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Resumo

Extremum-Seeking Control (ESC) é uma estratégia de controle que independe de um modelo e
possui resultados promissores em diversas aplicagdes, como no aumento da eficiéncia ener-
gética de usinas eolicas (CIRI et al., 2017), controle da posicdo de baldes de alta altitude
(VANDERMEULEN; GUAY; MCLELLAN, 2017), aumento da eficiéncia de células a com-
bustivel (BIZON, 2017), entre outros. Porém essa técnica nao é muito explorada na area de
engenharia quimica. O potencial de hidrogénio, ou pH, é um fator importante que deve ser
controlado em diversos sistemas, como nos sistemas de tratamento de agua e efluentes e na
producdo de agucar. Entretanto, seu controle pode ser dificil ndo apenas devido a seu forte
comportamento nao-linear, mas também devido ao conhecimento esparso das propriedades do
liquido a ser tratado, além do fato que elas podem se alterar com o tempo durante o procedi-
mento de controle. Esse trabalho propde duas técnicas baseadas em extremum-seeking para re-
solver esses problemas. A primeira consiste em um controlador PI sintonizado através de uma
série de experimentos onde seus parametros sao calculados através de um algoritmo do tipo
extremum-seeking, ja a segunda consiste na injecao direta de perturbacdes no sistema para es-
timar seu estado atual e definir, em média, o valor 6timo das variaveis manipuladas. Ambas
técnicas foram avaliadas através de simulacdes e experimentos que foram feitos com o uso do
software SciLab e seu modulo XCos. Os experimentos de controle de pH foram realizados em
uma planta piloto montada no Laboratério de Controle e Automacgao de Processos (LCAP) na
UNICAMP. Uma interface de comunicagao personalizada foi desenvolvida para facilitar a tro-
ca de dados entre qualquer programa, incluindo o SciLab, e o Controlador Légico Programa-
vel (CLP) da planta. Um supervisorio também foi desenvolvido. O reator continuo de mistura
estudado possui trés entradas: 1) Efluente a ser tratado (solugao tamponada), 2) Solucdo de hi-
droxido de sodio diluido (base) e 3) Solugao de nitrato de hidrogénio diluido (acido). O pH da
mistura reacional foi medido e seu valor controlado manipulando-se a vazdo de entrada de
acido e/ou base. No caso do ESC, simulagdes mostraram como a saturacao da variavel mani-
pulada possui grande influéncia na robustez do sistema de controle, mas com esse problema
resolvido o sistema pode ser controlado com sucesso pelo ESC com ajuste da vazao de acido,
de base e ambas simultaneamente tanto em simulacdes como experimentalmente. O controla-
dor PI sintonizado através de Extremum-Seeking mostrou-se capaz de controlar com sucesso o

pH do sistema por meio de simulacdes.



Abstract

Extremum-Seeking Control (ESC) is a model-free control strategy that has promising results
in a range of applications such as increasing the power capture of wind turbines (CIRI et al.,
2017), position control of high-altitude balloons (VANDERMEULEN; GUAY; MCLELLAN,
2017), increasing the efficiency of fuel cells (BIZON, 2017) and so on, but is not yet very
explored in the area of chemical engineering. The potential of hydrogen, or pH, is an
important factor to be controlled in various systems, such as water treatment and sugar
processing. However, its control can be difficult not only due to its strong non-linear
behaviour but also due to the lack of full or even partial knowledge of the properties of the
liquid to be treated, which can change tremendously during the control procedure. This work
proposes two techniques based on extremum-seeking to solve those problems. For the first
technique a PI controller is tuned with a series of experiments and its parameters are
calculated through a extremum-seeking algorithm, for the second technique dither is injected
directly into the system to estimate its current state and set, on average, the proper value of the
manipulated variables. Both techniques were evaluated through simulations and experiments
that were carried out using ScilLab and its XCos module. The experiments were carried out
with a pilot plant assembled at the Laboratory of Automation and Process Control (LCAP) at
UNICAMP. A custom communication interface was developed to allow easy data transfer
between any software, including Scil.ab, and the Programmable Logic Controller (PLC) of
the plant. A graphical interface was also developed. The continuous stirred reactor studied has
three inlets: 1) Effluent to be treated (buffered medium), 2) Diluted sodium hydroxide (base),
and 3) Diluted hydrogen nitrate (acid). The pH of the reactional mixture was measured and its
value controlled by manipulating the flow rate of the acid and/or base inlets. The level of the
reactor is controlled via a pump at the outlet of the reactor. For ESC, simulations showed how
manipulated variable saturation played important part on the robustness of the control system.
After this problem is dealt with, simulations and experiments showed that ESC was able to
successfully control the pH of the system when adjusting only one flow rate at a time, or both
at the same time. Simulations also showed that the PI controller tuned through extremum-

seeking was also able to successfully control the pH of the system.
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1. Introduction

Most systems have a property that needs to be kept at or set to a given value, be it
a level, a temperature, a concentration, or any other. This can be achieved by changing at least
one factor that influences the state of the property, such as closing a valve or increasing the
speed of rotation of the rotor of a pump.

While a person is able to do so, it is desirable to automate this process with a
computer to not only decrease costs but also to increase its quality and safety. People are more
prone to errors than machines as the performance of the latter is not affected by age, state of
mind, physical health, emotions etc. It is very important to remove the human factor when
controlling processes to increase its security, reduce errors and increase production rate or
reduce costs (LI; POWELL; HORBERRY, 2012).

There are various types of automated control systems, from a simple on/off switch
to set the level of a tank to a complex mechanistic model predictive controller to control fluid
catalytic cracking. The choice of the right type of control system greatly depends on the
system to be controlled.

The potential of hydrogen, or pH, is not only a difficult property to be controlled
but also one with great industrial importance owing to the fact that it needs to be controlled in
at least one unit operation on most industries. Some examples are wastewater treatment
(CHEREMISINOFEF, 2002), pharmaceuticals production, sugar processing (CHOU, 2000),
and for chemical and biochemical processes (OBUT; OZGEN, 2008).

The difficulty of the control comes mainly from strong process nonlinearities
(OBUT; OZGEN, 2008) Several techniques were developed to help control it, such as
nonlinear H,, control (LONGHI et al., 2004), a sequential model predictive control based on a
Wiener-Laguerre model (MAHMOOQODI et al.,, 2009), a fuzzy approximator (SALEHI;
SHAHROKHI; NEJATI, 2009), an adaptive control with a linearizing controller (HENSON;
SEBORG, 1994), and a nonlinear controller tuned with the iterative feedback tuning
technique (MA; ZHANG, 2016).

The control strategies generally used in chemical plants are based on a
mathematical model of the system, or mostly based on data that can be collected from them.
The present work proposes the use of two extremum-seeking (ES) techniques, which are not
usual in the scope of chemical engineering. These techniques are data-based with no prior

knowledge of the system. The first directly controls a neutralization reactor and the second
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tunes a PI controller for regulator and servo control of the same reactor. Computational
simulation of the system allows prior performance assessment, while experimental tests
shows the potential of ES control techniques in chemical process control.

This work is organized as follows. Section 2 presents its objective. Section 3
presents the theoretical framework with emphasis on the neutralization process and on the
extremum-seeking techniques. In Section 4 the experimental system and the simulation
environment is shown along with the control structure and the pH model used to simulate the
system. Section 5 presents the simulation and experimental results along with their discussion,
and is followed by the conclusion on Section 6. In Section 7 future works are proposed to

augment and better analyze the control system.
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2. Objective

In this section the objective is divided into two categories, the main which should

be achieved and the specifics, which may be necessary to reach the main objective.

2.1. Main

Evaluate the viability of two different control strategies to control the pH of a
neutralization reactor, one where extremum-seeking (ES) tunes a PI controller which in turn
controls the pH, and another where extremum-seeking directly controls the pH. No prior
knowledge of the system is required using ES strategies, which is the main attractive of this

technique.

2.2. Specifics

— Develop a generic method of communication between the computer and the
plant Programmable Logic Controller (PLC). Also develop the software where the algorithm
will be implemented and use this method to communicate;

— Create a graphical user interface to manage and view the current state of the
plant and ease its usage;

— Develop the first principles model of the neutralization reactor and simulate the
plant under each control strategy;

— Simulate the system to estimate suitable parameters to be used on the
experimental procedure;

— Run closed-loop experiments to test each algorithm and evaluate each, along

with how to choose the best parameters to cover the desired pH operating range.
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3. Theoretical framework

This section presents a literature survey to better understand the work proposal,
introduce the notions of extremum-seeking and show how it can be used to control the system

or tune a PI controller.

3.1. Neutralization Process

The process of neutralization is of great importance for the industry, especially for
wastewater treatment and the production of pharmaceuticals (HENSON; SEBORG, 1994).

It consists on the reaction of a base and an acid until there is no excess hydroxide
or hydrogen ions in the solution. This process is usually represented like the simplified
equation

acid+base= salt+water
Or
XH+Y > X+YH

One example of a neutralization reaction is the neutralization of hydrochloric acid

with sodium hydroxide, as shown
HCI+NaOH - NaCl+ H,O

Neutralization is highly nonlinear and this property can be clearly seen with the
titration curve of a solution, which usually is sigmoid-shaped and can have various gains
depending on the composition of the solution. Figure 1 shows examples of titration curves
and the difference on the behaviour of the potential of hydrogen, or pH, for different types of
solutions.

The pH can be estimated with a probe that measures both the electrical potential

between two electrodes and the temperature, as it is also a function of the temperature.

14 14 14
I 7F I 70 I 7-
o o o
0 | | J 0 | ] 0 |
0 10 20 30 0 50 100 0 25 50
Volume of base (ml) Volume of base (ml) Volume of base (ml)

Figure 1 — Some examples of titration curves. From left to right, strong base with strong acid, strong

base with weak acid, strong base with polyfunctional acid (SKOOG, 2012)
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3.1.1. Chemical engineering applications

This section will illustrate how the neutralization process, or pH control in
general, is used as an industrial operation along with what type of industry can employ this

process to attain a desired property, such as respecting quality standards.
3.1.1.1.  Wastewater treatment

The pH of the effluent to be treated is of special interest on wastewater treatment,
the effluent should not only be released to the environment or returned to the system at a
specific range of pH but its magnitude also interferes with the function of each operational
unit, such as disinfection, biological treatment (aerobic or anaerobic), coagulation,
clarification and neutralization. Some other important aspects to consider are corrosion
control, adsorption and oxidation (CHEREMISINOFF, 2002).

Some studies addresses pH control in industrial wastewater anaerobic treatment
(ANDERSON; YANG, 1992), in wastewater with acetic and propionic acids (LIU; CHEN;
ZHOU, 2007) and sludge digestion (AI-GHUSAIN et al., 1994).

A process diagram example for wastewater treatment can be seen on Figure 2,

where the digestion, disinfection and clarification operations are clearly shown.
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Figure 2 — Wastewater treatment process diagram (SANITARY DISTRICT, n/a).

3.1.1.2.  Sugar industry

The control of the pH is important not only to increase the edibility of the sugar,
but also on various intermediate steps to obtain the refined sugar, especially on clarification,
decolourization and ion exchange (CHOU, 2000).

In respect to edibility, pH control is essential on every food processing industries
and should be maintained within a range to respect safety and quality limits even with the
difficulties associated its control, strong non-linearity, multi-input and time-varying properties
(VIJAYARAGAVAN et al., 2015).

The diagram on Figure 3 is an example of the process flow diagram for sugar

processing with sugar cane as feedstock, and the clarification step can be clearly seen.
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Figure 3 — Sugar cane processing diagram (OMNICANE, n/a).

3.1.1.3.  Pharmaceutical manufacturing

There are various methods to manufacture drugs, and pH control is most
important on production processes where the synthesis of the drug comes from a living being,
such as yeast or bacteria. Thus its control is especially necessary on the fermentation step, as
there is a natural shift on its pH while the nutrients are consumed and its magnitude affects the

product yield JERMAINE, 2014).
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Figure 4 — Diagram of a fermentation process (D. TAIT, n/a).

3.1.2. Process control

There is diverse literature about the neutralization process due its challenges, with
various proposals of techniques to control the system, such as an adaptive control strategy that
uses an input-output linearizing controller with a reduced-order, open-loop observer
(HENSON; SEBORG, 1994), a Model Predictive Control based on a Wiener-Laguerre model
(MAHMOOQODI et al.,, 2009), a neural network-based predictive controller (ELARAFI;
HISHAM, 2008) and a nonlinear controller tuned with the iterative feedback tuning technique
(MA; ZHANG, 2016). These techniques will be quickly shown in this section to give an idea

of their implementation and complexity to the reader.

3.1.2.1.Input-Output Linearizing Controller

Henson and Seborg (1994) proposed the use of a nonlinear control strategy using
an augmented nonlinear controller with indirect parameters estimation to account for any
unmeasured buffering changes on the effluent to be treated, which will be shown in this
section.

The model is based on the Reaction Invariant Model, the same used in this study
as shown on Section 4.8. The nonlinear controller design is based on a modified input-output

linearization approach to account the implicit nature of the pH estimation equation, which is
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similar to Equation 37 shown later. After development the actual non-adaptive input-output
linearizing controller equation can be seen in Equation 1, and its terms in Equation 2,

Equation 3, Equation 4, Equation 5, and Equation 6. (HENSON; SEBORG, 1994)

To reach these equations it is assumed that xé[Wa4 w,, h]', d éqz,

ua éq3’ and y épI_I N

e_zg(ysp—y)d t—2¢ y+c,' (x,y)c,(y)[f(x)+ p(x)d]

u, = _ (1)
—oyIe g

(0] 2 W) W) g G| ®

o(8)= i Warn) o) | ®

= W) W) 5] @
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e = e G

Where x is a state variable, W, an invariant i of the system, h, the level of
liquid, q, the acid stream flow-rate, g, the buffer stream flow-rate, g, the base stream
flow-rate, ¢ is the controller tuning parameter, y_ is the desired set-point of the control
variable, y the current state of the control variable, f(x), g(x), p(x), and c (y) are
vectors based on the model of the system, C,, is the constant of the outlet valve, z is the
vertical distance between the bottom of the reactor to the outlet valve, n is a constant valve
exponent, A, is the reactor base area, and pK, and pK, are equilibrium constants of the
system.

Equation 7 is the obtained closed-loop transfer function if the model perfectly

matches the plant.

y(s) _ 1
y5p<5)_(€s+1)2 (7)

The linearized pH model has an unobservable mode, thus a closed-loop observer

cannot exist and an open-loop observer is used to sequentially estimate the invariants of the
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system. After further developing of the system, including discretizations, the resulting control

law is shown on Equations 8, 9, 10, and 11. (HENSON; SEBORG, 1994)

y(;(k:yk) Ue k = y(&k—l:yk—l) ua,k—1+82At(ysp_yk>_2 gil(yk_yk—l)-l-a(&k: Yk)

~ « « 8

_a(xkﬁl).ykfl)"'ﬁ(xk’yk)dk_ﬁ(xkfl:.Yk~l)dkfl ®)
Where:

a<3(k’}’k)éc;l@k;)ﬁ()cx(.)’k)f(&k) ©)]

ﬁ(&k’yk) = C;l(&k’}/k)cx()’lJp(&k) (10)

)’(?A(k’}’k> £ C;1<§k:yk)cx(.)/k)g(3(k) (11)

The results of this technique with even further development of the equations,
including the addition of a parameter estimator of unmeasured buffer flow rate, can be seen in
Figure 5. This figure shows its performance when the buffer flow rate suddenly changes, a
stable system even with low buffer flow rate (not shown). Note that g, is the base flow rate.

This controller depends on the availability of a model but has acceptable

performance characteristics on set-point change and disturbance rejection, especially when

there is change on the buffer flow rate or its properties.
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Figure 5 — Performance of the adaptive nonlinear controller. Left: regulatory action on buffer flow rate

change. Right: servo action. (HENSON; SEBORG, 1994).
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3.1.2.2.  MPC based on Wiener-Laguerre model

Model Predictive Control is usually employed to control the future state of a
system through an explicit process model, which can be either linear or nonlinear. Most
systems are nonlinear, and while a linear model is enough for rejection of disturbances, a
complete nonlinear model should be used on set point change to not result in poor control
performance (MAHMOOQODI et al., 2009).

Mahmoodi et al. (2009) proposed the use of a MPC with a model based on
Wiener-Laguerre, where a Wiener structure is coupled with Laguerre filters for its linear part,
and polynomials for its nonlinear part. This controller is shown in this section.

The resulting structure can be seen on Equation 12, which can be written as
shown on Equations 13, 14, 15, and 16. Even though it is a simplified structure when
compared to first-principle models, it is still complex and its parameters still must be

identified through experiments.
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