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RESUMO 

 

Leitos fluidizados têm sido amplamente utilizados em inúmeros processos industriais desde o 

seu uso no craqueamento catalítico do petróleo, em 1942. Devido ao alto grau de contato entre 

as fases, suas aplicações incluem recobrimento de partículas, combustão, secagem e síntese 

catalítica. No entanto, leitos fluidizados exibem dinâmica complexa e a caracterização de 

regimes de fluidização tem sido o foco de diversos estudos ao longo dos anos. Usualmente, 

monitora-se a pressão neste tipo de sistema, pois os instrumentos são robustos, relativamente 

baratos, não intrusivos e suportam condições operacionais severas. O presente trabalho avalia 

a entropia de Shannon para a análise de séries temporais de queda de pressão em um leito 

fluidizado gás-partícula. Esse parâmetro advém da teoria da informação, sendo uma medida da 

incerteza média de uma variável, e pode ser usado como uma ferramenta na caracterização de 

diferentes regimes de fluidização. Os dados experimentais usados nesta dissertação foram 

obtidos por Prieto (2014), sendo os experimentos realizados no Laboratório de Processos em 

Meios Porosos, na Unicamp. A fase fluida foi o ar atmosférico, a 25 oC e a fase particulada 

consistia de microesferas de vidro pertencentes aos grupos A, B e D da classificação de Geldart. 

O carregamento de partículas no leito foram 400 e 800 g. O sistema de aquisição de pressão 

possui uma frequência de 1.000 Hz. A coluna foi construída em acrílico e possui um diâmetro 

interno e altura iguais a 10 e 100 cm, respectivamente. Dos resultados, percebeu-se que a 

entropia de Shannon é capaz de caracterizar a dinâmica dos regimes de fluidização embora haja 

uma dificuldade na identificação dos pontos de transição. No geral, existe um valor máximo na 

região próxima do ponto de mínima fluidização e, então, uma tendência decrescente é 

observada, a medida que o comportamento do leito se torna mais periódico no regime pistonado. 

Para que se possa calcular a entropia de Shannon, é necessário transformar a série temporal em 

uma distribuição de frequência. Devido ao fato de que este parâmetro é monotonicamente 

crescente com o número de classes de um histograma, cada série temporal teve o seu número 

de classes determinado individualmente. Os resultados estão de acordo com aqueles obtidos por 

Prieto (2014), que utilizou a análise no espaço de fase na caracterização da dinâmica do leito. 

 

Palavras-chaves: fluidização, entropia de Shannon, sinais de pressão, caracterização. 

 

 



 

ABSTRACT 

 

Fluidized beds have been extensively used for numerous industrial processes since the catalytic 

cracking of petroleum in 1942. Due to the high level of contact between the phases, its 

applications include solid coating, combustion, drying and catalytic synthesis. However, 

fluidized beds exhibits complex dynamics and the characterization of fluidization regimes has 

been the subject of several studies along the years. Usually, pressure is the variable monitored 

in these systems, because the measurement instruments are robust, relatively cheap, virtually 

non-intrusive and can withstand harsh operational conditions. The present work evaluates the 

Shannon entropy for the analysis of pressure drop time series from a gas-particle fluidized bed. 

This parameter comes from the information theory, being a measure of average uncertainty of 

a random variable, and can be used as a tool for the characterization of different fluidization 

regimes. The experimental data used in this Dissertation were obtained by Prieto (2014). The 

experiments were performed at the Laboratory of Processes in Porous Media, at University of 

Campinas. The fluid phase was atmospheric air, at 25 oC and the particulate phase consisted of 

glass beads belonging to the A, B and D group of the Geldart classification. The total particle 

loads in the bed were 400 and 800 g. The column is made of acrylic with an inside diameter 

and height of 10 and 100 cm, respectively. The pressure acquisition system has a frequency of 

1,000 Hz. As for the results, the Shannon entropy is capable of characterizing the dynamics of 

the fluidization regimes even if there is a certain difficulty in identifying the transition points. 

Generally, there is a maximum value around the region of the minimum fluidization and, then, 

a decreasing tendency of is observed as the behavior of the bed becomes more periodic in the 

slug flow regime. In order to calculate the Shannon entropy, it is necessary to transform the 

time series into a frequency distribution. Due the fact that this parameter is monotonically 

increasing with the number of classes of a histogram, each time series was analysed individually 

for the determination of their respective number of bins. The results are in accordance to those 

obtained by Prieto (2014), who used state space analysis to characterize the dynamics of the 

gas-particle fluidized bed. 

 

Keywords: fluidization, Shannon entropy, pressure signals, characterization. 
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1. INTRODUCTION 

 

Gas-particle contacting is a form of mixing that is done for a variety of reasons, 

including to effect mass and heat transfer, chemical reactions and drying applications 

(Cheremisinoff, 2000). Since fluidization hit the industrial scene in 1942 with catalytic 

cracking, it has moved into many other areas, because of its high level of contact between the 

phases (Kunii and Levenspiel, 1991). The complex dynamics of this unit operation stimulated 

numerous studies on the subject, in order to develop techniques capable of understand the 

phenomenon occurring inside the bed (Green and Perry, 2008). Therefore, the necessity of 

monitoring the operational conditions of a fluidized bed, in the interest of maintaining a specific 

fluidization regime and, by extension, the heat and mass transfer at a desired rate. 

Several methods have been proposed for the characterization of fluidization 

regimes: visual observations, study of time averaged entities, such as the axial solids 

concentration profile and interpretation of fluctuating signals from in-bed measurements. For a 

qualitative classification of regimes, visual observation is important, but also subjective in 

nature. For instance, what is regarded to be a turbulent regime by some observers may be 

described as bubbling by others. Methods based on the study of time averaged values of solids 

concentration do not directly quantify the flow dynamics and may lead to pitfalls. On the other 

hand, a quantitative description of flow regimes can be obtained from time series analysis of 

fluctuating signals of in-bed measurements of pressure or of other signals, such as local solids 

concentration, from optical and capacitance probes. It is important to mention that an 

appropriate measurement method as well as appropriate methods of time series analysis are the 

key for such quantification. Pressure is commonly used to characterize fluid dynamics of gas-

particle fluidized beds mainly because it is a robust, cheap and easily measured parameter. 

Nonetheless, the interpretation of pressure signals is not straightforward and, therefore, there 

are many different ways to analyse them, which can basically be grouped into three main 

categories – the time domain methods, frequency domain methods and state space methods 

(Johnsson et al., 2000). 

Among the methods mentioned previously, time and frequency domain techniques, 

such as the standard deviation and the Fourier transform, respectively, have been traditionally 

used to study pressure signals (van Ommen et al., 2011). Space state methods, also known as 

the chaotic approach, applied to the study of fluidization only begun in the 90’s, with a group 

at the Delft University of Technology, in Netherlands. The results rapidly showed that chaotic 
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invariants could be an interesting alternative to the conventional analysis in order to 

characterize fluidization regimes and they have been extensively used ever since. For instance, 

the complex and nonlinear gas-particle interaction of a fluidized bed exhibits a continuous 

power spectrum, when the Fourier transform is applied to a pressure drop time series. Since the 

spectral analysis intends to identify a dominant frequency, correspondent to the phenomenon, 

a continuous spectrum emerges as a difficulty for that. As for the state space method, there is 

no need for a clean power spectrum, in fact, Ferrara and Prado (1994) claims that because of 

the aperiodic behavior of chaotic time series, the continuous power spectrum serves as proof of 

chaotic dynamics. 

This Dissertation follows the previous studies of fluidized bed time series in the 

Laboratory of Processes in Porous Media, at the University of Campinas. Castilho (2007) 

studied the volumetric concentration of solids using the standard deviation of the electrical 

signals from an optical fiber probe. In 2011, the same author presented a thesis applying the 

chaos theory in a circulating fluidized bed by measuring electrical signals. Prieto (2014), also 

used the state space methodology, but on pressure drop time series from a fluidized bed. This 

work will focus on complementing those analysis by applying a different method. It has a 

statistical approach to pressure drop time series from a fluidized bed. In order to do so, the 

Shannon entropy was evaluated as a parameter for the characterization of fluidized bed 

dynamics. 

Shannon entropy is a measure of average uncertainty of a random variable. It comes 

from the information theory and it is calculated from a frequency distribution (Baltzer et al., 

2015). This parameter, thus, measures the complexity of a system from its amount of 

information and uncertainty, which could bring useful results in the attempt to characterize the 

elusive nature of fluidized beds (Wang et al., 2017). The moments of a time series or a 

frequency distribution describe the shape of its set of points. The first moment is the arithmetic 

mean, and the second central moment is the variance, which describes how the data points are 

dispersed around the first one (Correa, 2003; Spiegel and Stephens, 2008). Different time series 

have different frequency curves, and by that, necessarily different moments, which leads to the 

premise that their fluidization regimes can be distinct by these quantities and the Shannon 

entropy. Nonetheless, in order to transform a time series into a frequency distribution, to 

eventually evaluate the Shannon entropy, it is necessary to determine the number of bins that 

will group the data. 
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Therefore, the attention in this work has been directed to the development and 

testing of statistical analysis for fluidized beds by calculating the Shannon entropy. The final 

objective is to evaluate this method as an alternative for fluidization regime identification. 

 

1.1 General objective 

 

The main objective of this Dissertation is to identify fluidization regimes in a 

fluidized bed through the analysis of the experimental pressure drop time series, obtained by 

Prieto (2014), via a statistical approach, using the Shannon entropy. 

 

1.2 Specific objectives 

 

This work has the following specific objectives: 

 

  Analysis of the original experimental time series in order to construct the fluidization curve 

for each particulate phase; 

  determine the number of bins which each time series are going to be divided into by evaluating 

the coefficient of variation; 

  transform each time series into frequency distributions with their respective optimal number 

of bins; 

  calculate the Shannon entropy from the frequency distributions; 

  fit the experimental frequency distribution in different families of continuous probability 

distributions, evaluating them with the Kolmogorov-Smirnov test and the sum of the squared 

errors; 

 characterize the fluidization regimes by the Shannon entropy; 
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2. LITERATURE REVIEW AND THEORETICAL FOUNDATION 

 

2.1 Literature review 

 

2.1.1 Gas-particle fluidization 

 

Fluidized beds basically consist of a suspension of particles submitted to an 

ascending flow of the fluid phase in a vertical channel (Cremasco, 2014). Although the particles 

remain in contact with each other through collisions, the interparticle friction is small and the 

particulate phase is transformed into a fluid like state (Kunii and Levenspiel, 1991; Vander 

Stappen, 1996). This technique was first used industrially in the Winkler’s process for the 

gasification of coal, in the early 1930’s. However, it was only around the beginning of the 

Second World War that it developed and spread, primarily because of its application in the 

catalytic cracking of petroleum (Yates, 1983). Currently, due to their high level of contact 

between gases and solids, which promotes high rates of heat and mass transfer, fluidized beds 

are employed in numerous industrial processes, such as solid coating, combustion, drying and 

catalytic synthesis (Green and Perry, 2008; Cremasco, 2014). 

The behavior of fluidized bed systems can be described from the properties of the 

fluidized particles and the flow regimes. Measurements of the pressure drop across the bed can 

be used to identify the minimum fluidization velocity, for instance. Figure 2.1 shows the 

classical relationship of pressure drop through the bed versus the superficial gas velocity. For 

low gas velocities, the fluid merely percolates through the voids between packed particles while 

they remain motionless, characterizing the packed bed regime. With increasing superficial gas 

velocity, the pressure drop through the bed also increases, reaching a peak. The frictional drag 

force causes the particles to rearrange, which can alter the bed voidage. The gas velocity at 

which the peak occurs is called the minimum fluidization velocity, and it equals the weight of 

the bed divided by the cross-sectional area of the column. Upon rearrangement, the pressure 

decreases until it drops to a constant. To explain this result, note that the gas-particle phase is 

well aerated and can deform easily without appreciable resistance, similar to the hydrodynamic 

behavior of a liquid. If a gas is introduced at the bottom of a tank containing a liquid of low 

viscosity, the pressure required for injection is roughly the static pressure of the liquid and is 

independent of the gas flow rate. Finally, as the velocity decreases, the pressure drop follows a 

different path without passing through the peak. This hysteresis effect is due to the expansion 
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of the bed, that is, the different voidage resultant from the rearrangement of the particles (Kunii 

and Levenspiel, 1991; Fan and Zhu, 1998). 

 

Figure 2.1 – Pressure drop variation with the gas velocity (Fan and Zhu, 1998). 

 

 

 

 

 

 

 

 

 

 

 

As it was discussed, the fluid dynamics behavior of the bed varies with the gas flow 

rate. Specifically, fluidization regimes go from the packed bed to the particulate, bubbling, slug 

flow, turbulent, fast fluidization and pneumatic conveying transport regime (Green and Perry, 

2008), as illustrated in Figure 2.2. 

 

Figure 2.2 – Gas-particle fluidization regimes (adapted from Grace, 1986). 
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In the bubbling fluidization regime, bubble coalescence and breakup take place, 

inducing a vigorous motion of the particles. As the velocity increases, so does the tendency of 

bubble coalescence (Fan and Zhu, 1998). Once their size becomes large enough, the bed will 

slug. The slugging fluidized bed is characterized by severe pressure fluctuation and limited 

solids mixing. The turbulent regime occurs when the gas velocity is higher than the terminal 

velocity of the particle, with stable bubbles breaking down into unstable voids that continuously 

disintegrate and reform. If the gas velocity is increased further, the bed transitions to the dilute-

phase transport, which are the fast fluidization and pneumatic conveying regimes (Green and 

Perry, 2008). 

It is worth to emphasize that some of these regimes in Figure 2.2 does not form, 

depending on the particle properties that is fluidizing. Therefore, Geldart (1973) proposed a 

classification for different particles, based on their fluidization behavior. Geldart’s 

classification was obtained empirically and has been widely adopted in research and design of 

fluidized beds. Figure 2.3 presents this classification, where particles are classified in terms of 

the density difference between the phases and the particle diameter. 

 

Figure 2.3 – Geldart’s classification (Geldart, 1973). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Group A particles expand considerably after the minimum fluidization and prior to 

the commencement of bubbling regime. One example is cracking catalyst. Those in group B 

bubble at the minimum fluidization velocity. The bubble size increases with the bed height and 
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bed expansion is moderate. Sand is the most typical powder. Category C comprises small 

particles which are cohesive, such as flour and starch. They are difficult to fluidize and gas 

channeling is the most common characteristic when fluidizing these particles. Finally, the ones 

in group D are of large size or density, or both, and spout readily. Also, the bed expansion is 

low and the particle mixing is not as good as that for group A and B particles. Drying grains 

and peas, roasting coffee beans and some roasting metal ores fall into this category (Geldart, 

1973; Kunii and Levenspiel, 1991; Fan and Zhu, 1998; Cremasco, 2014). 

Furthermore, Grace (1986) has correlated various types of gas-particle systems, in 

which the gas is flowing vertically upward in a status graph using the Archimedes number for 

the particle size and a nondimensional velocity for the gas effects, as shown in Figure 2.4. This 

diagram can be used as a guide to estimate the fluidization regime for various particle sizes and 

operating conditions. Nonetheless, it should not be substituted for more exact methods of 

determining the actual fluidization regime (Green and Perry, 2008). 

 

Figure 2.4 – Simplified fluidization status graph (adapted from Grace, 1986). 
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series are nonlinearity, aperiodicity and high sensitivity to initial conditions (Ferrara and Prado, 

1994; Monteiro, 2011). 

Thus, depending on the final objective of the analysis, the average value of the time 

series can be enough, which is the case when constructing the fluidization curve. Conversely, 

for a deeper understanding of the phenomenon, the whole time series and how the points are 

ordered in time are crucial, for these purposes, it can be used the analysis using the Fourier 

transform or a chaotic approach. Consequently, Literature presents a large number of methods 

for the analysis of pressure drop time series, which can be grouped into three categories: time 

domain, frequency domain, and state space (Vander Stappen, 1996; Johnsson et al., 2000; van 

Ommen et al., 2011). 

The ensuing topics will briefly discuss studies of fluidized beds in these three 

categories. 

 

2.1.2.1 Time domain analysis 

 

There are several studies of fluidized beds using time domain analysis of signals 

Table 2.1 presents some examples related to process engineering. 

 

Table 2.1 – Time domain analysis of fluidized beds time series. 

Authors Equipment Objectives 

Chong et al. (1987) Fluidized bed 
Control the quality of fluidization using 
the variance of pressure drop time series. 

Kai and Furusaki 
(1987) 

Fluidized bed reactor 

Evaluate and improve the quality of 
fluidization in the methanation of carbon 
dioxide by studying the standard deviation 
in pressure signals. 

Saxena et al. (1993) Fluidized bed 

Calculate the coefficients of skewness and 
kurtosis of pressure signals in order to 
establish diagnostic procedures for the 
quality of fluidization in gas-particle 
systems. 

Wilkinson (1995) Fluidized bed 
Determination of the minimum 
fluidization velocity using the standard 
deviation of pressure fluctuations. 

Bi et al. (2000) Fluidized bed 

Identify the transition velocity from the 
bubbling to turbulent regime. The authors 
concluded that a maximum in the standard 
deviation as a function of the superficial 
gas velocity indicated this turning point. 
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Table continued 

Authors Equipment Objectives 

van Ommen et al. 
(2004) 

Fluidized bed 

Detect defluidization in gas-particle 
fluidized bed by monitoring the standard 
deviation of pressure fluctuations with 
decreasing gas velocity. 

Puncochar and Drahos 
(2005) 

Fluidized bed 

Determine the minimum fluidization 
velocity using the standard deviation of 
pressure fluctuations and spectral 
analysis. 

Castilho (2007) 
Circulating fluidized 

bed – riser 

Study the volumetric concentration of 
solids using the standard deviation of 
signals from an optical fiber probe. 

Felipe and Rocha 
(2007) 

Fluidized bed 
Predict the minimum fluidization velocity 
using the standard deviation of pressure 
signals. 

Davies et al. (2008) Fluidized bed 
Estimate the particle size in a fluidized bed 
using the standard deviation of pressure 
drop time series. 

 

The standard deviation is the square root of the variance. The analysis of this 

parameter has the advantage of its fast calculation (Johnsson et al., 2000; van Ommen et al., 

2011). Notice how the majority of these references work with the standard deviation as 

opposed to higher-order moments, that is, the coefficients of skewness and kurtosis. 

Another typical time domain analysis is to transform a time series into a frequency 

distribution. This curve contains the frequency or the count of occurrences of values in a 

particular interval. It is a form of evaluating how the signals are distributed around the mean, 

which can qualitatively indicate the flow uniformity, for instance (Castilho, 2011). 

The method of moments, which includes parameters such as the standard deviation, 

coefficient of skewness and coefficient of kurtosis, is the main type of analysis in time domain. 

Moreover, only when transforming a time series into a frequency distribution that is possible to 

evaluate the Shannon entropy. 

 

2.1.2.2 Frequency domain analysis 

 

Any temporal evolution of a dynamic system can be expressed as a sum of many 

individual frequency components. Eventually, the number of components can be infinite. The 

determination of the weight that each of these components have in the original function is called 

spectral analysis (Ferrara and Prado, 1994). One of the most applied methods to pressure signals 
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in the frequency domain is the power spectrum. It uses the Fourier transform to obtain the 

dominant frequency, which can provide identification and monitoring of the various 

fluidization regimes (Johnsson et al., 2000; van Ommen et al., 2011). The Fourier transform of 

a function x(t) is defined as (Ferrara and Prado, 1994) 

 𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡∞
−∞                                                                                                                  (2.3) 

 

Through Equation 2.3, the data collected goes from the time domain to the 

frequency domain. Table 2.2 exhibits some works that have used the frequency domain analysis 

in the study of fluidization. 

 

Table 2.2 – Frequency domain analysis of fluidized beds time series. 

Authors Equipment Objectives 

Kage et al. (2000) Fluidized bed 

Detection of fluidization states by 
analysing pressure fluctuations measured 
at the plenum chamber using the Fourier 
transform to obtain the power spectrum. 

Trnka et al. (2000) Fluidized bed 
Online characterization of the state of a 
fluidized bed using the Fourier transform 
on pressure signals. 

Brown and Brue 
(2001) 

Fluidized bed 

Determination of the power spectrum of 
pressure drop time series in order to 
understand the dynamical behavior of 
fluidized beds. 

Felipe (2004) Fluidized bed 

Monitoring typical fluidization regimes of 
gas-particle bubbling columns by the 
power spectra obtained via the Fourier 
transform from pressure drop time series. 

Butzge (2012) Spouted bed 
Use the dominant frequency to monitor 
and control the fluid dynamics regime in a 
spouted bed wetting process. 

Jaiboon et al. (2013) 
Circulating fluidized 

bed 

Study the effect of superficial gas velocity 
on the average frequency and average 
intensity of the power spectrum in a gas-
particle fluidization system. 

Gyan (2015) Fluidized bed 
Analysis of pressure fluctuations by the 
power spectra of fluidized bed columns 
having different internal diameters.  

Bae et al., (2017) Fluidized bed 

Investigate bubble flow characteristics in 
a gas-particle fluidized bed by power 
spectrum analysis of absolute pressure 
fluctuations. 
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Analysis in the frequency domain is a common tool for investigating pressure 

signals recorded in fluidized beds. This type of analysis is typically carried out using the Fourier 

transform. However, a recently introduced method into the analysis of fluidized beds dynamics 

is the wavelet analysis. Wavelets provide an approach to signal processing which allows for the 

representation of a signal simultaneously in time and in frequency (van Ommen et al., 2011). 

Likewise the Fourier transform, which decomposes the signal into a family of complex 

sinusoids, the wavelet transform decomposes the signal into a family of wavelets. In order to 

define what a wavelet is, Burrus et al. (1998) define a wave as an oscillating function of time 

and space, thus, a wavelet is a “small wave”, which has its energy concentrated in time. Table 

2.3 displays studies using the wavelet analysis in fluidization systems. 

 

Table 2.3 – Wavelet analysis of fluidized beds time series. 

Authors Equipment Objectives 

Briens et al. (2003) Fluidized bed reactor 

Online detection of the bed fluidity 
through the ratio between small and large 
pressure fluctuations, via the wavelet 
analysis. 

Sasic et al. (2006) Fluidized bed 

Analysis of pressure fluctuations in a gas-
particle system using the wavelet analysis 
in order to acquire information about 
bubbles in different scales of the wavelet 
transform. 

Wu et al. (2007) Fluidized bed 

Use the wavelet transform to compute the 
average cycle time in order to differentiate 
fluidization behavior between different 
particle systems. 

Chen and Chen (2008) Fluidized bed reactor 

Determination of the average particle size 
in a fluidized bed reactor by using a 
wavelet based neural network in acoustic 
emission signals. 

Yang and Leu (2008) 
Circulating fluidized 

bed 

The wavelet analysis helped mark the 
transition velocity to the slug flow regime 
and discriminate the bubble growth 
dynamics of different kinds of particles in 
different flow regimes. 

Silva (2015) Fluidized bed 

Showed that the wavelet transform 
presents a vast application in processes 
that occur regime changes due to influence 
of humidity and the different scale 
phenomena that happen during regime 
transitions in solid coating could be better 
discretized. 
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In fluidized beds, the major frequency content of pressure fluctuations is normally 

below 10 Hz. Most works, dealing with frequency domain analysis, aims to identify dominant 

frequencies (Johnsson et al., 2000). However, according to Ferrara and Prado (1994), the 

aperiodic behavior of a chaotic time series results in a continuous power spectrum. Stringer 

(1989) was the first to claim that a gas-particle fluidized bed is a chaotic system. Hence, it is in 

this scenario that chaos theory is inserted in the analysis of pressure drop time series from a 

fluidized bed, because it dismisses the requirement of a clean power spectrum (Prieto, 2014). 

 

2.1.2.3 State space analysis 

 

Complementing analysis in the time and frequency domain, the fluidized bed 

pressure signal can be studied in the state phase (Johnsson et al., 2000; van Ommen et al., 2011). 

This approach is common for nonlinear analysis and became popular after the pioneering work 

by Stringer (1989). Since then, chaos analysis has been extensively applied in pressure drop 

time series. Table 2.4 presents some examples that have used the state space method in the 

study of fluidized beds. 

 

Table 2.4 – State space analysis of fluidized beds time series (adapted from Castilho, 2011). 

Authors Equipment Objectives 

Daw et al. (1990) Fluidized bed 
Evaluate the dynamics of a gas-particle 
fluidized bed by reconstructing the 
attractor and calculating its dimensions.  

van den Bleek and 
Schouten (1993) 

Fluidized bed 

Use the chaotic approach to assess time 
series obtained from a theoretical model of 
a fluidized bed. The results were 
compared with experimental data. 

Vander Stappen 
(1996) 

Fluidized bed 

Characterize the dynamics in a fluidized 
bed system using the Kolmogorov entropy 
and correlation dimension as a function of 
the operational conditions. 

Ji et al. (2000) 
Circulating fluidized 

bed 

Study the dynamic behavior of the 
particle-fluid flow in a circulating 
fluidized bed by chaotic analysis of 
pressure, local heat transfer and voidage 
fluctuations. 

Chaplin et al. (2004) Fluidized bed dryer 

Track the moisture content within the bed 
using a statistical test, S-statistics, 
between chaotic attractors for fluidized 
systems. 
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Table continued 

Authors Equipment Objectives 

Briongos et al. (2006) Fluidized bed 

Demonstrate that measurements of low 
frequency out-bed passive acoustic 
emissions are useful for monitoring gas-
particle fluidized bed dynamics. Neither 
time nor frequency domain analysis 
seemed able to fully characterize the bed 
dynamics, only the chaotic approach. 

Zarghami et al. (2008) Fluidized bed 

Prediction of pressure fluctuations is 
fluidized beds in two different 
hydrodynamic states using nonlinear 
techniques. 

Breault et al. (2012) 
Circulating fluidized 

bed - riser 

Characterize flow conditions and 
characteristic scales in a circulating 
fluidized bed by analyzing the raw voltage 
signal from a fiber optic probe. 

Prieto (2014) Fluidized bed 
Application of state space analysis in a 
fluidized bed with particles A, B and D of 
the Geldart classification. 

Ziaei-Halimejani et al. 
(2017) 

Fluidized bed 

Analyze the hydrodynamics of a gas-
particle fluidized bed from its pressure 
fluctuation using cross recurrence 
quantification analysis. 

 

The next topic is about the Shannon entropy. This parameter can be associated with 

the complexity of a particulate system but it is still not much employed in fluidization studies, 

ergo, the proposal of this Dissertation to evaluate it for the characterization of fluidized bed 

regimes. 

 

2.2 Theoretical foundation 

 

2.2.1 Shannon entropy 

 

Shannon (1948) proposed an expression for a quantity, H, in order to measure how 

much “choice” is involved in the selection of an event or of how uncertain of the outcome one 

can be, given the set of possible events and their probabilities of occurrence. Let p(x)i be the 

probability of xi occurring. Thus, it is reasonable to require of H the following properties 

(Shannon, 1948): 

 

 H should be continuous in the p(x)i. 
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 If all probabilities are equal, that is, p(x)i = 1/n, with n being the number of possible events, 

then H should be a monotonic increasing function of n. With equally likely events there is 

more choice, or uncertainty, when there are more possible events. 

The Shannon entropy is then defined in the form of Equation 2.4. 

 𝐻 = −𝐾 ∑ 𝑝(𝑥𝑖)𝑙𝑜𝑔𝑏𝑝(𝑥𝑖)𝑛
𝑖=1                                                                                                              (2.4) 

 

where K is a positive constant that amounts to a choice of a unit of measure. 

The parameter H play a central role in information theory as measures of 

information, choice and uncertainty (Shannon, 1948). When b is equal to 2, the units of entropy 

are bits (Guo et al., 2002). Also, since p(x) is a probability distribution function, the probability 

that at least one of the elementary events in the entire sample space will occur is certain. 

Therefore, Equation 2.5, which is a probability axiom, must be satisfied (Bulusu and Plesniak, 

2015). 

 ∑ 𝑝(𝑥𝑖)𝑛
𝑖=1 = 1                                                                                                                                         (2.5) 

 

Thus, for K equal to one and the entropy with the units of bits, Equation 2.4 is 

rewritten as 

 𝐻 = − ∑ 𝑝(𝑥𝑖)𝑙𝑜𝑔2𝑝(𝑥𝑖)𝑛
𝑖=1                                                                                                                  (2.6) 

 

Shannon entropy quantifies the average unpredictability in a random variable. 

Hence, the higher the entropy, the lower the information content of the time series (Baltzer et 

al., 2015). If one predicts the outcome exactly before it happens, the probability will be a 

maximum value and, as a result, the Shannon entropy will be a minimum value. If one is 

absolutely able to predict the outcomes of an event, then, Shannon entropy will be zero (Cai et 

al., 2013). 

Although Shannon proposed this quantity over sixty years ago, only recently, 

studies of this parameter have been used to characterize fluidization regimes (Zhong and Zhang, 



34 
 

 
 

2005; Zhong et al., 2009; Duan and Cong, 2013; Cremasco et al., 2017; Wang et al., 2017). The 

main objective of this Dissertation is to evaluate the Shannon entropy in the fluidization of 

particles A, B and D of the Geldart classification. For that, it is necessary to simply apply 

Equation 2.6 to the grouped data, as the relative frequency of a class can be interpreted as the 

probability of any element from that class occurring. 

It is important to mention that Shannon defined Equation 2.4 for the case of a 

discrete variable. However, the concept of entropy for continuous distributions was also 

presented in Shannon’s original paper (Shannon, 1948) and is referred to as the differential 

entropy or Shannon’s differential entropy. Therefore, for a continuous random variable X with 

a probability density function (PDF) f(x), the differential entropy is given by Equation 2.7 

(Michalowicz et al., 2013). 

 ℎ = − ∫ 𝑓(𝑥) log2 𝑓(𝑥) 𝑑𝑥∞
−∞                                                                                                             (2.7) 

 

The natural approach to deriving continuous entropy would be to take discrete 

entropy in the limit of n, the number of bins in a frequency distribution, that is, extending the 

discrete case towards infinity. This is equivalent to defining integrals in calculus using a 

Riemannian approach. Yet, the notion of “average uncertainty” carried by Equation 2.4 cannot 

be extended to its differential correspondent. Instead, differential entropy is rather a function of 

the parameters of a distribution that describes how uncertainty changes as the parameters are 

modified (Santamaría-Bonfil et al., 2016). 

Thus, alternatively to calculating the Shannon entropy directly from the frequency 

distribution, it is possible to use theoretical probability density functions and fit the 

experimental frequency distribution into these models. The best fit will be the one with the 

smallest difference between the experimental and theoretical distribution. Once the model is 

selected, its differential entropy can be readily calculated using a formula displayed in Table 

2.6. 

Table 2.5 presents the theoretical probability density functions that was used in this 

Dissertation. These expressions were all retrieved from Lazo and Rathie (1978) and Crooks 

(2017). According to Mun (2008), the process of selecting the correct probability distribution 

starts with plotting the data, in order to observe characteristics such as the presence or absence 

of symmetry, and basically select a distribution whose characteristics match those of the 

variable in question. Since this fitting process is basically empirical, the theoretical probability 
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functions presented in Table 2.5 were chosen due to their diversity. For instance, the Normal 

and the Cauchy distribution are symmetric while the log-Normal skews to the right and the 

Weibull, to the left. Moreover, distributions such as the Gamma, Beta and Pearson are flexible, 

depending on the combination of their parameters. Lastly, as mentioned previously, the 

distribution that exhibits the smallest error from the experimental data are elected as the best 

fit. 

 

Table 2.5 – Theoretical probability density functions (Lazo and Rathie, 1978; Crooks, 2017). 

Distribution f(x) Parameters 

Normal 
1√2𝜋𝜎2 𝑒𝑥𝑝 [− (𝑥 − 𝜇)22𝜎2 ]                                        (2.8) 

μ: mean 

σ2: variance 

log-Normal 
1√2𝜋𝑥2𝜎2 𝑒𝑥𝑝 [− (𝑙𝑛(𝑥) − 𝜇)22𝜎2 ]                            (2.9) 

μ: mean 

σ2: variance 

Logistic 
𝑒𝑥𝑝 (− 𝑥 − 𝜇𝑠 )𝑠 [1 + 𝑒𝑥𝑝 (− 𝑥 − 𝜇𝑠 )]2                                         (2.10) 

μ: mean 

s: scale parameter 

Gumbel (1𝛽) 𝑒𝑥𝑝 {− (𝑥 − 𝛼𝛽 ) − 𝑒𝑥𝑝 [− (𝑥 − 𝛼𝛽 )]}         (2.11) 
α: location parameter 

β: scale parameter 

Weibull ( 𝑘𝜆𝑘) 𝑥𝑘−1𝑒𝑥𝑝 [− (𝑥𝜆)𝑘]                                        (2.12) 
λ: scale parameter 

k: shape parameter 

Gamma 
𝑥𝑘−1𝜃𝑘𝛤(𝑘) 𝑒𝑥𝑝 (− 𝑥𝜃)                                                  (2.13) 

θ: scale parameter 

k: shape parameter 

Γ(k): gamma function 

of k 

Beta 
𝛤(𝛼 + 𝛽)𝛤(𝛼)𝛤(𝛽) 𝑥𝛼−1(1 − 𝑥)𝛽−1                                  (2.14) 

α: shape parameter 

β: shape parameter 

0 < x < 1 

Pearson III 
1𝜃𝛤(𝑘) (𝑥 − 𝛼𝜃 )𝑘−1 𝑒𝑥𝑝 [− (𝑥 − 𝛼)𝜃 ]                   (2.15) 

α: location parameter 

θ: scale parameter 

k: shape parameter 

Exponential 
𝑒𝑥𝑝 (− 𝑥𝜆)𝜆                                                                 (2.16) λ: scale parameter 
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Table continued 

Distribution f(x) Parameters 

Maxwell √2𝜋 (𝑥2𝑎3) 𝑒𝑥𝑝 (− 𝑥22𝑎2)                                          (2.17) a: scale parameter 

Rayleigh ( 𝑥𝑎2) 𝑒𝑥𝑝 (− 𝑥22𝑎2)                                                  (2.18) a: scale parameter 

Cauchy (𝛾𝜋) 1𝛾2 + 𝑥2                                                             (2.19) γ: scale parameter 

Chi-square 
𝑥𝑛/2−12𝑛/2𝛤(𝑛 2⁄ ) 𝑒𝑥𝑝 (− 𝑥2)                                          (2.20) n: positive integer 

 

The gamma function Γ(x), used in the Gamma, Beta and Pearson III distribution, is 

defined as 

 𝛤(𝑥) = ∫ 𝑡𝑥−1𝑒𝑥𝑝(−𝑡)𝑑𝑡∞
0                                                                                                             (2.21) 

 

Table 2.6 displays the differential entropy of the probability density functions in 

Table 2.5. Notice that most of the probability density functions have Euler’s number in their 

formula. Therefore, for the sake of simplification, instead of using the base of logarithm b 

equals to 2 in Equation 2.7, which would result in an entropy with units of bits, the base selected 

is the Euler’s number, resulting, consequently, in an entropy with units of nats. This 

mathematical artifice intends to exploit the property that the natural logarithm of Euler’s 

number is equal to 1. It is worth mentioning that this change in base comes without prejudice 

to the final result. In order to convert the differential entropy with units of nats to bits, it is only 

necessary to multiply this former parameter by a conversion factor equals to ln(2). The relation 

between the differential entropy with units of nats and with units of bits is given by Equation 

2.22 

 𝐻[𝑏𝑖𝑡𝑠] = 𝐻[𝑛𝑎𝑡𝑠] × ln(2)                                                                                                             (2.22) 

 



37 
 

 
 

Additionally, Table 2.6 brings the Euler-Mascheroni constant (γE), which is equal 

to, approximately, 0.57721 (Lazo and Rathie, 1978) and the digamma function ψ(x), expressed 

in Equation 2.23 (Crooks, 2017). 

 𝜓(𝑥) = 𝛤′(𝑥)𝛤(𝑥)                                                                                                                                       (2.23) 

 

Abramowitz and Stegun (1972) presents an approximation for the digamma 

function, according to Equation 2.24. 

 𝜓(𝑥) = ln(𝑥) − 12𝑥 − 112𝑥2 + 1120𝑥4 − 1252𝑥6 + 1240𝑥8 − 5660𝑥10 + 69132760𝑥12            (2.24) 

 

The latter is the beginning of the asymptotical expansion of ψ(x). Beal (2003) 

suggests using this expansion with terms above x12 cut off, which yields a precision of at least 

12 digits, except near the zeroes. Moreover, for x smaller than 6, it is recommended to use a 

property of the digamma function, explicit in Equation 2.25, in order to shift x to a value greater 

than 6. 

 𝜓(𝑥 + 1) = 1𝑥 + 𝜓(𝑥)                                                                                                                       (2.25) 

 

Table 2.6 – Differential entropy of theoretical probability density functions (Lazo and Rathie, 
1978; Crooks, 2017). 

Distribution h [nats] Parameters 

Normal 
12 ln(2𝜋𝑒𝜎2)                                                         (2.26) σ2: variance 

log-Normal 𝜇 + 12 ln(2𝜋𝑒𝜎2)                                                 (2.27) 
μ: mean 

σ2: variance 

Logistic ln(𝑠) + 2                                                              (2.28) s: scale parameter 

Gumbel ln(𝛽) + 𝛾𝐸 + 1                                                    (2.29) β: scale parameter 

Weibull ln (𝜆𝑘) + (𝑘 − 1)𝛾𝐸𝑘 + 1                                    (2.30) 
λ: scale parameter 

k: shape parameter 
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Table continued 

Distribution h [nats] Parameters 

Gamma ln[𝜃𝛤(𝑘)] + (1 − 𝑘)𝜓(𝑘) + 𝑘                       (2.31) 

θ: scale parameter 

k: shape parameter 

Γ(k): gamma function 

of k 

ψ(k): digamma 

function of k. 

Beta 
ln [𝛤(𝛼)𝛤(𝛽)𝛤(𝛼 + 𝛽) ] − 𝜓(𝛼)(𝛼 − 1) − 𝜓(𝛽)(𝛽 − 1)+ 𝜓(𝛼 + 𝛽)(𝛼 + 𝛽 − 2)       (2.32) 

α: shape parameter 

β: shape parameter 

0 < x < 1 

Pearson III ln(𝜃𝛤(𝑘)) + (1 − 𝑘)𝜓(𝑘) + 𝑘                       (2.33) 
θ: scale parameter 

k: shape parameter 

Exponential ln(𝜆) + 1                                                             (2.34) λ: scale parameter 

Maxwell ln(𝑎√2𝜋) + 𝛾𝐸 − 12                                            (2.35) a: scale parameter 

Rayleigh ln ( 𝑎√2) + 𝛾𝐸2 + 1                                                (2.36) a: scale parameter 

Cauchy ln(4𝜋𝛾)                                                                (2.37) γ: scale parameter 

Chi-square ln [2𝛤 (𝑛2)] + (1 − 𝑛2) 𝜓 (𝑛2) + 𝑛2                   (2.38) n: positive integer 

 

Differential entropy as a mathematical quantity finds wide utility in a number of 

important scientific disciplines (Michalowicz et al., 2013). For instance, in fluidization studies, 

Luckos et al. (2011) evaluated the Shannon’s differential entropy in order to analyze the 

dynamics of gas-particle flow in a circulating fluidized bed. Additionally, both parameters, the 

Shannon and differential entropy, play important roles in information theory (Michalowicz et 

al., 2013) and authors such as Wang et al. (2017) and Luckos et al. (2011) described them as a 

promising technique and a good choice for characterizing the flow regimes in fluidized beds, 

respectively. 

Moreover, analysing Table 2.5 and Table 2.6, it is noticed that not all parameters 

from the probability density functions influence the value of the differential entropy. For 

instance, take the Normal distribution. It needs two parameters for its characterization, the mean 
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(μ) and the variance (σ2). The former is a location parameter and the latter is a scale parameter. 

Figure 2.7 is an example of Normal distributions with mean zero and different variances. 

The mean of a Normal distribution corresponds to the point of symmetry. If it were 

different from zero, the graphics in Figure 2.7 would be shifted in the horizontal axis. On the 

other hand, the variance, or standard deviation (σ), is related to the dispersion of the distribution. 

It is important to mention that the fact that the differential entropy is directly related to the 

standard deviation is in accordance with the concept of uncertainty of the Shannon entropy, 

because the more possible events, the more choice, or uncertainty, there is. Small standard 

deviation implies a narrow distribution, while increasing values of standard deviation turns the 

distribution broader, and consequently, with more possible events. 

 

Figure 2.7 – Examples of Normal distribution (adapted from Crooks, 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

Coincidently, both parameters of the Normal distribution, the mean and the 

variance, are, in fact, the first and second moment, respectively, as it will be defined later. The 

average of a time series, for instance, was used to plot the fluidization curve. Table 2.1 showed 

several studies that used the second moment, in the form of standard deviation, to analyse the 

behavior of fluidization systems. Now, it is clear that, especially, the latter parameter is also 

associated with the differential entropy analysis. 

Thus far, it has been discussed that to calculate the Shannon entropy, it would be 

necessary a frequency distribution. In order to transform a time series into a frequency 

distribution, the number of bins (n) that will group the data must be determined. The following 
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topic describes the method for the determination of n and introduces the concept of moments 

as well. 

 

2.2.2 Determination of the number of bins 

 

2.2.2.1 Moments 

 

Mathematically, algebraic moments of order r are defined as the expectation value. 

If x1, x2, …, xN are the N values assumed by the variable x (that is, x(N) can be a time series, for 

instance), the rth moment is defined according to Equation 2.39 (Correa, 2003; Spiegel and 

Stephens, 2008). 

 𝑥𝑟̅̅ ̅ = ∑ 𝑥𝑟𝑁                                                                                                                                             (2.39) 

 

Note that, when r equals 1, the first moment is defined as the arithmetic mean. 

Additionally, the rth moment about the mean, also known as central moments of order r, follows 

Equation 2.40 (Spiegel and Stephens, 2008). 

 𝑚𝑟 = ∑(𝑥 − �̅�)𝑟𝑁                                                                                                                                 (2.40) 

 

The second central moment is the variance. As mentioned previously, the standard 

deviation is the square root of the variance, expressed in Equation 2.41. 

 𝜎 = √𝑚2                                                                                                                               (2.41) 

 

The third and fourth central moments are used on the calculation of the coefficient 

of skewness (γ) and the coefficient of kurtosis (κ), respectively. The former is the degree of 

asymmetry of a distribution. If the frequency curve has a longer tail to the right of the central 

maximum than to the left, the distribution is said to have positive skewness, while the reverse 

is true and the distribution is then said to have negative skewness. The latter, on the other hand, 

is the degree of peakedness. A distribution having a relatively high peak is called leptokurtic 

and one which is flat-topped is called platykurtic. Both are usually taken relative to a normal 



41 
 

 
 

distribution, with γnormal equals to zero and κnormal equals to three, being called mesokurtic 

(Correa, 2003; Spiegel and Stephens, 2008). Equations 2.42 and 2.43 are the expressions for 

these parameters. 

 𝛾 = 𝑚3𝜎3                                                                                                                                                  (2.42) 

 𝜅 = 𝑚4𝜎4                                                                                                                                                  (2.43) 

 

Although it is mathematically correct to calculate the moments of any series of 

points, the concept of degree of asymmetry and degree of peakedness, for instance, is clearer 

when it is referred to a frequency distribution, which is simply the arrangement of data by 

classes together with the corresponding class frequencies (Spiegel and Stephens, 2008). Figure 

2.8 and Figure 2.9 are generic examples of frequency distributions with different coefficients 

of skewness and kurtosis, respectively. 

 

Figure 2.8 – Example of asymmetric and symmetric distributions (adapted from Neckel, 
2016). 

 

 

 

 

 

 

 

Figure 2.9 – Example of a leptokurtic, mesokurtic and platykurtic distribtutions (adapted 
from Neckel, 2016). 
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Additionally, pressure drop time series often exhibit asymmetric behavior, which, 

depending whether it is positive or negative asymmetry, affects the measures of central 

tendency, the arithmetic mean, the mode and the median. 

The median of a set of numbers arranged in order of magnitude is either the middle 

value or the arithmetic mean of the two middle values. On the other hand, the mode of a set of 

numbers is that value which occurs with the greatest frequency, that is, the most common value 

(Spiegel and Stephens, 2008). Figure 2.10 and Figure 2.11 are generic asymmetric frequency 

distributions with their respective mean, mode and median indicated. Notice how, 

counterintuitively, the mean is not the most representative – the most frequent – value of a time 

series. Conversely, for a symmetrical distribution, like the normal distribution, the mean, the 

mode and the median coincide in the same value. 

 

Figure 2.10 – Relative positions of mode, median and mean for a positive-skewed frequency 
distribution (adapted from Spiegel and Stephens, 2008). 

 

 

 

 

 

 

 

Figure 2.11 – Relative positions of mode, median and mean for a negative-skewed frequency 
distribution (adapted from Spiegel and Stephens, 2008). 

 

 

 

 

 

 

 

 

The ensuing topic will approach the method of the coefficient of variation in order 

to define an optimal number of class for each pressure drop time series and, eventually, calculate 

the Shannon entropy. 
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2.2.2.2 Method of the coefficient of variation 

 

In order to transform a time series into a frequency distribution, it is necessary to 

determine the number of bins (n) that will group the data, as mentioned previously. There is a 

classical expression proposed by Sturges (1926), which depends on the total number of points 

(N) of the time series, according to Equation 2.44. 

 𝑛 = 1 + 𝑙𝑜𝑔2𝑁                                                                                                                     (2.44) 

 

However, Sturges’ rule does not consider the range, xmax – xmin, of the time series, 

which could underestimate the number of intervals for a large N. Scott (1979) studied the bin 

width of a distribution (Δ), taking into account the dispersion of the data points, in the form of 

standard deviation (σ), as well as the total number of points. The resultant expression is 

presented in Equation 2.45. 

 𝛥 = 3.49𝜎√𝑁3                                                                                                                                            (2.45) 

 

The relation between Δ and n is expressed in Equation 2.46. 

 𝑛 = 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛𝛥                                                                                                                                (2.46) 

 

If n is too large, there might be bins with null frequency, while if it is too small, 

there is loss of information. Moreover, the Shannon entropy is a monotonic increasing function 

of n. Thus, the selection of the number of bins is of primary concern for the Shannon entropy 

analysis. Therefore, instead of using Sturges’ rule, which only depends on the total number of 

points, or Scott’s rule, which tends to overestimate n, the coefficient of variation was used in 

this work to determine the number of bins. 

The coefficient of variation (CV) is defined according to Equation 2.47 (Spiegel 

and Stephens, 2008). 

 𝐶𝑉 = 𝜎�̅�                                                                                                                                                  (2.47) 
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Figure 2.14 shows a comparison of a fictional empirical distribution with the 

theoretical one. 

 

Figure 2.14 – Example of a Kolmogorov-Smirnov test (Bohm and Zech, 2010). 

 

 

  

 

 

 

 

 

 

 

where D+ and D- are the maximum positive and negative difference, respectively. 

Mathematically, the quantity D is defined according to Equation 2.48. 

 𝐷 = 𝑠𝑢𝑝|𝐹(𝑥) − 𝑆(𝑥)|                                                                                                                     (2.48) 

 

There is a critical value for D that will either accept or reject the hypothesis that the 

theoretical distribution function can represent the experimental data. This value, Dc, depends 

on the numbers of bins that the series is divided into. They are usually presented in form of 

tables, such as Table 2.7 according to the level of significance. 

 

Table 2.7 – Critical values for the Kolmogorov-Smirnov test (adapted from O’Connor and 
Kleyner, 2012). 

Number of 

bins (n) 

Level of significance (%) 

10 5 2 1 

18 0.27851 0.30936 0.34569 0.37062 

19 0.27136 0.30143 0.33685 0.36117 

20 0.26473 0.29408 0.32866 0.35241 

21 0.25858 0.28724 0.32104 0.34427 

22 0.25283 0.28087 0.31394 0.33666 



47 
 

 
 

Table continued 

23 0.24746 0.27490 0.30728 0.32954 

24 0.24242 0.26931 0.30104 0.32286 

25 0.23768 0.26404 0.29516 0.31657 

26 0.23320 0.25907 0.28692 0.31064 

27 0.22898 0.25438 0.28438 0.30502 

28 0.22497 0.24993 0.27942 0.29971 

29 0.22117 0.24571 0.27471 0.29466 

30 0.21756 0.24170 0.27023 0.28987 

31 0.21412 0.23788 0.26596 0.28530 

32 0.21085 0.23424 0.26189 0.28094 

33 0.20771 0.23076 0.25801 0.27677 

34 0.20472 0.22743 0.25429 0.27279 

35 0.20185 0.22425 0.26073 0.26897 

36 0.19910 0.22119 0.24732 0.26532 

37 0.19646 0.21826 0.24404 0.26180 

38 0.19392 0.21544 0.24089 0.25843 

39 0.19148 0.21273 0.23786 0.25518 

40 0.18913 0.21012 0.23494 0.25205 

 

The level of significance chosen for this Dissertation is 5%, a conventional value 

as the critical level of significance (Tippet, 1951). If D is greater than Dc, the hypothesis is 

rejected, that is, the theoretical distribution is not a good fit for the experimental data. 

For n greater than 40 and a level of significance of 5%, Dc can be estimated by 

Equation 2.49 (O’Connor and Kleyner, 2012). 

 𝐷𝑐 = 1.36√𝑛                                                                                                                                             (2.49) 
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3. METHODOLOGY 

 

3.1 Materials 

 

The pressure time series analysed in this work were experimentally obtained by 

Prieto (2014), who worked with gas-particle fluidization. The experiments were performed at 

the Laboratory of Processes in Porous Media, at School of Chemical Engineering, University 

of Campinas. Table 3.1 shows the characteristics of the particulate phases. 

 

Table 3.1 – Properties of the particulate phase (Prieto, 2014). 

Material Density (kg/m3) Average diameter (μm) Geldart classification 

glass bead 2,500 64 A 

glass bead 2,500 128 B 

glass bead 2,500 1200 D 

 

The total particle loads in the bed were 0.4 and 0.8 kg and the fluid phase was 

atmospheric air, at 25 oC (ρair = 1.184 kg/m3). 

The experimental apparatus used in this work is presented in Figure 3.1. Point A is 

the column, made of acrylic with an inside diameter and height of 10 and 100 cm, respectively; 

B indicates the Lapple cyclone, which would collect any material eventually dragged; C points 

out the distribution plate, with 0.27 cm orifices spaced in a 0.75 cm triangular pattern; and D is 

the panel where the data acquisition system was installed. It contained two sealed 12 V batteries 

with the purpose of eliminate noise from the electrical grid. The whole structure is mounted on 

a metallic support. Figure 3.2 displays the dimensions and configuration of the distribution plate 

(a), the Lapple cyclone (b) and the fluidized bed (c). Additionally, a 400 mesh screen was used 

with the distribution plate in order to retain the fine particles (Prieto, 2014).  

The blower which was used to provide air to the system was located outside the 

laboratory. It has a maximum flow of 3.9 m3/min and pressure of 3,600 mmwc. The discharge 

tube has 40 cm pipe length and 10 cm internal diameter and is made of rubber. It is connected 

to a 70 cm stainless steel tube, with a square elbow, a ball valve (fully open), a by-pass 

controlled by a globe valve (fully closed) and a reducer. The remainder of the pipe is made of 

PVC with a length of 190 cm and nominal diameter of 1.5 inches. 
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Figure 3.1 – Experimental apparatus for the gas-particle fluidization (Prieto, 2014). 
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Figure 3.2 – Dimensions and configurations of the distribution plate, Lapple cyclone and 

fluidized bed (Prieto, 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The data acquisition system consists of differential and absolute pressure 

transducers and a temperature sensor. For the pressure drop in the bed, it was used differential 

pressure transducer fabricated by NOVUS, model NP800H. They were positioned before the 

distribution plate and at the exit of the column, as it is shown in Figure 3.2(c) (points A and B). 

To determine the air flow, it was used an orifice plate, made of stainless steel, with its pressure 

drop being measured by a differential pressure transducer, also fabricated by NOVUS, model 

NP800H. The air temperature and absolute pressure were obtained, respectively, by a 

temperature sensor, INCON Pt100 3F, 5 cm before the orifice plate, and an absolute pressure 

transducer NOVUS NP430D, before the plate. 
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The acquisition frequency and sample time, for all experiments, were 1,000 Hz and 

40 s, respectively. The acquisition system has an Analog to Digital Converter (ADC) resolution 

of 16 bits. In order to mitigate the effect of noise, it was implemented in the data acquisition 

system a low pass filter with infinite impulse response (IIR), with 25th order Butterworth 

topology (Prieto, 2014). 

The operating system used in this work was Windows 10 Home 64 bits, Intel Core 

i7 processor with 8GB of RAM and the software used for the analysis were Microsoft Office 

Excel 2013 32-bit. The programming language, VBA (Visual Basic for Applications) of the 

Excel was chosen because it is highly diffunded in the world. Moreover, it has functions in their 

internal packages to help in the signal processing. 

 

3.2 Methods 

 

Figure 3.3 shows a flowchart for the Shannon entropy analysis. 

Starting with the experimental time series, the moments are calculated for each one 

of them. The first moment, which is the arithmetic mean, can be used to construct the 

fluidization curve and identify regimes, for instance. Another analysis that is part of the method 

of moments is the evaluation of the amplitude of the signals, through the standard deviation. 

This latter parameter has been extensively employed in the Literature in the analysis of pressure 

drop time series of a fluidized bed. 

Alternatively, in order to calculate the Shannon entropy, it is necessary to transform 

the time series into a frequency distribution. Consequently, the numbers of bins (n) must be 

determined. However, if n is too large, there might be bins with null frequency, while if it is too 

small, there is loss of information. Therefore, the number of bins was calculated via the method 

of the coefficient of variation (CV). The value of n adopted was obtained from the intersection 

of the two straight lines depicted in the plot of the evolution of CV versus n (such as in the 

example in Figure 2.12). This same methodology has been used before and can be found in 

Prieto et al. (2017.a). 

Once all data were analysed via the method of the coefficient of variation, the 

number of bins was determined individually for each time series. Then, the frequency 

distribution created is now used to determine the Shannon entropy by approximating the relative 

frequency of a given class to the probability of it occurring and using Equation 2.6. 

Subsequently, it was used as the experimental distribution in the Kolmogorov-Smirnov test. 
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The theoretical distributions presented in Table 2.5 were modelled to fit the experimental one. 

The theoretical distribution selected was the one that presents the smaller sum of squared errors 

and that passes the K-S test. The level of significance chosen was 5%, a conventional value as 

the critical level of significance (Tippet, 1951). Thus, with the theoretical PDF selected and its 

parameters calculated, the differential Shannon entropy was evaluated. The Shannon and the 

differential Shannon entropy are compared. Finally, the Shannon entropy was used to identify 

the fluidization regimes. 

 

Figure 3.3 – Flowchart for the calculation of the Shannon entropy. 
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4. RESULTS AND DISCUSSION 

 

This topic analyzes the fluidization of the particulate phase presented in section 3. 

Firstly, the average of the time series was used to construct the fluidization curve and 

characterize the regimes. Then, the number of bins was determined in order to create the 

frequency distribution for each time series. Next, once each histogram was established, the 

Shannon entropy is evaluated and the theoretical probability density functions were fitted into 

the experimental data. 

 

4.1 Fluidization curve 

 

Starting with the group A from the Geldart classification, Figure 4.1 shows the 

fluidization curve for a total particle load in the bed of 0.4 and 0.8 kg. Each point in the plots 

corresponds to the average value of the 40,000 points experimental time series. The vertical 

lines that separate the regions (I), (II) and (III) are the velocities where a regime transition have 

occurred, as it was identified by direct observation of the bed by Prieto (2014). The minimum 

fluidization velocity and pressure drop for the 0.4 and 0.8 kg particle load are Umf = 0.24 m/s 

and ΔPmf = 602 Pa and Umf = 0.25 m/s and ΔPmf = 773 Pa, respectively. 

It is worth mentioning that the fluidization curves were obtained with decreasing 

velocity and the minimum fluidization point is also obtained from the intersection of two 

straight lines depicted in the experimental curves. 

The particulate, or expanded bed, regime (I) displays a linear increase in the 

pressure drop with increasing gas velocity. In this region, the weight of the bed overcomes the 

frictional drag force, causing the fluid to only percolate the particles, which remain motionless. 

As the minimum fluidization velocity is approached, the movement in the bed intensifies, 

altering the bed voidage. After the minimum fluidization point, it was noticed the formation of 

bubbles, characterizing, then, the bubbling regime (region (II)). The last one exhibits a raise on 

the pressure drop, above the minimum fluidization point, representing the slug flow regime. 

The transitions from bubbling to slug flow regime are given by U/Umf equals to 1.15 and 1.17 

for the particle loads of 0.4 and 0.8 kg, respectively. 

The small diameter of the Geldart A glass beads soothes the pressure drop variation, 

as the gas velocity increases. This is reflected on the gradual slope of the fluidization curves. 

The quick transition of the bubbling bed to the slug flow regime is another consequence of the 
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worth remembering, were determined by analysing the plot of pressure drop versus superficial 

gas velocity. They have begun forming at U/Umf equal to 0.50 and 0.67 for the particle loads of 

0.4 and 0.8 kg, respectively, and eventually evolved to the bubbling and slug flow regime for 

higher velocities. Moreover, particles from the group D of the Geldart classification fluidize 

better in a spouted bed. Prieto (2014), who performed the experiments, justifies the use of a 

fluidized bed in order to be able to compare the results of the particles A and B in the same 

base. 

The next topic demonstrates how the number of bins was determined for each time 

series. 

 

4.2 Determination of the number of bins 

 

The determination of the number of bins (n) is an important step for the further 

analysis of Shannon entropy. As mentioned previously, in a frequency distribution, the data is 

arranged by classes together with the corresponding class frequencies. Then, each class is 

defined by the average value of its lower and upper limit. Therefore, n cannot be too small, 

which would implicate in the loss of information, nor too large, which would create classes 

with null frequency. 

The Sturges’ rule depends only on the time series total number of points. Since all 

of them have 40,000 points, the number of bins calculated by Sturges’ rule is 17. On the other 

hand, Scott’s rule takes into account the dispersion of the data points, through the standard 

deviation, as well as the total number of points. This latter rule tends to overestimate the number 

of bins. The results found varied from 40 to 113. Since the Shannon entropy is monotonically 

increasing with n, the method adopted for the determination of the number of bins is the 

coefficient of variation. 

Similarly to the example presented in section 2.4.2 for the minimum fluidization 

time series for the 0.8 kg Geldart B particles, Figure 4.4 displays the evolution of the coefficient 

of variation with the number of bins for the B glass beads with 0.8 kg particle load. The time 

series were purposely selected from different fluidization states, that is, the particulate regime 

(a), minimum fluidization point (b), bubbling (c) and slug flow regime (d). Hence, the number 

of bins, obtained from the intersection of the two straight lines depicted in the plots, to group 

each of these time series are 22, 26, 23 and 21, respectively. 
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Figure 4.5 presents the transformation the four time series of Figure 4.4 into 

frequency distributions with their respective number of bins. 

 

Figure 4.5 – Transformation of time series into frequency distribution for the fluidization of 
0.8 kg of Geldart B glass beads – (a) U/Umf = 0.92, (b) U/Umf = 1.00, (c) U/Umf = 2.45 and (d) 

U/Umf = 4.34. 
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Notice how time series from different regimes are visually distinct when simply 

analysed in a time plot. Consequently, the resultant frequency distribution also show this 

contrast. The concept of the coefficient of skewness and kurtosis become more understandable 

now. For lower velocities, the frequency distributions seem to be skewed to the left (negative 

asymmetry) and they are not as broad as the ones from the bubbling and slug flow regime. This 

latter characteristic is directly related to the standard deviation. Table 4.1 shows the number of 

bins determined by this same methodology for every time series in the fluidization of 0.4 kg A 

glass beads. 

  

Table 4.1 – Number of bins determined by the method of the coefficient of variation for the 
0.4 kg A glass beads. 

U/Umf n U/Umf n 

0.4348 19 0.8696 24 

0.4565 22 0.8913 25 

0.4783 20 0.9130 20 

0.5000 19 0.9348 26 

0.5217 24 0.9565 27 

0.5435 20 0.9783 27 

0.5652 23 1.0000 27 

0.5870 20 1.0217 29 

0.6087 19 1.0652 20 

0.6304 26 1.0870 22 

0.6522 25 1.1087 22 

0.6739 24 1.1304 20 

0.6957 23 1.1522 20 

0.7174 24 1.1739 19 

0.7391 21 1.1957 19 

0.7609 19 1.2174 24 

0.7826 24 1.2391 21 

0.8043 24 1.2609 19 

0.8261 23 1.2826 19 

0.8478 25 1.3043 19 
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Analogously, Table 4.2 continues the analysis of the number of bins for the 

fluidization of A glass beads, but this time for a particle load of 0.8 kg. 

 

Table 4.2 – Number of bins determined by the method of the coefficient of variation for the 
0.8 kg A glass beads. 

U/Umf n U/Umf n 

0.4167 25 0.8542 21 

0.4375 20 0.8750 25 

0.4583 24 0.8958 22 

0.4792 25 0.9167 23 

0.5000 20 0.9375 22 

0.5208 20 0.9583 24 

0.5417 24 0.9792 25 

0.5625 28 1.0000 26 

0.5833 20 1.0208 20 

0.6042 28 1.0417 28 

0.6250 28 1.0625 20 

0.6458 28 1.0833 23 

0.6875 28 1.1042 26 

0.7292 22 1.1250 20 

0.7500 25 1.1458 21 

0.7708 21 1.1667 22 

0.7917 22 1.1875 20 

0.8125 22 1.2083 20 

0.8333 26 - - 

 

The shape of the frequency distribution will influence the calculation of the 

Shannon entropy. For instance, if a distribution presents asymmetry, it will have a longer tail 

to the right or to the left (positive or negative asymmetry, respectively). Moreover, the fact that 

a distribution is leptokurtic or platykurtic will also affect the Shannon entropy. In a leptokurtic 

distribution, the center peak is high and the probabilities are concentrated in a narrow range of 

classes while in a platykurtic distribution the probabilities of the classes are more uniform as 

the distribution presents a flatter and broader feature than the former one. Consequently, 
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depending on the shape of the frequency distribution, there can be less or more classes with 

small probabilities, such as the classes that are part of the tails.  

Since the Shannon entropy is the summation of the product of the probability and 

its logarithm, the fact that different regimes have different frequency distributions, as 

exemplified in Figure 4.5, it is logical to infer that this parameter can be used to identify and 

differentiate fluidization states. 

Additionally, proceeding with the analysis, Table 4.3 presents the number of bins 

for the fluidization of 0.4 kg B glass beads. 

 

Table 4.3 – Number of bins determined by the method of the coefficient of variation for the 
0.4 kg B glass beads. 

U/Umf n U/Umf n 

0.6327 25 1.7347 24 

0.7143 21 1.9388 21 

0.7959 22 2.0408 22 

0.8367 23 2.2449 22 

0.8776 24 2.4490 22 

0.9184 22 2.6531 26 

0.9592 25 2.8571 21 

1.0000 25 3.0612 20 

1.0408 25 3.4694 21 

1.1633 24 3.8776 23 

1.3265 24 4.2857 25 

1.4286 21 4.6939 22 

1.5306 22 5.1020 19 

1.6327 23 5.3061 20 

 

It is important to remember that the number of bins determined for each time series 

so far is not constant, as it would be if it was to be calculated by the Sturges’ rule. Also, the 

number of bins obtained by the method of the coefficient of variation does not vary as much as 

the ones calculated by the Scott’s rule. As mentioned previously, the individual optimization of 

the number of classes that will group each time series is an important step in the Shannon 

entropy analysis due the fact that one of the properties inherent of this parameter, the one that 
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says if all probabilities are equal, and n is the number of possible events, that is, n is the number 

of bins, then the Shannon entropy should be a monotonic increasing function of n. This means 

that with equally likely events there is more choice, or uncertainty, when there are more possible 

events. 

Table 4.4 displays the number of bins for the case of 0.8 kg particle load of the 

fluidization of B glass beads. 

 

Table 4.4 – Number of bins determined by the method of the coefficient of variation for the 
0.8 kg B glass beads. 

U/Umf n U/Umf n 

0.5472 21 1.3208 26 

0.5849 25 1.4151 24 

0.6226 22 1.5094 24 

0.6604 20 1.6038 25 

0.6981 21 1.6981 25 

0.7358 20 1.7925 25 

0.7736 21 1.8868 20 

0.8113 21 2.0755 23 

0.8491 24 2.2642 20 

0.8868 22 2.4528 23 

0.9245 22 2.6415 22 

0.9623 20 2.8302 22 

1.0000 26 3.2075 20 

1.0377 20 3.5849 20 

1.0755 23 3.9623 19 

1.1132 24 4.3396 21 

1.1509 24 4.7170 20 

1.1887 25 4.9057 19 

1.2264 25 - - 

 

Lastly, Table 4.5 and Table 4.6 are the number of bins for the D glass beads for the 

cases of 0.4 and 0.8 kg total particle load, respectively. 
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Table 4.5 – Number of bins determined by the method of the coefficient of variation for the 
0.4 kg D glass beads. 

U/Umf n U/Umf n 

0.4167 20 1.4167 24 

0.5000 22 1.5000 24 

0.5833 23 1.5833 24 

0.6667 20 1.6667 21 

0.7500 27 1.7500 22 

0.8333 25 1.8333 26 

0.9167 26 1.9167 26 

1.0000 26 2.0000 27 

1.1667 23 2.0833 21 

1.2500 25 2.1667 20 

1.3333 22 - - 

 

Table 4.6 – Number of bins determined by the method of the coefficient of variation for the 
0.8 kg D glass beads. 

U/Umf n U/Umf n 

0.2667 24 1.1333 24 

0.3333 21 1.2000 21 

0.4000 24 1.2667 28 

0.4667 22 1.3333 26 

0.5333 22 1.4000 23 

0.6000 25 1.4667 23 

0.6667 24 1.5333 24 

0.7333 24 1.6000 20 

0.8000 22 1.6667 21 

0.9333 25 1.7333 20 

1.0000 25 1.8000 19 

1.0667 24 - - 

 

Therefore, since the number of bins for all time series is determined, the Shannon 

entropy can be evaluated, which is the subject of the ensuing topic. 
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The slug flow regime gives the impression of a region distinguished by a lot of 

agitation and disorder. Counterintuitively, the Shannon entropies for this regime were actually 

lower than the minimum fluidization point. This effect is clearer for the B and D particles. The 

reason for that is the periodicity caused by the pulsation of the bed, characteristic of the slug 

flow regime. If a system starts to exhibit a periodic behavior, one can interpret that the system 

just became more ordered, in other words, less complex. Consequently, the reflection of this in 

the Shannon entropy analysis is a drop in this parameter.  

Finally, the bubbling regime is the intermediate state between the minimum 

fluidization point and the slug flow regime. Generally, the values of the Shannon entropy for 

this region showed a negative slope, until it arrived at a minimum. 

Table 4.7 is a comparison of the Shannon entropy at the minimum fluidization point 

among the three particles. 

 

Table 4.7 – Comparison of the Shannon entropy at the minimum fluidization point. 

Geldart classification Particle load (kg) Shannon entropy (bits) 

A 
0.4 3.75 

0.8 3.96 

B 
0.4 3.62 

0.8 3.66 

D 
0.4 3.54 

0.8 3.71 

 

Higher values of entropy were observed for the case of 0.8 kg particle load. Wang 

et al. (2017) reasons that the Shannon entropy increases with the bed mass due to the increase 

of the fluctuation amplitude. This increase in the amplitude is translated in a large standard 

deviation and, by extension, a broader frequency distribution. Altering the shape of the 

distribution will also affect the value of the Shannon entropy. Additionally, the particle A were 

the ones who presented higher values of H. Prieto et al. (2017.b) found the same trend in the 

analysis of simulated pressure drop time series, obtained through computational fluid dynamics. 

The authors discusses that one possible explanation for this result is the size of the A particles. 

Because they have a smaller diameter than the others, the minimum fluidization is more 

vigorous, and by extension, more complex, while the B and D glass beads have a more discrete 

minimum fluidization and therefore less complex. 
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Alternatively, the frequency distributions can be modelled as probability density 

functions. Following the analysis of the minimum fluidization time series of 0.8 kg B glass 

beads, Table 4.8 is its result of the Kolmogorov-Smirnov test 

 

Table 4.8 – Results of the Kolmogorov-Smirnov test (5% of significance and Dc = 0.25907) 
and the parameters of the PDF models for the minimum fluidization point of 0.8 kg B glass 

beads. 

Distribution D 
Sum of the quadratic 

errors (x103) 
Parameters 

Normal 0.0536 1.49 
μ = 865.90 

σ = 14.15 

log-Normal 0.0569 1.53 
μ = 6.76 

σ = 0.02 

Logistic 0.0417 0.65 
μ = 865.94 

s = 8.65 

Gumbel 0.1059 3.51 
α = 863.13 

β = 12.89 

Weibull 0.0564 1.91 
λ = 868.84 

k = 66.95 

Gamma 0.7731 83.7 
θ = 60.12 

k = 15.04 

Beta 0.6277 74.3 
α = 2.92 

β = 0.36 

Pearson III 0.6277 83.7 

α = 5.16 

θ = 60.12 

k = 15.04 

Exponential 1.0000 100 λ = 1.00 

Maxwell 1.0000 100 a = 15.00 

Rayleigh 1.0000 100 a = 90.00 

Cauchy 0.9733 98.5 γ = 863.93 

Chi-square 1.0000 100 n = 2.00 

 

According to the Kolmogorov-Smirnov test, the Normal, log-Normal, Logisitic, 

Gumbel and Weibull distribution are a good fit for the experimental data. However, the Logistic 
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5. CONCLUSIONS 

 

This dissertation evaluated the capacity of the Shannon entropy to characterize and 

identify fluidization regimes by analysing pressure drop time series from a gas-particle fluidized 

bed, varying the particle diameter and the total load in the bed. 

The Shannon entropy comes from the information theory. This parameter is 

associated with the uncertainty of a random variable. In fluidization studies, it is linked with a 

kind of instability or complexity of the particulate system. This technique, likewise the method 

of moments, is relatively easily applied to a time series but it also has the advantage of giving 

physical meaning to the results instead of being just a statistical parameter. Yet, there are only 

few and recent studies on the Shannon entropy in particulate systems. The general trend was 

that Shannon entropy increased with the superficial gas velocity, with the highest values found 

in the region near the minimum fluidization point, and then it dropped slightly. An interesting 

comparison of results was made with the Kolmogorov entropy and correlation dimension, 

analysed by Prieto (2014). The chaotic invariants are related to the disorder, and by extension, 

the complexity of the system. The results are in agreement, that is, the point of minimum 

fluidization is usually where the highest values of the Shannon and Kolmogorov entropy were 

found. However, the periodic behavior of the slug flow regime caused a sudden drop in the 

latter parameter. It has to be taken into consideration that The Shannon entropy comes from a 

frequency distribution and the slug flow regime presented a large pressure drop variation, due 

to the pulsation of the bed that also caused the periodic behavior just mentioned. Hence, the 

stretched frequency distribution and probability density function, due to the large standard 

deviation, would be a difficulty for the Shannon to follow the Kolmogorov entropy profile. The 

chaotic invariants are evaluated in the state space, thus, the large standard deviation did not 

seem to prevent both the Kolmogorov entropy and the correlation dimension to capture this 

periodic and less complex behavior of the bed. 

Moreover, the Shannon entropy analysis is only possible when the time series is 

transformed into a frequency distribution. Hence, the determination of the number of bins is a 

pertinent step in this analysis. The method of the coefficient of variation was used for this task, 

instead of conventional rules, such as the Sturges’ and Scott’s rule, due to the fact that it did not 

only depend on the total number of points in the time series nor it overestimated the number of 

classes. Once the frequency distribution was built, the Shannon entropy could be evaluated. 

Also, a theoretical probability density function could be used to fit the experimental data. The 
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shape of the frequency distribution influenced the best model to describe the data. For instance, 

when the distribution were symmetric, usually the Normal distribution was the PDF selected. 

Nonetheless, generally, the experimental frequency distributions exhibited a right or a left tail. 

The Logistic and Weibull distribution were the ones that usually presented the smallest 

quadratic error, suggesting that they are the most generic probability density functions to 

express the pressure fluctuations of the fluidization of A, B and D glass beads. 

Lastly, this dissertation shows that the main premise of the pressure drop time series 

analysis is that the differences among them will result in some quantifiable parameter which 

would be able to characterize regimes. Because the interpretation of the data is not trivial, there 

are several techniques. The concept of which one of these methods is the best is relative. It 

ultimately depends on the objective of the analysis. For instance, if the objective is to construct 

the fluidization curve, the method of moments is enough. Moreover, the properties of the A, B 

and D particles have to be taken into consideration as they will fluidize differently. The B 

particles bubble at the minimum fluidization velocity while the D ones presented the formation 

of bubbles before that point. The A particles have a rapid transition between the particulate and 

slug flow regime. These characteristics had a reflect on the analysis. Therefore, even if the 

Shannon entropy presented some limitations or pitfalls, such as little sensitivity to the transition 

points, it could be used to auxiliate on the identification and characterization of fluidization 

regimes. 

 

5.1 Recommendations for future work 

 

Finally, here are some recommendations for future work: 

 

  Evaluate the influence that different kinds of particles have in the time and frequency domain 

and the state space analysis. In order to do so, some parameters that could be studied are: 

o particle density; 

o particle diameter (different from the glass beads studied here); 

o sphericity; 

o bed diameter; 

  evaluate the behavior of the time series in further fluidization states, such as the turbulent 

regime and the pneumatic transport; 
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  since the Laboratory of Processes in Porous Media (LPMP/FEQ/Unicamp) has optical fibers, 

previously used in a circulating fluidized bed, it would be interesting to measure simultaneously 

the pressure drop and the volumetric concentration of solids, comparing and complementing 

their analysis with themselves; 

  evaluate other rigorous methods for the selection of the number of bins and attempt to improve 

the CV method. For instance, fit a polynomial or exponential curve to the CV versus n plot and 

calculate the derivative to determine the optimum number of class, instead of determining it 

visually, by the intersection of two straight lines that depict the trend of the curve; 

  investigate deeper the differential entropy, and its properties that differs from the original 

discrete case, in the analysis of gas-particle fluidization regimes; 

  lastly, it is proposed to take the analysis studied in this Dissertation beyond just characterizing 

fluidization states, but actually applying them in process control. For instance, to use parameters 

such as the Shannon entropy to control the optimal heat and mass transfer in a drying or reaction 

process in a fluidized bed or another multiphase system. 
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APPENDIX A 

 

Tables A.1 to A.6 are the best fit of probability density functions for each frequency 

distribution of the three types of particle. 

 

Table A.1 – Best fit of probability density functions for the fluidization of 0.4 kg A glass 
beads. 

U/Umf 
Sum of the quadratic 

errors (x103) 
Distribution Parameters 

0.4348 7.60 Logistic 
μ = 52.43 

s = 0.50 

0.4565 7.12 Logistic 
μ = 63.29 

s = 0.37 

0.4783 2.50 Logistic 
μ = 81.12 

s = 0.70 

0.5000 1.79 Logistic 
μ = 101.27 

s = 0.67 

0.5217 8.04 Weibull 
λ = 117.09 

k = 195.90 

0.5435 10.40 Gumbel 
α = 131.93 

β = 0.96 

0.5652 6.68 Logistic 
μ = 141.16 

s = 0.45 

0.5870 16.36 Weibull 
λ = 158.90 

k = 176.78 

0.6087 4.79 Normal 
μ = 166.26 

σ = 1.38 

0.6304 10.14 Weibull 
λ = 205.67 

k = 260.54 

0.6522 4.99 Weibull 
λ = 214.25 

k = 176.53 

0.6739 2.57 Normal 
μ = 234.80 

σ = 1.20 
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Table continued 

U/Umf 
Sum of the quadratic 

errors (x103) 
Distribution Parameters 

0.6957 13.74 Normal 
μ = 243.90 

σ = 1.37 

0.7174 4.92 Gumbel 
α = 290.16 

β = 0.97 

0.7391 1.88 Weibull 
λ = 285.66 

k = 180.09 

0.7609 3.39 Gumbel 
α = 307.76 

β = 3.32 

0.7826 2.15 Weibull 
λ = 371.26 

k = 379.95 

0.8043 1.67 Logistic 
μ = 382.83 

s = 0.54 

0.8261 8.74 Gumbel 
α = 410.53 

β = 1.60 

0.8478 4.76 Logistic 
μ = 449.32 

s = 0.59 

0.8696 6.52 Weibull 
λ = 472.06 

k = 422.32 

0.8913 11.83 Gumbel 
α = 472.86 

β = 1.26 

0.9130 1.54 Logistic 
μ = 511.28 

s = 1.09 

0.9348 2.82 Weibull 
λ = 556.18 

k = 762.20 

0.9565 4.10 Weibull 
λ = 563.59 

k = 667.35 

0.9783 0.86 Normal 
μ = 578.49 

σ = 0.99 

1.0000 0.71 Logistic 
μ = 602.55 

s = 0.52 
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Table continued 

U/Umf 
Sum of the quadratic 

errors (x103) 
Distribution Parameters 

1.0217 1.26 Logistic 
μ = 604.39 

s = 0.50 

1.0652 13.54 Logistic 
μ = 610.41 

s = 3.17 

1.0870 0.48 Logistic 
μ = 609.57 

s = 1.05 

1.1087 0.66 Logistic 
μ = 611.70 

s = 0.92 

1.1304 1.11 Normal 
μ = 613.51 

σ = 2.45 

1.1522 0.79 Normal 
μ = 615.37 

σ = 2.18 

1.1739 1.38 Normal 
μ = 618.16 

σ = 2.31 

1.1957 1.91 Logistic 
μ = 621.18 

s = 1.24 

1.2174 1.95 Weibull 
λ = 624.94 

k = 310.62 

1.2391 1.56 Logistic 
μ = 626.84 

s = 1.02 

1.2609 5.34 Normal 
μ = 630.12 

σ = 2.93 

1.2826 0.86 Normal 
μ = 633.09 

σ = 2.47 

1.3043 1.35 Logistic 
μ = 636.10 

s = 1.72 
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Table A.2 – Best fit of probability density functions for the fluidization of 0.8 kg A glass 
beads. 

U/Umf 
Sum of the quadratic 

errors (x103) 
Distribution Parameters 

0.4167 6.33 Logistic 
μ = 52.84 

s = 0.38 

0.4375 4.67 Gumbel 
α = 63.26 

β = 1.19 

0.4583 9.10 Weibull 
λ = 81.37 

k = 135.68 

0.4792 6.23 Weibull 
λ = 101.78 

k = 178.98 

0.5000 3.77 Weibull 
λ = 117.12 

k = 123.22 

0.5208 1.91 Weibull 
λ = 134.37 

k = 121.84 

0.5417 1.85 Logistic 
μ = 139.47 

s = 0.67 

0.5625 6.52 Weibull 
λ = 156.34 

k = 281.70 

0.5833 1.18 Weibull 
λ = 165.85 

k = 141.06 

0.6042 4.58 Logistic 
μ = 203.58 

s = 0.63 

0.6250 3.65 Normal 
μ = 214.20 

σ = 1.14 

0.6458 3.58 Logistic 
μ = 234.45 

s = 0.48 

0.6875 11.29 Gumbel 
α = 281.29 

β = 1.22 

0.7292 5.44 Gumbel 
α = 311.52 

β = 2.94 
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Table continued 

U/Umf 
Sum of the quadratic 

errors (x103) 
Distribution Parameters 

0.7500 3.32 Weibull 
λ = 374.16 

k = 362.40 

0.7708 1.30 Normal 
μ = 387.38 

σ = 1.46 

0.7917 8.35 Normal 
μ = 412.39 

σ = 1.61 

0.8125 10.78 Normal 
μ = 455.24 

σ = 1.99 

0.8333 5.14 Logistic 
μ = 484.27 

s = 0.54 

0.8542 4.81 Gumbel 
α = 499.48 

β = 1.51 

0.8750 1.95 Logistic 
μ = 547.15 

s = 0.64 

0.8958 0.39 Logistic 
μ = 614.67 

s = 0.75 

0.9167 7.44 Normal 
μ = 630.94 

σ = 1.02 

0.9375 7.01 Gumbel 
α = 665.07 

β = 1.80 

0.9583 1.20 Gumbel 
α = 719.33 

β = 1.36 

0.9792 1.85 Weibull 
λ = 755.54 

k = 634.65 

1.0000 0.47 Logistic 
μ = 773.33 

s = 0.76 

1.0208 8.47 Weibull 
λ = 764.37 

k = 84.11 

1.0417 1.71 Gumbel 
α = 761.04 

β = 1.68 
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Table continued 

U/Umf 
Sum of the quadratic 

errors (x103) 
Distribution Parameters 

1.0625 3.33 Gumbel 
α = 762.83 

β = 2.40 

1.0833 1.66 Gumbel 
α = 765.62 

β = 2.51 

1.1042 1.29 Gumbel 
α = 768.54 

β = 1.69 

1.1250 0.24 Logistic 
μ = 771.44 

s = 1.51 

1.1458 1.62 Logistic 
μ = 773.99 

s = 1.67 

1.1667 0.79 Logistic 
μ = 775.97 

s = 1.89 

1.1875 0.51 Normal 
μ = 778.53 

σ = 3.45 

1.2083 1.41 Normal 
μ = 780.95 

σ = 3.49 
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Table A.3 – Best fit of probability density functions for the fluidization of 0.4 kg B glass 
beads. 

U/Umf 
Sum of the quadratic 

errors (x103) 
Distribution Parameters 

0.6327 4.30 Logistic 
μ = 157.18 

s = 5.81 

0.7143 8.01 Weibull 
λ = 185.54 

k = 20.52 

0.7959 3.20 Weibull 
λ = 255.85 

k = 17.42 

0.8367 4.56 Weibull 
λ = 285.04 

k = 19.23 

0.8776 2.91 Normal 
μ = 370.54 

σ = 17.56 

0.9184 1.58 Logistic 
μ = 404.89 

s = 10.90 

0.9592 0.63 Logistic 
μ = 458.25 

s = 12.05 

1.0000 1.59 Logistic 
μ = 487.92 

s = 12.35 

1.0408 0.87 Logistic 
μ = 485.52 

s = 12.99 

1.1633 0.88 Logistic 
μ = 478.44 

s = 14.18 

1.3265 0.16 Logistic 
μ = 471.99 

s = 14.08 

1.4286 0.78 Logistic 
μ = 463.72 

s = 14.24 

1.5306 0.29 Logistic 
μ = 458.63 

s = 13.58 

1.6327 0.26 Logistic 
μ = 457.59 

s = 14.03 
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Table continued 

U/Umf 
Sum of the quadratic 

errors (x103) 
Distribution Parameters 

1.7347 2.62 Logistic 
μ = 459.60 

s = 10.92 

1.9388 2.23 Normal 
μ = 463.43 

σ = 22.77 

2.0408 1.48 Weibull 
λ = 471.86 

k = 25.20 

2.2449 0.64 Weibull 
λ = 478.89 

k = 23.34 

2.4490 2.24 Weibull 
λ = 481.99 

k = 26.67 

2.6531 3.01 Logistic 
μ = 479.58 

s = 10.79 

2.8571 1.91 Logistic 
μ = 481.63 

s = 11.98 

3.0612 2.60 Weibull 
λ = 486.73 

k = 29.03 

3.4694 0.64 Logistic 
μ = 487.04 

s = 13.23 

3.8776 0.69 Weibull 
λ = 505.51 

k = 21.62 

4.2857 1.37 Logistic 
μ = 512.46 

s = 15.48 

4.6939 1.94 Logistic 
μ = 527.16 

s = 18.05 

5.1020 1.11 Normal 
μ = 539.14 

σ = 34.99 

5.3061 0.50 Logistic 
μ = 556.26 

s = 17.96 
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Table A.4 – Best fit of probability density functions for the fluidization of 0.8 kg B glass 
beads. 

U/Umf 
Sum of the quadratic 

errors (x103) 
Distribution Parameters 

0.5472 2.58 Logistic 
μ = 154.21 

s = 7.20 

0.5849 1.82 Logistic 
μ = 173.62 

s = 7.82 

0.6226 1.22 Logistic 
μ = 173.00 

s = 8.42 

0.6604 1.26 Weibull 
λ = 259.12 

k = 18.38 

0.6981 0.84 Logistic 
μ = 327.28 

s = 8.56 

0.7358 0.57 Normal 
μ = 390.33 

σ = 14.08 

0.7736 2.51 Normal 
μ = 425.96 

σ = 11.39 

0.8113 0.74 Logistic 
μ = 515.40 

s = 7.13 

0.8491 1.34 Normal 
μ = 562.07 

σ = 12.51 

0.8868 0.67 Logistic 
μ = 636.76 

s = 8.21 

0.9245 2.33 Normal 
μ = 698.75 

σ = 13.30 

0.9623 0.92 Normal 
μ = 762.79 

σ = 13.74 

1.0000 0.65 Logistic 
μ = 865.94 

s = 8.65 

1.0377 0.20 Logistic 
μ = 8.6695 

s = 8.59 
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Table continued 

U/Umf 
Sum of the quadratic 

errors (x103) 
Distribution Parameters 

1.0755 0.53 Normal 
μ = 866.78 

σ = 15.51 

1.1132 0.61 Logistic 
μ = 864.92 

s = 8.53 

1.1509 1.27 Normal 
μ = 860.48 

σ = 14.59 

1.1887 1.75 Normal 
μ = 854.03 

σ = 13.34 

1.2264 1.75 Normal 
μ = 854.03 

σ = 13.34 

1.3208 0.14 Logistic 
μ = 837.93 

s = 9.43 

1.4151 0.17 Logistic 
μ = 833.76 

s = 10.23 

1.5094 0.52 Logistic 
μ = 832.19 

s = 9.11 

1.6038 0.46 Normal 
μ = 831.52 

σ = 16.46 

1.6981 3.44 Weibull 
λ = 835.85 

k = 95.01 

1.7925 2.81 Normal 
μ = 837.38 

σ = 10.74 

1.8868 0.78 Logistic 
μ = 839.92 

s = 10.22 

2.0755 1.03 Normal 
μ = 804.29 

σ = 15.23 

2.2642 0.38 Logistic 
μ = 848.09 

s = 10.33 

2.4528 0.20 Logistic 
μ = 850.30 

s = 10.12 
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Table continued 

U/Umf 
Sum of the quadratic 

errors (x103) 
Distribution Parameters 

2.6415 0.45 Normal 
μ = 852.20 

σ = 20.62 

2.8302 0.34 Normal 
μ = 856.05 

σ = 20.63 

3.2075 0.66 Normal 
μ = 860.64 

σ = 23.37 

3.5849 0.51 Normal 
μ = 869.32 

σ = 34.40 

3.9623 0.85 Gumbel 
α = 872.86 

β = 32.37 

4.3396 1.66 Gumbel 
α = 898.87 

β = 35.65 

4.7170 1.37 Normal 
μ = 920.94 

σ = 31.01 

4.9057 0.69 Normal 
μ = 932.38 

σ = 33.39 
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Table A.5 – Best fit of probability density functions for the fluidization of 0.4 kg D glass 
beads. 

U/Umf 
Sum of the quadratic 

errors (x103) 
Distribution Parameters 

0.4167 2.72 Weibull 
λ = 364.23 

k = 16.12 

0.5000 1.64 Weibull 
λ = 565.87 

k = 25.53 

0.5833 0.86 Weibull 
λ = 803.42 

k = 34.52 

0.6667 0.69 Logistic 
μ = 1,051.67 

s = 15.13 

0.7500 5.41 Weibull 
λ = 1,392.56 

k = 86.43 

0.8333 4.85 Weibull 
λ = 1,648.43 

k = 104.59 

0.9167 3.24 Weibull 
λ = 2,032.45 

k = 120.80 

1.0000 2.59 Weibull 
λ = 2,385.12 

k = 127.87 

1.1667 0.60 Weibull 
λ = 2,359.26 

k = 93.66 

1.2500 3.04 Logistic 
μ = 2,391.41 

s = 12.90 

1.3333 4.54 Weibull 
λ = 2,441.95 

k = 137.19 

1.4167 3.91 Weibull 
λ = 2,506.91 

k = 138.01 

1.5000 6.88 Weibull 
λ = 2,492.48 

k = 143.64 

1.5833 3.90 Gumbel 
α = 2,423.80 

β = 24.86 
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Table continued 

U/Umf 
Sum of the quadratic 

errors (x103) 
Distribution Parameters 

1.6667 0.73 Logistic 
μ = 2,494.45 

s = 17.90 

1.7500 0.80 Weibull 
λ = 2,538.18 

k = 94.63 

1.8333 5.08 Weibull 
λ = 2,536.72 

k = 157.11 

1.9167 11.59 Weibull 
λ = 2,603.68 

k = 173.01 

2.0000 6.34 Logistic 
μ = 2,701.26 

s = 8.82 

2.0833 3.65 Weibull 
λ = 2,752.52 

k = 179.36 

2.1667 1.34 Weibull 
λ = 2,906.61 

k = 106.59 
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Table A.6 – Best fit of probability density functions for the fluidization of 0.8 kg D glass 
beads. 

U/Umf 
Sum of the quadratic 

errors (x103) 
Distribution Parameters 

0.2667 4.16 Logistic 
μ = 427.74 

s = 11.57 

0.3333 2.78 Weibull 
λ = 601.94 

k = 28.98 

0.4000 0.57 Logistic 
μ = 802.34 

s = 15.13 

0.4667 0.29 Logistic 
μ = 1,056.91 

s = 16.52 

0.5333 0.22 Logistic 
μ = 1,331.89 

s = 15.86 

0.6000 2.48 Weibull 
λ = 1,679.37 

k = 93.25 

0.6667 1.40 Weibull 
λ = 1,988.72 

k = 94.35 

0.7333 2.36 Weibull 
λ = 2,424.75 

k = 127.33 

0.8000 2.52 Weibull 
λ = 2,809.95 

k = 139.67 

0.9333 1.31 Logistic 
μ = 3,160.70 

s = 16.33 

1.0000 1.39 Weibull 
λ = 3,375.72 

k = 125.87 

1.0667 2.79 Weibull 
λ = 3,320.76 

k = 176.51 

1.1333 3.83 Weibull 
λ = 3,367.99 

k = 184.13 

1.2000 2.82 Logistic 
μ = 3,365.43 

s = 14.20 
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Table continued 

U/Umf 
Sum of the quadratic 

errors (x103) 
Distribution Parameters 

1.2667 4.43 Logistic 
μ = 3,353.88 

s = 10.13 

1.3333 2.96 Logistic 
μ = 3,360.74 

s = 13.23 

1.4000 14.90 Gumbel 
α = 3,390.39 

β = 24.75 

1.4667 0.75 Normal 
μ = 3,429.28 

σ = 31.02 

1.5333 2.78 Normal 
μ = 3,467.88 

σ = 27.06 

1.6000 1.14 Logistic 
μ = 3,491.51 

s = 16.69 

1.6667 0.68 Logistic 
μ = 3,527.89 

s = 17.48 

1.7333 0.29 Logistic 
μ = 3,667.63 

s = 18.70 

1.8000 0.92 Weibull 
λ = 3,789.60 

k = 151.48 

 


