network process this batch of examples, it calculates the error rate, and the
network walks through the layers in the reverse order to calculate how the parameters
must be updated. When the network updates the parameters, it will process another
batch of examples. The algorithm repeats these steps until the processing of the entire
training set. At this point, the network completed one epoch. In other words, one epoch
represents the processing of the entire training set.

After an epoch, the training process calculates the model performance P through
accuracy by evaluating it using a validation dataset. Usually, the validation set has fewer



19

and different objects from the training set since this step is to check the parameters’
efficiency.

The training process in a Deep Learning model may be composed of multiple epochs.
The number of epochs is determined by the user or by heuristics that take into account
how the validation accuracy is changing across epochs. Note that in the training process,
the entire data set is accessed by the training process several times. This, plus the fact
that the dataset is usually large, and the current Deep Neural Networks have several
layers, which increases their depth, usually makes the training process a time-consuming
process.

We describe the main components of Deep Neural Network training as follows.

• Training set: A subset of the entire dataset used in the training process;

• Validation set: A portion of the dataset, with different samples from training set,
used to evaluate the model performance;

• Validation accuracy: A numerical value representing the performance P of the
model. This variable is calculated at the end of each epoch.

• Batch size: The number of training set samples that the network process at a time
when adjusting the θ parameter;

• Iteration: The processing of one batch of samples;

• Epochs: The processing of the entire dataset. One epoch is composed of n itera-
tions, where the n is the size of the training set, i.e., the number of samples in it,
divided by the batch size;

• Validation: The evaluation the performance P of the model. It is usually per-
formed at the end of each epoch.

• Training: The processing of a dataset during a number of epochs to achieve the
best parameters θ to compose the final function f(x) = θ × x;

2.2.1 Parallelization of a Neural Network

Given the Deep Learning computing-intensive characteristic, users usually rely on GPUs
to train their networks to exploit the inherent parallelism in their workload [4]. In recent
years, the use of other strategies to run Deep Learning applications on parallel envi-
ronments, such as multi-machine parallelism, has also gained force inside the scientific
community [4].

The most popular frameworks for Deep Learning already allow us to train neural
networks in multi-GPU environments. The Keras and TensorFlow frameworks, for exam-
ple, provide tools that use the synchronous parallelization strategy to accelerate the
process of training neural network models.

In this strategy, there is a parameter server that is responsible for sending several
training samples to each processor (GPU’s), which computes updates to the θ parameters.



20

Once these updates are computed, they are sent back to the parameter server to update
the model parameters. The parameter server can be the CPU or one of the GPUs; in our
experiments, it was the CPU.

Usually, the batch size is divided equally for each processor. For example, if we have
a batch of 256 examples and an environment with 8 GPUs, each GPU will process 32
examples in one iteration. After the processing, the parameter server updates the θ
parameters and sends a new amount of data to the GPUs.

Since this strategy is synchronous, the parameter server has to wait for all GPUs to
complete their tasks, slowing down the process. Besides, there is intensive communication
between the parameter server and the GPUs, which creates a communication overhead
that may increase the total training time when the number of GPUs is increased. Fig-
ure 2.2 illustrates how a model may be trained in parallel using a parameter server (CPU)
and two GPUs.

Figure 2.2: Example of a parallel training using a parameter server and two GPUs. Figure
reproduced from https://www.tensorflow.org/tutorials/images/deep_cnn.

2.3 Cloud Computing Definitions

The National Institute of Standards and Technology (NIST) defines Cloud Computing as
a “model for enabling ubiquitous, convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management effort
or service provider interaction” [22].

The NIST also defines the five main features of Cloud Computing as an on-demanding
self-service, with broad network access, which provides different kinds of resources, rapid
elasticity, and measured service. The NIST definition also establishes the following service
models:

https://www.tensorflow.org/tutorials/images/deep_cnn


21

• Software as a Service (SaaS): The consumer uses an application that runs over
a Cloud Computing infrastructure. The provider is responsible for all the infras-
tructure and software management.

• Platform as a Service (PaaS): The consumer has access to the cloud infrastruc-
ture for developing an application. All the infrastructure management and config-
uration is performed by the provider, as all the tools, frameworks, or programming
languages. Here the consumer only worries about the application development and
its use.

• Infrastructure as a Service (IaaS): This is the most basic service, where the
consumer rents computing resources and is responsible for managing most of the
infrastructure, including the operating system, software and framework installations,
storage, and applications development.

The IaaS model allows users to rent Virtual Machines (VMs). In this model, the user
selects a VM type, which defines the hardware configuration, and instantiates a VM of
this type. We observed that the three providers we looked at (AWS, Microsoft Azure,
and Google Cloud) have three ways of charging for VM instances.

1. On-demand instances: Each instance has a price per hour, and the user pays
based on the time the instance is on;

2. Spot instances [31]: Providers charge less for the VM instance; however, they
may shut them down whenever they want;

3. Reserved instances: The user pays for the resources in advance for at least one
year.

In the context of Cloud Computing, it is crucial to understand metrics related to
services’ costs. The cost of using an EC2 instance, for example, is mainly defined by
the cost of executing the VM, which is calculated by multiplying the VM type price (per
hour) by the total time that the instance was on. The price of a VM type varies based
on the instance characteristics, such as the number of virtual CPUs, memory capacity,
bandwidth, and others. In AWS, VM type price may also vary according to the datacenter
region. In this work, we use the term “price” to express the amount of money charged
by time (e.g., USD/h) and the term cost to express how much the user was charged for
using a given computing resource (e.g., VM instance) for a period of time. Unless stated
otherwise, the cost is always computed by multiplying the VM type price by the amount of
time it was on. The AWS website [34] contains the list of EC2 VM types and their prices.

To measure how adequate a VM type is to train a Deep Learning model, we measure
(or estimate) its execution time. In this way, when we speak about performance, we are
referring to the training time. Therefore, when we say that VM type x had a better
performance than VM type y, it means that VM type x takes less time to execute a given
task than VM type y.



22

2.4 Related Work

We found a few works that study Cloud Computing for Machine Learning applications.
Some of them have the Deep Learning strategy as the main subject, similar to our work.
Dube et al. [9], for instance, propose the AI Gauge, a service that estimates a Deep
Learning application runtime. The AI Gauge provides the estimated runtime in an online
and an offline way. The online estimation uses the same concepts that we used in this
work, but it focuses on predicting the application execution time instead of determining
the instance that provides the best cost-benefit correlation to the user, as we do.

The work of Kaplunovich et al. [14] proposes a Machine Learning model to predict
Machine Learning algorithms runtime on EC2 instances. At the same time, their approach
predicts the best instance for each algorithm and batch size. However, they do not include
Deep Learning problems in their model, while we specifically focused on this kind of
problem.

Venkataraman et al. [37] propose Ernest, a framework to predict the performance of
analytics applications on the cloud. They give special attention to Machine Learning
techniques and use them to create the prediction model. Their strategy is to use a small
version of the dataset to build the model and then apply it to predict the performance of
large-scale analytics applications. The resulting model achieved an error smaller than 20%.

More recently, Son et al. [35] created a method to predict matrix multiplication la-
tency in cloud computing. Since the training and inference of Machine Learning models
rely on several matrix multiplication operations, this work helps could be used to select
estimate the training latency in cloud resources. They use Machine Learning algorithms
to make the prediction as well. Our work differs from theirs mainly because we analyze
real applications and, because of that, we take into account variables like the accuracy
stabilization and epochs to converge, while they focus only on the algorithm’s kernel.

The work of Alipourfard et al. [1] proposes a system called CherryPick to build a
performance model for Big Data analytics. This system uses Bayesian Optimization to
predict the best cloud configuration for various applications regarding the number of CPUs
and instances, and even the RAM memory. Despite promising results in its prediction,
this work did not analyze GPU instances either Machine Learning applications.

Similarly, the tool proposed by Samreen et al. [29], Daleel, uses Machine Learning to
help the choice of cloud infrastructure for different applications. However, the focus of
this work is not Machine Learning problems.

The Carneiro et al. work [5] analyzes the Google Colaboratory platform, or Google
Colab, a Google Cloud environment to run Deep Learning and other GPU-based appli-
cations. The work’s goal is to answer if Google Colab is feasible to run a Deep Learning
application, and they present the service’s strengths and limitations. As Google Colab is
a free platform, its cost is not the subject of this work. Besides, Google Colaboratory is
a tool that provides a single GPU to the user, so the multi-GPU running features of a
Deep Learning application is not present in this paper.

The work of Kurkure et al. [17] presents a performance study of GPU virtualization
solutions for running Machine Learning applications in the cloud environment. They test
the virtual GPUs for running a Machine Learning application alone and combined with



23

other GPU-based applications. Their work also discusses the scaling metric in multiple
GPUs, shows a comparison between virtualized and physical GPUs, and compares virtu-
alized GPUs with CPUs as well. Unlike us, they did not focus on performance and cost
trade-off but on analyzing the performance difference between a virtualized environment
and a physical environment.

Regarding the cloud platforms for Machine learning analysis, we found the work of
Yao et al. [38]. Their paper analyzed the platforms for Machine Learning of different cloud
service providers, including AWS. Their analysis includes the correlation between perfor-
mance in terms of accuracy and the difficulty of using each platform. They concluded
that the bigger the user’s power over a platform, the more significant is the chances of
getting better accuracy. This work did not look at the runtime and cost components but
focused on the usability and accuracy factors.

Based on the question we intend to answer in this work, that is, which cloud instance is
the best for a Deep Learning problem, we compare the related work we found in Table 2.4,
taking into account the aspects we considered in our proposal. They are

1. Did the work focus on Deep Learning applications?

2. Did the work analyze the applications’ performance?

3. Did the work analyze the cost-benefit correlation?

4. Did the work provide tools to select the best instance for a given application?

5. The tool provided can determine the best instance with a low cost?

6. To make the prediction, the proposed tool only needs the user’s ML application?

Table 2.1: Comparison between our research and the most correlated works. (NA: Not
Applied, NF: Not Found)

Work Item 1 Item 2 Item 3 Item 4 Item 5 Item 6

Yao et al. [38] No No No No NA NA
Kurkure et al. [17] No Yes No No NA NA
Samreen et al. [29] No Yes No Yes NF No
Kaplunovich et al. [14] No Yes Yes Yes NF No
Son et al. [35] No Yes Yes Yes NF No
Venkataraman et al. [37] No Yes Yes Yes Yes No
Alipourfard et al. [1] No Yes Yes Yes Yes No
Dube et al. [9] Yes Yes No Yes NF No
Carneiro et al. [5] Yes Yes NA NA NA NA

Ours Yes Yes Yes Yes Yes Yes



24

Chapter 3

Cloud Computing Services for Deep
Learning

This chapter surveys the current Cloud Computing products, especially for Machine
Learning problems. We investigate the three leading Cloud Computing providers: Ama-
zon Web Services (AWS), Microsoft Azure, and Google Cloud. We started this study
in 2018, and some of the products were discontinued, but we cite them here for record
purposes. In the following sections, we describe the services of AWS, Microsoft Azure,
and Google Cloud.

3.1 Amazon WEB Services (AWS)

The Amazon Web Services (AWS) provide many services that focus on Deep Learning ap-
plications [32]. In the SaaS model, they provide applications for Image problems, such as
Image Classification and Image Segmentation, as for Natural Language Processing, such
as Translation, Transcription, and others. In the PaaS model, they offer the Amazon
SageMaker and the Amazon Machine Learning platforms; the last one is already discon-
tinued. In this work, we focused on the IaaS (Infrastructure as a Service) model, which
is provided by the Elastic Compute Cloud (EC2) product.

3.1.1 Elastic Compute Cloud (EC2)

The Elastic Compute Cloud (EC2) is an IaaS product. This means that the AWS only
provides the infrastructure and manage it. The software installation, application develop-
ment, and all other need is the user’ responsibility. In this case, the user may select among
a set of disk images, called Amazon Machine Images (AMI) [33] when instantiating a VM
for use. These AMIs contain an operating system already installed and pre-configured
and some software installed. There are several AMI options, and some of them already
contain GPU drivers and Deep Learning frameworks to support the development of Deep
Learning applications. After instantiating a VM with a given AMI, the user can access this
instance through ssh connection and use it at will. Some of these AMIs have the software
and drives already installed, but the users are responsible for all the other infrastructure
preparation.



25

AWS provides different types of virtual machines. They group these machines based
on their specialty. For example, some instances are optimized for computing while others
have more memory or have better network capabilities.

For Deep Learning applications, AWS provides instances for accelerated computing.
Most of them have GPUs, the primary hardware to run Machine Learning algorithms [4].
Moreover, they also provide an AMI with several Deep Learning frameworks, such as Ten-
sorFlow and Pytorch, the most popular Python libraries (e.g., Pandas, Keras, Numpy),
and NVIDIA drivers to use the instances’ GPU. This AMI facilitates the user’s job since
they already have several Deep Learning tools at their disposal when they start the EC2
instance.

In this work, we used six on-demand instances with GPU hardware. They can be
grouped into two families: the p2 family, whose instances use the K80 GPU type, and the
p3 family that provides the V100 GPU type. Each instance also has a different quantity
of GPUs and different prices per hour. Table 3.1 shows the main features of each analyzed
instance.

Table 3.1: Main features of AWS EC2 instances types used. Prices on February 2021.
Instance GPU type #GPUs Price (U$/hour)

p2.xlarge K80 1 0.90
p2.8xlarge K80 8 7.20
p2.16xlarge K80 16 14.40
p3.2xlarge V100 1 3.06
p3.8xlarge V100 4 12.24
p3.16xlarge V100 8 24.48

Deep Learning users commonly create a Jupyter Notebook1 to develop and train a
Deep Learning application. EC2 instances allow them to do this. To do so, the user can
manually create an ssh tunnel between his/her local computer and the EC2 instance to
open the Jupyter Notebook in their browser.

3.1.2 Amazon SageMaker

The Amazon SageMaker is a Platform as a Service (PaaS) product for Machine Learning
applications. The product is split to meet three steps of a Machine Learning process:
data preparation, training step, and deployment step. The user has the option of using
the SageMaker for one or more steps.

The data preparation step allows the user to prepare the data for the training step.
For example, the user may remove blank cells, convert the data to another format, remove
some features, etc.. In this step, the user instantiates a Jupyter notebook in a VM type
of his/her choice. The VM types available also have different prices and features, similar
to the EC2 instances. Once the user configures the Jupyter notebook, he/she can start
and access it through the browser without worrying about setting ssh tunnels.

1https://jupyter.org

https://jupyter.org


26

For the training step, the user must create a training job. First, the user needs to
choose a training algorithm. This algorithm can be one of all provided by the Amazon
SageMaker itself. They provide many algorithm options for different kinds of Machine
Learning problems, not only for Deep Learning. For Deep Learning, for example, they
offer an Image Classification algorithm based on the ResNet network [12]. Then, the
user must configure the algorithm hyperparameters. Each algorithm requires different
hyperparameters, so the user must have the minimum knowledge about the algorithm
functioning to do this task. The user also has the option of using his/her own implemen-
tation. In this case, he/she must put his/her code in a Docker container application to
run on the Amazon SageMaker instances.

The Amazon SageMaker training instances have features similar to the ones present on
EC2 VM types. However, Amazon affirms that they are optimized for Machine Learning
problems, so their names have a ml at the beginning of the word (e.g., ml.p2.xlarge is the
equivalent to the p2.xlarge VM type). The ml instances’ prices are also higher than the
EC2 instances. Table 3.2 shows the price per hour for the ML GPU instances that we use
in this work.

Table 3.2: Main features of AWS SageMaker instances types used. Prices on February
2021.

Instance GPU type #GPUs Price (U$/hour)

ml.p2.xlarge K80 1 1.26
ml.p2.8xlarge K80 8 8.64
ml.p2.16xlarge K80 16 16.6
ml.p3.2xlarge V100 1 3.8
ml.p3.8xlarge V100 4 14.7
ml.p3.16xlarge V100 8 28.15

Amazon SageMaker also supports the Inference step. This step happens after the
algorithm is trained and finalized. The resulting model is then implanted on the Cloud
to generate predictions over new data. Figure 3.1 shows the dashboard of Amazon Sage-
Maker. See the division of the tasks on its left side. Recently, AWS incorporated new
functionalities on SageMaker, such as labeling data objects through the Ground Truth
application.

3.1.3 Other Services

The AWS had another platform for Machine Learning, called Amazon Machine Learning.
This service offered similar features to Amazon SageMaker, but it is even most automated.
In this service, users do not need to have in-depth knowledge about Machine Learning.
They basically need to know their dataset to indicate the target variable. The Amazon
Machine Learning itself selected the proper algorithm for their dataset and only worked for
prediction problems. Amazon Machine Learning was discontinued, and it is not available
for new customers.

The AWS also launched the AutoScaling for EC2 instances. This service allows the



27

Figure 3.1: Dashboard of Amazon SageMaker from June 2020.

personalized scaling of EC2 instances for the prediction step. This feature avoids the
unnecessary use of EC2 instances during the prediction.

Regarding Software as a Service, the AWS has solutions for different tasks. For exam-
ple, the Amazon Rekognition is a product for Image and Video Analysis, such as image
classification, face recognition, and inappropriate content detection. For the speech task,
they have the Amazon Polly that converts text to audio speech and Amazon Transcribe,
which does the inverse task. For language tasks, we found Amazon Lex, Amazon Trans-
late, and Amazon Comprehend.

In 2019, AWS launched the Amazon Textrack, a service that extracts text and data
from digital documents. They also launched the Amazon Forecast that makes accurate
predictions through temporal data; this type of data considers variables that change with
time, such as price, promotions, and number of employees.

3.2 Microsoft Azure

Microsoft Azure lists four pillars of its products: productivity, hybrid services, intelli-
gence, and security. For the productivity aspect, Azure provides tools, languages, and
frameworks to make the user’s job easier. The hybrid services allow us to make some of
the tasks on a local computer and then migrate to the Cloud. Regarding the intelligence
aspect, Azure provides intelligent systems, tools to develop personalized models, and the
infrastructure to run the user’s application. For the security aspect, Azure ensures the
privacy of the user’s application and data.

We found Azure provides products that fit in three service models (IaaS, PaaS, and
SaaS). As IaaS, Azure provides VMs specifically for Machine Learning. The Azure Ma-
chine Learning and Azure Machine Learning Studio are the PaaS services, and they also
have SaaS services that solve vision, language, speech, knowledge, and search tasks. In
the following section, we describe these services in more detail.



28

3.2.1 VMs for Machine Learning

Microsoft Azure provides virtual machine instances of multiple types and disk images to
support Machine Learning. These disk images already contain the NVIDIA GPU drivers
and popular frameworks for Deep Learning installed. Microsoft Azure also makes available
the Microsoft tool kit, which is a differential compared with other providers.

Like AWS, Azure has different types of virtual machines and pricing models: on-
demand, spot, and reserved instances. The on-demand instances charge per hour of
usage. The spot instances are cheaper, but the provider may interrupt them at any time.
The reserved instances are exclusive for clients that pay in advance for the resource.

Table 3.3 shows an example of on-demand prices for GPU instances of NC type in
Azure. Instances of NC type have GPU hardware for accelerated computing and graphics
processing.

Table 3.3: Main features of Azure instance types with GPU. Prices on February 2021.
Instance GPU type #GPUs Price (U$/hour)

NC6 K80 1 0.90
NC12 K80 2 1.80
NC24 K80 4 3.60

3.2.2 Azure Machine Learning

Azure Machine Learning provides a full solution to run Machine Learning models. This
platform supports several Deep Learning steps, including data processing, training, ex-
perimenting, and model implantation. It allows the user to use an IDE of its preference,
train the model on the Cloud, and implant it on a container. The platform also pro-
vides support to all Python-based frameworks and libraries, such as TensorFlow2 and
scikit-learn3.

Another feature of this platform is the introduction of a workspace. In this space,
the user can manage all different models in the platform. It can also store the applica-
tions’ execution history and their logs. A user can create a workspace and add many
collaborators to the project.

3.2.3 Azure Machine Learning Studio

The Azure Machine Learning Studio is another Azure Platform as a Service product. This
platform is different from Azure Machine Learning because it is more automated than the
previous one. The users only need basic knowledge about a Machine Learning algorithm
to use the Studio, things like the hyperparameters required for that algorithm and its
evaluation metrics. The Azure Machine Learning Studio already provides implemented
algorithms ready to use, but a user can also put its algorithm on the platform.

2https://www.tensorflow.org
3https://scikit-learn.org

https://www.tensorflow.org
https://scikit-learn.org


29

The entire platform is based on a drag and drop system. That means that the user
does not code while using it. We build the application by connecting blocks; these blocks
correspond to an algorithm, and they can do data processing, select the Machine Learning
algorithm, or even analyze the resulting model. Once the platform generates the ideal
model, it converts it from a training experiment to an implementation experiment, and
it will become a web service that others can access.

When initializing a session, the user must create an empty canvas to create a new
experiment. The Studio provides some experiment templates or even dataset samples.
Figure 3.2 shows the Azure Machine Learning Studio Dashboard and an example of a
Machine Learning experiment implemented on the platform. The left bar contains the
available options for data treatment and model creation. Each rectangle on the image’s
center corresponds to a module; we call them blocks. We must connect these modules to
create a complete workflow, from data preparation until the model evaluation. When the
user selects a block, the right bar shows the required setting for that module.

Figure 3.2: Dashboard of Azure Machine Learning Studio from June 2020.

For data preparation, the platform offers the “Data Transformation” option, which
contains blocks for “Manipulation”, “Filtering”, and “Reduction”. If the user selects the
“Manipulation” option, it can do things like “Add Rows”, “Clean Missing Data”, and “Join
Data”. When the data preparation is completed, they can save the resulting dataset in
the option “Saved Datasets”.

Users may choose the Machine Learning algorithm by accessing the “Machine Learn-
ing” option, also on the left bar. There, they will find algorithms for classification, anomaly
detection, clustering, and regression problems. Once the algorithm is trained, users can
finally use the final model with the “Evaluate Model” block.



30

3.2.4 Other Services

Microsoft Azure provides products that fit the Software as a Service model for vision,
languages, knowledge, and search tasks. The computational vision service provides infor-
mation from an image, such as the image class, the image type, and its quality. It also
detects the faces and their features and describes their content.

The Video Indexer, on the other hand, extracts insights from videos. The Face API
service is focused on face recognition and can be used for security purposes, working to
detect similar faces.

3.3 Google Cloud

Google Cloud is also a provider of Cloud Computing resources. At the time of this survey,
they did not have so many resources specifically for Machine Learning as the other two
providers, AWS and Microsoft Azure. Because of this, in the past year, the Google Cloud
was the Cloud Computing provider the most presented news in their catalog for Machine
Learning.

Google developed new hardware specifically to run Deep Learning called Tensor Pro-
cessing Units (TPUs). This hardware is provided on the Google Cloud platform, and it
is a differential of this provider.

Google Cloud’s services for Deep Learning are the compute Engine instances that
fit the IaaS service model, the AI Platform, and other Machine Learning software for
generating predictions over the user data. The following sections describe these services.

3.3.1 Compute Engine

The Computing Engine is a Google Cloud IaaS product. It provides different VM types,
which may contain GPUs and TPUs. Google Cloud also charges these instances differently
based if they are on-demand, spot, or reserved instances. Table 3.4 shows the price per
hour per GPU and TPU of Google Compute Engine. For Deep Learning, they have
available virtual machine images with Deep Learning tools already installed and integrate
with different Google Cloud products, such as storage and analysis services.

Table 3.4: Main features of Google Compute Engine instances with GPU and TPU. Prices
on February 2021.

Instance Hardware #GPUs Price (U$/hour)

GPU K80 1 0.45
GPU V100 1 2.48
TPU v2 1 4.50
TPU v3 1 8.00



31

3.3.2 AI Platform

The AI Platform product is composed of AI Platform Notebooks, AI Platform Training,
and AI Platform Prediction services. These services help the user prepare the data, train
models, and use them for prediction, respectively.

On the AI Platform Notebooks, the user instantiates a JupyterLab integrated with
other Google Cloud services to prepare its dataset and develop its Machine Learning
algorithm. The notebook comes with Machine Learning frameworks and other tools.

The AI Platform Training allows users to execute TensorFlow applications using the
scikit-learn library on cloud computing resources. If the user wants to use another frame-
work, he/she can create a container with its application and run it on Google Cloud
computing resources in the same way. To run an application on AI Platform Training,
the user must allow its application to receive the data from a storage service of Google
Cloud, such as Cloud Storage or Cloud Bigtable. Once the application is ready, it must
be on Google Storage to allow the platform to access it.

We noticed that the user must have knowledge about Machine Learning and implement
its application because this platform does not provide implemented algorithms. The AI
Platform Training was designed to minimize the interference in the user’s code.

3.3.3 Other Services

The Cloud AutoML is a Google Cloud service that allows the user to train models easily.
It is a set of services of Machine Learning for not experts, in which one can train a
model using Google Cloud technology. Their segments are: AutoML Natural Language,
AutoML Translation, and AutoML Vision.

The AutoML Vision trains models to extract information from images. It can classify
the image, detect faces and objects, and obtain texts from it. The AutoML Translation
can be used to translate a text file or identify the language of a file when it is not specified.
The AutoML Natural Language extracts relevant information from a text (e.g., blogs and
papers) and can identify consumer feelings regarding a product or company.



32

Chapter 4

Selecting the Best GPU Instance
through Epoch Time

Given the challenge of choosing the proper cloud instance, it is crucial to have a method
that helps the user in the instance selection. This method should take into account
variables like the instance’s features and its price per hour, as the particularities of the
Deep Learning application, like the network’s complexity, dataset size, and the model
configuration.

This chapter describes the first methodology we proposed to support the user in this
task. This methodology helps the user identify the virtual machine type and batch size
setting that provides the shortest training time or the lowest cost. To do so, we first
analyze the behavior of Deep Learning applications on AWS’ EC2 GPU instances. Then,
we describe the proposed method its validation.

Our initial experimental results revealed that:

1. The cheapest instance does not always provide the lowest cost;

2. The instances with more GPUs do not provide the smallest runtime;

3. Choosing an inadequate instance can significantly increase the experiment’s cost;

4. Choosing the proper batch size is important for the final cost and the model accu-
racy.

Based on these observations and understanding that they will not be necessarily valid
for all Deep Learning problems and Cloud virtual machines, we concluded that a method-
ology to discover the best instance for a Deep Learning problem is needed. Our method-
ology takes into account the batch size influence on the application’s performance and
identifies the cost and performance relationship between EC2 instances and the ideal
batch size. It can also discover the best instance for a Deep Learning application without
training the model to its completion on all VM types.

This chapter is organized into five sections: Section 4.1 describes the experimental
setup. Section 4.2 details the experimental results using two Deep Learning applications
that allowed us to understand the behavior of an application on single and multi-GPU
instances and the batch size influence in the total runtime. Section 4.3, describes the



33

methodology itself and explains the premises used to formulate it. Section 4.4 shows the
methodology’s validation using two Deep Learning benchmarks and the cost of using it
to determine the best instance for these two examples. Finally, Section 4.6 provides the
conclusions, discusses the methodology’s strengths and limitations, and lists future work.

The methodology and the results presented in this chapter were published at the 12th

International Conference on Utility and Cloud Computing (UCC ’19) [21].

4.1 Experimental Setup

In the AWS’ EC2 service, we selected GPU-based VM types from p2 and p3 families to
perform the experiments. Table 3.1 lists the features and prices of these instances.

We chose two Deep Learning applications to serve as benchmarks. The first one trains
a Full Convolutional LeNet network (FCN) [19] to identify diffraction apexes on seismic
images [2]. This application is a binary classification problem. The training/validation
dataset contains 40,512/212 images. These images have 64 × 64 pixels. Figure 4.1 shows
a seismic data example. The green points show the presence of an apex, while the red ones
show a not-apex. The application uses the Momentum Stochastic Gradient Descent as
optimizer [28]; the learning rate starts with 0.1 and is gradually decreased to 0.01 during
the training. The application also uses the Dropout regularization [36].

Figure 4.1: Seismic dataset examples.

The second application trains the ResNet-50 network [12] to classify images from the
CIFAR-10 dataset [16], a multiclass classification problem. The CIFAR-10 dataset con-
tains 60,000 images. The training dataset has 50,000 of these images, while the validation
set has the 10,000 remaining images. The dataset contains 10 classes, such as airplane,
automobile, bird, and cat. These images have 28 × 28 pixels. We can see an example
of the CIFAR-10 dataset on Figure 4.2. This application also uses the Momentum SGD
as optimizer [28], and the learning rate starts at 0.1 and is gradually decreased to 0.002
during the training. Both benchmarks start the training step with random parameters.

Initially, we run these applications in the instances described in Table 3.1. We var-
ied the batch sizes in 256, 512, 1024, and 2048 images, and we execute the application
five times for the seismic dataset/FCN benchmark and three times for the CIFAR-10



34

Figure 4.2: CIFAR-10 dataset examples. Figure reproduced from Krizhevsky et al. [16].

dataset/ResNet-50 benchmark for each batch size.
The application executes until its validation accuracy stabilizes. In the seismic dataset/

FCN application, we used the Early Stopping callback1, provided by Keras framework, to
stop the training when the validation accuracy is not improved for five consecutive epochs.
In the CIFAR-10/ResNet-50 benchmark, we ran it one time to discover the stabilization
point, and we used this value as a boundary for the execution.

Once the execution was over, we measured each experiment’s final runtime by calcu-
lating the average runtime for each batch size as its standard deviation. We used this
average runtime to calculate the experiment’s average cost as well. The entire analysis is
based on these two variables.

4.2 Deep Learning on GPU Instances and the Batch
Size Influence

We noted three things when we ran the seismic data/FCN and the CIFAR-10/ResNet-50
applications. First, the scalability of the applications was very poor. Second, the p3
instance family has a better performance when compared with the p2 instance family,
which is expected. Third, the performance improved when we increased the batch size,
but only to a certain point.

Figure 4.3 shows the correlation between batch size and runtime for all VM types with
the seismic data experiments. Notice that VM types from the p3 family performed better
than VM types from the p2 family with the same number of GPUs. The p3.8xlarge VM
type achieved the lowest runtimes.

We also observed that the runtime is also affected when changing the batch size. The
performance of the p2.16xlarge and p3.16xlarge instances improved when the batch size

1https://keras.io/api/callbacks/early_stopping

https://keras.io/api/callbacks/early_stopping


35

250 500 750 1000 1250 1500 1750 2000
Batch size

0

50

100

150

200

250

300

Ru
nt

im
e 

(s
)

Runtime x Batch size

p2.xlarge
p2.8xlarge
p2.16xlarge
p3.2xlarge
p3.8xlarge
p3.16xlarge

Figure 4.3: Runtime vs Batch size for the seismic dataset for all instances.

was increased. Notice that, with a batch size of 256 images, these two instances had a poor
performance, but the runtime significantly decreased when the batch size was increased.
In other cases, the performance was improved up to a point. This effect can be explained
given the amount of work that each GPU is dealing with. As we used the synchronous
parallelization strategy, with a batch size of 256 images, for example, and an instance
with 16 GPUs, each GPU processes only 16 examples per time, which may cause GPU
underutilization.

Also, after an iteration, all GPUs must communicate with the parameter server, using
synchronous parallelization, each GPU does this communication after processing only 16
images, which leads to communication overhead. Therefore, increasing the batch size al-
lows us to make better use of the computational resources and, in multi-GPU instances,
also decreases the communication overhead between the GPUs and the parameter server.
However, in some cases, just increasing the batch size does not fix the performance prob-
lem. For example, in single-GPU instances, increasing the batch size can make the per-
formance worse, as we can see in the p2.xlarge runtime with a batch size of 1024 and 2048
images. With the p3.2xlarge, the same thing happens with 2048 images.

Figure 4.4 also shows similar results. This chart also relates the batch size with the
runtime for all instances for the CIFAR-10 dataset. See that the p3.2xlarge, p3.8xlarge,
ad p3.16xlarge achieved better performance once compared with the p2 instances family.
We observed that when we increased the batch size from 256 to 512 images, almost every
VM type had its performance improved.

Table 4.1 shows the details about the results for the seismic data experiments. Notice
how the runtime becomes smaller when we increase the batch size for the p2.16xlarge and
p3.16xlarge especially. The highlighted cells on the ’Speedup’ columns show the lowest
and the highest achieved runtime.

It is also important to notice that increasing the batch size does not always imply a



36

250 500 750 1000 1250 1500 1750 2000
Batch size

1000

2000

3000

4000

5000

6000

7000

8000
R

un
tim

e 
(s

)
p2.xlarge
p2.8xlarge
p2.16xlarge
p3.2xlarge
p3.8xlarge
p3.16xlarge

Figure 4.4: Runtime vs Batch size for the CIFAR-10 dataset for all instances.

faster execution. Sometimes, increasing the batch size can also harm the performance.
This effect can be observed on the p2.xlarge VM type when we use a batch size of 1024 and
2048 images on both experiments (Figures A.1 and 4.4). Similar results happened with
other instances as well. We hypothesize that the cause of this is the hardware limitation
and framework implementation. We intend to investigate this aspect in future work.

Additionally, we also observed that naively increasing the batch size may not only harm
the performance in terms of runtime but also harm the final accuracy. We noticed that
when we increased the batch size, the final validation accuracy became smaller, especially
in the CIFAR-10 experiment. Figure 4.5 shows the decrease in the final accuracy for both
problems. Keskar et al. [15] presented some explanations for this phenomenon, so we did
not get deeper into this subject. It is essential to understand that choosing the correct
batch size is vital to get a good performance in terms of runtime and accuracy.

Table 4.1 also reveals another aspect of our results: how poor our scalability was. The
speedup column is normalized by the fastest configuration on the p2.xlarge instance, with
a batch size of 512 images. The instance and configuration that achieved the highest
speedup based on this value were the p3.8xlarge virtual machine and a batch size of 1024
images, respectively. As we can see in the Table 4.1, this combination was 3.8 times faster
than the p2.xlarge instance best performance.

We may argue that the p3.8xlarge instance has 4 GPUs, so this speedup is good
since it almost achieved the ideal one. However, the GPU type of these two instances
is different, and the p3.8xlarge instance price (12.24 USD per hour) is 13.6 times higher
than the p2.xlarge virtual machine instance, which costs 0.90 USD per hour. Therefore,
this speedup was not close to the ideal one.



37

Table 4.1: Average runtime and cost of using each instance with a seismic image dataset.

Instance type Batch size Average time (s) Speedup Average
cost (U$)

p2.xlarge

256 153.1 ± 44.2 0.79 0.04
512 121.7 ± 26.3 1.0 0.03
1024 134.3 ± 28.4 0.91 0.03
2048 264.8 ± 49.4 0.46 0.07

p2.8xlarge

256 101.1 ± 46.6 1.20 0.20
512 77.1 ± 23.5 1.58 0.15
1024 65.1 ± 10.9 1.87 0.13
2048 69.1 ± 15.3 1.76 0.14

p2.16xlarge

256 259.8 ± 52.6 0.47 1.04
512 139.8 ± 36.6 0.87 0.56
1024 112.8 ± 23.4 1.08 0.50
2048 97.3 ± 6.5 1.25 0.39

p3.2xlarge

256 61.0 ± 44.2 2.0 0.04
512 38.1 ± 7.8 3.19 0.03
1024 36.8 ± 8.9 3.30 0.03
2048 63.2 ± 8.5 1.92 0.05

p3.8xlarge

256 59.3 ± 53.7 2.05 0.05
512 33.7 ± 6.3 3.61 0.11
1024 32.0 ± 2.3 3.8 0.11
2048 33.3 ± 3.1 3.66 0.11

p3.16xlarge

256 220.2 ± 39.9 0.55 1.50
512 96.3 ± 17.4 1.26 0.65
1024 81.2 ± 18.9 1.5 0.55
2048 80.2 ± 18.4 1.52 0.55

The fairest comparison could happen with the p3.2xlarge and the p3.8xlarge instances
because they have the same GPU type. The increase in the price of these instances is
proportional to their respective number of GPUs. But, as we can see in Table 4.1, the
performances of both instances were almost the same. Thus, we can conclude that using
the p3.8xlarge virtual machine instance is not justified for this problem.

For the CIFAR-10 dataset, we achieved similar results. Table 4.2 shows the average
time and the average cost for each batch size on each instance. We normalize the speedup
column by the smallest value on the p2.xlarge instance. In this case, this happened with
a batch of 512 images. The instance that provided the best speedup was the p3.8xlarge
instance. As we mentioned before, this instance cost 13.6 times more than the p2.xlarge
virtual machine instance and was only five times faster, so the increase in cost may not
justify its use.

Unlike the seismic data experiments, the p3.8xlarge VM type performed better than
the p3.2xlarge VM type (the cheapest one among the p3 family). On the one hand, the
p3.8xlarge VM type was only 1.46 times faster than the p3.2xlarge. On the other hand,



38

250 500 750 1000 1250 1500 1750 2000
Batch size

86

88

90

92

94

96

98
Ac

cu
ra

cy

Accuracy vs Batch Size

CIFAR-10
Seismic

Figure 4.5: Final accuracy for seismic dataset and CIFAR dataset problems with different
batch sizes.

despite costing 3.4 times more than the p2.xlarge VM type, this one performed 3.5 faster
with a batch size of 1024 images, and the two instances had almost the same cost.

Figures 4.6 and 4.7 show the correlation between the cost and runtime for all the VM
types when executing the seismic/FCN and CIFAR-10/ResNet-50 applications, respec-
tively. For the seismic/FCN application, the p3.2xlarge and p3.8xlarge VM types offer
similar performance in terms of runtime, but training with the p3.2xlarge VM type costs
less. For the CIFAR-10/ResNet-50 application, the p3.8xlarge achieved the best perfor-
mance among all instances. The p3.16xlarge VM type also offered good performance, but
none of these instances achieved performance close to the expected, and their prices per
hour make them more expensive than the p3.2xlarge VM type. So the p3.2xlarge VM
type had the best cost-benefit correlation for this problem as well.

4.3 Description of the Proposed Methodology

During our experiments with the seismic/FCN and the CIFAR-10/ResNet-50 applications,
we were able to see how expensive it may be to run a Deep Learning application on the
cloud, especially if we choose the wrong instance. Simultaneously, we can not assume
that the results we found, i.e., the best VM types, will be the same for any other Deep
Learning problem. This happens because the performance of a Deep Learning application
on different computing systems depends on many variables. We also observed that the
batch size has a significant influence on the application runtime and may harm the final
model accuracy.

With these observations in mind, we propose a methodology to identify the best in-



39

0 50 100 150 200 250 300
Runtime

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
os

t (
U

SD
)

Cost x runtime
p2.xlarge
p2.8xlarge
p2.16xlarge
p3.2xlarge
p3.8xlarge
p3.16xlarge

Figure 4.6: Cost vs runtime for the seismic dataset for all instances.

1000 2000 3000 4000 5000 6000 7000 8000
Runtime (s)

1

2

3

4

5

6

7

8

C
os

t (
U

SD
)

Cost x Runtime
p2.xlarge
p2.8xlarge
p2.16xlarge
p3.2xlarge
p3.8xlarge
p3.16xlarge

Figure 4.7: Cost vs runtime for the CIFAR-10 dataset for all instances.



40

Table 4.2: Average runtime and average cost for the CIFAR-10 dataset in all instances.The
baseline for the speedup is the fastest configuration from p2.xlarge instance.

Batch size Instance type Average time (s) Speedup Average
cost (U$)

p2.xlarge

256 4213.0 ± 7.9 0.85 1.05
512 3602.0 ± 21.3 1.0 0.90
1024 4835.0 ± 26.8 0.74 1.21
2048 8507.0 ± 15.1 0.42 2.13

p2.8xlarge

256 1509.7 ± 93.9 2.4 3.02
512 1143.3 ± 40.7 3.15 2.30
1024 1268.7 ± 53.1 2.84 2.50
2048 1773.3 ± 12.7 2.03 3.53

p2.16xlarge

256 1938.0 ± 86.2 1.86 7.78
512 1471.3 ± 62.7 2.45 5.90
1024 1445.7 ± 25.4 2.5 5.76
2048 1733.0 ± 32.0 2.1 6.91

p3.2xlarge

256 1270.0 ± 1.7 2.84 1.07
512 1257.0 ± 7.8 2.87 1.07
1024 1023.7 ± 45.5 3.5 0.86
2048 1347.0 ± 3.5 2.67 1.13

p3.8xlarge

256 907.7 ± 60.0 3.97 3.06
512 705.0 ± 13.9 5.11 2.45
1024 757.7 ± 10.0 4.75 2.57
2048 964.7 ± 2.9 3.73 3.30

p3.16xlarge

256 1226.0 ± 16.7 2.94 8.32
512 917.7 ± 33.9 3.93 6.10
1024 927.0 ± 18.3 3.9 6.36
2048 1087.7 ± 10.8 3.3 7.34

stance for a given Deep Learning problem, considering cost and runtime. This method-
ology uses the epoch time provided by a Deep Learning framework, and it takes into
account the batch size variable to help the user choose the best configuration.

The first thing we observed was the fact that the epoch time is usually stable during the
execution. Figure 4.8 shows an example of the epoch’s time stability for the experiments
made in a p2.xlarge instance with the seismic images dataset/FCN benchmark. The only
exception is the first epoch that has a higher value than further epochs.

We also observed that the number of epochs required to stabilize the model accuracy
depends on the batch size; nonetheless, given the same batch size, the application would
take roughly the same amount of epochs to stabilize the model accuracy. This means that
we can set the number of epochs necessary to stabilize the accuracy for a given batch size.
Table 4.3 shows the number of epochs (and iterations) required to stabilize the model
accuracy for each batch size and each application. This number is independent of the
GPU type and if it is running on a single or a multi-GPU machine.



41

0

5

10

15

Ti
m

e 
(s

)

Batch size: 256
exp: 1
exp: 2
exp: 3
exp: 4
exp: 5

Batch size: 512

0 10 20
Epochs

0

10

20

30

Ti
m

e 
(s

)

Batch size: 1024

0 10 20
Epochs

Batch size: 2048

Figure 4.8: Epoch time for the seismic image dataset experiments for all instances.

Table 4.3: Number of epochs and iterations required for each batch size on both applica-
tions.

Application Batch size Epochs Iterations

Seismic/FCN

256 13 2,067
512 14 880
1024 14 480
2048 16 320

CIFAR-10/ResNet-50

256 2.7 17,000
512 5.6 8,000
1024 10 4,500
2048 15 3,000

We conjectured that if we know the time of the first two epochs and the number of
epochs necessary for each batch size, we can estimate the application’s runtime. Based
on this estimate, we can discover which instance has the best cost-benefit correlation.
The remaining question is: how many epochs are required to train the model for a given
batch size properly? There is no obvious answer to that because, as we explained before,
it depends on the problem that we are dealing with.

Our proposal to answer this question is to run the application for all potential batch
sizes in the cheapest VM type and measures the number of epochs that each batch size re-
quires to stabilize the accuracy. Then, we apply this number to estimate the application’s
runtime on other VM types. We describe our methodology as follows:

1. Train the model in the cheapest VM type with all suggested batch sizes until the
validation accuracy stabilizes;

2. Compute the average number of epochs required for each batch size;



42

3. Train the model again on other instance types but execute it for only two epochs;

4. Estimate the training runtime with the respective dataset by using Equation 4.1,
where T (Ep1) is the time spent in the first epoch, Nep is the average number of
epochs to stabilize the accuracy for the given batch size, and T (Ep2) is the time
spent in the second epoch;

5. Finally, we calculate the cost of using each experiment by multiplying the estimated
execution time by the VM type price.

Total runtime = T (Ep1) + (Nep − 1)× T (Ep2). (4.1)

4.4 Methodology’s Validation

We validate the methodology presented in the previous section using the seismic/FCN
and a new application, the MNIST/Simple-CNN, which trains a simple two-layer CNN to
classify images from the MNIST dataset [8]. As the p2.xlarge is the cheapest VM type, we
chose it to run the applications until the end to find the number of epochs for each batch
size. Then we execute the application for two epochs in the other instances. Figure 4.9
shows the comparison between the real runtime and the estimated runtime for the seismic
dataset. Notice that the estimated runtime was close to the real one. Figure 4.10 shows
the estimated comparison between cost and runtime and shows that the methodology put
the p3.2xlarge as the best instance for this problem, exactly as we saw with the previous
experiments.

Figure 4.11 shows the results for the validation with the MNIST/Simple-CNN appli-
cation. Notice that the estimation can predict the best instance for this case as well.

The CIFAR-10/ResNet-50 application, differently from the seismic/FCN and the MNI
ST/Simple-CNN applications, had its algorithm implemented with the TensorFlow frame-
work, which provides a different kind of output that did not allow us to apply this method-
ology without changing its code. We intend to address this limitation in future work.

4.5 Cost of Applying the Proposed Methodology

One of the main advantages of this methodology is that it can discover the best instance
by running only two training epochs in most of the VM types. Tables 4.4 and 4.5 show
the difference in the cost of doing the experiments without the methodology and with
the methodology. See that, for the MNIST/Simple-CNN application, the methodology
achieved an economy of 62.2%, while for the seismic/FCN application, it achieved spent
86.4% less than just run the application entirely in each VM instance. This economy can
be even higher with large datasets and networks.



43

0

200
Real p2.8xlarge
Estimated p2.8xlarge

0

200
Real p2.16xlarge
Estimated p2.16xlarge

0

200

R
un

tim
e 

(s
)

Real p3.2xlarge
Estimated p3.2xlarge

0

200
Real p3.8xlarge
Estimated p3.8xlarge

250 500 750 1000 1250 1500 1750 2000
Batch size

0

200
Real p3.16xlarge
Estimated p3.16xlarge

Figure 4.9: Comparison between the real runtime and the estimated runtime for the
seismic dataset experiments.

4.6 Conclusions

Starting from the premise that GPUs are currently popular and one of the best hardware
to train a Deep Learning algorithm, we focused our analyses on GPU-based VM types.
However, based on our results, we can not assume that the VM type with more GPUs
will bring the smallest runtime for a Deep Learning application. At the same time, the
VM type that has the smallest price per hour does not always provide the smallest cost
for execution.

Our work also shows that instances with V100 GPUs have better performance than
the K80 GPUs, and this makes the single-GPU p3.2xlarge more indicated for our bench-
marks because it brought small runtime with one of the lowest costs among all instances
studied. The p3.2xlarge instance provided smaller runtime than instances with 8 GPUs,
for example. This happened because the current Deep Learning algorithms used in our
experiments exhibited poor scalability when training the models on multi-GPU environ-
ments. In our experiments, we could observe poor scalability for our three benchmarks
that used the synchronous parallelization strategy with Keras and TensorFlow frame-
works. Our results also indicated that increasing the batch size could reduce the total
runtime, but this is not always true. Hence, we conclude that it is always important to
test the batch sizes to verify which one is more indicated to the given problem.

Based on all these observations, we proposed a methodology to identify the EC2 VM
types’ cost-benefit correlation for Deep Learning problems. We build this methodology by
verifying that the epoch time is stable during the networks’ training, and the maximum
number of epochs is dependent only on the batch size. Therefore, knowing the number of



44

0 50 100 150 200 250 300
Estimated runtime

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

E
st

im
at

ed
co

st
(U

S
D

)
Estimated Cost x runtime

p2.8xlarge

p2.16xlarge

p3.2xlarge

p3.8xlarge

p3.16xlarge

Figure 4.10: Estimated runtime vs estimated cost for the seismic dataset experiments.

Real runtime (s)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
ea

l c
os

t (
U

SD
)

Real p2.1xlarge
Real p2.8xlarge
Real p2.16xlarge
Real p3.2xlarge
Real p3.8xlarge
Real p3.16xlarge

0 25 50 75 100 125 150 175 200
Estimated runtime (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
st

im
at

ed
 C

os
t (

U
SD

)

Estimated p2.8xlarge
Estimated p2.16xlarge
Estimated p3.2xlarge
Estimated p3.8xlarge
Estimated p3.16xlarge

Figure 4.11: Comparison between the real runtime and the estimated runtime for the
MNIST dataset experiments.



45

Table 4.4: Cost of performing the seismic data experiments with and without the proposed
methodology.

Instance Cost without Cost with
the methodology (U$) the methodology (U$)

p2.xlarge 0.84 0.84
p2.8xlarge 3.10 0.79
p2.16xlarge 12.20 1.41
p3.2xlarge 0.84 0.60
p3.8xlarge 2.66 0.50
p3.16xlarge 16.20 1.12

Total 35.84 5.26

Table 4.5: Cost of performing the MNIST data experiments with and without the pro-
posed methodology.

Instance Cost without Cost with
the methodology (U$) the methodology (U$)

p2.xlarge 0.51 0.51
p2.8xlarge 2.11 0.62
p2.16xlarge 7.65 2.30
p3.2xlarge 0.55 0.20
p3.8xlarge 2.00 0.80
p3.16xlarge 6.39 2.84

Total 19.21 7.27

epochs required by each batch size configuration and the time of the first two epochs on
each VM type and batch size, we can estimate the application’s runtime and cost among
instances. We understand that this methodology contributes to the scientific community
since it can help Machine Learning researchers to reduce the cost of experiments by
choosing the best VM types and the best batch sizes for each Deep Learn problem.

However, the proposed methodology has some limitations. The first one is that we still
need to run the application until its stabilization at least once for each batch size tested.
This step is needed to identify the number of epochs necessary to stabilize the problem’s
validation accuracy. This limitation could be addressed in the future by techniques that
try to predict the minimum number of epochs to stabilize the accuracy by inspecting the
accuracy achieved in the first epochs, for example.

Another branch that can be explored from this work is to find out if this methodology
can be applied for other Machine Learning problems. We understand that it is possible to
do that for all cases where we have a repetition of a step (such as an epoch), in which time
is stable during the entire execution. So it would be interesting to validate this hypothesis
in future work as well.



46

Chapter 5

Selecting the Best GPU Instance
through the Iteration Time

In the previous chapter, we discussed a methodology that relies on discovering the number
of epochs to stabilize the accuracy for each batch size. We can then determine which
instance is the fastest one and the optimum batch size configuration to achieve the shortest
runtime. However, this methodology has the limitation of needing to run the application
entirely at least one time. Then, we must run it on other virtual machine instances for two
epochs. Running the whole training process may be too expensive. Also, when dealing
with increasingly large datasets, running two the training process for epochs may also be
a costly operation.

In this chapter, we introduce another approach to determine the best virtual machine
type to train a Deep Learning model. This approach works by presuming that the users
already know the batch size they want to use, and there is no need to train the model to
its completion to find out how many epochs each batch size requires. Also, this approach
uses the iteration’s times as the core in determining the VM types that offer the best
cost-benefit correlation.

This chapter is organized in four sections: Section 5.1 describes the experimental
setup. Section 5.3 introduces the new approach and formalizes it. Section 5.4 presents
the methodology’s validation applying it to our case studies. Finally, Section 5.6 concludes
the chapter with our observations and future work proposal.

5.1 Experimental Setup

The experiments presented in this chapter rely on the seismic/FCN and the MNIST/Simpl
e-CNN applications, previously introduced in Chapter 4. We chose these applications
because it is user friendly to use and instrument them to report the iteration times using
the Keras framework. Besides, Keras is one of the most popular frameworks used by the
Deep Learning community [24]. We intend to use benchmarks implemented with other
frameworks in future work. So we did not use the CIFAR/ResNet-50 benchmark in these
experiments.

As discussed in the previous chapter, the MNIST/Simple-CNN application trains a



47

simple two-convolutional layer model to classify images from the MNIST dataset [20], a
well-known set of images of handwritten digits. Figure 5.1 shows a MNIST dataset ex-
ample. We used the Dropout regularization [36] and the Adadelta optimizer [28], starting
with a learning rate of 0.001.

Figure 5.1: MNIST dataset sample. Figure reproduced from Goodfellow et al. [10].

To test and analyze this new approach, we run the MNIST/Simple-CNN application
five times and the seismic/FCN application three times in each VM type analyzed. We
tested both applications with batches of 256, 512, 1024, and 2048 images. We no longer
employ the Early Stopping callback, as we did in the previous chapter. Instead, we set the
number of epochs for each experiment and batch size based on the previous results, since
we saw that the number of epochs necessary to stabilize the accuracy changes only based
on the problem and the batch size, and it is not dependent on the GPU type. Table 5.1
shows the number of epochs required to train each model with the selected batch sizes.

Table 5.1: Number of iterations and epochs for each batch size for seismic and MNIST
datasets. The iterations column is the number of iterations in each epoch.

Dataset Batch size Epochs Iterations

Seismic

256 13 2,067
512 14 880
1024 14 480
2048 16 320

MNIST

256 15 195
512 17 98
1024 22 49
2048 28 25

We add custom callbacks to the applications’ codes to measure the iteration and val-
idation times during the program execution. We also measured the initialization time,
which is the time spent by the program with instructions that precede the training func-
tion. With the output logs, we analyze the final runtime of the experiment and its cost.



48

Table 5.2: Comparison between the real runtime of an application with the estimated
runtime based on Equation 4.1 for the p2.xlarge instance with seismic data experiments.
Batch First Average Initialization Epochs Real Estimated Error
size epoch (s) epoch time (s) time (s) time(s) time(s) (%)

256 13.69 11.05 0.18 13 148.15 146.47 1.15
512 14.22 9.96 0.19 11 116.86 114.01 2.5
1024 18.95 10.05 0.20 12 132.73 129.7 2.34
2048 33.06 15.6 0.19 16 268.75 267.25 0.56

The final runtime is the total training time, and we calculate the cost by multiplying the
runtime by the VM type’s price per hour. We base our cost-benefit analysis on these two
variables.

5.2 Describing the Time-consuming Tasks of a Deep
Learning Problem

As discussed in Chapter 2, the training of Deep Learning models is performed in epochs.
Each epoch, in turn, is composed of iterations and the validation steps. Each iteration
step processes a batch of dataset items at a time, while the validation step happens at the
end of each epoch, and it calculates the model accuracy based on the validation dataset.

During our experiments, we noticed that the time required to perform each epoch is
usually very stable during the whole execution, except for the first epoch. Therefore, we
concluded that we can calculate the runtime of a Deep Learning application with the time
of the first two epochs as we explained in the previous chapter (see Equation 4.1). For
the current proposal, we also considered the initialization time. This variable corresponds
to the time spent by the program executing instructions before the first epoch starts. We
decided to take this variable into account because it can be significant for multi-GPU
environments. Thus, we update Equation 4.1 into Equation 5.1. In this case, T (Init)
corresponds to the initialization time.

Total runtime = T (Init) + T (Ep1) + (Nep − 1)× T (Ep2). (5.1)

Table 5.2 shows the validation of this equation in a p2.xlarge instance for the seis-
mic/FCN application. The error column shows the error percentage of the estimated
runtime, based on Equation 5.1, when compared to the real runtime. Therefore, the
lower the error value, the more accurate the estimate is. As the error values are all
smaller or equal to 2.5%, we concluded that this estimation is close to the real one.

We could also see that the iteration and the validation times are stable during the
entire execution, except for the first iteration of the first epoch and the validation of the
first epoch. Figure 5.2 shows that the iteration time from the second iteration was stable
during the execution.

Figure 5.3 shows the execution time of each validation for the seismic/FCN application
running on a p2.xlarge VM type. Notice that, except for the first validation, all validations
take the same amount of time to execute.



49

0

5

10
Ti

m
e 

(s
)

Batch size: 256
exp: 1
exp: 2
exp: 3

0 50 100 150 200 250 300
Iterations

0

5

10

Ti
m

e 
(s

)

Batch size: 512

Figure 5.2: Iteration per time in seconds for the seismic data experiments on a p2.xlarge
instance for batch sizes of 256 and 512 images.

As one epoch is composed of iterations plus the validation step, we can estimate an
epoch time with the iteration and validation times. Assuming the iterations and validation
times are stable, we can estimate an epoch time using only the execution time of the first
iteration and the validation steps. Equation 5.2 shows how the nth epoch time (T (En))
can be computed based on the number of iterations (Nit), the expected iteration time on
epoch n (T (EnIt1)) and the expected validation time on epoch n (T (V aln)).

T (En) = T (EnIt1)× (Nit) + T (V aln) (5.2)

Since only the execution time of the first iteration (T (E1It1)) and the first validation
(T (V al1)) differs from the others, if we know the initialization time (T (Init)), the execu-
tion time of the first two iterations (T (E1It1) and T (E1It2)) and the first two validations
(T (V al1) and T (V al2)), we can derive an equation that computes the total execution time
(Total runtime) as a function of the number of epochs as follows:

Total runtime =

First epoch execution time︷ ︸︸ ︷
T (E1It1) + T (E1It2)× (Nit − 1) + T (V al1)+

(Nep − 1)× T (E1It2)×Nit + T (V al2)︸ ︷︷ ︸
Execution time of other epochs

(5.3)

Therefore, to estimate the runtime of a Deep Learning application, we basically need
to know the time of the first two iterations of the first epoch and the validation time of
the first and second epochs.



50

0.05

0.10

0.15
Ti

m
e 

(s
)

Batch size: 256
exp: 1
exp: 2
exp: 3

Batch size: 512

0 5 10
Validations

0.05

0.10

0.15

Ti
m

e 
(s

)

Batch size: 1024

0 5 10
Validations

Batch size: 2048

Figure 5.3: Time per validation for the seismic data experiments on a p2.xlarge instance.

We applied Equation 5.3 to predict the runtime of the seismic/FCN application. Ta-
ble 5.3 shows how the runtime estimated with Equation 5.3 is close to real runtime for
the p2.xlarge VM type. For this calculation, the validation time of the first epoch was
0.17 seconds for batch sizes equal to 256 and 512, and 0.18 seconds for 1024 and 2048
images. The validation of the second epoch was approximately 0.2 seconds for all batch
sizes. We can see the other variables’ values in Table 5.3.

Table 5.3: Comparison between the real runtime of an application with the estimated run-
time based on Equation 5.3, that takes into account the iterations time, for the p2.xlarge
instance with seismic data experiments. The values in the table are the average execution
time of three experiments done for each batch size.

Batch Initialization First Second Real Estimated Error
size time (s) iteration (s) iteration (s) time(s) time (s) (%)

256 0.63 14.0 0.08 195.85 170.6 14.8
512 0.19 3.41 0.13 145.67 148.95 2.20
1024 0.20 5.62 0.25 148.0 144.4 2.51
2048 0.18 10.2 0.74 248.5 243.95 1.85

The error column shows the percentage of how far the estimated time is from the real
runtime. Using both the iteration and the validation times brought a higher error to our
estimate when compared with the estimates performed using the epoch time, presented
in Table 5.2, especially for a batch size for 256 images. However, since the goal is to
determine the best instance and not predict the exact application runtime, we believed
that the error margin would be enough to accomplish our goal, and we test this hypothesis



51

further in this research.
The high presented error with a batch of 256 images is caused by a high variance in

the first iteration execution time, expressed through a standard deviation of 20.5 seconds.
This variation happens because the first iteration of the first experiment in one VM
instance usually takes longer to execute. We did not make experiments to discover why
this happened, but we intend to investigate this in future work.

The validation time for all experiments performed was short, even in the first epoch,
where it has its highest value. As a consequence, we expected it to have little influence
on our estimation. In this sense, we did the same estimation that we did in Table 5.3
but discarding the validation time. Table 5.4 shows the results. When we compare the
error column of this Table with the error of Table 5.3, we see that the validation time has
little influence on the final runtime. The validation time is expected to be shorter than
the sum of the iterations time for two reasons: 1) the validation dataset is usually smaller
than the training dataset, and 2) operation performed for each sample on the validation
step requires only the forward propagation pass, while the operation performed for each
sample on the iteration step requires both the forward and the backward propagation
pass. Because of this, we decided to use Equation 5.4 to go further in our analysis.

Total runtime = T (Init) + T (It1) +

Nep∑
m=1

Nit∑
n=1

T (Itn). (5.4)

Table 5.4: Comparison between the real runtime of an application with the estimated run-
time based on Equation 5.3, that takes into account the iterations time, for the p2.xlarge
instance with seismic data experiments without using the validation time. The values in
the table are the average execution time of three experiments done for each batch size.

Batch Initialization First Second Real Estimated Error
size time (s) iteration (s) iteration (s) time(s) time (s) (%)

256 0.63 14.0 0.08 195.85 170.3 13.05
512 0.19 3.41 0.13 145.67 148.6 1.99
1024 0.20 5.62 0.25 148.0 144.0 2.70
2048 0.18 10.2 0.74 241.7 243.5 1.99

We also estimate the total runtime based on the average time of iterations 2 to 10,
i.e.,

∑10
i=2 T (E1Iti)

9
, to check whether the average would make a better prediction of the real

runtime by dissolving any distortion that may happen in one single iteration’s time. The
results are shown in Table 5.5. Except for the batch size of 256 images, the remaining
errors were close to the previous estimation.

5.3 Proposed Methodology’s Description and Formal-
ization

Once we already know that we can estimate the real runtime of a Deep Learning appli-
cation, we want to use this information to discover the performance and cost correlation



52

Table 5.5: Comparison between the real runtime of an application with the estimated
runtime based on Equation 5.3, that takes into account the average time of iterations the
2 to 10, for the p2.xlarge instance with seismic data experiments without using the vali-
dation time. The values in the table are the average execution time of three experiments
done for each batch size.

Batch Initialization First Average Real Estimated Error
size time (s) iteration (s) iteration (s) time(s) time (s) (%)

256 0.63 14.0 0.067 195.85 151.7 29.1
512 0.19 3.41 0.126 145.67 142.5 2.19
1024 0.20 5.62 0.249 148.0 143.4 3.22
2048 0.18 10.2 0.733 248.5 241.7 2.78

among all VM types. For example, we wonder if the instance that has the shortest sec-
ond iteration time will be necessarily the fastest. Furthermore, if the second iteration
of a virtual machine instance x be two times higher than the second iteration of the
fastest instance, the instance x is two times slower than the fastest virtual machine in-
stance. Therefore, we performed some experiments to verify which combination would
correspond to a better representation of the real correlation among all instances. We
tested the following options.

1. Estimate the VM type performance using the time of the first iteration. We tested
this option to verify whether, despite not representing the execution time of the re-
maining iterations, it could still produce a value that represents a good performance
correlation among instances;

2. Estimate the VM type performance using the time of the second iteration. We
wanted to check if the second iteration is enough to determine the best instance;

3. Estimate the VM type performance using the average time of iterations two to ten.
If the second iteration presents some distortion, we want to test if this average of a
few iterations could present a better representation of the real runtime.

Table 5.6 shows the comparison among the options above mentioned. Each column is
normalized by its smallest value. Hence, the fastest VM type has the value of 1.00, and
the others have values that indicate how slower they are when compared to the fastest
one. The final column serves as the baseline for the comparison since it represents the
real correlation using the application’s real runtime. This table reveals that just using the
iteration times was not accurate in determining the fastest instance for this application.
The first iteration time did not work because it presents a significant distortion compared
with the further iterations. The second and the average iteration times also did not work
because they did not consider the initialization and the first iteration time; in our problem,
these variables have a significant influence on the final runtime.

Because of this impasse, we thought that we could combine the importance of the
iteration time from the second iteration, but that could also consider the initialization
and the first iteration times in the estimate. Therefore, we decided to make the estimation
based on all these variables by simulating the application execution.



53

Table 5.6: Comparison of strategies to determine the best instance for a batch size of 256
images for the FCN/seismic data experiments.

VM type Relative performance using
First it. Second it. Average Real

p2.xlarge 1.00 5.34 6.00 4.01
p2.8xlarge 4.27 3.82 4.00 3.07
p2.16xlarge 14.95 6.87 8.00 7.57
p3.2xlarge 1.10 1.15 1.40 1.00
p3.8xlarge 7.94 1.00 1.00 2.09
p3.16xlarge 10.28 1.91 3.00 2.87

Figure 5.4 shows the simulation of the behavior of the seismic/FCN application for
different batch sizes. Note that if the application requires only one epoch to train the
model, the p2.xlarge VM type would be one of the fastest. With five epochs, the expected
correlation would still not be evident. Only after 25 epochs, the VM types performance
correlation would be more definitive. We based our methodology on the principle that
users do not know the number of epochs they need. So we chose a set of numbers of
epochs to test. For this analysis, we will simulate the execution for 5, 10, and 20 epochs
to discover which one will be related to our real runtime.

0 5 10 15 20 25 30
Epochs

0

200

400

600

800

1000

1200

1400

Si
m

ul
at

ed
 r

un
tim

e 
(s

)

p2.xlarge
p2.8xlarge
p2.16xlarge
p3.2xlarge
p3.8xlarge
p3.16xlarge

Figure 5.4: Simulated runtime for the seismic data experiments with batch size of 256
images.

We can see in Table 5.7 the performance of the three tests. Notice that the tests
with 10 and 20 epochs were the closest to the real correlation. This result makes sense
because the larger number of epochs amortize the initialization and first iteration time.



54

Appendix A shows all experimental results for the seismic/FCN application.

Table 5.7: Instances correlation of the simulated runtime for a batch size of 256 images
for the seismic/FCN experiments.

VM type Relative performance using
5 epochs 10 epochs 20 epochs Real runtime

p2.xlarge 4.07 4.34 4.49 5.27
p2.8xlarge 6.05 4.81 4.11 4.47
p2.16xlarge 9.95 8.15 7.12 7.48
p3.2xlarge 1.00 1.00 1.00 1.00
p3.8xlarge 3.97 2.56 1.75 2.06
p3.16xlarge 4.54 3.23 2.48 2.84

Table 5.8 shows the application of these strategies to discover which instance has the
smallest cost. The strategies that simulate the execution with 10 and 20 epochs had the
best correlation with the real cost.

Table 5.8: Comparison of strategies to determine the instance that has the best cost for
a batch size of 256 images for the seismic/FCN experiments.

VM type Relative cost using
5 epochs 10 epochs 20 epochs Real runtime

p2.xlarge 1.20 1.28 1.32 1.55
p2.8xlarge 14.2 11.3 9.66 10.5
p2.16xlarge 46.8 38.3 33.5 35.2
p3.2xlarge 1.00 1.00 1.00 1.00
p3.8xlarge 15.9 10.2 7.02 8.26
p3.16xlarge 36.3 25.8 19.9 22.7

Based on these observations, we can describe the proposed methodology as follows.

1. Run the application for a few iterations in all instances. Notice that the execution
time of each iteration depends on the batch size, not the size of the entire training
dataset. Hence, this step should not take cost much to perform on each VM type;

2. Take the initialization, first iteration, and second iteration times;

3. Estimate the application’s runtime for three (or more) options of total epochs (e.g.
5, 10 or 20 epochs) using Equation 5.4.

4. List the estimated runtime for all options in a table and normalize the columns by
the smallest value;

5. Do the same for the cost analysis by multiplying the estimated runtime per the
instance’s price per hour.

In the following section, we validate this methodology with the MNIST/Simple-CNN
application. We also validate it with other batch sizes for the seismic/FCN application,
which we show in Appendix A.



55

5.4 Methodology’s Validation

In this section, we validate the methodology proposed in the previous section using the
MNIST/Simple-CNN application. We tested the same assumptions and options that
we did for the seismic/FCN application. Table 5.9 shows the comparison between the
estimated runtime that takes into account the iteration time and the initialization time
with the real runtime of this application. We also investigate the importance of using
the validation time in this application. The error column shows the percentage difference
between the estimated runtime and the real runtime.

Table 5.9: Comparison between the real runtime of an application with the estimated run-
time based on Equation 5.3, that takes into account the iterations time, for the p2.16xlarge
instance with MNIST experiments. The values in the table are the average execution time
of three experiments done for each batch size.

With Batch Initialization First Second Real Estimated Error
validation size time it. it. time time (%)

Yes

256 23.2 23.3 0.03 167.17 167.17 0.14
512 6.94 21.6 0.03 99.4 95.77 3.79
1024 6.93 21.6 0.04 83.2 81.53 2.04
2048 6.92 21.7 0.05 75.6 72.94 3.65

No

256 23.2 23.3 0.03 167.17 156.34 7.07
512 6.94 21.6 0.03 99.4 89.07 11.59
1024 6.93 21.6 0.04 83.2 75.93 9.57
2048 6.92 21.7 0.05 75.6 68.1 11.0

Notice that the estimation error is smaller when using the validation time. This hap-
pens because, for this application, the validation time is more significant to the applica-
tion’s final runtime. When compared to the seismic/FCN application, the validation time
is more expressive in the MNIST/Simple-CNN application because the size of its valida-
tion dataset (10,000 samples) is 20% of the size of its training dataset (50,000 samples),
while the size of the seismic/FCN’s validation dataset (212 samples) is approximately
0.5% of its training dataset (40,512 samples). It is worth noting that one may reason
about the influence of the validation step on the application’s runtime by comparing the
validation and the training dataset sizes. For these experiments, we kept the MNIST’s
validation set with 10,000 samples to check how this amount can influence our analysis.

Regarding the instances correlation, we calculated it similarly to what we did with the
seismic data experiments by simulating executions with 5, 10, and 20 epochs. These sim-
ulations used only the initialization and first and second iteration times, and we analyzed
the influence of the validation time.

Table 5.10 shows the results of simulating an execution with 5, 10, and 20 epochs
to determine the best instance for the MNIST/Simple-CNN benchmark. All columns
are normalized by the smallest value, and the real runtime column contains the correct
performance relationship, computed using the real runtime. The upper part of the table
uses Equation 5.3 to do the estimation, while the bottom part uses the Equation 5.4
disregarding the validation time, as proposed in our methodology.



56

Table 5.10: Comparison of strategies to determine the best instance for a batch size of
256 images for the MNIST dataset.

With VM Relative performance using
validation type 5 epochs 10 epochs 20 epochs Real runtime

Yes

p2.xlarge 2.79 3.23 3.57 2.58
p2.8xlarge 3.84 3.41 3.07 2.24
p2.16xlarge 4.96 4.71 4.51 3.35
p3.2xlarge 1.00 1.00 1.00 1.00
p3.8xlarge 2.11 1.76 1.49 1.13
p3.16xlarge 2.96 2.55 2.23 1.69

No

p2.xlarge 2.80 3.26 3.62 2.58
p2.8xlarge 3.87 3.44 3.09 2.24
p2.16xlarge 4.92 4.66 4.44 3.35
p3.2xlarge 1.00 1.00 1.00 1.00
p3.8xlarge 2.14 1.79 1.50 1.13
p3.16xlarge 2.97 2.55 2.22 1.69

The simulation with 20 epochs was the only one that could determine precisely the
order of each VM type, from the fastest to the slowest one. Nonetheless, all of the
approaches were able to identify the best VM type for this application, i.e., the p3.2xlarge.
Besides, comparing the results with and without the validation time, we can see that using
the validation time did not significantly improve the prediction, even for this problem.
We found similar results for the other batch sizes as well.

Regarding the cost prediction, the strategy that simulates an execution with ten epochs
was the most accurate in determining the cheapest instance, as we can see in Table 5.11.
The simulation with 20 epochs did not work well for this task, as it pointed out the
p3.2xlarge as being the cheapest VM type, which is, in fact, 1.32 times more expensive
than the p2.xlarge VM type. On the other hand, the simulation with 20 epochs offered
the most accurate estimates for the other instances’ correlation. These results suggest
that it may be essential to carefully analyze each case and perform multiple simulations
to understand how the number of epochs may influence the final decision.

With a batch size of 2048 images, we have a result that shows the importance of
testing several number of epochs. Figure 5.5 shows that the instances correlation is more
defined after 25 epochs; before this point, there was no definition between the p3.2xlarge
and p3.8xlarge VM types. Because of this, we simulate the execution with 10, 20, and
25 epochs. Table 5.12 shows the results for the instances comparison based on these
options. Notice that only the simulation with 25 epochs could correctly determine the
fastest instance.

These results can make us think that it is worth using several epochs that guarantees
the dissolution of the distortion that may appear in the initialization and first iteration
times. However, there are cases, such as in the seismic/FCN application, that the total
number of epochs cannot cause this dissolution, so these values influence the final runtime,
and remove them may harm the final prediction.



57

Table 5.11: Comparison of strategies to determine the instance that has the smallest cost
for a batch size of 256 images for the MNIST dataset.

With VM Relative performance using
validation type 5 epochs 10 epochs 20 epochs Real runtime

Yes

p2.xlarge 1.00 1.00 1.05 1.00
p2.8xlarge 10.99 8.45 7.23 6.97
p2.16xlarge 28.4 23.4 21.2 20.8
p3.2xlarge 1.22 1.05 1.00 1.32
p3.8xlarge 10.3 7.43 5.95 5.96
p3.16xlarge 28.8 21.5 17.8 17.9

No

p2.xlarge 1.00 1.00 1.06 1.00
p2.8xlarge 11.05 8.44 7.26 6.97
p2.16xlarge 28.1 22.9 20.9 20.8
p3.2xlarge 1.21 1.04 1.00 1.32
p3.8xlarge 10.4 7.47 6.01 5.96
p3.16xlarge 28.9 21.3 17.7 17.9

Table 5.12: Comparison of strategies to determine the best instance for a batch size of
2048 images for the MNIST dataset.

With VM Relative performance using
validation type 5 epochs 10 epochs 20 epochs Real runtime

Yes

p2.xlarge 4.53 4.88 5.15 5.27
p2.8xlarge 2.48 2.10 2.09 2.04
p2.16xlarge 4.03 3.00 2.87 2.98
p3.2xlarge 1.00 1.00 1.04 1.10
p3.8xlarge 1.37 1.04 1.00 1.00
p3.16xlarge 2.32 1.57 1.45 1.46

No

p2.xlarge 4.55 4.91 5.20 5.27
p2.8xlarge 2.49 2.08 2.07 2.04
p2.16xlarge 4.08 2.99 2.86 2.98
p3.2xlarge 1.00 1.00 1.04 1.10
p3.8xlarge 1.40 1.04 1.00 1.00
p3.16xlarge 2.39 1.59 1.47 1.46

Regarding the cost prediction, Table 5.13 shows the results of using the previously
mentioned strategies. For the cost prediction, all strategies correctly revealed the cheapest
instance. However, the simulation with 25 epochs was more precise than the others.
Appendix B shows all results for the MNIST dataset experiments.

5.5 Cost of Applying the Proposed Methodology

Regarding the decrease in cost to perform the experiments with the proposed approach, we
did an estimation that considers the first and second iteration runtime. Table 5.14 shows



58

0 5 10 15 20 25 30 35
Epochs

0

20

40

60

80

100

120

140

160
Si

m
ul

at
ed

 r
un

tim
e 

(s
)

p2.xlarge
p2.8xlarge
p2.16xlarge
p3.2xlarge
p3.8xlarge
p3.16xlarge

Figure 5.5: Simulated runtime for the MNIST data experiments with batch size of 2048
images.

the results. The “no methodology” column shows the cost to identify the instances’ cost-
benefit correlation by running the applications entirely on each instance. Methodology
1 is the methodology shown in Chapter 4, while Methodology 2 was the one presented
in this chapter. This estimation does not consider the time it takes to boot the virtual
machine. See that the methodology presented in this chapter was the cheapest option to
do the experiments, as expected. It was 83.8% cheaper than the naïve option and 64%
cheaper than the previous chapter’s methodology.

Despite the evident economy that this methodology brings, we believe that the econ-
omy is even bigger for problems with large datasets. Because, in those cases, running the
application entirely can take days, and one epoch can last for hours, so running it for a
few iterations would be significantly cheaper.

5.6 Conclusions

The approach presented in this chapter can predict the performance and cost relationship
of multiple VM types to train a Deep Learning model based only on the execution time
of the first two iterations. This approach is an alternative to our previous methodology
presented in Chapter 4. While the first methodology can determine a correlation among
all VM types and also the best batch size configuration, the one presented in this chapter
assumes that the user already chose the batch size. This brings the advantage of making
the prediction in less time.

This approach accurately determined the best VM type for two applications evalu-



59

Table 5.13: Comparison of strategies to determine the instance that has smallest cost for
a batch size of 2048 images for the MNIST dataset.

With VM Relative cost using
validation type 5 epochs 10 epochs 20 epochs Real runtime

Yes

p2.xlarge 1.33 1.44 1.46 1.41
p2.8xlarge 5.84 4.93 4.73 4.36
p2.16xlarge 18.9 14.1 13.0 12.7
p3.2xlarge 1.00 1.00 1.00 1.00
p3.8xlarge 5.50 4.16 3.85 3.63
p3.16xlarge 18.6 12.54 11.2 10.6

No

p2.xlarge 1.34 1.45 1.47 1.41
p2.8xlarge 5.86 4.90 4.69 4.36
p2.16xlarge 19.2 14.1 12.9 12.7
p3.2xlarge 1.00 1.00 1.00 1.00
p3.8xlarge 5.59 4.17 3.85 3.63
p3.16xlarge 12.2 12.7 11.3 10.6

Table 5.14: Cost of performing the MNIST data experiments with and without the
methodology proposed in this chapter.

VM type Cost with Cost with Cost with
no methodology (U$) methodology 1 (U$) methodology 2 (U$)

p2.xlarge 0.51 0.51 0.0009
p2.8xlarge 2.11 0.62 0.33
p2.16xlarge 7.65 2.30 0.88
p3.2xlarge 0.55 0.20 0.002
p3.8xlarge 2.00 0.80 0.38
p3.16xlarge 6.39 2.84 1.02

Total 19.21 7.27 2.62

ated: the MNIST/Simple-CNN and the seismic/FCN application. The approach can be
described as a set of steps that the user must do to obtain the correct prediction. The user
must consider, for example, the possibilities of the number of epochs to choose. Knowing
this, the user will have no difficulty discovering the best instance for its problem.

We understand that our approach is a new way of determining the best cloud virtual
machine type to train a Deep Learning model. At the same time, using it takes little time
because it executes the application only for a few iterations.

Given time constraints, we could not execute experiments with more Deep Learning
problems. Therefore, as future work, we understand that this approach should be eval-
uated with more problems, including problems with larger datasets and different Deep
Learning models. We intend to develop an additional strategy that can help the user to
correlate the runtime and cost variables easily. To do so, we intend to create a normalized
equation where they can attribute weight to the variable more crucial to their project. It
may also be interesting to embed it on other frameworks; especially on frameworks that
are becoming popular for parallel execution, such as MXNet [6] and Horovod [30].



60

Chapter 6

Conclusions

In this work, we studied the behavior of applications that train Deep Learning models
and proposed methodologies to estimate the performance and cost relationship of using
different cloud VM types for this purpose. This way, users can better choose cloud
resources to train their Deep Learning models.

We first show that the application settings, including the training batch size, may
affect the performance and cost of different VM types; hence, they may affect the best
resource choice. We also show that choosing a poor batch size can lead to improper use
of virtual machine capabilities. It may not only slow down the application execution but
also generate a waste of money since they may choose an expensive VM type and not use
its power properly. Moreover, we showed that selecting a poor batch size may harm the
final Deep Learning model accuracy.

This work also contributes with two methodologies to discover the best VM type to
train a given Deep Learning model. The first methodology answered which GPU-based
VM type provides the best cost-benefit correlation and also which batch size is more
indicated to achieve the shortest runtime or the lowest cost. The second one presented
the cost-benefit correlation among all instances in less time than the first one but presumed
that the user already chose the application’s batch size. Both methodologies were able
to identify the cost-benefit correlation among VM instances for all benchmarks. And not
only that, both ones were cheaper to analyze than run the application until entirely on
the cloud.

We understand that the methodologies presented in this work are new ways to predict
the best instance for a Deep Learning application. To the best of our knowledge, these
methodologies are the only ones in the literature that need only the user’s application to
make the prediction.

For future work, it would be interesting to validate both methodologies for problems
that deal with large datasets, such as ImageNet [7] and other Deep Learning architectures.
To use large datasets is essential to check, for example, the influence of the initialization
and first iteration’s time on the final runtime and verify if more complex problems can
disregard such variables. It is our wish to automatize these methodologies in a way that,
given the dataset and the network architecture, the users will receive the information
about which VM instance they must choose.

To identify the difference in performance and cost using the Spot instances, and check



61

if the proposed methodologies can analyze Spot instances. We also intend to check if
these methodologies work for other Deep Learning frameworks, especially frameworks
implemented to execute a Deep Learning application on distributed environments.



62

Bibliography

[1] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman,
Minlan Yu, and Ming Zhang. Cherrypick: Adaptively unearthing the best cloud
configurations for big data analytics. In USENIX Symposium on Networked Systems
Design and Implementation, pages 469–482, 2017. 22, 23

[2] Lucas Araújo, Fabíola Oliveira, Jorge Faccipieri, Tiago Coimbra, Sandra Avila, Mar-
tin Tygel, and Edson Borin. Detecção de estruturas em dados sísmicos com deep
learning. Boletim SBGf, (104):18–21, 2018. 33

[3] Microsoft Azure. The team data science process lifecycle. https://docs.microsoft.
com/en-us/azure/machine-learning/team-data-science-process/lifecycle.
Accessed: 2018-04-15. 17

[4] Tal Ben-Nun and Torsten Hoefler. Demystifying parallel and distributed deep learn-
ing: An in-depth concurrency analysis. ACM Computing Surveys, 52(4), 2019. 19,
25

[5] Tiago Carneiro, Raul Victor Medeiros Da Nóbrega, Thiago Nepomuceno, Gui-Bin
Bian, Victor Hugo C De Albuquerque, and Pedro Pedrosa Reboucas Filho. Per-
formance analysis of google colaboratory as a tool for accelerating deep learning
applications. IEEE Access, 6:61677–61685, 2018. 22, 23

[6] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao,
Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient ma-
chine learning library for heterogeneous distributed systems. In Neural Information
Processing Systems, Workshop on Machine Learning Systems, 2016. 59

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet:
A large-scale hierarchical image database. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 248–255, 2009. 60

[8] Li Deng. The MNIST database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine, 29(6):141–142, 2012. 42

[9] Parijat Dube, Tonghoon Suk, and Chen Wang. Ai gauge: Runtime estimation for
deep learning in the cloud. In IEEE International Symposium on Computer Archi-
tecture and High Performance Computing (SBAC-PAD), pages 160–167, 2019. 22,
23

https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/lifecycle
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/lifecycle


63

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org. 8, 13, 16, 17, 47

[11] Philip Jia Guo. Software tools to facilitate research programming. PhD thesis, Stan-
ford University Stanford, CA, 2012. 17

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 770–778, 2016. 26, 33

[13] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm
for deep belief nets. Neural Computation, 18(7):1527–1554, 2006. 17

[14] Alex Kaplunovich and Yelena Yesha. Cloud big data decision support system for
machine learning on AWS: Analytics of analytics. In IEEE International Conference
on Big Data, pages 3508–3516, 2017. 22, 23

[15] Nitish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tang. On large-batch training for deep learning: Generalization gap and sharp
minima. In International Conference on Learning Representations, 2017. 36

[16] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset, 2014.
http://www.cs.toronto.edu/kriz/cifar.html. 8, 33, 34

[17] Uday Kurkure, Hari Sivaraman, and Lan Vu. Machine learning using virtualized gpus
in cloud environments. In International Conference on High Performance Computing,
pages 591–604, 2017. 22, 23

[18] Randy Lao. A beginner’s guide to the data sci-
ence pipeline. https://towardsdatascience.com/
a-beginners-guide-to-the-data-science-pipeline-a4904b2d8ad3. Accessed:
2018-04-10. 17

[19] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. In Proceedings of the IEEE, volume 86,
pages 2278–2324, 1998. 33

[20] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998. 47

[21] Eva Maia Malta, Sandra Avila, and Edson Borin. Exploring the cost-benefit of
aws ec2 gpu instances for deep learning applications. In IEEE/ACM International
Conference on Utility and Cloud Computing, pages 21–29, 2019. 33

[22] Peter Mell, Tim Grance, et al. The nist definition of cloud computing. 2011. 14, 20

[23] Tom M Mitchell et al. Machine learning. 1997. Burr Ridge, IL: McGraw Hill,
45(37):870–877, 1997. 16

http://www.deeplearningbook.org
http://www.cs.toronto.edu/kriz/cifar.html
https://towardsdatascience.com/a-beginners-guide-to-the-data-science-pipeline-a4904b2d8ad3
https://towardsdatascience.com/a-beginners-guide-to-the-data-science-pipeline-a4904b2d8ad3


64

[24] Giang Nguyen, Stefan Dlugolinsky, Martin Bobák, Viet Tran, Álvaro López García,
Ignacio Heredia, Peter Malík, and Ladislav Hluchỳ. Machine learning and deep
learning frameworks and libraries for large-scale data mining: a survey. Artificial
Intelligence Review, 52(1):77–124, 2019. 46

[25] Ahmed Oussous, Fatima-Zahra Benjelloun, Ayoub Ait Lahcen, and Samir Belfkih.
Big data technologies: A survey. Journal of King Saud University-Computer and
Information Sciences, 30(4):431–448, 2018. 13

[26] Daniel Pop. Machine learning and cloud computing: Survey of distributed and SaaS
solutions. arXiv preprint arXiv:1603.08767, 2016. 14

[27] David Reinsel, John Gantz, and John Rydning. The digitization of the world: from
edge to core. IDC White Paper, 2018. 13

[28] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016. 33, 47

[29] F. Samreen, Y. Elkhatib, M. Rowe, and G. S. Blair. Daleel: Simplifying cloud
instance selection using machine learning. In IEEE/IFIP Network Operations and
Management Symposium, pages 557–563, 2016. 22, 23

[30] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep
learning in tensorflow. arXiv preprint arXiv:1802.05799, 2018. 59

[31] Amazon Web Services. Amazon ec2 spot instances. https://aws.amazon.com/ec2/
spot/. Accessed: 2020-05-25. 21

[32] Amazon Web Services. Definição de preço sob demanda do amazon ec2. https:
//aws.amazon.com/pt/ec2/pricing/on-demand/. Accessed: 2018-03-30. 24

[33] Amazon Web Services. Imagens de máquina da amazon (amis). https://docs.aws.
amazon.com/pt_br/AWSEC2/latest/UserGuide/AMIs.html. Accessed: 2018-03-30.
24

[34] Amazon Web Services. Machine learning on aws. https://aws.amazon.com/
machine-learning/?nc2=h_l3_ai. Accessed: 2018-03-30. 21

[35] Myungjun Son and Kyungyong Lee. Distributed matrix multiplication performance
estimator for machine learning jobs in cloud computing. In IEEE International
Conference on Cloud Computing (CLOUD), pages 638–645, 2018. 22, 23

[36] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(56):1929–1958, 2014. 33, 47

[37] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht, and
Ion Stoica. Ernest: Efficient performance prediction for large-scale advanced ana-
lytics. In USENIX Symposium on Networked Systems Design and Implementation,
pages 363–378, 2016. 22, 23

https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/pt/ec2/pricing/on-demand/ 
https://aws.amazon.com/pt/ec2/pricing/on-demand/ 
https://docs.aws.amazon.com/pt_br/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/pt_br/AWSEC2/latest/UserGuide/AMIs.html
https://aws.amazon.com/machine-learning/?nc2=h_l3_ai
https://aws.amazon.com/machine-learning/?nc2=h_l3_ai


65

[38] Yuanshun Yao, Zhujun Xiao, Bolun Wang, Bimal Viswanath, Haitao Zheng, and
Ben Zhao. Complexity vs. performance: empirical analysis of machine learning as a
service. In Internet Measurement Conference, pages 384–397, 2017. 23

[39] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In European Conference on Computer Vision, pages 818–833, 2014. 8, 18



66

Appendix A

All Results for the Seismic Data/FCN
Experiments

Table A.1: Comparison of strategies to determine the best instance for a batch size of 512
images for the seismic/FCN experiments.

Analysis Instance 5 epochs 10 epochs 20 epochs Real
type time time time time

Smallest Runtime

p2.xlarge 3.83 4.37 5.24 4.69
p2.8xlarge 2.58 2.56 2.82 2.53
p2.16xlarge 4.87 4.67 5.03 5.00
p3.2xlarge 1.00 1.09 1.27 1.24
p3.8xlarge 1.15 1.00 1.00 1.00
p3.16xlarge 2.23 1.89 1.85 1.78

Smallest Cost

p2.xlarge 1.13 1.18 1.21 1.12
p2.8xlarge 6.07 5.53 5.22 4.81
p2.16xlarge 22.9 20.2 18.6 19.0
p3.2xlarge 1.00 1.00 1.00 1.00
p3.8xlarge 4.61 3.68 3.15 3.24
p3.16xlarge 17.8 13.9 11.6 11.55



67

Table A.2: Comparison of strategies to determine the best instance for a batch size of
1024 images for the seismic/FCN experiments.

Analysis Instance 5 epochs 10 epochs 20 epochs Real
type time time time time

Smallest Runtime

p2.xlarge 3.32 4.38 5.29 5.06
p2.8xlarge 1.99 2.23 2.45 2.43
p2.16xlarge 3.40 3.58 3.74 3.94
p3.2xlarge 1.01 1.29 1.53 1.46
p3.8xlarge 1.00 1.00 1.00 1.00
p3.16xlarge 1.75 1.64 1.54 1.65

Smallest Cost

p2.xlarge 1.00 1.00 1.02 1.02
p2.8xlarge 4.78 4.08 3.75 3.90
p2.16xlarge 16.36 13.1 11.5 12.7
p3.2xlarge 1.04 1.00 1.00 1.00
p3.8xlarge 4.09 3.11 2.61 2.73
p3.16xlarge 14.3 10.2 8.05 9.02

Table A.3: Comparison of strategies to determine the best instance for a batch size of
2048 images for the seismic/FCN experiments.

Analysis Instance 5 epochs 10 epochs 20 epochs Real
type time time time time

Smallest Runtime

p2.xlarge 4.76 6.06 7.13 6.93
p2.8xlarge 1.78 1.92 2.03 2.07
p2.16xlarge 3.01 3.04 3.06 2.98
p3.2xlarge 1.22 1.50 1.73 1.82
p3.8xlarge 1.00 1.00 1.00 1.00
p3.16xlarge 1.62 1.49 1.38 1.44

Smallest Cost

p2.xlarge 1.15 1.19 1.21 1.12
p2.8xlarge 3.45 3.01 2.76 2.68
p2.16xlarge 11.7 9.52 8.30 7.69
p3.2xlarge 1.00 1.00 1.00 1.00
p3.8xlarge 3.29 2.67 2.31 2.19
p3.16xlarge 10.7 7.93 6.35 6.33



68

Appendix B

All Results for the MNIST Dataset
Experiments

Table B.1: Comparison of strategies to determine the best instance for a batch size of 512
images for the MNIST dataset.

With Instance 5 epochs 10 epochs 20 epochs Real
validation type time time time time

Yes

p2.xlarge 3.83 4.20 4.43 3.94
p2.8xlarge 3.18 2.69 2.39 2.45
p2.16xlarge 5.95 4.69 3.93 4.26
p3.2xlarge 1.00 1.00 1.00 1.00
p3.8xlarge 1.85 1.42 1.17 1.21
p3.16xlarge 3.43 2.47 1.90 2.04

No

p2.xlarge 3.87 4.27 4.50 3.94
p2.8xlarge 3.22 2.70 2.39 2.45
p2.16xlarge 6.03 4.70 3.90 4.26
p3.2xlarge 1.00 1.00 1.00 1.00
p3.8xlarge 1.90 1.45 1.17 1.21
p3.16xlarge 3.53 2.51 1.90 2.04



69

Table B.2: Comparison of strategies to determine the cheapest instance for a batch size
of 512 images for the MNIST dataset.

With Instance 5 epochs 10 epochs 20 epochs Real
validation type time time time time

Yes

p2.xlarge 1.13 1.24 1.30 1.16
p2.8xlarge 7.47 6.32 5.63 5.77
p2.16xlarge 28.0 22.1 18.5 20.0
p3.2xlarge 1.00 1.00 1.00 1.00
p3.8xlarge 7.39 5.70 4.68 4.83
p3.16xlarge 27.5 19.8 15.2 16.3

No

p2.xlarge 1.14 1.26 1.32 1.16
p2.8xlarge 7.58 6.36 5.63 5.77
p2.16xlarge 28.4 22.1 18.3 20.0
p3.2xlarge 1.00 1.00 1.00 1.00
p3.8xlarge 7.58 5.78 4.70 4.83
p3.16xlarge 28.3 20.1 15.2 16.3

Table B.3: Comparison of strategies to determine the best instance for a batch size of
1024 images for the MNIST dataset.

With Instance 5 epochs 10 epochs 20 epochs Real
validation type time time time time

Yes

p2.xlarge 3.83 4.28 4.56 4.41
p2.8xlarge 3.03 2.45 2.09 2.05
p2.16xlarge 5.80 4.33 3.40 3.35
p3.2xlarge 1.00 1.00 1.00 1.00
p3.8xlarge 1.88 1.40 1.09 1.03
p3.16xlarge 3.51 2.41 1.72 1.65

No

p2.xlarge 3.85 4.31 4.60 4.41
p2.8xlarge 3.08 2.47 2.08 2.05
p2.16xlarge 5.91 4.35 3.37 3.35
p3.2xlarge 1.00 1.00 1.00 1.00
p3.8xlarge 1.94 1.42 1.09 1.03
p3.16xlarge 3.64 2.47 1.74 1.65



70

Table B.4: Comparison of strategies to determine the cheapest instance for a batch size
of 1024 images for the MNIST dataset.

With Instance 5 epochs 10 epochs 20 epochs Real
validation type time time time time

Yes

p2.xlarge 1.13 1.26 1.34 1.30
p2.8xlarge 7.13 5.77 4.91 4.83
p2.16xlarge 27.3 20.3 16.0 15.8
p3.2xlarge 1.00 1.00 1.00 1.00
p3.8xlarge 7.53 5.58 4.36 4.12
p3.16xlarge 28.1 19.3 13.8 13.2

No

p2.xlarge 1.13 1.27 1.35 1.30
p2.8xlarge 7.24 5.80 4.90 4.83
p2.16xlarge 27.8 20.5 13.9 15.8
p3.2xlarge 1.00 1.00 1.00 1.00
p3.8xlarge 7.74 5.67 4.38 4.12
p3.16xlarge 29.1 19.7 13.9 13.2


