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Resumo 
Levulinato de etila é um derivado do ácido levulínico com potencial para ser utilizado 

num futuro próximo como um aditivo de diesel e biodiesel devido às suas características únicas, 

como alto teor de oxigênio e origem renovável. Ele é obtido da esterificação do etanol com ácido 

levulínico, sendo o segundo um produto da hidrólise de hexoses. Porém, a produção em larga escala 

do levulinato de etila não é possível atualmente devido a barreiras tecnológicas. O objetivo deste 

projeto de mestrado foi propor e investigar um processo de hidrólise de biomassa com foco na 

produção de ácido levulínico e a sua posterior conversão a levulinato de etila, levando em conta os 

fatores econômicos que são mais importantes na redução dos custos de produção. Uma revisão de 

possíveis rotas já exploradas na literatura demonstrou o grande potencial em produzir levulinato de 

etila a partir de bagaço de cana-de-açúcar no Brasil. Ao longo do projeto, várias etapas foram 

estudadas individualmente de modo a complementar lacunas existentes para simular o processo de 

produção do levulinato de etila. Finalmente, de posse destes resultados, este trabalho apresenta a 

simulação de uma biorrefinaria e a otimização de parâmetros operacionais para minimizar o custo 

de produção do levulinato de etila. Foi demonstrado que a carga de sólidos na hidrólise é o principal 

fator impactante no custo de produção de levulinato de etila, uma vez que ela eleva a concentração 

final de ácido levulínico no hidrolisado. Também foi demonstrado que é possível obter levulinato de 

etila a um custo equivalente a aproximadamente metade do valor atual de diesel com baixo teor de 

enxofre. Condições que levam à redução no custo de produção do levulinato de etila incluem a 

hidrólise em condições menos severas (menor carga de catalisador e menor temperatura), mesmo 

que este cenário não represente a melhor seletividade possível. Outro fator fundamental para o 

sucesso econômico do processo consiste em remover grande parte das hemiceluloses em etapa 

anterior à hidrólise da celulose.  A análise de risco da biorefinaria otimizada em comparação com 

um projeto de produção de eletricidade a partir do bagaço de cana demonstrou que a produção de 

químicos derivados de biomassa como furfural, levulinato de etila e ácido fórmico representa um 

investimento menos arriscado e mais rentável do que a produção de eletricidade, considerando que 

a questão de operabilidade do reator não represente um empecilho para o desenvolvimento do 

projeto. Finalmente, os resultados demonstram a viabilidade da produção de levulinato de etila a 

partir do bagaço de cana e apresentam um melhor entendimento dos fatores que impactam a 

rentabilidade de processo. Portanto, estas observações servirão como ferramenta para outros 

pesquisadores da área direcionarem melhor as suas pesquisas em escala de bancada. 
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Abstract 
Ethyl levulinate is a derivative of levulinic acid with the potential to be used in the near 

future as a diesel and biodiesel additive because of its unique characteristics, such as high oxygen 

content and renewable origin. Ethyl levulinate is the product of the esterification of ethanol with 

levulinic acid, being the later obtained from hydrolysis of hexoses. However, the large-scale 

production of ethyl levulinate is unfeasible these days due to the lack of proper conversion 

technology. The objective of this master’s project was to propose and investigate a process of 

hydrolysis of biomass focusing on the production of levulinic acid and its further conversion to ethyl 

levulinate, considering the economic factors that are the most important in reducing the production 

costs. A review of the possible routes demonstrated the enormous potential of producing ethyl 

levulinate in Brazil using sugarcane bagasse as feedstock. During the project, several steps of the 

production of ethyl levulinate were studied individually to cover gaps in the literature that were 

fundamental in the development of more accurate process simulation to produce ethyl levulinate. 

Finally, using these results, this work presents the simulation of a biorefinery and the optimization of 

operating parameters to minimize the production cost of ethyl levulinate. Solids loading in the 

hydrolysis reactor was demonstrated to be the main factor impacting the production cost of ethyl 

levulinate because of its high impact in the final concentration of levulinic acid in the hydrolysate. 

Results indicated that production of ethyl levulinate at about half of the price of ultra-low-sulfur 

diesel in Brazil (energy basis) is economically viable. Conditions that led to lower production costs 

included hydrolysis in less severe conditions (lower catalyst dosage and lower temperature), even 

though this scenario does not represent the best possible selectivity. Another fundamental factor for 

the economic success of the processes consists of removing part of the hemicelluloses before 

hydrolysis of cellulose in a different step. Risk analysis of the optimized biorefinery compared to an 

optimized ethanol distillery producing electricity from bagasse showed that production of biomass-

derived chemicals such as furfural, ethyl levulinate, and formic acid represents a safer and more 

profitable investment than producing only electricity from the surplus bagasse.  Overall, the results 

demonstrated the viability of ethyl levulinate production using sugarcane bagasse as feedstock and 

presented a better understanding of the factors that impact the profitability of the process. Therefore, 

these observations will serve as a tool for other researchers to developed better processes for 

conversion of biomass to levulinic acid and derivatives in the future by having a better grasp of the 

economics behind it. 
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Preface 
This Master’s dissertation corresponds to the results of the FAPESP master’s project 

2016/10450-1 (Process development for sugarcane conversion to ethyl levulinate: a route for a viable 

biodiesel additive - Desenvolvimento do processo de conversão de cana-de-açúcar a levulinato de 

etila: uma rota para um aditivo de biodiesel viável). The results of this project were divided into six 

parts. Parts 1 to 5 represent individual steps either required to develop a better understanding of the 

process to convert biomass into ethyl levulinate or required to cover knowledge gaps fundamental 

for the process simulation of EL production. Part 6 represents the simulation of the biorefinery and 

depends on the results of the other five parts. 

The content of each part was defined to represent a single, independent work. Up to the 

publication of the dissertation, the following papers/manuscripts were published and included in the 

list of references of the dissertation with the following numbers: 

• [15] J. F. Leal Silva, R. Grekin, A. P. Mariano, R. Maciel Filho, Energy Technol. 2018, 6, 613–639. 
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• [92] J. F. Leal Silva, R. Maciel Filho, M. R. Wolf Maciel, Chem. Eng. Trans. 2018, 69, 373–378. 

• [95] J. F. Leal Silva, M. R. Wolf Maciel, R. Maciel Filho, Chem. Eng. Trans. 2018, 69, 379–384. 

Article 5 will include the results presented in Appendix I of this master’s dissertation. 

Article 6 corresponds to the results presented in the main text of this master’s dissertation. 
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1. Introduction 
Several studies in the past years have demonstrated the potential of using biomass as a 

precursor of chemicals, both for environmental and economic reasons. However, fermentative 

processes still face many challenges to use lignocellulosic sugars as feedstock. Conversion of 

cellulose to levulinic acid (LA) followed by conversion to ethyl levulinate (EL) represents an alternative 

to fermentative processes. The economic and technical feasibility of this route is the center point of 

discussion in this work. 

1.1. Biomass conversion technologies and the levulinate family 

The use of non-renewable sources for chemicals and energy by society, such as 

petroleum and natural gas, has driven the concentration of carbon dioxide in the atmosphere to 

unprecedented levels.[1] Examples of renewable alternatives to petroleum include solar and wind 

power for electricity supply and biomass for energy and chemical supplies. Biomass has the benefit 

of using the carbon dioxide present in the atmosphere as a carbon source. On the other hand, the 

use of petroleum means necessarily that carbon is being removed from the soil and put in the 

atmosphere in the form of carbon dioxide. Even though the use of biomass represents a considerable 

advance regarding the carbon cycle, its use as a source for chemicals and energy still hampered due 

to challenges related to processing and profitability. 
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One of the main suggestions for biomass processing is the reduction of the holocellulose 

(total polysaccharide fraction of biomass) into fermentable sugars. This process comes with a series-

selectivity challenge because the monosaccharides decompose into furanic compounds which are 

toxic to fermentative organisms. Alternatively, instead of sugars, the furanic compounds and their 

derivatives can be sought as the final goal of holocellulose decomposition, leading to furfural (FF) 

and LA (4-oxopentanoic acid, CH3C(O)(CH2)2COOH, CAS number 123-76-2, 116.11 g/mol) as the main 

products. Both FF and LA are very reactive chemicals and lead to a plethora of other chemicals, thus 

representing great building block candidates. 

Researchers have been struggling to design a reliable process for biomass conversion 

into LA and derivatives. Many of the problems are related to either cumbersome reactor operation 

or reaction conditions that lead to poor selectivity.  In this work, reaction conditions to convert 

sugarcane bagasse into LA and later into EL were investigated using process simulation, 

technoeconomic analysis, and risk analysis.  

1.2. Objectives of this work 

Bearing the above comments in mind, the primary goal of this study was to find 

conditions for economical operation of a biorefinery producing EL to help other researchers in the 

future to develop processes having in mind the big picture of the biorefinery. Reaction conditions 

such as the proportion of biomass to liquid, catalyst dosage, conversion, and temperature in a two-

step reactor process, each of which focused on conversion of different biomass polysaccharides, were 

studied via statistical analysis. All these conditions were analyzed always having in mind the final cost 

of EL at the gate of the biorefinery to meet the specific objectives of this work, which include: 

• Defining a set of operating conditions that decrease the production cost of EL 

• Impact of variations of operating conditions in production cost of EL 

• Effect of reactor configuration on the yield of hydrolysis products 

• Impact of selectivity and humins formation in process economics 

• Risk assessment of a biorefinery producing EL 

• Impact of FF on economic results 
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1.3. Organization of the dissertation 

Development of a robust biorefinery model depends on reliable process data. 

Consequently, methodology and theoretical background play a critical role in process simulation. 

Simulation of EL production depends on data that was already available in the literature or data that 

was obtained during this master’s project. Contributions of these other works are described 

throughout the dissertation. 

Details regarding process design and simulation are available in chapter 4, and details 

on the methodology used in the technoeconomic analysis are available in section 3.3. Results of the 

minimum selling price (MSP) of EL are presented in section 5.1, followed by a statistical analysis of 

variables impacting this economic parameter. Economic analysis is provided in detail in section 5.3 

only for the optimized biorefinery compared to a benchmark scenario. Risk analysis included the 

impact of market uncertainties and different pricing conditions for FF and EL. 

1.4. Main contributions of this work 

Simulation plays an important role in the development of new chemical processes: 

adequate modeling can discard unpromising routes and avoid laborious experimental work. 

Moreover, it provides the opportunity to easily connect the effect of inputs and outputs via sensitivity 

analysis, making the results of experimental models more valuable and easier to assess. This work 

also presents a sensitivity analysis of the production cost of EL considering both technical and 

economic aspects. This way, other researchers may discuss their findings based on their real impact 

on the final cost of EL, instead of only based on yield and selectivity.  Moreover, since both EL and 

LA are commodities, the observations obtained from technoeconomic analysis of EL production can 

easily be extended to LA and other LA derivatives. 
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2. Literature survey 
Several steps are involved in the development of biorefineries, which today are praised 

as a solution to make viable the commercialization of a variety of green chemicals. This section 

explains the choice of the chemical on which this work focuses (ethyl levulinate - EL) and shows the 

knowledge gaps that were proposed to be solved by this project. 

2.1. From biomass to building blocks 

Limited resources and pollution have driven society to develop alternatives to petroleum-

based products. These alternatives, based on renewable resources, need to be engineered to cover 

the demand that today belongs to well-established chemicals. There is much concern involved in 

making this paradigm shift as stealthy as possible. A great example is the automobile industry: cars 

with internal combustion engine have been in existence for more than a century.[2] Although the shift 

from internal combustion engine cars to electric cars is recognized as a trend in the near future in 

developed countries, developing countries such as China, India, and Brazil may still need to rely on 

internal combustion engines for decades. Moreover, resources for battery manufacturing are limited, 

and recycling of rare earth elements seems challenging.[3–5] Therefore, renewable alternative to fuels, 

the so-called biofuels, have been developed to be used in the same engines like those of fossil fuels. 

While searching for biofuels, several molecules have been identified as promising 

candidates to replace other commodities. Interesting options include succinic acid and 2,5-
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furandicarboxylic acid. Succinic acid can be used to replace maleic anhydride in the production of 

butanediol and tetrahydrofuran, with applications in the polymer industry.[6] 2,5-furandicarboxylic 

acid is another example because it has a structure very similar to terephthalic acid, which is used in 

manufacturing of polyethylene terephthalate (referred to as PET, PETE, Terylene, or Dacron), the most 

common polyester resin in the world.[7] These options of base molecules, called bio-based building 

blocks, have the potential to replace their fossil counterparts given that they can be produced at a 

similar or lower cost. However, the cost issue represents a significant challenge.[8] 

Biomass is recognized, in general, as a low-cost feedstock alternative. Nevertheless, 

conversion technologies for biomass fail into realizing the potential of this low cost due to poor 

yields or expensive process technology (catalyst, equipment, energy demand, etc.), as observed in 

the industrial endeavors on the cellulosic ethanol field.[9] A significant part of this challenge resides 

in the fractionation step of biomass, in which the focus is to decompose the biomass into molecules 

which can be transformed into valuable chemicals. Biomass is composed of cellulose, hemicelluloses, 

and lignin. Cellulose is a polymer consisting solely of repeating units of glucose. Hemicelluloses 

correspond to a series of polymers whose proportions depend on plant species: xylans, arabinans 

(pentose polymers), mannans, glucans, galactans (hexose polymers), etc.[10] Lignin, as hemicelluloses, 

is not as well organized as cellulose: it is an amorphous tridimensional polymer of syringyl, p-

hydroxyphenyl, and guaiacyl, along with several other differently substituted aromatic units, and its 

decomposition into chemicals is very challenging.[11] Today, most of the efforts in biomass 

fractionation into valuable chemicals focus on cellulose and hemicelluloses owing to the range of 

possibilities related to the conversion of carbohydrates into building blocks. 

2.1.1. The concept of biorefineries 

One option to circumvent the cost issue in biomass processing is the development of 

robust biorefineries. Oil refineries produce an extensive array of products, and it is possible to 

transform part of heavy fractions into products that can be obtained from light fractions and vice-

versa. The same idea of exploring the possibilities of each fraction of biomass and integrating several 

processes to obtain different products can be explored in the conversion of biomass, which is the 

basis behind the concept of the biorefinery. 
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2.1.2. Economies of scale 

Biorefinery projects should focus on large-scale processing of biomass to be 

economically feasible.[12,13] The integration of several processes requires, for example, the production 

of more utility, and sharing the production of utilities among several production trains decreases the 

specific cost per unit of energy because of economies of scale. Yet, a practical limitation of a 

biorefinery size is the logistics of biomass: biomass difficult to be transported unlike oil that is 

transported via pipelines, and biomass has low density, presents moisture, and occupies large 

volumes. Thus, transportation for long distances considerably increases the feedstock cost. 

Mathematical models have demonstrated the potential of paying for long-distance transportation 

to allow the construction of larger projects, and the development of larger biorefinery models may 

become possible in the future.[14] 

2.1.3. Process integration 

One of the main hurdles alleviated by the concept of the biorefinery is that some parts 

of the processes can be integrated. For instance, the production of utilities can be centralized on a 

single unit. In another example, considering conventional and cellulosic ethanol processes, parts of 

the fermentation and distillation processes can be combined, leading to larger equipment and 

reduced costs.[12] Another important aspect of the biorefinery is that different precursors of a 

chemical can be produced in the same site, which also results in reduced production costs.[13,15] The 

flexibility of using the same feed stream to similar processes is also proven to have a positive impact 

in the economics of a biorefinery project, as in the case of the flexibility in the production of ethanol 

and butanol.[16] 

2.1.4. Levulinic acid and ethyl levulinate 

Valuable acid dehydration products from monosaccharides include 5-

hydroxymethylfurfural (HMF), LA, and FF. Among these, the only chemical with a sizeable market 

today is FF, which is used as a solvent and as a precursor of furans used in the fabrication of furanic 

resins.[17] LA has an extensive potential as a building block for molecules to be used in 

pharmaceuticals, food additives, agricultural products, solvents, polymers, and also as a precursor of 
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be obtained from renewable resources.[16] Still, it has a higher cost than ethanol and methanol. 

Therefore, EL is the levulinate ester with the highest potential. 

Use of biodiesel in cold environment has limitations because of the self-ignition 

requirement for fuel in diesel engines.[15] Historically, the self-ignition requirement has led refiners to 

produce diesel with different qualities according to region and season in which the fuel is 

commercialized.[34] These qualities, the so-called cold flow properties, represent fuel standards 

required for commercialization: cloud point, pour point, and cold filter plugging point.[35] 

Biodiesel has worse cold flow properties than regular diesel.[35] Historically, this problem 

has been overcome by subjecting diesel (in which biodiesel will be blended) to a more onerous 

hydrotreating process. Blends of EL have been tested as an alternative solution to the problem. 

According to Joshi et al. (2011), the addition of 20 vol% EL in biodiesel from cottonseed oil and 

poultry fat reduced cloud point in 4-5 °C, pour point in 3-4 °C, and cold filter plugging point in 3 

°C.[31] Tests for cold flow properties were run with regular diesel as well. Nevertheless, improvements 

were not as noticeable as with biodiesel.[36] Performance tests have shown that fuel blends using up 

to 5% EL and biodiesel have similar power and torque to an engine running with pure diesel. Brake 

specific fuel consumption and energy consumption were decreased with the fuel blends, suggesting 

improved combustion. Also, hydrocarbon and carbon monoxide emissions decreased significantly.[37] 

 Soot emission is strongly associated with aromatics content, and diesel hydrotreating is 

also the chemical process required to reduce aromatics content in diesel to meet regulations in 

determined jurisdictions.[34] Soot is related to incomplete combustion of fuel, which is a consequence 

of the diesel engine design: liquid fuel injection occurs when the piston reaches the end of the 

compression stroke, and combustion takes place immediately (Figure 4). Notice that, at this moment, 

oxygen and fuel are not well mixed, which leads to incomplete combustion (i.e., soot formation). The 

presence of oxygen in biodiesel (10-12 wt%) and EL (33 wt%) provides better distribution of oxygen 

atoms throughout the fuel, thus reducing soot emissions.[15,38] Therefore, dilution of diesel using EL 

has the potential to decrease the requirement of a very intensive diesel hydrotreating process. A 

similar conclusion is valid for sulfur content because biodiesel and EL are free of sulfur and 

hydrotreating is also the key process for diesel desulfurization. 
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And in the liquid phase, fugacity is a function of the activity coefficient 𝛾𝑖 : 
 𝑓𝑖𝑙𝑖𝑞𝑢𝑖𝑑(𝑇, 𝑃) = 𝛾𝑖𝑥𝑖𝜙𝑖𝑠𝑎𝑡(𝑇, 𝑃𝑖𝑠𝑎𝑡)𝑃𝑖𝑠𝑎𝑡 exp (𝑉𝑖(𝑃 − 𝑃𝑖𝑠𝑎𝑡)𝑅𝑇 ) 

(3) 

2.2.1.1. Modeling of vapor and gas phase 

Substances such as carboxylic acids strongly associate in the vapor phase, in a 

phenomenon described by Nothnagel et al. (1973) as Chemical Theory of Vapor Imperfection.[39] 

According to this theory, an association of molecules in the vapor phase leads to a molar volume 

which is less than the corresponding volume of an ideal gas under the same conditions (negative 

deviation): 

 𝑖 + 𝑗  ↔ 𝑖𝑗 (4) 

Such behavior is proven to occur in systems with molecules such as acetic acid (AA), 

which present strong intermolecular hydrogen bonding, and occurs even instantly in systems with 

molecules less prone to interaction, such as argon. In these systems, modeling must account for this 

deviation considering the actual number of species to correctly correlate pressure, volume, and 

temperature. Examples of equations of state that model this behavior include Nothnagel, Abrams, 

and Prausnitz (1973),[39] and Hayden and O’Connell (1975)[40]. Among these examples, the Hayden-

O’Connel equation of state, a variation of the virial equation of state, was chosen because it is 

recommended for low up to medium pressures (up to 15 bar).[41] In the simulated process, only one 

equipment operates at a pressure higher than 15 bar, though at subcooled liquid conditions. 

For a given set of pressure 𝑃 and temperature 𝑇, the compressibility factor 𝑍 is given by 

the Hayden-O’Connell equation as follows:[40,41] 

 𝑍 = 1 + 𝐵𝑃𝑅𝑇 (5) 

𝐵, the second virial coefficient which characterizes pair interactions between molecules 𝑖 and 𝑗, can 

be described as a function of molar fractions 𝑦𝑖 and 𝑦𝑗 and the sum of several temperature-

dependent contributions from molecular configurations: free pair, metastably bound, and bound.[42] 

The Hayden-O’Connell equation of state considers that the bound contribution in chemically 

bonding species can be broken into two different contributions: bound and chemical.[41] 
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 𝐵 = ∑ ∑ 𝑦𝑖𝑦𝑗𝐵𝑖𝑗(𝑇)𝑗𝑖  (6) 

  𝐵𝑖𝑗 = (𝐵𝑓𝑟𝑒𝑒−𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟)𝑖𝑗 + (𝐵𝑓𝑟𝑒𝑒−𝑝𝑜𝑙𝑎𝑟)𝑖𝑗 + (𝐵𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑏𝑙𝑒)𝑖𝑗 + (𝐵𝑏𝑜𝑢𝑛𝑑)𝑖𝑗 + (𝐵𝑐ℎ𝑒𝑚)𝑖𝑗 

 

(7) 

For nonpolar, non-associating species: 

 𝐵𝑓𝑟𝑒𝑒−𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟 = 𝑓1(𝜎𝑛𝑝, 𝜀𝑛𝑝, 𝜔𝑛𝑝, 𝑇) (8) 

 𝜎𝑛𝑝 = 𝑔1(𝜔𝑛𝑝, 𝑇𝑐 , 𝑃𝑐) (9) 

  𝜀𝑛𝑝 = 𝑔2(𝜔𝑛𝑝, 𝑇𝑐) (10) 

  𝜔𝑛𝑝 = 𝑓2(𝑟𝑔𝑦𝑟) (11) 

 

For polar (dipole moment 𝜇 > 1.45 D), associating species: 

 𝐵𝑓𝑟𝑒𝑒−𝑝𝑜𝑙𝑎𝑟 = 𝑓3(𝜎𝑓𝑝, 𝜀𝑓𝑝, 𝜔𝑛𝑝, 𝑇) (12) 

 𝜎𝑓𝑝 = 𝑔3(𝜎𝑛𝑝, 𝜔𝑛𝑝, 𝜉) (13) 

 𝜀𝑓𝑝 = 𝑔4(𝜀𝑛𝑝, 𝜔𝑛𝑝, 𝜉) (14) 

 𝜉 = 𝑔5(𝜎𝑛𝑝, 𝜀𝑛𝑝, 𝜔𝑛𝑝, 𝑝, 𝑇) (15) 

For chemically bonding species: 

 𝐵𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑏𝑙𝑒 + 𝐵𝑏𝑜𝑢𝑛𝑑 + 𝐵𝑐ℎ𝑒𝑚 = 𝑓4(𝜎𝑐 , 𝜀𝑐 , 𝑃, 𝑇) (16) 

 𝐵𝑐ℎ𝑒𝑚 = 𝑓5(𝜎𝑐, 𝜀𝑐 , 𝜂, 𝑇) (17) 

 𝜎𝑐 = 𝑔3(𝜎𝑛𝑝, 𝜔𝑛𝑝, 𝜉 ) (18) 

 𝜀𝑐 = 𝑔6(𝜀𝑛𝑝, 𝜔𝑛𝑝, 𝜉, 𝜂)  (19) 

The following mixing rules are applied: 

 𝜀 = 0.7(𝜀𝑖𝜀𝑗)1/2 + 0.6 (1𝜀𝑖 + 1𝜀𝑗) 
(20) 

 𝜎 = (𝜎𝑖𝜎𝑗)1/2 
 (21) 

 𝜔𝑛𝑝 = (𝜔𝑛,𝑝𝑖 + 𝜔𝑛,𝑝𝑗)/2 (22) 

 𝑃 = (𝑃𝑖𝑃𝑗)1/2
 (23) 

And the fugacity coefficient of a component 𝑖 in a mixture of 𝑁 components is given by: 
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 ln(𝜙�̂�) = (2 ∑ 𝑦𝑖𝐵𝑖𝑗𝑁
𝑗=1 − 𝐵) 𝑃𝑅𝑇  (24) 

Sections of the biorefinery that do not handle carboxylic acids and require a different 

modeling approach include: sugarcane separation in juice and bagasse, sugarcane juice treatment 

and conditioning, fermentation of sugarcane juice to ethanol, ethanol recovery, biomass furnace, 

steam generation system, and cooling water system. Separation of sugarcane and fermentation of 

sugarcane juice to ethanol was not simulated step-by-step, as explained in chapter 4. As for the utility 

systems, the steam tables from the IAPWS (The International Association for the Properties of Water 

and Steam) 1995 formation were used, because this implementation of steam table is the most 

accurate available in Aspen Plus 8.6.[43] Lastly, gases in the biomass furnace were modeled using the 

Peng-Robinson equation of state with the Boston-Mathias modification for the alpha function and 

standard mixing rules.[41,44] The Boston-Mathias modification for the alpha function improves 

predictability for 𝑇 ≥  𝑇𝑐,𝑖: 
 𝛼𝑖(𝑇) = (exp (𝑐𝑖(1 − 𝑇𝑟,𝑖𝑑𝑖)))2 , 𝑓𝑜𝑟 𝑇 > 𝑇𝑐,𝑖 (25) 

 𝑑𝑖 = 1 + 𝜅𝑖/2  (26) 

 𝑐𝑖 = 1 − 1/𝑑𝑖 (27) 

 𝜅𝑖 = 0.37464 + 154226𝜔𝑖 − 0.26992𝜔𝑖2 (28) 

For 𝑇 <  𝑇𝑐,𝑖, the standard alpha function is used:[45] 

 𝛼𝑖 = (1 + 𝜅𝑖 (1 − 𝑇𝑟,𝑖1/2))2
 

(29) 

The required parameters for these calculations, (𝑇𝑐  , 𝑃𝑐 , 𝜔, etc.), are available in databanks, 

such from PURE32 databank from Aspen Plus.[46] 

2.2.1.2. Modeling of liquid phase 

Activity coefficients of components in the liquid phase were estimated using the NRTL 

(nonrandom, two-liquid) model. The NRTL model was used because it demonstrates better 

agreement with data for the class of components included in the simulation of this biorefinery.[47] In 

this model, the activity coefficient of a component i in a mixture is calculated as follows: [48] 
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 ln(𝛾𝑖) = ∑ 𝑥𝑗𝜏𝑗𝐺𝑗𝑖𝑗∑ 𝑥𝑘𝐺𝑘𝑖𝑘 + ∑ ( 𝑥𝑗𝐺𝑖𝑗∑ 𝑥𝑘𝐺𝑘𝑗𝑘 ) (𝜏𝑖𝑗 − ∑ 𝑥𝑚𝜏𝑚𝑗𝐺𝑚𝑗𝑚∑ 𝑥𝑘𝐺𝑘𝑗𝑗 )𝑗  
(30) 

where: 

 𝐺𝑖𝑗 = exp (−𝑎𝑖𝑗𝜏𝑖𝑗) (31) 

 𝜏𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗𝑇 + 𝑒𝑖𝑗 ln(𝑇) + 𝑓𝑖𝑗𝑇 
(32) 

 𝛼 = 𝑐𝑖𝑗 + 𝑑𝑖𝑗(𝑇 − 273.15 𝐾) (33) 

and 𝜏𝑖𝑖 = 0, 𝐺𝑖𝑖 = 1, and 𝑎𝑖𝑗 , 𝑏𝑖𝑗, 𝑒𝑖𝑗 , and 𝑓𝑖𝑗 are unsymmetrical. For most of the components 

considered in the simulation, only binary interaction parameters 𝑎𝑖𝑗 , 𝑎𝑗𝑖 , 𝑏𝑖𝑗, and 𝑏𝑗𝑖 combined with 𝑐𝑖𝑗 were enough to describe the non-ideal behavior of mixtures. Values for each of these parameters 

can be obtained via regression of experimental data, and the NRTL model has the capability to model 

multicomponent systems using only binary data.[47] 

2.3. Process optimization 

A generalized study of several routes to EL demonstrated that for any specific biomass 

feedstock, operating parameters such as biomass to solvent ratio, number of reaction stages, and 

conversion of cellulose and hemicelluloses play a vital role in the economics of the process.[15] 

Optimizing the production cost of EL includes other variables, such as feedstock (biomass 

and ethanol) cost, electricity price, and capital, just to mention a few. Consequently, coupling the 

optimization of EL production cost to the simulation of a complete biorefinery may develop into a 

very onerous computational task. In this work, this whole process was simplified by fixing a few 

conditions and using an appropriate sampling method to establish a simplified mathematical model 

of the biorefinery. This simplified model will provide the basis for process optimization. 

2.3.1. Surrogate model and design of experiments 

Surrogate models are employed when an outcome of an experiment cannot be easily 

directly measured. Such model mimics the behavior of the complex simulation model while being 

computationally cheaper to evaluate. Surrogate models are proven to be very useful for optimization, 

design space exploration, prototyping, and sensitivity analysis.[49] 
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Consider a problem with 𝑚 variables whose response is obtained by an unknown or very 

complicated function y: ℝm→ ℝ. Running this function over a space of 𝑛 sites corresponds to a matrix 𝑺 of  𝑚 × 𝑛 dimensions and results in a vector 𝒚𝒔 of 𝑛 responses: 

𝑺 = [𝒙(𝟏),  𝒙(𝟐), … , 𝒙(𝒏) ]𝑇 ∈  ℝ𝑚×𝑛 (34) 𝒙 = {𝑥1, 𝑥2, … , 𝑥𝑚}  ∈  ℝ𝑚  (35) 𝒚𝑺 = [𝑦(1), 𝑦(2), … , 𝑦(𝑛)]𝑇 =  [𝑦(𝒙(𝟏)), 𝑦( 𝒙(𝟐)), … , 𝑦(𝒙(𝒏)) ]𝑇 ∈  ℝ𝑛 (36) 

The sampled data (𝑺, 𝒚𝑺 ) can be fitted to any desirable equation. In the Response Surface 

Methodology, this data set can be fitted to a quadratic model which yields the predicted variable �̂� 

and provides a great compromise between accuracy and computational expense:[50] 

�̂� (𝒙) = 𝐴0 + ∑ 𝐵𝑖𝑥𝑖𝑚
𝑖=1 + ∑ 𝐶𝑖𝑖𝑥𝑖2𝑚

𝑖=1 + ∑  𝑚
𝑖=1 ∑ 𝐷𝑖𝑗𝑥𝑖𝑥𝑗𝑚

𝑗≥𝑖  
(37) 

where 𝐴0 is a constant, 𝑩 is the vector of linear coefficients, 𝑪 is the vector of quadratic coefficients, 

and 𝑫 is the vector of quadratic interaction coefficients, all to be determined. This equation has: 

1 + 𝑚 + 𝑚 + (𝑚2 ) = 1 + 2𝑚 + 𝑚!2! (𝑚 − 2)! = 1 + 2𝑚 + 𝑚 × (𝑚 − 1) × (𝑚 − 2)!2(𝑚 − 2)!= 𝑚2 + 3𝑚 + 22  

(38) 

parameters to be determined via regression. Therefore, the least number of 𝑛 cases required is: 

𝑛 ≥  𝑚2 + 3𝑚 + 22  
(39) 

Appropriate sampling inside the design space is critical to obtain a surrogate model that 

safely predicts the values of the response. Sampling is usually done via Design of Experiments (DOE) 

methods, such as the Central Composite Design (CCD). 
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3. Methodology 

The study of optimized operating conditions via process simulation requires a careful 

definition of the applied methodology, along with details that are fundamental to ensure that the 

process simulation mimics the real process. This section provides the theoretical background and the 

methods used in the execution of this work. 

3.1. Optimization variables and design of experiments 

In the production of EL, four variables were chosen: solids loading2 (SL, 𝑥1), cellulose 

conversion3 (CC, 𝑥2), catalyst loading4 (CL, 𝑥3), and the second reactor temperature5 (RT, 𝑥4).  

Conditions of the first reactor were based on the Rosenlew process (see section 4.2).[20] In a fully 

orthogonal and rotational CCD, star points are defined to allow for estimation of curvature. In the 

case of a CCD with 4 variables, such star points are in a distance of (24)1/4 =  2 from the center point 

of the design.[51] Upper and lower limits on the design space were chosen based on previous literature 

                                                 
 

2 Solids loading (SL) is defined in this work as the mass of dry biomass added with respect to the total feed 
(biomass, water, moisture, catalyst, and impurities) in mass basis. 

3 Cellulose conversion (CC) in the second reactor in molar basis. 
4 Catalyst loading (CL) is defined as mass of catalyst (sulfuric acid) with respect to the total feed in mass basis. 
5 Temperature of reactor (RT) feed. No additional heat is provided inside the reactor. 
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on the subject to correctly cover an adequate range of values for the process in question.[15,52,53] Table 

1 presents a summary of the final design space used in the development of this work. 

 

Table 1. The final design space, with the lower and upper limits of the four variables. 

Code −2  −1  0   +1  +2  

SL 4% 8% 12% 16% 20% 

CC 55% 66% 77% 88% 99% 

CL 1% 2% 3% 4% 5% 

RT (°C) 150.0 162.5 175.0 187.5 200.0 

 

Most of the works on LA production focuses on SL values around 10%.[15] However, other 

works focused on the production of other lignocellulosic biofuels consider higher values (>18%), 

even though conversion is noticed to decrease.[54,55] This factor motivated the use of a wide range of 

values for SL. The same is true for CC: cellulose requires severe conditions to be hydrolyzed, but this 

may compromise LA yield, as the reaction of cellulose to LA, final product, requires an increase in the 

concentration of a furan intermediate which is very prone to polymerization and humins formation.[15] 

CL is limited to about 5% because results from the literature show that increasing the CL from 4% to 

6% does not lead to great improvements in conversion.[56] Moreover, the kinetic model used to 

simulate the process covers a range of 0.11-0.55 mol/L of sulfuric acid, which roughly equates 1-5 

wt%.[57] The second reactor, which focuses on cellulose conversion, has the inlet temperature (RT) 

range set according to patents of the Biofine process and the limitations of a kinetic model for 

cellulose conversion  (150-200 °C).[52,53,57] The total number of cases necessary to run a CCD with four 

variables is 25 (24 fractional factorial points, 2 × 4 star points, and 1 central point – there is no sense 

in random experimental error in simulation experiments). Sample points were chosen using the 

software Statistica 13.3 (TIBCO Software Inc., 2017).  

3.2. Biorefinery simulation 

The biorefinery was simulated using the software Aspen Plus 8.6 (AspenTech, Inc., 2014) 
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with all biorefinery sections operating continuously – no batch processes were included in the 

process simulation. The following subsections of section 3.2 present parameters pertaining to the 

methodology to simulate the biorefinery process, whose design is presented in chapter 4. 

3.2.1. Components 

The following components were added to the simulation with data from Aspen Plus 

databank PURE32: water, sulfuric acid, glucose, xylose, ethanol, formic acid (FA), AA, LA, FF, MTHF, 

HMF, EL, potassium oxide, carbon dioxide, oxygen, and nitrogen. Additional properties of MTHF and 

HMF were retrieved from the National Institute of Standards and Technology database.[58] Other 

components were added to represent biomass: hemicelluloses, cellulose, lignin, and acetyl groups6. 

Acetyl groups were added as “acetic acid” and modified to solid according to the methodology 

applied by other authors in the field of simulation of biorefineries using sugarcane bagasse as 

feedstock.[59] Others components of biomass were added manually, with data available in Table 2.  

 

Table 2. User-defined entries for manually added components.[59,60] 

Property Entry in Aspen Cellulose Hemicelluloses Lignin 

Molecular weight (g/mol) USERDEF/MW 162.144 132.117 194.197 

Formula - C6H10O5 C5H8O4 C10H11.6O3.9 ∆𝐻𝑓𝑜𝑟𝑚,𝑠  (𝑘𝐽/𝑚𝑜𝑙)  USERDEF/DHSFM -976.362 -762.416 -349.70 

Molar volume (m³/mol) VSPOLY-1/1 0.106 0.0864 0.0817 𝐶𝑝,𝑠 (J/kmol.K)a 𝐶1, CPSPO1-1/1a -11704 -9536.3 31431.7 

 𝐶2, CPSPO1-1/2a 672.07 547.62 394.427 

 𝐶7, CPSPO1-1/7a 298.15 298.15 298.15 

 𝐶8, CPSPO1-1/8a 1000.0 1000.0 1000.0 

a) Coefficients of solid heat capacity equation: 𝐶𝑝,𝑠 = 𝐶1 + 𝐶2 × 𝑇, for 𝐶7 ≤ 𝑇 ≤ 𝐶8 

                                                 
 

6 Bagasse’s hemicelluloses are a series of polymers (xylan, arabinan, etc.) with acetyl groups. 
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3.2.2. Thermodynamic data 

In the simulations, all possible interactions between molecules included in the sections 

handling carboxylic acids must be taken into account to properly model the vapor phase of the 

system using the Hayden-O’Connell equation of state. Considering only the species occurring in the 

presence of carboxylic acids (FA, AA, and LA), Table 3 presents a summary of all 𝜂 

association/solvation parameters for pure/unlike interactions used in process simulation, along with 

their respective references. Other parameters used in the calculations with the Hayden-O’Connell 

equation are available in Table 4. 

 

Table 3. Hayden-O’Connell η association/solvation parameters for pure/unlike interactions used in 
process simulation. Data retrieved from Aspen Plus PURE32 databank,[46] unless otherwise stated. 

 AA ethanol EL FA FF HMF LA MTHF water 

AA 4.5 2.5 2.0b 4.5 0.8 0.8d 4.5b 1.2c 2.5 

ethanol 2.5 1.4 1.3a 2.5 0.8 0.8d 2,5a 0.5c 1.55 

EL 2.0b 1.3a 0.53 2.0b 0.75b 0.75d 2.0a 0.4c 1.3a 

FA 4.5 2.5 2.0b 4.5 1.6 1.6d 4.5b 1.2c 2.5 

FF 1.6 0.8 0.75b 1.6 0.58 0.58d 1.6b 0.4c 0.8 

HMF 1.6d 0.8d 0.75d 1.6d 0.58d 0.58d 1.6d 0.4d 0.8d 

LA 4.5b 2.5a 2.0a 4.5b 1.6b 1.6d 4.5a 1.2c 2.5a 

MTHF 1.2c 0.5c 0.4c 1.2c 0.4c 0.4d 1.2c 0.4c 0.5c 

water 2.5 1.55 1.3a 2.5 0.8 0.8d 2.5a 0.5c 1.7 

a) Resk et al., (2014)[61] 

b) LA and EL interaction parameters were assumed to be the same as those of AA and ethyl acetate. 

c)  MTHF interaction parameters were assumed to be the same as those of tetrahydrofuran, and 

they were obtained from Aspen Plus PURE32 databank, except the interaction parameters with 

EL and itself, which were assumed to be 0.4 – very low for unlike interaction because of the 

functional groups of these molecules. 

d) HMF interaction parameters were the same as FF. 
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Table 4. Critical temperature (𝑇𝑐), critical pressure (𝑃𝑐), radius of gyration (𝑟𝑔𝑦𝑟), and molecular dipole 
moment (𝜇) of species in presence of carboxylic acids in the process simulation. All data retrieved 

from Aspen Plus PURE32 databank.[46] 

 𝑇𝑐  (°𝐶) 𝑃𝑐  (𝑏𝑎𝑟) 𝑟𝑔𝑦𝑟 (Å) 𝜇 (𝐷) 

AA 318.80 57.86 2.610 1.73880 

EL  392.95 29.24 4.827 1.26812 

EtOH 240.85 61.37 2.259 1.69083 

FA 314.85 58.10 1.847 1.41502 

FF 397.00 56.60 3.350 3.59750 

HMF 521.75 49.50 3.966 4.73674 

LA 464.85 40.20 3.675 1.33708 

MTHF 263.85 37.58 3.149 1.37998 

water 373.95 220.64 0.615 1.84972 

 

Other parameters used in the simulation of the sections using the Peng-Robinson 

equation of state with the Boston-Mathias modification of the alpha function were obtained from 

Aspen Plus databank PURE32.[46] 

Table 5 summarizes the parameters used in the modeling of the liquid phase in the 

simulation using the NRTL activity coefficient model. In Table 5, entries 15 to 20 refer to parameters 

regressed from liquid-liquid equilibria (LLE) data obtained as part of this project. Details regarding 

methodology and equilibrium data are available in Appendix 1. Regarding the rest of binary 

interaction parameters, 10 entries were available in Aspen Plus databank PURE32, 5 entries were 

obtained from Resk et al. (2014),[61] 1 entry was obtained from Glass et al. (2017),[62] and the rest, 

corresponding to trace components and solute-solute interactions, was obtained via regression of 

LLE data estimated via group contribution method UNIFAC (universal quasichemical functional group 

activity coefficient model). All other thermodynamic parameters, such as coefficients for vapor 

pressure equation, coefficients of a heat capacity equation, transport properties, etc., were available 

in Aspen Plus databank PURE32.[46] 
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Table 5. Summary of NRTL parameters used in process simulation. 𝑖 𝑗 𝑎𝑖𝑗 𝑎𝑗𝑖 𝑏𝑖𝑗 𝑏𝑗𝑖 𝑐𝑖𝑗  𝑒𝑖𝑗 𝑒𝑗𝑖 𝑇𝑚𝑖𝑛 (°C) 𝑇𝑚𝑎𝑥 (°C) Source 

water FF 4.2362 -4.7563 -262.241 1911.42 0.3 0 0 58.2 161.7 [46] 

water ethanol 3.7555 -0.9852 -676.031 302.237 0.3 0 0 24.99 100 [46] 

water FA -2.5864 4.5156 725.017 -1432.08 0.3 0 0 30 108 [46] 

water AA 3.3293 -1.9763 -723.888 609.889 0.3 0 0 20 229.75 [46] 

ethanol AA 0 0 225.476 -252.482 0.3 0 0 35 115.8 [46] 

ethanol FF 0 0 73.3963 400.329 0.3 0 0 50 134 [46] 

FA AA 0 0 147.166 -85.737 0.3 0 0 100.11 118.1 [46] 

FA FF 0 0 46.1655 289.216 0.3 0 0 100.7 161.7 [46] 

water EL 0 0 1014.969 64.60453 0.285 0 0 60a 60a [61] 

LA water 0 0 -342.585 880.5534 0.3 0 0 60a 60a [61] 

ethanol EL 0 0 398.2682 -74.662 0.3 0 0 60a 60a [61] 

ethanol LA 0 0 585.396 -376.308 0.3 0 0 60a 60a [61] 

EL LA 0 0 -285.428 336.234 0.3 0 0 60a 60a [61] 

MTHF water -31.4449 142.132 1079.95 -7712.72 0.405204 5.26904 -19.8342 20 150 [62] 

FA MTHF 118.699 156.778 -6321.66 -8488.86 0.23123 -17.0751 -22.9672 6.85 66.85 b 

AA MTHF 643.401 -618.802 -34184.7 31978.9 0.01 -93.0245 89.8341 6.85 66.85 b 
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Table 3 (continued). Summary of NRTL parameters used in the process simulation. 𝑖 𝑗 𝑎𝑖𝑗 𝑎𝑗𝑖 𝑏𝑖𝑗 𝑏𝑗𝑖 𝑐𝑖𝑗  𝑒𝑖𝑗 𝑒𝑗𝑖 𝑇𝑚𝑖𝑛 (°C) 𝑇𝑚𝑎𝑥 (°C) Source 

LA MTHF 917.977 -1174.83 -34035.4 47678.6 0.01 -138.935 176.219 6.85 66.85 b 

FF MTHF -386.308 -274.459 1147.47 29859.9 0.01 65.7725 32.1125 6.85 66.85 b 

water H2SO4 12.4727 -6.56916 -1774.97 1222.7 0.3 0 0 6.85 66.85 b 

H2SO4 MTHF 14.0709 6.81485 -3698.01 856.035 0.2 0 0 6.85 66.85 b 

FA LA 0 0 -113.862 30.1136 0.3 0 0 0 200 c 

AA FF 0.476171 0.22581 1.15093 0.126298 0.5 0 0 95.97 149.18 [46] 

ethanol MTHF 0.222861 0.642818 0 0 0.484069 0 0 45 45 [46] 

AA LA 0 0 -23.3344 38.3675 0.3 0 0 0 200 c 

LA FF 0 0 221.62 -425.576 0.3 0 0 0 200 c 

a)  Equilibrium data (P-x) was determined in isothermal conditions (60 °C), and the model obtained through fitting of P-x data agrees with 

experimental T-x data over the range 11-39 °C.[61] 

b) Based on the regression of experimental data obtained as part of this Masters’ project. The manuscript of this work is available in Appendix 

2 and will be submitted in due time.  

c) Parameters were estimated using the UNIFAC group contribution method.  
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3.3. Technoeconomic analysis 

3.3.1. Capital expenditures 

The biorefinery was treated as a greenfield project. Capital expenditures (CAPEX) for 

sugarcane juice extraction, treatment, ethanol fermentation and recovery, and the cogeneration of 

heat and power facility using biomass as fuel were based on data from the Virtual Sugarcane 

Biorefinery of the Brazilian Bioethanol Science and Technology Laboratory (CTBE/CNPEM).[63] Data 

were available for 2014 and were updated to December 2017 using the IGP-M (General Index for 

Market Prices – specific for the Brazilian market).[64] It was assumed that the biomass furnace could 

handle the lignocellulosic residue of hydrolysis without any sort of special design that would increase 

its capital cost. CAPEX for the esterification of LA to EL was based on data from Novita et al. (2017).[65] 

CAPEX for the other sections was calculated using the software CAPCOST with the CEPCI (Chemical 

Engineering Plant Cost Index) of December 2017.[66,67] Distillations columns, reactors, and heat 

exchangers were dimensioned using Aspen Plus 8.6. Other equipment such as solids separators were 

dimensioned using appropriate literature guidelines.[68]  

The sections of the biorefinery dedicated to biomass hydrolysis and its products handle 

acid streams in several classes of acid strength. As a result, different materials of construction were 

considered based on recommendations from the literature.[67,69] This factor has a heavy impact on 

capital expenditure, as most materials of construction were nickel-containing stainless steel alloys to 

withstand corrosion due to acid attack at high temperature or mechanical wear because of contact 

with solid particles. [70–72] 

3.3.2. Operational expenditures and revenue 

Prices of diesel, ethanol, FA, electricity, FF, and sulfuric acid were obtained for each month 

from 2013 to 2017. The values were updated using inflation to December 2017 and converted to 

United States dollars using an exchange rate of R$ 3.3074 = $1.00 (Table 6).[73]  The series of values 

was used to calculate the average value and the standard deviation to be used in risk analysis. 

Sugarcane stalks and straw prices are updates of values estimated by other authors.[6,64]  
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Table 6. Prices used in economic analysis. 

Parameter Average value Standard deviation or limits of a 

triangular distribution 

Sugarcane stalks ($/t)[6] 22.27 ±15%a 

Sugarcane straw ($/t)[6] 25.04 ±15%a 

Sulfuric acid ($/t)[74] 28.56 14.57 

Inputs for ethanol production ($/tcane)[75]  0.7093 ±15%a 

MTHF ($/t)[29] 853.5 149.9b 

Ethanol ($/t)[76] 661.7 69.35 

FF, current market price ($/t)[74] 1824 320.4 

FF, as precursor of biofuels ($/t)[29] 405.3 71.2b 

FA, 50 wt% in water ($/t)[74] 239.0c 49.72c 

Electricity ($/MWh)[77] 57.03 16.53 

Diesel, ULSD ($/m³)[78] 607.4 16.75 

a) a triangular distribution of probability with limits relative to the average price was used. 

b) standard deviation is 18% of the average price, based on what is observed in the FF price series. 

c) 60% off current pure FA price as a result of dilution. 

 

The price of FF is a matter of discussion in the field of biofuels. The average price 

considering the last five years (2013-2017) is $1824/t (Table 6). This price is a consequence of the 

production by small facilities. Large-scale production of FF integrated to a sugarcane mill can 

produce FF at prices as low as R$600/t (2014),[79] which roughly equates to $215/t. This potential for 

low-price FF is an interesting observation because if large biorefineries start to focus on the 

production of LA to use it as fuel precursor, FF production will easily surpass market demand. For 

instance,  one single FF plant integrated to a sugarcane mill processing 4 million tonnes of sugarcane 

per year can produce almost 50 kt/y of FF, and the market projection for FF in 2020 is 600 kt/y.[79] 

One of the options for furfural is the chemical upgrade to other chemicals. Still, other markets may 

become saturated with the additional production of typical FF derivatives such as furfuryl alcohol. 
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Table 7. Parameters used in the cash flow analysis. 

Parameter Value 

Working capital (% CAPEX) 10% 

Project lifespan (y) 20 

Scrap value 0 

Workers 269[80] 

Labor cost ($/mo)  1301.27[81] 

Maintenance (% CAPEX) 5% 

Income tax 34%[82] 

Depreciation, linear  10% 

Depreciation period (y) 10 

 

Results of each of the 25 simulated scenarios were used in the cash flow analysis to 

determine the MSP of EL: the price of EL was varied to achieve an internal rate of return (IRR) of 12% 

in any project. This value of IRR is commonly accepted as a minimum attractive rate of return for 

sugarcane mill projects in Brazil.[75]  

3.4. Optimization and risk analysis 

The list of values of MSP obtained via cashflow analysis for each case of the DOE was 

used to determine the optimized design of the biorefinery. The set of data including operating 

conditions and their resulting MSP were used to obtain a surrogate model, as described in Figure 6. 

In the situation in which the results of the surrogate model were inconclusive, the design space was 

changed according to technical limitations, such as availability of data or models used in the 

simulation of the process. With an adequate surrogate model, optimized conditions were obtained 

via gradient-based optimization, using the model’s extreme values as lower and upper bounds. Last, 

the resulting optimized operating conditions were simulated to determine the MSP in optimized 

conditions, and the result was compared to the value predicted by the surrogate model. 
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Besides the simple comparison of economic indicators between scenarios, economic 

aspects were further analyzed using Monte Carlo simulation. Monte Carlo simulation helps to identify 

the most critical economic variables that may compromise the profitability and economic security of 

the biorefinery project. 

In the cases in which a data series was available, a normal probability distribution of 

prices was assumed (Table 6). When a data series was unavailable, as in the case of sugarcane stalks 

and straw, a triangular probability distribution was used with limits defined as ±15% of average value. 

Capacity factor was included as one of the variables, with a triangular distribution of ±10%, to 

represent the effects of severe droughts on the yield of sugarcane per area harvested and the change 

of climatic conditions as well. CAPEX was considered to vary with a triangular distribution of 

probability. Considering sugarcane processing facilities, ethanol fermentation, and production of 

utilities (dubbed CAPEX base), limits of ±15% were attributed. For the areas working with hydrolysis 

of cellulose and their derivatives (dubbed CAPEX EL), a triangular probability distribution was 

assigned with ±40% limits.  This difference in limit size for the triangular distributions is related to 

the maturity of each technology, which affects the accuracy of capital cost estimation.  

Monte Carlo simulation was run using @RISK 7.5.2 (Palisade Corporation, USA, 2017) 

with 100000 iterations to obtain the probability distribution of IRR of the four different scenarios. In 

each of these iterations, values of each of the model inputs in the cash flow analysis (Figure 6) were 

randomly sampled according to their respective probability distribution. From these inputs, the 

model calculated the IRR for each iteration and stored these results to be used in statistical analysis. 

The obtained probability distribution of IRR was used to estimate the impact of each of the most 

important inputs in IRR via sensitivity analysis. 
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Sugarcane processing and ethanol production from sugarcane juice were not simulated 

step-by-step. Instead, process simulation results of these sections based on data available in the 

literature were transferred into the simulation (mass and energy balances). Conditions used in the 

cogeneration of heat and power (CHP) section were the same used in the simulation of an optimized 

sugarcane mill with current technology. The furnace was fueled either by straw, bagasse, or residue 

from biomass hydrolysis. The amount of bagasse diverted to fuel application instead of LA 

production depends on the amount of LA produced (affected by optimization variable CC and 

selectivity). Backpressure turbines were employed since excess steam is produced. Parameters used 

in these sections are available in Table 8.  

 

Table 8. Process conditions included in the simulation for sugarcane processing, ethanol production, 
and CHP.[59,63,83,84] 

Parameter Value 

Sugarcane processing capacity (Mt/y) 4.0 

Operational year (d) 200 

Bagasse (wet, 50 wt%) available for LA and CHP (kg/tcane)a 257 

Straw available as fuel (kg/tcane) 70 

Anhydrous ethanol yield from sugarcane (L/tcane) 85.4 

Steam consumption in the sugarcane mill and ethanol production   

2.5 bar (kg/kgEtOH) 4.61 

6.0 bar (kg/kgEtOH) 0.76 

Electricity consumption (mill and ethanol) (kWh/tcane) 30.0 

Boiler pressure (bar) 90.0 

Boiler temperature (°C) 520 

Boiler efficiency, LHV basis 87.7% 

Back pressure turbine efficiency 85% 

Electric generator efficiency 98% 

a) Difference between total bagasse available after juice extraction and the amount of bagasse 

fines required in cake filter (6 kg/tcane) and 5% of bagasse stored for boiler startup. 
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Sugarcane harvesting season is considered to last 200 days, thus limiting the biorefinery 

operational year. Some works in the literature consider an extended operational year of 330 days in 

second generation processes to reduce equipment size while keeping the same yearly production,[6] 

considering the storage of bagasse for operation during the off-season.[6] However, this approach 

seems unfeasible in real conditions because of the risk of bagasse fire and mold growth.[85,86] 

Moreover, the density of bagasse is low (dry: 102 kg/m³).[85] Then, storing enough bagasse to keep 

the same production level running for 130 days during off-season requires vast storage space. 

Ethanol was considered to be available for commercialization and use at a purity of 99.6 

wt%.[12] Bagasse and straw were available for use with the composition detailed in Table 9. 

 

Table 9. Composition of sugarcane bagasse and straw.[59] 

Component Fraction of bagasse (wt%) Fraction of straw (wt%) 

Cellulose 21.61% 32.42% 

Hemicelluloses 11.81% 22.53% 

Acetyl group 1.21% 2.31% 

Lignin 11.72% 20.59% 

Ashes 1.61% 2.62% 

Glucose 0.08% 0.19% 

Sucrose 1.96% 4.34% 

Water 50.00% 15.00% 

 

4.2. Hydrolysis of hemicelluloses 

Operation of hydrolysis on the first pilot-scale project on LA production was regarded as 

one of the main problems because the first reactor often clogged.[15] Nevertheless, there are 

examples in the industry of reactors that handle biomass (sugarcane bagasse) hydrolysis without 

problems, such as the reactor used in the Rosenlew process for FF production.[20] The Rosenlew 

reactor operates with an innate catalyst derived from the own sugarcane bagasse, and most of the 
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reaction occurs in the middle section of the reactor, which is a vertical vessel with a length to diameter 

ratio (L/D) of 4.8.[20] The set of phenomena occurring in the reactor resembles a reactive distillation 

in a stripping column: as the solid biomass enters the reactor at room temperature, part of the vapors 

condenses; at the same time, steam is injected at the bottom to feed energy to the reactor and to 

rise hydrolysis products (FF and AA) to the top. In such fashion, AA derived from hydrolysis of acetyl 

groups in hemicelluloses accumulate in the middle section of the reactor and catalyzes the hydrolysis 

of polysaccharides. Due to the presence of vapor in large quantities, the vapor-liquid equilibrium 

between FF and water is at the side of the azeotrope in which FF is very volatile, and FF leaves the 

reactor at the top together with excess steam. This reactor successfully accomplishes the removal of 

a significant part of the hemicelluloses, which in turn will decrease the production of humins during 

synthesis of LA in more severe conditions. 

Zeitsch (2000) gives operating conditions and yield of FF and other products only in the 

top stream of the reactor.[20] In the production of LA, the bottom product of the reactor is also of 

interest. Thus, conversion of biomass and sugars to heavy products was based on another reference. 

Batalha and co-workers (2015) studied the autohydrolysis of sugarcane bagasse. The more similar 

condition to that of the Rosenlew reactor corresponds to a residence time of 40 min – against 120 

min in the Rosenlew reactor.[20,87] Even though this residence time represents one-third of the 

residence time of biomass in the Rosenlew reactor, it is important to remember that the hydrolysis 

reaction occurs in a small, central portion of the Rosenlew reactor. The rest of the reactor focuses on 

stripping off the produced FF. Therefore, these conversion data were used to complement the results 

from Zeitsch (2000).[20,87] Table 10 summarizes the conditions used to simulate this reactor. 

 

Table 10. Operating conditions of the Rosenlew reactor for hydrolysis of hemicelluloses.[20,87] 

Parameter Value 

Conversion of hemicelluloses to xylose 78.72% 

Conversion of xylose to FF 75.58% 

Conversion of acetyl groups to AA 87.88% 

Conversion of cellulose to glucose 11.81% 
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Table 10 (continued). Operating conditions for hydrolysis of hemicelluloses.[20,87] 

Conversion of glucose to HMF 42.21% 

Conversion of HMF to LA and FA 65.07% 

Conversion of cellulose to low boilersa 0.87% 

Pressure (bar) 10.01 

Temperature 180.0 

Residence time (solids, min) 120.0 

Steamb to FF ratio (kg/kg) 30.00 

a) Low boilers: methanol, ethanol, diacetyl, etc. 

b) Steam is injected at the bottom at 10.01 bar and 265 °C. 

 

The reactor, which is a single vessel, was simulated as a combination of three models of 

Aspen Plus: RStoic, RadFrac, and Flash2. Each of the two RadFrac blocks, with five equilibrium stages, 

represented the top and bottom parts of the reactor. These RadFrac blocks were simulated without 

condenser and reboiler. The reaction, which occurs in the middle section of the reactor, is represented 

by a combination of an RStoic and a Flash2, i.e., another stage but with reaction. All blocks were set 

to operate adiabatically and at the operating pressure of the Rosenlew reactor: 10.01 bar.[20] The 

Rstoic block is required because Aspen Plus does not allow conversion of solids (biomass 

components) inside the RadFrac block. 

 

Figure 8. Simulation of the reactor for hydrolysis of hemicelluloses based on the Rosenlew reactor. 
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𝑘𝑖 = 𝐴0,𝑖 exp (− 𝐸𝑖𝑅𝑇) [𝐻2𝑆𝑂4]𝑚𝑖 (44) 

in which 𝐴0 is the pre-exponential factor, 𝐸 is the activation energy, 𝑅 is universal gas constant, 𝑚 is 

the exponent for sulfuric acid concentration and 𝑖 is the subscript which denotes each reaction step: 𝐺𝐿𝑈, 𝐻𝑈𝑀, 𝐻𝑀𝐹, or 𝐿𝐴 for Eq. 40-43. 

 

Table 11. Kinetic parameters for the acid-catalyzed hydrolysis of cellulose in sugarcane bagasse.[57] 

Reaction step 𝐴0(s-1) 𝐸 (kJ/mol) 𝑚(-) 𝑘𝐺𝐿𝑈  1.59x1018 144.85 1.57 𝑘𝐻𝑈𝑀  6.94x1019 161.14 1.08 𝑘𝐻𝑀𝐹  6.58x1018 152.14 1.14 𝑘𝐿𝐴  2.71x1014 101.63 1.32 

 

These kinetic parameters were inserted in Aspen Plus using the LHHW (Langmuir-

Hinshelwood-Hougen-Watson) rate equation format option of the general reaction formulary. Even 

though the kinetics of cellulose hydrolysis is not of the LHHW type, this formulary option has several 

possible entries. One of these entries, the adsorption term (Eq. 45 and 48), gives the possibility to 

indicate the rate dependency on sulfuric acid concentration: 

𝑟 = (𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑓𝑎𝑐𝑡𝑜𝑟) × (𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)(𝑎𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚)  
(45) 

(𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑓𝑎𝑐𝑡𝑜𝑟) = 𝐴0(𝑇)𝑛 exp ((− 𝐸𝑅𝑇)) 
(46) 

(𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛) = 𝑘1 ∏ 𝑪𝑖𝛼𝑖   𝑁
𝑖=1 − 𝑘2 ∏ 𝑪𝑖𝛽𝑗   𝑁

𝑗=1  
(47) 

(𝑎𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚) = (∑ 𝐾𝑖 (∏ 𝑪𝑗𝜆𝑗𝑁
𝑗=1 )𝑀

𝑖=1 )𝑚′  (48) 

ln(𝐾𝑖) = 𝐴𝑖 + 𝐵𝑖𝑇 + 𝐶𝑖 ln(𝑇) + 𝐷𝑖𝑇 (49) 

in which 𝑛 is the temperature exponent, 𝑘1 and 𝑘2 are the preexponential factor of the forward and 
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time as the FF concentration peaks.[57,88] Therefore, considering only the consumption of xylose and 

consumption of FF (XYD and FFD, respectively), the kinetics of the reactions are described as follows: 

𝑅𝑋𝑌𝐷 = 1.551 × 1014 ( 𝐿𝑚𝑜𝑙. 𝑚𝑖𝑛) [𝑋𝑌𝐿𝑂𝑆𝐸][𝐻+] exp (− 140.457 ( 𝑘𝐽𝑚𝑜𝑙)𝑇 (𝐾) ) 
(51) 

𝑅𝐹𝐹𝐷 = 2.808 × 107 ( 𝐿𝑚𝑜𝑙. 𝑚𝑖𝑛) [𝐹𝐹][𝐻+] exp (− 92.352 ( 𝑘𝐽𝑚𝑜𝑙)𝑅𝑇 (𝐾) ) 
(52) 

After the reactor, the hydrolysate stream was depressurized into an adiabatic vessel 

operating at 5 bar. The vapor obtained in this step had more than 3 wt% of FF and was mixed with 

the product of the Rosenlew reactor. Figure 11 depicts the operations related to the hydrolysis of 

cellulose. 

 

Figure 11. Pre-heating of process water and hydrolysis reactor for cellulose conversion into LA. 
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4.4. Recovery of solids and concentration of hydrolysate 

The humins produced during hydrolysis form a coarse solid,[15,90] which in this design was 

suggested to be separated in the first step with a centrifuge because of the high liquid to solid 

proportion (around 10 in weight basis, depending on the case of the DOE). The centrifuge recovered 

0.95 of the solids in a stream with a proportion of 2:1 of liquid to solids (~33% of solids). Energy 

spent by the centrifuge was not considered in process simulation because of the lack of process data 

and because the total energy required is too low compared to the rest of the process.[91] The liquid 

stream was then filtered, and this step considered complete recovery of the remaining solids in a 

cake with 50% of liquid. The feed pressure of the filter was 5 bar, and the pressure drop was 1 bar. 

The success of this step heavily depends on operability conditions regarding the handling of humins, 

which needs to be studied further as there is insufficient literature on the subject.[90] 

Filter cake and centrifuge slurry were mixed and passed through a five-stage counter 

current solids washer with 95% mixing efficiency in each stage. Part of the water recovered from FF 

distillation (section 4.5) was used in this step, in a proportion of 1:1 to the liquid fraction of the slurry 

feeding the solids washer. This process recovered 98% of the LA which was present in the slurry. The 

washed solid was used as fuel in the furnace. Figure 12 depicts this process step. 

 

Figure 12. Solids separation and washing. SPL-01 splits the water from FF distillation into a purge 
(5%), the required liquid to wash the solids in block CCW, and the balance was recycled to hydrolysis. 
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The clear hydrolysate was sent to a concentration step. First, the hydrolysate was fed to 

a stripping column to recover most of the FF. This stripping column was simulated with 10 stages, 

no condenser, the feed entered at the top, condenser operated at 6.8 bar, and a pressure drop of 20 

mbar per stage. The vapor leaving this column was used as a heating medium for the second 

evaporator of a series of six evaporator effects. This design was preferred for the first effect instead 

of a simple evaporator to recover a more concentrated stream of FF (the vapor stream became about 

thrice more concentrated in FF using this method). The following effects were simulated as simple 

evaporators, all with the same heat transfer area. Such condition was attained by adjusting the 

pressure drop between stages. The minimum temperature difference was set at the first effect (10 

°C).  This step is presented in Figure 13. 

 

Figure 13. Representation of the concentration step of hydrolysate with multiple-effect evaporators. 

EVAP-02

V-01

SEP-02 SEP-03

SEP-04 SEP-05

SEP-06

EVAP-03 EVAP-04

EVAP-05 EVAP-06

V-02 V-03

V-04

V-05

P-02

COND-02

C-01

RST OIC

RXN

MIX-1

00

LQ-05(IN)

EF1-1

06

EF2-1 EF3-1

EF4-1 EF5-1

18

20 CONC-LA(OUT)

09

12

15

11

14

13

10
07

EF2-2

EF3-2

EF4-2

16

17

EF5-2

EF6-1

EF6-2

EF1-2

FF-R-02(OUT)

01

REC-1



64 
 

  

Process design and simulation 

Master’s dissertation – Jean Felipe Leal Silva 

During the concentration step, because of the increase of sulfuric acid concentration as 

part of the hydrolysate is evaporated, an RStoic model (adiabatic, no pressure drop) was used to 

convert all remaining hydrolyzed sugars into FF and LA. For each case of the DOE, the distillate to 

feed fraction in C-01 (Figure 13) was adjusted accordingly to obtain a hydrolysate with an LA content 

of 29.3 wt% without having a water content <40 wt%, based on results obtained in another part of 

this master’s project.[92] 

4.5. Recovery of furfural 

FF is recovered in an azeotropic distillation scheme based on industrial process data.[20] 

First, the vapor streams containing FF were condensed. These streams were available with bubble 

points above 145 °C, and they were used to produce steam for other sections of the biorefinery that 

consumed low-pressure steam (2.5 bar, including sections in ethanol production – Figure 7). This 

approach provides a significant reduction of steam consumption.[17]  

The condensed stream (~4 wt% of FF) was fed to a column that stripped FF out of the 

water, working on the side of the FF-water azeotrope in which FF is the most volatile component. 

This column had 38 stages (including reboiler and condenser), and the main feed entered in stage 

11. The column had another feed in stage 8, consisting of an aqueous phase returned from a 

decanter, which was fed by a side stream drawn from stage 5 (liquid phase) that removed 17.85 wt% 

relative the main feed. This stream represented the main outlet of top products from the column, 

and the distillate recovered from the top of the column represented a small fraction: 0.486 wt% of 

the main feed. Thus, to provide enough contact between vapor and liquid phases at the top, the 

reflux ratio was high: 40. These conditions were based on industrial data, and they take advantage 

of the azeotrope and the occurrence of a LLE.[20] The pressure was set at 770 Torr in stage 1 and 1180 

Torr in stage 38. The condenser had an off-gas outlet because of the operating temperature: 50 °C. 

This off-gas contained mainly very light gases produced during biomass hydrolysis. The liquid 

distillate (stage 1) contained low boilers (methanol, ethanol, diacetyl, etc.), water, and FF. The block 

convergence method was set to “azeotropic”, with three valid phases. 

The top product of the first column was sent to a small column to recover FF. This column 

had 10 stages, reflux ratio of 1, bottoms to feed ratio of 0.73 in mass basis, feed on stage 5, pressure 
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of 1.3 bar in the condenser, stage pressure drop of 15 mbar, and the condenser operated at 50 °C. 

The off-gas contained light gases, and the liquid distillate contained low boilers. The bottom product 

was sent to a decanter to separate FF and water. The block convergence method was “standard”. 

The product stream from stage 5 of the azeotropic column containing more than 20 wt% 

of FF was cooled down to 61 °C and sent to a decanter for phase separation. The adiabatic decanter 

operated with a pressure drop of 100 mbar at the inlet. The aqueous phase was returned to the first 

column in stage 8, and the organic phase was sent to a third column which stripped off water from 

FF. This column had 5 stages, distillate to feed ratio of 0.05 (mass basis), feed on stage 1, and 

operated in vacuum conditions to avoid degradation of FF in high temperature: 400 mbar in stage 1 

and 440 mbar in stage 5. The column had no reflux: the decanter feeding the organic phase to this 

column worked as its reflux drum. The top vapor product was cooled to 61 °C, and the off-gas was 

separated before mixing the liquid distillate with the other FF-rich streams that feed the decanter. 

Figure 14 illustrates the complete process for recovery of FF. 

 

 

Figure 14. Recovery of FF from FF-containing vapors via azeotropic distillation. 
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4.6. Recovery of levulinic acid 

LA was recovered via solvent extraction. The use of MTHF was suitable because it is very 

selective towards LA (oxygenated solute and oxygenated solvent). Operating conditions for this 

section were previously assessed using the UNIFAC group contribution method.[92] In the simulation 

of this biorefinery for production of EL, these same conditions were used since both NRTL and 

UNIFAC predict phase split and the differences in separation performance may not substantially 

affect the overall economic performance of the process as it represents a single step in a complete 

biorefinery. Moreover, a rigorous process simulation to yield definitive optimized operating 

conditions for this liquid-liquid extraction process also requires determination of process data for 

the dehydration of MTHF using molecular sieves. In the work which was used as the basis for the 

simulation of this step, the dehydration of MTHF had conditions based on those of dehydration of 

ethanol using molecular sieves to have an estimate of the recovery of MTHF per cycle.[92] 

The concentrated hydrolysate was contacted in countercurrent with MTHF as shown in 

Figure 15. Both streams were fed to the extractor at 70 °C. MTHF and water present inverse solubility: 

the higher the temperature, the lower the mutual solubility. 70 °C was used as a limit because of the 

low boiling point of MTHF. Enough solvent (recycle and makeup) was supplied to recover 99% of LA.  

 

Figure 15. Liquid extraction of LA from hydrolysate. 
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with 12 stages and no condenser, with the following conditions: top stage operating pressure of 1.05 

bar, stage pressure drop of 15 mbar, distillate to feed ratio of 0.014 (mole basis), and convergence 

method as “azeotropic”. The distillate product of this column was mixed with the extract stream and 

sent to a separation step (hierarchy block LA-REC in Figure 15) to recover MTHF and LA. 

LA-REC in Figure 15 refers to the separation of LA and MTHF. As a result of the high 

difference in volatility between solvent and solute, a significant part of the MTHF was recovered in a 

three-effect evaporation to decrease steam consumption (Figure 16). Two out of the three 

evaporation steps were carried out using a column (RadFrac model) to minimize losses of FA and AA. 

In the first effect, a column with 10 stages operating at 9.15 bar in the first stage with a 20 mbar 

pressure drop per stage, about 20 wt% of the feed was recovered at the top. The amount of distillate 

recovered depended on previous steps (i.e., LA yield, required MTHF amount to recover 99% of LA, 

etc., consequences of the DOE) and was changed to ensure a temperature approach of 10 °C in the 

reboiler of the third evaporator, which works as a condenser of the first evaporator. The bottom of 

the first evaporator was flashed into an adiabatic vessel (second evaporator effect), operating at 1.1 

bar. Then, the bottom product was fed to the third evaporator, a 10-stage column without condenser, 

operating near atmospheric pressure conditions. Vapor from the first effect powered the reboiler of 

this column, simulated by a HeatX model (REB-01 in Figure 16). The liquid product and the condensed 

MTHF were used to preheat the feed of the first evaporator, considering a temperature approach of 

10 °C, which is typically used in heat integration. The product from the third evaporator contained 

less than 20 wt% of MTHF, which was stripped off by injection of 10 bar, 265 °C steam at the bottom 

of a 10-stage column operating near atmospheric pressure. This approach removes MTHF and leaves 

most of FA behind. MTHF, FA, and water have azeotropes between any combinations of them. As 

MTHF must be recycled, the decision was to strip it off of the mixture of carboxylic acids using 

superheated steam and then recover the remaining FA as a mixture of FA and water, with no further 

separation because of the azeotrope and low relative volatility between them. The mixture of FA and 

water was separated from LA in a column with 21 stages, 0.041 of reflux ratio, 0.185 distillate to feed 

ratio, feed at stage 14, top pressure of 150 mbar and bottom pressure of 250 mbar. All streams 

containing a mixture of water and MTHF were sent to a dehydration step. Block DEHYD in Figure 16 

represents the hierarchy in which dehydration of MTHF was simulated. 
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Figure 16. Recovery of LA from the extract stream. 
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Figure 17. Separation of MTHF and water (block DEHY in Figure 16). 
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in the plant, a step to change the quality of the steam from superheated to near-saturation conditions 

was implemented with the addition of subcooled water. The required flow rate of steam at conditions 
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to be used in the ethanol plant was included in the extractions of steam at 2.5 bar and 6.0 bar. The 

total availability of steam at 2.5 bar included the additional steam produced via heat integration in 

the FF recovery section, as explained in section 4.5. 

Total electricity required by the plant was calculated considering two parts: the power 

required by sugarcane extraction and ethanol plants (Table 8), and the power required by the part 

of the plant which was simulated in this work. For the plant simulated in this work, total electricity 

requirement was calculated using the process simulator, summed using the utility resource of Aspen 

Plus, and discounted from the total of electricity produced by the turbines. Surplus electricity was 

considered a product of the biorefinery.  

Among the equipment requiring cooling media, none of them require temperatures 

below 50 °C, which dispenses the use of chilled water. Cooling water, the only cooling utility used in 

the biorefinery, was excluded from the simulations as it plays a minor role in the economics of the 

process. This same approach is used by other authors in the field of biorefinery simulation.[59,63] 
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5. Results and discussion 

5.1. Simulation of DOE cases 

Detailed process simulation results were included only for the optimized case, whereas 

key results were included for the 25 cases simulated as part of the DOE. Figure 18 shows the yields 

of products of the biorefinery. It is visible that in any of the 25 cases of the DOE, ethanol is still the 

main product, as its final yield varied slightly due to variations in the consumption of ethanol inside 

the biorefinery for esterification of LA. Production of chemicals derived from bagasse follows on 

average a very particular proportion: 1:3.1:5.4 of FA:FF:EL (mass basis). The proportion between FA 

and EL varies very little: they are produced in equimolar proportion from the same reaction, and the 

differences are a consequence of downstream processing. As for the proportion of FF to the others, 

it is greatly affected by the extension of the reactions that consume FF according to the operating 

conditions set in the second hydrolysis reactor, since the reactions of FF to humins do not have the 

same kinetics as the reactions that lead to humins using glucose or HMF as precursors. 

Operational costs vary slightly because the only variables affected by the DOE are 

maintenance (indicated as a fraction of CAPEX, Table 7), consumption of sulfuric acid, and 

consumption of MTHF. Summed, the contribution of these factors to the yearly operational cost 

varies in the range of 19-22% for the 25 cases. 
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pressure - hence, less electricity is obtained from steam expansion in turbines (red bar of case 4 in 

Figure 18 compared to others). Altogether, these factors lead to an increased MSP of EL. 

 

Figure 19. Total revenue and revenue share for each product of the biorefinery in each of the 25 cases 
of the DOE. 

 

5.2. Surrogate model and statistical analysis 

Table 12 presents the results of the MSP of EL for each of the 25 cases of the DOE. Many 

cases yielded an MSP above $0.40/kg, especially case 17, whose MSP was $0.806/kg. As a matter of 

comparison, the estimated price for EL to be sold in Brazil with the same price of diesel on an energy 

basis would be in the range of $0.42-0.47/kg.[15,29] As discussed before, the price of EL may be based 

on the energy price of diesel. However, due to its additive properties and its renewable origin, the 

final price may be even higher than the energy price of diesel. Policies benefiting the use of 

renewable fuels, such as the program RenovaBio, may contribute to an increase in revenues from 

biofuels as a consequence of higher blending mandates for diesel in the future.[96]  
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Table 12. Results of MSP of EL for each case of the DOE. 

Case SL CC CL RT MSP ($/kg) 

1 -1 -1 -1 -1 0.479 

2 -1 -1 -1 +1 0.515 

3 -1 -1 +1 -1 0.566 

4 -1 -1 +1 +1 0.563 

5 -1 +1 -1 -1 0.477 

6 -1 +1 -1 +1 0.467 

7 -1 +1 +1 -1 0.510 

8 -1 +1 +1 +1 0.535 

9 +1 -1 -1 -1 0.338 

10 +1 -1 -1 +1 0.344 

11 +1 -1 +1 -1 0.379 

12 +1 -1 +1 +1 0.376 

13 +1 +1 -1 -1 0.319 

14 +1 +1 -1 +1 0.344 

15 +1 +1 +1 -1 0.329 

16 +1 +1 +1 +1 0.341 

17 -2 0 0 0 0.806 

18 +2 0 0 0 0.339 

19 0 -2 0 0 0.451 

20 0 +2 0 0 0.365 

21 0 0 -2 0 0.337 

22 0 0 +2 0 0.484 

23 0 0 0 -2 0.392 

24 0 0 0 +2 0.416 

25 0 0 0 0 0.423 
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Statistical analysis of the data in Table 12 was carried out in Statistica 13.3. The coefficient 

of determination of the data fitted to the quadratic surrogate model was 96.5%. Analysis of variance 

confirmed that the surrogate model represents a good fit of the regressed data. 

 

Table 13. Analysis of variance for the MSP of EL.  

Source of variation Sum of squares Degrees of freedom Mean sum of squares F-test ratio 

Treatment 0.283 14 0.0202 19.499 

Error 0.010 10 0.0010  

Total 0.293 24   

 

Comparing the F-test statistic in Table 13 with the calculated F14,10 with a p-value of 0.05: 19.499 ≫  𝐹14,10 ≅ 0.3843 

Therefore, the model is significant, and since the calculated F is more than ten times 

larger than the F14,10 value calculated using the Probability Distribution Calculator tool of Statistica 

13, one could infer that the model is useful for prediction and, consequently, can be used in process 

optimization via surrogate model.[97] It is important to indicate that, although the surrogate model is 

a good representation of the real model, this optimization is a fair approximation of the real 

optimized model, with a level of detail compatible with the process developed in this work. 

The Pareto chart of standardized effects (Figure 20) considering a confidence interval of 

95% shows that the main variables affecting the MSP of EL are the SL (both linear and quadratic 

coefficients), the CL (linear coefficient), and the CC (linear coefficient). All other variables or 

combinations of them have a similar effect on the MSP. The impact of SL is evident when comparing 

the MSP of cases 17 and 18, given the fact that they represent the extremes of SL in the DOE: MSP 

in case 17 is 2.4 times larger than in case 18. Case 17 produces a very dilute hydrolysis product, which 

requires more steam for recovery of LA. At the same that more steam is required, less bagasse is 

diverted to LA production: the CHP unit in case 17 produces 21% more steam than in case 18, 

whereas the production of EL/LA in case 17 is 65% less than in case 18. CC also has an important 
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impact owing to the final consequence of this variable: a higher feedstock conversion means higher 

product concentration and a decrease in steam requirement. Coefficients of the surrogate model are 

presented in Table 14, and the response surfaces obtained for the variable MSP using this surrogate 

model are presented in Figure 21. 
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Figure 20. Pareto chart of standardized effects for the MSP. (L) denotes a linear coefficient, (Q) 
denotes a quadratic coefficient, and the other terms correspond to the interactions between 

coefficients. 

 

Table 14. Coefficients of the surrogate model obtained via DOE. 

Term Coefficient Term Coefficient 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 0.422935 𝑥42 -0.007809 𝑥1 -0.094860 𝑥1𝑥2 0.001801 𝑥12 0.034295 𝑥1𝑥3 -0.009680 𝑥2 -0.017116 𝑥1𝑥4 -0.000312 𝑥22 -0.006819 𝑥2𝑥3 -0.006176 𝑥3 0.025500 𝑥2𝑥4 0.000927 𝑥32 -0.006232 𝑥3𝑥4 -0.001648 𝑥4 0.005639   
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demand for distillation given that most of the energy spent by distillation columns is used to vaporize 

ethanol. Differences in steam consumption may rise as a consequence of the impact of broth 

composition in reflux demand to achieve a certain degree of purity in the distillate. Regarding 

environmental impact, Kadhum et al. (2017) demonstrated that a very high SL (30-45%)  decreases 

global warming potential, which is not observed for an SL of 19%.[98] 

On the other hand, this is not the situation for every biorefinery product: examples of 

products that cannot be distilled out of water include LA, succinic acid, and lactic acid. Even though 

FF and butanol have higher boiling points than water, these examples of green chemicals benefit 

from the effect of azeotropes and their low concentrations in water.[79,99] In the case of furfural, 

specifically, this makes its recovery a quite easy process, in which most of the energy is spent in the 

reaction.[20] Therefore, in the case of LA, an alternative to distillation processes are required. 

Liquid extraction is an attractive alternative because of the opportunity to separate the 

product and leave the catalyst (a mineral acid) in the aqueous phase. This process makes the recovery 

of catalyst possible to a certain extent, granted that the losses of sulfuric acid in hydrolysis residue 

should be carefully evaluated in laboratory scale. This process step requires further study in 

laboratory scale followed by optimization to decrease CAPEX and OPEX. Extraction of LA does not 

necessarily require evaporation of water. However, since LA is a very oxygenated chemical, suitable 

solvents for extraction must be oxygenated to present a favorable partition coefficient for liquid 

extraction. Otherwise, the amount of solvent required would make the process unfeasible. This was 

demonstrated by Leal Silva et al. (2018) in the comparison of hexane and MTHF as extraction solvents 

for LA.[92] On the other hand, oxygenated solvents generally present greater mutual solubility with 

water. In this situation, a hydrolysate stream with higher LA content reduces the requirement of 

solvent and decreases the costs with solvent recycling and makeup. Thus, a higher SL is desirable to 

deliver a hydrolysate with a higher LA content, which may be increased even further after 

evaporation. The degree of conversion of the feedstock has a similar impact on the process, a factor 

which qualified CC as one of the main variables impacting the MSP, along with SL. 

Analysis of Figure 21 clearly shows that temperature has little effect on MSP. In the study 

in which the kinetics for cellulose decomposition used in this process simulation was based, the 





80 
 

  

Results and discussion 

Master’s dissertation – Jean Felipe Leal Silva 

For a fixed RT, the selectivity increases as the CL increases (graphs of Figure 22 compared 

in the vertical direction). On the other hand, for a fixed CL, the selectivity greatly decreases as RT 

increases (graphs of Figure 22 compared in the horizontal direction).  The increase in CL from 1% to 

5% increased selectivity in 8% (at CC: 99% CC, RT: 150 °C, SL: 16%). Nevertheless, the main factor that 

originated the divergence of the effect of CL between the results considering solely yield and 

selectivity of hydrolysis (Figure 22) and the analysis of MSP of EL (Figure 21) resides in process design 

and the consequences of dealing with a high concentration of sulfuric acid. 

First, a high concentration of sulfuric acid, which optimizes selectivity, demands more 

expensive material of construction and maintenance. Therefore, as a result of the oxidizing strength 

of the contents being handled, a higher content of nickel is required in some equipment. For 

example, the material factor for a heat exchanger increases from 2.75 to 3.75 when switching from 

stainless steel to a high-nickel alloy such as Hastelloy.[67] In the economic analysis, the additional 

requirement of a more expensive material of construction was considered as a consequence of the 

increase in sulfuric acid use. The maintenance was fixed at 5% of the CAPEX, which in some way 

reflected the impact of the high use of sulfuric acid because of its direct effect on CAPEX. 

Second, there is the limitation of the extraction solvent. In this process, both sulfuric acid 

and LA are solutes. The solvent, MTHF, has partial miscibility with water, and the addition of solutes 

in a proportion too high may yield in a concentration outside the two-phase region, thus preventing 

phase split. In view of the foregoing, the use of high CL increases the proportion of sulfuric acid to 

LA. Consequently, the maximum LA content in concentrated hydrolysate decreases and more solvent 

per mass of LA is required in the recovery process. The demand for more solvent impacts steam 

demand as a consequence of its recycling process. 

Other factors that were not considered in this simulation also play a role regarding the 

use of high CL. First, chemicals degrade in the presence of sulfuric acid. Most of the FF is removed 

from hydrolysate in the flash vessel after the second hydrolysis reactor, and the remainder is removed 

in the first evaporator of the multiple-effect evaporator step. Even though both flash vessel and 

evaporator present low residence time, they may contribute to the oxidation of FF, which may be 

reduced using lower CL. Moreover, products of FF degradation can attach to vessel walls, thus 
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increasing maintenance frequency and decreasing heat transfer efficiency.[20] Also, the presence of 

sulfuric acid in a high proportion in the extractor may lead to increased losses of MTHF. Like most 

ethers, the C-O bond in MTHF is susceptible to cleavage in an acid environment. In stability trials, 

Aycock (2006) demonstrated a loss of 0.54% of MTHF after 4 h in a 4% solution of MTHF in a 5 mol/L 

solution of HCl.[100] Considering high CL, MTHF may be exposed to sulfuric acid concentrations higher 

than 20%, rendering the process impractical because of undesirable side reactions. 

5.3. The optimized biorefinery 

The surrogate model with coefficients presented in Table 14 was used in a gradient-

based optimization to determine operating conditions that minimize the MSP of EL. Optimized 

conditions predicted by the model are presented in Table 15. Observe that three out of the four 

variables reached their upper or lower bounds. In the first trials with different design spaces, this 

behavior was observed, and the design space was changed to the final limits presented in section 

3.1. Exploration beyond these limits was impossible for two reasons. First, in the case of CC, the limit 

of 99% is reasonable. Second, in the case of RT and CL, these were the limits to which the kinetics for 

cellulose degradation were obtained.[57] 

 

Table 15. Results for the optimized conditions to minimize MSP of EL. 

Variable Coded value Model value 

SL +1.04 16.2% 

CC +2.00 99.0% 

CL -2.00 1.00% 

RT -2.00 150 °C 

MSP - $0.22/kg 

 

Exploring the reaction below 150 °C of temperature and 1% of CL would be interesting 

to understand to which point the decrease of reaction rate and the exponential increase in reactor 

size is still economically attractive for this process. Observing graph f in Figure 21, it is possible to 
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notice a decrease in MSP for lower RT and CL, which might stop by the steep increase in capital cost 

as the reaction is carried out at lower rates. However, extrapolating the kinetics to this region could 

mislead conclusions. As the concentration of sulfuric in hydrolysis decreases, other less strong acids 

produced during hydrolysis (FA, AA, and LA) start having a more significant contribution in catalysis, 

and the model may render a negative deviation of the real conversion. On the other hand, mass and 

heat transfer resistances vary with temperature. Hence, the kinetics may yield divergent results 

compared to what would be observed experimentally because these phenomena were discarded in 

the modeling of the hydrolysis reactor or the kinetic model. 

The obtained optimized conditions were used in the simulation of an optimized 

biorefinery. Key indicators obtained from the process simulation of this optimized case are presented 

in Table 16. Table 17 presents the estimated CAPEX for each section of the optimized biorefinery. As 

a matter of comparison of the impact of SL, case 17 of the DOE with the lowest SL has a CAPEX of 

$35.8 million for the sections including hydrolysis of cellulose, solids separations, and evaporators, 

which is 77% more than the CAPEX of the same sections in the optimized case. 

 

Table 16. Summary of results of the optimized biorefinery. 

Parameter Value 

Yield of ethanol (kg/tcane)a 60.6 

Yield of EL (kg/tcane) 22.2 

Yield of FF (kg/tcane) 11.8 

Yield of FAb (kg/tcane) 2.10 

Yield of electricity (kWh/tcane) 71.1 

Steam consumption, biorefinery (kg/tcane) 640 

Steam consumption, EL (kg/kgEL)c 8.95 

Steam consumption, FF (kg/kgFF)c 9.07 

Steam consumption, FA (kg/kgFA)b,c 5.35 

Reactors for hydrolysis of hemicelluloses 10x147 m³ 

Reactors for hydrolysis of celluloses 5x210 m³ 
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Table 16 (continued). Summary of results of the optimized biorefinery. 

Parameter Value 

MTHF to LA mass ratio in liquid-liquid extraction  2.62 

a) does not include ethanol consumed in esterification of LA to EL. 

b) considering real content of FA (49.2% FA, 2.6% AA, 0.7% LA, 0.3% MTHF, 47.2% water). 

c) the required steam to produce the remaining ethanol which was not used for esterification was 

calculated using the steam consumption of an optimized autonomous distillery (Table 8); then, the 

balance was divided between FA, FF and EL using revenue as a weighting factor. 

 

Table 17. CAPEX of different sections of the optimized biorefinery.  

Sector CAPEX (106 $) 

Sugarcane processing and ethanol production 281.2 

Hydrolysis of hemicelluloses 20.75 

Recovery of FF 7.712 

Hydrolysis of cellulose and hydrolysate preparation 20.16 

Recovery of LA and esterification to EL 16.26 

CHP 98.47 

 

With these conditions, the determined MSP of EL for the optimized case was $0.240/kg, 

$0.0197/kg more than the value predicted by the surrogate model (8.21% of error). This result 

demonstrates the feasibility of the project to produce EL since the obtained MSP represents a fraction 

of what would be the equivalent price of EL based on the energy price of diesel ($0.412/kg). 

Other routes for the use of LA have been proposed and economically assessed in the 

literature. Braden et al. (2011) suggested the conversion of LA to GVL via catalytic transfer 

hydrogenation using the coproduct FA as hydrogen source over a Ru/Re (3:4 metal proportion, 15% 

content) catalyst supported on carbon.[101] Then, the GVL is converted to butene and lastly to alkene 

oligomers which can be blended into gasoline (Figure 23). In this route, the authors obtained a price 
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5.4. Severity of hydrolysis and possible advances in reactor design 

Advances in reactor design or better catalysts may improve process economics. Results 

of this study have shown that SL is by far the main variable impacting the MSP of EL. Preferred 

reaction conditions include the lowest CL and the lowest RT – which translates into low hydrolysis 

severity.[105] Therefore, the residence time in hydrolysis has low impact in process economics given 

that the SL is high enough. This is interesting because sulfuric acid has a very high acid strength, 

which motivated the use of costly material of construction and led to a capital-intensive investment 

(Table 17). The use of other acids (including organic acids such as FA) as catalysts may be enough to 

promote hydrolysis in less severe conditions and may require materials of construction with 

moderate cost. Moreover, other catalysts must be tested to verify the behavior of humins formation 

in their presence. 

The study of humins formation is essential for several reasons owing to the impact of 

poor selectivity in economic performance. First, as observed from the results of the DOE, factors that 

affect the final concentration of LA in the hydrolysate product of the second reactor (SL and CC) play 

an important role in economics. Observing graph a in Figure 22, it is clear that, while it represents an 

optimized condition, the extension of the reaction to humins is almost the same as the extension of 

the reaction to LA. Literature reports several pathways to hinder humins formation in the synthesis 

of LA. In an investigation on the effect of reaction parameters on the formation of humins, it was 

observed that hydroxyl and carbonyl groups of furans and monosaccharides were protected against 

these side reactions by the presence of an alcohol.[106] 

Protonation of the oxygen atom in carbonyl groups of FF or HMF is thought to be one 

of the mechanisms in humins formation.[107] The use of different solvents and catalysts may reduce 

the availability of free protons that lead to increased humins formation. On the other hand, these 

free protons are fundamental to catalyze the reaction of HMF to LA.[108] Therefore, conditions that 

foster LA formation and at the same time reduce humins formation sound mutually exclusive. The 

results showed here demonstrate that, although undesirable, a process with low selectivity for 

conversion of biomass to furans and their derivatives is still profitable. Moreover, the stepwise reactor 

design proposed in this study demonstrated the reduced formation of humins. Figure 25 shows the 
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Availability of protons in reaction media is shown to impact both products and side 

products formation. Thus, developing selective catalytic systems may improve process economics. 

Different studies have considered a combination of enzymatic hydrolysis followed by dehydration of 

sugars in different steps. Schmidt et al. (2017) observed losses of glucose of more than 30% using 

this approach.[115] Alipour and Omidvarborna (2017) attained a yield of LA of 70% of the theoretical 

after combining enzymes, solvent, and acidic ionic liquid in a simultaneous isomerization and reactive 

extraction followed by a back extraction process.[116] These studies focus on different catalytic 

systems to obtain sugars and do not show a great advantage over the simple and inexpensive 

approach of using sulfuric acid as a catalyst for all reactions, as the optimized process developed in 

this study presented a selectivity of 65% for LA. The study of Girisuta et al. (2013) obtained a yield of 

63% at 150 °C. Another example of optimization attained a yield of 68% using HCl as a catalyst at 

long residence time and 149 °C.[117] 

In LA synthesis, the problem of humins can be summarized as lack of selectivity in the 

conversion of monosaccharides and furans, not in lack of selectivity in the hydrolysis of 

polysaccharides. Hydrolysis of cellulose to glucose for cellulosic ethanol production represents a 

challenge because of the toxicity of the hydrolyzed liquor due to the presence of furans. However, 

the same glucose-rich liquor containing furans might be ideal for LA synthesis via other more 

selective catalysts. For example, 2,5-furandicarboxylic acid can be obtained from HMF via catalysis 

with metals,[118] or via highly-selective catalysis with enzymes.[119] For instance, the option of 

enzymatic catalysis is being developed by Corbion for the commercial production of 2,5-

furandicarboxylic acid.7 

One example of study in the direction of using a different catalyst in the dehydration of 

sugars was presented by Weingarten et al. (2013) and demonstrated the importance of developing 

a selective catalyst for LA synthesis: increasing the fraction of Brønsted acid sites from 12% to 38% 

reduced the selectivity to humins from 62% to 23% at a fixed conversion of 40% of glucose. 

                                                 
 

7 Presentation given by Jan Wery (Corbion, The Netherlands) at the 3rd BBEST – Brazilian Bioenergy 
Science and Technology Conference, 17-19 October 2017, Campos do Jordão, Brazil.  
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Therefore, future studies may focus on the development of better catalysts for the dehydration of 

hydrolyzed hexoses to HMF followed by rehydration of HMF to LA. 

5.5. Risk analysis and market uncertainties 

As discussed in the methodology, four scenarios were drawn to examine the impact of 

market conditions on the production of EL. Scenarios EL-t, EL-f, and EL-p represent the optimized 

biorefinery proposed in this work for production of EL. Products of biomass hydrolysis are priced in 

three conditions: 

• EL-t: prices compatible with current market conditions; 

• EL-f: price of FF reduced to make viable its use as biofuel precursor;[29] 

• EL-p: both FF and EL receive a premium of 20% over their future price. 

These scenarios were compared to a fourth benchmark scenario producing only ethanol 

and electricity using current technology in optimized conditions, ET-t. Economic results of these four 

scenarios are available in Table 18. Scenario EL-t presents the best results at the coondition of FF 

being sold at the current price. This condition is incompatible with the main goal of the production 

of EL, which is to focus on the sizeable fuel market. Yet, this solution may become interesting for a 

pioneering company willing to invest in EL production because the high FF price may be used to pay 

for the investment faster and FF price will not drop from the current price to the possible future price 

instantly. 

 

Table 18. Results of the different scenarios considered in the economic analysis. 

Scenario EL-t EL-f EL-p ET-t 

CAPEX (106 $) 445 445 445 396 

Sulfuric acid requirement (kt/y) 0.87 0.87 0.87 0.0 

MTHF requirement (kt/y) 1.99 1.99 1.99 0.0 

Ethanol production (kt/y) 241 241 241 269 

FF production (kt/y) 47.0 47.0 47.0 0.0 
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Table 18 (continued). Results of the different scenarios considered in the economic analysis. 

Scenario EL-t EL-f EL-p ET-t 

FA production (kt/y) 17.1 17.1 17.1 0.0 

Electricity production (kt/y) 285 285 285 742 

EL production (kt/y) 89.5 89.5 89.5 0.0 

Yearly total costs (106 $) 133 127 127 123 

Yearly revenues (106 $) 302 236 247 221 

IRR 20.5% 13.9% 15.0% 14.0% 

Net present value 299 60.6 98.8 57.5 

Profitability index 67% 14% 22% 22% 

Payback period 3.9 5.6 5.3 5.6 

 

Comparing scenario EL-f in which FF is sold at a price that makes the production of FF-

derived biofuels viable, it is noticed that using bagasse to produce more electricity instead of using 

it to produce chemicals is more attractive by a narrow margin. However, considering a premium over 

the energy price of FF and EL has a great result: even though the CAPEX in scenario EL-p is 12% 

higher than in scenario ET-t, the increase in revenue makes scenario EL-p more attractive than 

scenario ET-t. Assuming a 20% premium over the current energy price of a lignocellulosic biofuel is 

adequate as long as biofuel mandates are being increased all over the world: the higher requirement 

of biofuels may increase demand and price of these chemicals.[120–122] Even though higher figures 

have been observed in the literature, this value considers a safe margin because biofuel standards 

are not currently enforced for several reasons, and these changes may take time to be established.[123] 

Figure 26 presents the probability distribution of IRR for the four scenarios. As explained 

before, EL-t, though very attractive, includes mutually exclusive conditions that make it completely 

unrealistic in the long run. Yet, it demonstrates that in the short term, an IRR higher than 12% is an 

event that happens almost surely. It is interesting that, even though the IRR of ET-t is higher than the 

IRR of EL-f, the probability of presenting an IRR higher than 12% is higher for scenario EL-f. This 

happens as a result of the revenues of EL-f being complemented by revenue sources other than 

ethanol and electricity, hence decreasing the dependence on the revenue of these only two sources, 
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In all scenarios, ethanol is the main factor impacting the IRR.  Especially in scenario EL-t, 

in which FF is sold at the current market price, FF and ethanol prices have almost the same impact in 

IRR.  In this scenario, FF contributes to 28% of the total revenue whereas ethanol contributes to 53%. 

Although FF contribution to revenue is about half of the ethanol, the probability distribution of its 

price is more dispersed: the standard deviation of FF represents 18% of its average value, whereas, 

in the case of ethanol, its standard deviation represents 10% of its average value, as consequence of 

the difference in price fluctuation for these two commodities. 

Sulfuric acid is inexpensive and has a low requirement. Consequently, it was not ranked 

among the 10 most important variables affecting cost in scenarios producing EL.  This is a direct 

consequence of process design, which made recycling of sulfuric acid possible with the solvent 

extraction of LA. If not recycled, sulfuric acid would need to be neutralized, and a proper destination 

for the residue would need to be included in technoeconomic analysis.  Processes for the production 

of carboxylic acids from fermentation, such as lactic acid or succinic acid, include neutralization steps 

and produce large quantities of gypsum whose destination is uncertain and represents a burden in 

process development.[6,124,125]  

EL has a low impact over the IRR of scenarios EL-t, EL-f, and EL-p despite its high 

contribution to revenues (in the range of 12% to 18%) as a result of its low standard deviation based 

on diesel price (Table 6). This low standard deviation reflects the fact that the price of diesel has been 

regulated by the Brazilian Government for a long time. Parity with the international fluctuation of oil 

price has only been established recently.[126] 

The impact of the capacity factor demonstrates the effect of droughts, aging of 

sugarcane fields, lack of investments, or poor yield. The 2017/2018 harvesting season in Brazil 

registered a decrease in total sugarcane harvested of 3.6%, with another reduction of 1.2% expected 

for 2018/2019, even though ethanol is facing a higher demand because of the spike in gasoline 

price.[127] Variations in capacity factor also cover variations in the operational year due to differences 

in dry and wet season observed year after year. Sensitivity analysis demonstrated that the capacity 

factor is very important for the economic success of the biorefinery, and its variation has a similar 

effect over any scenario considered in this study. 
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Nevertheless, the effect of variations in electricity price was especially different between 

scenario ET-t and the other scenarios diverting part of the bagasse to the production of chemicals. 

Again, this is a consequence of portfolio diversification observed in robust biorefinery designs. The 

electricity market in Brazil observed a crisis recently as a consequence of a severe drought that 

affected the region in which most of the Brazilian hydroelectric dams are located, and electricity 

prices soared.[128,129] Yet, lately, wind power has been expanding in Brazil and played a decisive role 

in decreasing the electricity price in renewable energy auctions for electricity supply contracts.[77] 

Therefore, this may open more opportunities for lignocellulosic biofuels in the future than for 

electricity as an alternative destination for bagasse in biorefineries, which qualifies the use of bagasse 

for production of biofuel a safer investment in the long run. 
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6. Conclusions and outlook 

Production of levulinates represents a challenge in the biofuels sector. Reactor 

operability, operating conditions that lead to attractive economic results, poor selectivity, and market 

uncertainties are among the factors that hinder the large-scale production of LA and EL. 

6.1. Recovery of products 

In this study, use of MTHF as an extraction solvent for recovery LA from hydrolysate was 

proposed with positive results. The choice of solvent demonstrated great results as a consequence 

of the affinity between solvent and solute – both oxygenated chemicals. The lack of affinity between 

LA and another extraction solvent such as hexane yields a costly process. 

The recovery of LA from dilute hydrolysate had a large impact in process economics. The 

requirement of high concentration of LA comes as a consequence of the mutual solubility of MTHF 

and water and the requirement to distillate MTHF before recycling. Yet, other oxygenated solvents 

need to be tested and economically assessed to determine promising options for LA recovery other 

than MTHF. Solvents with a high boiling point should be explored to avoid an azeotrope with water, 

FA, and AA, which may render overly complicated recycling schemes. 

An alternative use for FF was included in the economic analysis, whereas analternative 

use for FA was not proposed because it has a large market and several applications. Still, the 
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applications of FA can be found inside the production of LA. Large amounts of FA can be produced 

as a coproduct of LA biorefineries. Thus, FA can be applied in the catalysis of the same process in 

appropriate conditions. FA has lower acid strength compared to sulfuric acid. Yet, the high availability 

of FA inside an EL biorefinery and the proven positive effect of lower severity on the economics of 

an EL biorefinery aid to the need of studying the hydrolysis of bagasse catalyzed by FA. 

6.2. Stepwise approach and selectivity 

Losses of products in the form of humins represent a burden because they are a inferior 

hydrolysis product which compromise reactor operability. Humins formation is ascribed to 

condensation reactions between furans and sugars. This study demonstrated that removal of FF in a 

first, less severe reaction stage is fundamental to decrease the production of these products 

significantly and increase overall process yield. 

The stepwise approach might be explored even further to break down the function of 

the second hydrolysis reactor according to the three desirable reactions which take place on it, 

namely: hydrolysis of cellulose, dehydration of glucose, and rehydration of HMF to LA. Moreover, the 

appropriate study of humins, including applications, handling, and impacts on operability need to 

be studied further to understand if the assumption that they can be considered as a residue that can 

be burned in the biomass furnace of the biorefinery is adequate. The contamination of this residue 

with sulfur from sulfuric acid and its implications in the emission of pollutants should be evaluated 

as well. 

6.3. Catalysis focused on different reaction steps 

Continuing the question of focusing on different steps of the reactions towards LA, it is 

important to notice that not all steps require the same catalyst. As observed in this study, the 

autocatalyzed hydrolysis of hemicelluloses increases process yield. This evidence demonstrates the 

power of using less strong acids as catalysts for hydrolysis. Moreover, other investigators have tried 

to apply different catalysts to hydrolysis and dehydration/rehydration reactions. Possibly this 

approach can yield improved results in the future with the development of more selective 

combinations of catalysts tailored to each reaction step. Reaction solvent should be considered as 
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well as another variable to be studied considering the different reaction steps, though carefully 

because of the costs associated with solvent losses and recycling. Overall, fractioning the biomass as 

it is done with crude oil in refineries has demonstrated great potential, and breaking down the 

process into more steps may increase selectivity and improve economic results. 

6.4. Solids loading, catalyst loading, temperature, and conversion 

The analysis of MSP of EL considering several reaction variables has demonstrated that 

SL has a notorious impact on economics. A high concentration of LA in the hydrolysate is highly 

desirable, and SL and CC are the key variables that affect this parameter and decrease the steam 

requirement. Decreasing steam requirement is fundamental because both steam and LA production 

compete for bagasse availability. 

The desirable reactor temperature was observed to be aligned with previous findings in 

the literature. However, it was found that lower catalyst dosage and higher residence time are 

preferable to make the process more economically attractive, even though it has a negative effect 

on selectivity. The use of high concentration of sulfuric acid makes the recovery of LA costlier. 

Moreover, the increased use of a catalyst may come with other negative implications which were not 

included in the conception of this biorefinery model, such as losses of products in downstream 

processing due to the strongly oxidizing environment. These results demonstrate the possibility to 

achieve desirable economic performance through the sacrifice of process selectivity. 

The results of reactor optimization also proved that EL can be produced at a very low 

price. Indeed, the MSP to achieve an IRR of 12% represented about half of the expected price of EL 

considering the energy price of diesel in Brazil. Besides its application as an energy carrier, EL has 

fuel additive properties fundamental to biodiesel and diesel, which may justify the same price of 

diesel on energy basis as a lower bound for EL price. 

6.5. Diversification of product portfolio 

Comparison of the optimized EL biorefinery to an equivalent autonomous ethanol 

distillery with the production of electricity showed that producing EL, FF, FA, and electricity from 

bagasse instead of only producing electricity represent a better investment. Of course, these results 
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depend on the successful operation of hydrolysis of biomass to LA, which is still recognized as a 

challenge regarding operability. Yet, the results indicated that albeit selectivity is low (a factor which 

can be worked upon with development of better catalytic systems), the economics of the process is 

still promising. 

Therefore, using bagasse as feedstock for production of furans and derivatives such as 

LA and EL is proven to be an attractive route, even though there is a long pathway in the development 

and maturation of biomass conversion processes. Although this study is based on assumptions for 

successful reactor operability, it provides insights of the impact of reaction parameters on economics 

and demonstrates directions for researchers and industry to develop better processes and make the 

production of EL truly viable in the future. 

 

□ 
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7. Appendix 1 

This section provides the methodology and the results of the experimental part of the 

master's project to which this dissertation is related. Binary interaction parameters for the NRTL 

activity coefficient model used to simulate the extraction of levulinic acid from aqueous solution were 

obtained with the data presented here. 

7.1. Methodology 

7.1.1. Quality and purification of analytes 

The purity of chemicals is available in Table 19. The purity of chemicals as supplied by 

the manufacturer was consulted in their respective certificates of analysis. Among the chemicals used, 

only FA, LA, and FF were purified. The mass purity of purified chemicals was attested using HPLC 

(method details available in section 7.1.3). FA and LA were purified using fractional crystallization 

because of their melting points (FA: 8.4 °C, LA: 33-35 °C). Even though FF has a very high purity 

according to the certificate of analysis, it was further purified to remove oxidation products, since it 

is very unstable. Thus, FF was purified via fractional distillation under vacuum conditions (~25 mbar) 

to avoid oxidation, and the fraction distilling around 60-65 °C was collected. The vacuum decreases 

the system temperature, yielding an almost colorless heart product. Head and tail products were 
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For each sample point, the chemicals were mixed in proportions based on a previous 

determination of a binodal curve and tie-lines estimated using the UNIFAC activity coefficient model 

with the databank for LLE in Aspen Plus 8.6 (AspenTech, Inc., USA). 

7.1.3. Quantification of analytes 

The concentration of FA, AA, LA, FF, and MTHF was determined using a diode array 

detector coupled to an HPLC system (Agilent 1260 Infinity II). The method consisted of eluting the 

analytes through a Poroshell 120 EC-18 4.6 x 50 mm 2.7 µm (Agilent, USA), using a 5 mmol/L sulfuric 

acid aqueous mixture of 15% acetonitrile (Sigma-Aldrich, HPLC grade) by volume (type I water added 

to complete volume) as the mobile phase. With a flow rate of 1 mL/min, all analytes elute in 2.3 min. 

The detector was set at a wavelength of 194 nm for detection of MTHF, which is above the cutoff for 

both water and acetonitrile. Higher wavelengths do not detect MTHF. FA, AA, and LA were detected 

at 210 nm, and FF at 264 nm. Samples were diluted in the mobile phase, and the dilution factor was 

used on a weight basis. Samples were weighed with XP205DR (Mettler Toledo, Switzerland, 

uncertainty of 0.01 mg). For each sample point, a dilution triplicate was completed to estimate the 

uncertainty of the analysis method by including the step more susceptible to human error. 

The concentration of water was determined via Karl Fischer titration in an 841 Titrando 

(Metrohm AG, Switzerland). Two problems are related to this method. First, carboxylic acids might 

react with the methanol present in the Karl Fischer reagent, producing water and interfering with 

measurements. Second, low pH affects negatively the kinetics of the reaction occurring in Karl Fischer 

titration. Thus, titration was carried out with small samples (according to the lower limit 

recommended by the manufacturer), and the titration media was changed frequently based on 

experience and titration time. Titrating agent was Composite 5 (Honeywell Fluka) and titrating 

medium was HydranalTM Methanol Rapid (Honeywell Fluka). Samples were weighed with XP205DR. 

Triplicates were completed to estimate uncertainty for water concentration in samples. The 

concentration of sulfuric acid was determined via titration using a standardized 0.01 mol/L NaOH 

solution. All acid-base titrations were conducted in an 809 Titrando (Metrohm AG, Switzerland). 

NaOH solution was standardized with potassium biphthalate (Sigma-Aldrich). Samples were weighed 

with XP205DR. Triplicates were completed to estimate the uncertainty of sulfuric acid concentration. 
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7.1.4. Data curation 

After all mass concentrations were determined, they were normalized under the 

condition that if the sum of mass fractions determined individually was out of the range of 3% of the 

unity, the tie-line was to be repeated. Data regression was carried out using the regression module 

of Aspen Plus Properties 8.6. The NRTL liquid activity model was used because it presents better 

agreement for the classes of components used.[62,131] The regression method implemented in Aspen 

Plus Properties considers Gibbs energy minimization to yield stable results. Aspen Plus uses the 

uncertainty as weighing factor in data regression. However, it only accepts a general uncertainty for 

each parameter (temperature and concentration of each chemical in each phase). Therefore, the 

uncertainty used was the average of the standard deviations of all points for the same variable. 

7.2. Results 

Tables 20-24 present the composition of the two phases in equilibrium. The parameters 

regressed from these data are available in the main text of the dissertation, in Table 5. 

 

Table 20. Equilibrium compositions (mol fraction) for the system MTHF+FA+water. 

T (K) organic phase aqueous phase 

MTHF FA water MTHF FA water 

0.1* 0.0013 0.0013 0.0052 0.0007 0.0006 0.0025 

280 0.8113 0.0000 0.1887 0.0420 0.0000 0.9580 

280 0.4901 0.1022 0.4077 0.0430 0.0230 0.9340 

280 0.3528 0.1353 0.5119 0.0444 0.0436 0.9120 

280 0.2362 0.1432 0.6206 0.0583 0.0770 0.8648 

280 0.2744 0.1470 0.5786 0.0503 0.0648 0.8849 

310 0.8182 0.0000 0.1818 0.0215 0.0000 0.9785 

310 0.5536 0.1024 0.3440 0.0202 0.0267 0.9532 

310 0.4163 0.1421 0.4416 0.0242 0.0503 0.9255 
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Table 20 (continued). Equilibrium compositions (mol fraction) for the system MTHF+FA+water. 

T (K) organic phase aqueous phase 

MTHF FA water MTHF FA water 

310 0.3109 0.1672 0.5219 0.0314 0.0787 0.8899 

310 0.3346 0.1600 0.5055 0.0279 0.0722 0.9000 

340 0.8230 0.0000 0.1770 0.0147 0.0000 0.9853 

340 0.5615 0.1112 0.3272 0.0141 0.0317 0.9542 

340 0.4340 0.1455 0.4205 0.0214 0.0590 0.9196 

340 0.2802 0.1766 0.5431 0.0358 0.1012 0.8630 

340 0.3886 0.1696 0.4419 0.0252 0.0811 0.8937 

 

Table 21. Equilibrium compositions (mol fraction) for the system MTHF+AA+water. 

T (K) organic phase aqueous phase 

MTHF AA water MTHF AA water 

0.1* 0.0013 0.0011 0.0052 0.0004 0.0001 0.0017 

280 0.8113 0.0000 0.1887 0.0420 0.0000 0.9580 

280 0.5931 0.0648 0.3421 0.0494 0.0105 0.9401 

280 0.4196 0.0937 0.4866 0.0542 0.0221 0.9236 

280 0.2810 0.1124 0.6066 0.0753 0.0454 0.8793 

280 0.2463 0.1088 0.6448 0.0800 0.0514 0.8686 

310 0.8182 0.0000 0.1818 0.0215 0.0000 0.9785 

310 0.6328 0.0617 0.3055 0.0235 0.0113 0.9652 

310 0.5131 0.1033 0.3836 0.0266 0.0227 0.9507 

310 0.3946 0.1377 0.4677 0.0334 0.0400 0.9266 

310 0.2990 0.1478 0.5531 0.0453 0.0596 0.8951 

340 0.8230 0.0000 0.1770 0.0147 0.0000 0.9853 

340 0.6680 0.0501 0.2819 0.0146 0.0110 0.9744 

340 0.5490 0.0970 0.3540 0.0173 0.0233 0.9595 
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Table 21 (continued). Equilibrium compositions (mol fraction) for the system MTHF+AA+water. 

T (K) organic phase aqueous phase 

MTHF AA water MTHF AA water 

340 0.4269 0.1313 0.4418 0.0224 0.0391 0.9385 

340 0.3365 0.1524 0.5111 0.0314 0.0569 0.9117 

 

Table 22. Equilibrium compositions (mol fraction) for the system MTHF+LA+water. 

T (K) organic phase aqueous phase 

MTHF LA water MTHF LA water 

0.1* 0.0020 0.0013 0.0051 0.0007 0.0003 0.0047 

280 0.8113 0.0000 0.1887 0.0420 0.0000 0.9580 

280 0.7566 0.0268 0.2166 0.0429 0.0040 0.9531 

280 0.6780 0.0385 0.2835 0.0456 0.0054 0.9490 

280 0.6291 0.0502 0.3208 0.0485 0.0075 0.9440 

280 0.5566 0.0554 0.3879 0.0507 0.0096 0.9397 

310 0.8182 0.0000 0.1818 0.0215 0.0000 0.9785 

310 0.7511 0.0362 0.2126 0.0220 0.0051 0.9729 

310 0.6798 0.0504 0.2698 0.0234 0.0067 0.9699 

310 0.6226 0.0648 0.3126 0.0235 0.0084 0.9682 

310 0.6073 0.0776 0.3150 0.0269 0.0132 0.9599 

340 0.8230 0.0000 0.1770 0.0147 0.0000 0.9853 

340 0.7697 0.0263 0.2040 0.0155 0.0038 0.9807 

340 0.7222 0.0420 0.2358 0.0158 0.0060 0.9782 

340 0.6453 0.0524 0.3023 0.0171 0.0080 0.9749 

340 0.6042 0.0608 0.3350 0.0199 0.0102 0.9698 
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Table 23. Equilibrium compositions (mol fraction) for the system MTHF+FF+water. 

T (K) organic phase aqueous phase 

MTHF FF water MTHF FF water 

0.1* 0.0013 0.0011 0.0042 0.0003 0.0001 0.0017 

280 0.8113 0.0000 0.1887 0.0420 0.0000 0.9580 

280 0.6669 0.0841 0.2490 0.0366 0.0030 0.9604 

280 0.5096 0.1930 0.2974 0.0300 0.0065 0.9635 

280 0.3472 0.3299 0.3228 0.0257 0.0106 0.9637 

280 0.1853 0.5408 0.2740 0.0150 0.0146 0.9704 

310 0.8182 0.0000 0.1818 0.0215 0.0000 0.9785 

310 0.6683 0.0854 0.2463 0.0201 0.0029 0.9770 

310 0.5141 0.1957 0.2902 0.0178 0.0063 0.9759 

310 0.3553 0.3271 0.3176 0.0154 0.0109 0.9737 

310 0.1765 0.5036 0.3200 0.0078 0.0155 0.9767 

340 0.8230 0.0000 0.1770 0.0147 0.0000 0.9853 

340 0.6320 0.1021 0.2660 0.0140 0.0035 0.9824 

340 0.4894 0.2264 0.2842 0.0134 0.0079 0.9787 

340 0.3023 0.3835 0.3142 0.0113 0.0140 0.9748 

340 0.1403 0.4928 0.3669 0.0063 0.0183 0.9755 

 

Table 24. Equilibrium compositions for the system MTHF+sulfuric acid+water. 

T (K) organic phase aqueous phase 

MTHF sulfuric acid water MTHF sulfuric acid water 

0.1* 0.0018 0.0001 0.0084 0.0009 0.0007 0.0046 

280 0.8113 0.0000 0.1887 0.0420 0.0000 0.9580 

280 0.8107 0.0006 0.1888 0.0439 0.0124 0.9437 

280 0.8102 0.0012 0.1885 0.0462 0.0240 0.9298 

280 0.7980 0.0021 0.1999 0.0566 0.0359 0.9075 
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Table 24 (continued). Equilibrium compositions for the system MTHF+sulfuric acid+water. 

T (K) organic phase aqueous phase 

MTHF sulfuric acid water MTHF sulfuric acid water 

280 0.7930 0.0048 0.2023 0.1020 0.0400 0.8580 

310 0.8182 0.0000 0.1818 0.0215 0.0000 0.9785 

310 0.8183 0.0002 0.1814 0.0202 0.0127 0.9671 

310 0.8187 0.0002 0.1811 0.0205 0.0252 0.9543 

310 0.8408 0.0007 0.1585 0.0220 0.0381 0.9399 

310 0.8324 0.0015 0.1660 0.0309 0.0556 0.9135 

340 0.8230 0.0000 0.1770 0.0147 0.0000 0.9853 

340 0.8237 0.0000 0.1762 0.0149 0.0131 0.9721 

340 0.8256 0.0001 0.1743 0.0153 0.0263 0.9584 

340 0.8261 0.0003 0.1736 0.0163 0.0389 0.9448 

340 0.8325 0.0006 0.1669 0.0179 0.0496 0.9325 

 

 


