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Resumo

Uma emergente estratégia em estudos de aumento de vorticidade devido a ad-

vecção caótica em microcanais tem sido a aplicação de ferramentas computacionais. A

fluidodinâmica computacional (CFD) tem sido amplamente utilizada devido à suas vanta-

gens em poder gerar resultados precisos, e em minimizar os custos de testes experimentais

nos quais necessitam da fabricação de microdispositivos e do consumo de reagentes. No

entanto, a aquisição da licença de um programa de CFD ainda requer elevado investi-

mento econômico. Além disso, em análises de escoamento em microescala, a melhoria na

formação de vórtices ainda é um grande empecilho para muitos pesquisadores. Isso pode

ser explicado devido ao perfil de escoamento ser predominantemente laminar, prevale-

cendo assim o transporte por difusão molecular sobre o transporte convectivo, de modo

a desfavorecer a geração dos vórtices. Essa pesquisa tem como objetivo desenvolver um

código que descreva o escoamento de fluidos ao longo de microcanais, assim como, obter

uma intensificação na vorticidade do fluido por meio de pequenas mudanças na geome-

tria de um dispositivo no formato de bocal convergente acoplado à um microcanal com

saliências convexas. O código foi programado utilizando linguagem computacional For-

tran 95 no qual o domínio espacial e as equações de conservação foram discretizados a

partir do Método dos Volumes Finitos (FVM) e do esquema híbrido, respectivamente.

Adicionalmente, essas equações foram iteradas até atingir a convergência por meio da

implementação do algoritmo SIMPLE co-localizado (Semi-Implicit Method for Pressure-

Linked Equations). Por fim, os dados coletados mostram que a largura do microcanal e a

inserção de saliências favorecem consideravelmente o aumento da vorticidade e a criação

de zonas de recirculação para maiores números de Reynolds, enquanto que a contribuição

da posição da alimentação é apenas localizada na entrada dos microdispositivos.

Palavras-chave: Microfluídica, Vorticidade, Microdispositivo com saliências,

Microdispositivo de alimentação lateral, Linguagem Fortran, Algoritmo SIMPLE.



Abstract

An increasing strategy to stimulate vorticity due to chaotic advection in mi-

crochannels has been involving the use of computational tools. Computational fluid dy-

namics (CFD) has been widely used due to its advantages in obtaining accurate results,

and minimizing the costs of experimental tests, which includes the fabrication of pro-

totypes of microdevices and the consumption of reagents. However, acquiring a CFD

software is still expensive. Moreover, in a microfluidic pattern study, the improvement

in the formation of vortices still represents a burden for many researchers. The reason is

that diffusion transport at molecular level prevails over the convective forces in laminar

regimes, contributing to a no chaotic flow performance. The purpose of this study is

to develop a code that describes the fluid flow along a microchannel; and also, to pro-

pose an improvement of the vortex formation of a fluid by varying slightly the geometry

of a converging nozzle coupled to a bumpy microchannel. The code was programmed

by employing the Fortran 95 language in which the spatial domain and the derivative

conservation equations were discretized by applying the Finite Volume Method (FVM)

and the hybrid scheme, respectively. Consequently, these equations were iterated until

convergence through the co-located SIMPLE (Semi-Implicit Method for Pressure-Linked

Equations) algorithm. Finally, the data collected show that the width of the microchannel

and the insertion of bumps considerably favor the increase in vorticity and the creation of

recirculation zones for larger numbers of Reynolds, while the contribution of the position

of the feed is only located at the entrance of the microdevices.

Keywords: Microfluidics, Vorticity, Bumpy microdevice, Microdevice with

lateral feed, Fortran language, SIMPLE algorithm.
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Chapter 1

Introduction

“Advanced technology changes the way

we work and the skills we need, but it

also boosts productivity and creates

new jobs.”

Alain Dehaze

Computational fluid dynamics (CFD) is a useful alternative for modeling and

simulating flow fields, providing accurate results regarding the flow parameters (Khan

et al., 2018). This computational approach has been applied in many fields of industry,

such as aerospace (Spalart and Venkatakrishnan, 2016), metallurgy (Ramasetti et al.,

2018), oil and gas (Raynal et al., 2015), biomedical (Bluestein, 2017), and microfluidics

(O’Connor et al., 2016); (Chaves et al., 2020).

New studies have been conducted for miniaturizing systems in order to main-

tain or even obtain improved results (this process is also known as process intensification).

The development of innovative equipment and techniques is focused on reducing: energy

consumption, equipment/chemical plant sizes, production capacity ratio, and waste gen-

eration (Stankiewicz and Moulijn, 2000). Microfluidics has emerged as a technology that

leads to these benefits.

Microfluidics is an area of science that studies fluids flow in channels with mi-

crometric dimensions in a range of tens to hundreds of micrometers (Whitesides, 2006).

This area offers many advantages, which are related to the requirement of small quan-
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tities of reagents, the separation and detection of materials with high resolution, and

the analysis performed in a short time. Those advantages have also allowed applications

of microfluidics in molecular analysis (Bruijns et al., 2016), (Farshchi and Hasanzadeh,

2021), biodefense (Tian and Finehout, 2008) (Nasseri et al., 2018), and microelectronics

(Sochol et al., 2018) (Potrich et al., 2019).

The current pandemic scenario (2020 and 2021), microfluidics has emerged

as a facilitator to assist in the diagnosis, the treatment and the prevention of SARS-

CoV-2 cases. In fact, rapid detection procedures with low reagent consumption and high

sensitivity are required. For instance, in Brazil, the LumiraDx SARS-CoV-2 antigen test

was recently approved by Agência Nacional de Vigilância Sanitária (ANVISA), in which

nasal samples are analyzed based on microfluidic immunofluorescence for a qualitative

detection of nucleocapsid proteins to diagnose a possible infection by Covid-19 (Hoch,

2021). Besides that, other applications can be: the fabrication of mechanical respirators

with velocity and air pressure control (Pearce, 2020), as well as the design of Personal

Protective Equipment (PPE) with presence of antiviral agents to prevent the spread of/the

contamination by the virus via speaking, coughing or sneezing.

Recently, numerous microdevices have been used in microfluidic platforms that

require a rapid mixing like in reactions with fast kinetics, precipitation/crystallization

processes (Capretto et al., 2011),(Pan et al., 2020), and in biological processes that depend

on the mixture degree of reagents for initiation (Nguyen and Wu, 2005),(Liu et al., 2019).

However, microchannels’ fluid flow behavior has a strong laminar profile because of the

small Reynolds number (Re), where viscous forces dominate over inertial, resulting in a

no vortex formation. Furthermore, the vorticity is directly related to mixing and stirring

performances where a spin advection is required to the flow. Nonetheless, in a microfluidic

pattern study, the stirring and mixing operations are restrained by diffusion transport,

which has a low mass throughput, and requires therefore long residence time to produce

a sufficiently homogeneous mixture.

The application of transport phenomena concepts in a programming language

allows understanding how well-known simulators, such as ANSYS and COMSOL, work.

Moreover, these simulators require an additional high cost for acquiring their license, and
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their frameworks are usually complicated to be understood by researchers, taking weeks

to learn their respective features. Thus, writing a code is an alternative route to predict

the fluid flow parameters along a microchannel; moreover, academic research can consider

the utilization of the code developed in the framework of the current investigation.

This study investigates the fluid dynamics in a microdevice of converging noz-

zle coupled to a bumpy microchannel, where vortex formation is evaluated. Also, the

investigation is conducted by means of computational fluid dynamics using an in house

code. Additionally, the width of the bumpiness microchannel, the curvature of these

bumps, the location of the feed and the Reynolds number have been studied concerning

the magnitude of vorticity and the pressure drop.

1.1 Objectives

1.1.1 General Objective

The general objective of the current research is the development of a compu-

tational fluid dynamics code to evaluate the flow field in microdevices.

1.1.2 Specific Objectives

The specific objectives of this study are as follows:

• To simulate the fluid dynamics in a rectangular duct and in a lid-driven cavity

by using the code at low Reynolds numbers and compare them qualitatively and

quantitatively with OpenFOAM as a verification step;

• To analyze the influence of Reynolds number in the fluid dynamics of the flow;

• To assess how the feed position at a converging nozzle affects angular momentum

and produces vortices;

• To evaluate the intensity of the vorticity in terms of the geometry configuration

(width and curvature of bump) of the microdevice;
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• To calculate the pressure drop for each simulation and finally propose the best

microdevice geometry.

1.2 Organization of this Dissertation

Each chapter gives a brief overview of the problem stated. Initially, a basic

introduction about CFD, microfluidics and the main goals of this study are presented

in Chapter 1. A discussion of microfluidics and the main types of equipment, and some

definitions about vorticity, the flow regimes and the methods to evaluate microfluidics

cases are incorporated in Chapter 2. In Chapter 3, there is a detailed description of the

steps in a CFD simulation, which includes: the equations that describe the studied system,

the discretization process by the Finite Volume Method, the hybrid scheme applied, the

co-located SIMPLE algorithm and its boundary conditions, and finally the post-processing

step. Following this, Chapter 4 gives the structure of the code about what each files are

meant to do. Also, the description of the geometry and operating conditions of each case

study is presented in this chapter. Finally, Chapter 5 shows the results of all case studies.

It includes the verification step by analyzing the rectangular duct and the lid-driven

cavity cases, and the fluid dynamics study of a new microdevice with convex bumps.

The enhancement of vorticity and pressure drop is mainly evaluated along this chapter

regarding the geometry and the Reynolds number. Lastly, a final conclusion about a

better microdevice, which provides a high magnitude of vorticity with recirculation along

with, and a few final considerations are given in Chapter 6.
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Chapter 2

Fundamental Concepts

“Modern technology has become a total

phenomenon for civilization, the

defining force of a new social order in

which efficiency is no longer an

option but a necessity imposed on all

human activity.”

Jacques Ellul

2.1 Introduction to Microfluidics

Many authors are quite cautious about the definition of microfluidics, mainly

the range of the hydraulic diameter; so some prefer specifying it while others are more

general. According to Colin (2010), microfluidics is related to flows inside microdevices

with hydraulic diameter in the order of 1 µm; while Nouri et al. (2017) prefer defining mi-

crofluidics as a technology of designing and manufacturing of systems with small volume

of fluid flowing along small channels. Nonetheless, in this work, microfluidics is inter-

preted as flows inside devices with width in the order of tens to hundreds micrometers

(Whitesides, 2006), just like it was introduced in Chapter 1.

The selection of those definitions aforementioned depends on the methodology

and the boundary conditions adapted to the case study. The majority of commercial
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simulators apply the continuum assumption of fluid flow, and consequently, all constraints

must be assessed in this case. Following this idea, the microdevice dimensions should be

projected in a range of tens to hundreds of micrometers to prevent significant effects from

collisions of individual molecules in a flow.

Santana et al. (2015) studied a transesterification of vegetable oils with alcohols

for biodiesel synthesis in three different T-shaped micromixers, whose hydraulic diameter

was less than one millimeter. They evaluated this reaction by applying experimental and

numerical methods in which are based on the continuum assumption. Their results show

that both methodologies present similar fluid flow behaviors, even for the vegetable oil

whose structure is composed of long hydrocarbons (around twenty carbon atoms).

Sen et al. (2020) investigated a continuous synthesis of tributyl phosphate in

a microreactor analyzing two different micromixers: the T-junction and the split-and-

recombine configurations. The diameter of these micromixers is in the range of hundreds

of micrometers. Further, they studied this system experimentally and numerically where

the momentum, continuity and the mass transfer equations were applied. They concluded

that all simulations for both types of geometry have supported qualitatively the results

collected from the experimental analysis.

Nevertheless, low stirring/mixing performance is still an issue for many pro-

cesses in this field. Firstly, the small dimension affects the dimensionless Reynolds number

of these channels; and additionally, the viscous forces prevail over the inertial forces re-

sulting in a regime predominantly laminar. Secondly, the fluid flows in parallel layers

along the microdevice, providing a flux of low interaction between its streams without

producing any eddies. This effect might ease the prediction of the fluid dynamics parame-

ters; however, the lack of stirring reduces not only the vortex formation but also the heat

and mass transfers (Colin, 2010).

In microchannels, the ratio between surface area and volume is quite larger

when compared to macrochannels; however, mass transfer by diffusion is still weak through-

out the device. A precipitate solution is to propose longer microchannels, resulting in a

more contact area between the layers of fluid, and thus providing a higher interaction.

However, stretching channels is usually not the best solution due to its longer residence
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time and its larger dimensions.

New alternatives have been proposed to project microdevices to intend to econ-

omize time, space, and money. Likewise, depending on the case, they should contribute

to enhancing the selectivity and the yield of a product in a reaction, or even to control

other parameters, such as temperature and pressure, more efficiently than in macroscale

processes.

Singh et al. (2020) worked on the analysis of propionic acid extraction followed

by flash distillation in serpentine microchannels, and compared the total annual cost of

this case with a few conventional cases. They concluded that the extraction efficiency

(99.6% and 98.4%) and the recovery in the distillation (73% and 98%) of toluene and

n-hexane, respectively, for both operations, present high percentages. In addition, they

asserted that the total annual cost may reduce in terms of energy and capital costs with

the implementation of microchannels.

Current climate control systems have been projected based on heat pumps

with air source using finned microchannels in order to heat the interior of the cabin of

electric vehicles. This type of device uses the heat generated by the car to prevent ice

accumulation on the surfaces of the heat exchangers on cold days to save more energy.

Hong et al. (2020) evaluated a new micro heat exchanger with plain-louvered fins to

enhance the frosting and defrosting conditions of the heat pumps of air source in electric

vehicles based on the higher heat transfer rate produced. Their results show that this

micro heat exchanger presents better performance regarding frosting period and peak

heating capacity of the heat pump in 102.7% and 14.0% respectively when compared to

the corrugated-louvered fin heat exchanger.

Wang et al. (2019) designed a microreactor coupled to a staggered herringbone

grooves mixer in order to intensify the Research Octane Number (RON) selectivity from

the isobutane/1-butene alkylation process. They compared this reactor with the tradi-

tional one (stirring reactor), and they noticed that the microreactor has a better control

of temperature (6 ◦C) while the macro-reactor has a range from 6 to 13 ◦C. Another point

is, the residence time is also ten times superior (45s x 450s); and additionally, the RON

yield and the 1-butene conversion for the microreactor are respectively 98.8% and 95.8%,
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while for the stirring reactor, they are 96.7% and 89.1%, respectively.

Santana et al. (2016) studied a transesterification of vegetable oils for biodiesel

synthesis in a conventional batch reactor and in a microreactor. They concluded that

the conventional one produces biodiesel with 94.1% of yield in 180 minutes, while the

microreactors has 95.8% of biodiesel yield in a quite shorter time of only one minute.

In this way, several industrial processes demand a better interaction between

fluids as, for example, in chemical reactions, extractions and also anti-solvent crystalliza-

tions. However, as the molecular diffusion usually prevails in laminar flows in microchan-

nels, its residence time to reach a high percentage of yield tends to be longer, requiring

a more extensive microchannel. Thus, micromixers have been extensively investigated in

order to intensify this interaction between the fluid streams. There are several types of

them, and they will be presented in the next section.

2.1.1 Micromixers

In microflows, two main types of micromixers are recommended to increase the

interaction of fluids in a flow: the active and the passive micromixers. Active micromix-

ers require an external energy source to induce a randomly flow of fluid, for example,

temperature, periodic pressure, and electromagnetic fields (Khaydarov et al., 2018). Al-

though active micromixers regularly present a fast response with high stirring and mixing

performance generating vortices, they usually are expensive and demand space to em-

bed additional elements, represented by the external source or by the addition of a new

separation process.

Nouri et al. (2017) studied experimentally and numerically a coupling of a

magnetic field (neodymium magnet) on a micromixer. They used a Y-shaped micromixer

with two fluids: water and ferrofluid (water with nanoparticles of iron oxide - Fe3O4). This

system has resulted in an improvement of the mixing index from 8% (without magnetic

field) to 90% with a fast response when the magnetization is applied; and besides, there

is no source of electricity.

Another active micromixer application was analyzed by Ahmed et al. (2009).
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They evaluated a coupling of an acoustic transducer on a Y-shaped micromixer to produce

ultrasonic waves. These waves induce a pressure variation in the flow, resulting in a

enhance of the mixing performance. Likewise, there is an air bubble trapped in a horse-

shoe inside the microchannel, whose objective is to vibrate at its resonance frequency

generating perturbation around the membrane. They concluded that their micromixer

can provide an excellent homogenized mixing spending seven milliseconds.

On the other hand, passive micromixers depend just the geometric structure,

and they can still be divided into two types: laminar (based on increasing the diffusion

transport at a molecular level) and convective micromixers (based on proposing a chaotic

advection in the flow) (Khaydarov et al., 2018).

The stirring performance in laminar micromixers is limited to the interfacial

area between the parallel layers of fluid. Additionally, there are two alternatives to be

applied in these microdevices: to stretch their lengths or to decrease their hydraulic di-

ameters (it raises the ratio between interfacial area and volume). These micromixers

are commonly represented by T-shaped and Y-shaped mixers (Orsi et al., 2013),(Cortes-

Quiroz et al., 2014). Moreover, they are often used as reference to the design of active

micromixers. Nouri et al. (2017) and Ahmed et al. (2009) compared the mixing per-

formance with and without magnetization and acoustic waves, respectively; and they

concluded that this type of mixer does not contribute to a mixing process at high Re.

Thus, straight laminar micromixers are not usually applied to a reaction system due to

their slow response and low performance of mixing and stirring.

A convective micromixer produces, in general, vortices that increase the mass

transfer during the advection process, enhancing the inertial forces by increasing the

Reynolds number. The mixing process in this type of micromixer is influenced by a chaotic

advection where fluid streamlines change their directions due to the device’s geometry

configuration (or due to an external energy source), creating transversal mass transport

along with the flow. Some researchers have analyzed many convective micromixers with:

curved channels (Alam and Kim, 2012), (Vatankhah and Shamloo, 2018), (Mashaei et al.,

2020), a T-shaped modified (Cortes-Quiroz et al., 2014), waviness channels (Chen et al.,

2016), (Mondal et al., 2019), a stacking E-shaped (Chen and Shen, 2017), obstacles as
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ribs, chambers and staggered herringbone grooves (Borgohain et al., 2018), (Wang et al.,

2019), and so forth.

A spiral micromixer was proposed by Vatankhah and Shamloo (2018). They

evaluated many parameters in the geometry configuration, such as Reynolds number, dif-

fusivity coefficient, initial radius length, rectangular cross sections and mixing angle in

the inlet (they applied a Y-shaped in the entrance of the mixer). Their results of mixing

performance inside this mixer are around 80% of mixing, and many simulations suggested

to stretch the length of this microchannel until over ten millimeters. Besides, the pressure

drop is only 12% superior when compared to the straight channel at Re = 100. Addition-

ally, Mashaei et al. (2020) also studied how Re, the mixing index, the mixing performance

and the pressure drop are influenced in two types of curved T-shaped micromixers with

four successive quadrant units in a planar and in a non-planar arrangements. They con-

cluded that the modified curved (non-planar) micromixer generates asymmetrical stream-

lines along the flow, and also, the narrowing of its channel contributes to a better mixing

performance. Likewise, this mixer presents an increase of about 100% and 23% of mixing

index and pressure drop, respectively, when compared to the simple curved mixer (the

planar one). Lastly, at Re = 80, the mixing index and the pressure drop are about 100%

and 2.2 kPa, respectively, for the modified device; meanwhile, when Re ≃ 1, the mixing

index is also approximately 100%.

Cortes-Quiroz et al. (2014) compared the typical T-shaped with a 3-D T-

shaped mixer, where the two inlets are set at different z-coordinates. Their results show

a fast response of mixing in the 3-D mixer than in the typical T-shaped mixer, while

the shear stress is similar in both cases. The best mixing index was around 70% at

the outlet of the channel. Moreover, Ortega-Casanova and Lai (2018) analyzed how the

mixing efficiency is affected by multiple inlets (from 2 to 7) in a basic T-shaped with

a rectangular chamber downstream with two angled bars at low Re and high Schmidt

numbers (Sc). They noticed that when Re = 0.29 and Sc = 10.103, the mixing index

enhances from 14% to 80% when the number of inlets varies from 2 (traditional T-shaped)

to 7 (triple cross-shaped), and after comparing with the other simulations, they concluded

that this one - with seven inlets - has the optimal inlet configuration in terms of the mixing

efficiency as a micromixer.
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Chen et al. (2020) investigated the fluid dynamic along a micromixer based

on the fractal-like tree principle at the entrance region using both numerical simulations

and experimental analysis. All proposed geometries have microchannels with diameters

ranging from 0.25 mm to 1.00 mm, and also, momentum, continuity and mass transfer

equations were performed in order to maximize the mixing performance concerning the

geometry configuration and operating conditions. They concluded that the increase of

the level of the fractal dimension, the angle between the branches, and Reynolds number

(when Re > 10) contributes to a better mixing efficiency from the numerical and experi-

mental analyzes (≃ 96%). Besides, the pressure drop at Re = 100 present a range from

17.5 to 25.0 kPa in all geometries.

Two different wavy micromixers - called raccoon and serpentine - were ana-

lyzed by Mondal et al. (2019). The authors evaluated how the mixing and the pressure

drop change for different values of Reynolds numbers (Re), Schmidt number (Sc), and

amplitude and wavelength of the waviness in the micromixers. They determined that the

serpentine mixer offers a minimum mixing cost in the following conditions: Re = 100,

Sc = 25, amplitude of waviness equal to 0.45, and wavelength of the waviness equal to 12

(mixing index and pressure drop are approximately 60% and 1.5 kPa, respectively); and

consequently, this configuration represents the best design of micromixer.

Chen et al. (2016) studied experimentally and numerically six types of serpen-

tine micromixers in a range of Re from 0.1 to 100. They asserted that the three best

arrangements in terms of mixing performance are the multi-wave, the zig-zag and the

square-wave configurations where this last one has the highest mixing efficiency. They

noticed that its sharper turns with long straight paths favor the increase of mixing along

the path (95% at Re=100). However, this micromixer also has the highest pressure drop

(about 6 kPa at Re=50) than the other two (approximately 3.5 kPa at Re=50) due to its

geometry.

Another increasing strategy to provoke this chaotic advection is to couple some

obstacles along the flow. Borgohain et al. (2018) investigated a T-shaped micromixer with

curved ribs and compared it with another of straight ones. In addition, they conducted

some studies about the inlet Re, and the number, the size, and the angle of these ribs.
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They affirmed that the micromixer with curved bars generates a better mixing index

(61.3% x 47.6%) with lower pressure drop (193.1 Pa x 276.3 Pa) when compared to the

device with straight bars at low Re. For Re = 60, the maximum mixing index is 85%

with a pressure drop equal to about 20 kPa. Besides, the mixing performance is directly

influenced by the increase of the number of ribs; meanwhile, the height, and the angle

have a no trending performance of their values.

Convective micromixers have been studied due to their simplicity, low-priced,

and small portability. Researchers have been proposing geometry configurations that pro-

duce rotations in a fluid resulting in a high stirring and mixing performances, and hence,

provoking a minimum cost of time, money, and space. All these published works verified

an improvement in the mixing performance at high Re (greater than approximately 100)

due to the increase of the inertial forces. On the other hand, even when there are inser-

tion of obstacles or asymmetrical arrangements, flows with a low Re do not contribute to

the formation of recirculation zones or secondary streams. Thereby, this type of mixer is

investigated in this work in order to intensify the rotational motion in a range of Re less

than 100.

2.2 Vorticity Field

As presented previously, chaotic advection can be created through obstacles,

junctions, curved channels and sharp bends along the flow. However, another factor can

also influence the interaction between fluid streams to enhance the mixing/stirring; and,

it is the vorticity, which measures the rate of rotation of a solid body about its own center

of mass while it is moving through a flow. This parameter can be calculated through the

curl of the velocity field, which in 2D cases, comes down to just one component normal

to the xy-plane in the z-direction.

In this way, 2D figures are not always able to transmit the regions with strong

vorticity since their values are expressed in the z-direction, therefore, there is a necessity

to visualize both the vorticity field in the z-component and the streamlines along the

xy-plane.
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2.3 Solution Methods

A study of the fluid flow parameters in a micromixer can be performed and

determined experimentally, numerically, and analytically. However, there are advantages

and disadvantages to the employment of these solution methods. The following subsec-

tions presents the description and the main characteristics of these methods.

2.3.1 Experimental Tests

Experimental studies have had a significant impact on the science because

thereafter, theories could be validated, resulting in discoveries, and consequently, in the

postulation of equations (such as the conservation equations). Basically, Patankar (1980)

summaries this effect: ”experiment leads and computation follows”. However, experimental

tests continue being widely applied nowadays, even being the oldest solution method. In

microfluidics, they can still represent the real behavior of fluid flow parameters inside a

microdevice when under the right conditions. Nevertheless, experiments might not be

representative in complex cases.

Many parameters may affect the results from experimental tests producing

errors, for example, human performance, non-calibrated equipment, unstable boundary

conditions, so on. Moreover, this type of method is also limited to the financial investment,

the scale, and the complexity of the case study. For instance, drug test for humans is a

complicated case related to the correct environment, because the main experimental tools

to predict how a drug behaves in a human body are by animal tests and cell in dishes.

(Hamilton, 2013).

Most researchers have worked in case studies of simple geometry configura-

tions of micromixers, intending to predict the fluid dynamics parameters experimentally

and numerically. Besides, applying the same boundary conditions, it is expected to ob-

tain accurate results from both methodologies like Santana (2016), Nouri et al. (2017),

Khaydarov et al. (2018) and Shaha et al. (2019) could achieve on their studies.
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2.3.2 Analytical Solutions

In a fluid dynamics pattern study, the governing conservation equations that

describe a flow are limited to the continuum assumption. These equations already include

non-linear and differential terms (such as convective term in momentum equations), and

a time-step term, affecting the complexity of the analytical solution. Consequently, most

problems do not have a direct analytical solution, and thus, there is a necessity to set a

few assumptions until to achieve the final equation. For example, Jaiswal et al. (2011)

and Mojtabi and Deville (2015) solved dispersion and flow problems, respectively, in

macroscale; however, despite all assumptions set by them, their analytical solutions should

just be applied in fluid moving in one-dimensional with fully developed flow.

In a laminar regime, many researchers take as a starting point the Stokes flow

(Re << 1), whose fluid creeps along the microchannel. This type of flow treats inertial

forces as smaller than viscous forces, and thus, this non-linear term may be despised in

the momentum equations. The following equation refers to the Stokes flow in x-direction,

neglecting the transient term, and the advective and the volumetric forces (gravity or

external electric field, for example).

1

ρ

dP

dx
= ν

(

∂2u

∂y2
+
∂2u

∂z2

)

, (2.1)

Where ρ is the density of the fluid, ν is the kinematic viscosity of the fluid, u

is the velocity component flowing in the x-direction, and P is the hydrodynamic pressure.

Nguyen (2008) studied the velocity profile in four different cross-sections (Figure 2.3),

where the fluid flows at low Re and the flow is governed by the pressure drop under the

assumptions of incompressible, viscid, steady, and parallel flow. The boundary conditions

are no-slip at the wall and symmetry at the center. Equations (2.2)-(2.5) represent the

analytical solution for those four cases:

(a) Circle

u =
1

8µ

(

−
dP

dx

)

r2, (2.2)
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Figure 2.3: Cross-sections of channels: (a) circle; (b) ellipse; (c) concentric annulus; (d)
rectangle

Where µ is the dynamic viscosity of the fluid, and u is the mean velocity in

the channel.

(b) Ellipse

u =
1

4µ

(

−
dP

dx

)

a2b2

a2 + b2
, (2.3)

Where a and b are the semi-major axis and the semi-minor axis of the ellipse,

respectively.

(c) Concentric annulus

u =
1

8µ

(

−
dP

dx

)[

a2 + b2 −
a2 − b2

ln(a/b)

]

, (2.4)

Where a and b are the outer and inner radius respectively of the concentric

annulus.

(d) Rectangle

u =
a2

3µ

(

−
dP

dx

)

{

1−
192a

π5b

∞
∑

n=1

tanh[(2n− 1)πb/2a]

(2n− 1)5

}

, (2.5)
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Where a and b are the lengths in x-direction and y-direction respectively of

the rectangle.

Furthermore, a dimensionless concentration distribution c∗ (where c∗ = c/c0

being solvent c = 0, and solute c = c0) can be derived in laminar micromixers when,

for example, a fluid feeds a T-shaped mixer, and flows with many parallel streamlines as

laminae along a flat microchannel. Therefore, assuming a uniform velocity u with constant

fluid viscosity, according to Nguyen and Wu (2005), the dimensionless concentration c∗ is

given as:

c∗(x∗, y∗) = r +
2

π

∞
∑

N=1

sin(Nπr)

N
cos(Nπy∗).e

− 2N
2
π
2

Pe+

√
Pe2+4N2π2

x∗

, (2.6)

Where x∗ = x/D, and y∗ = y/D are the dimensionless positions, D is the

diameter of the channel, Pe = uD/DA,B is the Peclet number, and DA,B is the diffusion

coefficient, and N is the number of inlets. This equation describes the flow in laminar

micromixers with no chaotic advection. Therefore, it can be applied to fluid dynamics in-

vestigations in micro-scale along with T-shaped mixers as studies of scaling laws, butterfly

effect, so forth (Nguyen and Wu, 2005).

As mentioned in section 2.1.1 (Micromixers), convective micromixers are re-

lated to stimulating secondary flows inside the device, and thereby increasing the advective

forces. In this case, including the convective term in the conservation equations becomes

essential. Likewise, it is still a severe study to predict the velocity profile analytically in

these mixers where the fluid flows in all directions. In addition, these solutions depend

on the cross-section configuration, the boundary conditions, and mainly the assumptions,

turning this solution method not appropriate to complex case studies.

2.3.3 Numerical Solutions

The conservation equations, which describe the fluid behavior in channels, do

not present an analytical solution in their full form. In contrast to analytical solutions,

numerical solutions are proposed to solve these equations with all their physical terms
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with assistance of computers, representing, therefore, the fluid dynamics behavior inside

a device based on the theoretical model.

Comparing with experimental investigations, numerical solutions usually re-

quire low costs to design and to execute a case study; need a short time to perform many

analyses; and simulate realistic and ideal scenarios to obtain complete information about

all relevant parameters.

In this context, the governing differential equations are discretized by using

a numerical scheme approach, while the overall control volume is divided into cells with

smaller dimensions. These equations are employed in all small cells from the domain,

and they are limited by a few parameters as consistency, stability, and convergence of

the numerical scheme chosen (Versteeg and Malalasekera, 2007). Thus, there is the ap-

plication of a resolution method (a solver) for the systems of equations where the fluid

flow parameters are linked each other. Thereafter, the final results can be analyzed by

post-processing them in a visualization software. All these steps demand to be defined

and developed in a CFD simulation (Hirsch, 2007). The description of each step is better

sustained in Chapter 3.

Many numerical schemes can be applied in CFD simulations, such as central

differencing, upwind, hybrid, QUICK (Quadratic Upstream Interpolation For Convective

Kinetics), TVD (Total Variation Diminishing), so on (Versteeg and Malalasekera, 2007).

The selection of the best numerical approach is directly related to the model applied

and its boundary conditions. Moreover, there are many pressure-velocity coupling algo-

rithms (iterative methods) that can be employed in steady-state for incompressible fluid;

for example, SIMPLE, SIMPLE-Consistent (SIMPLEC), SIMPLE-Revised (SIMPLER),

CTS SIMPLE (Consistent Time Step SIMPLE) and FIMOSE (Fully Implicit Method For

Operator-Split Equation) (Chao and Ho, 1989); on the other hand, for transient flows,

the use of PISO (Pressure-Implicit Split Operator) and PIMPLE (merged PISO-SIMPLE)

algorithms are usually applied to the simulation.

In microfluidics, a usual numerical problem is related to the pressure drop.

These methods aforementioned based on the pressure-velocity coupling might get lost

in numerical precision error when the outlet pressure is in order of 105 Pa. The fact is
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that cells with micrometers of dimension result in small pressure gradient (less than 1

mPa); and in addition, these values might be registered less than the ninth decimal place.

However, to prevent that precision error, the gauge pressure should be inserted into the

momentum equations (Mazumder, 2018). Chapter 3 will demonstrate how this parameter

is applied to the numerical solution.

Comparing these three analysis methods, numerical simulation by using CFD

is a promising alternative to acquiring relevant information about the flow pattern in mi-

crochannels, and thus, the possibility to optimize the operating conditions of microfluidic

devices (Mott et al., 2009).
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Chapter 3

Numerical Modeling

“What distinguishes a mathematical

model from, say, a poem, a song, a

portrait or any other kind of "model,"

is that the mathematical model is an

image or picture of reality painted

with logical symbols instead of with

words, sounds or watercolors.”

John L. Casti

Chapter 2 showed theoretically how the concept of numerical solutions is re-

lated to CFD cases. Now, in this chapter, it will be described, in detail, all steps that

comprise the study of numerical fluid dynamics. According to Hirsch (2007), a CFD

simulation presents four basic components:

1. Mathematical model selection;

2. Discretization process;

3. Resolution step;

4. Post-processing of results.

The code was written following these steps, whose descriptions are present in

the next sections.
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3.1 Equation Systems for Fluid Flows

The first step is to apply the equations of transport phenomena that describe

the flow along the channel. The main conservation equations are:

1. Conservation of mass: continuity equation;

2. Conservation of momentum: Navier-Stokes equation;

3. Conservation of energy.

All these equations are related to three essential parameters of flows: pressure,

velocity, and temperature fields. In micromixers, fluids carry one or more species of

substances; moreover, these molecules might react resulting in products, and in this case,

other equations for the conservation of each species would be required to the equation

system (Nguyen, 2008).

In this work, only one fluid flows along the convective microdevice; thus, there

is no mixing or chemical reaction. Besides, the thermal effects are neglected, and also,

the results are based on a two-dimensional case. Therefore, the governing conservation

equations at steady state applied to the code are: continuity equation and momentum

equations in x-direction and y-direction. Additionally, two more equations were included:

vorticity and stream-function equations in order to measure the rotation and the recircu-

lation of the fluid elements as they flow.

3.1.1 Continuity Equation

The mass conservation is denoted by the variation of mass flux with a given

volume (Figure 3.1) due to the quantity of material that is crossing the surface since mass

can not be created or destroyed (Hirsch, 2007).

The mass amount m in a single cell from this volume can be represented by

the equation:

m = ρV, (3.1)
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Where ρ is the fluid density; and V is the cell volume. The total mass M in

the whole grid can be calculated by integrating the equation (3.1) into the entire control

volume:

Figure 3.1: Representation of a 3-D control volume.

M =

∫

ρdV, (3.2)

The following equation represents how the variation per unit time of the total

mass in Figure 3.1 is related to the mass flux that crosses the borders of each cell. The

normal vector on the face of the cells points outward, and thus, it is necessary to introduce

the minus sign in the mass flux to contribute to a positive contribution at the inlet and

a negative contribution at the outlet.

dM

dt
=

∫

∂

∂t
ρdV = −

∫

ρ~vd ~A, (3.3)

∫

∂

∂t
ρdV +

∫

ρ~vd ~A = 0, (3.4)

Equation (3.4) represents the integral form of the continuity equation. How-

ever, another way to present the continuity equation is by its derivative form. Therefore,

applying the Gauss divergence theorem to the flow term:

∫

∂

∂t
ρdV +

∫

~∇ · (ρ~v)dV = 0, (3.5)

It can be written by coupling both volume integrals dV into one integral:
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∫
[

∂ρ

∂t
+ ~∇ · (ρ~v)

]

dV = 0, (3.6)

Equation (3.6) applies to any volume, in such a way that for the expression to

be valid, the integrating needs to be equal to zero, which leads to:

∂ρ

∂t
+ ~∇ · (ρ~v) = 0, (3.7)

Equation (3.7) represents the continuity equation in its differential form.

In this work, a fluid (liquid phase) flows in steady-state along a microchan-

nel. Likewise, the pressure gradient and the temperature do not affect the fluid density,

and thus, ρ is constant (incompressible fluid). Moreover, this flow was analyzed in 2-D.

Therefore, equation (3.7) can be simplified to:

ρ

(

∂u

∂x
+
∂v

∂y

)

= 0, (3.8)

Equation (3.8) was implemented in the code by applying the SIMPLE algo-

rithm (section 3.3).

3.1.2 Momentum Equations

Similar to mass conservation, the momentum property (m~v) needs to be con-

served for any volume. There is also the variation term (accumulation or loss) and the

flux contribution through the surface. However, in this case, from Newton’s law, some

forces influence the variation of momentum in the control volume: external volume forces

(~fe) and internal forces (~~τ - P
~~δ).

External volume forces are, for example, the action of gravity, electric, or

magnetic fields, while internal forces (surface sources) include the viscous effects (~~τ) and

the pressure field (P). Thus, based on Hirsch (2007), the momentum equation can be

expressed in its integral form based on Figure 3.1 as follows:

∫

∂(ρ~v)

∂t
dV +

∫

ρ~v(~v · d ~A) =

∫

ρ~fedV +

∫

~~τ · d ~A−

∫

P
~~δ · d ~A, (3.9)
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Where ~v is the velocity vector; and
~~δ is the Kronecker delta. Similarly to

continuity equation’s demonstration, Gauss divergence theorem was applied to equation

(3.9):

∫

∂(ρ~v)

∂t
dV +

∫

~∇ · (ρ~v~v)dV =

∫

(ρ~fe)dV +

∫

(~∇ · ~~τ)dV −

∫

(~∇P )dV, (3.10)

And, consequently:

∂(ρ~v)

∂t
+ ~∇ · (ρ~v~v) = ρ~fe + ~∇ · ~~τ − ~∇P, (3.11)

Where the first and second terms of the equation (3.11) indicate the variation

of momentum flux in time per unit volume and the net flow of momentum out of the fluid

element per unit volume, respectively. These terms can be rewritten as:

∂(ρ~v)

∂t
+ ~∇ · (ρ~v~v) = ρ

[

∂~v

∂t
+ ~v · ~∇~v

]

+ ~v

[

∂ρ

∂t
+ ~∇ · (ρ~v)

]

, (3.12)

Replacing equation (3.7) into equation (3.12), the differential form of the mo-

mentum equation can be expressed:

ρ

[

∂~v

∂t
+ ~v · ~∇~v

]

= ρ~fe + ~∇ · ~~τ − ~∇P, (3.13)

The demonstration for the viscous shear stress tensor (~~τ) was presented by

Hirsch (2007) in the following equation:

~~τ = µ

[(

∂vj
∂x1

+
∂vi
∂xj

)

−
2

3

(

~∇ · ~v
)

~~δ

]

, (3.14)

The case study analyzed in this work has evaluated an incompressible fluid

flowing ((~∇·~v) = 0 from the continuity equation) in 2-D in a steady-state, with no action

of external volume forces. Therefore, equation (3.13) is expressed by:
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ρ~v · ~∇~v = ~∇ ·

(

∂vj
∂x1

+
∂vi
∂xj

)

− ~∇P, (3.15)

And, finally, equation (3.15) can generate two equations for the x-direction

(u-velocity), and for the y-direction (v-velocity) as follows:

(a) Momentum equation in x-direction:

ρ

(

u
∂u

∂x
+ v

∂u

∂y

)

= −
dP

dx
+ µ

(

∂2u

∂x2
+
∂2u

∂y2

)

, (3.16)

(b) Momentum equation in y-direction:

ρ

(

u
∂v

∂x
+ v

∂v

∂y

)

= −
dP

dy
+ µ

(

∂2v

∂x2
+
∂2v

∂y2

)

, (3.17)

Continuity and momentum equations were discretized before being included

in the SIMPLE algorithm.

3.1.3 Vorticity Equation

Particles of fluid may rotate along a flow in three-dimensional field due to a

velocity gradient. The vector for the particle rotation can be represented by equation

3.18:

−→ω = ωx .̂i+ ωy.ĵ + ωz.k̂, (3.18)

Where ωx is the rotation in the x-direction, ωy is in the y-direction and ωz is

in the z-direction. Besides, each component can be determined by calculating the curl of

the velocity vector as follows:

−→ω = ∇× ~v =











î ĵ k̂

∂
∂x

∂
∂y

∂
∂z

u v w











=

(

∂w

∂y
−
∂v

∂z

)

î+

(

∂u

∂z
−
∂w

∂x

)

ĵ +

(

∂v

∂x
−
∂u

∂y

)

k̂, (3.19)
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Since these analyzes have been performed in 2-D, the derivative in terms of

the z is vanished
(

∂f(x)
∂z

= 0
)

, and also velocity vector ~v can be summarized to only

~v = (u, v, o). Thereby, the equation 3.19 can be simplified to:

−→ω =

(

∂v

∂x
−
∂u

∂y

)

k̂ = ωz, (3.20)

Thus, the code has been based on the discretized form of the equation 3.20,

and the implementation of this equation is shown in the following sections.

3.1.4 Stream Function Equation

The last equation inserted into the code was the stream function equation. This

scalar parameter ψ helps to study the rotation for the flow where its contours represent

the streamlines. Moreover, this scalar can be represented by the velocity components as

shown below (Fox et al., 2011):

u =
∂ψ

∂y
, (3.21)

v = −
∂ψ

∂x
, (3.22)

These equations show that the variation of two streamlines is equal to the

velocity component times its respective cross-sectional area in a 2-D situation (∂ψ = u∂y

and −∂ψ = v∂x), resulting in the volume flow passing through the contours of these

streamlines.

In addition, the velocity components from the continuity equation (equation

3.8) can be replaced by the stream function by using the equations 3.21 and 3.22:

[

∂

∂x

(

∂ψ

∂y

)

+
∂

∂y

(

−
∂ψ

∂x

)]

= 0, (3.23)

Therefore, the mass conservation can also be satisfied in terms of ψ via equation

3.23, and consequently, it can be a parameter to verify whether the convergence for the

stream function field is satisfactory or not. Furthermore, this scalar can also be written
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with respect to vorticity ωz by replacing the velocity components in equation 3.20 by

equations 3.21 and 3.22 as follows:

(

∂2ψ

∂x2
+
∂2ψ

∂y2

)

= −ωz, (3.24)

Equation 3.24 was discretized and implemented in the code right after the

convergence of the equation for ωz. The next section shows the procedure applied to

discretize both space and equations.

3.2 Discretization Process

The discretization process is divided into two steps: space and equation dis-

cretizations. The discretization of the global volume is basically the grid generation where

the flow domain is divided into small cells, distributing points over the whole space. The

accuracy of a numerical solution is influenced by the number of cells in the grid, and how

smaller they are. Furthermore, the fluid dynamics parameters are set in these grid points.

The most common grid discretization methods are the Finite Difference Method (FDM),

the Finite Element Method (FEM) and the Finite Volume Method (FVM) (Hirsch, 2007).

The last one is inserted into the discretization process in this study.

The second step includes the discretization of the mathematical models that

were presented in section 3.1. Once the grid is generated, and the fluid dynamic param-

eters are stored in the nodal points, a linkage between these points is necessary by the

application of the conservation equations. However, these equations are in the differential

form, and an approximation needs to be considered. Therefore, all mathematical opera-

tors require to be transformed into arithmetic operations on each control volume (Hirsch,

2007). The code was implemented using a numerical scheme named hybrid differencing

scheme.

The discretization process on micro-scale behaves similarly to systems on

macro-scale. Nevertheless, the main challenges are related to the approximation that

comes from the non-linearity of the momentum equation (convective term) (Colin, 2010),

and the calculation of the pressure field (Mazumder, 2018).
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(

ρ
∂u

∂x
+ ρ

∂v

∂y

)

= [(ρuA)e − (ρuA)w] + [(ρvA)n − (ρvA)s] = 0, (3.25)

Where the cross-sectional areas Ae and Aw in a 2D system refer to ∆y in the

faces east e and west w, respectively, in the control volume. Similarly, An and As refer to

∆x in the faces north n and south s, respectively.

3.2.2.1 Central Differencing Scheme

The Central Differencing Scheme is based on the piecewise-linear profile for

the variable. Thus, by integrating the momentum equation (equation (3.16)) in the x-

direction over the control volume shown in Figure 3.3, it gives:

[(ρAuu)e − (ρAuu)w] + [(ρAvu)n − (ρAvu)s] = −((A.P )e − (A.P )w)+

+

[(

µA
∂u

∂x

)

e

−

(

µA
∂u

∂x

)

w

]

+

[(

µA
∂u

∂y

)

n

−

(

µA
∂u

∂y

)

s

]

,
(3.26)

Nonetheless, there is no store of variables on the surface of the cell (represented

by lower case letters), therefore, a special treatment to evaluate them must be introduced.

Indeed, in this work this parameter is determined by the Pressure-Weighted Interpolation

Method (PWIM) proposed by Rhie and Chow (1983), and corroborated by Miller and

Schmidt (1988). This methodology is gonna be described in section 3.3.

Since a uniform structured grid is established, and all nodal points are equidis-

tant at a same level, the central differencing scheme is applied in equation (3.26). For

instance, for the convective term (left hand side), this scheme gives:

[(ρAuu)e − (ρAuu)w] + [(ρAvu)n − (ρAvu)s] =
[

(ρAu)e

(

uE + uP
2

)

− (ρAu)w

(

uP + uW
2

)]

+

+

[

(ρAv)n

(

uN + uP
2

)

− (ρAv)s

(

uP + uS
2

)]

,

(3.27)

Basically, in equation (3.27), a interpolation was performed following that all
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interfaces are in the midway between the nodal points. Equations (3.28) and (3.29) repre-

sent the same procedure applied in the pressure gradient and diffusive terms, respectively,

in the right hand side:

− ((A.P )e − (A.P )w) = −Ae
(PE + PP )

2
+ Aw

(PP + PW )

2
= −A

(PE − PW )

2
, (3.28)

[(

µA
∂u

∂x

)

e

−

(

µA
∂u

∂x

)

w

]

+

[(

µA
∂u

∂y

)

n

−

(

µA
∂u

∂y

)

s

]

=

[

µeAe
(uE − uP )

∆xe
− µwAw

(uP − uW )

∆xw

]

+

[

µnAn
(uN − uP )

∆yn
− µsAs

(uP − uS)

∆ys

]

,

(3.29)

The pressure at the grid point P is vanished in the final result in equation

(3.28) when the cross-sectional area Ae = Aw, and it might thus cause some problems

(instability or non-realistic values) in the resolution phase; however, this issue will also

be more detailed and solved by the PWIM in section 3.3. For now, the pressure term will

not be the focus.

In equation (3.29), the length ∆xe, for example, denotes the distance between

the grid points E and P; while ∆xw refers to the distance between the points W and P.

∆y values with a subscript in lower case letter follow the same logic.

The following variables F and D′ represent, respectively, the convective and

diffusive transport rates. Besides, the dimensionless Peclet number (Pe), which measures

the relative importance between advection and diffusion, can be determined from the

ratio of F and D′ values. They are replaced in the previous equations to ease the next

calculations:

Fx = (ρAu)x or Fy = (ρAv)y, (3.30)

D′
x =

(

µA

∆x

)

x

or D′
y =

(

µA

∆y

)

y

, (3.31)

Pex =
ρu∆x

µ
=
Fx
D′
x

or Pey =
ρv∆y

µ
=
Fy
D′
y

, (3.32)

Where x refers to east (e) and west (w) boundaries, while y refers to north

(n) and south (s) boundaries. Moreover, F value can take either positive and negative

signs only depending on the flow direction, while D′ value always has a positive sign.
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Likewise, equations (3.27), (3.28), and (3.29) can be replaced in equation (3.26), and thus,

a new expression can be formulated, representing the discretized form for the momentum

equation in the x-direction following the central differencing scheme in its second-order

accurate:

aPuP = aEuE + aWuW + aNuN + aSuS + Px, (3.33)

Where:

aE = D′
e −

Fe
2
, (3.34)

aW = D′
w +

Fw
2
, (3.35)

aN = D′
n −

Fn
2
, (3.36)

aS = D′
s +

Fs
2
, (3.37)

aP = aE + aW + aN + aS + (Fe − Fw + Fn − Fs), (3.38)

Px = −A
(PE − PW )

2
, (3.39)

However, this numerical scheme can provide non-realistic data for F > 2D′

(resulting in negative signs to aE and aN coefficients), because the grid point P is directly

related to its neighbors. Consequently, if a neighbor has a sudden growth, all nodal points

around should also increase. Therefore, all coefficients from the discretized equation must

take the same sign (Patankar, 1980).

This scheme is recommended to cases where the Reynolds number is low, and

then, the diffusion prevails over the convective forces following the expression: F ≤ 2D′.

However, although microflows have a regime strongly laminar, this work has focused

on proposing a chaotic advection to increase the vorticity, and consequently, a better

numerical scheme taking into account both convective and diffusive forces in any range

needs to be studied.

3.2.2.2 Upwind Scheme

According to Patankar (1980), the upwind scheme emerged to solve the issue

from the central differencing scheme about the negative coefficients. This methodology
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hypothesizes that the calculation of the parameter uw, for example, by interpolating uW

and uP is not appropriated. Thus, this scheme in its first-order accurate proposes a new

formulation for the convective term F :







uw = uW if Fw > 0,

uw = uP if Fw < 0,

The values of ue, un and us (or to v-velocity) follow the same idea. Therefore,

the velocity in the interface is taken as the upstream point value, being governed by

the flow direction. For instance, basing on these conditions, the convective term of the

momentum equation (equation (3.27)) in the x-direction for the face w can be rewritten

as:

Fwuw = uW ·Max[[Fw, 0]]− uP ·Max[[−Fw, 0]], (3.40)

Where Max indicates the expression in brackets with the highest value. For

that reason, the coefficients from equation (3.33) in its discretized form will be replaced

by:

aE = D′
e +Max[[−Fe, 0]], (3.41)

aW = D′
w +Max[[Fw, 0]], (3.42)

aN = D′
n +Max[[−Fn, 0]], (3.43)

aS = D′
s +Max[[Fs, 0]], (3.44)

aP = aE + aW + aN + aS + (Fe − Fw + Fn − Fs), (3.45)

Px = −A
(PE − PW )

2
, (3.46)

Therefore, for the upwind scheme, the coefficients are never negative and the

results are always physically realistic. Likewise, Spalding (1972) developed a numerical

scheme (named Hybrid Differencing Scheme) where he combined the accuracy of the

central differencing scheme with the stability of the upwind scheme.
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3.2.2.3 Hybrid Differencing Scheme

Spalding (1972) formulated a high resolution methodology to calculate the

coefficients of the discretized equation. For the cases where −2 ≤ Pe ≤ 2, the central

scheme should be applied, meanwhile for Pe > 2 and Pe < −2, the upwind scheme is

required, i.e.:



















aW = 0 if Pew < −2,

aW = D′
w + 0.5Fw if −2 ≤ Pew ≤ 2,

aW = Fw if Pew > 2,

The other coefficients follow the same logic. It can be noticed that the diffusion

term for when |Pe| > 2 (upwind scheme) is neglected due to the greater contribution of

convection. Therefore, based on equation (3.33) and on the hybrid scheme, the link

coefficients for a 2D case can be rewritten as:

aE =Max

[

−Fe, D
′
e −

Fe
2
, 0

]

, (3.47)

aW =Max

[

Fw, D
′
w +

Fw
2
, 0

]

, (3.48)

aN =Max

[

−Fn, D
′
n −

Fn
2
, 0

]

, (3.49)

aS =Max

[

Fs, D
′
s +

Fs
2
, 0

]

, (3.50)

aP = aE + aW + aN + aS + (Fe − Fw + Fn − Fs), (3.51)

Px = −A
(PE − PW )

2
, (3.52)

Hence, this numerical scheme covers all values of Pe, avoiding any issue from

the stability of the discretized equation. For instance, when diffusion transport prevails in

the flow, the term referring to central scheme is chosen, while for cases where F >> D′,

the rate of diffusion is set to zero, and the upwind scheme is applied.

According to Versteeg and Malalasekera (2007), this scheme also produces re-

alist data and its stability can be compared with higher-order schemes such as the QUICK
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scheme. Additionally, after applying the approaches in the conservation equations, an it-

erative method needs to be inserted in the code until achieving the convergence of the

process where all fluid dynamic parameters calculated (u, v, P, ψ, ω) get constant values.

The discretized form for the momentum equation in the y-direction has a

similar profile, just changing the source term (pressure gradient) presented in equation

(3.54).

aPvP = aEvE + aWvW + aNvN + aSvS + Py, (3.53)

Where:

Py = −A
(PN − PS)

2
, (3.54)

The vorticity equation (equation 3.20) can be discretized after the momentum

and continuity equations achieve their convergence once it only depends on the veloc-

ity field. Therefore, the discretized form for the vorticity equation can be obtained by

integrating this formula over the control volume in Figure 3.3:

(∆x∆y∆z)ωz = (∆y∆z)(ve − vw) + (∆x∆z)(us − un), (3.55)

Where ωz is the average value of ωz over each single volume. Thereby, this

mean vorticity can be calculated as:

ωz =
ve
∆x

−
vw
∆x

−
un
∆y

+
us
∆y

, (3.56)

And finally, the discretized equation for the stream-function (equation 3.24)

can be presented by also integrating Figure 3.3 over the control volume as follows:

− (∆x∆y)ωz =

(

∆y
∂ψ

∂x

)

e

−

(

∆y
∂ψ

∂x

)

w

+

(

∆x
∂ψ

∂y

)

n

−

(

∆x
∂ψ

∂y

)

s

, (3.57)

Following the same approach applied to the diffusive term in the momentum

equations, the gradient of ψ can be expressed by a linear approximation (central differ-

encing scheme) as gives:
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−(∆x∆y)ωz =

(

∆y
ψE − ψP

∆x

)

e

−

(

∆y
ψP − ψW

∆x

)

w

+

(

∆x
ψN − ψP

∆y

)

n

−

(

∆x
ψP − ψS

∆y

)

s

,

(3.58)

The equation can be rearranged letting only the terms referred to the central

node in the left hand side of the discretized equation, while its neighbors nodes with the

source term are distributed to the right hand side as follows:

aPψP = aEψE + aWψW + aNψN + aSψS + Sψ, (3.59)

Where:

aE =
∆ye
∆xe

, (3.60)

aW =
∆yw
∆xw

, (3.61)

aN =
∆xn
∆yn

, (3.62)

aS =
∆xs
∆ys

, (3.63)

aP = aE + aW + aN + aS, (3.64)

Sψ = (∆x∆y)ωz, (3.65)

Unlike the discretized vorticity equation, the stream-function equation requires

an iterative solver to converge. However, its values only depends on the vorticity field,

and therefore, it is the last equation to be performed in the code.

3.3 SIMPLE Algorithm

The resolution of the system of equations aforementioned is the next step in

a CFD simulation in order to obtain finally the grid point values of the fluid dynamic

parameters (Versteeg and Malalasekera, 2007). The type of flow (time-dependent or

steady), the discretization method (FVM, FEM or FDM), and the numerical scheme are

factors that affect the decision for the appropriate solution algorithm.
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In the solution of the momentum equations, the unknown velocity fields are

presented in both convective (for example, the non-linear term ρAu2 in equation (3.26))

and diffusive terms. Another point is, there is no explicit equation to solve the pressure

term that appears in both momentum expressions. These problems can be treated in an

iterative solution process, that was proposed by Patankar and Spalding (1972), where the

SIMPLE iterative algorithm is applied until the process converges in a residual difference

between each consecutive iteration. In addition, the choice of the SIMPLE algorithm is

supported by the fact that it is strongly indicated for cases with a laminar flow without

turbulence.

The discretization process, that was presented in section 3.2, proposes the store

of all parameters (pressure, velocity components, density, viscosity, vorticity and stream-

function) in the grid points shown before in Figure 3.3. However, as was demonstrated

in equation (3.28), this arrangement might still result in a non-uniform pressure field

behaving like a uniform field (Figure 3.4) once the expression does not include the nodal

point P. Hence, since that nodal points in the east (E) and west (W) boundaries have equal

values, the expression will provide a conclusion that the fluid is static in the x-direction

(pressure gradient equals to zero). Similarly, this idea can be applied to y-direction for

neighbors in the north (N) and south (S) nodes.

Figure 3.4: Example of non-realistic pressure field resulted from the actual discretized
method.
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





A (PE−PW )
2

, in x-direction,

A (PN−PS)
2

, in y-direction,

Harlow and Welch (1965) suggested a solution to this problem: to stagger

the mesh for the velocity components. Nevertheless, working with a staggered mesh may

bring some issues: different arrangements of grids for each velocity component and for the

scalar variables; high complexity to perform non-uniform/unstructured meshes; and each

boundary condition for each specific arrangement has a different treatment. Thereby,

a co-located mesh by applying the Pressure-Weighted Interpolation Method (PWIM)

emerged to solve these difficulties (Miller and Schmidt, 1988). Therefore, the following

steps describe how the SIMPLE algorithm works with the insertion of the PWIM.

3.3.1 Step 1: Storing values to the variables

The first step is to guess values for the unknown parameters (u, v, P, ω, and

ψ) at the nodal points in all cell centers. Besides, the known parameters (ρ and µ) are

also fulfilled in this step. Moreover, in order to apply the PWIM, the velocity at all cell

faces (represented by lower case letters) needs to be calculated, so, for the first iteration,

this value come from a distance-weighted interpolation. Consequently, this step is run

once immediately before the code opens the biggest loop.

3.3.2 Step 2: Calculating the link coefficients

The biggest loop starts by calculating the link coefficients from the momentum

equation by applying the hybrid scheme (equation 3.47-3.52, 3.54) in terms of the guessed

values. In addition, the variables F and D′ at the cell faces are obtained through the

equations (3.30) and (3.31) for each of the faces e, w, n and s.

3.3.3 Step 3: Determining the velocity components via TDMA

Some numerical iterative methods are usually implemented to solve a system

of algebraic equations, such as the Gauss-Seidel method and the Tri-Diagonal Matrix

Algorithm (TDMA) (being this one inserted in the code). Consequently, the equations
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u̇W =
1

aW
[(aWW u̇WW ) + (aP u̇P ) + (aN u̇N) + (aSu̇S)] +

[

∆y

2aW
(P ∗

WW − P ∗
P )

]

, (3.68)

And, following the same idea, for a supposed control volume at interface w

(Figure 3.5(b)), the momentum equation can also be written as gives:

u̇w =
1

aw
[(awwu̇ww) + (apu̇p) + (anu̇n) + (asu̇s)] +

[

∆y

aw
(P ∗

W − P ∗
P )

]

, (3.69)

From equation 3.69, the pressure gradient includes both neighbor nodes al-

lowing non-oscillatory performance as shown before in Figure 3.4. However, the link

coefficients from this equation are unknown, requiring a standard distance weighted in-

terpolation between the values obtained from the cells W and P :

1

aw
[(awwu̇ww) + (apu̇p) + (anu̇n) + (asu̇s)] =

1

2

[

1

aW
[(aWW u̇WW ) + (aP u̇P ) + (aN u̇N) + (aSu̇S)]

]

+

+
1

2

[

1

aP
[(aW u̇W ) + (aEu̇E) + (aN u̇N) + (aSu̇S)]

]

,

(3.70)

1

aw
=

1

2

(

1

aW
+

1

aP

)

, (3.71)

Replacing the term referring to the contribution of the four neighboring nodes

from equations 3.66 and 3.68 in equation 3.70, and, in sequence, substituting equations

3.70 and 3.71 in 3.69, the cell face velocity at interface w results in:

u̇w =
1

2

[

u̇W −
∆y

2aW
(P ∗

WW − P ∗
P )

]

+
1

2

[

u̇P −
∆y

2aP
(P ∗

W − P ∗
E)

]

+
∆y

2

(

1

aW
+

1

aP

)

(P ∗
W−P ∗

P ),

(3.72)

Rearranging the equation above, the cell face velocity in its discreet form

regarding the PWIM can be expressed as:

u̇w =
u̇W + u̇P

2
+

∆y(P ∗
P − P ∗

WW )

4aW
+

∆y(P ∗
E − P ∗

W )

4aP
−

[

1

aW
+

1

aP

]

∆y(P ∗
P − P ∗

W )

2
, (3.73)
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Similarly, for the v-velocity, the cell face velocity at interface s can be formu-

lated as follow:

v̇s =
v̇S + v̇P

2
+

∆x(P ∗
P − P ∗

SS)

4aS
+

∆x(P ∗
N − P ∗

S)

4aP
−

[

1

aS
+

1

aP

]

∆x(P ∗
P − P ∗

S)

2
, (3.74)

Equations 3.73 and 3.74 demonstrate that the cell face velocity is not only the

standard distance between the neighboring nodes, but also there is a contribution coming

from additional terms involving the pressure gradient where includes four cells in total.

3.3.4 Step 4: Deriving the velocity correction equations

The cell and face velocities aforementioned need to be corrected at each iter-

ation. The cell velocity correction u′P , for example, can be measured by the difference

between its new and the old values (üP and u̇P , respectively) from the momentum equa-

tions:

u′P = üP − u̇P =
1

aP
[(aEu

′
E) + (aWu

′
W ) + (aNu

′
N) + (aSu

′
S)] +

[

∆y

2aP
(P ′

W − P ′
E)

]

, (3.75)

The main approach that comes with this algorithm is that the sum of the

contribution from the neighboring cells goes to zero at convergence, thus it is plausible to

vanish this term. Therefore, equation 3.75 comes down to:

u′P = üP − u̇P =

[

∆y

2aP
(P ′

W − P ′
E)

]

, (3.76)

Similarly, for vP , its correction can be expressed by:

v′P = v̈P − v̇P =

[

∆x

2aP
(P ′

S − P ′
N)

]

, (3.77)

For the cell face velocities in the x-direction, it is applied the same strategy

to provide the face velocity correction by differencing both new and old values from the

expression 3.72. It gives:
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u′w =
1

2

[

u′W −
∆y

2aW
(P ′

WW − P ′
P )

]

+
1

2

[

u′P −
∆y

2aP
(P ′

W − P ′
E)

]

+
∆y

2

(

1

aW
+

1

aP

)

(P ′
W−P ′

P ),

(3.78)

Where u′W and u′P are replaced by equation 3.76 in terms of the correct sub-

script. Thereby, this equation is summed up to just:

u′w =
∆y

2

(

1

aW
+

1

aP

)

(P ′
W − P ′

P ), (3.79)

Similarly, the face velocity correction for v-velocity is:

v′s =
∆x

2

(

1

aS
+

1

aP

)

(P ′
S − P ′

P ), (3.80)

Equations 3.76, 3.77, 3.79 and 3.80 are implemented in the code, and they

need to be requested right after the momentum and the pressure correction equations are

solved. Therefore, it is demanded to derive an equation that provides a solution for the

pressure field and also expresses the conservation of mass.

3.3.5 Step 5: Obtaining the pressure correction equation

The continuity equation aims to determine the correction of the pressure field

herein the SIMPLE algorithm. However, this equation just depends on the velocity field.

Therefore, a few replacements are applied in order to let this equation in terms of pressure.

Thus, basing on the cell P in Figure 3.3 and applying equation 3.8, the mass balance gives:

(ρeüe − ρwüw)∆y + (ρnv̈n − ρsv̈s)∆x = 0, (3.81)

Where üe, üw, v̈n, and v̈s are resulted from the momentum equation and, for

equation above, they also satisfy the continuity equation. Then, applying the corrections

of the velocity ü = u′ + u̇ and v̈ = v′ + v̇ in the equation 3.81, and knowing that it may

have an imbalance of mass ṁimbalance during the iterative process, it gives:
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(ρeu
′
e − ρwu

′
w)∆y+(ρnv

′
n − ρsv

′
s)∆x+(ρeu̇e − ρwu̇w)∆y+(ρnv̇n − ρsv̇s)∆x = −ṁimbalance,

(3.82)

Where the terms regarding the velocity corrections can be replaced by equa-

tions 3.79 and 3.80; and consequently, a discretized form can be provided similarly to what

was done in equations 3.33 and 3.53. The following equations present the discretized form

for the pressure correction equation and its link coefficients:

aPPP
′
P = aPEP

′
E + aPWP

′
W + aPNP

′
N + aPSP

′
S + SP , (3.83)

Where:

aPE =
ρe∆y

2

2

(

1

aE
+

1

aP

)

, (3.84)

aPW =
ρw∆y

2

2

(

1

aW
+

1

aP

)

, (3.85)

aPN =
ρn∆x

2

2

(

1

aN
+

1

aP

)

, (3.86)

aPS =
ρs∆x

2

2

(

1

aS
+

1

aP

)

, (3.87)

SP = −ṁimbalance = − [(ρeu̇e − ρwu̇w)∆y + (ρnv̇n − ρsv̇s)∆x] , (3.88)

aPP = aPE + aPW + aPN + aPS , (3.89)

The equation (3.83) represents the discretized continuity equation to solve the

pressure correction field P ′. The parameter SP describes the continuity imbalance due

to the velocity components. When this value is near zero, the velocity field satisfies the

continuity, because the pressure field reached the convergence.

Patankar (1980) analyzed the implications of that approximation from SIM-



78

PLE algorithm presented in equation (3.76) and (3.77), and he noticed that it has no

effect on the converged solution (when u′ = 0; u̇ = ü and v̇ = v̈). In this case, the param-

eter SP in equation (3.83) will be zero, and thus, the pressure correction field P ′ will also

be nearly to zero. Nonetheless, an under-relaxation is recommended to prevent cases of

divergence during the iterations in the pressure correction due to those approximations.

Moreover, the pressure correction affects directly the velocity field, and hence, this factor

is employed in the momentum equations. This factor should take a value from 0 to 1,

and it is applied in the following equations, proposed by Miller and Schmidt (1988) and

Mazumder (2018), to the pressure, and to the components of velocity u and v in the cell

centers, respectively:

P = P ∗ + αPP
′, (3.90)

üP = u̇P + αuu
′
P => üP = u̇P + αu

[

(P ′
W − P ′

E)∆y

2aP

]

, (3.91)

v̈P = v̇P + αvv
′
P => v̈P = v̇P + αv

[

(P ′
S − P ′

N)∆x

2aP

]

, (3.92)

Where αP , αu and αv are the pressure, u-velocity, and v-velocity under-

relaxations factors, respectively; u̇ and v̇ are the cell center velocity components obtained

from the momentum equations; and ü and v̈ are the new values after applying the correc-

tion. Nevertheless, the cell face velocities also needs to be corrected, then:

üw = u̇w + αuu
′
w => üw = u̇w + αu

∆y

2

(

1

aW
+

1

aP

)

(P ′
W − P ′

P ), (3.93)

v̈s = v̇s + αvv
′
s => v̈s = v̇s + αv

∆x

2

(

1

aS
+

1

aP

)

(P ′
S − P ′

P ), (3.94)

The choice of appropriate values of these under-relaxation factors is essential

for the convergence of the iteration. If these values are too large, they may provide strong

oscillations and get non-realistic results due to the divergence, while for small values of

under-relaxation, the simulation would achieve the convergence slowly. Patankar (1980)

suggests αP = 0.8, αu = 0.5, and αv = 0.5.

Another important point is to discuss the relative nature of pressure in pro-
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cesses at steady-state with incompressible fluid. The main governing equations contain

only derivatives terms of the dependent variable; and for instance, if velocity v is the

dependent variable, the functions v and v +C (where C is an arbitrary constant) should

satisfy the solution of this equation. This statement can also be applied in discretized

equations (Patankar, 1980). Hence, the equation (3.83) may remain valid when the pres-

sure correction field P ′ and its neighboring cells are affected by a constant. From this

requirement comes the equation (3.89), where the coefficient related to the grid point P

at the scalar-control volume is equal to the sum of the neighbor coefficients. Therefore,

the center point value is an average of the neighboring values.

The value of fluid dynamics parameters are usually smaller in microchannels

when compared to macrochannels. For example, pressure drop might achieve an order of

the ninth decimal place. According to Patankar (1980), the absolute value of pressure P

is not relevant for the simulation; only differences in pressure are meaningful. Mazumder

(2018) suggested to replace the absolute pressure in the momentum equation for the gauge

pressure in incompressible flows because:

−
dPabs
dx

= −
d(Patm + Pgauge)

dx
= −

dPgauge
dx

, (3.95)

−
dPabs
dy

= −
d(Patm + Pgauge)

dy
= −

dPgauge
dy

, (3.96)

Where Pabs, Patm, and Pgauge are the absolute, atmospheric (constant value)

and gauge pressures. This substitution may prevent round-off errors that comes in cal-

culating the difference of pressure in the equations (3.91)-(3.94), for example. Basing on

that, all pressure correction points P ′ are related to the gauge pressure.

After correcting the pressure field and velocities in the centers and on the faces

of the cells, the link coefficients are calculated again, starting the loop until the ṁimbalance

reduces to zero. On the other hand, after reaching convergence, the other equations (vor-

ticity and stream-function) are explicitly solved. Firstly, the vorticity equation is solved

directly from the velocity field, while the stream-function equation needs the iterative

TDMA. Finally, a file is generated to be read by a visualization software.

Since many steps from the SIMPLE algorithm were described before, a flowchart
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can summarize this method (Figure 3.6), indicating the sequence of equations, and the

value of convergence factor (SP ) implemented in the code.

Figure 3.6: Flowchart of the SIMPLE algorithm.
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3.4 Post-Processing of the Results

Once the solution is converged, these results are presented by plotting graphics

and colour contours that include the magnitude of the velocity (in x- and y-directions),

the gauge pressure, the vorticity and the stream-function fields, and also the streamlines,

through using the ParaView visualization software. However, the code needs to create a

file in .vtk format where all final data are stored in order to be read by the software.

The vortex formation in the microdevice is evaluated in order to provide more

fluid stirring via qualitatively analysis of the streamlines and quantitatively data from

the vorticity field. Then, for that reason, a few parameters might be analyzed: the

Reynolds number (Re), the curvature of bumps, the location of feed and the width of the

microchannel.

3.5 Treatment of the Boundary Conditions

An important parameter to analyze in a simulation is the insertion of an ap-

propriate boundary condition. Most errors in iterative processes are in considering factors

not applicable in a specific case study. For this code, no-slip condition is assumed to the

walls; a fixed velocity is set for the feed, while the outlet pressure is constant and equal

to zero.

3.5.1 Walls: no-slip condition

It is logical to think that in cases with the application of the no-slip condition,

it is only necessary to set the velocity on the walls to zero (uwall = 0). However, there

are also a few extra contributions to the source term in the boundaries. For instance,

analyzing the momentum equation for the u-velocity in the cell highlighted in red in

Figure 3.7, it gives:
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Thereby, there are one extra term for aP , and another for aE basing on equation

(3.102) when the x-momentum equation is solved. Therefore, the link coefficients will be:

aE = aE + µw
∆y

3∆x
, (3.103)

aW = 0, (3.104)

aP = aP + µw
3∆y

∆x
, (3.105)

A similar analysis can be applied when the momentum equation in the y-

direction is aimed. However, regarding the pressure field, the values on the wall are

unknown, therefore the pressure in this case is assumed to be its neighbor normal to

the surface (first order accurate) basing on the boundary layer approximation where the

pressure gradient along the surface is considerably higher over the normal to the surface

(Fox et al., 2011)(Mazumder, 2019). Thus, the source term based on Figure 3.7 and the

x-momentum equation is:

Su = (Pw − Pe)∆y
Pw=PP→ Su =

(

PP −
PP + PE

2

)

∆y =

(

PP − PE
2

)

∆y, (3.106)

Regarding the boundary conditions to solve the pressure correction equation,

the starting point is the continuity equation (3.81) where uw = 0 as follows:

(ρeüe)∆y + (ρnv̈n − ρsv̈s)∆x = 0, (3.107)

Thus, for a no-slip condition, there are no additional terms, so it is only nec-

essary to vanish the link coefficient referring to the position of the wall (in this case,

aPW = 0), and therefore the source term will be:

SP = − [(ρeu̇e)∆y + (ρnv̇n − ρsv̇s)∆x] , (3.108)







86

Jue = (ρeuP )uP , (3.116)

Consequently, in this case, the link coefficients are:

aE = 0, (3.117)

aP = aP + (ρeuP∆y), (3.118)

Su = (Pw − Pe)∆y
Pe=0
→ Su =

(

PW + PP
2

− 0

)

∆y =

(

PW + PP
2

)

∆y, (3.119)

Finally, the link coefficients for the pressure correction must be analyzed more

carefully at the outlet when the pressure is set constant. In this case, üe = üP and Pe = 0;

then, replacing ü by u̇ + u′, and applying the equations for the cell center and cell face

velocities (equations 3.76, 3.79, and 3.80, respectively) it gives:

aPE = 0, (3.120)

aPW =
ρw∆y

2

2

(

1

aW
+

1

aP

)

−
ρe∆y

2

2aP
, (3.121)

aPP = aPN + aPS +
ρw∆y

2

2

(

1

aW
+

1

aP

)

+
ρe∆y

2

2aP
, (3.122)

SP = − [(ρeu̇P − ρwu̇w)∆y + (ρnv̇n − ρsv̇s)∆x] , (3.123)

The link coefficients aPN and aPS stay the same when the outlet is set as illus-

trated in Figure 3.9.

The boundary conditions for the vorticity field are strictly related to the veloc-

ity field, and once it has already generated, the equation 3.56 can provide the boundaries

for the vorticity field. Additionally, for the stream-function equation, the boundaries are
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set being equal to their closest neighbor inside the domain (first order of accuracy).

All these boundaries conditions are inserted in the code. Obviously, they may

change depending on the position of the walls, inlet and outlet. However, these changes

follow the same logic as what was presented previously. It is important to emphasize

that all case studies presented in this research have only one inlet and one outlet in a

two-dimensional perspective although this code is already extended to more than one

inlet.
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Chapter 4

Code Development

“The price of success is hard work,

dedication to the job at hand, and the

determination that whether we win or

lose, we have applied the best of

ourselves to the task at hand.”

Vince Lombardi

This chapter aims to present how the code was developed. In addition, there

will also be the inclusion of the necessary adaptations for each specific case study. Finally,

a flowchart will summarize how each subroutine from the code is interconnected.

4.1 Code Structure

The numerical code has been developed in FORTRAN 95 language by linking

three different files named: FLOW, GEOM, and CODE. Furthermore, some parameters

can be easily changed in the first two files by the user, while CODE file represents the

implementation of the iterative method with the discretization process and the numerical

solution.

4.1.1 USER’s Files

Some parameters are related to the main code, and they should be provided

by the user. These values have been recorded in two files, in plain-text format, named:
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FLOW and GEOM. The FLOW file (Appendix A.1) includes:

• Line 1: the number of cells in x- and y-directions (NI and NJ , respectively);

• Line 2: the fluid properties: viscosity µ [kg.mm−1.s−1] and density ρ [kg.mm−3];

• Line 3: the velocity inlet uin [mm.s−1] and the gauge pressure outlet Pout [mm2.s−2];

• Line 4: the velocity under-relaxations factors (αu and αv), and the pressure under-

relaxation factor (αP );

• Line 5: the number of iterations (it).

Thus, from the first line of the FLOW file, it is possible to simulate different

meshes for each case. However, there is a memory usage limit to process theses meshes

by the computational machine. Therefore, the most refined mesh achieved in these simu-

lations was 7,200 cells. It is important to point out that the computer has an Intel CPU,

Core i5-7400, with 256 kB of L2 cache, with four processing cores and 64-bit architecture.

Water is the fluid, whose density (ρ) and dynamic viscosity (µ) are 9.97 ×

10−7 kg.mm−3 and 8.935× 10−7 kg.mm−1.s−1, respectively, that flows through all devices

proposed in this research. Besides, the outlet boundary condition is set as zero pressure

(gauge pressure), and also, the velocity inlet (uin) is set by the user, and in this work, it

is based on Re. The process analysis assumes isotherm flow (constant fluid properties),

steady state regime and incompressible fluid. Equation 4.1 shows how to calculate the

velocity inlet once that Reynolds number in the feed (Rein), ρ and µ are known by the

user; and the inlet area (Ain) is the length of each cell times the number of cells that fills

the proposed feed size:

uin =
µRein
ρAin

, (4.1)

In addition, the unit of length used as an input, and subsequently applied to

the solver, is on the mili scale in order to avoid iterations with very small or large values.

However, the output of the results is provided in the unit of meters due to a conversion

subroutine, which is the case of the results for the pressure [m2.s−2], velocity [m.s−1] and

stream-function [m2.s−1] fields.
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The under-relaxation factors range from zero to one depending mainly on what

are the case study and the Reynolds number. Therefore, most of the simulations were

performed starting from random values for these constants in order to find a range of

values that was better suited to the case study.

Lastly, the number of iterations is directly influenced by Re and the case study

again. For instance, the lid-driven cavity case needs only approximately 2,200 iterations

(about three minutes) to reach the convergence at Re = 800, while 100,000 iterations

(about five hours) are required for the residual to approach zero in a rectangular duct

case with Re = 100. Besides, as Re increases, the chance of oscillations during the process

also increases, and the user needs to compensate this in the under-relaxation factors by

further dampening the contribution of the applied approximations (parameters with the

prime symbol), implying an increase in the number of iterations.

In addition to the file related to the degree of refinement, the properties of

the fluid, the boundary conditions and the constant of the algorithm; there is another file

aimed at creating the mesh. Indeed, the GEOM file presents all boundary points in the

superior and inferior walls along the channel. Therefore, the first and second columns

represent the position in x- and y-direction, respectively, in the lower wall, while the third

and fourth columns indicate the location in both directions for the topper wall. Appendix

A.2 shows an example for the case of a rectangular duct (3 mm x 0.25 mm) with 80 cells

in the x-direction (81 equidistant nodal points along x-axis). It is important to note that

the number of lines in the GEOM file is equal to NI+2, since the first line is the name

of the device while the following lines represent the positions of the x-faces on the north

and south walls.

4.1.2 CODE File

The third file represents the connection between all steps of a CFD simulation

as is proposed by Hirsch (2007) and detailed in Chapter 3. Therefore, the flowchart in

Figure 4.1 shows how the CODE file operates by linking the additional files with the

discretized process.

The first step includes reading the values set in the FLOW file, and subse-
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Figure 4.1: Flowchart of the code structure.

quently, creating matrices with dimensions of NI+2 and NJ+2. The matrix order is

based on the number of cell-centered nodes (NI and NJ) added to the boundary condi-

tion nodes (2 nodes in each direction). In addition, the next part is the reading of the

boundary points from the GEOM file. Hence, the grid is discretized in the whole domain

and validated following the three conditions previously presented in section 3.2.1. Before

the SIMPLE algorithm is executed, it is necessary to read the subroutine of boundary
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conditions. In this way, the user needs to set the location of: the walls, the entrance(s)

and the exit, and in sequence, assign the corresponding values for each one. Then, the

iterative process is started as presented in section 3.3 until reaching convergence for the

velocity and pressure fields. Sequentially, subroutines are called to solve the vorticity

field, and finally, the stream-function field.

In addition, at each iteration, the code prints and stores the maximum imbal-

ance of mass SPmax and the sum of all SP values along the mesh (SPsum). In this way, the

user is able to follow the progress of convergence in terms of SP by plotting graphs of

SPsum as a function of the number of iterations.

After finalizing of the iterative method by obtaining the converged results for

the fluid dynamic variables, the units of length of the pressure, velocity and stream-

function fields are converted to meters in another subroutine. Lastly, the final step is

related to the writing of the .vtk file format in order to fulfill the demands for the Par-

aview software and provide a discussion about the results, by plotting the fluid dynamics

variables in color graphs, and visualizing the streamlines along the microchannel.

4.2 Case Studies

Three different devices in 2D have been analyzed during this work: a rectan-

gular duct, a lid-driven cavity, and a convergent-nozzle coupled with a bumpy channel.

However, some adaptations and changes were made to the code for each scenario. The

next subsections present these variations in addition to the design of each device.

4.2.1 Rectangular Duct

The first two cases were studied to verify the accuracy of the results obtained

by the code when compared with OpenFOAM version 7. Firstly, the length and the

width of the duct are, respectively, 3 mm and 250 µm, and they are presented in Figure

4.2. Moreover, water flows in this devices at three values of Re: 100, 200 and 250. All

simulations have been at steady state and constant temperature.
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Figure 4.2: Representation of the rectangular duct where Lduct and Dduct are, respectively,
3 mm and 250 µm.

Further, for the rectangular duct, just the pressure and the velocity field were

analyzed, and consequently, compared with OpenFOAM and equations from the litera-

ture. Thus, when the flow is fully developed in a rectangular duct, the maximum velocity

V lit
max can be calculated through the equation 4.2 proposed by Fox et al. (2011):

V lit
max =

3

2
u, (4.2)

Where u is the mean velocity of the fluid at a given x in a fully-developed

flow; and also, this value can be considered equal to the uniform value set at the inlet.

Moreover, the u-velocity along the y-axis has also an analytical solution, and consequently,

it can be compared quantitatively with the results from the code and from OpenFOAM:

u =
D2
duct

2µ

(

∂P

∂x

)

[

(

y

Dduct

)2

−

(

y

Dduct

)

]

, (4.3)

Lastly, the pressure drop can also be analyzed quantitatively and compared

with OpenFOAM once it is constant when the flow is fully developed.

4.2.2 Lid-driven Cavity

The second case evaluated herein this work was the square lid-driven cavity

where water flows adjacent to the upper opened boundary. Figure 4.3 shows its dimension

being Lcavity equal to 1 mm in all boundaries. Unlike the case of the rectangular duct, all

discretized equations are solved here and, consequently, the pressure, velocity, vorticity

and stream-function fields are generated by Paraview, and compared with OpenFOAM.

Lastly, the fluid dynamic parameters were analyzed in terms of Re equal to 100, 200 and

400 where again the fluid properties are constant and the flow is at steady state.
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Figure 4.3: Representation of the square lid-driven cavity where Lcavity is equal to 1 mm.

The boundary condition for the inlet (top boundary) is set as the cell face

velocity in the x-direction, so velocities ue and uw are known at this location. Further,

vn is assumed to be zero once the fluid is flowing adjacent to the top boundary. On the

other hand, the gauge pressure at the outlet was not included in this simulation because

its assumption is not valid. The fact is that the outlet section is the same as the inlet,

and therefore the flow tends to develop itself and thus it presents considerable gradient

values, not assuming a constant value at the exit.

4.2.3 Bumpy Microchannel

Many recent studies have suggested microdevices where the chaotic advection

is caused by embedding obstacles and implementing waviness walls. In this research,

the vorticity performance is evaluated not only by a waviness wall, but also by a lateral

entrance.

The final case comprises all fluid dynamics parameters studied in this research

where its geometry configuration is illustrated in Figure 4.4. The dimensions are presented

as follows: d (200 µm) and D (600 µm) are the smallest and the largest width of the

microdevice, respectively; L (3,000 µm), n (600 µm) and f (200 µm) are the horizontal

lengths of the entire microdevice, the nozzle, and the inlet respectively; s (300 µm)

indicates the feed position by measuring the distance between the largest width D and

the feed f ; and Lb (420 µm) is the length of a single bump. Lastly, the number of bumps

along the bumpiness channel is considered being equal to five convex bumps at both top
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and bottom walls, and the position of each bump is parameterized, in micrometers, by

the following equations for the south and the north walls, respectively:

psouth(x) =
D − d

2
+

[

75

(

sin

(

π(x− 1))

0.65

))a]

, (4.4)

pnorth(x) =
D + d

2
−

[

75

(

sin

(

π(x− 1))

0.65

))a]

, (4.5)

Where α from the exponent in these equations dictates the curvature of the

bump, and then, as α increases, the convex bump inside the channel gets sharper.

Figure 4.4: Representation of the convergent-nozzle coupled to the bumpy channel with
α=4.

This study evaluates the fluid dynamics parameters inside this microdevice by

setting simulations changing the following variables:

• Device’s width d: 200 µm and 250 µm;

• Reynolds numbers: from 1 to 90;

• Curvature of the bumps α: 1, 2 and 4, and no bumps;

• Distance s from the inlet location to the left wall: 0 µm, 100 µm and 300 µm.

Firstly, it is studied how those fluid dynamics parameters behave as the cur-

vature of the bumps (α) changes. Consequently, at each subsection related to α, the

operating conditions (Reynolds number, Re) and the location of the inlet (s) are ana-

lyzed. Lastly, this procedure is performed again but evaluating a narrower channel based

on d and comparing it with the results collected from the previous subsection.
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Chapter 5

Results

“Success is no accident. It is hard

work, perseverance, learning,

studying, sacrifice and most of all,

love of what you are doing or learning

to do.”

Pelé

This chapter presents all results, and their respective analyzes and discussion.

It is divided into two main sections: the first part shows the numerical results from selected

benchmark cases, and the second one includes the study of the fluid dynamics in the new

geometry in terms of vorticity and pressure drop.

5.1 Verification of the Code

The results provided from this code were compared qualitatively and quantita-

tively with the CFD software OpenFOAM (version 7) for two cases: rectangular duct and

lid-driven cavity. In both scenarios were analyzed the fluid dynamic performance, which

includes velocity, pressure, stream-function, and vorticity fields (these two last parameters

were measured only at the lid-driven cavity case). Furthermore, the operating conditions

were studied by varying the Reynolds number at the inlet in both cases.
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5.1.1 Case Study in a Rectangular Duct

Firstly, three set of grids (40x20, 80x40 and 120x60 cells) were analyzed for

the axial velocity profile along y-axis with axial location set at x = 0.15 mm - where the

flow was still developing - and with Re = 100 (Figure 5.1). These grids were generated

by changing the first line of the FLOW file (Appendix A.1 for 80x40 cells) and also the

GEOM file in terms of the number of cells proposed (Appendix A.2 for 80x40 cells).

All analyzes for the discretization error estimation presented herein are based

on the fine-Grid Convergence Index (GCIfine) by collecting 10 points for the error esti-

mation. In this case, although 20% of the points present an oscillatory convergence; the

maximum discretization uncertainty is only 4.94%, and consequently, the grid with 3,200

cells was examined. Likewise, based on the Figure 5.1, it is also possible to notice that

both simulations with 3,200 and 7,200 cells present similar performance for u-velocity

under the proposed conditions.

Figure 5.1: Grid dependent test with three meshes where Re=100 and x=0.15 mm.

After the mesh test, simulations were conducted regarding Re, which was based

on the velocity inlet set in the FLOW file. Three Reynolds numbers were performed by

using both programs and Figure 5.2 shows qualitatively how similar are their profiles. It

is clear that the axial velocity increases as Re increases, and as the fluid elements move

away from the wall due to the viscous effects. In addition, the flow develops along the

x-axis, and according to Fox et al. (2011), the entrance length Lent can be determined by:

Lent = 0.06ReDduct, and therefore, Lent is equal to 1.5 mm when Re=100.

Furthermore, three different locations along the x-axis were selected in Figure
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Thus, the shear stress gets dependent on the pressure gradient and the position

of the fluid element on the y-axis:

τ(y) =
∂P

∂x

(

y −
Dduct

2

)

, (5.2)

However, once the pressure gradient is constant, the shear stress reaches its

apex when y = Dduct or y = 0, and then, slowing down the fluid. In contrast, it is

negligible when y = 0.5Dduct, allowing the u-velocity to speed up at this position.

5.1.2 Case Study in a Lid-driven Cavity

The second case was performed at three Reynolds numbers: 100, 200, and 400

by changing the velocity inlet in the FLOW file; afterwards, all results were compared

with OpenFOAM version 7. Moreover, the evaluation of the two components of velocity,

the stream-function and the vorticity are presented in this section. However, a grid study

was firstly investigated herein by following the GCIfine again: three set of grids (40x40,

60x60 and 80x80 cells) were analyzed for the u-velocity profile along x-axis at y = 0.2

mm, y = 0.5 mm and y = 0.8 mm. Figure 5.5 shows these positions in y-axis.

Figure 5.5: Representative slices (white lines) for the following analyzes.

For these three analyses, there were no point with oscillatory convergence

and the maximum discretization uncertainty was 7.94% with an average value equal to

2.80% for when y = 0.8 mm. Moreover, the convergence in this case study is achieved
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quickly, requiring about 3,000 iterations that, in time, means approximately five minutes

to converge (case with 3,600 cells).

Figure 5.6 illustrates the u-velocity profile concerning the closest slice to the

feed where the maximum discretization uncertainty was determined previously. From this

figure, it is possible to see that all grids have good agreement at each other, and supported

by its high speed at convergence, the grid with 3,600 cells was selected (Appendices B.1

and B.2 list the set up and the geometry, respectively, regarding this grid with Re = 100).

Figure 5.6: Comparison between the different grids for the u-velocity along the x-axis for
Re = 100 at y = 0.8 mm.

The velocity field in the x-direction was also obtained and compared with

OpenFOAM conform is illustrated in Figure 5.7 in terms of Re. A low value of Re induces

a more diffusive than convective flow, and therefore, the flow with Re = 100 shown in

Figures 5.7(a) and (b) is partially symmetrical on the y-axis. However, as Re increases,

there is a greater intensity in the streamlines hitting the wall, favoring the occurrence of

asymmetry in the conditions of Re = 200 and Re = 400. In addition, qualitatively, both

softwares give similar results, and thus, Figure 5.8 comes with graphs in terms of Re in

the three values of y previously established to evaluate quantitatively.
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relative average percentage error was 5.50% at y = 0.8 mm with Re = 400. This fact can

be explained due to not only the increase in the intensity of the convective effects by Re,

but also the plotting of the curve at y = 0.8 mm to be closer to the feed contour condition

in which the non-zero value uin is set. These contributions generate higher gradients in

the velocity and pressure fields because of the zero values in the other borders due to for

no-slip condition on the walls.

(a) y = 0.2 mm, Re = 100. (b) y = 0.5 mm, Re = 100. (c) y = 0.8 mm, Re = 100.

(d) y = 0.2 mm, Re = 200. (e) y = 0.5 mm, Re = 200. (f) y = 0.8 mm, Re = 200.

(g) y = 0.2 mm, Re = 400. (h) y = 0.5 mm, Re = 400. (i) y = 0.8 mm, Re = 400.

Figure 5.8: Comparison of the u-velocity profile at different heights and Reynolds num-
bers.

The velocity field in the y-direction was also analyzed under the same con-

ditions and Figure 5.9 illustrates qualitatively the results obtained by the code and by

OpenFOAM at the three Re values. According to this figure, it is noted that a large

recirculation zone is created, caused by the boundary condition in the feed where fluid

descends adjacent to the east wall and rises close to the west wall. Besides, the velocity

fields are qualitatively similar again in terms of the softwares and due to this, some graphs

are plotted in Figure 5.10 comparing them regarding Re at three positions in y-axis.
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Based on Figure 5.10, the highest mean relative error was only 2.98% for v-

velocity when Re = 400 at y = 0.2 mm which means that both code and OpenFOAM

can perform this case study and generate similar results in terms of v-velocity as well.

(a) y = 0.2 mm, Re = 100. (b) y = 0.5 mm, Re = 100. (c) y = 0.8 mm, Re = 100.

(d) y = 0.2 mm, Re = 200. (e) y = 0.5 mm, Re = 200. (f) y = 0.8 mm, Re = 200.

(g) y = 0.2 mm, Re = 400. (h) y = 0.5 mm, Re = 400. (i) y = 0.8 mm, Re = 400.

Figure 5.10: Comparison of the v-velocity profile at different heights and Re.

The vorticity field in the z-direction was obtained by the code and by Open-

FOAM in terms of Re as is illustrated in Figures 5.11 and 5.12. The ParaView visual-

ization software was responsible for generating the vorticity field from the velocity field

calculated by OpenFOAM via its curl. Based on these figures, it is noted that by increas-

ing the velocity inlet, it intensifies the vorticity, especially in areas close to the walls due

to the viscous stress caused by the no-slip condition. Likewise, the fluid elements near the

feed region are also rotated due to the velocity gradient caused by the movement of the

lid where the velocity is higher (Figure 5.12(g)-(i)). Finally, qualitatively, both software

provided similar results.
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Mesh
Device’s width
d [µm]

Curvature
α

GCIcoarse
[%]

GCIfine
[%]

Maximun
uncertainty
[m.s−1]

M1 No bump 0.81 0.79 0.1216±0.0021
M2 1 9.06 3.92 0.0290±0.0041
M3 2 6.05 2.95 0.4631±0.0359
M4

200

4 3.93 1.50 0.0786±0.0025
M5 No bump 0.44 0.42 0.1061±0.0016
M6 1 4.87 3.93 0.1775±0.0342
M7 2 2.16 1.23 0.0587±0.0033
M8

250

4 11.83 3.21 0.0137±0.0028

Table 5.1: Discretization error (GCI), in percentage, for three grids in different sets of
geometry configuration for Re = 20 and s = 100µ m.

and s=100 µm. Therefore, based on this table, for meshes M1 and M5, all analyzes were

performed according to the mesh of 1,800 cells; while for the others, the grid with 4,000

cells was chosen.

The following sections assess how Reynolds number (Re) and the location of

the feed (s) vary for a given device’s width (d) and a given curvature of bump (α). Then,

α é modified and Re and s are again measured for this new geometry configuration.

Finally, the other width d is set and all parameters Re, s and α are evaluated again. All

figures in terms of velocity, pressure, vorticity and stream-function fields are attached in

Appendices C.3, C.4, C.5, and C.6, respectively.

5.2.1 Device’s width: d = 250 µm

In this section, the width of the microchannel is set constant and equal to 250

µm while the curvatures of the bumps are analyzed in terms of Reynolds number and

position of the feed.

5.2.1.1 Curvature of bumps: No bumps

The first geometry studied has no bumps along the microdevice while the

operating conditions (Reynolds number) and the location (s) of the feed are varied. At

the beginning, for the Re analyses, the location s is set as 100 µm.
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(a) Re=20. (b) Re=60. (c) Re=90.

Figure 5.18: u-Velocity regarding Reynolds number and "location of bumps" where d=250
µm and there is no bumps.

The kinematic pressure profile is shown in Figure 5.19 according to Re and

the location of the slices. Note that the pressure does not depend on the y-axis along the

straight microchannel, being only asymmetric at Bump0 due to the feed with subsequent

channel narrowing. Lastly, the pressure is reduced until reaching the outlet where the

pressure is set to zero.

(a) Re=20. (b) Re=60. (c) Re=90.

Figure 5.19: Kinematic pressure regarding Reynolds number "location of bumps" where
d=250 µm and there is no bumps.

The magnitude of the rotation of the fluid elements is shown in Figure 5.20.

The vorticity is proportionally related to Re so that the effects of viscous forces are

intensified, and therefore its value is greater for when Re = 90. On the other hand, along

the straight duct, the vorticity field does not change in the x-positions set for all Re cases

once the flow becomes fully-developed. Additionally, the vorticity is higher near the upper

wall at the entrance of the device due to the flow is predominantly concentrated there,

and there is a large velocity gradient.
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(a) Re=20. (b) Re=60. (c) Re=90.

Figure 5.20: Magnitude of vorticity regarding Reynolds number and the "location of
bumps" where d=250 µm and there is no bumps.

It is also possible to plot a graph that shows how the average magnitude of

the vorticity varies along the x-axis as shown in Figure 5.21(a). Note that the rotational

motion adjacent to the main flow is improved at x = 0.1 mm and x = 0.3 mm because of

the viscous forces again. Moreover, this vorticity is maximized when the flow leaves the

converging nozzle and enters the straight duct (x > 0.6 mm) due to the narrowing of the

channel that results in a larger velocity gradient along the y-axis. Figure 5.21(b) shows

a slight positive pressure gradient at x = 0.6 mm in the center-line when Re = 90 that

favors the rotation of the fluids like it was explained in section 2.2 (Vorticity field).

(a) Mean vorticity. (b) Kinematic pressure (y = 0.3 mm).

Figure 5.21: Mean vorticity and kinematic pressure performances along the device regard-
ing Re for s = 100 µm, and d = 250 µm.

In the next sections, some geometry configurations will be presented and eval-

uated in order to intensify the fluid vorticity and analyze this pressure drop along the

channel.

(b) Location of feed (s)

In this section, the distance between the feed and the left wall is analyzed at
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in the pressure, which results in a change in the flow direction. Consequently, by taking

as a reference the maximum vorticity obtained for s = 0 µm, there is an improvement in

this parameters of 23.0% when s = 100 µm, and 79.7% for when s = 300 µm.

Lastly, mean vorticity and pressure fields were plotted in terms of x-axis as

shown in Figure 5.24. Note that these parameters only diverge in the first half of the

device, and then they flow into the straight duct and present the same results because the

flow has become developed. Also, although the microdevice with an entrance at s = 300

µm reaches higher values of vorticity, its pressure drop is more accentuated; which would

make its design and operation more costly.

(a) Mean vorticity. (b) Kinematic pressure.

Figure 5.24: Mean vorticity and kinematic pressure performances along the device regard-
ing s for Re = 90, and d = 250 µm.

5.2.1.2 Curvature of bumps: α = 1

Based on the results obtained previously, a strategy that could take advantage

of the straight microchannel was analyzed. Then, different types of curvatures of bumps

were evaluated according to the equations 4.4 and 4.5 that projected convex bumps inside

the channel that consequently narrowed the fluid flow. In this way, a smoother bump was

firstly proposed, where α in these equations is equal to 1.

(a) Reynolds number

The operating condition related to Re was firstly studied in this new microde-

vice, and Figure 5.25 presents the velocity fields as a function of Re = 20, 60 and 90 when

s = 100 µm. The insertion of bumps helped considerably to increase the flow rate of the

fluid as illustrated in this figure. Additionally, comparing the maximum velocity values











122

location before the first bump (5.8 mm), the mean location between two bumps (10.0

mm, 14.2 mm, 18.4 mm, and 22.6 mm), and the position after the last bump.

Based on Figure 5.31, the velocity component in the x-direction is affected

by the entry position at s = 100 µm just before the first bump (Bump0) in which the

asymmetry in the velocity profile is noticed. Even when the feed velocity is increased

and the value of Re rises to 90, a negligible change occurs in the u-velocity profile in

the Bump1 position; and therefore, it is concluded that the addition of bumps has a

better contribution in the performance of the fluid-dynamic parameters than the feeding

position.

(a) Re=20. (b) Re=60. (c) Re=90.

Figure 5.31: u-Velocity regarding Reynolds number and location of bumps where d=250
µm and α = 1.

Similar to what has been described for u-velocity, the vorticity field behaves as

being affected only by the geometry of the bumps from the position Bump0. Note that in

this case, the absolute values of the vorticity tend to be the same as shown in the graphs.

It is important to note that the vorticity curves are opposite in sign once the vortex in

the upper cavity rotates in a direction, and the other in the lower cavity rotates in the

opposite direction.

(a) Re=20. (b) Re=60. (c) Re=90.

Figure 5.32: Magnitude of vorticity regarding Reynolds number and location of bumps
where d=250 µm and α = 1.
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Analyzing the vorticity field in the positions Bump0 and Bump1, two factors

can be seen to cause the increase in vorticity. For example, in Figure 5.37, the fluid

elements are subject to greater rotation surrounding the wall due to the velocity gradient

resulting from the effect of viscous forces. In contrast, when the fluid elements are close

to the center line, the rotational motion is barely affected by it.

(a) Re=20. (b) Re=60. (c) Re=90.

Figure 5.37: Magnitude of vorticity regarding Reynolds number and location of feed before
the first throat at x = 0.58 mm.

Nonetheless, the analysis of the vorticity field at Bump1 position (Figure 5.38)

provides other conclusions. Firstly, it is noticed that right after the first constriction,

the entire contribution of the feeding position becomes negligible regardless of Re, with

only the curvature of bump’s contribution prevailing over it, thus resulting in similar

vorticity performances after the first bump. Moreover, the maximization of the vorticity

is approximately halfway between the wall and the center line. of the channel, and this

can be explained due to narrowing the channel by the bumps. This effect makes the fluid

flow with greater speed, and therefore it generates a higher velocity gradient because part

of the fluid tends to be stagnated inside the cavities. Therefore, this high speed drives the

fluid in the cavity to circulate. Another factor that contributes to this is the formation of

(a) Re=20. (b) Re=60. (c) Re=90.

Figure 5.38: Magnitude of vorticity regarding Reynolds number and location of feed at
Bump1 where d=250 µm and α = 1.
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highest pressure to the lowest. Lastly, all other bumps have the same contribution with a

negligible increase in the vorticity field caused by the feed position. However, it is possible

to notice a small peak of vorticity nearby the regions close to the walls in the cavities

when Re = 90 (Figure 5.44(c)). This rotation is induced in the opposite direction due

to the larger adjacent circulation. In other words, by increasing the velocity, the main

stream of fluid induces the formation of vortices inside the cavities, which consequently

favors the creation of secondary vortices that flow in the opposite direction.

(a) Re=20. (b) Re=60. (c) Re=90.

Figure 5.44: Magnitude of vorticity regarding Reynolds number and location of bumps
where d=250 µm and α = 2.

Analyzing again the pressure and vorticity performances within the first cavity,

qualitatively, the profiles for both α = 1 (Figure 5.33) and α = 2 (Figure 5.45) are

similar. Therefore, the same phenomena are applied here as well; however, quantitatively,

the highest variation of pressure between the first and second bumps is larger for α = 1

(424.0 Pa) when compared to α = 2 (364.4 Pa). Meanwhile, the vorticity profile has not

undergone considerable changes.
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(a) Re=20 (Bump0). (b) Re=60 (Bump0). (c) Re=90 (Bump0).

(d) Re=20 (Bump1). (e) Re=60 (Bump1). (f) Re=90 (Bump1).

Figure 5.49: Magnitude of vorticity regarding Reynolds number and location of feed at
Bump0 (x = 0.58 mm) and at Bump1 (x = 1.0 mm).

The last curvature of bump is related to a sharper geometry because the equa-

tions 4.5 and 4.4 have an exponent of the fourth order. The analyzes of the fluid-dynamic

parameters for this case are again similar with a slight reduction in their values, however,

all these figures of the respective fields of velocity, pressure, vorticity, and stream function

are included in the Appendix section of this work.

5.2.1.4 Curvature of Bumps: Overall

The mean vorticity profile in the four different geometries in the duct section

could be plotted in Figure 5.50. Note that as the order of equations 4.4 and 4.5 increases,

the bumps get sharper and consequently, the vorticity gets lower. In addition, according

to Figure 5.50(b), the pressure profile for the cases of α = 2 and α = 4 are almost similar

although α = 2 generates greater vorticity.
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where the vorticity in α = 1 is as high as in α = 2. The maximum vorticity obtained for

Re = 90 and α = 1 is higher in: 12.8% regarding α = 2; 29.7% for α = 4 and 91.2% for

the case with no bumps (a = 0). This behavior of the vorticity can be explained due to

the extensive narrowing of the channel that α = 1 is submitted to, which allows greater

action of the viscous forces in the throat region in a larger area of x, achieving a better

vorticity.

(a) Re=20. (b) Re=60. (c) Re=90.

Figure 5.52: Magnitude of vorticity regarding Reynolds number and curvature of the
bumps where d=250 µm and s = 100 µm.

Finally, the pressure profile can also be studied. In theory, in predominantly

laminar flows, it is suggested that the pressure variation in the y-direction is negligible

when compared with the x-direction. However, analyzing Figure 5.53, it can be seen that

the smoothest curvature of bump generates a notorious variation in pressure along the

y-axis since from Re = 60. Although the inclusion of bumps in the flow helps in the

rotation of fluid elements and in the creation of vortices, they also contribute to greater

pressure gradients in these narrowing regions as shown previously. Thus, the pressure

drop along the device must also be assessed. Its calculation was performed starting from

the average pressure value calculated at the inlet minus its value at the outlet (which is

set to zero).

(a) Re=20. (b) Re=60. (c) Re=90.

Figure 5.53: Kinematic pressure regarding Reynolds number and curvature of the bumps
where d=250 µm and s = 100 µm.
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The pressure drop performance in Figure 5.54 is based on Re and a with d=250

µm and s=100 µm. Taking the pressure drop of the case with no bumps as a reference,

and setting Re = 90, the pressure drop is increased: by 636.0% when α = 1; by 569.5%

when α = 2; and 581.1% for α = 4. Moreover, Table 5.2 complements the other pressure

drop values for the different feeding positions when Re = 90. Thus, although the velocity

and vorticity fields are almost similar, the pressure drop at s = 0 µm is higher at all

curvatures of bumps.

Figure 5.54: Pressure drop at different Reynolds numbers (Re) and curvature parameter
a when d=250 µm and s=100 µm.

Table 5.2: Pressure drop (Pa) at different locations of feed and curvature of bumps when
Re = 90 and d = 250 µm.

Location of the inlet s (µm)
Curvature a 0 100 300
No bumps 222.38 181.08 187.56
1 1378.55 1332.70 1336.13
2 1257.87 1212.36 1213.62
4 1279.15 1233.27 1222.79

5.2.2 Device’s width: d = 200 µm

In this section, the width of the microchannel is changed to 200 µm while the

curvatures of the bumps are analyzed again in terms of Reynolds number and position of

the feed.
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5.2.2.1 Curvature of bumps: No bumps

Firstly, the microdevice was evaluated without the presence of bumps. The

range of the Reynolds number in this case was from 1 to 40 because the code did not

converge in values greater than 50. Therefore, all simulations were performed for Re = 1,

Re = 20 and Re = 40. At the beginning, for the Re analyses, the location s is set as 100

µm.

(a) Reynolds Number

The streamlines in terms of the number of Reynolds are illustrated in Figure

5.55. Comparing with the case of d = 250 µm (Figure 5.15), the zones of recirculation of

fluid in the entrance region are minimized due to the low value of Re; on the other hand,

the narrowing in the channel makes the fluid flow with a higher velocity.
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Figure 5.56: Vorticity performance at different Reynolds numbers (Re) and device’s width
d when there is no bumps and s=100 µm.

(b) Location of feed (s)

In this section, the distance between the feed and the left wall is analyzed at

three positions: 0 µm, 100 µm, and 300 µm. Besides, two positions along the x-axis were

selected to assess the vorticity profile: 0.6 mm (Bump0) and 1.0 mm (Bump1). Figures

5.57 and 5.58 show respectively how the position of the inlet s affects the magnitude of

the vorticity field, and the vorticity profile at each Re in two positions at x-axis. When

Re = 1, the vorticity is independent of the feed position as shown in Figures 5.58(a)

and 5.58(d). This fact is explained by the low velocity in the feed that makes the flow

regime predominantly laminar and diffusive, which results in the symmetry of the vorticity

profile. However, as the velocity is increased, the contribution of convective forces also

enhances and an asymmetry caused by the different feeds can be seen as in Figures 5.58

(b) and 5.58 (c). Finally, as usual, at x = 1.0 mm, the feed position has no influence on

the rotation of the fluid elements, and therefore, only the viscous torque influences them

in terms of vorticity.
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(a) Re=1 (Bump0). (b) Re=20 (Bump0). (c) Re=40 (Bump0).

(d) Re=1 (Bump1). (e) Re=20 (Bump1). (f) Re=40 (Bump1).

Figure 5.58: Magnitude of vorticity regarding Reynolds number and location of feed at
x = 0.6 mm (Bump0) and x = 1.0 mm (Bump1) with d=200 µm and no bumps.

5.2.2.2 Curvature of bumps: α = 1

The addition of convex bumps along the duct is evaluated in terms of Re and

feed position s in the next sections in which the width d is reduced and equal to 200 µm.

The first curvature of bump performed herein is the smoothest one (α = 1).

(a) Reynolds Number

The presence of bumps considerably affects the flow of fluid through the mi-

crochannel. In fact, a few recirculation zones are formed in the cavities between these

bumps when Re = 40 (Figure 5.59(c)), however, in the lower values of Re, these vortices

are not noted. In addition, the maximum velocity is located in the center-line between

the upper and lower bumps, and, when Re = 20, the velocity is increased by 101.5% in

comparison to the value obtained for d = 250 µm. Furthermore, the maximum velocity

when Re = 90 at d = 250 µm is only 8.8% higher than in the case of Re = 40 with

d = 200 µm, resulting in a large contribution from the width of channel to the velocity

value.
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although it generated a maximum vorticity value right after the constriction, its gradient

is quite high, and this tends to cause instability both in computational simulation and in

the device’s performance.

(a) u-Velocity. (b) Magnitude of vorticity.

Figure 5.61: Fluid dynamics parameters regarding Reynolds numbers at x = 1 mm where
d=200 µm, s = 100 µm and α = 1.

Figure 5.62 shows the performances of the mean vorticity, and kinematic pres-

sure fields in the center-line in terms of Re. Qualitatively, these parameters behave

similarly to the cases discussed in the previous sections; however, their gradients are con-

siderably larger than the other cases. The variation of pressure in the case of a narrower

channel is drastically superior compared to the d = 250 µm (Figure 5.28). For instance,

comparing Re = 20, the increase is 447.6% along the whole channel, while for Re = 40,

the increase is 445.5%. Additionally, even when the microdevice with d = 250 µm is op-

erating at Re = 90, the pressure gradient for the case of d = 200 µm and Re = 40 is still

84.4% superior. Besides that, the mean vorticity profile for cases of d = 200 µm is also

greater: when both devices operate at Re = 20, the maximum mean vorticity obtained is

312.1% higher, while, comparing Re = 40 (d = 200 µm) with Re = 90 (d = 250 µm), the

maximum value is still 87.4% higher.

(a) Mean vorticity. (b) Kinematic pressure. (c) Re = 40.

Figure 5.62: Performance of some fluid dynamics parameters along the device regarding
Re for s = 100 µm, α = 1 and d = 200 µm.
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addition, all these geometry configurations generate vortices within the cavities between

the bumps.

In this comparison, the vorticity field is again differentiated only at the en-

trance region at the converging nozzle, and thus, when the fluid flows through the first

constriction, the vorticity is increased considerably (Figure 5.62(a) at x = 0.83 mm) re-

sulting in contribution only by other parameters: the device’s width d and the curvature

of the bump α. Qualitatively, the graphs (a)-(d) from Figure 5.64 are quite similar to

those presented for the case with no insertion of bumps in the channel (Figure 5.58),

however after the first pair of bumps at position Bump1, the vorticity profile is different,

because, in this case, the rotation of the fluid elements is not exclusively caused by the

shear stress of the walls. These elements increase angular momentum as they are sub-

mitted to a positive pressure gradient, and as they rotate, they are spread by diffusion

towards the cavity. Lastly, there are small peaks of vorticity close to the wall inside the

cavity (Figure 5.64(f)), which again indicates the formation of secondary vortices.

(a) Re=1 (Bump0). (b) Re=20 (Bump0). (c) Re=40 (Bump0).

(d) Re=1 (Bump1). (e) Re=20 (Bump1). (f) Re=40 (Bump1).

Figure 5.64: Magnitude of vorticity regarding Reynolds number and location of feed s at
x = 0.58 mm (Bump0) and x = 1.0 mm (Bump1) where d=200 µm and α = 1.

5.2.2.3 Curvature of bumps: α = 2

The curvature of the bumps along the microchannel has been changed from

α = 1 to α = 2 based on the equations 4.4 and 4.5 for each bump. Thus, as the exponent
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The graphs in Figure 5.67 show the performance of the mean vorticity along

the microdevice, and the kinematic pressure in the center-line (y = 0.3 mm). In the throat

positions, these parameters undergo high variations, and as Re increases, these gradients

become larger. Moreover, comparing this case with the previous one where α = 1, both

variations are higher for α = 1 where the peak of the mean vorticity is 10.6% superior

while the pressure variation is 16.4% larger.

(a) Mean vorticity. (b) Kinematic pressure. (c) Re = 40.

Figure 5.67: Performance of some fluid dynamics parameters along the device regarding
Re for s = 100 µm, α = 2 and d = 200 µm.

(b) Location of feed (s)

Finally, the position of the feed is evaluated in three positions (0 µm, 100

µm, and 300 µm) for a flow operating at Re = 40. Figure 5.68 illustrates the stream

function field for these positions. In addition to the observations already presented for

the case of curvature of bump equal to 1, it is noticed that α = 2 creates a sharper

bump, and subsequently, the cavity becomes more rounded and extensive, producing

larger circulation zones. Moreover, this figure can also be compared with Figure 5.47 in

the convergent nozzle region in which it is noted that the recirculation zones are not so

intense for d = 200 µm when compared with d = 250 µm due to different Re.
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flow with "vorticity generated only by the walls".

(a) Re=1 (Bump0). (b) Re=20 (Bump0). (c) Re=40 (Bump0).

(d) Re=1 (Bump1). (e) Re=20 (Bump1). (f) Re=40 (Bump1).

Figure 5.69: Magnitude of vorticity regarding Reynolds number and location of feed at
x = 0.6 mm and at x = 1.0 mm with d=200 µ m and a = 2.

Before proceeding to the general analysis of the results, the case with α = 4

was also studied, but its results are qualitatively similar, and also quantitatively they

are lower than the others, so it is not included here in this section; however, the fluid

dynamics parameters referring to this case can be checked in the appendices.

5.2.2.4 Curvature of Bumps: Overall

After analyzing the vorticity field for each curvature of bumps separately, they

are now presented and compared in same graphics for when x = 1 mm (Bump1) main-

taining d = 200 µm, and s = 100 µm according to Figure 5.70. It is clearly noticed that

even the fluid flowing into the bumpiness channel, for Re = 1, the vorticity does not

depend on the type of curvature of bump, being dependent only on the diffusion and the

shear stress caused by the walls. However, for Re = 20, the vorticity profile already has

a different structure because the rotational motion is enhanced mainly by the narrowing

of the channel caused by the convex bumps, and resulting in an increasing of the velocity

of the fluid elements close to the center line. In addition, when Re is increased to 40, sec-

ondary recirculation regions are created within the cavities between the bumps, favoring

the intertwined between the fluid streams. To conclude, at the three Re, the curvature
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α = 4 presents the worst vorticity performance among the other curvatures: the case with

α = 2 has a maximum vorticity 13.8% higher while for α = 1, it is 30.4% superior than

the case where α = 4.

(a) Re=1. (b) Re=20. (c) Re=40.

Figure 5.70: Magnitude of vorticity regarding Reynolds number and curvature of the
bumps where d=200 µm and s = 100 µm.

An essential factor for equipment design is to measure the pressure drop in the

fluid flow, as, for example, a pump is proposed to compensate for this value and make

the fluid flow. Thus, high-pressure drop values require pumps with higher power and

hence make the process more costly. Figure 5.71 shows the pressure drop performance

by varying Re and a with d=200 µm and s=100 µm. Thus, taking the pressure drop

value for the microdevice with α = 4 operating at Re = 40 as a reference, this parameter

is increased by 9.4% when compared to α = 2; while for α = 1, the pressure drop is

27.4% larger. On the other hand, the microdevice with no bumps has a pressure drop of

approximately 14x less than that for α = 4.

Figure 5.71: Pressure drop at different Reynolds numbers (Re) and curvature α when
d=200 µm and s=100 µm.
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Furthermore, after analyzing the fluid dynamics parameters for each width d

of the microchannel separately, a slice is taken at x = 0.58 mm (before the first bump)

and at x = 1.0 mm (after the first bump) in order to compare these widths by maintaining

s = 100 µm, for Re = 20 and Re = 40, and for all curvatures of bumps studied herein.

Figure 5.72 illustrates the vorticity profiles at x = 0.58 mm for Re = 20 and Re = 40 and

all bump curvatures in terms of the device’s widths d. In this slice, the fluid has not been

(a) No bumps (Re=20). (b) No bumps (Re=40).

(c) α = 1 (Re=20). (d) α = 1 (Re=40).

(e) α = 2 (Re=20). (f) α = 2 (Re=40).

(g) α = 4 (Re=20). (h) α = 4 (Re=40).

Figure 5.72: Magnitude of vorticity regarding Reynolds number and curvature of bumps
comparing both values of d when x = 0.58 mm.
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affected to the action of bumps yet, so the greatest contribution to the vorticity comes

from the fluid flowing close to the wall caused by the feed. However, for d = 200 µm,

the cross-sectional area is more reduced, which favors the increase in the u-velocity with

a higher angular momentum when compared to d = 250 µm.

And finally, it is compared both widths d by taking a slice at x = 1 mm

(Bump1) and maintaining s = 100 µm, for Re = 20 and Re = 40, and for all curvatures

(a) No bumps (Re=20). (b) No bumps (Re=40).

(c) α = 1 (Re=20). (d) α = 1 (Re=40).

(e) α = 2 (Re=20). (f) α = 2 (Re=40).

(g) α = 4 (Re=20). (h) α = 4 (Re=40).

Figure 5.73: Magnitude of vorticity regarding Reynolds number and curvature of bumps
comparing both values of d when x = 1.0 mm.
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of bumps studied herein. The vorticity profiles inside the cavities are shown in Figure

5.73. Thus, in all scenarios, the vorticity performance is vastly superior for the case with

narrowing of the channel. In addition, the secondary peaks near the wall when Re = 40

are similar for α = 1 and α = 2, while for α = 4 both the main and secondary vorticity

peaks are lower.

In general, Table 5.3 lists the pressure drop, in Pascal, in all microdevices

evaluated in this research in terms of Re. First, reducing the channel’s width from 250

µm to 200 µm increases considerably the pressure drop by approximately five times more

in cases with bumps. Moreover, almost all simulations performed for microdevices with

entry into the lower wall of the nozzle show a slightly lower pressure drop when compared

to those entering in the left wall (s = 0 µm). Likewise, for values of Re over 80, it is

Table 5.3: Pressure drop (Pa) for all simulations performed during this work.

Device’s
width (µm)

Reynolds
number

Location
feed (µm)

Curvature of the bumps
No bumps 1 2 4

200

1
0 3.093 48.887 37.158 28.645
100 3.127 48.897 37.181 28.672
300 3.080 48.654 37.104 28.623

20
0 67.548 1092.202 884.965 752.437
100 65.824 1090.058 882.895 750.430
300 65.175 1087.814 882.120 749.649

40
0 147.704 2535.458 2178.111 1992.059
100 139.490 2525.420 2168.754 1982.755
300 139.455 2524.037 2167.556 1981.676

250

20
0 35.876 202.980 171.639 153.564
100 34.218 201.254 169.929 151.858
300 33.725 200.841 170.192 153.107

40
0 80.068 462.534 404.534 382.241
100 72.000 454.737 396.829 374.677
300 71.610 457.329 401.565 383.443

60
0 130.750 782.166 699.042 685.294
100 112.324 764.534 681.624 668.256
300 114.260 773.133 694.716 690.328

80
0 189.892 1163.264 1055.226 1061.925
100 157.152 1124.063 1017.778 1021.135
300 161.892 1153.039 1052.166 1076.380

90
0 222.383 1378.550 1257.873 1279.152
100 181.080 1332.698 1212.360 1233.266
300 187.562 1336.134 1213.622 1222.793
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noticed that the pressure drop to α = 2 follows a tendency becoming smaller among all

cases with curvatures of bumps.

The final vorticity comparison includes the two best results for each width. For

d = 200 µm, the case with Re = 40, s = 100 µm and α = 2 is chosen, while for d = 250

µm, the results of the simulation with Re = 90, s = 100 µm and α = 2 has been analyzed.

Note: although α = 1 has gotten larger vorticity quantities, the geometry with α = 2

was chosen to study due to its lower pressure drop and better arrangement of the bumps.

In this way, the channel with the smallest width reaches very high values of vorticity

(as well as pressure drop as seen previously) over short distances as illustrated in Figure

5.74(a). However, these values are also reduced quickly as Figure 5.74(b) shows that the

case with d = 250 µm and Re = 90 has better vorticity in the cavity. Therefore, these

strong oscillations in the parameters may affect badly the convergence of a simulation,

and they can also cause instability in a process.

(a) Along the whole device. (b) Along y-axis at x = 1.0 mm.

Figure 5.74: Vorticity profiles comparing the best results for each device’s width d when
s = 100 µm and α = 2.

Mondal et al. (2019) evaluated micromixers with an entrance similar to a T-

shaped, but with a waviness duct. They showed that for Re = 40, the pressure drop

range is approximately from 500 Pa to 1,600 Pa in the proposed geometries, while when

Re = 90, these values varied from 1.5 kPa to 5.0 kPa with mixing index approximately

equal to 60%. Meanwhile, some authors analyzed a few geometries with high pressure

drop over 20 kPa in order to achieve over 85% of mixing (Borgohain et al., 2018), (Chen

et al., 2020). Supported by this, the microdevice with width d = 250 µm, curvature of

bump α = 2, location of feed s = 100 µm and Reynolds number Re = 90 is chosen as the

most viable for intensifying the vorticity with a lower pressure drop (1212.36 Pa).
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Chapter 6

Conclusion

“Focused, hard work is the real key to

success. Keep your eyes on the goal,

and just keep taking the next step

towards completing it. If you aren’t

sure which way to do something, do it

both ways and see which works better.”

John Carmack

The purpose of this work consisted of: writing a numerical code on Fortran

language by applying CFD concepts, and obtaining the fluid dynamics performance of

a few parameters along microdevices. Additionally, it has been proposed to evaluate a

geometry configuration that enhances the vorticity without a large increase in the pressure

drop. Therefore, based on the previous chapters, some statements can be presented.

The code was divided into three files. The first file is more extensive and it

is responsible for: discretizing the computational domain, implementing the solver, and

exporting the calculated data to a .vtk file created by the code. Furthermore, there

is a subroutine referring to the boundary conditions (location of walls, feeds, and fluid

outlet) that the user should evaluate/change when necessary. The second file refers to the

geometry to be studied and it is named GEOM. The data to be added can be generated

in any spreadsheet document. Finally, the FLOW file is intended for the properties of

the mesh, and the fluid, the feed velocity, the sub-relaxation factors, and the number of

iterations. These two files can be easily handled by the user. In fact, the intention is to
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make it easier for beginners to run a simulation, so removing the boundary condition’s

subroutine from the main file and inserting it into one of the additional files is already

included in the next update of this code.

The values of the sub-relaxation factors were not discussed in this research,

and indeed, these values depend on the conditions applied to each case study, and in

some situations, they need to be guessed until the simulation converges. In fact, there is

a pattern for them: when αu, αv, αp are about 1, they make the iterative process more

conservative, storing a very small quantity of the data obtained by the solver, and therefore

requiring more iterations with a low possibility of instability in the simulation. On the

other hand, in order to make the convergence quicker with fewer iterations, small values of

these factors are chosen. Another conclusion is that, for a small Reynolds number, the set

of values applicable to sub-relaxation factors is larger, which facilitates the convergence.

However, as Re increases, this range of values is reduced, and the chance of oscillations

along the execution of the code is higher, and consequently, this setup becomes more

guessed.

The grid-dependent tests based on the determination of the GCIfine were eval-

uated among the conditions accessible to which the code and computer’s processor run.

The maximum number of cells achieved for the mesh was 7,200 cells due to the memory

usage limit, and the proposed methodology for calculating GCIfine requires a grid refine-

ment factor greater than 1.3, so the other meshes had to have approximately 3,600 cells

and 1,600 cells. Even so, the maximum error is 3.93% for the bumpy microchannel, which

is appropriate for the proposed mesh size. Another point is, the absolute value of the

u-velocity is considerably small in these analyses, and this effect may also result in a large

percentage of these discretization errors.

As a verification method for the code, the results obtained were compared with

version 7 of OpenFOAM for two traditional CFD case studies: the rectangular duct and

the lid-driven cavity. The largest relative error calculated is 5.5% when Re = 400 in the

region close to the feed of the cavity. Considering that there are limitations regarding

the maximum number of cells in the mesh, this value is satisfactory once it is close to a

region of high velocity/pressure gradients.
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The study of fluid dynamics in the bumpy microdevice resulted in velocity,

pressure, vorticity, and stream-function fields in terms of Reynolds numbers, different lo-

cations of feed, curvatures of bumps, and widths of the bumpiness channel. The increase

in Re favors the improvement of the convective contribution in the flow, forming recir-

culation zones and intensifying the rotational motion of the fluid elements as noticed for

the cases with convex bumps for Re = 40 (d = 200 µm) and Re = 90 (d = 250 µm).

The position of the fluid inlet was studied in three locations: s = 0 µm,

s = 100 µm and s = 300 µm. In all simulations, this parameter just affects the vorticity

in the region of the converging nozzle, so when the fluid passes through the first bump,

the contribution in the vorticity becomes predominantly caused by the separation effect

where fluid elements decelerate, and consequently, some zones of high pressure show up

downstream the bump, inducing the flow to change its direction. The lateral feed on the

lower wall makes the fluid reach the upper wall abruptly and change its direction, inducing

the fluid elements to rotate. Likewise, the flow close to the upper wall also favors the

increase of angular momentum once there is an effect of the viscous forces from the wall. In

addition, comparing the three different positions of feed, both the maximum vorticity and

the average vorticity profile are quite similar along the microdevice; however, the pressure

drop for the entry at s = 0 µm is slightly higher, while for the case with s = 300 µm, the

large recirculation zone upstream of the entrance may reduce the performance/yield of a

supposed mixing or reaction system.

The curvature of the bumps was assessed using equations 4.4 and 4.5 in terms

of α that dictate whether the convex bump is flatter or sharper. The values chosen for

α were: 1, 2, and 4; and one more case with no bumps. Firstly, the inclusion of bumps

considerably increases the magnitude of the vorticity compared to cases with no bumps.

The vorticity in a bumpiness microchannel is the result of an extensive narrowing of the

channel which causes an increase in the fluid velocity, resulting in high velocity gradient,

with strong shear stress. On the other hand, the action of viscous torque caused by the no-

slip condition from the walls is the only source of vorticity for cases with no bumps along

a straight duct. Further, it is noticed that as the bump becomes smoother, the rotation

of the particles gets higher due to a longer residence time throughout the throat. Indeed,

devices with α = 1 have more extensive regions with this narrowing, and therefore, the
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pressure gradient gets larger inducing the change in the direction of flow. Nonetheless, its

pressure gradient is higher when compared to the other cases, and therefore it is concluded

that the curvature α = 2 is more viable once it still has vorticity close enough to the case

with a flatter bump, and it also has a more rounded/continuous geometry (bump+cavity).

Finally, the width of the duct where the bumps are inserted is analyzed for

two values: 200 µm and 250 µm. Again, the reduction of the channel where the fluid

flows favors the increasing of velocity of the fluid elements and causes subsequently a

larger pressure gradient after the throat, resulting in an intensification of the vorticity.

However, for Re ≥ 50, the high-pressure gradient values when d = 200 µm did not lead the

iterative process from this code to converge even after refining the post-bump regions; and

therefore, the maximum value of Re worked on that width was only 40. Thus, although

high vorticity values are obtained at low Re, the pressure drop is also large, which would

make the system more expensive with the addition of high-pressure pumps, making the

process infeasible. Therefore, based on these results, this research suggests the device’s

width d = 250 µm with curvature of bumps α = 2 and feed position at s = 100 µm

operating at Re = 90 as the best geometry configuration for the enhancement of vorticity.

Nonetheless, further studies should still be carried out in order to provoke formation of

vortices with a lower Reynolds number and a lower pressure drop. Moreover, a response

surface methodology would help not only to optimize the vorticity but also to analyze the

best combination of geometry parameters in terms of vorticity.

Lastly, the code has become a tool to assist in the study of fluid dynamics in

cases in milli and micro scale. It can be used for future research with other new geometries

to evaluate streamlines, velocity, pressure, and vorticity fields; as well as it can also be used

inside a classroom for students to understand/assess why some fluid-dynamic parameters

behave after a fluid flows through a throat, or how the flow characteristics are affected

when the Reynolds number is changed.

However, as future works, some improvements can still be applied to both code

and research. In addition to including the boundary condition subroutine in a secondary

file to help the user, the mass transport equation can be easily implemented since the

velocity field is already discretized and solved within the solver. Consequently, studies
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can be carry out in also a three-dimension perspective by evaluating the maximization of

the mixing index between two compounds based on proposing geometries of micromixers.

Moreover, it would be interesting to propose an optimization equation or method (such

as a response surface) in terms of vorticity, Reynolds number, and pressure drop in order

to support the conclusion about which geometry is the most viable. Lastly, a step of

validation of the final results, either by simulations in Ansys or by experiments, would

contribute to the ratification of the data obtained.
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Appendix A

Rectangular Duct Case

A.1 FLOW File

1 80 40

2 8.935E-7 9.97E-7

3 358.5 0.

4 0.98 0.98 0.02

5 100000

Listing A.1: Parameters stored by the user.
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A.2 GEOM File

1 ’Duct’

2 0.0000 0.0000 0.0000 0.2500

3 0.0375 0.0000 0.0375 0.2500

4 0.0750 0.0000 0.0750 0.2500

5 0.1125 0.0000 0.1125 0.2500

6 0.1500 0.0000 0.1500 0.2500

7 0.1875 0.0000 0.1875 0.2500

8 0.2250 0.0000 0.2250 0.2500

9 0.2625 0.0000 0.2625 0.2500

10 0.3000 0.0000 0.3000 0.2500

11 0.3375 0.0000 0.3375 0.2500

12 0.3750 0.0000 0.3750 0.2500

13 0.4125 0.0000 0.4125 0.2500

14 0.4500 0.0000 0.4500 0.2500

15 0.4875 0.0000 0.4875 0.2500

16 0.5250 0.0000 0.5250 0.2500

17 0.5625 0.0000 0.5625 0.2500

18 0.6000 0.0000 0.6000 0.2500

19 0.6375 0.0000 0.6375 0.2500

20 0.6750 0.0000 0.6750 0.2500

21 0.7125 0.0000 0.7125 0.2500

22 0.7500 0.0000 0.7500 0.2500

23 0.7875 0.0000 0.7875 0.2500

24 0.8250 0.0000 0.8250 0.2500

25 0.8625 0.0000 0.8625 0.2500

26 0.9000 0.0000 0.9000 0.2500

27 0.9375 0.0000 0.9375 0.2500

28 0.9750 0.0000 0.9750 0.2500

29 1.0125 0.0000 1.0125 0.2500

30 1.0500 0.0000 1.0500 0.2500

31 1.0875 0.0000 1.0875 0.2500

32 1.1250 0.0000 1.1250 0.2500

33 1.1625 0.0000 1.1625 0.2500

34 1.2000 0.0000 1.2000 0.2500

35 1.2375 0.0000 1.2375 0.2500
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36 1.2750 0.0000 1.2750 0.2500

37 1.3125 0.0000 1.3125 0.2500

38 1.3500 0.0000 1.3500 0.2500

39 1.3875 0.0000 1.3875 0.2500

40 1.4250 0.0000 1.4250 0.2500

41 1.4625 0.0000 1.4625 0.2500

42 1.5000 0.0000 1.5000 0.2500

43 1.5375 0.0000 1.5375 0.2500

44 1.5750 0.0000 1.5750 0.2500

45 1.6125 0.0000 1.6125 0.2500

46 1.6500 0.0000 1.6500 0.2500

47 1.6875 0.0000 1.6875 0.2500

48 1.7250 0.0000 1.7250 0.2500

49 1.7625 0.0000 1.7625 0.2500

50 1.8000 0.0000 1.8000 0.2500

51 1.8375 0.0000 1.8375 0.2500

52 1.8750 0.0000 1.8750 0.2500

53 1.9125 0.0000 1.9125 0.2500

54 1.9500 0.0000 1.9500 0.2500

55 1.9875 0.0000 1.9875 0.2500

56 2.0250 0.0000 2.0250 0.2500

57 2.0625 0.0000 2.0625 0.2500

58 2.1000 0.0000 2.1000 0.2500

59 2.1375 0.0000 2.1375 0.2500

60 2.1750 0.0000 2.1750 0.2500

61 2.2125 0.0000 2.2125 0.2500

62 2.2500 0.0000 2.2500 0.2500

63 2.2875 0.0000 2.2875 0.2500

64 2.3250 0.0000 2.3250 0.2500

65 2.3625 0.0000 2.3625 0.2500

66 2.4000 0.0000 2.4000 0.2500

67 2.4375 0.0000 2.4375 0.2500

68 2.4750 0.0000 2.4750 0.2500

69 2.5125 0.0000 2.5125 0.2500

70 2.5500 0.0000 2.5500 0.2500

71 2.5875 0.0000 2.5875 0.2500

72 2.6250 0.0000 2.6250 0.2500

73 2.6625 0.0000 2.6625 0.2500
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74 2.7000 0.0000 2.7000 0.2500

75 2.7375 0.0000 2.7375 0.2500

76 2.7750 0.0000 2.7750 0.2500

77 2.8125 0.0000 2.8125 0.2500

78 2.8500 0.0000 2.8500 0.2500

79 2.8875 0.0000 2.8875 0.2500

80 2.9250 0.0000 2.9250 0.2500

81 2.9625 0.0000 2.9625 0.2500

82 3.0000 0.0000 3.0000 0.2500

Listing A.2: Nodal points stored along the walls.
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Appendix B

Lid-Driven Cavity Case

B.1 FLOW File

1 60 60

2 8.935e-7 9.97e-7

3 89.62 0.

4 0.65 0.65 0.35

5 3000

Listing B.1: Parameters stored by the user.
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B.2 GEOM File

1 ’Cavity ’

2 0.0000 0.000 0.0000 1.000

3 0.0167 0.000 0.0167 1.000

4 0.0333 0.000 0.0333 1.000

5 0.0500 0.000 0.0500 1.000

6 0.0667 0.000 0.0667 1.000

7 0.0833 0.000 0.0833 1.000

8 0.1000 0.000 0.1000 1.000

9 0.1167 0.000 0.1167 1.000

10 0.1333 0.000 0.1333 1.000

11 0.1500 0.000 0.1500 1.000

12 0.1667 0.000 0.1667 1.000

13 0.1833 0.000 0.1833 1.000

14 0.2000 0.000 0.2000 1.000

15 0.2167 0.000 0.2167 1.000

16 0.2333 0.000 0.2333 1.000

17 0.2500 0.000 0.2500 1.000

18 0.2667 0.000 0.2667 1.000

19 0.2833 0.000 0.2833 1.000

20 0.3000 0.000 0.3000 1.000

21 0.3167 0.000 0.3167 1.000

22 0.3333 0.000 0.3333 1.000

23 0.3500 0.000 0.3500 1.000

24 0.3667 0.000 0.3667 1.000

25 0.3833 0.000 0.3833 1.000

26 0.4000 0.000 0.4000 1.000

27 0.4167 0.000 0.4167 1.000

28 0.4333 0.000 0.4333 1.000

29 0.4500 0.000 0.4500 1.000

30 0.4667 0.000 0.4667 1.000

31 0.4833 0.000 0.4833 1.000

32 0.5000 0.000 0.5000 1.000

33 0.5167 0.000 0.5167 1.000

34 0.5333 0.000 0.5333 1.000

35 0.5500 0.000 0.5500 1.000
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36 0.5667 0.000 0.5667 1.000

37 0.5833 0.000 0.5833 1.000

38 0.6000 0.000 0.6000 1.000

39 0.6167 0.000 0.6167 1.000

40 0.6333 0.000 0.6333 1.000

41 0.6500 0.000 0.6500 1.000

42 0.6667 0.000 0.6667 1.000

43 0.6833 0.000 0.6833 1.000

44 0.7000 0.000 0.7000 1.000

45 0.7167 0.000 0.7167 1.000

46 0.7333 0.000 0.7333 1.000

47 0.7500 0.000 0.7500 1.000

48 0.7667 0.000 0.7667 1.000

49 0.7833 0.000 0.7833 1.000

50 0.8000 0.000 0.8000 1.000

51 0.8167 0.000 0.8167 1.000

52 0.8333 0.000 0.8333 1.000

53 0.8500 0.000 0.8500 1.000

54 0.8667 0.000 0.8667 1.000

55 0.8833 0.000 0.8833 1.000

56 0.9000 0.000 0.9000 1.000

57 0.9167 0.000 0.9167 1.000

58 0.9333 0.000 0.9333 1.000

59 0.9500 0.000 0.9500 1.000

60 0.9667 0.000 0.9667 1.000

61 0.9833 0.000 0.9833 1.000

62 1.0000 0.000 1.0000 1.000

Listing B.2: Nodal points stored along the walls.
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Appendix C

Bumpy Microchannel Case

C.1 FLOW File

1 100 40

2 8.935e-7 9.97e-7

3 403.28 0.

4 0.5 0.15 0.01

5 360000

Listing C.1: Parameters stored by the user.
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C.2 GEOM Files

C.2.1 Curvature of bumps: no bumps

1 ’NoBumpy -a0’

2 0.00000 0.00000 0.00000 0.60000

3 0.05000 0.01458 0.05000 0.58542

4 0.10000 0.02917 0.10000 0.57083

5 0.15000 0.04375 0.15000 0.55625

6 0.20000 0.05833 0.20000 0.54167

7 0.25000 0.07292 0.25000 0.52708

8 0.30000 0.08750 0.30000 0.51250

9 0.35000 0.10208 0.35000 0.49792

10 0.40000 0.11667 0.40000 0.48333

11 0.45000 0.13125 0.45000 0.46875

12 0.50000 0.14583 0.50000 0.45417

13 0.55000 0.16042 0.55000 0.43958

14 0.60000 0.17500 0.60000 0.42500

15 0.65000 0.17500 0.65000 0.42500

16 0.70000 0.17500 0.70000 0.42500

17 0.75000 0.17500 0.75000 0.42500

18 0.80000 0.17500 0.80000 0.42500

19 0.85000 0.17500 0.85000 0.42500

20 0.90000 0.17500 0.90000 0.42500

21 0.95000 0.17500 0.95000 0.42500

22 1.00000 0.17500 1.00000 0.42500

23 1.05000 0.17500 1.05000 0.42500

24 1.10000 0.17500 1.10000 0.42500

25 1.15000 0.17500 1.15000 0.42500

26 1.20000 0.17500 1.20000 0.42500

27 1.25000 0.17500 1.25000 0.42500

28 1.30000 0.17500 1.30000 0.42500

29 1.35000 0.17500 1.35000 0.42500

30 1.40000 0.17500 1.40000 0.42500

31 1.45000 0.17500 1.45000 0.42500

32 1.50000 0.17500 1.50000 0.42500

33 1.55000 0.17500 1.55000 0.42500
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34 1.60000 0.17500 1.60000 0.42500

35 1.65000 0.17500 1.65000 0.42500

36 1.70000 0.17500 1.70000 0.42500

37 1.75000 0.17500 1.75000 0.42500

38 1.80000 0.17500 1.80000 0.42500

39 1.85000 0.17500 1.85000 0.42500

40 1.90000 0.17500 1.90000 0.42500

41 1.95000 0.17500 1.95000 0.42500

42 2.00000 0.17500 2.00000 0.42500

43 2.05000 0.17500 2.05000 0.42500

44 2.10000 0.17500 2.10000 0.42500

45 2.15000 0.17500 2.15000 0.42500

46 2.20000 0.17500 2.20000 0.42500

47 2.25000 0.17500 2.25000 0.42500

48 2.30000 0.17500 2.30000 0.42500

49 2.35000 0.17500 2.35000 0.42500

50 2.40000 0.17500 2.40000 0.42500

51 2.45000 0.17500 2.45000 0.42500

52 2.50000 0.17500 2.50000 0.42500

53 2.55000 0.17500 2.55000 0.42500

54 2.60000 0.17500 2.60000 0.42500

55 2.65000 0.17500 2.65000 0.42500

56 2.70000 0.17500 2.70000 0.42500

57 2.75000 0.17500 2.75000 0.42500

58 2.80000 0.17500 2.80000 0.42500

59 2.85000 0.17500 2.85000 0.42500

60 2.90000 0.17500 2.90000 0.42500

61 2.95000 0.17500 2.95000 0.42500

62 3.00000 0.17500 3.00000 0.42500

Listing C.2: Nodal points stored along the walls.
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C.2.2 Curvature of bumps: α = 1

1 ’Bumpy -a1’

2 0.00000 0.00000 0.00000 0.60000

3 0.05000 0.01458 0.05000 0.58542

4 0.10000 0.02917 0.10000 0.57083

5 0.15000 0.04375 0.15000 0.55625

6 0.20000 0.05833 0.20000 0.54167

7 0.25000 0.07292 0.25000 0.52708

8 0.30000 0.08750 0.30000 0.51250

9 0.35000 0.10208 0.35000 0.49792

10 0.40000 0.11667 0.40000 0.48333

11 0.45000 0.13125 0.45000 0.46875

12 0.50000 0.14583 0.50000 0.45417

13 0.55000 0.16042 0.55000 0.43958

14 0.60000 0.17500 0.60000 0.42500

15 0.62625 0.19059 0.62625 0.40941

16 0.65250 0.20550 0.65250 0.39450

17 0.67875 0.21908 0.67875 0.38092

18 0.70500 0.23073 0.70500 0.36927

19 0.73125 0.23995 0.73125 0.36005

20 0.75750 0.24633 0.75750 0.35367

21 0.78375 0.24959 0.78375 0.35041

22 0.81000 0.24959 0.81000 0.35041

23 0.83625 0.24633 0.83625 0.35367

24 0.86250 0.23995 0.86250 0.36005

25 0.88875 0.23074 0.88875 0.36926

26 0.91500 0.21909 0.91500 0.38091

27 0.94125 0.20551 0.94125 0.39449

28 0.96750 0.19060 0.96750 0.40940

29 0.99375 0.17501 0.99375 0.42499

30 1.02000 0.17500 1.02000 0.42500

31 1.04625 0.19059 1.04625 0.40941

32 1.07250 0.20550 1.07250 0.39450

33 1.09875 0.21908 1.09875 0.38092

34 1.12500 0.23073 1.12500 0.36927

35 1.15125 0.23995 1.15125 0.36005

36 1.17750 0.24633 1.17750 0.35367
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37 1.20375 0.24959 1.20375 0.35041

38 1.23000 0.24959 1.23000 0.35041

39 1.25625 0.24633 1.25625 0.35367

40 1.28250 0.23995 1.28250 0.36005

41 1.30875 0.23074 1.30875 0.36926

42 1.33500 0.21909 1.33500 0.38091

43 1.36125 0.20551 1.36125 0.39449

44 1.38750 0.19060 1.38750 0.40940

45 1.41375 0.17501 1.41375 0.42499

46 1.44000 0.17500 1.44000 0.42500

47 1.46625 0.19059 1.46625 0.40941

48 1.49250 0.20550 1.49250 0.39450

49 1.51875 0.21908 1.51875 0.38092

50 1.54500 0.23073 1.54500 0.36927

51 1.57125 0.23995 1.57125 0.36005

52 1.59750 0.24633 1.59750 0.35367

53 1.62375 0.24959 1.62375 0.35041

54 1.65000 0.24959 1.65000 0.35041

55 1.67625 0.24633 1.67625 0.35367

56 1.70250 0.23995 1.70250 0.36005

57 1.72875 0.23074 1.72875 0.36926

58 1.75500 0.21909 1.75500 0.38091

59 1.78125 0.20551 1.78125 0.39449

60 1.80750 0.19060 1.80750 0.40940

61 1.83375 0.17501 1.83375 0.42499

62 1.86000 0.17500 1.86000 0.42500

63 1.88625 0.19059 1.88625 0.40941

64 1.91250 0.20550 1.91250 0.39450

65 1.93875 0.21908 1.93875 0.38092

66 1.96500 0.23073 1.96500 0.36927

67 1.99125 0.23995 1.99125 0.36005

68 2.01750 0.24633 2.01750 0.35367

69 2.04375 0.24959 2.04375 0.35041

70 2.07000 0.24959 2.07000 0.35041

71 2.09625 0.24633 2.09625 0.35367

72 2.12250 0.23995 2.12250 0.36005

73 2.14875 0.23074 2.14875 0.36926

74 2.17500 0.21909 2.17500 0.38091
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75 2.20125 0.20551 2.20125 0.39449

76 2.22750 0.19060 2.22750 0.40940

77 2.25375 0.17501 2.25375 0.42499

78 2.28000 0.17500 2.28000 0.42500

79 2.30625 0.19059 2.30625 0.40941

80 2.33250 0.20550 2.33250 0.39450

81 2.35875 0.21908 2.35875 0.38092

82 2.38500 0.23073 2.38500 0.36927

83 2.41125 0.23995 2.41125 0.36005

84 2.43750 0.24633 2.43750 0.35367

85 2.46375 0.24959 2.46375 0.35041

86 2.49000 0.24959 2.49000 0.35041

87 2.51625 0.24633 2.51625 0.35367

88 2.54250 0.23995 2.54250 0.36005

89 2.56875 0.23074 2.56875 0.36926

90 2.59500 0.21909 2.59500 0.38091

91 2.62125 0.20551 2.62125 0.39449

92 2.64750 0.19060 2.64750 0.40940

93 2.67375 0.17501 2.67375 0.42499

94 2.70000 0.17500 2.70000 0.42500

95 2.73750 0.17500 2.73750 0.42500

96 2.77500 0.17500 2.77500 0.42500

97 2.81250 0.17500 2.81250 0.42500

98 2.85000 0.17500 2.85000 0.42500

99 2.88750 0.17500 2.88750 0.42500

100 2.92500 0.17500 2.92500 0.42500

101 2.96250 0.17500 2.96250 0.42500

102 3.00000 0.17500 3.00000 0.42500

Listing C.3: Nodal points stored along the walls.
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C.2.3 Curvature of bumps: α = 2

1 ’Bumpy -a2’

2 0.00000 0.00000 0.00000 0.60000

3 0.05000 0.01458 0.05000 0.58542

4 0.10000 0.02917 0.10000 0.57083

5 0.15000 0.04375 0.15000 0.55625

6 0.20000 0.05833 0.20000 0.54167

7 0.25000 0.07292 0.25000 0.52708

8 0.30000 0.08750 0.30000 0.51250

9 0.35000 0.10208 0.35000 0.49792

10 0.40000 0.11667 0.40000 0.48333

11 0.45000 0.13125 0.45000 0.46875

12 0.50000 0.14583 0.50000 0.45417

13 0.55000 0.16042 0.55000 0.43958

14 0.60000 0.17500 0.60000 0.42500

15 0.62625 0.17824 0.62625 0.42176

16 0.65250 0.18741 0.65250 0.41259

17 0.67875 0.20091 0.67875 0.39909

18 0.70500 0.21642 0.70500 0.38358

19 0.73125 0.23125 0.73125 0.36875

20 0.75750 0.24284 0.75750 0.35716

21 0.78375 0.24918 0.78375 0.35082

22 0.81000 0.24918 0.81000 0.35082

23 0.83625 0.24284 0.83625 0.35716

24 0.86250 0.23125 0.86250 0.36875

25 0.88875 0.21642 0.88875 0.38358

26 0.91500 0.20092 0.91500 0.39908

27 0.94125 0.18741 0.94125 0.41259

28 0.96750 0.17824 0.96750 0.42176

29 0.99375 0.17500 0.99375 0.42500

30 1.02000 0.17500 1.02000 0.42500

31 1.04625 0.17824 1.04625 0.42176

32 1.07250 0.18741 1.07250 0.41259

33 1.09875 0.20091 1.09875 0.39909

34 1.12500 0.21642 1.12500 0.38358

35 1.15125 0.23125 1.15125 0.36875

36 1.17750 0.24284 1.17750 0.35716
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37 1.20375 0.24918 1.20375 0.35082

38 1.23000 0.24918 1.23000 0.35082

39 1.25625 0.24284 1.25625 0.35716

40 1.28250 0.23125 1.28250 0.36875

41 1.30875 0.21642 1.30875 0.38358

42 1.33500 0.20092 1.33500 0.39908

43 1.36125 0.18741 1.36125 0.41259

44 1.38750 0.17824 1.38750 0.42176

45 1.41375 0.17500 1.41375 0.42500

46 1.44000 0.17500 1.44000 0.42500

47 1.46625 0.17824 1.46625 0.42176

48 1.49250 0.18741 1.49250 0.41259

49 1.51875 0.20091 1.51875 0.39909

50 1.54500 0.21642 1.54500 0.38358

51 1.57125 0.23125 1.57125 0.36875

52 1.59750 0.24284 1.59750 0.35716

53 1.62375 0.24918 1.62375 0.35082

54 1.65000 0.24918 1.65000 0.35082

55 1.67625 0.24284 1.67625 0.35716

56 1.70250 0.23125 1.70250 0.36875

57 1.72875 0.21642 1.72875 0.38358

58 1.75500 0.20092 1.75500 0.39908

59 1.78125 0.18741 1.78125 0.41259

60 1.80750 0.17824 1.80750 0.42176

61 1.83375 0.17500 1.83375 0.42500

62 1.86000 0.17500 1.86000 0.42500

63 1.88625 0.17824 1.88625 0.42176

64 1.91250 0.18741 1.91250 0.41259

65 1.93875 0.20091 1.93875 0.39909

66 1.96500 0.21642 1.96500 0.38358

67 1.99125 0.23125 1.99125 0.36875

68 2.01750 0.24284 2.01750 0.35716

69 2.04375 0.24918 2.04375 0.35082

70 2.07000 0.24918 2.07000 0.35082

71 2.09625 0.24284 2.09625 0.35716

72 2.12250 0.23125 2.12250 0.36875

73 2.14875 0.21642 2.14875 0.38358

74 2.17500 0.20092 2.17500 0.39908



188

75 2.20125 0.18741 2.20125 0.41259

76 2.22750 0.17824 2.22750 0.42176

77 2.25375 0.17500 2.25375 0.42500

78 2.28000 0.17500 2.28000 0.42500

79 2.30625 0.17824 2.30625 0.42176

80 2.33250 0.18741 2.33250 0.41259

81 2.35875 0.20091 2.35875 0.39909

82 2.38500 0.21642 2.38500 0.38358

83 2.41125 0.23125 2.41125 0.36875

84 2.43750 0.24284 2.43750 0.35716

85 2.46375 0.24918 2.46375 0.35082

86 2.49000 0.24918 2.49000 0.35082

87 2.51625 0.24284 2.51625 0.35716

88 2.54250 0.23125 2.54250 0.36875

89 2.56875 0.21642 2.56875 0.38358

90 2.59500 0.20092 2.59500 0.39908

91 2.62125 0.18741 2.62125 0.41259

92 2.64750 0.17824 2.64750 0.42176

93 2.67375 0.17500 2.67375 0.42500

94 2.70000 0.17500 2.70000 0.42500

95 2.73750 0.17500 2.73750 0.42500

96 2.77500 0.17500 2.77500 0.42500

97 2.81250 0.17500 2.81250 0.42500

98 2.85000 0.17500 2.85000 0.42500

99 2.88750 0.17500 2.88750 0.42500

100 2.92500 0.17500 2.92500 0.42500

101 2.96250 0.17500 2.96250 0.42500

102 3.00000 0.17500 3.00000 0.42500

Listing C.4: Nodal points stored along the walls.
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C.2.4 Curvature of bumps: α = 4

1 ’Bumpy -a4’

2 0.00000 0.00000 0.00000 0.60000

3 0.05000 0.01458 0.05000 0.58542

4 0.10000 0.02917 0.10000 0.57083

5 0.15000 0.04375 0.15000 0.55625

6 0.20000 0.05833 0.20000 0.54167

7 0.25000 0.07292 0.25000 0.52708

8 0.30000 0.08750 0.30000 0.51250

9 0.35000 0.10208 0.35000 0.49792

10 0.40000 0.11667 0.40000 0.48333

11 0.45000 0.13125 0.45000 0.46875

12 0.50000 0.14583 0.50000 0.45417

13 0.55000 0.16042 0.55000 0.43958

14 0.60000 0.17500 0.60000 0.42500

15 0.62625 0.17514 0.62625 0.42486

16 0.65250 0.17705 0.65250 0.42295

17 0.67875 0.18395 0.67875 0.41605

18 0.70500 0.19787 0.70500 0.40213

19 0.73125 0.21718 0.73125 0.38282

20 0.75750 0.23636 0.75750 0.36364

21 0.78375 0.24837 0.78375 0.35163

22 0.81000 0.24837 0.81000 0.35163

23 0.83625 0.23636 0.83625 0.36364

24 0.86250 0.21719 0.86250 0.38281

25 0.88875 0.19788 0.88875 0.40212

26 0.91500 0.18396 0.91500 0.41604

27 0.94125 0.17705 0.94125 0.42295

28 0.96750 0.17514 0.96750 0.42486

29 0.99375 0.17500 0.99375 0.42500

30 1.02000 0.17500 1.02000 0.42500

31 1.04625 0.17514 1.04625 0.42486

32 1.07250 0.17705 1.07250 0.42295

33 1.09875 0.18395 1.09875 0.41605

34 1.12500 0.19787 1.12500 0.40213

35 1.15125 0.21718 1.15125 0.38282

36 1.17750 0.23636 1.17750 0.36364
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37 1.20375 0.24837 1.20375 0.35163

38 1.23000 0.24837 1.23000 0.35163

39 1.25625 0.23636 1.25625 0.36364

40 1.28250 0.21719 1.28250 0.38281

41 1.30875 0.19788 1.30875 0.40212

42 1.33500 0.18396 1.33500 0.41604

43 1.36125 0.17705 1.36125 0.42295

44 1.38750 0.17514 1.38750 0.42486

45 1.41375 0.17500 1.41375 0.42500

46 1.44000 0.17500 1.44000 0.42500

47 1.46625 0.17514 1.46625 0.42486

48 1.49250 0.17705 1.49250 0.42295

49 1.51875 0.18395 1.51875 0.41605

50 1.54500 0.19787 1.54500 0.40213

51 1.57125 0.21718 1.57125 0.38282

52 1.59750 0.23636 1.59750 0.36364

53 1.62375 0.24837 1.62375 0.35163

54 1.65000 0.24837 1.65000 0.35163

55 1.67625 0.23636 1.67625 0.36364

56 1.70250 0.21719 1.70250 0.38281

57 1.72875 0.19788 1.72875 0.40212

58 1.75500 0.18396 1.75500 0.41604

59 1.78125 0.17705 1.78125 0.42295

60 1.80750 0.17514 1.80750 0.42486

61 1.83375 0.17500 1.83375 0.42500

62 1.86000 0.17500 1.86000 0.42500

63 1.88625 0.17514 1.88625 0.42486

64 1.91250 0.17705 1.91250 0.42295

65 1.93875 0.18395 1.93875 0.41605

66 1.96500 0.19787 1.96500 0.40213

67 1.99125 0.21718 1.99125 0.38282

68 2.01750 0.23636 2.01750 0.36364

69 2.04375 0.24837 2.04375 0.35163

70 2.07000 0.24837 2.07000 0.35163

71 2.09625 0.23636 2.09625 0.36364

72 2.12250 0.21719 2.12250 0.38281

73 2.14875 0.19788 2.14875 0.40212

74 2.17500 0.18396 2.17500 0.41604
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75 2.20125 0.17705 2.20125 0.42295

76 2.22750 0.17514 2.22750 0.42486

77 2.25375 0.17500 2.25375 0.42500

78 2.28000 0.17500 2.28000 0.42500

79 2.30625 0.17514 2.30625 0.42486

80 2.33250 0.17705 2.33250 0.42295

81 2.35875 0.18395 2.35875 0.41605

82 2.38500 0.19787 2.38500 0.40213

83 2.41125 0.21718 2.41125 0.38282

84 2.43750 0.23636 2.43750 0.36364

85 2.46375 0.24837 2.46375 0.35163

86 2.49000 0.24837 2.49000 0.35163

87 2.51625 0.23636 2.51625 0.36364

88 2.54250 0.21719 2.54250 0.38281

89 2.56875 0.19788 2.56875 0.40212

90 2.59500 0.18396 2.59500 0.41604

91 2.62125 0.17705 2.62125 0.42295

92 2.64750 0.17514 2.64750 0.42486

93 2.67375 0.17500 2.67375 0.42500

94 2.70000 0.17500 2.70000 0.42500

95 2.73750 0.17500 2.73750 0.42500

96 2.77500 0.17500 2.77500 0.42500

97 2.81250 0.17500 2.81250 0.42500

98 2.85000 0.17500 2.85000 0.42500

99 2.88750 0.17500 2.88750 0.42500

100 2.92500 0.17500 2.92500 0.42500

101 2.96250 0.17500 2.96250 0.42500

102 3.00000 0.17500 3.00000 0.42500

Listing C.5: Nodal points stored along the walls.
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