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Resumo

Os fluidos confinados representam uma área de estudo ampla e que tem chamado muita atenção

por ser um sistema muito comum nas atividades práticas da engenharia. Apesar de sua aplica-

bilidade, ainda é considerado um campo de estudo complexo e incipiente. Isto está relacionado

a fatores que podem modificar as propriedades dos fluidos confinados, dentre eles: a geometria,

tamanho do poro, e as interações entre a parede e o fluido. No que diz respeito às ferramentas

utilizadas para descrição destes sistemas, simulação molecular, teoria do funcional da densidade

e equações de estados são as mais exploradas. Porém, as equações de estado ainda permanecem

como a abordagem mais versátil e menos custosa em termos computacionais. Neste trabalho,

a equação de estado Statistical Associating Fluid Theory (SAFT-VR Mie) foi adaptada para

calcular isotermas de adsorção de misturas. Um termo que descreve a energia de Helmholtz

devido aos efeitos de confinamento foi acoplado à equação de estado SAFT-VR Mie. O desen-

volvimento teórico deste termo é baseado na teoria generalizada de van der Waals, e a interação

fluido parede é modelada pelo potencial de poço quadrado. A estrutura do fluido consequente

das interações entre a superfície e o fluido foi derivada utilizando o teorema do valor médio. O

modelo resultante leva em conta a geometria, tamanho do poro e depende apenas dos parâmetros

de interação entre o fluido e a parede. Estes parâmetros foram calculados através de regras de

combinação dos parâmetros de interação dos fluidos puros, o que faz o modelo totalmente pre-

ditivo. Para resolver o critério de equilíbrio de fases, o método da secante multidimensional foi

utilizado, e isotermas de adsorção de multicomponentes foram obtidas para diferentes sistemas.

Para verificar a consistência do modelo, as isotermas de misturas calculadas foram comparadas

com dados experimentais retirados da literatura, e bons resultados foram obtidos.

Palavras-chaves:. SAFT-VR Mie, Adsorção, Fluidos Confinados, Mistura



Abstract

Confined fluid systems consist of a broad subject that draws remarkable attention being so

common in engineering. Despite its applicability, it is still considered an incipient and complex

field of study. This is related to the many factors that can modify the properties of confined

fluids, for example: pore size and geometry distribution of the confining material, and the

interactions between the wall and fluid. Regarding the tools used to describe these systems,

molecular simulation, Density Functional Theory (DFT), and Equation of State (EoS) are the

most explored ones. The latter, however, remains as the most versatile and the least computational

demanding approach. In this work, we extend the Statistical Associating Fluid Theory (SAFT-

VR Mie) equation of state for the calculation of multicomponent adsorption isotherms. A term

that describes the Helmholtz free energy due to confinement effect is coupled with the SAFT-VR

Mie equation of state. The theoretical development of this term is based on the generalized van

der Waals framework, and the fluid-wall interactions are modeled as a square-well potential.

The fluid structure resulting from the interactions between surface and fluid are derived by

applying the mean value theorem. The resulting model takes into account the geometry and

size of the pore, and depends solely on the wall-fluid interaction parameters. The required

mixture wall-fluid interaction parameters were calculated by applying combining rules to the

pure component interaction parameters, bringing to the model a predictive feature. To solve

the phase equilibrium criteria, the multidimensional secant method was employed, and multi-

component adsorption isotherms were predicted for different systems. To verify the consistency

of the model, the calculated multicomponent isotherms were compared to experimental data

reported in the literature and reasonably accurate results were obtained.

Keywords:. SAFT-VR Mie, Adsorption, Confined Fluids, Mixture
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1 Introduction

The thermodynamic behavior of confined fluids on a microscopic scale differs significantly

from bulk fluids. This fact is associated with the intermolecular interactions between the fluid

and the pore wall, and dimension and shape of the system where the fluid is inserted. As the

pore dimension decreases, the effect of confinement on thermodynamic properties increases.

Many chemical processes involve fluids confined in nanoporous media, for example: adsorption

separations, oil and gas extraction, development of nanomaterials, design of microporous mate-

rials for methane storage (ARAGUAREN et al., 2012) (CRACKNELL; CHIMOWITZ, 1993),

and chemical separations using inorganic membranes (ARAGUAREN et al., 2012) (AFRANE;

GORDON; GUBBINS, 1996). In view of that, the establishment of consistent theoretical foun-

dations of thermodynamics of confined fluids is certainly essential to advances in nanoscale

technologies (KIM et al., 2011).

An appropriate description of confined fluids requires a good representation of the structure

of both the pore and the fluid. Therefore, the need of an adequate representation of the various

structures of the solids employed as adsorbents emerges. To simplify this problem, most of

the related work uses idealized geometries to represent the pore. With regard to the fluid, a

precise representation of the force field that includes both fluid-fluid interactions and fluid-wall

interactions is necessary (TRAVALLONI, 2012). A versatile force field comprises the main

aspects of the interactions for a broad range of real substances and is essential for determining

the thermophysical properties of fluids (DUFAL et al., 2015).

The competition between the two types of interatomic forces coexisting in the system,

(fluid-fluid interaction and fluid-wall interaction) is responsible for the density variation in the

pore. This inhomogeneity in confined fluids is manifested in structural properties and system

dynamics triggering a shift in the thermodynamic equilibrium properties and a modification of

the transport properties (ZHANG; TODD; TRAVIS, 2004).

Among the various effects caused by confinement, phase behavior is one of the most studied,

since this phenomenon is present in many industrial and geophysical operations. In nanoporous

media, phase behavior becomes a function of both fluid-fluid interactions and fluid-wall inter-

actions (BARSOTTI et al., 2016). The introduction of the force field due to the solid matrix

results in new types of phase transitions not found in the bulk phase, and modifications in phase
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transition regions (GELB et al., 1999). A better understanding of confined fluid phase equilibria

is crucial to significant improvements in chemical processes. A contemporary example is the

need to estimate hydrocarbon recovery in shale gas and shale oil reservoirs, which are often

confined in nanometric spaces. Due to the large range of pore size distribution in this type of

reservoir, the fluid behavior in shale is considerably modified. This characteristic of the reservoir

directly affects the methods of reservoir evaluation and estimations of original hydrocarbons in

place (BARSOTTI et al., 2016). Also in practical applications such as adsorption, the repre-

sentation of the adsorbent structural heterogeneity is still a complex challenge that needs to be

overcome. Traditional models used to calculate adsorption isotherms neglect the influence of

shape and dimensions of the adsorbent on the adsorbed phase properties (TRAVALLONI, 2012).

This deficiency in adsorption models might impact adsorption calculations in processes that use

adsorbents with a broad range of pore size distribution. Therefore, it is even more evident the

need for proper models that rigorously take into account the main effects of confinement.

The main objective of this project is to extend the Statistical Associating Fluid Theory

(SAFT-VR Mie) equation of state for the calculation of mixture adsorption isotherms. The

theoretical framework on which this model is based is the methodology formulated by Franco,

Economou, and Castier (2017) for pure confined fluids. By using the generalized van der Waals

theory, a term regarding the Helmholtz free energy contribution due to the confinement effect

will be coupled with the SAFT-VR Mie equation of state. Once the theoretical expression for

Helmholtz free energy due to confinement effect is developed, one should have a complete

model which may provide a consistent description of confined fluid mixtures. Solving the phase

equilibrium criteria, multicomponent isotherms are calculated applying the proposed model.

An outline of the information introduced in each chapter is presented as follow: Chapter

2 presents an overview of literature that provided important theoretical foundations for the

development of equations of state for confined fluids. Chapter 3 introduces concepts that were

essential to the development of our equation of state. Chapter 4 presents the methodology for the

model formulation, which includes: adopted hypotheses and simplifications, model derivation,

and molecular simulation specifications. In Chapter 5, the proposed model is applied to the

prediction of different multicomponent adsorption isotherms. The results, advantages, and

drawbacks of the model are also discussed. Finally, Chapter 6 presents the conclusions and

suggestions for future works.
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2 Literature Review

There is a wide variety of methods and tools available to evaluate the behavior of confined

fluids. For cases in which information about the behavior at microscopic levels is necessary,

techniques such as molecular simulation and density functional theory (DFT) are the most

appropriate. Experimental characterization at the atomic level is also a promising path, but,

due to the difficulties and lot of effort required, molecular simulation is used to help correlate

experimental results with theory (JAYANT; SANG, 2007).

Prediction of the adsorption isotherms relies on the complex relationship between fluid and

solid properties (BUTZ; ZIMMERMANN; ENDERS, 1998). The materials usually used as

adsorbents in adsorption separation process frequently presents a complicated structure, hav-

ing a large range of pore size and shape distribution, blocked and active pores, and networked

pores, thus, the interpretation of adsorption in such materials is somehow quite inaccurate (BAL-

BUENA; GUBBINS, 1993). Another difficulty regarding adsorption studies is the predicition of

multicomponent isotherms. Experimental measurements of the adsorption equilibrium data of

mixtures are extremely time-consuming, however, multicomponent adsorption data are crucial

for the design of adsorption processes (WU et al., 2005).

Density functional theory (DFT), a method derived within statistical mechanics, has been

largely applied to analyze isotherms data. In DFT, adsorption is described as a function of the

pore dimension, attraction between wall and fluid molecules, and the probability of distribution

of molecules in the pores of the material (BALBUENA; GUBBINS, 1993). In this technique,

numerical methods are used to solve a system of nonlinear equations, and density profiles

inside the pore are found. From these profiles, the calculation of thermodynamic properties is

possible. This method, although less cumbersome, is less detailed than molecular simulation

(TRAVALLONI, 2012).

Despite the great applicability of techniques such as DFT and molecular simulation, their

use requires a great computational effort, and sometimes evaluating a fluid at microscopic level

is unnecessary. In process such as adsorption, knowing the global properties of a fluid might be

sufficient. From an engineering perspective, the use of analytical equations of state might be a

satisfactory alternative to model confined fluids systems. Simplifications such as an average of

the density variation in the porous media are considered.
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Travalloni et al. (2010) extended the van der Waals equation of state to describe pure fluids

and mixtures confined in porous media. The study was based on the generalized van der Waals

theory. The pore geometry was assumed to be cylindrical and molecular interactions were

described by a square-well potential. The approach used to extend van der Waals equation

of state to describe confined fluids was set through the redefinition of expressions for the free

volume and configurational energy from the canonical partition function. In the new expressions,

terms associated with the main effects of the confinements on the fluids were included, such as

pore radius and fluid-wall interaction parameters. This modification resulted in a more flexible

model that can be simultaneously used for confined and bulk fluids.

The developed model requires only two adjustable parameters for each component of the

system, concerning the interactions with the wall. These parameters were obtained by correlating

pure fluids adsorption experimental data. The interaction parameters and the radius of the

pore were varied to analyze the sensitivity of each variable, and different isotherms can be

obtained by varying fluid-wall interaction parameters. The proposed model was used to predict

calculations of several adsorption isotherms for both mixtures and pure fluids. Results showed

that good correlations were obtained for pure fluids, and satisfactory predictions for mixtures

(TRAVALLONI et al., 2010).

Barbosa et al. (2018) proposed a modification to Travalloni et al. (TRAVALLONI et al.,

2010) work regarding the drawbacks of the model. Despite the good results, the previous

approach presented an inconsistency with the ideal solution limit. This means that, for a system

of two identical components and a system of pure component at the same conditions of pressure

and temperature, different values of molar volume would be obtained. Travalloni, Castier, and

Tavares (2014) also extended Peng-Robinson equation to describe confined fluids, and the same

inconsistency is noted in the model. To develop a new model more appropriate for mixtures,

Barbosa et al. (2018) based their work on the previous approach, using similar steps to extend

equations of state to describe confined fluids. To correct the inconsistency, explicit mixing rules

were introduced in the model. Furthermore, the equation was adapted for spherical pores. As

expected, the new model presented better results when describing mixtures than the previous

one; also, this study was extremely important to understand how different pore geometries

impact the model performance.

A different approach to extend van der Waals equation of state is proposed by Zarragoicoechea

and Kuz (2002). The authors showed that, for a fluid restricted in pores of microscopical

dimensions, phase equilibrium is dependent on the system size. Considering a pore of infinite
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length, the confined fluid pressure has a tensorial aspect. Thus, a new model for Helmholtz

free energy is calculated, and from this expression, the axial and transversal components of the

pressure tensor are obtained. From the axial fluid pressure the critical parameters are given.

In this model, particles are considered to interact via Lennard-Jones potential. This work is

extremely relevant to predict capillary transitions and also to show that confinement can lead to a

shift of the critical parameters compared to the bulk fluid. The results presented good correlation

with experimental data, even though the interaction between fluid and wall was neglected.

Afterwards, Zarragoicoechea and Kuz (2004) used the same model to evaluate the shift on

the critical temperature as a function of the pore size. The model proved to be consistent since a

good agreement between the theory and experiment was observed, also no parameter fitting was

needed in the model. In addition, the equation was able to predict a shift in the critical pressure,

although this fact was not confronted with experiments.

Among the traditional approaches, cubic EoS’s have been used extensively. This class of

models is inadequate to describe self associating fluids despite its considerable popularity (GIL-

VILLEGAS et al., 1997). This limitation imposes the need for new models that describe the

phase behavior of more complex fluids. Many principles of statistical mechanics were applied

toward significant developments of equations of state such as SAFT (Statistical Associating

Fluid Theory), a semi empirical EoS that was adjusted for several range of fluids, including

organic compounds, light gases, water, and polymers (ECONOMOU, 2002). Since then, some

studies of adsorption isotherms were formulated using this equation.

Franco, Economou, and Castier (2017) extended the SAFT-VR Mie equation of state to

calculate adsorption isotherms of a pure fluid. In this work, a theoretical model to describe

the structure consequent from the fluid-solid interaction was developed and than compared with

Travalloni et al.(2010) empirical expression. The interactions between molecules were described

by a square-well potential, and the effect of confinement on the association and formation of

chains between molecules was neglected.

To adapt SAFT-VR Mie equation of state to describe confined fluids, a term relative to the

Helmholtz free energy due to confinement was coupled with the equation fo state. The theoretical

development of this term derives from the calculation of the residual energy resulted from the

confinement, based on the generalized van der Waals framework (FRANCO; ECONOMOU;

CASTIER, 2017).

Solving a phase equilibrium problem, the formulated model was then used to calculate

adsorption isotherms in two different cases: light hydrocarbons adsorbed in a carbon molecular
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sieve, and carbon dioxide, nitrogen, and water adsorbed in a zeolite. For the first case, the

theoretical and the empirical expression for the pore structure were compared with experimental

data. The theoretical formulation presented better agreement with experimental data than the

empirical one.

Martínez, Trejos, and Gill-Villegas (2017) based on Statistical Associating Fluid Theory

for potentials of Variable Range framework developed the 2D-SAFT-VR approach to model

the adsorption isotherms for binary mixtures. This approach was mathematically formulated

considering that the particle-particle and particle-wall interactions are modeled by square-well

potentials. Assuming that the substrate modifies the pair potential energy of the adsorbed

molecules, the square-well parameters are considered to be different for the bulk and adsorbed

segment-segment. The 2D-SAFT-VR model was used to predict adsorption of water and

methanol onto activated carbons, metal organic frameworks and carbon molecular sieve mem-

branes. The association part was derived for molecules with two, three, and four association

sites. The model results were compared to experimental data presenting quite good performance.

The Random Surface (RS)-SAFT is a new version of the SAFT-DFT developed by Aslyamov,

Pletneva and Khlyupin (2019). Considering that most of the natural materials used as adsorbent

are geometrically heterogeneous, and that nano-roughness has a great impact in adsorption,

this novel model major advantage is the prediction of adsorption considering rough surfaces.

The SAFT-VR Mie EoS is used as the base for the homogeneous bulk limit, however a modi-

fication in the intermolecular term of Helmholtz free energy was made to extend the equation

to inhomogeneous fluids. To account for a real surface, RSDFT method was employed. In

Aslyamov, Pletneva, and Khlyupin (2019) previous work, a model was developed to predict

the surface geometry based on experimental isotherms. The developed approach was used to

analyze hexane adsorption on carbon black. Experimental data were used to tune RSDT and

to obtain the adsorbent surface. Given obtained features of the pore, RS-SAFT was used to

calculate adsorption isotherms.

Equations of state have been one of the most promising ways of describing confined fluids,

since analytical expressions are practical and simple for industrial applications. Cubic equations

of state are not always the best option as they present a great limitation for uncovering some

types of fluids such as self-associating and highly dense fluids. In view of that, SAFT equations

of state show great advantage as they make possible to describe the properties of a greater

range of complex fluids. Considerable work has been done in developing consistent models

for inhomogeneus systems, and certainly, these studies improved our understanding of confined
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fluids properties. However there are still gaps in the literature regarding models that take into

account, in comprehensive and non-generalist way, the structural characteristics of adsorbent

solids.
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3 Theoretical Foundations

3.1 Adsorption

Adsorption is a separation process characterized by transferring a particular component of a

fluid phase to the surface of a solid (adsorbent). The adsorption can be classified according to

the intensity of forces involved in the process. When the interaction between the adsorbate and

the surface of the adsorbent is weak, the adsorption is classified as physisorption. In this case,

the forces involved are mainly van der Waals forces. In chemisorption, the electronic structure

of the molecules are modified, leading to the formation of chemical bonds with the substrate

(NASCIMENTO et al., 2014).

A lot of factors is known to influence in the adsorption phenomenon, for example: the

adsorbent and adsorbate characteristics, and the process operating conditions. Some of the fluid

molecules are more likely to attract to the surface because of their molecular weight, shape,

and polarity. The surface area and pore size of the adsorbent are also very relevant. If pores

are too small, larger molecules are hindered from being held on the pore (MCCABE; SMITH;

HARRIOT, 1993). The operating conditions also play an important role. The temperature

directly affects the adsorption rate constant, and the pH of an adsorption process in solution

controls the adsorbent surface charge (NASCIMENTO et al., 2014; TOLEDO et al., 2005).

The adsorption isotherms are defined by the equilibrium relationship between the concen-

tration in the fluid phase, and the concentration in the adsorbent particles (MCCABE; SMITH;

HARRIOT, 1993). The adsorption isotherms are classified in six main types as shown in Figure

1 .

• Type I:

This isotherm is described by the classical Langmuir’s equation. In this isotherm, even at

high pressures of the gas phase, the adsorbed amount tends asymptotically to a constant

value. This limiting value represents the completion of a surface monolayer (KELLER;

STAUDT, 2005).

• Type II:

This isotherm is generally described by the Brunauer–Emmett–Teller (BET) model. At
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The adsorption phenomenon has been widely applied for different industrial purposes.

For example, the separation and purification of liquid and gas mixtures, drying gases and

liquids before loading them into industrial systems, removal of impurities from liquid and

gases, recovery of chemical from industrial gases and water treatment (DRABOWISKI,

2001). In such processes, the information about the amount adsorbed in the porous

materials at a given pressure and temperature is provided by the calculation of adsorp-

tion isotherms. Generally, three major paths are used to derive mathematical equations

for adsorption isotherms. The first consists of using kinetic expressions for adsorption

and desorption rates in equilibrium. The second is based on classical thermodynamics

making an analogy with the ideal solution theory. The third path is based on statistical

thermodynamics.

Among the existing kinetic models to predict adsorption, the most commonly used are

Langmuir, Freundlich, and BET isotherm models.

– Langmuir adsorption isotherm: In Langmuir’s model, the adsorption is assumed to

occur in a fixed number of sites, and each site can only take one molecule. Also,

these sites are considered to be energetically equivalent and no interaction exists

between adsorbed molecules (KELLER; STAUDT, 2005).

q =
qmaxKLCe

1 + KLCe

(3.1)

In Equation 3.1, q is the adsorbed amount and qmax is the limiting monolayer

adsorption capacity. In other words, qmax represents the formation of monolayer

when the adsorbed vapor covers completely the surface of the sorbent. Ce is the

equilibrium concentration of the adsorbate, and KL is the adsorbate - adsorbent

interaction constant.

– Freundlich equation: unlike the Langmuir isotherms, the Freundlich model is an

empirical equation which is not theoretically based. This equation was developed

to account for adsorption on heterogeneous solid surfaces (DRABOWISKI, 2001).

The general form of this equation is:

q = K f Cn (3.2)

where q is the amount adsorbed, C is the bulk concentration at equilibrium, K f is

the Freundlich constant, and n is an exponent related to the solute adsorption.
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– BET multilayer adsorption theory: the Brunauer–Emmett–Teller (BET) theory,

which is somehow a generalization of Langmuir isotherm, was developed to predict

multilayer adsorption on solids (DRABOWISKI, 2001). This model is based on

the following assumptions: Langmuir’s equation applies to each adsorption layer,

adsorption and desorption take place only in the layer that is exposed, and the heat

of adsorption in the first layer is always higher than the subsequent ones (CHIOU,

2002).
q

qm

=

Cx

(1 − x)[1 + (C − 1)x] (3.3)

where q and qm are the amount adsorbed and the monolayer capacity respectively, x

is the relative vapor pressure, and C is a constant related to the difference between

the heat of adsorption in the first layer and the heat of liquefaction of the vapor

(CHIOU, 2002).

Models such as Langmuir and Freundlich are extensively used to calculate adsorption, be-

cause they can describe well experimental data, and require only two parameters (NASCI-

MENTO et al., 2014).

Regarding the numerous adsorption models based on classical thermodynamics, one of the

most successful is the IASM model (Ideal Adsorbed Solution Model) developed by Myers

and Prausnitz (1965). In this model, the adsorbed phase is assumed to be ideal. The key

feature of this method is an analogy with Raoult’s law for vapor-liquid equilibrium. IASM

is referenced as a remarkable model for the prediction of mixture adsorption equilibrium

using only pure-component adsorption isotherms. Nevertheless, the model presents some

drawbacks: for mixtures in which one component present significant difference in size and

polarity compared to others, or, if the adsorbent has a heterogeneous surface, the model

does not show good performance (WALTON; SHOLL, 2015).

The statistical thermodynamics enables the formulation of a molecular theoretical model

to predict the properties of a macroscopic system. Based on this framework, the system is

considered to be composed of a large number of molecules, therefore, the main purpose is

to obtain the thermodynamic properties using information about the molecular properties

and interactions. An example of statistical theory applied to adsorption is the statistical

model adsorption isotherm (SSTM) developed by Ruthven and coworkers, a method that

is usually applied to predict adsorption in zeolites (ROMANIELO, 1999).
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3.2 Perturbation Theory

A significant step was recently taken motivated by the necessity of equations of state that

represent fluids that could not be described by the traditional models. The path towards these

models has been traced through the development of Wertheim’s Thermodynamic Perturbation

Theory (TPT) within statistical mechanics. A seminal argument for this important theory lies in

the fact that the structure of the liquid is mainly determined by the short range repulsive forces,

and the attractive forces of the potential are dedicated to keep the molecules together at a fixed

density (MCQUARRIE, 2000). From this argument, the idea to treat a fluid as a system of

repulsive interactions and depict attraction forces as a perturbation, emerges.

In Perturbation Theory, a reference system, in which only repulsive interactions exist, is cho-

sen. The potential frequently used to describe this reference system is the hard-sphere potential.

In view of that, any deviation of a real system that might cause variations in the thermodynamic

behavior of the reference system is considered a perturbation. Thus, this perturbation can as-

sume the form of different factors, such as van der Waals attractive interactions, association

interaction, and the non-spherical shape of the molecules (KLEINER; TUMAKAKA; SAD-

OWSKI, 2009). The total potential energy of a system can be written as a sum of the potential

energy of a reference system (unperturbed), which is usually a hard-sphere system U
(0)
N

, and the

perturbation U
(1)
N

.

UN = U
(0)
N
+U

(1)
N

(3.4)

The configurational integral of the total potential is:

ZN =

∫
· · ·

∫
exp(−β[U(0)

N
+U

(1)
N
])dr1 · · · drN (3.5)

Where β = 1/kBT .

Multiplying and dividing the configurational integral by :
∫

· · ·
∫

exp(−βU(0)
N
)dr1 · · · drN (3.6)

The configurational integral can be rewritten as:

ZN = Z
(0)
N
〈exp(−βU(1)

N
)〉0 (3.7)

This strategy enables us to write the configurational integral as a weighted average of exp(−βU(1)
N
)

over the unperturbed system.

The Helmholtz free energy is an important property in thermodynamics. Whit it, all other

thermodynamic properties can be obtained. From Equation 3.7, it is possible to write the
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Helmholtz free energy as a sum of the Helmholtz free energy of the reference system and the

perturbation free energy:

A = A(0)
+ A(1) (3.8)

From the canonical partition function, Q = ZN/(N!Λ3N ), the Helmholtz free energy might be

calculated as:

A = −kT ln Q (3.9)

−βA = ln

(
Z
(0)
N

N!Λ3N

)
+ ln〈exp(−βU(1)

N
)〉0 (3.10)

Hence, we can infer that:

A(1)
= −kT ln〈exp(−βU(1)

N
)〉0 (3.11)

The term exp(−βA(1)) is expanded in powers of β, and each coefficient of βn is defined as

wn:

exp(−βA(1)) =
∞∑

k=0

(−β)k

k!
〈U(1)

N
)k〉0 (3.12)

w1 = 〈U(1)
N
〉0 (3.13)

w2 = 〈(U(1)
N
)2〉0 − 〈U(1)

N
〉2
0 (3.14)

w3 = 〈(U(1)
N
)3〉0 − 3〈(U(1)

N
)2〉0〈U(1)

N
〉0 + 2〈(U(1)

N
)〉3

0 (3.15)

Therefore, the Helmholtz free energy at high temperatures can be written as follows:

A = A0 + w1 −
w2

2kT
+O(β2) (3.16)

The term w1 is relatively simple and can be written as:

w1 =
ρ2V

2

∫
u(1)(r12)g(2)o (r12)dr12 (3.17)

where go is the radial distribution function of the reference system.

Nonetheless, the second term in the expansion is more complex, since it accounts for the

distribution function of three and four body, which is not easily calculated. Barker and Henderson

(1967) developed a method to approximate w2. In their approach, considering an unperturbed
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system, the range of intermolecular distances is divided in intervals r j − r j+1, at each interval,

the probability to find NJ molecules is P(NJ). The perturbing potential is considered constant

assuming that the intervals are small. Based on these assumptions, an expression called local

compressibility approximation is derived to calculate w2 (MCQUARRIE, 2000):

Aβ = A0β +
ρβ

2

∫
u(1)(r)go(r)4πr2dr − ρβ

2

4

∫
[u(1)(r12)]2kT

[
∂ρgo

∂p

]
4πr2dr +O(β3) (3.18)

The Perturbation Theory was the basis for the development of the statistical associating fluid

theory (SAFT). The SAFT equations of state are emerging as an accurate and versatile family

of models due to the wide range of fluids to which they are applied. As previously stated, these

models respond to the need of describing fluids with highly directional attractive forces, for

example, fluids with hydrogen bonds (GIL-VILLEGAS et al., 1997).

3.3 Statistical Associating Fluid Theory - SAFT

Equations of State (EoS) were settled as a fundamental tool in simulation and optimization

of several processes in industry. They fulfill the necessity of describing volumetric behavior,

vapor-liquid equilibria, and the thermal properties of fluids in different pressure, temperature, and

compositions with low computational cost. van der Waals was the first to introduce an equation

of state, since then numerous EoS were proposed. In general, we can divide the equations of state

in two categories, cubic and non cubic. The cubic EoS’s are widely used in industry due to the

simplicity of its mathematical formulation. Among the EoS of this group, the most popular are

Soave-Redlich-Kwong (SRK) (1972) and Peng-Robinson (PR) (1976) (ASHOUR et al., 2011).

In the category of non cubic EoS, the Statistical Associating Fluid Theory (SAFT) emerged as

a successful model. SAFT is a molecular based EoS that considers a molecule as a chain of

tangential spherical segments (CHAPMAN et al., 1989). This EoS has drawn special attention

due to the great range of types of fluids that it is able to accurately describe, such as associating

fluids, copolymers and electrolytes, which are fluids that cannot be described by traditional

cubic EoS (ECONOMOU, 2002). SAFT equation of state was first developed by Chapman et

al. (1989) based on the thermodynamic perturbation theory of Wertheim. This equation of

state is written as a sum of terms that represent different intermolecular forces to the Helmholtz

free energy. Once the Helmholtz free energy of the fluid is known, standard thermodynamic

equations can be used to calculate important thermodynamic properties such as pressure and

chemical potential (ECONOMOU, 2002). A great advantage of a molecular based equation of
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state is the possibility of distinguishing the effects of molecular structure on bulk properties and

phase behavior. The Wertheim’s perturbation theory was the theoretical basis used to account

for the effects on Helmholtz free energy of association and chain formation. In a very simplified

way, the main point of this theory is the connection between association strength and monomer

density. A brief explanation of the mathematical expression of each intermolecular contribution

is given based on the original version of SAFT developed by (CHAPMAN et al., 1989). A

SAFT EoS can generally be written as:

A = AIDEAL
+ AMONO

+ ACHAIN
+ AASSOC (3.19)

• Ideal Contribution

The ideal-gas term contribution is given by:

AIDEAL

RT
= ln(ρΛ3) − 1 (3.20)

In this expression, ρ is the number density of chain molecules and Λ3 represents the de

Broglie volume.

• Monomer contribution

This contribution represents the segment-segment interactions. Examples of this type of

interaction are hard-sphere and dispersion forces. Thus we can write that:

AMONO

RT
=

AHS

RT
+

ADISP

RT
(3.21)

The term AHS represents the Helmholtz free energy of a hard-sphere reference system. This

term is calculated using the Carnahan-Starling expression (CARNAHAN; STARLING,

1969):
AHS

RT
= m

4η − 3η2

(1 − η)2
(3.22)

where m is the number of segments per molecule, and η the packing fraction.

The dispersion force is the weakest intermolecular force that is present between molecules

when they are relatively close. The Helmholtz free energy due to the dispersion forces

effects is calculated as follows:

ADISP

RT
= m

u

kT

(
aDISP

1 +

u

kT
aDISP

2

)
(3.23)
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• Chain contribution

The contribution to the Helmholtz free energy due to the formation of chains of m

monomers is given by:

ACHAIN

RT
=

∑

i

Xi(1 − mi) ln(gii(dii)HS) (3.24)

In this expression, gii is the hard sphere correlation function for a pair of molecules

evaluated at the contact.

• Association contribution

This term accounts for site-site specific interactions of the segments, one example of

this contribution are the hydrogen bond interaction. The Helmholtz free energy due to

association is determined from the expression:

AASSOC

RT
=

M∑

A=1

[
ln X A − X A

2

]
+ 0.5M (3.25)

where M is the number of association sites on each molecule and X A is the mole fraction

of molecules not bonded at site A.

The SAFT equation of state is continually being modified to improve its accuracy. Nowadays

there are numerous versions of this equation. Some of the more relevant versions will be outlined

here.

The SAFT-VR equation of state was developed by Gil-Villegas and co-workers (1997). In this

version, hard-core monomers are considered to interact with an arbitrary potential of variable

range, namely square-well, Sutherland, and Yukawa. The monomer Helmholtz free energy is

expressed as a series of expansion of the inverse of temperature. The first two perturbation

terms were taken into account, and the Barker and Henderson perturbation theory was used to

approximate these functions. The monomer background correlation function is also derived to

account for structure of the new reference fluid, therefore the chain and association terms of the

equation were consequently modified.

Gross and Sadowski (2001) proposed another important contribution to the family of SAFT

equations of state: the Perturbed-Chain SAFT (PC-SAFT). Instead of applying a perturbation

theory of second order to the reference system of hard-spheres as previous works, the perturbation

theory is applied to a hard-chain system. The main idea of this model is to account for the

influence of the non-spherical shape of the molecule in the dispersion term. The contributions

regarding association and chain formation remain calculated as in the original equation.
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Laffite and co-workers (2013) proposed the approach we chose to use in this work, the

SAFT-VR Mie equation of state. This new version of SAFT uses the Barker and Henderson

high-temperature perturbation expansion up to the third order in the free energy of the monomer

Mie system. Also, the radial distribution function of the reference monomer fluid is calculated

from a second-order expansion. All these improvements make the SAFT-VR Mie equation a

useful tool that can be applied to a broad range of interactions.

3.4 Monte Carlo Simulation

A further study of a fluid physical properties requires a good representation of the inter-

molecular potential energy between molecules, and the solution of the equations of statistical

mechanical for the system considering a given potential (GELB et al., 1999). With regard to

the statistical mechanical equations, molecular simulation techniques represent a precise ap-

proach that numerically solve these equations using a computer. Successful examples of these

techniques are: Molecular Dynamics and Monte Carlo simulations. These methods allow a

modeling of the system at a molecular level providing important information about the structure

and thermodynamic properties of a fluid. However, their main limitation resides on the appropri-

ate description of the used force field, and the large computational effort needed (BARLETTE;

FREITAS, 1999).

The partition function establishes a connection between the mechanical energy states of a

microscopic system and the thermodynamic properties of that system (MCQUARRIE, 2000).

Considering a system with a large number of particles, the total energy is given by the Hamilto-

niam function H(p, q). Therefore we can assume that:

Q =
∑

j

exp(−βε) = 1
N!hsN

∫
· · ·

∫
exp(−βH(p, q))dpdq (3.26)

H(p, q) = 1
2m

N∑

j=1

(p2
x j + p2

y j + p2
z j) +U(q1, · · · , qN ) (3.27)

In the Hamiltonian function, p denotes a set of p j that is the momentum of each particle, and q

the set of generalized coordinates for each particle.

The momenta integration can be solved analytically, however the part of the integral that

contains the intermolecular forces are mathematically complicated to solve due to the dependence

on the relative distance between molecules. This part of the integral is named the configuration
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integral (Z):

Q =
1

N!

(
2πmkT

h2

)3N/2
ZN (3.28)

where

Z =

∫

V

exp(−U(q1, · · · , qN )/kT)dq1 · · · qN (3.29)

The calculation of the average value of some property 〈A〉 is given by the following equation:

〈A〉 =
∫

dqN exp[−βU(qN )]A(qN )
∫

dqN exp[−βU(qN )]
(3.30)

where qN is the position of all N particles. The probability of finding the system in a determined

configuration is calculated as follows:

ρ(qN ) = exp[−βU(qN )]∫
dqN exp[−βU(qN )]

(3.31)

If we consider that it is possible to randomly generate NMC points in configuration space,

Equation 3.30 can be rewritten as :

〈A〉 = 1
N MC

NMC∑

i=1

Ai(qN ) (3.32)

Monte Carlo simulation is a technique that enables the calculation of an average property by

approximating the configuration integral in Equation 3.30 of a sum of random points in space.

The importance sampling is a method that permits to choose random numbers from a distribution

in a region of the space that will make more contributions to the integral (EARL; DEEM, 2008)

(BARLETTE; FREITAS, 1999). The generation of a sequence of random states is quite difficult

since, by the end of the simulation, each state must have occurred with an adequate probability.

Therefore, the main target is to find a method to properly generate these random numbers. To

overcome this problem, the Markov chain of states method is employed (ALLEN; TILDESLEY,

2017).

Markov chains are one of the most important stochastic process. The key feature of this

method is that the probability of the next state of the system is only dependent on the present

state. For the development of a Markov chain, a transition matrix has to be defined (ALLEN;

TILDESLEY, 2017). The transition matrix, πmn, provides information about the probability of

the system moving to another state or not. Therefore, if a system is in a state m, the probability to

move to state n is given by πmn. Let us assume that ρ is a vector that contains the probability of
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a system being in a determined state, the probability vector for subsequent points will be given

by:

ρ j
= πρ j−1 (3.33)

Applying the transition matrix numerous times, the chain converges to a stationary distribution,

thus we can writte that:

ρ∗ = lim
NMC→+∞

ρ(0)πMC (3.34)

where ρ∗ is the limiting distribution and ρ(0) is the probability vector for a initial configu-

ration. Implementing the Markov chain method to our problem, the limiting distribution is the

vector ρm = ρNVT (qN
m) for each point qN

m in the phase space. Despite the limiting distribution

being known, the transition matrix is undefined, therefore the question of when the move will

be accepted or rejected remains.

To calculate the transition matrix, the Metropolis method was employed. First, a stochastic

matrix α is specified with a single constraint: αmn = αnm. Next, a random particle is chosen and

moved in each of the coordinate directions. Considering that the system is going from state m

to state n, the following analysis is required:

If the energy of state n is lower then state m, than the new configuration is accepted, thus:

πmn = αmn ρn ≥ ρm (3.35)

If the energy of state n is greater than state m, then the move is accepted with a probability
ρn
ρm

:

πmn = αmn

ρn

ρm

ρn < ρm (3.36)

hence,
ρn

ρm

= exp(−β[U(n) − U(m)]) (3.37)

To accept this movement with this probability, a random number is chosen from an interval,

[0, 1] and compared with the probability ρn
ρm

. If this number is less than ρn
ρm

, the new configuration

will be accepted. If the movement is rejected, the system will stay in the old configuration m.

Therefore the transition matrix is calculated by:

πmn = 1 −
∑

n,m

πmn (3.38)
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4 Methodology

4.1 Theoretical Development

The understanding of the thermodynamic behavior of a fluid is substantially related to the

types of intermolecular forces governing molecular interactions. Specially in mixtures, deter-

mining the thermodynamic properties becomes quite complicated, since the interactions between

all different components of the mixture must be evaluated. In separation processes, much of the

information on the prediction of phase equilibria can be understood from intermolecular forces.

The bridge that operates between intermolecular forces and macroscopic forces is statistical

mechanics (PRAUSNITZ; LICHTENTHALER; AZEVEDO, 1999). However, a direct appli-

cation of this technique is unfeasible due to a lot of difficulties in calculation. Thermodynamic

models such as equations of state are frequently used to solve chemical engineering calculations

such as phase equilibria prediction. According to Sandler (1985), a theoretical thermodynamic

model presents some advantages compared to the empirical ones: the model can be derived for

a particular fluid, and the parameters required are reduced in number and related to molecular

properties. In view of that, Sandler extended Vera and Prausnitz seminal generalized van der

Waals theory (GVDW) aiming to provide a theoretical thermodynamic model based on statistical

mechanics for the derivation of equations of state.

The main contribution of the present work is to develop a model that predicts the behavior

of confined fluids. The approach proposed in this work is to couple with the SAFT-VR Mie

equation of state the term ACONF that takes into account the residual Helmholtz free energy due

to the confinement effect as shown in Equation 4.1. The theoretical formulation of such term

is rooted on the generalized van der Waals theory. Plugging the Helmholtz free energy to the

confinement effect to SAFT-VR Mie EoS, the total the Helmholtz free energy becomes:

A = AIDEAL
+ AMONO

+ ACHAIN
+ AASSOC

+ AACONF (4.1)

Before exploring the details of the theoretical formulation of this model, some important

assumptions on which this framework relies are listed:

• Although it is well known that some adsorbents present a structural heterogeneity, in this

approach a single pore size is considered.
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• The roughness of the pore surface is not taken into account.

• The molecular interaction between fluid and the confining material is represented by the

square-well potential. As in Franco, Economou, and Castier (2017) work, the fluid-

fluid and wall-fluid interactions are decoupled, and the molecular interaction between the

confining material and the fluid close to the wall is modeled as an extra potential between

fluid molecules.

• The effect of confinement on chain formation and association is considered negligible.

The inclusion of such effects in the modeling would require a complete redefinition of

the model, taking into account the effects of the surface both on the chain (knowning that

preferential orientations are important) and on the association. Since the present model

disregards these phenomena, it is somehow restricted to mixtures of small molecules, with

negligible surface effect on the association.

The theoretical development of the term concerning the Helmholtz free energy due to

confinement effect starts with the calculation of the residual energy using the generalized van

der Waals theory. The canonical average of the residual energy is represented as follows:

〈E〉R
= 〈E〉 − 〈E〉IG

= −
(
∂ ln Z(Ns,V, β)

∂β

)

Ns,V

(4.2)

At β = 0, only the repulsive forces between molecules are relevant. Therefore, we can assume

that Z(β = 0) is a hard-sphere configuration integral. Since this limit would require the

calculation of the free volume imposing a modification in the whole equation of state, for the

sake of simplicity, this limit is changed to an ideal gas. This introduces a degree of inconsistency

in the model. Integrating Equation 4.2 from β = 0 to β, and isolating the configurational integral:

Z = V Ns exp

(
−

∫ β

0
〈E〉Rdβ

)
(4.3)

Applying Equation 4.3 to calculate the canonical partition function we have:

Q(Ns,V, β) =
V Ns

NS!Λ3Ns
exp

(
−

∫ β

0
〈E R〉dβ

)
(4.4)

where V is the volume, Ns the number of segments, Λ the de Broglie thermal wavelength, and

〈E〉R the canonical average of the residual energy.
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To calculate the Helmholtz free energy due to the confinement effect, the residual energy

due to the confinement effect has to be derived. Considering that the interaction energy between

pair of molecules (pairwise additivity), an equation for residual energy due to confinement effect

using a square-well potential may be described for a mixture of C components as:

〈E〉CONF
= −

C∑

i=1

C∑

j=1

NimiNjm jεi j

2V

∫

Ω

gi j(x)dΩ (4.7)

where Ω represents the space in the pore where the fluid is attracted by the wall, V the pore

volume, and Ni and mi represents respectively the number of chains and the number of segments

per chain for molecule i.

Equation 4.7 can then be rewritten as:

〈E〉CONF
= −

C∑

i=1

C∑

j=1

NimiNjm j(
C∑

k=1
Nkmk

) εi jΦi j (4.8)

where:

Φi j =

(
C∑

i=1
Nimi

)

2V

∫

Ω

gi j(x)dΩ (4.9)

For a complete representation of the Helmholtz free energy model, an accurate expression

for Φ is required. However, a precise description of Φ is associated with a complete knowledge

of the confined fluid structure (FRANCO; ECONOMOU; CASTIER, 2017). To simplify the

calculation of this term, the assumption regarding the decoupling of the two types of intermolec-

ular forces is applied here. Based on that, the fluid might have two different structures: one

resulting from interactions between fluid molecules and another from the fluid interaction with

the confining material. Such an approach imposes that the structure of the confined fluid repre-

sented by Φi j comes from the fluid-solid interaction. The following step consists of developing

a model for the calculation of Φi j .

Applying the mean value theorem to Equation 4.9, one can write:

Φi j = gi j(ξi j)Φ̄0 (4.10)

where gi j(ξi j) is the mean value of gi j(x), and Φ̄0 is the uniform distribution for a mixture given

by the following linear mixing rule:

Φ̄0 =

C∑

i=1

Nimi(
C∑

k=1
Nkmk

)Φ0,ii (4.11)
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where Φ0,ii depends on both the shape and the size of the pore:

Φ0,ii = 1 −
(
2rp,ii/σii + 1 − 2λii

2rp,ii/σii − 1

)d

(4.12)

where rp,ii is the pore radius, and d is the pore dimensionality: d = 1 for slit pores, d = 2 for

cylindrical pores, d = 3 for spherical pores, and non-integer values of d might indicate fractal

pore geometries.

The expression for Φi j is where the main effects of confinement are inserted in the equation

of state. Thus, Φ0 accounts for the effect of confinement due to geometric constraints, such as

shape and diameter of the pore and g(ξ) the effect of confinement due to fluid-wall interaction.

For several monomer potentials, wide range of densities, and for different ranges of the

potential, ξ is close to the contact value of one (GIL-VILLEGAS et al., 1997). Therefore, g(ξ)

can be written as a Taylor series expansion around one.

Considering in the expansion only the linear contribution, the formulation for gi j(ξ) is:

g(ξ) ≈ g(1)(3 − 2ξ) (4.13)

Galindo et al. (1998) proposed for a square-well potential an expression for the contact value

of the radial distribution function for mixtures:

g
SW
i j (1; ζ3) = g

HS
i j (1; ζ3) + βεi j

[

g
HS
i j (1; ζ eff

3,i j) + (λ
3
i j − 1)

(
∂gHS

i j
(1; ζ eff

3,i j
)

∂ζ eff
3,i j

)

(
λi j

3

∂ζ eff
3,i j

∂λi j

− ζ3
∂ζ eff

3,i j

∂ζ3

)]

(4.14)

The contact value of the radial distribution function for the reference system (mixture of

hard spheres), at a determined packing fraction, is given by Boublík (1970) as follows:

g
HS
i j (1; ζ3) =

1
1 − ζ3

+ 3
Di jζ3

(1 − ζ3)2
+ 2

(Di jζ3)2

(1 − ζ3)3
(4.15)

where:

ζl =
π

6V

C∑

i=1

Nimiσ
l
ii (4.16)

Di j =
σiiσj j

(σii + σj j)
ζ2

ζ3
(4.17)
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For the calculation of the radial distribution function for the reference system at an effective

packing fraction, the following expressions are required:

g
HS
i j (1; ζ eff

3 ) = 1

1 − ζ eff
3

+ 3
Di jζ

eff
3

(1 − ζ eff
3 )2
+ 2

(Di jζ
eff
3 )2

(1 − ζ eff
3 )3

(4.18)

ζ eff
3,i j = c1ζ3 + c2ζ

2
3 + c3ζ

3
3 (4.19)



c1

c2

c3



=



2.25855 −1.50349 0.249434

−0.669270 1.40049 −0.827739

10.1576 −15.0427 5.30827



×



1

λi j

λ2
i j



(4.20)

The resulting equation for the calculation of the Helmholtz free energy due to confinement

effect is defined as:

ACONF
= −Ns

∑

j

∑

i

xi,s x j,sεi jΦ0(3 − 2ξi j)
(
g

HS
i j (σi j ; ζ3) +

βεi j

2

(
g

HS
i j [σi j ; ζ

eff
3 ] + (λ3

i j − 1)

×
∂gHS

i j
[σi j ; ζ eff

3 ]
∂ζ eff

3

(
λi j

3

∂ζ eff
3

∂λi j

− ζ3
∂ζ eff

3

∂ζ3

)))
(4.21)

4.2 Computational Details

For a complete analytical description of the term ACONF, the next step was to develop an

temperature-independent expression for ξi j . For this purpose, a series of Monte Carlo simulations

were performed to obtain the radial distribution function and correlate a temperature-independent

expression for ξi j .

4.2.1 Monte Carlo Simulation

As previously explained, Monte Carlo simulations consist of a very popular simulation

tool used to generate a set of representative configurations under specific thermodynamics

conditions for a determined system. The main characteristic of this technique is that it is a

stochastic approach, where the translation of a molecule is based on random numbers used to

analyze whether or not to accept the move, the decision is related to how favorable the energy

change would be for states change (FICHTHORN; WEINBERG, 1991).
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For the simulations performed in this work, a canonical ensemble was considered, and

the initial configuration was settled as a face centered cube. Monte Carlo simulations were

carried out for a system with a total of 1372 spherical particles interacting through square-well

potential. To the calculation of the potential parameters for dissimilar components, Lorentz-

Berthelot combining rules were applied:

σi j =
σii + σj j

2
(4.22)

εi j =
√
εiiε j j (4.23)

For the unlike particles attractive range, an arithmetic average was adopted:

λi j =
λii + λ j j

2
(4.24)

The Metropolis algorithm was used for each translational attempt, obeying the periodic

boundary conditions (ALLEN; TILDESLEY, 2017). The radius of acceptance for this code was

set to 0.5 and the equilibration and production steps were 2.744 × 107 each.

Figure 3 – Snapshot of a Monte Carlo simulation for a binary system.

The position coordinates generated from Monte Carlo Simulation were stored and the radial

distribution functions were obtained. Considering a binary system, three radial distribution

functions presented in Figure 4 were obtained.

The radial distribution function resulting from simulation was evaluated at the contact, and

compared with the predicted value from the equation developed by Gil-Villegas et al. (1998).

To search for an accurate value for the radial distribution function at the contact, a quadratic

function was fit to the region in the plot where the fluid is attracted to the solid wall, between
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Figure 4 – Radial distribution functions for a mixture with composition 25% − 75%: Blue line
is the radial distribution function for the pure component with σ = 1, red line is the
pure component with σ = 2 and the green line is the radial distribution function for
mixture. The range of attraction λ was set to 1.5 for each component

σ and λσ (JACKSON; CHAPMAN; GUBBINS, 1988). Based on these points, a curve was

adjusted and a more precise value for the radial distribution function at the contact was obtained.

The comparison between the value resulting from the simulation and the one obtained from

the equation for mixtures with different compositions with equal range of attraction λ = 1.5,

diameters of σ11 = 1 and σ22 = 2 are shown in Figure 5.

The radial distribution function of a pure fluid must satisfy the ideal gas limit relation which

establishes that at densities close to zero it must reduce to its ideal gas limit of unity, as shown in

Equation 4.25. To emphasize this criterion the y-axis was multiplied by exp(−βε). For a better

visualization of the behavior of the curves, the green, black and blue curves are shifted on the

y-axis of 1, 2 and 3 respectively.

lim
η→0

g(1)e−βε = 1 (4.25)

From Figure 5, one may infer that the expression used to calculate the radial distribution

function at contact showed satisfactorily agreement with the simulations. However at low

densities, the equation does not satisfy the following ideal gas limit. Since the aim of this work

is to study confined fluids systems, the region of interest is the one at high densities which

presents a good agreement with the simulations
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Figure 5 – Radial distribution function at contact for different compositions: blue line = 40%-
60%; black line = 25%-75%; green line = 20%-80%; red line = 10%-90%

Isolating ξi j from Equation 4.13 we have:

ξi j =
1
2

[
3 −

g(ξi j)
g(1)

]
(4.26)

gi j(ξi j) is the mean value of gi j(x) evaluated in the interval between 1 and λ. Therefore,

from the calculated radial distribution functions, values for gi j(ξi j) were obtained.

g(ξi j) =
3

λ3
i j
− 1

∫ λ

1
gi j(x)x2dx (4.27)

The value of ξi j for unlike molecules can be calculated by the arithmetic average of the

values of ξi j for pure components:

ξi j =
ξii + ξ j j

2
(4.28)

According to Franco, Economou and Castier (2017), the value of ξii is well approximated

by the following empirical equation fitted to Monte Carlo simulation results:

ξii =

(
λii + 1

2

)
+

(
λii − 1

2

)
tanh [(α1λii + β1)ζ3 + α2λii + β2] (4.29)

where α1 = −4.3154, α2 = 1.0397, β1 = 11.021, and β2 = −3.2542.

Figure 6 shows a quite satisfactory agreement between values of ξ12 calculated by Equations

(4.28) and (4.29) and by Monte Carlo simulations for different square-well binary mixtures (25%

of molecules type 1 and 75% of molecules type 2): i) λ11 = 1.1, λ22 = 1.3, and λ12 = 1.2; ii)
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λ11 = 1.125, λ22 = 1.500, and λ12 = 1.313; and iii) λ11 = 1.375, λ22 = 1.625, and λ12 = 1.500.

The influences of molecule size and composition are taken into account in ζ3.
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Figure 6 – ξ12 as function of ζ3 for different square-well binary mixtures (25% of molecules type
1 and 75% of molecules type 2): i) λ11 = 1.1, λ22 = 1.3, and λ12 = 1.2 (yellow); ii)
λ11 = 1.125, λ22 = 1.500, and λ12 = 1.313 (red); iii) and λ11 = 1.375, λ22 = 1.625,
and λ12 = 1.500 (blue); Closed symbols, Monte Carlo simulations. Continuous lines,
Equations (4.28) and (4.29).

4.2.2 Phase equilibrium calculations

When the adsorbate is in contact with the adsorbent, the molecules tend to flow from the bulk

phase to the adsorbent surface until the chemical potential on the bulk phase equals the adsorbed

phase. When the chemical potentials are equal, the system is in equilibrium. Information

on the adsorption equilibrium is crucial to understand the adsorption process. The phase

equilibrium criteria for adsorption are given by the equality of temperature and the equality of

each component chemical potential in both adsorbed and bulk phases:

µi,ads (T,Vads, nads) = µi,bulk (T, pbulk, nbulk) for i = 1, · · · ,C (4.30)

where µi,ads is the chemical potential of component i in the adsorbed phase, T is the absolute

temperature, Vads is the volume of the adsorbed phase, nads =
[
n1,ads, · · · , nC,ads

]
contains the

amount of each component in the adsorbed phase, µi,bulk is the chemical potential of component

i in the bulk phase, pbulk is the bulk pressure, and nbulk =
[
n1,bulk, · · · , nC,bulk

]
contains the

amount of each component in the bulk phase.
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Once we have a complete description of the Helmholtz free energy, the chemical potential

of each component can be calculated by:

µi =

(
∂A

∂ni

)

T,V,nj,i

(4.31)

One of the approaches used in modeling phase equilibrium problems is solving a system

of nonlinear equations that describe the equilibrium conditions. The solution of these equa-

tions must be solved employing an iterative method. The method applied in this work is the

multidimensional secant. An outline of this method is presented here.

To solve a system of equations, we need to find a set of values of x that simultaneously equals

all the equations to zero.




f1(x1...xn) = 0

...

fn(x1...xn) = 0

(4.32)

hence, this system can be written as:

F(x) = 0 (4.33)

The secant method requires the derivative of a function to estimate the root. This method is

basically a modification of the Newton-Raphson method for cases where the evaluation of the

derivative of a function is quite costly. Therefore, in this approach the derivative is numerically

calculated. The estimation of the root is based on a first-order Taylor series expansion of the

multidimensional function F:

F(x) = F(xk) + F′(xk)(x − xk) (4.34)

where F′(xk) is the Jacobian matrix J(xk).

Writing Equation 4.34 in a iterative scheme, we have:

xk+q = xk + δk (4.35)

where:

δk = −F(xk)J(xk)−1 (4.36)

The multidimensional secant method is now applied to solve the system of non-linear

equations expressed by Equation (4.37). To solve this system, we need values of nads that at a
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specified bulk pressure, temperature, and nbulk result in the equality of each component chemical

potential in both adsorbed and bulk phases.

fi = µi,ads (T,Vads, nads) − µi,bulk (T, pbulk, nbulk) = 0 for i = 1, · · · ,C (4.37)

hence,

n(k+1)
ads = n(k)

ads − J−1
(
n(k)

ads

)
· f

(
n(k)

ads

)
(4.38)

where f (nads) = [ f1 (nads) , · · · , fC (nads)], and J (nads) is the Jacobian matrix:

J (nads) =



∂µ1,ads
∂n1,ads

· · · ∂µ1,ads
∂nC,ads

...
. . .

...

∂µC,ads
∂n1,ads

· · · ∂µC,ads
∂nC,ads



(4.39)

The method developed by Topliss et al. (1988) was used to calculate the bulk volume. Given

the calculated volume, the SAFT-VR Mie equation of state was used to calculate the chemical

potential of the bulk phase.

The differential elements of the Jacobian are computed numerically. The inverse of a matrix

exists if and only if the value of its determinant is equal to zero. The approach used to invert the

Jacobian matrix in this work was the Adjoint method.

When J is invertible, then its inverse can be obtained by the formula:

J−1
= ADJ(J)

1
DET(J)

(4.40)

The cofactor of matrix J, Ci j , is gven by:

Ci j = (−1)i jDET(Mi j) (4.41)

where Mi j is the minor matrix obtained from A removing the i-th row and j-th column. The

adjoint of a matrix, ADJ(J), is calculated as follows:

ADJ(J) = CT (4.42)

The derivatives of the Jacobian matrix were calculated as numerical approximations (forward

differentiating):

f ′(x) ≈ f (x + h) − f (x)
h

(4.43)

where h is a very small number that represents a small change in x.
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The convergence criterion for the multidimensional secant method was stipulated as:

√√√√
C∑

i=1

(
µi,ads(T,Vads, n

(k)
ads) − µi,bulk(T, pbulk, nbulk)

µi,bulk(T, pbulk, nbulk)

)2

≤ ǫ = 10−5 (4.44)

Although this method has been successfully used in this work for equilibrium computations,

it presents some pratical difficulties. A good initial guess is required, otherwise, the calculations

will often diverge. Moreover, the repeated evaluation of the the Jacobian and its inverse is

computationally costly.

4.2.3 Pure component fluid-wall interaction parameters

The interaction potential parameters, λ and ε, were fitted to experimental data for pure

component adsorption isotherm. The method adopted in this work for this calculation was

the Nelder and Mead simplex algorithm (1965), which is used to find a local minimum of the

evaluated function.

The major advantage of this algorithm is that it is a derivative-free method that only uses

the values of the objective function. The general idea of this method is to compute the objective

function at each vertex of the simplex. A process of moving the Simplex is continued until the

optimum value of the function is reached (NOCEDAL; WRIGHT, 1999).

To fit the interaction potential parameters, the object function chosen was the Average

Absolute Relative Deviation (AARD) of the adsorbed amount. Using experimental adsorbed

amount for pure components, the parameters were fitted until Simplex method searched for the

AARD minimum value.

AARD =
1

Np

Np∑

k=1

���
Γ

exp
k

− Γcalc
k

Γ
exp
k

��� (4.45)

where Np is the number of data points, Γexp is the experimental adsorbed amount, and Γcalc is

the calculated adsorbed amount, where Γ = ρadsvp, ρads is the adsorbed mixture density, and vp

is the specific pore volume.
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5 Results

The developed model was used to perform adsorption equilibrium calculations for different

types of systems. To verify the accuracy of the adsorption isotherms calculated using our model,

an Average Absolute Relative Deviation (AARD) between the calculated adsorbed amount and

the experimental adsorbed amount (Equation 4.45) obtained in the open literature was calculated

for binary and ternary mixtures.

Table 1 presents SAFT-VR Mie pure component parameters for fluid-fluid interactions

obtained in the literature. The parameters for methane, propane, and ethane were obtained from

(LAFITTE et al., 2013), ethylene and nitrogen from (DUFAL et al., 2015), and hydrogen from

(NIKOLAIDIS et al., 2018).

5.1 Binary mixtures

Adsorption isotherms for five binary mixtures on MSC5A at 303.15 K were calculated and

compared with a set of experimental data from Konno, Shibata and Saito (1985). The specific

surface area and pore volume of this adsorbent are respectively of 650 m2·g−1 and 0.56 mℓ·g−1.

Considering that MSC5A pore geometry is cylindrical, the pore radius was assumed to be 1.72

nm. The values for the fluid-wall interaction parameters (λw f and εw f ) for methane, ethane, and

propane adsorbed in MSC5A at 303.15 are presented in Table 2. These parameters obtained

from Franco, Economou, and Castier (2017), were fitted using the SAFT-VR Mie for confined

fluids. The pure component wall-fluid interaction parameters for ethylene adsorbed in MSC5A

at 303.15 K were fitted to the adsorption isotherm experimental data set from Nakahara, Hirata,

and Omori (1974) using Nelder and Mead simplex algorithm. The AARD for ethylene is 0.91%.

Table 1 – Values of SAFT-VR Mie parameters for fluid-fluid interactions.

Component m σ / Å λr λa (ε/kB) / K
methane 1.0000 3.7412 12.650 6 153.36
ethane 1.4373 3.7257 12.400 6 206.12
ethylene 1.7972 3.2991 9.6463 6 142.64
propane 1.6845 3.9056 13.006 6 239.89
nitrogen 1.4214 3.1760 9.8749 6 72.438
hydrogen 1.0000 3.1586 7.8130 6 18.355
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Table 2 – Values of wall-fluid interaction parameters (λw f and εw f ) for the extended SAFT-VR
Mie for confined fluids for pure methane, ethane, ethylene, and propane adsorbed on
MSC5A at 303.15 K.

Component λw f (εw f /kB) / K
methane 1.480 1647.2
ethane 1.434 2016.3
ethylene 1.474 1784.7
propane 1.440 2111.3

The first binary system to be studied was a mixture of methane and ethane at 13.3 kPa and

40.0 kPa. The performance of the model in predicting the adsorption isotherms for each system

is represented in Figures 7 and 8 respectively.
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Figure 7 – Adsorption isotherms of methane and ethane on a carbon molecular sieve (MSC5A)
at 303.15 K with bulk pressure of 13.3 kPa. Closed symbols, experimental data
(KONNO; SHIBATA; SAITO, 1985). Continuous lines, proposed model.

Figures 9 and 10 show the results for the binary mixture ethane-propane adsorbed on MSC5A

at 303.15 K with bulk pressures of 13.3 kPa and 40.0 kPa respectively, and Figure 11 shows the

adsorption isotherms for ethylene-propane mixture adsorbed on MSC5A at 303.15 K with bulk

pressure of 13.3 kPa.

For all the binary systems evaluated on MSC5A, the proposed model satisfactorily predicts

the mixture adsorption isotherms. Especially at high bulk pressures, the model tends to better

represent the experimental data. In some cases, the model underpredicts the adsorbed amount

of the richest component, nevertheless the results calculated using the model always follow
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Figure 8 – Adsorption isotherms of methane and ethane on a carbon molecular sieve (MSC5A)
at 303.15 K with bulk pressure of 40.0 kPa. Closed symbols, experimental data
(KONNO; SHIBATA; SAITO, 1985). Continuous lines, proposed model.
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Figure 9 – Adsorption isotherms of ethane and propane on a carbon molecular sieve (MSC5A)
at 303.15 K with bulk pressure of 13.3 kPa. Closed symbols, experimental data
(KONNO; SHIBATA; SAITO, 1985). Continuous lines, proposed model.

the trend of the experimental data set. In this work, we did not take into account the binary

interaction parameters (BIP). BIP’s are usually correlated to experimental data of liquid-vapor

equilibrium of binary mixtures and are very relevant in the prediction of mixtures by the equation

of state. The fitting of these parameters to multicomponent adsorption experimental data might
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Figure 10 – Adsorption isotherms of ethane and propane on a carbon molecular sieve (MSC5A)
at 303.15 K with bulk pressure of 40.0 kPa. Closed symbols, experimental data
(KONNO; SHIBATA; SAITO, 1985). Continuous lines, proposed model.
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Figure 11 – Adsorption isotherms of ethylene and propane on a carbon molecular sieve (MSC5A)
at 303.15 K with bulk pressure of 13.3 kPa. Closed symbols, experimental data
(KONNO; SHIBATA; SAITO, 1985). Continuous lines, proposed model.

improve the adsorption isotherm predictions (TRAVALLONI, 2012). For all binary mixtures,

the inversion point corresponds to equal composition of both components within the pore is

extremely well predicted by the proposed model.

The AARD values between the adsorption isotherms predicted by the proposed model and
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the experimental data obtained by (KONNO; SHIBATA; SAITO, 1985) are shown in Table 3.

The high AARD values can be justified in some cases due to the low precision of experimental

data obtained from literature.

Table 3 – Average Absolute Relative Deviation (AARD) values between the adsorption
isotherms predicted by the proposed model and the experimental data obtained by
Konno et al. (1985).

pbulk / kPa Components AARD(%)
13.3 methane 45.0

ethane 16.3
40.0 methane 23.9

ethane 8.70
13.3 ethane 38.7

propane 13.8
40.0 ethane 15.3

propane 6.53
13.3 ethylene 32.0

propane 6.45

Figure 12 and 13 shows the results for methane-nitrogen mixture adsorbed on MOF-5 at

297.0 K and bulk pressures of 1506 kPa and 502 kPa. MOF-5 is an adsorbent with a spherical

shape, thus, considering the specific surface area and the specific pore volume of this adsorbent

respectively of 3054 m2·g−1 and 1.31 cm3·g−1 the pore radius is assumed to be 1.28 nm

(KLOUTSE et al., 2018). The fluid-wall interaction parameters for pure fluids were fitted using

Nelder and Mead simplex method. The values obtained and AARD calculated are summarized

in Table 4. Figures 14 and 15 show the adsorption isotherms for pure methane and nitrogen.

Table 4 – Values of wall-fluid interaction parameters (λw f and εw f ) for the extended SAFT-VR
Mie for confined fluids for pure methane and nitrogen adsorbed on MOF-5 at 297 K.

Component λw f (εw f /kB) / K AARD(%)
methane 1.539 639.082 1.535
nitrogen 1.80 202.262 18.934

For the binary mixtures on MOF-5, the model was also able to predict the adsorption

isotherms with reasonable precision. The AARD values calculated for these systems are pre-

sented in Table 5. For these cases, the model performance might not just be influenced by

the absence of BIP parameters, but also by the bad fitting of nitrogen wall-fluid interaction

parameters. Considering that the nitrogen AARD in the binary mixture was also larger than
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Table 5 – Average Absolute Relative Deviation (AARD) values between the adsorption
isotherms predicted by the proposed model and the experimental data obtained by
Kloutse et al. (2018)

pbulk / kPa Components AARD(%)
502.0 methane 15.82

nitrogen 21.89
1506.0 methane 16.55

nitrogen 21.87
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Figure 12 – Adsorption isotherms of methane and nitrogen on a MOF-5 at 297.0 K with bulk
pressure of 502.0 kPa. Closed symbols, experimental data (KLOUTSE et al., 2018).
Continuous lines, proposed model.

methane, it might suggest that errors in the correlation of the pure fluid interaction parameters

might be transmitted to mixtures prediction.

5.1.1 Ternary Mixtures

The ternary mixture composed of methane, nitrogen, and hydrogen on activated carbon

JX101 at 313 K and 298 K was also evaluated. The bulk composition was fixed at: 0.3648,

0,2775 and 0.3577 for methane, nitrogen, and hydrogen, respectively. As reported by Wu et al.

(2005), the activated carbon was considered to have a surface area of 1500 m2·g−1, and pore

volume of 0.52 mℓ·g−1. Assuming that activated carbon JX101 have a cylindrical pore, the pore

radius calculated was 0.693 nm.

The pure component wall-fluid parameters for the adsorption of methane, nitrogen, and
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Figure 13 – Adsorption isotherms of methane and nitrogen on a MOF-5 at 297.0 K with bulk
pressure of 1506.0 kPa. Closed symbols, experimental data (KLOUTSE et al.,
2018). Continuous lines, proposed model.
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Figure 14 – Adsorption isotherm for pure methane on MOF-5 at 297 K Closed symbols, exper-
imental data (KLOUTSE et al., 2018). Continuous lines, proposed model.

hydrogen were fitted to the experimental data obtained by Wu et al. (2005), using Nelder and

Mead simplex algorithm. All the fitted values, as well as the AARD values, are shown in Table

6. Figures 16 and 17 show the results obtained for correlation of adsorption of pure hydrogen.

Figure 18 and 19 presents the results obtained for the ternary mixture adsorption on activated

carbon JX101 at 298 K and 313 K respectively. The model was found to provide good corre-
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Figure 15 – Adsorption isotherm for pure nitrogen on MOF-5 at 297 K Closed symbols, exper-
imental data (KLOUTSE et al., 2018). Continuous lines, proposed model.
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Figure 16 – Adsorption isotherm for pure hydrogen on activated carbon JX101 at 298 K Closed
symbols, experimental data (WU et al., 2005). Continuous lines, proposed model.
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Figure 17 – Adsorption isotherm for pure hydrogen on activated carbon JX101 at 313 K Closed
symbols, experimental data (WU et al., 2005). Continuous lines, proposed model.

Table 6 – Values of wall-fluid interaction parameters (λw f and εw f ) for the extended SAFT-VR
Mie for confined fluids for pure methane, nitrogen, and hydrogen adsorbed on JX101
at 298 K and 313 K.

Temperature / K Component λw f (εw f /kB) / K AARD(%)
313.0 methane 1.425 887.481 1.34

nitrogen 1.744 482.252 0.93
hydrogen 1.800 114.251 4.46

298.0 methane 1.289 909.160 2.41
nitrogen 1.628 511.820 2.49
hydrogen 1.799 152.070 2.62

Table 7 – Average Absolute Relative Deviation (AARD) values between the adsorption
isotherms predicted by the proposed model and the experimental data obtained by
Wu et al. (2005).

Temperature / K Components AARD(%)
298.0 methane 16.57

nitrogen 13.63
hydrogen 72.27

313.0 methane 8.10
nitrogen 4.34
hydrogen 71.1

lations for methane and nitrogen, but for hydrogen, the results significantly disagree with the

experimental data as shown by the calculated AARD values presented in Table 7. Despite this

large deviation, Figure 16 and 17 shows that the model satisfactorily correlated the experimental
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Figure 18 – Adsorption isotherm for the ternary mixture of methane, nitrogen, and hydrogen
on activated carbon JX101 at 298 K with bulk mole fractions of 0.3648, 0.2775,
and 0.3577, respectively. Closed symbols, experimental data (WU et al., 2005).
Continuous lines, proposed model.

data for pure fluid (also see Table 6). Excluded the hypothesis of bad fitting of the fluid-wall

interaction parameters used, this quantitative disagreement from the experimental data might be

explained by two main reasons. The first is that the unconfined mixture of methane and nitrogen

with hydrogen is highly asymmetric, being necessary in some cases the fitting of a temperature-

dependent BIP. Second, the quantum description of hydrogen is known to be very relevant

for mixtures with large mole fraction of hydrogen (TREJOS; MARTÍNEZ; GIL-VILLEGAS,

2018).
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Figure 19 – Adsorption isotherm for the ternary mixture of methane, nitrogen, and hydrogen
on activated carbon JX101 at 313 K with bulk mole fractions of 0.3648, 0.2775,
and 0.3577, respectively. Closed symbols, experimental data (WU et al., 2005).
Continuous lines, proposed model.
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6 Conclusions

In this work, the Statistical Associating Fluid Theory (SAFT-VR Mie) was extended to

describe confined fluids mixtures. The developed model is a generalization for mixtures of

Franco, Economou, and Castier (2017) model, which was derived to correlate pure fluids

adsorption isotherms. The theoretical formulation of this approach is based on the generalized

van der Waals framework. The fluid-wall interaction was described by the square-well potential,

and the satructural arrangement for the adsorbed fluid was derived by applying the mean value

theorem.

The formulated mathematical expression takes into account the effect of pore size and

geometry and the intensity of the interaction between the confining material and the fluid.

The predictions of the multicomponent isotherms calculated with our model required no fitting

parameters, but only combining rules of the pure fluid-wall interaction parameters previously

correlated using pure fluid experimental data set. Moreover, the model can be applied to

describe the behavior o fluids in adsorbent with different pore geometries and sizes. The

theoretical framework in whhich this approach is rooted was proved to give good correlation

with pure fluids experimental data, and now restate its applicability for multicomponent systems

also corresponding experimental data quite well. A strategy to make the model even more

general and able to account for the real features of the adsorbent, would be a better description

of the fluid structure avoiding de decoupling of fluid-fluid and fluid-wall interactions. The model

can also be reformulated to tackle multiple pore sizes, making possible to model adsorbents

with large pore size and geometries distribution. Based on existing SAFT approach to deal

with electrolytes (GIL-VILLEGAS; GALINDO; JACKSON, 2001) (SELAM; ECONOMOU;

CASTIER, 2018), our model can be extended to predict adsorption from electrolyte solutions.

The modeling of confined fluids is of practical importance to gas and oil recovery from shale

reservoirs. Thus, the comparison of the performance of our proposed EoS with EoS’s that

do not consider the confinement effect in reservoir simulation remains as good suggestion for

future work. Also, the proposed model can be applyed to the prediction of mixture adsorption

isotherms of associating compounds such as water and alcohols.
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