

UNIVERSIDADE ESTADUAL DE CAMPINAS

Faculdade de Engenharia Mecânica

VITOR FEITOSA RIEDEL

ANÁLISE TÉCNICA DE UM SISTEMA DE ARMAZENAMENTO DE ENERGIA ELÉTRICA PRODUZIDA POR FONTES RENOVÁVEIS UTILIZANDO SISTEMAS DE BATERIAS E CÉLULAS A COMBUSTÍVEL A HIDROGÊNIO

CAMPINAS 2019

VITOR FEITOSA RIEDEL

ANÁLISE TÉCNICA DE UM SISTEMA DE ARMAZENAMENTO DE ENERGIA ELÉTRICA PRODUZIDA POR FONTES RENOVÁVEIS UTILIZANDO SISTEMAS DE BATERIAS E CÉLULAS A COMBUSTÍVEL A HIDROGÊNIO

Dissertação de Mestrado apresentada à Faculdade de Engenharia Mecânica da Universidade Estadual de Campinas como parte dos requisitos exigidos para obtenção do título de Mestre em Planejamento de Sistemas Energéticos.

Orientador: Prof. Dr. Ennio Peres da Silva Coorientador: Dr. Demóstenes Barbosa da Silva

ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA PELO ALUNO **VITOR FEITOSA RIEDEL** E ORIENTADA PELO **PROF. DR ENNIO PERES DA SILVA**.

CAMPINAS 2019

Ficha catalográfica Universidade Estadual de Campinas Biblioteca da Área de Engenharia e Arquitetura Rose Meire da Silva - CRB 8/5974

Riedel, Vitor Feitosa, 1991-

R441a	Análise técnica de um sistema de armazenamento de energia elétrica produzida por fontes renováveis utilizando sistemas de baterias e células a combustível a hidrogênio / Vitor Feitosa Riedel. – Campinas, SP : [s.n.], 2019.			
	Orientador: Ennio Peres da Silva. Coorientador: Demóstenes Barbosa da Silva. Dissertação (mestrado) – Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica.			
	 Energia - Armazenamento. 2. Fontes renováveis. 3. Hidrogênio. 4. Pesquisa e Desenvolvimento - Projetos de. I. Silva, Ennio Peres da, 1956 II. Silva, Demóstenes Barbosa da. III. Universidade Estadual de Campinas. Faculdade de Engenharia Mecânica. IV. Título. 			

Informações para Biblioteca Digital

Título em outro idioma: Technical analysis of a renewable electric energy storage system using battery systems and hydrogen fuel cells Palavras-chave em inglês: Energy Storage Renewable sources Hydrogen Research and development project Área de concentração: Planejamento de Sistemas Energéticos Titulação: Mestre em Planejamento de Sistemas Energéticos Banca examinadora: Ennio Peres da Silva [Orientador] Carla Kazue Nakao Cavaliero João Carlos Camargo Data de defesa: 12-08-2019 Programa de Pós-Graduação: Planejamento de Sistemas Energéticos

Identificação e informações acadêmicas do(a) aluno(a) - ORCID do autor: http://orcid.org/0000-0002-5710-0008 - Currículo Lattes do autor: http://lattes.cnpq.br/6161320131814638

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA COMISSÃO DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA PLANEJAMENTO DE SISTEMAS ENERGÉTICOS

DISSERTAÇÃO DE MESTRADO ACADÊMICO

ANÁLISE TÉCNICA DE UM SISTEMA DE ARMAZENAMENTO DE ENERGIA ELÉTRICA PRODUZIDA POR FONTES RENOVÁVEIS UTILIZANDO SISTEMAS DE BATERIAS E CÉLULAS A COMBUSTÍVEL A HIDROGÊNIO

Autor: Vitor Feitosa Riedel Orientador: Prof. Dr. Ennio Peres da Silva Coorientador: Dr. Demóstenes Barbosa da Silva

A Banca Examinadora composta pelos membros abaixo aprovou esta Dissertação:

Prof. Dr. Ennio Peres da Silva, Presidente Instituição: NIPE/UNICAMP

Profa. Dra. Carla Kazue Nakao Cavaliero Instituição: FEM/UNICAMP

Dr. João Carlos Camargo Hytron - Energia e Gases Especiais Diretor de Energia

A Ata da defesa com as respectivas assinaturas dos membros encontra-se no processo de vida acadêmica do aluno.

Campinas, 12 de agosto de 2019.

Agradecimentos

O presente trabalho foi resultado do apoio de diversas pessoas às quais presto minha homenagem:

Aos meus pais, Paulo e Janete, e meus irmãos, Ana Carolina e Pedro pela paciência e amor, sempre auxiliando nas minhas decisões.

Ao Prof. Ennio Peres da Silva pela orientação e confiança depositadas durante o desenvolvimento deste estudo.

À minha namorada Ana Beatriz, pela compreensão, apoio e paciência ao longo do trabalho.

Aos colegas e gestores da BASE Energia Sustentável, pelo apoio financeiro e técnico, fundamentais para que o presente trabalho fosse desenvolvido com êxito.

À Companhia Energética de São Paulo e a Furnas Centrais Elétricas S/A, por proporcionarem projetos que contribuíram com o meu aprendizado.

A todos os professores e colegas da FEM, que auxiliaram no desenvolvimento e na finalização deste estudo, seja de forma direta ou indireta.

A todos, meu muito obrigado.

"O mundo não está preparado para isso. É algo muito além do nosso tempo, mas as leis vão prevalecer, e um dia farão um sucesso triunfante".

Resumo

A Vigésima Primeira Conferência das Partes (COP-21), realizada em Paris no ano de 2015, estabeleceu metas fundamentais para a descarbonização e ações de combate às mudanças climáticas. Colocadas em destaque para que essas metas sejam alcançadas, as tecnologias de energia renovável proporcionam uma fonte de energia durável e segura, com potencial para abastecer a todos com eletricidade e biocombustíveis, promovendo desenvolvimento econômico, tecnológico e social dos países. No entanto, os períodos intermitentes da disponibilidade de geração de energia são comuns quando se lida com recursos renováveis. Diante deste cenário, vários estudos comprovam a existência na aceleração em pesquisas e desenvolvimento de sistemas para armazenamento de energia elétrica (SAEE), que podem superar essa barreira. Dentre as tecnologias de armazenamento em estudo, com o intuito de minimizar o problema da intermitência das fontes renováveis, uma que vem mostrando ter um grande potencial de aplicabilidade é o uso de hidrogênio como vetor energético, pela flexibilidade de sua aplicação em praticamente todos os setores energéticos. No Brasil, importantes ações têm sido fomentadas com a participação do governo federal, em que se destaca a Chamada de Pesquisa e Desenvolvimento Estratégico Nº 21/2016 da Agência Nacional de Energia Elétrica (ANEEL), que visa alcançar um custo competitivo das tecnologias de armazenamento integradas no Sistema Interligado Nacional (SIN). Neste sentido, a Companhia Energética de São Paulo (CESP) vem desenvolvendo projeto na usina hidrelétrica de Porto Primavera, também conhecida por Usina Sérgio Motta, localizada na cidade de Rosana, nas margens do rio Paraná, estado de São Paulo. A companhia instalou plantas solares em terra e flutuante na represa, duas torres eólicas e está iniciando projetos inovadores com energia termossolar e armazenamento com hidrogênio. O projeto de armazenamento de energia elétrica fará uso de um banco de baterias com capacidade de armazenamento de 500 kWh ou 1.800 MJ e um sistema de hidrogênio composto por um eletrolisador que consome 116 kW de energia elétrica, capaz de produzir 20 Nm³ por hora, um tanque de 26,6 m³ de volume e pressão máxima de operação de 25 bar, além de um conjunto de células a combustível capaz de prover 100 kW de energia elétrica, consumindo 70 Nm³ por hora. Ambos os sistemas de armazenamento de energia elétrica utilizarão energia fornecida pela planta solar fotovoltaica de 401 kWp instalada pela CESP. O propósito dessa pesquisa constitui na realização de um estudo do desempenho técnico dos sistemas de armazenamento de energia elétrica conectados à rede elétrica por meio de baterias e hidrogênio, fazendo um comparativo dos dados obtidos na literatura com os dados do projeto adquirido. Através da análise dos resultados foi possível chegar à conclusão que os equipamentos do sistema adquirido possuem eficiência similar à encontrada pelos equipamentos da literatura, com uma eficiência global do sistema de armazenamento de hidrogênio de 24,6% e 95% para o banco de baterias.

Palavras-chave: Armazenamento de Energia. Fontes Renováveis. Hidrogênio. Projeto de Pesquisa e Desenvolvimento.

Abstract

The Twenty-First Conference of the Parties (COP-21), held in Paris in the year 2015, set out key targets for decarbonization and actions to combat climate change. Put in the spotlight for these goals to be achieved, renewable energy technologies provide a durable and secure source of energy with the potential to supply everyone with electricity and biofuels, promoting economic, technological and social development in the countries. However, intermittent periods of power generation availability are common when dealing with renewable resources. Given this scenario, several studies prove the existence in research and development of systems for the storage of electricity (SAE), which can overcome this barrier. Among the storage technologies under study, in order to minimize the problem of the intermittence of renewable sources, one that has been shown to have a great applicability potential is the use of hydrogen as an energy carrier, by the flexibility of its application in practically all the energy sectors. In Brazil, important actions have been fostered with the participation of the federal government, in which ANEEL's Call for Strategic Research and Development N ° 21/2016 stands out, aiming to achieve a competitive cost of the storage technologies integrated in Brazil's National Interconnected System (SIN). With this intent, Companhia Energética de São Paulo (CESP) has been developing a project at the Porto Primavera hydroelectric plant, also known as Sérgio Motta Power Plant, located in the city of Rosana, on the Paraná River, in the state of São Paulo. The company has installed solar power plants onshore and floating on the hydropower plant lake two wind turbines and is initiating innovative projects with thermosolar energy and storage with hydrogen. The energy storage project will make use of a battery bank with a storage capacity of 500 kWh (kilowatt-hours) or 1,800 MJ (megajoules) and a hydrogen system composed of an electrolyzer that consumes 116 kW (kilowatts) of energy capable of producing 20 Nm³ (normal-cubic meter) per hour, a tank of 26.6 m³ volume and maximum operating pressure of 25 bar plus a set of fuel cells capable of providing 100 kW of electricity, consuming 70 Nm³ per hour. Both electric energy storage systems will use energy supplied by a 401 kWp solar power plant installed by CESP. The purpose of this research is to carry out a study of the technical performance of the electrical energy storage systems connected to the grid by means of batteries and hydrogen, comparing data obtained in the literature with data of the acquired project. Through the analysis of the results it was possible to conclude that the equipment of the acquired system has an efficiency similar to that found by the equipment of the literature, with an overall efficiency of the hydrogen storage system of 24.6% and 95% for the battery pack.

Keywords: Energy Storage. Renewable Sources. Hydrogen. Research and Development Project.

Lista de Ilustrações

Figura 2.1: Tecnologias de armazenamento de energia	23
Figura 2.2: Maturidade das tecnologias de armazenamento	24
Figura 2.3: Funcionamento das baterias de íon-lítio	25
Figura 2.4: Arranjo elementar do processo de eletrólise da água	28
Figura 2.5: Princípio de operação da eletrólise alcalina	29
Figura 2.6: Princípio de funcionamento da eletrolise PEM	30
Figura 2.7: Tipos de tanques pressurizados para o armazenamento de hidrogênio	33
Figura 2.8: Resistência ao hidrogênio de diferentes materiais	34
Figura 2.9: Capacidade das unidades de célula a combustível	35
Figura 3.1: Etapas da metodologia	37
Figura 3.2: Procedimento de modelagem do projeto a partir da literatura	38
Figura 3.3: Procedimento de modelagem do projeto real	39
Figura 3.4: Esquemática do SAEE	40
Figura 4.1: Planta fotovoltaica de 401 kWp	46
Figura 4.2: Fração da irradiação solar em Rosana	47
Figura 4.3: Potencial de geração solar da planta	47
Figura 4.4: Contêiner do conjunto de baterias	50
Figura 4.5: Monoblocos do conjunto de baterias	51
Figura 4.6: Painel do PCS do conjunto	52
Figura 4.7: Contêiner eletrolisador	54
Figura 4.8: Arranjo técnico do contêiner de eletrólise	55
Figura 4.9: Pilha eletrolisadora	56
Figura 4.10: Pilha Eletrolisadora instalada no contêiner	56
Figura 4.11: Sistema de tratamento da água	57
Figura 4.12: Reservatórios de água desmineralizada	57
Figura 4.13: (a) Secagem de oxigênio; (b) Purificador hidrogênio	58
Figura 4.14: Sistemas de purificação e secagem dos gases	59
Figura 4.15: (a) Minichiller (esquerda); (b) chiller principal (direita)	59
Figura 4.16: (a)Transformador; (b) sistema de controle e; (c) acesso sala da fonte retifica	dora
	60
Figura 4.17: Reservatório pressurizado	61

Figura 4.18: Demarcações das áreas no interior do contêiner de célula a combustível	64
Figura 4.19: Módulos de 31 kW conectados em série no contêiner da Hydrogenics	65
Figura 4.20: Sistema de gerenciamento de calor do conjunto	66
Figura 4.21: (a) Contêiner da célula a combustível; (b) inversor SMA	66
Figura 4.22: Diagrama da planta inteira do projeto da CESP	68
Figura 5.1: Diagrama (a) SAEEa; (b) SAEEl	74
Figura 5.2: Fornecimento de energia elétrica com potência constante	75
Figura 5.3: Operação do SAEE para equalizar a geração renovável	75
Figura 5.4: Exemplo da Tarifa Branca	76
Figura 5.5: Fornecimento de energia no horário de ponta	77
Figura 5.6: Operação do SAEE no horário de ponta	77

Lista de Quadros

Quadro 2.1: Fornecedores de baterias de íons de lítio e especificações técnicas dos seus
conjuntos26
Quadro 2.2: Características físicas do hidrogênio inserir PCS/PCI27
Quadro 2.3: Vantagens e desvantagens de cada tecnologia de produção de hidrogênio31
Quadro 2.4: Fornecedores de eletrolisador e especificações técnicas dos seus equipamentos.32
Quadro 2.5: Fornecedores de reservatórios pressurizados
Quadro 2.6: Características de cada tipo de célula a combustível
Quadro 2.7: Fornecedores de células a combustível e especificações técnicas dos seus
equipamentos
Quadro 4.1: Eficiência média do conjunto de baterias49
Quadro 4.2: Especificações técnicas do conjunto de baterias50
Quadro 4.3: Dados dos produtos da fornecedores de eletrolisadores53
Quadro 4.4: Especificações técnicas do eletrolisador da Hytron55
Quadro 4.5: Especificações do reservatório pressurizado
Quadro 4.6: Dados dos conjuntos de células a combustível da literatura
Quadro 4.7: Especificações técnicas do conjunto de células a combustível da Hydrogenics65
Quadro 4.8: Sistema modelado e real completo67
Quadro 5.1: Eficiências dos equipamentos do SAEE modelado a partir dos dados da literatura
Quadro 5.2: Eficiências dos equipamentos do SAEE adquirido para o projeto da CESP72
Quadro 5.3: Dados de operação do SAEEH e SAEEB76
Quadro 5.4: Dados de operação do SAEEH e SAEEB78
Quadro 5.5: Dados de operação dos casos de estudo

Lista de símbolos

C_{dia}		Capacidade da planta solar	kWp
E _{dia}	-	Energia elétrica gerada pela planta FV no dia	MJ
E _{hora}	-	Energia elétrica gerada a cada hora pela planta FV	MJ
f _{solar}	-	Fração da irradiação solar	-
h	-	Ângulo solar horário	۰
horas _{eq.solar}	-	Horas de solar pleno	horas
I _{horário}	-	Irradiação solar horária	MJ.(m ² .hora) ⁻¹
I _{total}	-	Irradiação solar total no dia	MJ.(m ² .dia) ⁻¹
P _{Elétrico}	-	Consumo elétrico do eletrolisador	kW
\dot{Q}_{H_2}	-	Consumo de hidrogênio pela CaC	Nm ³ .h ⁻¹
ģ	-	Consumo específico do eletrolisador	MJ.Nm ⁻³
$\overline{\dot{q}}$	-	Média dos consumos específicos do eletrolisador da	MJ.Nm ⁻³
		literatura	
\dot{v}	-	Consumo específico da CaC	Nm ³ .MJ ⁻¹
$\overline{\dot{ u}}$	-	Média dos consumos específicos da CaC da literatura	Nm ³ .MJ ⁻¹
$\eta_{eletrolisador}$	-	Eficiência do eletrolisador	-
η_{CaC}	-	Eficiência da CaC	-
η_{ciclo}	-	Eficiência de ciclo do SAEE	-

Lista de Siglas e Abreviaturas

ANEEL	-	Agência Nacional de Energia Elétrica				
CaC	-	Células a Combustível				
CESP	-	Companhia Energética de São Paulo				
IAHE	-	Associação Internacional de Energia de Hidrogênio				
NDC	-	Nationally Determined Contributions				
Nm ³	-	Volume em metros cúbicos, nas condições normais (0 °C e 101,325 kPa)				
PCI	-	Poder Calorífico Inferior				
PCS	-	Poder Calorífico Superior				
PEM	-	Proton Exchange Membrane				
PSH	-	Pumped Storage Hydropower				
SAEE	-	Sistemas de Armazenamento de Energia Elétrica				
SAEEa	-	Sistemas de Armazenamento de Energia Elétrica adquirido				
SAEEB	-	Sistema de Armazenamento de Energia Elétrica com Baterias				
SAEEH	-	Sistema de Armazenamento de Energia Elétrica com Hidrogênio				
SAEEl	-	Sistemas de Armazenamento de Energia Elétrica da literatura				
SIN	-	Sistema Interligado Nacional				

1 INTRODUÇÃO	18
1.1 Objetivos	20
1.2 Estrutura da Dissertação	20
2 REVISÃO BIBLIOGRÁFICA	22
2.1 Sistema de Armazenamento de Energia Elétrica (SAEE)	22
2.2 Sistema de Armazenamento de Energia Elétrica com Baterias (SAEEB)	24
2.3 Sistema de Armazenamento de Energia Elétrica com Hidrogênio (SAEEH)	
2.4 Eletrolisadores	
2.5 Tanques	
2.6 Células a combustível	
3 METODOLOGIA	
3.1 Etapa 1 – Modelagem do projeto pela literatura	
3.2 Etapa 2 – Modelagem do projeto adquirido	40
3.3 Etapa 3 – Cálculo do desempenho técnico dos projetos	41
3.4 Etapa 4 – Resultados e análise comparativa	44
3.5 Etapa 5 – Aplicação do SAEE através de estudos de caso	44
4 EQUIPAMENTOS DO PROJETO	45
4.1 Projeto PD-00061-0054/2016	45
4.2 Planta de geração solar	46
4.3 Banco de Baterias	
4.4 Eletrolisador	
4.5 Reservatório pressurizado	60
4.6 Célula a Combustível	62
5 ANÁLISE DE DESEMPENHO	69
5.1 Cálculo das eficiências do sistema da literatura	69
5.2 Cálculo das eficiências do sistema adquirido	71
5.3 Aplicação do SAEE	74
5.4 Análise dos resultados	79
6 CONCLUSÕES E SUGESTÕES	82
6.1 Conclusões	
6.2 Sugestões para trabalhos futuros	
REFERÊNCIAS	

Sumário

APÊNDICES	90
APÊNDICE A - TABELA DE CÁLCULO SOLAR	91
APÊNDICE B - TABELAS DE GERAÇÃO ELÉTRICA SOLAR	92
APÊNDICE C - TABELA DO PRIMEIRO CASO DE OPERAÇÃO DO SAEE	93
APÊNDICE D - TABELA DO SEGUNDO CASO DE OPERAÇÃO DO SAEE	94
ANEXOS	95
ANEXO A – ESPECIFICAÇÕES DAS BATERIAS	96
ANEXO B - ESPECIFICAÇÕES DOS ELETROLISADORES	
ANEXO C - ESPECIFICAÇÕES DAS CÉLULAS A COMBUSTÍVEL	102
ANEXO D – DIAGRAMA UNIFILAR DA INTEGRAÇÃO GERAL	105
ANEXO E – SIMULAÇÃO DA PLANTA SOLAR FOTOVOLTAICA	106
ANEXO E – DIAGRAMA UNIFILAR DA IN IEGRAÇAO GERAL ANEXO E – SIMULAÇÃO DA PLANTA SOLAR FOTOVOLTAICA	10: 10

1 INTRODUÇÃO

A Conferência da ONU sobre Mudança Climática de 2015 (COP 21), em Paris, representou um momento histórico para as fontes renováveis de energia (UNFCCC, 2015). O Acordo de Paris estabeleceu metas para limitar o aumento da temperatura média global abaixo de 2°C em relação aos níveis pré-industriais e tentar limitar o aumento a 1,5°C. Implícita nessas metas está a necessidade de uma transição para um setor de energia com baixa emissão de carbono, setor esse responsável por dois terços das emissões globais. As energias renováveis, aliadas a ganhos de eficiência energética, podem fornecer 90% das reduções de emissões de CO₂ necessárias até 2050. Colocadas em destaque para que esse objetivo seja alcançado, de fato, as tecnologias de energia renovável proporcionam uma fonte de energia durável, segura e em alguns casos de menores custos, com potencial para abastecer a todos com eletricidade e biocombustíveis, promovendo o desenvolvimento econômico, tecnológico e social dos países. A energia renovável é, portanto, um componente chave das *Nationally Determined Contributions* (NDCs) (IRENA, 2017).

Apesar das tecnologias de energia renovável possuírem diversos fatores positivos, como a diminuição de emissões de gases de efeito estufa, diminuição da dependência da geração de eletricidade proveniente dos combustíveis fósseis, possibilidade de fazer os consumidores finais serem os próprios produtores de sua eletricidade, entre outros, também apresentam algumas desvantagens, sendo a principal delas a intermitência de suas disponibilidades, o que necessita de soluções para o armazenamento da energia elétrica gerada. Diante deste cenário, vários estudos comprovam uma aceleração em pesquisas e desenvolvimento de sistemas para armazenamento de energia elétrica (SAEE), que podem superar essa barreira (SOLUTIONS, 2015). Assim, as tecnologias de armazenamento de energia têm a capacidade de guardar a energia elétrica gerada em momentos em que a oferta de energia renovável é alta e a demanda é baixa, para então ser utilizada nos momentos em que a oferta é menor e a demanda é elevada, melhorando a confiabilidade do sistema.

Dentre as tecnologias de armazenamento em estudo, com o intuito de minimizar o problema da intermitência das fontes renováveis, uma que vem mostrando um grande potencial de aplicabilidade é o uso de hidrogênio como vetor energético, pela flexibilidade de sua aplicação em praticamente todos os setores energéticos. O hidrogênio tem o benefício de ser um dos poucos vetores energéticos com o potencial de emissão quase zero de gases de efeito estufa, podendo ser utilizado pelo setor elétrico e como combustível avançado. Apesar dessa grande flexibilidade, a principal dificuldade de se utilizar o hidrogênio ocorre por não ser

possível obtê-lo puro na natureza. Como está sempre ligado a outros elementos químicos, é necessário a utilização de energia no processo de obtenção, e isto resulta em perda de eficiência, quando comparado com outras tecnologias, como por exemplo baterias eletroquímicas. As baterias são consideradas métodos diretos de armazenamento de eletricidade (IEA, 2015), apesar de, verdadeiramente, também se constituírem em uma forma química de armazenamento.

Diversos países estão incentivando a pesquisa e o desenvolvimento dos sistemas de armazenamento de eletricidade por meio de políticas públicas, como os EUA, Alemanha, China, entre outros. No Brasil, importantes ações tem sido fomentadas com a participação do governo federal, em que se destaca a Chamada de Pesquisa e Desenvolvimento Estratégico N° 21/2016 da Agência Nacional de Energia Elétrica (ANEEL), que visa alcançar um custo competitivo das tecnologias de armazenamento integradas no Sistema Interligado Nacional (SIN), bem como suas avaliações de benefícios, do envolvimento da sociedade, regulação, confiabilidade e segurança, desenvolvimento de normas técnicas, conseguir informações sobre quais possíveis incentivos tecnológicos e, por fim, proporcionar a cadeia de produção nacional dos sistemas desenvolvidos durante a chamada (ANEEL, 2016).

Atendendo à Chamada 21 da ANEEL, a Companhia Energética de São Paulo (CESP) vem desenvolvendo um projeto na usina hidrelétrica de Porto Primavera, também conhecida por Usina Sérgio Motta, localizada na cidade de Rosana, nas margens do rio Paraná, no estado de São Paulo. A companhia instalou plantas solares em terra e flutuantes na represa, duas torres eólicas e está iniciando projetos inovadores com energia termossolar e armazenamento com hidrogênio.

O projeto de armazenamento de energia elétrica da CESP em Porto Primavera fará uso de um banco de baterias com capacidade de armazenamento de 500 kWh ou 1.800 MJ e um sistema de hidrogênio composto por um eletrolisador que consome 116 kW de potência elétrica, capaz de produzir 20 Nm³ de hidrogênio por hora, um tanque de 26,6 m³ de volume e pressão máxima de operação de 25 bar, além de um conjunto de células a combustível capaz de prover 100 kW de energia elétrica, consumindo 70 Nm³ por hora. Ambos os sistemas de armazenamento de energia elétrica utilizarão energia fornecida por uma planta fotovoltaica de 401 kWp de potência instalada, localizada na usina de Porto Primavera.

Neste sentido, sabendo que as potências instaladas da planta fotovoltaica, eletrolisador, célula a combustível e banco de baterias já foram dimensionadas no escopo do projeto de P&D da ANEEL e a partir dos dados reais dos equipamentos efetivamente adquiridos, surge a questão

norteadora deste estudo: os desempenhos técnicos estimados da literatura disponível estão de acordo com os dados do projeto de armazenamento de energia elétrica da CESP.

1.1 Objetivos

O presente trabalho tem como principal objetivo analisar o desempenho técnico dos componentes e dos sistemas de armazenamento de energia elétrica completos, conectados à rede elétrica por meio de baterias e células a combustível.

Os seguintes objetivos específicos foram estabelecidos para atingir o objetivo principal desta dissertação:

1. Modelar os sistemas de armazenamento de energia elétrica com dados obtidos na literatura.

2. Calcular as eficiências dos equipamentos utilizados no projeto da CESP.

3. Comparar valores obtidos da análise de eficiência feita a partir da literatura com os da análise do sistema adquirido.

4. Analisar através de estudos de caso a operação do SAEE.

1.2 Estrutura da Dissertação

No Capítulo 1 apresentam-se a introdução, determinando o problema a ser estudado, os objetivos a serem atingidos e as delimitações necessárias ao estudo em questão.

No Capítulo 2 apresenta-se a fundamentação teórica, onde se descreve as tecnologias de armazenamento de eletricidade, as baterias e a tecnologia do hidrogênio, com o sistema de eletrólise da água, tanques de armazenamento e células a combustível. Finalmente são apresentados os equipamentos que se pode encontrar no mercado, bem como suas especificações técnicas.

O Capítulo 3, por sua vez, explicita a metodologia para análise do projeto de armazenamento de energia. A modelagem do projeto na literatura, assim como do projeto adquirido, é apresentada e, na sequência, é mostrado como a comparação entre os projetos sob a perspectiva técnica foi realizada.

O Capítulo 4 apresenta, de forma detalhada, os equipamentos utilizados no projeto, como banco de baterias, eletrolisador de água, células a combustível e tanque pressurizado.

No Capítulo 5 apresentam-se as análises de desempenho técnico do projeto, onde são exibidos os cálculos e resultados.

Encerrando esse trabalho, o Capítulo 6 provê as discussões dos resultados obtidos através das análises, as conclusões, com a comparação do projeto modelado pela literatura e o adquirido pela CESP e sugere melhorias para trabalhos futuros.

2 REVISÃO BIBLIOGRÁFICA

O presente capítulo descreve as principais características dos sistemas de Armazenamento de Energia Elétrica com foco nas tecnologias química e eletroquímica, com as hidrogênio e baterias. São descritos ainda os equipamentos do sistema de hidrogênio como eletrolisadores, equipamento responsável pelo processo de eletrólise da água; Tanques pressurizados, utilizados para o armazenamento de gases, neste caso para o armazenamento de hidrogênio e a célula a combustível que converter a energia química do hidrogênio diretamente em eletricidade. Por fim, é apresentado a energia solar e o seu aproveitamento como energia elétrica.

2.1 Sistema de Armazenamento de Energia Elétrica (SAEE)

Define-se o armazenamento de energia elétrica como o processo de absorção de eletricidade por um período para uso posterior. Esse processo pode ser centralizado ou descentralizado, em grande ou pequena escala, de curta ou longa duração, utilizado para aplicações que exijam maior potência ou energia (IEA, 2014). Na primeira, grandes potências de descarregamento são necessárias em curtos períodos, geralmente de alguns segundos a alguns minutos. Já na segunda, grandes quantidades de energia são descarregadas durante vários minutos ou mesmo várias horas e dias.

O dimensionamento de um SAEE deverá considerar as especificações e necessidades da carga, como capacidade total de armazenamento; picos de potência (demanda máxima instantânea) e sua duração; e tempo de resposta exigido pela carga, entre outros. Também devese considerar a eficiência global do SAEE, uma vez que todas conversões de energia necessárias (durante o armazenamento e durante a descarga) resultam em uma certa quantidade de perdas, que implicam em uma eficiência menor que 100% para os sistemas.

Atualmente, no mercado global, há várias tecnologias de armazenamento de energia elétrica disponíveis em diversos estágios de maturidade, desde a pesquisa até aplicações comerciais, que podem ser classificadas segundo a maneira como são armazenadas em (CAMARGO; IEA, 2016, 2014):

Elétrica: capacitores armazenam energia diretamente no campo elétrico criado entre placas carregadas (DLC).

Eletromagnética: a energia é armazenada através de campo magnético em espiras supercondutoras (SMES).

Térmica: o armazenamento de calor sensível pode ser reconvertido em energia elétrica.

Química e Eletroquímica: nas baterias e produção de hidrogênio, a energia armazenada envolve o uso de reações químicas para converter energia elétrica em energia potencial química e vice-versa.

Mecânica: o armazenamento de energia mecânica requer a conversão da energia elétrica em mecânica e vice-versa através de uma máquina rotativa, tal como um gerador síncrono ou uma máquina de indução.

Os pontos principais para o uso dos sistemas de armazenamento é a melhoria da eficiência da geração de eletricidade para viabilizar o uso das fontes renováveis de energia. As tecnologias disponíveis devem se adequar às diversas aplicações do armazenamento de energia, seja em capacidade de armazenamento quanto em tempo de carga e descarga. A Figura 2.1 classifica os diferentes sistemas de armazenamento de energia elétrica de acordo com a natureza do processo utilizado (IEC, 2011).

Figura 2.1: Tecnologias de armazenamento de energia elétrica Fonte: Adaptado de IEC (2011).

A Figura 2.2 apresenta de forma esquemática o grau de maturidade de diferentes tecnologias de armazenamento de energia e o investimento ainda requerido para a consolidação das mesmas.

Figura 2.2: Maturidade das tecnologias de armazenamento Fonte: Adaptado de ETI (2018)

É possível observar que o grau de maturidade e custo da tecnologia de armazenamento por água bombeada é mais desenvolvido que as outras tecnologias como baterias, volantes, hidrogênio, por exemplo. Logo, pode-se afirmar que o *Pumped Storage Hydropower* (PSH) não precisa de incentivos para ser aplicados no mercado, por seu custo já facilitar sua comercialização, o que não ocorre ainda para os outros tipos de sistemas de armazenamento (IEA, 2017).

2.2 Sistema de Armazenamento de Energia Elétrica com Baterias (SAEEB)

As baterias são dispositivos eletroquímicos de uma ou mais células, onde cada célula contém um eletrólito situado entre eletrodos, os negativos, denominados ânodos durante a descarga, quando fornecem elétrons, sendo oxidados durante a reação eletroquímica de descarga e positivos, ou cátodos durante a descarga, que recebem elétrons, sendo reduzidos durante a reação (BAKER, 2008; (HADJIPASCHALIS; POULLIKKAS; EFTHIMIOU, 2009). Os processos e as denominações se invertem quando do carregamento das baterias.

Tecnologias de baterias vão desde sistemas maduros e estabelecidos há anos, como chumbo-ácido, até diversos sistemas recentes e emergentes, como sódio-enxofre, cloreto de sódio-níquel e baterias de fluxo. As baterias de íons de lítio são alvo de crescente interesse no âmbito de sistemas de potência (IRENA, 2017).

As baterias de íon-lítio são as mais utilizadas atualmente, devido a sua alta densidade de energia (J/g), quando comparadas às outras tecnologias. Neste tipo, o íon de Lítio (Li⁺) é difundido através da rede cristalina do cátodo e do ânodo e, durante a operação de carga ou descarga, esses íons migram de um eletrodo a outro, trocando cargas elétricas com os mesmos, de forma que o eletrodo que recebe o elétron seja reduzido e o eletrodo que cede seja oxidado, produzindo uma diferença de potencial elétrico entre eles (CHAGAS; URBANO; SCARMINIO, 2006).

Para armazenar a energia elétrica (carga), uma força eletromotriz externa faz com que os íons Li⁺ estejam todos no cátodo e praticamente nenhum no ânodo. Quando o circuito é fechado (descarga) tem-se o início da reação de migração e pode-se utilizar a energia elétrica de acordo com a necessidade, até que a bateria esteja na sua carga mais baixa de operação (CHAGAS; URBANO; SCARMINIO, 2006). Através da Figura 2.3, é possível visualizar o processo de funcionamento das baterias íon-lítio.

Figura 2.3: Funcionamento das baterias de íon-lítio Fonte: Oficina da net (2018)

As tecnologias de baterias eletroquímicas possuem em sua maioria alta eficiência, que varia de 75% a 95%, e um custo inicial de investimento de 300-3500 US\$.kW⁻¹, possuindo projetos em diversos países como Estados Unidos, China, França, Alemanha, Brasil, entre outros. A grande vantagem dessas baterias é sua rápida resposta com grandes potências; porém, não podem ser utilizadas por um longo período em sua capacidade nominal, diferentemente das células a combustível, que são melhores para serem empregadas por longos períodos, porém com um tempo de resposta maior (IEA, 2014).

Como as baterias de íons de lítio já possuem uma tecnologia amadurecida, existem muitas empresas que fornecem conjuntos para serem aplicados com grandes capacidades de armazenamento de energia elétrica. Assim, no Quadro 2.1 estão apresentadas algumas empresas fornecedoras desta tecnologia para aplicações estacionárias. As mesmas informações podem ser encontradas nas especificações técnicas dos equipamentos, mostradas no Anexo A.

Destas empresas, três são asiáticas, Samsung e Kokam (sul-coreanas) e a BYD (chinesa); outras três são europeias, como a SAFT com sede na França e as empresas Belectric e WSTECH que são alemãs. Conforme o Quadro 2.1 existe ainda uma empresa norteamericana, NEC e, a WEG e Electrocell representando as empresas brasileiras. O fato de ter duas empresas brasileiras dentro deste levantamento indica que o Brasil é um local de interesse do mercado internacional, visto que as duas empresas possuem parcerias com companhias estrangeiras.

Banco de Baterias					
Empresa	País	Capacidade (kWh)	Eficiência de ciclo (%)	Vida útil	
SAFT	França	<u><</u> 2.500	96	4200 @ 80%DOD*	
SAMSUNG	Coréia do Sul	-	95	6000 @ 80%DOD*	
Kokam	Coréia do Sul	<u><</u> 2.400	-	8000 @ 80%DOD*	
BYD	China	<u><</u> 2.000	95,3	3000 @ 100%DOD*	
Belectric	Alemanha	<u><</u> 4.000	-	<u><</u> 8000	
Electrocell	Brasil	<u>< 500</u>	95	6000 @ 85%DOD*	
WEG	Brasil	<u>< 600</u>	96	6000 @ 80%DOD*	
NEC	EUA	<u>< 5</u> 10	96	6000 @ 80%DOD*	
WSTECH	Alemanha	<u>< 480</u>	97	-	

*DOD: "Depth of discharge" – Profundidade de descarga do conjunto de bateria.

Quadro 2.1: Fornecedores de baterias de íons de lítio e especificações técnicas dos seus conjuntos.

2.3 Sistema de Armazenamento de Energia Elétrica com Hidrogênio (SAEEH)

Os Sistemas de Armazenamento de Energia Elétrica que utilizam Hidrogênio (SAEEH) como vetor energético são classificados como sistemas químicos de armazenamento. O hidrogênio (H₂) é um gás nas condições normais de temperatura e pressão que apresenta grande potencial energético e, por isso, pode ser entendido como um vetor que armazena energia química para uso posterior. Contudo, ele geralmente está ligado a outros elementos, sendo necessário o uso de processos como a eletrólise para separar o hidrogênio. As propriedades do hidrogênio são muito atraentes para aplicações energéticas, principalmente pela sua baixa massa molar em condições normais (0°C, 1 atm) e poderes caloríficos superior (PCS) e inferior (PCI) elevados, de 141.880 kJ.kg⁻¹ e 119.960 kJ.kg⁻¹, respectivamente (SANO, 2009).

O Quadro 2.2 apresenta o resumo das principais características físicas do hidrogênio utilizadas no desenvolvimento deste trabalho. Como o hidrogênio é um gás nas condições normais de temperatura e pressão, suas características físicas são fortemente influenciadas pela pressão e temperatura (FERREIRA, 2003).

Propriedade	Valor
Poder Calorífico Superior (PCS)	141.880 kJ.kg ⁻¹
Poder Calorífico Inferior (PCI)	119.960 kJ.kg ⁻¹
Densidade (0 °C, 1 bar)	0,08987 kg. m ⁻³
Densidade (líquido, -253 °C)	70,8 kg. m ⁻³
Densidade (sólido, -262 °C)	70,6 g. m ⁻³

Quadro 2.2: Características físicas do hidrogênio Fonte: (SANO, 2009; SILVA, 1991)

Após o hidrogênio ser produzido através da eletrólise, o mesmo pode ser armazenado em tanques pressurizados ou outros meios, para então ser direcionado para as células a combustível ou motores-geradores, gerando eletricidade, além de calor.

O armazenamento do hidrogênio pode ser feito através de diversos métodos, considerando os estados físicos do mesmo, podendo ser gasoso, líquido e na forma de compostos químicos. No estado gasoso, os inconvenientes são o volume ocupado e o peso dos reservatórios em que o gás pode ser armazenado: a baixas pressões em gasômetros, a altas pressões em cilindros e vasos pressurizados, em gasodutos e em reservatórios subterrâneos, como em poços de petróleo e gás natural esgotados, cavernas de sal-gema e lençóis aquíferos (SILVA, 1991).

Para ser estocado no estado líquido, o hidrogênio necessita ser comprimido, depois resfriado abaixo de seu ponto crítico (-240 °C) e, em seguida ser expandido isoentalpicamente, o que resulta na liquefação parcial do gás. O gás restante retorna para o compressor e reinicia o ciclo. Este é um processo de alto custo energético e econômico, porém permite utilizar um espaço menor de armazenamento do hidrogênio, devido ao seu estado líquido (SILVA, 1991).

Também é possível armazenar o hidrogênio na forma de compostos químicos, tais como os hidretos metálicos, onde o hidrogênio no estado gasoso reage de forma levemente exotérmica com materiais sólidos, o que facilita sua estocagem e transporte. O inconveniente deste método é a necessidade de energia térmica externa para extrair o hidrogênio, após a formação do hidreto metálico (LIMA, 2010). O hidrogênio apresenta ainda uma grande versatilidade quanto a sua aplicação em outros processos, as quais contemplam o setor de transporte, químico e petroquímico, metalúrgico, de gases e elétrico. Com relação ao último, a produção de hidrogênio por eletrólise a partir de um eletrolisador e sua reconversão em eletricidade em uma célula combustível, apresenta-se como alternativa para impulsionar a geração distribuída nas redes de distribuição modernas.

2.4 Eletrolisadores

O eletrolisador é o equipamento responsável pelo processo de eletrólise da água. Neste procedimento, a eletricidade é fornecida para que ocorra a quebra da molécula de água em que a diferença de potencial teórico mínimo para que ocorra esse processo é de 1,48 Volts. Sabe-se que nos processos reais, o potencial necessário é maior devido a existência de perdas, inerentes ao sistema, na forma de calor. Em geral, a eficiência dos eletrolisadores modernos variam de 60% a 90% (SANTOS; SEQUEIRA, 2013). Na Figura 2.4 é possível observar a esquematização do processo de eletrólise onde, o volume de hidrogênio é aproximado ao dobro do volume de oxigênio (SILVA, 2014).

Figura 2.4: Arranjo elementar do processo de eletrólise da água Fonte: (SILVA, 2014)

De acordo com Silva (2014), pela Primeira Lei da Termodinâmica, "a energia fornecida pela fonte de força eletromotriz equivale à energia química contida nos gases produzidos, acrescida da energia térmica liberada ao meio ambiente". A Equação 2.1 representa a reação da operação da eletrólise.

$$H_2O_{(l)} + Energia \rightarrow H_{2(g)} + \frac{1}{2}O_{2(g)}$$
 (Equação 2.1)

Quanto às tecnologias, as duas principais são definidas pelo meio condutor em eletrolisadores alcalinos, cujo meio é uma solução aquosa básica, normalmente de hidróxido de potássio (KOH); e a outra é com um meio sólido de membrana de troca protônica, conhecido como PEM. O segundo pode trabalhar sobre pressões maiores e não precisa da adição de KOH; porém, é uma tecnologia menos madura que a primeira (SILVA, 1991).

2.4.1 Eletrolisadores alcalinos

O processo de eletrólise alcalina consiste em produzir um sistema multifásico gássólido-líquido, a partir da perda ou ganho de elétrons na superfície dos eletrodos (URSÚA; GANDÍA; SANCHIS, 2012). Na Figura 2.5 é possível visualizar o processo de eletrólise alcalina, onde a fonte de energia externa cede cargas negativas para o cátodo e os íons do hidrogênio (prótons) ganham elétrons, formando o gás hidrogênio. E, de forma a manter o equilíbrio, os ânions deixam no ânodo os elétrons que irão retornar para o terminal positivo da fonte de energia externa, formando, assim, o gás oxigênio (ZENG; ZHANG, 2010).

Figura 2.5: Princípio de operação da eletrólise alcalina Fonte: BEAINY; KARAMI; MOUBAYED (2014)

Os eletrolisadores alcalinos apresentam alta vida útil e utilizam de 25% a 30 % em massa de uma solução aquosa de uma base forte (geralmente KOH) como eletrólito, sendo que a densidade de corrente normalmente varia de 0,2 a 0,4 A por cm². Em relação aos materiais, o

catalisador utilizado é o níquel, e ligas de níquel e ferro são utilizados no ânodo e cátodo. A pureza do hidrogênio que se pode chegar neste tipo de equipamento é de no mínimo 99,8%, sem a adição de processo de purificação posterior do gás gerado. O inconveniente destes eletrolisadores é que os modelos comerciais operam a uma pressão de no máximo 30 bar (IEA, 2015).

A eficiência do conjunto do eletrolisador e seus componentes auxiliares varia numa faixa de 65% a 82% e vida útil de 60.000 a 90.000 horas (IEA, 2015).

Este modelo é o mais comercializado dos dois tipos de eletrolisadores por ser uma tecnologia madura, que tem sido usada por décadas em larga escala. Atualmente, é possível encontrar diversos fabricantes deste equipamento pelo mundo, como Hydrogenics, com sede no Canadá; Siemens, com sede na Alemanha; e McPhy, com sede na França.

2.4.2 Eletrolisadores de Membrana Trocadora de Prótons (PEM)

Os eletrolisadores de membrana polimérica (*Proton Exchange Membrane* - PEM), ou membrana trocadora de prótons ou também chamados de polímero de eletrólito sólido, são caracterizados pela condução dos íons H⁺ por meio de um mecanismo de troca iônica (BEAINY; KARAMI; MOUBAYED, 2014), conforme Figura 2.6.

Figura 2.6: Princípio de funcionamento da eletrolise PEM Fonte: BEAINY; KARAMI; MOUBAYED (2014)

A membrana, geralmente um composto denominado Nafion, possui uma espessura que varia de 20 a 300 μ m, responsável pelo equipamento trabalhar sob pressões maiores que o alcalino, permitindo um baixo cruzamento dos gases e alta condutividade de prótons (NI; LEUNG; LEUNG, 2008). A densidade de corrente de operação pode chegar a 3 A por cm², com

uma força eletromotriz de 2V, de acordo com os fabricantes. Devido à sua construção, pode operar numa faixa de pressão teórica de até 200 bar, mas os equipamentos encontrados no mercado permitem uma pressão máxima de 50 bar, como o modelo produzido pela empresa ITM-Power (ITM POWER, 2019).

A eficiência deste tipo de equipamento, em operação com seus componentes auxiliares, varia atualmente entre 65% a 78%. A vida útil do equipamento nos testes mais recentes chega a 60.000 horas e, nos próximos anos, a eficiência deste método deve ultrapassar a dos alcalinos de forma a se tornar mais vantajoso para o uso sob pressões maiores (IEA, 2015).

O catalisador deste tipo de eletrolisador geralmente é a platina, o que é uma desvantagem para os custos do mesmo, porém o grau de pureza do hidrogênio gerado neste sistema é maior que o apresentado no tipo alcalino. Como esta tecnologia é recente, os eletrolisadores tipo PEM estão em fase de desenvolvimento e melhoria dos custos e de eficiência (SMOLINKA; FRAUNHOFER, 2010), enquanto os que utilizam KOH já estão em seu limite tecnológico. Em relação aos alcalinos, os eletrolisadores PEM apresentam uma configuração mais simples, densidade de corrente e potência mais altas, eficiência mais elevada no nível da célula e respostas mais rápidas para mudança na carga elétrica em que está conectada (bom para associação com as fontes renováveis).

Entre os principais fornecedores do eletrolisador tipo PEM tem-se as empresas Giner, Hydrogenics, ITM Power e Proton OnSite. Logo, após a descrição das principais tecnologias de eletrolisador foi possível organizar no Quadro 2.3, as vantagens e desvantagens de cada uma.

Tecnologia	Alcalino	PEM	
	Tecnologia madura	Alta densidade de potência	
	Longa vida útil	Alta eficiência em nível da célula	
	Custo relativamente baixo	Bom em carga parcial	
Vantagens	<i>Stacks</i> em operação de mais de 1MW	Rápida resposta do sistema	
	Sem uso de metais nobres	Opera sob altas pressões	
	Custo efetivo	Alta pureza do gás	
	Baixa densidade de corrente	Custo alto dos componentes	
Desvantagens	Cruzamento de gases	Não provada alta vida útil	
	Ruim em cargas parciais	Uso de catalisadores nobres	

Quadro 2.3: Vantagens e desvantagens de cada tecnologia de produção de hidrogênio Fonte: IEA (2015)

Ambas as tecnologias possuem diversos fornecedores para equipamentos capazes de produzir hidrogênio para aplicações em pequena ou larga escalas. No Quadro 2.3 estão reunidas

as principais empresas e as especificações técnicas de seus produtos anunciados. Essas e outras informações podem ser encontradas no Anexo B.

Eletrolisador					
Empresa	País	Tecnologia	Pressão de saída de H ₂ (bar)	Vazão de H2 assegurada (m ³ h ⁻¹)	Consumo de energia na produção (kWh.m ⁻³)
H2 Nitidor	Itália	Alcalino	30	0,25 - 200	5,9
Proton OnSite	EUA	PEM	30	10 - 30,0 2 - 6	6,0 7,0
Hydrogenics	Bélgica	Alcalino	10 - 25	10 - 60	4,2
Idroenergy	Itália	Alcalino	1,8-6	4,7 - 7,5	6,1
MaDhy	Eronaa	Alaslina	1,9	0,4	7,0
MCPNy	Flança	Alcalillo	<u> </u>	20 - 60,0	5,2
NEL	Noruega	Alcalino	0,02 - 0,05	10 - 485,0 60	4,4
	8		1,01 (1atm)	50 - 85,0	-
			15	0,6 - 2,3	4,9
ITM Power	Inglaterra	PEM	350 - 750	11,6 - 214	-
			20 - 80	11,6 - 214	5,3
Areva H2Gen	França	PEM	30	20	4,4
Siemens	Alemanha	PEM	50	22 - 67/250	4,9

Quadro 2.4: Fornecedores de eletrolisador e especificações técnicas dos seus equipamentos

2.5 Tanques

Os tanques pressurizados utilizados para o armazenamento de gases podem ser divididos em 4 grupos: cilindros feitos inteiramente de metal (tipo 1); cilindros feitos de metal envolto parcialmente por compósitos de fibras e resina (tipo 2); cilindros feitos de metal envolto completamente por compósito de fibra e resina (tipo 3); cilindros poliméricos envolto completamente por compósito de fibra e resina (tipo 4). Na Figura 2.7 está representado o esquema de cada reservatório.

Figura 2.7: Tipos de tanques pressurizados para o armazenamento de hidrogênio Fonte: IEA (2015)

Cada tipo de tanque é utilizado de acordo com a aplicação final que se deseja. Os tipo 1 são os que apresentam maior massa e custo relativamente menor que os outros, porém as pressões de trabalho geralmente se restringem a 200 bar e, dependendo da liga metálica e espessura da parede, podem chegar a 300 bar (BARTHÉLÉMY, 2018).

Os tanques tipo 2 são preferidos para aplicações estacionárias e em casos quando as aplicações de pressões sejam superiores às descritas para o tipo 1. Os tipo 3 e 4 são os tanques preferidos para aplicações não estacionárias, por poderem trabalhar com uma pressão elevada (até 700 bar) e baixa massa do reservatório (BOURGEOIS et al., 2017).

No caso do hidrogênio, o metal utilizado nos tanques tipo 1, 2 e 3 deve possuir uma boa resistência à fragilização ocasionada por esse gás, que se infiltra nos interstícios da estrutura cristalina do metal, e que interage na superfície; e nos defeitos internos do tanque (que podem aparecer mais ou menos, dependendo do processo de fabricação).

Na Figura 2.8 estão apresentadas as diferentes ligas de aço e alumínio que são utilizadas para tanques de armazenamento de hidrogênio, de acordo com sua resistência ao gás e limite de escoamento (MARCHI, 2013).

Figura 2.8: Resistência ao hidrogênio de diferentes materiais Fonte: (MARCHI, 2013)

A partir da Figura 2.8 é possível afirmar que as ligas de alumínio possuem uma resistência à fragilização por hidrogênio bem superior às ligas de aço; entretanto, tem seus limites de escoamento menor, o que indicam que são boas escolhas para os tanques do tipo 3, onde a resistência mecânica é fornecida pela camada de compósito na qual o metal está envolvido. Já para tanques tipo 1 e 2, as ligas de aço ainda são as mais utilizadas.

O uso de reservatórios pressurizados já é algo difundido na indústria brasileira e no mercado mundial. Assim, diversas empresas nacionais apresentam soluções para o armazenamento de hidrogênio. No Quadro 2.4 estão representadas algumas destas empresas, bem como a pressão a ser armazenada por seus produtos.

Reservatório Pressurizado						
Empresa	Cidade	Pressão de Trabalho (bar)				
Fhaizer ¹	Joinvile/SC	<u>≤</u> 25				
Nitrotec ²	Itatiba/SP	<u>≤</u> 200				
Dedini ³	Piracicaba/SP	<u><</u> 30				
Aberko ⁴	Taboão da Serra/SP	<u>≤</u> 30				
MAZE ⁵	Diadema/SP	<u><</u> 18				

Quadro 2.5: Fornecedores de reservatórios pressurizados.

¹ Disponível em < <u>http://fhaizer.com/</u>> Acesso em abr. 2019.

² Disponível em < <u>http://nitrotec.com.br/site/produtos/</u>> Acesso em abr. 2019.

³ Disponível em < <u>https://www.dedini.com.br/</u>> Acesso em abr. 2019.

⁴ Disponível em < <u>https://www.vasosdepressao.com.br/</u>> Acesso em abr. 2019.

⁵ Disponível em < <u>http://www.maze.ind.br/vasos-pressao</u>> Acesso em abr. 2019.

2.6 Células a combustível

As células a combustível oferecem um potencial para geração de eletricidade mais limpo, silencioso e eficiente que os métodos tradicionalmente utilizados para realizar a mesma tarefa (motores-geradores e turbinas a gás). De forma geral, seu princípio de funcionamento consiste em converter a energia química do hidrogênio diretamente em eletricidade, promovendo a ligação eletroquímica do hidrogênio com oxigênio, produzindo energia elétrica e água.

Estas células podem ser de vários tipos, de acordo com o eletrólito existente entre os eletrodos, sendo as mais utilizadas as de polímero eletrolítico (PEMFC), alcalino (AFC), ácido fosfórico (PAFC), carbonatos fundidos (MCFC) e óxido sólido (SOFC).

Para aplicações a baixas temperaturas, utilizando o oxigênio do ar, as células PEMFC são as mais indicadas, visto que as MCFC e as SOFC operam a elevadas temperaturas, e as AFC não possuem tolerância ao CO₂. Os tipos PAFC e MCFC estão sendo mais estudadas para o uso estacionário, enquanto o AFC para aplicações móveis (Apollo 13). Os tipos PEMFC e SOFC são usadas em ambas as aplicações (DOE, 2016a).

Na Figura 2.9 estão representados os investimentos em células a combustível no mundo, com referência ao ano de 2013 (IEA, 2015), mostrando que a área que mais recebeu investimentos foi a de aplicações estacionarias, a uma taxa quase que constante entre 2011 e 2013.

Figura 2.9: Capacidade das unidades de célula a combustível Fonte: IEA (2015)

Todas as células a combustível possuem vantagens e desvantagens, mas para cada aplicação, uma se torna mais viável que outra. No Quadro 2.6 há um levantamento das características das cinco tecnologias (DOE, 2016b).

Tipo de FC	Eletrólito	Temperatura de operação (ºC)	Tamanho do <i>Stack</i> (kW)	Eficiência Elétrica (PCI*)	Aplicações	Vantagens	Desvantagens
PEMF C	Ácido Perfluorssu Ifônico	< 120	< 1 - 100	40 %	Geração Backup Geração Portátil Geração Distribuída Transporte	Baixa temperatura Rápido início de operação Cargas Parciais	Catalisadores caros Sensível às impurezas
SOFC	Zircônia Y- estabilizad o	500 - 1.000	1 - 2.000	60 %	Geração Auxiliar Geração Distribuída	Alta Eficiência Flexibilidade de Combustível Eletrólito sólido Bom para CHP Híbrido/turbina a gás	Corrosão de alta temperatura Longo período para iniciar operação Ruim para desligar constantemente
PAFC	Ácido fosfórico	150 - 200	5 - 400	40 %	Geração Distribuída	Bom para CHP Boa tolerância para impurezas do H2	Catalisadores caros Longo período para iniciar operação Sensível a enxofre
MCFC	Carbonato de lítio, sódio e/ou potássio	600 - 700	300 - 3.000	50 %	Geração Distribuída	Alta Eficiência Flexibilidade de Combustível Bom para CHP** Híbrido/turbina a gás	Corrosão de alta temperatura Longo período para iniciar operação Baixa densidade de potência
AFC	KOH, Polímero Alcalino	< 100	1 - 100	60 %	Militar Espacial Geração <i>Backup</i> Transporte	Rápido início	Intolerância a CO2

*PCI: Utilizado o poder calorífico inferior para cálculo da eficiência. **CHP: Geração de calor e eletricidade.

Quadro 2.6: Correctorrections de cada tin

Quadro 2.6: Características de cada tipo de célula a combustível Fonte: (DOE, 2016b)

Célula a Combustível							
Empresa	País	Tecnologia	Potência (kW)	Consumo H ₂ (Nm ³ /kWh)			
Hydrogenics	Canadá	PEM	<u><</u> 300	0,71			
Proton Motor	EUA	PEM	<u>≤</u> 100	0,67			
N2 FUJI	Japão	PAFC	<u><</u> 500	0,70			
GENCELL	EUA	PEM	<u><</u> 5	0,78			
Ballard	Canadá	PEM	<u><</u> 100	0,93			
Horizon ⁶	Singapura	PEM	<u><</u> 5	0,78			
FuelCell Energy	EUA	MCFC	<u><</u> 3.000	0,72			
Powercell	Suécia	PEM	<u>≤</u> 100	0,68			

Quadro 2.7: Fornecedores de células a combustível e especificações técnicas dos seus equipamentos

⁶ Disponível em <https://www.fuelcellstore.com/fuel-cell-stacks/high-power-fuel-cell-stacks/horizon-5000watt-fuel-cell-h-5000> Acesso em fev. 2019.
No Quadro 2.7 foram apresentados alguns destes fabricantes, além das especificações técnicas de seus produtos. Essas e outras informações podem ser encontradas no Anexo C. Com o aumento do uso das células a combustível para a aplicação estacionária, muitos fornecedores têm investido nesta aplicação.

3 METODOLOGIA

O propósito dessa pesquisa foi a realização de um estudo do desempenho técnico dos sistemas de armazenamento de energia elétrica conectados à rede elétrica por meio de baterias e hidrogênio, fazendo um comparativo das eficiências através dos dados obtidos na literatura com os dados do projeto adquirido. Para tanto, a análise da viabilidade técnica foi feita sobre as plantas instaladas pela CESP na Usina de Porto Primavera.

A fim de realizar o estudo de viabilidade do sistema em questão, se fez necessário pesquisar fornecedores de equipamentos para serem utilizados em sistemas de armazenamento de energia elétrica (SAEE), através de baterias de íons de lítio e com uso de hidrogênio.

Em relação aos dados relativos à energia solar, foi consultada a simulação do PVSyst feita pela empresa PVSolar, empresa responsável pela instalação da planta solar fotovoltaica na na usina de Primavera. Ademais, comparou-se os dados obtidos através da pesquisa bibliográfica com os dados do projeto adquirido.

A Figura 3.1 mostra de forma sintetizada o fluxograma da metodologia aplicada para a pesquisa nessa dissertação.

Figura 3.1: Etapas da metodologia Fonte: Elaborado pelo autor

3.1 Etapa 1 – Modelagem do projeto pela literatura

Para obtenção dos dados de fornecedores de baterias de íons de lítio, eletrolisadores, tanques de armazenamento e células a combustível, foi realizada uma pesquisa nas principais empresas que comercializam estas tecnologias no mundo e no Brasil. A partir desta pesquisa foi possível obter os dados técnicos dos equipamentos de diferentes fabricantes, podendo realizar as escolhas dos sistemas (baterias e hidrogênio) de acordo com a Figura 3.2.

Figura 3.2: Procedimento de modelagem do projeto a partir da literatura Fonte: Elaborado pelo autor

No caso dos fabricantes de eletrolisadores e células a combustível (CaC), os dados foram coletados na Associação Internacional de Energia de Hidrogênio (IAHE) e na tese de doutorado de Matos (2013).

De forma a se obter uma uniformidade entre as escolhas da literatura e o projeto adquirido, foram selecionados eletrolisadores com os mesmos níveis de potência de consumo e pressão de trabalho do projeto adquirido. Para as células a combustível, o mesmo princípio foi aplicado, e os equipamentos escolhidos foram aqueles capazes de fornecer a mesma potência elétrica, com a mesma tecnologia ou outras que apresentam níveis similares de eficiência.

Em relação aos tanques pressurizados para o armazenamento do hidrogênio, como não há uma perda significativa de eficiência devido a vazamentos, foram utilizados para cálculos os mesmos dados que do projeto adquirido, visto que todos os fabricantes pesquisados fornecem equipamentos com as mesmas dimensões.

Os dados dos fabricantes de baterias de lítio foram obtidos através da pesquisa em empresas fornecedoras da tecnologia de íons de lítio e que possuem sistemas capazes de fornecer a potência e capacidade de armazenamento de energia elétrica estabelecida para o projeto.

A partir dos dados da literatura, foi possível calcular um valor médio de todos os equipamentos utilizando os dados de consumo específico fornecido pelos fabricantes nas tabelas de especificação técnica dos eletrolisadores e células a combustível. Nas Equações 3.1

e 3.2 têm-se a relação entre o consumo específico médio com os valores de cada componente encontrado no mercado.

$$\bar{\dot{q}}_{Eletrolisador} = \frac{\sum \dot{q}_{especifico}}{N_{Eletrolisadores}}$$
Equação 3.1

$$\bar{\dot{v}}_{CaC} = \frac{\sum \dot{v}_{especifico}}{N_{CaC}}$$
 Equação 3.2

Onde:

 \dot{q} é o valor de consumo específico em MJ . Nm⁻³ dos eletrolisadores;

N representa o número de equipamentos com dados a serem utilizados no cálculo e;

 $\overline{\dot{q}}$ é o valor médio do consumo específico dos eletrolisadores encontrados durante a pesquisa da literatura;

 \dot{v} é o consumo específico em Nm³. MJ⁻¹ das células a combustível e;

 $\overline{\dot{v}}$ representa o valor médio do consumo específico das células a combustível.

3.2 Etapa 2 – Modelagem do projeto adquirido

Nesta etapa foi realizada uma modelagem com os dados dos equipamentos escolhidos pela CESP dentro do escopo do projeto de P&D da chamada estratégica número 021/2016 da ANEEL. Logo, representa os valores reais do sistema de armazenamento de energia elétrica. Na Figura 3.3 está representado o procedimento de modelagem do sistema adquirido.

Figura 3.3: Procedimento de modelagem do projeto adquirido Fonte: Elaborado pelo autor

O projeto é formado, em termos dos principais componentes, por dois SAEE: um sistema de hidrogênio e um banco de baterias, conforme observado na Figura 3.4.

Figura 3.4: Esquemática do SAEE Fonte: Elaborado pelo autor

Conforme mostrado na Figura 3.4, os dois sistemas de armazenamento estão conectados à rede elétrica em paralelo, através de transformadores que regularizam a tensão dos sistemas com a da rede.

3.3 Etapa 3 – Cálculo do desempenho técnico dos projetos

A partir dos sistemas elaborados nas etapas anteriores foi possível calcular o desempenho técnico do projeto encontrado na literatura e do adquirido. Utilizando os dados característicos das propriedades físicas do hidrogênio e descritos na seção 2.3 foi possível ainda calcular as eficiências de cada componente.

A eficiência do eletrolisador ($\eta_{Eletrolisador}$) é dada pela relação da energia elétrica consumida pelo equipamento e da energia química do hidrogênio produzido, sendo neste caso utilizado o poder calorífico superior (PCS), para assim representar a energia total contida por unidade de massa do gás. A eficiência pode ser calculada a partir do consumo específico do mesmo, conforme descrito na Equação 3.3.

$$\eta_{Eletrolisador} = \frac{\rho_{H_2} \times PCS}{\dot{q}} x(100\%)$$
Equação 3.3

Onde;

 ρ_{H_2} é a massa específica do hidrogênio dado em kg . m⁻³; *PCS* representa o poder calorífico superior em MJ . kg⁻¹;

Para a CaC, como a eletricidade é gerada a partir da energia química do hidrogênio, também foi utilizado o PCS, indicando a energia total do gás. Com isso pode-se garantir que o mesmo valor de poder calorífico seja utilizado no cálculo da CaC e do eletrolisador. Sua eficiência (η_{cac}) é a relação oposta ao eletrolisador, e também pode ser calculada utilizando o consumo específico da CaC.

$$\eta_{CaC} = \frac{1}{\dot{v} \cdot \rho_{H_2} \cdot PCS} \mathbf{x}(100\%)$$
 Equação 3.4

Ao associar o eletrolisador com a CaC foi possível fechar o ciclo de energia elétrica, onde o que entra e sai do volume de controle é eletricidade. Com isso, é possível calcular a eficiência deste ciclo (η_{ciclo}) a partir da Equação. 3.5.

$$\eta_{ciclo} = \eta_{Eletrolisador} \times \eta_{CaC}$$
 Equação 3.5

A energia elétrica consumida pelo eletrolisador ($P_{elétrica}$) foi calculada através do consumo específico pela produção de H_2 , dado pela Equação 3.6.

$$P_{el\acute{t}rica} = \dot{q} \times \dot{V}_{H_2}$$
 Equação 3.6

Onde:

 \dot{V}_{H_2} é a produção de hidrogênio do eletrolisador em Nm³.h⁻¹;

O consumo da célula a combustível (\dot{Q}_{H_2}) é obtido através do consumo específico multiplicado pela potência elétrica de saída, dado pela Equação 3.7.

$$\dot{Q}_{H_2} = \dot{v} \times P_{el\acute{e}trica}$$
 Equação 3.7

Onde;

 $P_{elétrica}$ é a energia elétrica consumida pela célula a combustível dado em kW;

 \dot{Q}_{H_2} é o consumo de hidrogênio da CaC em Nm³. h⁻¹.

Para o projeto adquirido, foi necessário realizar o cálculo da fração da radiação solar (f_{Solar}) dada em porcentagem da energia solar diária total em cada hora do dia (SILVA, 2014). Ou seja,

$$f_{Solar} = \frac{I_{horária}}{I_{total}}$$
 Equação 3.8

$$I_{horária} = k. I_0. (sen \emptyset. sen \delta + cos \emptyset. cos \delta. cos h)$$
 Equação 3.9

Onde:

Ø refere-se ao ângulo referente à latitude local, na Usina de Porto Primavera, tem-se uma latitude de 22,478°;

δ é dado como o ângulo referente à estação do ano, logo os equinócios de março e setembro, tem $δ = 0^\circ$ e os solstícios de junho e dezembro, $δ = 23,27^\circ$;

h, ângulo horário dado por h = 15.(H - 12);

e H sendo as horas do dia.

Para se calcular a energia elétrica convertida pela planta solar no período de um dia (E_{dia}) , é utilizada a equação 3.10.

$$E_{dia} = \frac{E_{ano}}{365}$$
 Equação 3.10

Onde:

 E_{dia} é a energia elétrica gerada por uma planta solar fotovoltaica em kWh.dia⁻¹;

 E_{ano} é a energia elétrica gerada anualmente pela planta solar fotovoltaica, fornecida pela simulação no PVSyst em kWh.ano⁻¹.

Ao se multiplicar a energia gerada no período de um dia pela fração horária da irradiação, como é mostrado na Equação 3.11, foi possível obter a geração elétrica solar horária (E_{hora}),

$$E_{hora} = E_{dia} \times f_{Solar}$$
 Equação 3.11

3.4 Etapa 4 – Resultados e análise comparativa

Nesta etapa foi realizada a análise comparativa dos projetos, ou seja, os dados da modelagem da literatura foram comparados aos obtidos com o projeto adquirido. O comparativo é feito através de quadros e gráficos que, além de contribuir para sua melhor visualização, permitem que sejam comparados mais facilmente com os resultados obtidos em outros estudos.

3.5 Etapa 5 – Aplicação do SAEE através de estudos de caso

Nesta etapa são apresentados dois estudos de caso a fim de analisar a operação dos SAEE. No primeiro caso, o SAEE tem uma operação conjunta do SAEEH e do SAEEB, equalizando a potência de fornecimento de energia elétrica renovável ao longo do dia; e no segundo caso propõem-se utilizar o SAEE no fornecimento de energia em horário de ponta.

4 EQUIPAMENTOS DO PROJETO

Neste capítulo estão apresentadas as características do projeto, a escolha modelada pela literatura, escolha adquirida, a análise dos resultados de cada equipamento e do sistema completo.

4.1 Projeto PD-00061-0054/2016

Em 2016, foi apresentado à ANEEL o projeto estratégico de P&D PD-00061-0054/2016, "Análise da Eficiência do Armazenamento Complementar de Energia junto às Usinas Hidrelétricas, utilizando Tecnologia de Armazenamento Eletroquímico e em Hidrogênio", associado à chamada ANEEL Nº 021/2016. Este projeto visa aplicar tecnologias de armazenamento de energia elétrica para auxiliar a inserção das fontes renováveis intermitentes, como a fonte solar, no Sistema Interligado Nacional (SIN).

O local de integração compreende a área próxima à UHE Porto Primavera, localizada em Rosana no estado de São Paulo. O objetivo principal do projeto é analisar como as tecnologias de armazenamento de energia elétrica se comportam quando utilizadas para auxiliar fontes renováveis intermitentes no fornecimento de eletricidade para rede em horas que o potencial renovável para geração de energia elétrica não consegue suprir a demanda energética do SIN.

No escopo do projeto tem-se a utilização das tecnologias de armazenamento eletroquímico e em hidrogênio, onde o banco de baterias de íons de lítio tem uma potência de 250 kW e capacidade de 1.800 MJ (500 kWh) de armazenamento. O sistema que utiliza hidrogênio é composto por um eletrolisador capaz de produzir 20 Nm³.h⁻¹, um reservatório pressurizado com capacidade de armazenamento de 600 Nm³ (2.124 kWh) a uma pressão de 25 bar, e um conjunto de células a combustível (CaC) que entrega 100 kW de potência elétrica para a rede. Os dois sistemas armazenam e despacham a eletricidade proveniente de uma planta solar fotovoltaica de 401 kWp. É importante ressaltar que a CESP possui outros projetos de P&D instalados na área próxima à UHE Porto Primavera com plantas solar fotovoltaicas cuja potência instalada total é de 650 kWp adicionais à planta prevista no projeto PD-00061-0054/2016, e outras duas turbinas eólicas que possuem 100 kW de potência máxima. Como o presente trabalho tem seu foco no projeto apresentado pela CESP referente à chamada nº 021/2016 da ANEEL, será considerada apenas a existência da planta de 401 kWp.

Todos os componentes do projeto são instalados em um barramento de 460 V de corrente alternada e trifásico. O diagrama unifilar da planta completa está apresentada no Anexo D.

4.2 Planta de geração solar

Os sistemas de armazenamento de energia elétrica serão instalados, ainda em 2019, na rede auxiliar da Usina Hidrelétrica de Porto Primavera e irão armazenar a energia convertida por uma planta solar de 401 kWp. Esta planta possui 1.215 módulos de 72 células e 330 Wp, instalados com uma inclinação de 25, conforme Figura 4.1.

Figura 4.1: Planta fotovoltaica de 401 kWp Fonte: BASE (2019)

Conforme descrito nesta seção, a planta solar é responsável por gerar a energia elétrica para ambos os sistemas de armazenamento de energia e pode ter sua curva de geração descrita ao longo do dia.

Com o intuito de encontrar o valor de produção elétrica durante um dia médio em Porto Primavera, foi realizada uma simulação no programa PVSyst, software próprio para simular e dimensionar sistemas fotovoltaicos completos. Para esta simulação adotou-se uma latitude igual à 22,49° S e longitude de 52,95° O, referente ao local de instalação da planta de 401 kWp, a simulação foi feita pela empresa BLUESOL e o detalhamento dela pode ser encontrado o Anexo E. A energia elétrica gerada durante o ano foi de 2.369 GJ (658 MWh) e ao dividir pelo número de dias do ano, foi possível encontrar a média diária da eletricidade produzida pela planta fotovoltaica, resultando em 6.489 MJ (1.803 kWh).

Segundo Silva (2014), em conjunto com os dados fornecidos pela simulação do PVSyst e da Equação 3.8, foi possível chegar na fração da irradiação solar ao longo do dia em Rosana. Na Figura 4.2 está mostrada esta distribuição. Os cálculos para se obter esta curva média está disponível no Apêndice A.

A partir das informações apresentadas na Figura 4.2 e a partir da Equação 3.11, foi possível determinar a curva média de geração fotovoltaica diária para a planta de 401 kWp instalada na UHE Porto Primavera, conforme visualizado na Figura 4.3. Os cálculos para se obter esta curva estão disponíveis no Apêndice B.

Figura 4.3: Potência média horária de geração solar da planta Fonte: Elaborado pelo autor

Ainda segundo a Figura 4.3, é possível observar que o valor médio máximo horário da energia elétrica gerada para a planta de 401 kWp é um total de 810 MJ (225 kWh) que ocorre

entre às 12:00 e 13:00. O total de energia elétrica gerada no dia é de 6.489 MJ (1.803 kWh) na média.

4.3 Banco de Baterias

O conjunto de baterias é também conhecido como o sistema de armazenamento de energia eletroquímico do projeto em que a tecnologia com íons de lítio foi utilizada por permitir grandes profundidades de descarga e alta vida útil.

O conjunto de baterias do projeto é responsável pela absorção dos picos da geração fotovoltaica, auxiliando o sistema de hidrogênio na operação mais próxima da ideal. O equipamento também será utilizado ao longo do projeto para comparação com o sistema de armazenamento de energia elétrica que utiliza hidrogênio.

Para o projeto foi dimensionado um conjunto de baterias com capacidade de armazenamento de energia elétrica de 1800 MJ (500 kWh) e potência de 250 kW, sendo possível descarregar o banco de baterias em sua capacidade nominal por 2 horas.

4.3.1 Escolha modelada (literatura)

Conforme descrito na seção 2.2 deste estudo, foram consultados diversos fornecedores de bancos de baterias da literatura capazes de produzir um equipamento com as capacidades de potência e armazenamento requeridas pelo projeto. Logo, com os dados fornecidos pelos fabricantes, calculou-se a eficiência através da média aritmética de um conjunto de baterias encontrado na literatura descritas no Quadro 4.1.

A partir dos dados de eficiência de ciclo dos conjuntos de baterias de cada fornecedor foi possível afirmar que, em média, as baterias de íons de lítio podem devolver 95% da energia que foi entregue às mesmas, ao término de um ciclo completo. É importante ressaltar que os valores das eficiências fornecidos nas especificações técnicas das baterias, em muitos casos, representam apenas o valor da eficiência de ciclo da bateria, excluindo os componentes auxiliares na integração da mesma à rede elétrica. Todos os conjuntos de baterias podem trabalhar com uma potência de 250 kW, de forma a obter uma maior comparação com o conjunto escolhido pelo projeto.

Empresa	Tecnologia	Eficiência (ciclo)**	Taxa C* considerada	Fonte	
SAFT	NMC	96,0%	1	www.saftbatteries.com	
SAMSUNG	NMC	95,0%	-	https://www.samsungsdi.com/index. html	
Kokam	LiFePO4	-	-	http://kokam.com/	
BYD	-	95,3%	0,5	http://www.byd.com/	
Belectric	LiFePO4	-	-	https://belectric.com/	
Electrocell	LiFePO4	95,0%	0,5	http://www.electrocell.com.br/	
WEG	NMC	96,0%	0,5	https://www.weg.net/	
NEC	NMC	96,0%	0,5	https://www.neces.com/	
WSTECH	LiFePO4	97,0%	0,5	https://www.wstech.com/en/product s/energy-storage	
Média	-	95,8%	_		
*Taxa C: É a taxa que indica em quanto tempo a bateria pode ser carregada ou descarregada (ex: uma taxa de					

0,5C equivale a um tempo de carga/descarga de 2 horas)

**As eficiências utilizadas neste estudo são referentes à eficiência das células de íons de lítio, isto se deve à falta de informação divulgada pelos fornecedores

Quadro 4.1: Eficiência média do conjunto de baterias

4.3.2 Escolha adquirida

O conjunto de baterias escolhido pelo projeto foi o da empresa brasileira Electrocell, com escritório na cidade de São Paulo e fábrica em Jaguariúna no interior do estado de São Paulo.

A empresa possui parceria com a companhia chinesa Optimum Nano, fabricante de baterias consolidada no mercado. O foco desta empresa é produzir SAEE eletroquímicos para veículos elétricos⁷, porém a mesma produz contêineres para uso estacionário, como é o caso deste projeto em estudo.

Na Figura 4.4 é possível observar o contêiner de baterias que foi escolhido para o Projeto da CESP.

⁷ Optimum Nano. Disponível em < <u>http://www.optimumnanoenergy.com/wap.php?c=about&a=detail&id=2</u>> Acesso em nov. 2018.

Figura 4.4: Contêiner do conjunto de baterias Fonte: Electrocell (2017)

O Quadro 4.2 consiste na especificação técnica do conjunto de baterias escolhido.

Banco de Baterias				
Empresa	Electrocell			
Modelo	Electrocell 500kWh			
País de origem	Brasil			
Capacidade	1.800 MJ (500 kWh)			
Potência nominal	250 kW			
Taxa de carga e descarga	0,5C			
Eficiência das células	95%			
Eficiência do sistema	90%*			
Vida útil	4.000 ciclos			
Profundidade de descarga	80%			
Tensão de alimentação	380 VAC			
Quantidade de células	37.632			
Dimensões	Contêiner 40"			
*A eficiência do sistema é a eficiência fornecida pela				
Electrocell para o contêiner completo.				

Quadro 4.2: Especificações técnicas do conjunto de baterias Fonte: Electrocell (2017)

O conjunto de baterias é formado por 37.632 células que utilizam a química de lítioferro-fosfato (LiFePO₄), cada uma com 3,2 volts (V) e 6 ampere-hora (Ah). As células foram unidas em 42 fileiras em série e 28 em paralelo, resultando numa tensão de 134,4 V e 168 Ah para cada monobloco, onde são configurados em série de 4, de forma a alcançar uma diferença de potencial de 537,6 V e 168 Ah, em cada módulo. Para se obter uma capacidade de 1.344 Ah, 8 módulos foram rearranjados em paralelo obtendo o valor de 2601 MJ, igual a 100% da carga deste conjunto de baterias. No caso do projeto em estudo, serão necessários 1.800 MJ, equivalentes a 500 kWh, valor necessário para ter uma profundidade de descarga de 80% da capacidade total do sistema. Na Figura 4.5 é exibida a sala das baterias dentro do contêiner de 40 pés.

Figura 4.5: Monoblocos do conjunto de baterias Fonte: Electrocell (2017)

O conjunto de baterias conta com sistema conversor de energia (PCS – *Power Converter System*) GROWATT de 250 kW de potência nominal, definindo assim a taxa de descarga do conjunto. No painel do PCS existe uma tela de cristal líquido (LCD) que mostra as funcionalidades do sistema, como potência de carga e descarga, e modo de operação, descritas em quatro:

Inversor: a bateria fornece energia para a rede, convertendo a corrente elétrica de continua (CC) para alternada (CA);

Bateria: armazena a energia da rede elétrica, passando de CA para CC;

UPS: quando não houver outra fonte de geração elétrica para a rede, a bateria supre a demanda energética e converte a energia CC para CA;

Stand-by: a bateria não injeta nem armazena energia da rede, porém fica em espera por um novo comando.

Na Figura 4.6 é possível visualizar a tela de LCD do PCS no modo de UPS.

Figura 4.6: Painel do PCS do conjunto Fonte: Electrocell (2017)

4.4 Eletrolisador

O eletrolisador é responsável pela produção do gás hidrogênio dentro do sistema de armazenamento de energia elétrica. As tecnologias para realizar a quebra da molécula de água foco desse estudo foram a eletrólise alcalina e a do tipo PEM, pois ambas apresentam valores de desempenho técnico e disponibilidade no mercado similar.

4.4.1 Características do projeto

O eletrolisador deve ser capaz de operar, enquanto houver eletricidade excedente disponível na rede elétrica. Porém, como o intuito do estudo é utilizar o SAEEH associado à planta solar de 401 kWp instalada na Usina da CESP, enquanto houver energia disponível sendo gerada por essa planta e a demanda da rede elétrica auxiliar da UHE Primavera for baixa, o sistema deve produzir hidrogênio e armazená-lo em reservatório pressurizado. Isso deve ocorrer no período diurno, com maior probabilidade nas horas de maior insolação, até o momento em que o reservatório tenha atingido seu nível máximo e/ou a demanda de energia da rede elétrica se iguale ou supere a energia sendo fornecida pelas fontes renováveis.

Para esse projeto de pesquisa e desenvolvimento foi estabelecido que o sistema de eletrólise deve ser capaz de produzir pelo menos 20 Nm³ de hidrogênio por hora, com uma pressão de saída do gás no mínimo 25 bar e uma pureza superior à 99,99%, para não afetar a operação do conjunto de células a combustível.

4.4.2 Escolha da literatura

Conforme a literatura, diversos fornecedores de eletrolisadores são capazes de produzir um equipamento com capacidade de produção de hidrogênio e pressão de saída requerida pelo projeto. Assim, com base nos dados fornecidos pelos fabricantes, foi possível calcular o consumo específico médio de um eletrolisador conforme descrito no Quadro 4.3.

Eletrolisador						
Empresa	Tecnologia	Pressão de trabalho (bar)	Vazão de H2 assegurada (m ³ .h ⁻¹)	Consumo de energia na produção (MJ.m ⁻³)	Eficiência (%)*	Fonte
H2 Nitidor	Alcalino	30	20	21,2	60,0	http://www.h2nitidor.com/
Hydrogenics	Alcalino	25	20	19,4	65,6	https://www.hydrogenics.com/
McPhy	Alcalino	30	20	22,7	56,2	https://mcphy.com/en/
Proton OnSite	PEM	30	20	22,0	57,9	https://www.protononsite.com/
ITM Power	PEM	30	20	19,1	66,8	http://www.itm-power.com/
Areva H2Gen	PEM	30	20	15,8	80,5	http://www.arevah2gen.com/en/
Siemens	PEM	50	22	17,6	72,3	https://new.siemens.com
Hytron	PEM	40	20	20,9	61,0	https://www.hytron.com.br/
Média 19,8 64,4						
*Foi utilizado o PCS do hidrogênio para calcular as eficiências dos eletrolisadores.						

Quadro 4.3: Dados dos produtos da fornecedores de eletrolisadores

Para o cálculo do consumo específico médio dos eletrolisadores encontrados na literatura, foram utilizados apenas os equipamentos capazes de fornecer uma pressão de saída de no mínimo 25 bar em relação à produção de hidrogênio. Como estes sistemas podem ser acoplados em módulos, de forma a obter uma vazão de 20 Nm³ por hora, todas as capacidades foram consideradas úteis para os cálculos.

Com os dados de consumo específico dos equipamentos foi possível chegar num valor médio de 19,8 MJ.m⁻³ produzido de hidrogênio para um sistema de eletrólise. É importante ressaltar que o valor de consumo específico fornecidos pelos diferentes fabricantes é calculado de maneira não padronizada, pois alguns fornecem apenas o consumo da pilha de eletrólise, enquanto outros fornecem o valor do conjunto completo para o acoplamento na rede elétrica.

4.4.3 Escolha adquirida

Para o projeto da CESP foi selecionado um sistema gerador de hidrogênio que utiliza a tecnologia tipo PEM fabricado pela empresa brasileira Hytron, localizada na cidade de Sumaré, interior do estado de São Paulo. A empresa trabalha com soluções inovadoras para os setores de energia e gases industriais, chegando no desenvolvimento e montagem do eletrolisador adquirido para o projeto da CESP. É importante ressaltar que o conjunto eletrolisador fornecido pela Hytron é o primeiro sistema de eletrolise d´água tipo PEM produzido no Brasil. Na Figura 4.7 é mostrado o contêiner do eletrolisador fornecido pela empresa Hytron.

Figura 4.7: Contêiner eletrolisador Fonte: Hytron (2019)

O sistema de eletrólise tipo PEM possui uma produção máxima de hidrogênio de 20 Nm³ por hora e uma saída de pressão do gás de no máximo de 40 bar. No Quadro 4.4 são apresentadas as especificações técnicas do equipamento.

Eletrolisador				
Empresa	Hytron			
Modelo	HT-40PEM			
País de origem	Brasil			
Tecnologia	PEM			
Potência Instalada	130 kW			
Produção de H ₂	20 Nm ³ .h ⁻¹			
Consumo específico	20,9 MJ.Nm ⁻³			
Pressão máxima de saída	40 bar			
Grau de pureza do H2	99,995%			
Tensão de alimentação	460V			
Frequência elétrica	60 Hz			
Dimensões	Contêiner 20"			

Quadro 4.4: Especificações técnicas do eletrolisador da Hytron Fonte: Hytron (2019)

pés.

Já na Figura 4.8 é possível observar a disposição das áreas utilizadas do contêiner de 20

Figura 4.8: Arranjo técnico do contêiner de eletrólise Fonte: Hytron (2019)

O contêiner do sistema de eletrólise é composto por cinco subsistemas principais: o sistema do processo de eletrólise, o sistema de gerenciamento de calor, o sistema de tratamento de água, o sistema de purificação de gás e o sistema de potência e controle.

Conforme Figura 4.8, a área mais à esquerda é utilizada para alocar o painel elétrico, o sistema de tratamento de água e secagem do gás oxigênio produto do processo de eletrólise; o sistema de potência e controle está localizado na área central do contêiner. Todos componentes que trabalham diretamente com o gás hidrogênio (processo, purificação do hidrogênio) foram alocados na área mais à direita, separados do restante do contêiner por uma parede corta fogo, devido ao risco de explosão.

O processo de eletrólise da água ocorre em um módulo composto por um conjunto de 56 células de eletrólise tipo PEM, formando uma pilha (ou *stack*). Esse *stack* foi fornecido pela empresa Giner ELX e possui uma capacidade nominal de produção de hidrogênio de 21 Nm³ por hora e pressão de operação de 40 bar, conforme ilustrado nas Figuras 4.9 e 4.10.

Figura 4.9: Pilha eletrolisadora Fonte: Hytron (2019)

Figura 4.10: Pilha Eletrolisadora instalada no contêiner Fonte: Hytron (2019)

Este sistema é responsável por receber água proveniente do ponto de captação fornecido pela CESP e purificá-la (retirada de impurezas, gases dissolvidos e íons indesejáveis), de forma a alcançar o grau de pureza requerida pela pilha eletrolisadora. Na Figura 4.11, é possível observar o sistema de tratamento de água e na Figura 4.12 tem-se os reservatórios de água desmineralizada.

Figura 4.11: Sistema de tratamento da água Fonte: Hytron (2019)

Figura 4.12: Reservatórios de água desmineralizada Fonte: Hytron (2019)

4.4.3.3 Sistema de purificação de gás

O sistema de purificação de gás é o subsistema responsável por receber os gases produzidos no processo de eletrólise da água e tratá-los para alcançarem o devido grau de pureza que, no caso do hidrogênio, é de no mínimo 99,995%. Na Figura 4.13 é possível visualizar o sistema de purificação fora do contêiner.

Figura 4.13: (a) Secagem de oxigênio; (b) Purificador hidrogênio Fonte: Hytron (2019)

Todos os atuadores do sistema de purificação de hidrogênio são do tipo pneumático. A escolha para este tipo de equipamento se deve à necessidade de evitar a utilização de componentes elétricos próximo à produção do hidrogênio dentro do contêiner, diminuindo riscos de eventos extremos nesta área. As fotos utilizadas na Figura 4.13 foram tiradas antes dos sistemas terem sido alocados no interior do contêiner, na Figura 4.14 estão mostrados os sistemas de purificação e secagem dos gases, hidrogênio e oxigênio, respectivamente, no interior do contêiner.

Figura 4.14: Sistemas de purificação e secagem dos gases Fonte: Hytron (2019)

4.4.3.4 Sistema de gerenciamento de calor

Este sistema é responsável pela manutenção dos níveis de temperatura dentro do contêiner e de todo o processo de eletrólise. Ele é composto por um *chiller* que será instalado em cima do contêiner, e um *minichiller*, o qual será instalado dentro do contêiner, sendo responsável por fornecer água fria para os componentes do processo. Na Figura 4.15 é possível observar os dois *chillers*.

Figura 4.15: (a) *Minichiller* (esquerda); (b) *chiller* principal (direita) Fonte: Hytron (2019)

O sistema de potência do contêiner é responsável por realizar a conexão de todos componentes que consomem energia elétrica da rede, o qual é composto por um quadro elétrico, transformador, retificador e componentes auxiliares para garantir a qualidade da eletricidade dentro do contêiner. Este subsistema já se encontra instalado dentro do contêiner, assim como todos os componentes eletrônicos do sistema de controle geral. Na Figura 4.16 é possível observar o sistema de potência e controle integrado ao contêiner.

Figura 4.16: (a)Transformador; (b) sistema de controle e; (c) acesso sala da fonte retificadora Fonte: Hytron (2019)

4.5 Reservatório pressurizado

O reservatório pressurizado é o componente responsável pelo armazenamento do hidrogênio produzido pelo eletrolisador, que pode ser realizado com pressões acima da atmosférica, de forma a diminuir o volume físico ocupado pelo tanque.

4.5.1 Características do projeto

O reservatório do projeto da CESP deve ser capaz de operar com pressões máximas entre 25 e 30 bar e alocar uma capacidade de armazenamento de hidrogênio de até 600 Nm³.

Com esta capacidade de armazenagem é possível, no âmbito da pesquisa e desenvolvimento, realizar múltiplas operações durante a fase de pesquisa da planta.

A composição do tanque deve ser metálica, capaz de suportar a fragilização ocasionada pelo hidrogênio nas paredes do mesmo durante a vida útil da planta de armazenamento de energia. O tanque deve estar equipado com sensores de temperatura e manômetros digitais para uma integração de maneira efetiva na planta.

4.5.2 Escolha adquirida

Para o projeto da CESP foi escolhido o reservatório fornecido pela empresa brasileira Fhaizer, localizada na cidade de Joinville/SC. Esta empresa possui grande experiência com o desenvolvimento de vasos de pressão que trabalham como autoclaves.

O tanque fornecido pela empresa utiliza paredes feitas do aço ASTM A516 G70, podendo trabalhar com o gás hidrogênio a uma pressão máxima de trabalho de 25 bar. Na Figura 4.17 tem-se o reservatório no local indicado para a instalação do sistema de armazenamento de energia em Porto Primavera.

Figura 4.17: Reservatório pressurizado Fonte: BASE (2019)

De forma a atingir a capacidade de 600 Nm³ de armazenamento, o tanque possui um volume real de 26,6 m³. O Quadro 4.5 contém as especificações técnicas do reservatório fornecido pela Fhaizer.

Reservatório Pressurizado				
Empresa	Fhaizer			
País de origem	Brasil			
Fluido de serviço	Hidrogênio			
Material	ASTM A516 G70			
Capacidade	600 Nm ³			
Pressão de trabalho	25 bar			
Diâmetro	1.600 mm			
Comprimento	12.650 mm			
Volume físico	26,604 m ³			
Espessura da parede	25,4 mm			
Peso líquido	16.049,20 kg			

Quadro 4.5: Especificações do reservatório pressurizado Fonte: Fhaizer (2018)

4.6 Célula a Combustível

O conjunto de células a combustível é o sistema responsável por utilizar o hidrogênio armazenado no reservatório pressurizado, associando o mesmo com o oxigênio do ar, produzindo energia elétrica de forma a completar o ciclo do sistema de armazenamento de energia elétrica.

4.6.1 Características do projeto

O conjunto da célula a combustível deve ser capaz de operar em uma ampla faixa de aplicações, desde fornecer energia elétrica por longos períodos (considerando que se tenha hidrogênio suficiente no reservatório pressurizado) até o atendimento de cargas em horário de ponta, onde a demanda na rede elétrica é a mais alta ao longo do dia.

O foco do conjunto de células a combustível no projeto de P&D é atender à demanda elétrica do sistema auxiliar da UHE de Porto Primavera, ao longo do dia, enquanto não houver geração fotovoltaica, ou operando em conjunto com a planta solar caso seja necessário a complementariedade na transferência de eletricidade.

Como o conjunto de célula irá utilizar o hidrogênio armazenado no reservatório, ela terá no máximo 600 Nm³ de gás para consumir⁸, quando o tanque estiver com sua carga máxima.

⁸ Na verdade um pouco menos, pois há necessidade de se manter todos os componentes a uma pressão superior à atmosférica, evitando a contaminação do hidrogênio com oxigênio do ar, em caso de haver algum pequeno vazamento. Também o *stack* da CaC opera acima da pressão atmosférica.

Logo, o dimensionamento do projeto demandou uma célula a combustível capaz de oferecer uma potência elétrica de no máximo 100 kW de volta para rede.

4.6.2 Escolha da literatura

Conforme pesquisa na literatura, vários fornecedores atendiam à capacidade requerida pelo projeto e os demais requisitos estabelecidos. Logo, a partir da coleta de dados calculou-se o consumo específico médio de um conjunto de células a combustível encontrado na literatura. No Quadro 4.6 estão dispostos os fabricantes consultados, bem como o consumo específico de hidrogênio, geração de energia elétrica requerida pelo projeto e a tecnologia utilizada em cada produto com uma potência de 100kW.

Célula a Combustível					
Empresa	País	Tecnologia	Consumo Específico (Nm ³ .MJ ⁻¹)	Eficiência (%)*	Fonte
Hydrogenics	Canada	PEM	0,194	40,3	https://www.hydrogenics.com/
Proton Motor	EUA	PEM	0,186	42,1	https://www.proton-motor.de/
N2 FUJI	Japão	PAFC	0,194	40,3	https://www.n2telligence.com/
Ballard	Canada	PEM	0,222	35,3	http://www.ballard.com/
FuelCell Energy	EUA	PAFC	0,200	39,2	https://www.fuelcellenergy.com/
Powercell	Suécia	PEM	0,189	41,5	https://www.powercell.se/
Média			0,198	39,6	
*Foi utilizado o PCS para cálculo da eficiência das CaC, para estar de acordo com o cálculo do					

eletrolisador, visto que o SAEEH é um sistema fechado, portanto deve-se adotar o mesmo poder calorífico do gás nos dois equipamentos.

Quadro 4.6: Dados dos conjuntos de células a combustível da literatura

Com base no Quadro 4.6, das empresas consultadas, seis se mostraram capazes de fornecer equipamentos com a potência requerida e fatores como baixa temperatura de operação no processo de conversão de energia e aplicação em locais expostos ao clima, como é o caso do projeto da CESP. Um outro fator preponderante é o consumo do hidrogênio. Logo, a empresa Proton Motor foi a que apresentou em seu produto um menor consumo, de 0,186 Nm³.MJ⁻¹. A empresa Ballard tem o equipamento com o maior consumo, apresentando um valor de 0,222 Nm³.MJ⁻¹. A média de consumo específico de um conjunto de célula combustível encontrado na literatura foi de 0,198 Nm³.MJ⁻¹, o que significa que para produzir a potência elétrica de 100 kW na rede elétrica, o sistema deve consumir 71,3 Nm³.h⁻¹ do reservatório pressurizado.

É importante ressaltar que, apesar do comparativo de diferentes tecnologias, tanto a célula de ácido fosfórico quanto a de membrana polimérica apresentaram valores similares de consumo para a mesma geração elétrica.

4.6.3 Escolha adquirida

Para o projeto da CESP foi escolhida um conjunto de células a combustível que utiliza a tecnologia tipo PEM fabricado pela empresa canadense Hydrogenics, com sede em Mississauga, Ontario no Canadá.

A empresa é líder mundial no projeto, desenvolvimento e fabricação de sistemas eletrolisadores, células a combustível e soluções para armazenamento de energia. Ela produz células a combustível com a tecnologia tipo PEM para o mercado mundial. Na Figura 4.18, tem-se o contêiner da célula a combustível com a representação das partes.

Figura 4.18: Demarcações das áreas no interior do contêiner de célula a combustível Fonte: Hydrogenics (2018)

O interior do contêiner possui três áreas principais: *i*) área do inversor, onde a eletricidade é convertida de corrente continua para alternada, que pode ser injetada na rede elétrica; *ii*) área da célula a combustível, que é uma área classificada com risco de explosão e onde o hidrogênio é utilizado para gerar eletricidade; *iii*) área de gerenciamento de calor, na qual o calor produzido pelo processo da célula é dissipado no ambiente.

O conjunto de CaC do projeto da CESP tem uma potência máxima de geração de 100 kW, consumindo 70 Nm³ por hora para suprir os requisitos do projeto (neste valor já está incluso o consumo dos componentes auxiliares do contêiner). O Quadro 4.7 descreve as especificações técnicas do conjunto fornecido pela Hydrogenics.

Célula a Combustível				
Empresa Hydrogenics				
Modelo	HyPM-R100			
País de origem	Canada			
Tecnologia	PEM			
Consumo de H ₂	70 Nm ³ .h ⁻¹			
Potência gerada	100 kW			
Pressão de entrada de H ₂	5 a 7 bar			
Grau de Pureza do H ₂	99,99%			
Tensão elétrica	460 V			
Frequência Elétrica	60 Hz			
Dimensões	Contêiner 20"			

Quadro 4.7: Especificações técnicas do conjunto de células a combustível da Hydrogenics Fonte: Hydrogenics (2018)

Para ser capaz de fornecer uma potência elétrica de 100 kW, foram integrados quatro módulos individuais de 31 kW cada, totalizando um conjunto de 124 kW, na qual parte de sua energia é utilizada pelos sistemas auxiliares do contêiner, garantindo que toda a potência requerida pelo projeto seja entregue de maneira adequada. Na Figura 4.19 são apresentados os módulos de 31 kW dentro do contêiner.

Figura 4.19: Módulos de 31 kW conectados em série no contêiner da Hydrogenics Fonte: Hydrogenics (2018)

Com a finalidade de garantir o desempenho e eficiência do sistema durante as operações, um sistema de gerenciamento, visto na Figura 4.20, foi dimensionado e alocado no interior do contêiner.

Figura 4.20: Sistema de gerenciamento de calor do conjunto Fonte: Hydrogenics (2018)

O contêiner conta ainda com um sistema de conversão de energia, que consiste em um inversor para conversão da corrente direta produzida pelas células em alternada. Este inversor é fornecido pela empresa SMA e possui uma potência máxima de 125 kW, saída de 460 VAC e frequência de 60 Hz, possibilitando a integração do conjunto no barramento de 460 V da planta de armazenamento de energia. Na Figura 4.21 tem-se o contêiner do projeto e o inversor.

Figura 4.21: (a) Contêiner da célula a combustível; (b) inversor SMA Fonte: Hydrogenics (2018)

O Quadro 4.8 apresenta um resumo do eletrolisador, reservatório pressurizado, célula a combustível e banco de baterias dos sistemas da literatura e adquirido, de forma a permitir a análise de desempenho posteriormente.

Sistema da	literatura	Sistema adquirido		
Eletrol	isador	Eletrolisador		
Capacidade	20 Nm ³ .h ⁻¹	Capacidade	20 Nm ³ .h ⁻¹	
Pressão de saída	30 bar	Pressão de saída	40 bar	
Consumo	19,8 MJ.Nm ⁻³	Consumo	20,9 MJ.Nm ⁻³	
Reservatório	Pressurizado	Reservatório Pressurizado		
Capacidade	600 Nm ³	Capacidade	600 Nm ³	
Pressão	25 bar	Pressão	25 bar	
Célula a Co	ombustível	Célula a Combustível		
Capacidade	100 kW	Capacidade	100 kW	
Consumo	0,198 Nm ³ .MJ ⁻¹	Consumo	0,194 Nm ³ .MJ ⁻¹	
Banco de	Baterias	Banco de Baterias		
Capacidade	1800 MJ	Capacidade	1800 MJ	
Potência	250 kW	Potência	250 kW	
Eficiência	95,8%	Eficiência	95,0%	

Quadro 4.8: Sistema modelado e adquirido completo Fonte: Elaborado pelo autor

Observa-se que no Quadro 4.8, o eletrolisador encontrado na literatura consome 1,1 MJ a menos por unidade de volume de gás produzido que o eletrolisador fornecido pela empresa brasileira Hytron, enquanto a célula a combustível da Hydrogenics consome uma quantidade de gás similar à encontrada no mercado global, divergindo em apenas 0,004 Nm³ para produzir cada MJ de energia elétrica. A bateria fornecida pela Electrocell possui uma eficiência de ciclo de 95%, enquanto a média encontrada na literatura foi de 95,8%. É importante ressaltar que esta eficiência se refere à eficiência das baterias de íons de lítio e não do contêiner inteiro, tendo sido utilizados estes dados por falta de informação por parte dos fornecedores durante pesquisa da literatura.

A Figura 4.20 representa a planta completa com o sistema de geração de eletricidade e o sistema de armazenamento de energia elétrica do projeto da CESP.

Figura 4.22: Diagrama da planta inteira do projeto da CESP Fonte: Elaborado pelo autor

A partir do fluxograma apresentado na Figura 4.22 foi possível realizar o cálculo das eficiências dos componentes do sistema de armazenamento de energia elétrica, bem como a análise de uma possível operação dele, visto que durante a fase de pesquisa, o SAEE será submetido em diversas aplicações.

5 ANÁLISE DE DESEMPENHO

A análise de desempenho técnico do sistema foi realizada a partir dos dados obtidos na literatura para o sistema e das especificações técnicas fornecidas pelos fabricantes dos equipamentos adquiridos para o sistema do projeto da CESP.

5.1 Cálculo das eficiências do sistema da literatura

Nesse caso foi considerado que a eficiência do reservatório pressurizado é de 100 %, por não conter vazamentos perceptíveis do gás armazenado ao longo do tempo de operação. Para o banco de baterias, a eficiência foi encontrada a partir do cálculo da média das eficiências fornecidas pelos fabricantes, correspondendo a 95,8 %.

5.1.1 Eletrolisador

A partir da Equação 3.3, e adotando os valores para o hidrogênio do Quadro 2.2 com o consumo específico médio do eletrolisador encontrado com a pesquisa dos equipamentos na literatura, chegou-se ao cálculo da eficiência:

$$\eta_{Eletrolisador} = \frac{0,08987(kg.\,m^{-3}) \times 141,88(MJ.\,kg^{-1})}{19,8(MJ.\,m^{-3})} \times (100\%) = 64,4\%$$

Portanto, o valor da eficiência calculada para o eletrolisador a partir dos dados adquiridos na literatura é de 64,4 %. E, adotando o valor de produção de hidrogênio requisitado pelo projeto de 20 Nm³ por hora, tem-se:

$$P_{elétrica} = \frac{19,8(MJ.m^{-3}) \times 20(Nm^3.h^{-1})}{3,6} = 110 \ kW$$

Portanto, o equipamento eletrolisador modelado com os dados da literatura possui uma eficiência de 64,4%, e um consumo de 110 kW para ser capaz de produzir 20 Nm³.h⁻¹ de hidrogênio.

A partir da Equação 3.4 e adotando os dados para o hidrogênio do Quadro 2.2, com o consumo específico médio da célula a combustível encontrado com a pesquisa dos equipamentos na literatura, chegou-se no cálculo da eficiência:

$$\eta_{CaC} = \frac{1}{0,198(m^3.MJ^{-1}) \times 0,08987(kg.m^{-3}) \times 141,88(MJ.kg^{-1})} \times (100\%) = 39,61\%$$

Logo, o valor da eficiência calculada para a CaC do sistema a partir dos dados adquiridos na literatura é de 39,6 %. E, adotando o valor de geração elétrica do conjunto requisitado pelo projeto de 100 kW, tem-se:

$$\dot{Q}_{H_2} = 0,198(m^3 \times MJ^{-1}) \times 100(kW) \times 3,6 (MJ.kWh^{-1}) = 71,28 (m^3.h^{-1})$$

Portanto o conjunto de células a combustível da literatura possui uma eficiência de 39,6% e consumo de hidrogênio de 71,3 Nm³.h⁻¹ para conseguir suprir os 100 kW do projeto.

5.1.3 Eficiência do sistema da literatura

Com o cálculo das eficiências do eletrolisador, célula a combustível, reservatório pressurizado e baterias, obtidas a partir da capacidade e consumo desses componentes, tem-se o resumo apresentado no Quadro 5.1.

Sistema da literatura						
Elet	rolisador	Célula a Combustível				
Capacidade	20 Nm ³ .h ⁻¹	Capacidade	100 kW			
Consumo	19,8 MJ.Nm ⁻³	Consumo	0,198 Nm ³ .MJ ⁻¹			
Eficiência	64,4%	Eficiência	39,6%			
Reservatór	io Pressurizado	Banco de Baterias				
Capacidade	600 Nm ³	Capacidade	1.800 MJ			
Pressão	25 bar	Potência	250 kW			
Eficiência	100%	Eficiência	95,8%			

Quadro 5.1: Eficiências dos equipamentos do SAEE modelado a partir dos dados da literatura Fonte: Elaborado pelo autor

Com estes dados foi possível obter a eficiência global dos dois sistemas de armazenamento com base em dados da literatura:

$$\eta_{H_2} = (0,644 \times 1 \times 0,396) \times 100\% = 25,5\%$$

 $\eta_{bateria} = 95,8\%$

5.2 Cálculo das eficiências do sistema adquirido

Com o intuito de encontrar os valores das eficiências dos componentes do sistema do projeto da CESP, foi considerado, assim como no estudo do sistema da literatura, uma eficiência de 100% do reservatório pressurizado e 95% de eficiência de ciclo do banco de baterias da Electrocell (valor para a eficiência das células de íons de lítio).

5.2.1 Eletrolisador

A partir da Equação 3.3 e adotando os valores para o hidrogênio do Quadro 2.2, com o consumo específico do eletrolisador fornecido pela empresa Hytron, foi possível chegar no cálculo da eficiência:

$$\eta_{Eletrolisador} = \frac{0,08987(kg.m^{-3}) \times 141,88(MJ.kg^{-1})}{20,9(MJ.m^{-3})} \times (100\%) = 61,01\%$$

Logo, o valor da eficiência calculada para o eletrolisador adquirido para o projeto é de 61,0 %. E, adotando o valor de produção de hidrogênio requisitado pelo projeto de 20 Nm³ por hora, tem-se o consumo:

$$P_{el\acute{e}trica} = \frac{20,9(MJ.\,m^{-3}) \times 20(Nm^3.\,h^{-1})}{3,6(MJ.\,kWh^{-1})} = 116,1\,kW$$

Portanto, o equipamento eletrolisador fornecido pela Hytron possui uma eficiência de 61,0 % e um consumo de 116,1 kW, capaz de produzir o volume máximo dimensionado para o projeto.

A partir da Equação 3.4, e adotando os valores para o hidrogênio do Quadro 2.2, além do consumo específico médio da célula a combustível fornecida pela empresa Hydrogenics para o modelo HyPM-R100, tem-se o cálculo da eficiência:

$$\eta_{CaC} = \frac{1}{0,194(m^3.MJ^{-1}) \times 0,08987(kg.m^{-3}) \times 141,88(kWh.kg^{-1})} \times (100\%) = 40,33\%$$

Assim, o valor da eficiência calculada para a célula a combustível escolhida para o projeto é de 40,3 %. E, utilizando os dados fornecidos pela Hydrogenics, tem-se a vazão de consumo de hidrogênio:

$$\dot{Q}_{H_2} = 0.194(m^3 \times MJ^{-1}) \times 100(kW) \times 3.6(MJ.kWh^{-1}) = 70.0 \ (m^3.h^{-1})$$

Portanto, o conjunto de células a combustível HyPM-R100 possui uma eficiência de 40,3 % e consumo de hidrogênio de 70 Nm³ por hora para conseguir suprir os 100 kW do projeto.

5.2.3 Eficiências do sistema adquirido

O sistema de armazenamento de energia elétrica escolhido para o projeto da CESP tem as eficiências de seus equipamentos descritas no Quadro 5.2, bem como suas principais características técnicas de operação.

Sistema adquirido						
Elet	trolisador	Célula a Combustível				
Capacidade	20 Nm ³ .h ⁻¹	Capacidade	100 kW			
Consumo	20,9 MJ.Nm ⁻³	Consumo	0,194 Nm ³ .MJ ⁻¹			
Eficiência	61,0%	Eficiência	40,3%			
Reservató	rio Pressurizado	Banco de Baterias				
Capacidade	600 Nm ³	Capacidade	1.800 MJ			
Pressão	25 bar	Potência	250 kW			
Eficiência	100%	Eficiência	95,0%			

Quadro 5.2: Eficiências dos equipamentos do SAEE adquirido para o projeto da CESP Fonte: Elaborado pelo autor
Com os valores encontrados no Quadro 5.2 para a eficiência do eletrolisador, célula a combustível e reservatório pressurizado, e os utilizando na Equação 3.5, tem-se a eficiência global do sistema adquirido de hidrogênio para o ciclo de energia.

$$\eta_{H_2} = (0,610 \times 1 \times 0,403) \times 100\% = 24,61\%$$

O sistema de armazenamento de energia elétrica eletroquímico do projeto adquirido possui uma eficiência de 95,0%, o que indica uma perda por calor de 5% ao se realizar um ciclo do banco de baterias.

Comparando os dois sistemas (literatura e adquirido) e, através do diagrama de energia da Figura 5.1, tem-se a representação das taxas de energia elétrica que entram e saem nos sistemas.

Figura 5.1: Diagrama (a) SAEEa; (b) SAEE1 Fonte: Elaborado pelo autor

Em ambos os casos, os sistemas de armazenamento de energia elétrica serão energizados pelas plantas de geração de eletricidade citados anteriormente no Capítulo 4. O barramento de 460 V, no qual os equipamentos são conectados, é elevado a uma tensão de 13,8 kV para suprir a demanda energética do sistema de serviço auxiliar UHE. É considerado que o sistema de serviço auxiliar da UHE possui um consumo de 2,5 MW, portanto é uma carga bem acima do fornecido pelo SAEE proposto. O barramento está mostrado no Anexo D.

5.3 Aplicação do SAEE

A fim de analisar a operação do SAEE adquirido no projeto e fazer uma previsão das aplicações desta tecnologia, foram pensados dois casos. No primeiro, o SAEE atua de modo a equalizar a potência de fornecimento de energia elétrica ao longo do dia; no segundo caso, o SAEE é responsável por prover energia na hora de maior consumo elétrico do dia.

5.3.1 Equalização da geração elétrica

Para ser capaz de equalizar o fornecimento de energia elétrica para a rede, o SAEE precisa ter uma operação conjunta do SAEEH e do SAEEB de forma a manter a injeção de energia elétrica com uma taxa constante. A Figura 5.2 mostra a injeção constante de energia

elétrica na rede a uma potência de 42,3 kW. Este valor representa o quanto de energia elétrica o conjunto fotovoltaico com o SAEE consegue fornecer constantemente ao sistema de serviço auxiliar da UHE. Os detalhes desse cálculo estão no Apêndice C.

Figura 5.2: Fornecimento de energia elétrica com potência constante Fonte: Elaborado pelo autor

Na Figura 5.3 é demonstrado que o SAEEH operou por 24 horas constantemente, enquanto o eletrolisador produzia o hidrogênio a célula a combustível ficava em espera e, quando a célula gerava potência elétrica o eletrolisador ficava em espera. O SAEEB operou em conjunto com os componentes do SAEEH: quando o eletrolisador recebia energia elétrica da planta fotovoltaica, o banco de baterias também era carregado, se houvesse eletricidade disponível, e, quando a célula operava durante as horas que a fonte solar não pudesse suprir a demanda, a bateria fornecia a energia necessária para manter a potência constante. O SAEEB foi utilizado por 20 horas com o intuito de auxiliar o sistema de hidrogênio.

Figura 5.3: Operação do SAEE para equalizar a geração renovável Fonte: Elaborado pelo autor

Com o intuito de otimizar o uso do SAEE em conjunto com a geração fotovoltaica e utilizando a planilha apresentada no Apêndice C, foi possível obter o valor de potência elétrica de 42,3 kW, capaz de fornecer em um dia 3.650 MJ (1.014 kWh) de energia elétrica para a rede. No Quadro 5.3 são apresentados os dados dos componentes do SAEE nesta operação.

	Energia Fornecida (MJ.dia ⁻¹)/(kWh.dia ⁻¹)	Energia Consumida (MJ.dia ⁻¹)/(kWh.dia ⁻¹)	Eficiência de Ciclo
SAEEH	911/253	3.701 / 1.028	24,6%
SAEEB	940 / 261	990 / 275	95,0%

Quadro 5.3: Dados de operação do SAEEH e SAEEB Fonte: Elaborado pelo autor

O SAEEH utilizou 177 m³ de hidrogênio durante sua operação completa em um dia, representando aproximadamente 29,5% da capacidade máxima do reservatório de hidrogênio empregado no projeto da CESP.

5.3.2 Fornecimento de energia no horário de ponta

No segundo caso de estudo propõe-se utilizar o SAEE para auxiliar a planta fotovoltaica a fornecer energia elétrica renovável no horário de ponta. Este horário é definido pela ANEEL e a concessionária responsável pela distribuição da energia elétrica seleciona três horas seguidas ao longo dia para cobrar uma tarifa mais alta (ponta), duas horas com uma tarifa intermediária, e os horários considerados fora de ponta, que possui uma tarifa baixa (ANEEL, 2015). Na Figura 5.4 observa-se o exemplo da distribuição de tarifas ao longo do dia, especificada pela ANEEL.

Figura 5.4: Exemplo da Tarifa Branca Fonte: ANEEL (2015)

A Elektro, concessionária da região de Rosana, é responsável por definir a distribuição tarifária ao longo do dia. Segundo a empresa, o horário de ponta é das 17:30 às 20:30; os horários intermediários são das 16:30 às 17:30 e 20:30 às 21:30; e das 21:30 às 16:30 é o horário fora de ponta (ANEEL, 2015). Portanto, para esse caso foi utilizado o horário de ponta escolhido pela empresa Elektro, conforme Figura 5.5. Os cálculos para este caso são demonstrados na planilha do Apêndice D.

Fonte: Elaborado pelo autor.

Neste caso, o SAEE foi utilizado para potencializar o fornecimento de energia elétrica na rede no horário de ponta, chegando em uma potência máxima de 259,4 kW às 18:00. Para esta finalidade, o eletrolisador teve sua operação priorizada ao longo do dia no período fora de ponta que apresentou potencial solar, e o restante da eletricidade foi utilizada para carregar a bateria. Na Figura 5.6 é possível observar a operação dos componentes do SAEE ao longo do dia.

Figura 5.6: Operação do SAEE no horário de ponta Fonte: Elaborado pelo autor.

O eletrolisador operou em um total de 10 horas, parando de operar no horário intermediário, produzindo 175,3 m³ de hidrogênio. A CaC operou pelas 3 horas de ponta (das 17:30 às 20:30), fornecendo 901 MJ (250 kWh) à rede elétrica, e a bateria operou por 8 horas durante a carga e 3 horas na descarga. No Quadro 5.4, estão dispostos os dados de operação do SAEE.

	Energia Fornecida (MJ.dia ⁻¹)/(kWh.dia ⁻¹)	Energia Consumida (MJ.dia ⁻¹)/(kWh.dia ⁻¹)	Eficiência de Ciclo
SAEEH	901 / 250	3.661 / 1.017	24,6%
SAEEB	1.710 / 475	1.800 / 500	95,0%

Quadro 5.4: Dados de operação do SAEEH e SAEEB Fonte: Elaborado pelo autor

Durante esta operação, o SAEE forneceu 2.610 MJ (725 kWh) dos 3.640 MJ (1.011 kWh) total de energia para a rede elétrica, ou seja, 1.030 MJ (286 kWh) foram injetados na rede diretamente da geração fotovoltaica sem passar pelo SAEE. Isto ocorre devido a dois fatores: o primeiro é que nas horas fora de ponta, o SAEE não conseguiu armazenar toda a energia elétrica gerada pela planta fotovoltaica no caso da bateria foi atingida sua capacidade máxima de armazenamento e para o eletrolisador, que mesmo operando por 8 horas com carga máxima e, 2 horas em carga parcial, não foi capaz de utilizar toda eletricidade disponível. O outro fator é que nas horas de ponta e intermediárias, foi priorizada a injeção da eletricidade na rede, ou seja, a energia elétrica gerada pela planta fotovoltaica nestas horas foi direcionada para a rede e não houve operação do eletrolisador nem carregamento da bateria. No SAEEH, o reservatório de hidrogênio utilizou apenas 29,2% de sua capacidade máxima neste segundo caso. No Quadro 5.5, estão apresentados os dados de operação dos dois casos de estudo.

	CASO1	CASO2
Energia na rede (MJ)/(kWh)	3.650 / 1.281	3.639 / 1.288
Eficiência* (%)	56,3	56,1
Energia fornecida pelo SAEE (MJ)/(kWh)	1.851/ 514	2.623 / 729
Uso da bateria (MJ)/(kWh)	940 / 261	1.710 / 475
Quantidade de H2 utilizado (m ³)	177	175
Potência máx. CaC (kW)	19,5	83,4
*Eficiência entre a energia elétrica gerada pela planta	a de 401 kWp e a energia in	ijetada na rede elétrica.

Quadro 5.5: Dados de operação dos casos de estudo Fonte: Elaborado pelo autor

5.4 Análise dos resultados

Com os cálculos das eficiências dos componentes do sistema adquirido pelo projeto (SAEEa) e do sistema modelado com os dados da literatura (SAEEl) foi possível comparar os diferentes valores obtidos para os dois sistemas. Esta análise admite que todos os equipamentos que foram comparados possuem valores iguais de capacidade e operam sob mesmas condições.

5.4.1 Banco de baterias

O banco de baterias de 1.800 MJ de capacidade de armazenamento de energia elétrica encontrado na literatura possui uma eficiência de ciclo de 95,8% para uma taxa de 0,5C, indicando que para um ciclo completo de 4 horas (2 horas de carga e descarga), a bateria perde 75,6 MJ na forma de calor. Para o conjunto de baterias da Electrocell, que tem uma eficiência de 95,0% para o mesmo tempo de carga e descarga, a perda é de 90 MJ sob a forma de calor. Esta diferença de 14,7 MJ entre as perdas dos dois bancos de baterias equivale a menos de 1% da capacidade máxima de armazenamento do conjunto.

5.4.2 Eletrolisador

Os valores calculados para a eficiência de conversão da energia elétrica em energia química do eletrolisador adquirido e da literatura indicaram, que este foi o componente do SAEE com maior discrepância nos resultados. O eletrolisador da Hytron consome 116,1 kW para produzir os 20 Nm³.h⁻¹ de hidrogênio requerido pelo projeto, resultando em uma eficiência de 61,0% nesta conversão energética; enquanto o sistema gerador de hidrogênio encontrado na literatura possui uma eficiência de 64,4 % para realizar a mesma operação. Esta perda em 3,4% representa que para cada 20 Nm³ de hidrogênio produzidos no período de uma hora, existe uma perda de 21,9 MJ por parte do eletrolisador adquirido em relação ao da literatura.

Considerando que o eletrolisador trabalhe em um total de 12 horas no dia, com capacidade total, o sistema adquirido consome 262,8 MJ a mais que um sistema com eficiência igual ao encontrado na literatura. Logo, é necessária mais energia do sistema que fornece a eletricidade ao eletrolisador, de forma a garantir uma produção fixa de 20 Nm³.h⁻¹ hidrogênio.

5.4.3 Célula a combustível

De todos os componentes analisados neste trabalho, o conjunto de célula a combustível se mostrou o único com eficiência de conversão da energia acima do equipamento encontrado na literatura, neste caso para gerar energia elétrica a partir da energia química do hidrogênio. Para ser capaz de fornecer os 100 kW de energia elétrica para a rede, a CaC da Hydrogenics consome 70 Nm³ de hidrogênio por hora, resultando numa eficiência de 40,3%. O conjunto de CaC da literatura consome 71,3 Nm³ de hidrogênio em uma hora para entregar os mesmos 100 kW, ocasionando uma eficiência de conversão energética de 39,6%.

A diferença de 0,9% na eficiência entre a CaC do SAEEa e SAEEl indica que o equipamento da Hydrogenics exige menos 1,3 Nm³.h⁻¹ de hidrogênio da capacidade do eletrolisador e do reservatório, em relação ao conjunto da literatura, quando operados em condição de produção máxima de energia elétrica, ou seja, produzindo os 100 kW.

5.4.4 SAEEH completo

Como um dos objetivos do presente trabalho é analisar tecnicamente o SAEEH, é necessário avaliar a eficiência de ciclo do sistema completo, com o eletrolisador, reservatório e CaC, fechando assim, o ciclo de conversão de energia, onde o que entra e sai do sistema de armazenamento é energia elétrica.

Separados, cada equipamento do SAEEH possui uma eficiência de conversão de energia diferente, com uma perda de 4,4% entre o eletrolisador adquirido e o da literatura; já na CaC, houve um ganho de eficiência de 0,9% no conjunto adquirido. Para o sistema completo adquirido, a eficiência de ciclo foi de 24,6%, enquanto no SAEEI foi de 25,5%, resultando numa perda de 0,9% do SAEEa. Os cálculos indicam que o SAEEH do projeto da CESP está tecnicamente um pouco abaixo, em termos de eficiência, de sistemas similares encontrados na literatura.

Esta diferença de eficiência indica que o SAEEa, em condições de operações iguais ao SAEEl, possui uma capacidade de fornecer menos energia elétrica para a rede. Assim, o sistema encontrado na literatura apresentou uma eficiência de ciclo maior que o sistema adquirido em 0,9%, representando um desvio de 3,5% para baixo do SAEE do projeto da CESP em relação à literatura.

5.4.5 Análise dos casos de estudo

Os dois casos de estudo buscaram demonstrar como SAEE do projeto da CESP se comporta em aplicações que simulam a realidade. No primeiro caso, o SAEEH operou por 24 horas consecutivas, isto porque, para equalizar a energia elétrica fornecida para a rede, é necessário um uso constante do SAEE, visto que a única fonte sendo utilizada para energizar o sistema é a solar. De acordo com a Figura 4.4., o potencial solar começa às 06h e termina às 18h. Para o período com baixo potencial solar é necessário que o SAEE forneça a energia elétrica armazenada. Como a operação do SAEEH foi priorizada, o SAEEB foi utilizado para auxiliar o sistema de hidrogênio nos momentos que fosse necessário um aumento da capacidade do SAEE. Desta forma, o banco de baterias operou por 20 horas, indicando que houve apenas 4 horas do dia que o SAEEH conseguiu suprir isoladamente as demandas energéticas, garantindo uma potência constante de 42,3 kW.

Ainda no primeiro caso, a operação do SAEE foi capaz de armazenar e fornecer 1.850 MJ (514 kWh) à rede elétrica, representando uma fração de 50,6% da energia fornecida para a rede; outros 1.800 MJ (500 kWh) foram fornecidos diretamente da planta solar de 401 kWp.

No segundo caso de aplicação, o SAEE foi utilizado para prover a energia elétrica no horário de ponta, das 17:30 às 20:30. O SAEEH operou por 13 horas ao longo do dia, sendo que 10 horas foram para geração de hidrogênio e 3 horas fornecendo 901 MJ (250 kWh) para a rede elétrica através da CaC. O eletrolisador foi energizado pela planta solar de 401 kWp, com operação a partir das 06:00 até às 16:30, quando iniciou o horário intermediário. A CaC iniciou o fornecimento de energia elétrica para a rede às 17:30, finalizando às 20:30, e consumindo todo hidrogênio produzido pelo eletrolisador, que corresponde a 175 m³.

O SAEEB operou em conjunto com o sistema de hidrogênio, armazenando a energia elétrica excedente à demanda do eletrolisador, atingindo sua capacidade máxima de 1.800 MJ (500 kWh) às 16:30. Iniciou a descarga às 17:30, fornecendo 1.710 MJ (475 kWh) para a rede no horário de ponta.

A energia elétrica fornecida no horário de ponta foi de 2.930 MJ (814 kWh), dos quais 89,1% representam o SAEE. O total de eletricidade que foi injetada na rede para o segundo caso foi de 3.639 MJ (1011 kWh), indicando que 709 MJ (215 kWh) foram injetados nos horários intermediários e fora de ponta, sem passar pelo SAEE. A energia elétrica que foi injetada na rede em horários fora de ponta ocorreu por falta de capacidade de armazenamento da bateria e pela baixa capacidade de produção de hidrogênio pelo eletrolisador.

6 CONCLUSÕES E SUGESTÕES

Neste estudo, as potências instaladas da planta fotovoltaica, eletrolisador, célula a combustível e banco de baterias já estavam preliminarmente dimensionadas no projeto de P&D da ANEEL. Sendo assim, o objetivo principal deste estudo foi, a partir dos dados reais dos equipamentos efetivamente adquiridos, confirmar se os desempenhos técnicos estimados previamente, obtidos da literatura disponível, estavam de acordo entre si. Várias adaptações de vazões de hidrogênio, potências consumidas e fornecidas e outras características, tiveram que ser realizadas, para que se adequassem aos equipamentos existentes no mercado. Constatou-se, inclusive, que alguns equipamentos de catálogos não estavam disponíveis para aquisição, seja por desinteresse dos fabricantes (não possuem assistência técnica no país, por exemplo) ou por custos desproporcionais. Em relação às baterias de lítio, é importante ressaltar que as eficiências utilizadas neste estudo, foram as eficiências das células eletroquímicas e não do conjunto completo, que deve ser um valor abaixo da disponibilizada pelos diversos fornecedores.

6.1 Conclusões

Ao longo do estudo e com base nos cálculos pode-se afirmar que os equipamentos do SAEEa possuem eficiências similares às encontradas na literatura. O eletrolisador da empresa Hytron apresentou uma eficiência de conversão de energia elétrica em produção de gás hidrogênio com um valor de 61,0%, enquanto o eletrolisador da literatura obteve uma eficiência de 64,4% indicando que, o eletrolisador adquirido possui um consumo energético maior que a média dos eletrolisadores disponíveis no mercado. O valor da eficiência do equipamento da Hytron apresenta uma diferença em relação à média de 6,8%, porém apresenta um consumo específico menor que os conjuntos de grandes empresas como Proton OnSite, McPhy e H2 Nitidor. A menor eficiência do eletrolisador adquirido pode ser justificada pela falta de padronização na divulgação dos dados de consumo energético de eletrolisadores no mercado internacional.

A célula a combustível adquirida, fornecida pela Hydrogenics, foi o único componente que apresentou uma maior eficiência de conversão da energia química do hidrogênio em eletricidade, correspondente a 40,4%, quando comparado à CaC da literatura, que apresentou um valor de 39,6%. Logo, é possível afirmar que a CaC escolhida pelo projeto se encontra muito próximo à média dos equipamentos encontrados no mercado internacional.

O SAEEH adquirido mostrou ter uma eficiência de ciclo abaixo, porém muito próxima da média dos sistemas encontrados no mercado, com um valor de 24,6%, enquanto o sistema da literatura obteve uma eficiência de 25,5%. Desta forma, ganhou-se eficiência na CaC e perdeu-se no eletrolisador. O tanque, por ser um componente que não apresenta perdas, foi considerado idêntico nos dois sistemas. Justificando assim o desvio de apenas 3,9% do SAEEa em relação a eficiência do SAEEI.

O banco de baterias apresentou valores de eficiência similares para os dois conjuntos, a bateria adquirida com 95,0% e da literatura com 95,8%. Conclui-se neste sentido que o sistema de armazenamento de energia elétrica eletroquímico fornecido pela Electrocell está de acordo com os sistemas disponíveis no mercado internacional de baterias de íons de lítio. A eficiência de ciclo do conjunto todo da Electrocell é de 90%, porém este valor não foi utilizado pelo fato dos diversos fornecedores consultados não divulgar o valor da eficiência total do contêiner.

Nos casos de operação do SAEE foi possível concluir que para a aplicação de equalizar a geração renovável ao longo do dia, o eletrolisador operou por mais tempo, 11 horas, que na operação para fornecer eletricidade nas horas de ponta, e o mesmo ocorreu para a CaC. Nos dois casos, o tanque utilizou cerca de 30% da capacidade máxima, a CaC operou no primeiro caso com uma potência constante de 19,8 kW e no segundo com pico de 84,6 kW, ou seja, nenhum dos dois componentes trabalharam com sua capacidade total. Já o eletrolisador, operou a maior parte do tempo, por 7 horas no primeiro caso e 8 horas no segundo, com potência máxima, produzindo os 20 Nm³.h⁻¹. Logo, é possível concluir que para estas duas aplicações, seria possível utilizar um eletrolisador de maior capacidade a fim de permitir que a CaC opere com sua potência máxima, de 100 kW, aumentando também o uso do hidrogênio armazenado pelo reservatório.

No entanto, apesar de nos dois casos o eletrolisador se mostrar subdimensionado em relação aos demais componentes, é valido expor que durante a fase de projeto foi dimensionado um eletrolisador e CaC de capacidades maiores, 200 e 250 kW respectivamente, porém devido aos elevados custos no mercado, foi necessária uma redução na capacidade de produção do gerador de hidrogênio e da CaC. O tanque não teve grandes modificações em sua capacidade, por não apresentar um alto custo em relação aos demais equipamentos.

Outro ponto importante, é que o SAEE em questão faz parte de um projeto de P&D, portanto serão realizadas diferentes operações do sistema na fase de pesquisa em campo, a fim de levantar o dimensionamento ótimo do sistema em cada uma das aplicações, além das duas citadas neste estudo. Portanto, os componentes devem ter uma grande flexibilidade na capacidade para atender a todas operações que serão feitas. Um fator que possibilita outras aplicações do SAEE é que a UHE Porto Primavera possui mais 650 kWp de plantas solares e 200 kW de geração eólica, em adição à planta fotovoltaica de 401 kWp, permitindo a operação do eletrolisador em horários diferentes dos apresentados neste estudo, podendo em alguns casos utilizar a capacidade total do reservatório e maiores períodos de armazenamento.

Após a análise de todos os componentes do sistema de armazenamento de energia elétrica com o uso de hidrogênio, foi possível concluir que, apesar do sistema adquirido possuir eficiências abaixo da média para o eletrolisador, o conjunto em sua totalidade apresenta performance similar à encontrada na literatura, e que os valores das eficiências de cada componente podem variar à medida que o projeto avançar para a fase de pesquisa em campo, principalmente para o eletrolisador, visto que se trata de um equipamento novo e único no mercado nacional (primeiro eletrolisador comercial com tecnologia PEM construído no Brasil).

Existe ainda o fato de que as eficiências calculadas foram obtidas a partir de dados apresentados pelos fornecedores para o desempenho ao longo da vida útil das máquinas, sendo esperados valores mais altos para todos os componentes no início das atividades com a planta em funcionamento na UHE Porto Primavera da CESP.

Portanto, conforme demonstrado nos estudos de caso, para o uso diário e com pouca quantidade de energia elétrica armazenada, a bateria possui uma viabilidade técnica maior que o uso do hidrogênio. Porém no caso de se aumentar a quantidade de energia armazenada ou de utilizar um período maior de armazenamento, é possível que o hidrogênio se torne mais viável, visto que no SAEEH, o hidrogênio pode ser armazenado por meses ou anos sem que exista perda do gás nos reservatório, e que existe uma grande facilidade em incluir mais reservatórios, aumentando, assim a capacidade de energia armazenada de maneira simples. O mesmo não ocorre para uma bateria eletroquímica, que possui uma auto-descarga, ou seja, existe uma perda de energia armazenada mesmo sem ser utilizada, e, no caso de aumentar a capacidade de armazenamento, deve-se instalar novos bancos de bateria, que é um sistema complexo com alto custo.

6.2 Sugestões para trabalhos futuros

Como trabalho futuros, sugere-se a análise de viabilidade econômica deste sistema, o que não foi objetivo deste estudo.

Outros projetos similares ao da CESP estão sendo desenvolvidos em âmbito global. Logo, seria possível analisar e comparar nas perspectivas técnica e econômica.

O projeto ainda está em fase de desenvolvimento. Assim, com a pesquisa de campo será possível identificar o comportamento de diversas operações para vários casos. Um possível trabalho seria analisar os dados levantados durante esta pesquisa de campo de forma a identificar as condições ótimas de sistemas similares ao deste estudo para aplicações ligadas à rede elétrica nacional.

Outra possibilidade de interesse é analisar como este sistema proposto se comporta em condições que não estejam conectadas à rede (sistema ilhado ou isolado), o que também não fez parte do escopo deste estudo.

REFERÊNCIAS

ANEEL, Agência Nacional de Energia Elétrica. **Chamada nº 021/2016** - Projeto Estratégico: "Arranjos Técnicos e Comerciais para a Inserção de Sistemas de Armazenamento de Energia no Sistema Elétrico Brasileiro". [s. 1.], p. 23, 2016. Disponível em: <http://www.aneel.gov.br/documents/656831/14930433/Chamada+PD_Estrategico_21_Arma zenamento_Julho2016/>

ANEEL, Agência Nacional de Energia Elétrica. **Postos Tarifários**. 2015. Disponível em: < http:// www.aneel.gov.br/alta-tensao/-/asset_publisher/zNaRBjCLDgbE/content/alta-tensao/ 654800?inheritRedirect=false&redirect=http%3A%2F%2Fwww.aneel.gov.br%2Falta-tensao%3Fp_p_id%3D101_INSTANCE_zNaRBjCLDgbE%26p_p_lifecycle%3D0%26p_p_s tate%3Dnormal%26p_p_mode%3Dview%26p_p_col_id%3Dcolumn-2%26p_p_col_pos%3D2%26p_p_col_count%3D3>

ANEEL, Agência Nacional de Energia Elétrica. **Tarifa Branca**. 2015. Disponível em < http://www.aneel.gov.br/tarifa-branca>

BAKER, J. New technology and possible advances in energy storage. **Energy Policy**, [s. l.], v. 36, n. 12, p. 4368–4373, 2008.

BASE, Energia Sustentável. **Barbosa & Barbosa**. 2019. Disponível em < http://basengenharia.com.br/base/>

BARTHÉLÉMY, H. Hydrogen storage – Recent improvements and industrial prospectives. **Proceedings - 2017 UKSim-AMSS 19th International Conference on Modelling and Simulation, UKSim 2017**, [s. 1.], p. 19, 2018.

BEAINY, A; KARAMI, N; MOUBAYED, N. Simulink model for a PEM electrolyzer based on an equivalent electrical circuit. **2014 International Conference on Renewable Energies for Developing Countries**, REDEC 2014, [s. 1.], n. February, p. 145–149, 2014.

BOURGEOIS, T. et al. Optimization of hydrogen vehicle refueling requirements. **International Journal of Hydrogen Energy**, [s. l.], p. 30, 2017.

CAMARGO, A. R. De. Alocação e operação ótimas de dispositivos de armazenamento de energia em sistemas de distribuição considerando a preservação da vida útil de baterias. 2016. Universidade Estadual de Campinas, [s. 1.], 2016.

CHAGAS, L. G.; URBANO, A.; SCARMINIO, J. Princípios Físicos e Químicos de Baterias de Íon Lítio. XI Semana de Física UEL, [s. l.], p. 1, 2006.

DOE. Multi-Year Research, Development, and Demonstration Plan. **DoE EERE**, [s. l.], v. 2015, p. 3.4.1-3.4.58, 2016. a. Disponível em: https://www.energy.gov/sites/prod/files/2017/05/f34/fcto_myrdd_fuel_cells.pdf%OAhttps://e nergy.gov/sites/prod/files/2017/05/f34/fcto_myrdd_fuel_cells.pdf>

DOE. Comparison of Fuel Cell Technologies. **Energy Efficiency & Renewable Energy**, [s. l.], p. 1, 2016. b. Disponível em:

<https://www.energy.gov/sites/prod/files/2016/06/f32/fcto_fuel_cells_comparison_chart_apr2 016.pdf>

ELECTROCELL. **Proposta de um conjunto de baterias de íons de lítio de 500 kWh**. São Paulo/ SP, 2017.

ETI. Electricity Storage Gaining Momentum. **A.T. Kearney Energy Transition Institute**. [s. 1.], 2018. Disponível em: <http://www.energy-transition-institute.com/Insights/ElectricityStorageFullReport.html>

FADIGAS, E. A. F. A. Energia solar fotovoltaica : fundamentos, conversão e viabilidade técnico-econômica. In: **GEPEA – Grupo de Energia Escola Politécnica Universidade de São Paulo**. [s.l: s.n.]. p. 71.

FHAIZER. Proposta comercial de um reservatório pressurizado para hidrogênio com capacidade de 600 Nm³ a 25 bar. Joinvile/Santa Catarina, 2018.

FERREIRA, P. F. P. Análise de Viabilidade de Sistemas de Armazenamento de Eenergia Elétrica na Forma de Hidrogênio Utilizando Células a Combustível. [s. l.], v. 2, p. 112, 2003.

FRANCESCO, E.; CATERINA, G. Ferramenta de auxílio à tomada de decisão no processo de escolha da tecnologia fotovoltaica. 2015. Universidade Estadual de Campinas, [s. 1.], 2015.

HADJIPASCHALIS, I.; POULLIKKAS, A.; EFTHIMIOU, V. Overview of current and future energy storage technologies for electric power applications. **Renewable and Sustainable Energy Reviews**, [s. 1.], v. 13, n. 6–7, p. 1513–1522, 2009.

Hydrogenics. **Technical and commercial proposal of a 100 kW FC system**. Mississauga/Ontario - Canada, 2018.

HYTRON. **Proposta técnica-comercial do sistema eletrolise tipo PEM**. Sumaré/São Paulo - 2019.

IEA. Informing Energy Sector Transformations. [s. l.], 2017. Disponível em: <www.iea.org/etp/tracking>

IEA, International Energy Agency. Technology Roadmap Energy storage. Encyclopedia of Production and Manufacturing Management, [s. l.], p. 64, 2014.

IEA, International Energy Agency. Technology Roadmap Hydrogen and Fuel Cells. **Encyclopedia of Production and Manufacturing Management**, [s. l.], p. 81, 2015.

IEC, International Electrotechnical Commission. **Electrical Energy Storage**. White paper. (IEC), Geneva, Switzerland, [s. l.], p. 78, 2011.

IRENA. Electricity storage and renewables: Costs and markets to 2030. [s.l: s.n.]. Disponível em: ">http://irena.org/publications/2017/Oct/Electricity-storage-and-renewables-costs-and-markets>

ITM POWER, Energy Storage. Real World Solutions - Products, 2019. Disponível em

<http://www.itm-power.com/products>

LIMA, G. F. De. Desenvolvimento de ligas de Mg em formas maciças para armazenagem de hidrogênio. 2010. Universidade de São Carlos, [s. l.], 2010.

MARCHI, C. S. Hydrogen Compatibility of Materials. **DOE EERE Fuel Cell Technologies Office Webinar**, [s. 1.], 2013.

MATOS, M. B. Análise Energética de um Sistema Híbrido Eólico-Fotovoltaico com Armazenamento de Energia Elétrica através do Hidrogênio e Banco de Baterias. **Tese de Doutorado**. Universidade Estadual de Campinas. Campinas, SP: [s.n], 2013.

NI, M; LEUNG, M K. H.; LEUNG, D. Y. C. Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant. **Energy Conversion and Management**, [s. 1.], v. 49, n. 10, p. 2748–2756, 2008.

OFICINA DA NET. **Como funcionam as baterias de íon de lítio?**. 2018. Disponível em < https://www.oficinadanet.com.br/smartphones/22282-mitos-e-dicas-sobre-baterias-de-smartphones>

PINHO, J.T; . GALDINO, M. A. Manual de Engenharia para Sistemas Fotovoltáicos. In: , 2014.

RENEWABLE, International; AGENCY, Energy. Electricity Storage and Renewables : Costs and Markets To 2030. [s.l: s.n.].

SANO, H. Energy Carriers And Conversion Systems With Emphasis On Hydrogen: volume 2. Energy Carriers and Conversion Systems with Emphasis on Hydrogen, [s. l.], v. 1, p. 170–178, 2009.

SANTOS, D. M. F.; SEQUEIRA, C. A. C. Hydrogen production by alkaline water electrolysis. **Química Nova**, [s. l.], v. 36, n. 8, p. 1176–1193, 2013.

SILVA, E. P. Da. Fontes Renováveis de Energia - Produção de energia para um desenvolvimento sustentável. Livraria da Física: Campinas, SP, 2014.

_____. Introdução À Tecnologia e Economia do Hidrogênio. Unicamp: Campinas, 1991.

SMOLINKA, T.; FRAUNHOFER. PEM Water Electrolysis-Present Status of Research and Development. [s. 1.], 2010.

SOLUTIONS, Energy. **Electricity Storage Technologies**, impacts, and prospects. [s. l.], n. September, 2015.

UNFCCC. ADOPTION OF THE PARIS AGREEMENT - Conference of the Parties COP 21. **Adoption of the Paris Agreement. Proposal by the President.**, [s. 1.], v. 21932, n. December, p. 32, 2015. Disponível em: <http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf>

URSÚA, A; GANDÍA, L. M.; SANCHIS, P. Hydrogen production from water electrolysis: Current status and future trends. **Proceedings of the IEEE**, [s. l.], v. 100, n. 2, p. 410–426, 2012.

ZENG, K.; ZHANG, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. **Progress in Energy and Combustion Science**, [s. l.], v. 36, n. 3, p. 307–326, 2010. Disponível em: http://dx.doi.org/10.1016/j.pecs.2009.11.002

APÊNDICES

Latitude (Ø)	0,39232					
Equinócios (δ2)	0					
Solsticios (δ1)	0,40614					
llere	h(°)	h (rod)	Verão/Inverno	Primavera/Outono	T-2*	Fração Solar
Hora	h = (12-H)*15	n (rad)	vi=senØ.senδ1+cosØ.cosδ1.cosh	po=senØ.senδ2+cosØ.cosδ2.cosh	1=2·VI+2·po	FH = T*SOMAT-1
0	180	3,14	-0,70	-0,92	-3,24	0%
1	165	2,88	-0,67	-0,89	-3,12	0%
2	150	2,62	-0,58	-0,80	-2,77	0%
3	135	2,36	-0,45	-0,65	-2,21	0%
4	120	2,09	-0,27	-0,46	-1,47	0%
5	105	1,83	-0,07	-0,24	-0,62	0%
6	90	1,57	0,15	0,00	0,30	1,0%
7	75	1,31	0,37	0,24	1,22	4,0%
8	60	1,05	0,58	0,46	2,07	6,7%
9	45	0,79	0,75	0,65	2,81	9,1%
10	30	0,52	0,89	0,80	3,37	10,9%
11	15	0,26	0,97	0,89	3,73	12,1%
12	0	0,00	1,00	0,92	3,85	12,5%
13	-15	-0,26	0,97	0,89	3,73	12,1%
14	-30	-0,52	0,89	0,80	3,37	10,9%
15	-45	-0,79	0,75	0,65	2,81	9,1%
16	-60	-1,05	0,58	0,46	2,07	6,7%
17	-75	-1,31	0,37	0,24	1,22	4,0%
18	-90	-1,57	0,15	0,00	0,30	1,0%
19	-105	-1,83	-0,07	-0,24	-0,62	0%
20	-120	-2,09	-0,27	-0,46	-1,47	0%
21	-135	-2,36	-0,45	-0,65	-2,21	0%
22	-150	-2,62	-0,58	-0,80	-2,77	0%
23	-165	-2,88	-0,67	-0,89	-3,12	0%
				Soma	30,86	100%

Hora	Fração	Geração Fotovoltaica (kWh)
0	0,0%	0
1	0,0%	0
2	0,0%	0
3	0,0%	0
4	0,0%	0
5	0,0%	0
6	1,0%	17,6
7	4,0%	71,3
8	6,7%	121,2
9	9,1%	164,1
10	10,9%	197,0
11	12,1%	217,7
12	12,5%	224,8
13	12,1%	217,7
14	10,9%	197,0
15	9,1%	164,1
16	6,7%	121,2
17	4,0%	71,3
18	1,0%	17,6
19	0,0%	0
20	0,0%	0
21	0,0%	0
22	0,0%	0
23	0,0%	0
Total	1	1803

APÊNDICE B - TABELAS DE GERAÇÃO ELÉTRICA SOLAR

Geração Fotovoltaica = Fração_{horária} * 1803 (kWh)

92

	Hora	Geração Fotovoltaica (kWh)	Eletrolisador (kWh)	Tanque (Nm ³)	CaC (kWh)	Bateria (kWh)	Energia na Rede (kWh)
7	0	0	0,0	504,5	19,5	22,8	42,3
Ιíν	1	0	0,0	490,9	19,5	22,8	42,3
<u>e</u>	2	0	0,0	477,3	19,5	22,8	42,3
tan	3	0	0,0	463,6	19,5	22,8	42,3
qu	4	0	0,0	450,0	19,5	22,8	42,3
e (5	0	0,0	436,4	19,5	22,8	42,3
Ţ	6	17,6	0,0	422,8	19,5	5,2	42,3
) II	7	71,3	-29,0	414,1	0,0	0,0	42,3
\mathbf{P}_{F}	8	121,2	-79,0	427,8	0,0	0,0	42,3
letr	9	164,1	-116,0	447,8	0,0	-5,8	42,3
olis	10	197,0	-116,0	467,8	0,0	-38,8	42,3
°*	11	217,7	-116,0	487,8	0,0	-59,5	42,3
õ	12	224,8	-116,0	507,8	0,0	-66,5	42,3
110	13	217,7	-116,0	527,8	0,0	-59,5	42,3
*	14	197,0	-116,0	547,8	0,0	-38,8	42,3
<u>`</u> +	15	164,1	-116,0	567,8	0,0	-5,8	42,3
Ţ	16	121,2	-79,0	581,4	0,0	0,0	42,3
<u>-</u>	17	71,3	-29,0	586,4	0,0	0,0	42,3
ဝိုင်	18	17,6	0,0	586,4	19,5	5,2	42,3
Ō*	19	0	0,0	572,8	19,5	22,8	42,3
70,	20	0	0,0	559,1	19,5	22,8	42,3
/10	21	0	0,0	545,5	19,5	22,8	42,3
ŏ	22	0	0,0	531,9	19,5	22,8	42,3
	23	0	0,0	518,3	19,5	22,8	42,3
	Total	1803	-1027,9		252,9	261,1	1014,0

APÊNDICE C - TABELA DO PRIMEIRO CASO DE OPERAÇÃO DO SAEE

Energia na Rede = G_{FV} + $P_{eletrolisador}$ + P_{CaC} + $P_{bateria}$

93

Hora	Geração Fotovoltaica (kWh)	Eletrolisador (kWh)	Tanque (Nm ³)	CaC (kWh	Bateria (kWh)	Energia na Rede (kWh)
0	0,0	0,0	424,7	0,0	0,0	0,0
1	0,0	0,0	424,7	0,0	0,0	0,0
2	0,0	0,0	424,7	0,0	0,0	0,0
3	0,0	0,0	424,7	0,0	0,0	0,0
4	0,0	0,0	424,7	0,0	0,0	0,0
5	0,0	0,0	424,7	0,0	0,0	0,0
6	17,6	-17,6	427,7	0,0	0,0	0,0
7	71,3	-71,3	440,0	0,0	0,0	0,0
8	121,2	-116,0	460,0	0,0	-5,2	0,0
9	164,1	-116,0	480,0	0,0	-48,1	0,0
10	197,0	-116,0	500,0	0,0	-81,0	0,0
11	217,7	-116,0	520,0	0,0	-79,4	22,3
12	224,8	-116,0	540,0	0,0	-79,4	29,4
13	217,7	-116,0	560,0	0,0	-79,4	22,3
14	197,0	-116,0	580,0	0,0	-79,4	1,6
15	164,1	-116,0	600,0	0,0	-48,1	0,0
16	121,2	0,0	600,0	0,0	0,0	121,2
17	71,3	0,0	600,0	41,7	79,2	192,1
18	17,6	0,0	570,8	83,4	158,3	259,4
19	0,0	0,0	512,5	83,4	158,3	241,7
20	0,0	0,0	454,1	41,7	79,2	120,9
21	0,0	0,0	424,9	0,0	0,0	0,0
22	0,0	0,0	424,9	0,0	0,0	0,0
23	0,0	0,0	424,9	0,0	0,0	0,0
Total	1803	-1016,9		250,2	-25,0	1010,9

APÊNDICE D - TABELA DO SEGUNDO CASO DE OPERAÇÃO DO SAEE

Nível tanque $(T_n) = P_{Eletrolise} *20/116*-1+T_{n-1}-P_{CaC}*70/100$ Energia na Rede = G_{FV} + $P_{eletrolisador}$ + P_{CaC} + $P_{bateria}$

ANEXOS

ANEXO A – ESPECIFICAÇÕES DAS BATERIAS

	B-Box Pro 13.8
Módulo da Pateria	GBSSB
modulo da batena	2 módulos
Energia utilizável [1]	13.8 kWh
Potência máxima de saída	12.8 kW
Potência de pico de saída	13.3 kW, 60 s
Eficiência energética	≥95.3 % [1]
Tensão nominal [V]	51.2 V
Faixa de operação [V]	40~56.5 V
Comunicação	RS485 / CAN
Dimensões (L x A x P) [mm]	650 x 800 x 550 mm
Peso líquido [kg]	181 kg
Grau de proteção IP	IP20
Temperatura de operação [2]	-10 °C à +50°C
Certificação de segurança	TUV / CE / UN38.3
Dimensionamento	Max. 32 sistemas em paralelo / 441.6 kWh
Inversores Compativeis	SMA / GOODWE / Solax / Victron / Sungrow / Selectronic, entre outras
Aplicações	ON Grid / ON Grid + Backup / OFF Grid (Consulte a lista de configuração mínima BYD)

[1] Condições de teste: 100% DOD, 0.5C de carga e descarga a +25°

[2] Performance reduzida entre -10 °C à 10 °C

BYD ENERGY DO BRASIL

Av. Antônio Buscato, 230 – Terminal Intermodal de Cargas – CEP: 13069-119 – Campinas/SP

\Orchestrating a brighter world NEC

	(@CP/4)								
	Sob Potência de pico (@2CP)	69	138	207	276	345	414		
Potência CC ² (kW)	De pico	185	370	555	740	925	1.110		
	Contínua (CP/4)	23	46	69	92	115	138		
Tensão Nominal CC (V)			720						
Intervalo de tensão de operação (V)			647-823						
Eficiência carga/descarga CC, @CP/2 (%)		96							
Tecnologia da bateria		Íon – Lítio (NMC)							
Estado de carga utilizável (%)			0 - 100						
Vida útil ³ (# ciclos)		> 4.000							
Auto-descarga (excluindo consumo aux. e considerando 50% SOC)			~6% ao ano						
Vida de calendário (anos)				>	20				

Nominal characteristics at + 25°C/+ 77°F	
Voltage (V)	771
Capacity (C/5) (Ah)	1530
Rated energy (C/5) (kWh)	1180
Continuous discharge power (kW)	2500
Continuous charge power (kW)	850
Mechanical characteristics	
Length (mm)	6058
Width (mm)	2438
Height w/o HVAC (mm)	2896
Height incl HVAC (mm)	3820
Weight (tonnes)	19.5
Electrical characteristics at + 25°C/+ 77°F	
Minimum Voltage (V)	630
Maximum Voltage (V)	867
Maximum continuous discharge current (A)	3240
Maximum continuous recharge current (A)	1083
Discharge time at nominal power (h)	0.5
Time to full recharge (h)	1.5
Insulation resistance (1kVdc - 0C)	> 10mΩ
Dielectric	2.5kVdc
Operating conditions	
Operating temperature	- 20°C/+ 55°C
Cycle efficiency (roundtrip, 1C)	96%
Self-discharge	<5% / month
Calendar life at 25°C / +77°F	> 25 years
Cycle life at 25°C / +77°F, 0.5C/0.5C, 80% DOD (*)	4200

(*) 20% capacity loss

Informações técnicas básicas:

Característica	Especificação
Química	(NMC) Níquel-Manganês-Cobalto
Capacidade Nominal do Banco	600kWh (8 RACKS)
Vida útil vs Profundidade de Descarga	6000+ ciclos @ 80% SOH
Potência Nominal	1C
Potência de Pico	1,2C
Energia Nominal	Máx. 37kW/rack
Capacidade garantida de descarga	Fator de Eficiência Descarga * Capacidade de Projeto
Fator de Eficiência Descarga	97.5% @0.25C, 96% @0.5C, and 94% @ 1C
Profundidade de descarga	As baterias podem ser cicladas de 0 a 100% (full DOD)
Topologia do BMS	3 Níveis

WSTECH

BAT-Series – Outdoor

WSTECH is a Wind & Sun Technologies and Siemens Joint Venture

120 ... 280 kVA

() TECHNICHE BATTA					
	BAT 100-400	BAT 100-480	BAT 280-400	BAT 280-480	COMMENTS
GRID SIDE					
Maximum AC-power (Smax)	120 kV	A (2 h)	280	kVA	At rated grid voltage
Rated AC-power (P _{N (AC)})	100	kW	280	kW	At $(\cos \phi) = 1.0$
Rated grid voltage (U _{N (AC)})	1 x (400 V, 3~ + neutral, TN)	1 x (480 V, 3~ + neutral, TN)	1 x (400 V, 3~ + neutral, TN)	1 x (480 V, 3~ + neutral, TN)	Other values on request
Rated grid frequency (f)	50 Hz	60 Hz	50 Hz 60 Hz		
Maximum AC-current (Imax (AC))	173 A	144 A	404 A	337 A	
Short circuit level (I _{SC (AC)})	36 kA	35 kA	36 kA	35 kA	
Power factor (cos ф)		> 0	.98		At > 20 % of rated power
AC-current distortion (THD)		< 3	1%		
BATTERY SIDE					
Nominal voltage (U _{N (DC)})		750	V _{DC}		
Voltage range (Urange (DC))		450 8	890 V _{DC}		
Currents (Irange (DC))	+ / - 250 A	+/-266 A	+/-630 A	+ / - 600 A	
Maximum short circuit current (I _{sc (DC)})	40 kA	5 kA	40 kA	10 kA	
Current THD		< 3	8 %		
Number of DC inputs		1	1		
GENERAL					
Control strategy		CC-CV, power cont	trolled, island mode		
Efficiency in %	(93.9 96.9 97.1 97.0 96.7) %	(93.9 96.9 97.1 97.0 96.7) %	(92.2 97.1 97.2 96.8 96.4) %	(92.2 97.1 97.2 96.8 96.4) %	At (10 30 50 75 100) % power
Standby losses at night		< 30	0 W		
Maximum auxiliary power	< 25	0 W	< 60	W OI	Plus heating power

ELECTROCELL

	Item	elemento	mono	bloco 42S 28P	Battery Pack 4S 8P	Battery Sring
Parâmetros	Parametros	3.2V 6.0 Ah	134,4	/ 168Ah	537,6V 168Ah	537,6V 1344Ah
da bateria	Quantidades	37 632 pcs	32		8	1
	Energia	722,534 kV	/h			
Battery Disc Efficiency	harge and charge	≥95%				
Battery DOD 80%						
Usable Energy		≥500 kWh				
Life cycle		25℃, 0.5C,	80%DOD, >4	1000 times, reten	tion capacity 70%	
Itens	7	Qty	Unit	Note		
LiFePO4 Mon	obloco	32 m	onobloco	134,4V @ 168	Ah, IP65	
High-Voltage I	Breaking Box	8	box	Disconnect the	e high voltage between ba	ttery packs
Inverter (PCS)	6	1	Cj	250KW		

SC 33

ANEXO B - ESPECIFICAÇÕES DOS ELETROLISADORES

PRODUZIONE IDROGENO HYDROGEN PRODUCTION	12.500 l/h*
PRODUZIONE OSSIGENO OXYGEN PRODUCTION	6.250 l/h*
PRESSIONE MAX MAX PRESSURE	4 ÷ 8 bar
CONSUMO ELETTRICO ELECTRIC CONSUMPTION	67 kWh*

Via dell'Artigianato, 2 - 57121 Livorno - Italy TeL: +39(0)586425668 - Fax. +39(0)586425288 - e-mail: info@idroenergy.it

PROTON° PEM

ELECTROLYTE

nel•

C Series

	Proton Exchange	e Membrane (PEM) – Caust	ic-Free
HYDROGEN PRODUCTION			
Net Production Rate Nm ³ /hr @ 0°C, 1 bar SCF/hr @ 70°F, 1 atm SLPM @ 70°F, 1 atm kg per 24 hours	10 Nm³/hr 380 SCF/hr 179 SLPM 21.6 kg/24 hr	20 Nm ³ /hr 760 SCF/hr 359 SLPM 43.3 kg/24 hr	30 Nm ³ /hr 1,140 SCF/hr 538 SLPM 65.0 kg/24 hr
Delivery Pressure - Nominal		30 barg (435 psig)	
Power Consumption by System per Volume of H ₂ Gas Produced ¹	6.2 kWh/Nm ³ (16.3 kWh/100 ft ³)	6.0 kWh/Nm ³ (15.8 kWh/100 ft ³)	5.8 kWh/Nm ³ (15.2 kWh/100 ft ³)
Power Consumed per Mass of H ₂ Gas Produced ¹	68.9 kWh/kg	66.7 kWh/kg	64.5 kWh/kg
Purity (Concentration of Impurities)	ISO 14687-1 Type 1 99.9998% [H ₂ O < 2 ppm, -72 all	l grade C ISO 14687-2 Type 2°C (-98°F) Dew Point, N ₂ < 3 others undetectable]	1 grade D 2 ppm, O ₂ < 1 ppm,
Turndown Range	0-100% ne	t product delivery (automati	c)
Upgradeability	Field upgradeable to a maximum of 30) Nm ³ /hr (1,140 SCF/hr)	N/A

H Series

HYDROGEN PRODUCTION			
Net Production Rate Nm ³ /hr @ 0°C, 1 bar SCF/hr @ 70°F, 1 atm SLPM @ 70°F, 1 atm kg per 24 hours	2 Nm ³ /hr 76 SCF/hr 35.8 SLPM 4.31 kg/24 hr	4 Nm ³ /hr 152 SCF/hr 71.7 SLPM 8.63 kg/24 hr	6 Nm ³ /hr 228 SCF/hr 107.6 SLPM 12.94 kg/24 hr
Delivery Pressure - Nominal	15 barg	218 psig); Optional 30 barg (4	35 psig)
Power Consumption by System per Volume of H ₂ Gas Produced ¹	7.3 kWh/Nm ³ (19.2 kWh/100 ft ³)	7.0 kWh/Nm ³ (18.5 kWh/100 ft ³)	6.8 kWh/Nm ³ (17.8 kWh/100 ft ³)
Purity (Concentration of Impurities)	99.9995% [H ₂ O < 5 pp	m, -65°C (-85°F) Dew Point, N all others undetectable]	₂ < 2 ppm, O ₂ < 1 ppm,
Turndown Range	0-100	% net product delivery (auton	natic)
Upgradeability	Field upgradeable to a maxim	num of 6 Nm ³ /hr (228 SCF/hr)	N/A

ontrollable range [%]
Operation pressure [bar]
lydrogen Purity (ref. dry gas) [%]
lydrogen Purity (with pury-unit) [%]
lydrogen humidity
lydrogen humidity (with dryer) D.P. [°C
lectrolyte KOH [%]
ower supply grid
cooling by
/lin/max room temperature [°C]
nstallation
Aanaging Process
lydrogen capacity (ref.dry gas) [Nm ³ /h]
ower consumption (at full load) [kW]
emineralised water consuption [l/h]
active cell surface [cm ²] *

20-100				r	D -		
Up to 3	0			H	<u>-</u>	liti	do
99,8				0	нівн	PRESSURE	GENERA'
99,995							
Sature	d						
-65°C							
25							
1-3 Ph	230-40	00V 50	/60Hz				
air/liqu	ıid						
5-35							
Outdoo	or/indoo	r					
PLC							
0,25	0,5	1	1,5	2	2,5	5	
1,8	3,5	5,5	8	11	14	27	
0,23	0,45	0,9	1,35	1,8	2,25	4,5	
100	100	100	100	100	500	500	

SIEMENS Ingenuity for life

SILYZER 200: High-pressure efficiency

6

SILVZER 200 basic system Technical data Electrolysis type / principle: PEM (Proton Exchange Membrane) Rated stack capacity: 1.25 MW Skid dimensions: 6.30 m × 3.10 m × 3.00 m Startup time: < 10 sec</td> Output pressure: Up to 35 bar Hydrogen purity (dep. on operating point): 99.5 % - 99.9 % Hydrogen quality 5.0: Optional DeOxo dryer Hydrogen production under nominal load: 225 Nm/h Life cycle design: > 80,000 h Weight: 17 t CE conformity: Yes Fresh water demand: 1.51 / Nm³ H₂

HYDROG(E)NICS

Advanced Hydrogen Solution

	H2 production	Model	HySTAT**-15/27	
		Flow range	6 to 15 Nm3/h (3.75 - 15 as an option)	
		Purity (before HPS: Hydrogen Purification System)	99,9%* (*H ₂ O saturated) O ₂ < 1.000 ppm	
HYSTAT OUTPUT		Purity (after HPS)	99,998 %; O ₂ < 2 ppm; N ₂ < 12 ppm Atm. Dew point: - 60°C (- 75°C with purity upgrade) CO+CO2+THC < 70 ppb	
		Operating pressure @ full flow (after HPS)	27 barg	
	2	Cell Stack(s) quantity	1	
	O2 production **	Nominal flow	Vented	
1	Power Requirements	Estimated power consumption @ full flow (after HPS) with utilities	5.4 kWh/Nm ¹	
POWER	AURILL A	Voltage	Voltage	3 X 400 VAC ± 10 % 3 X 480 VAC ± 10 % (Standard in US option) 3 X 575 VAC ± 10 % (Standard in CA option)
-		Frequency	50 Hz ± 3 % 60 Hz ± 3 % (Standard in US and CA option)	
		Installed power	160 kVA	

PEM^{*} ELECTROLYSERS

AREVA H₂Gen

Today's flexible, cost effective technology

STANDARD SUPPLY TECHNICAL SPECIFICATIONS

GAS PRODUCTION	HYDROGEN	OXYGEN	
Output pressure	Up to 35 Barg	13 Barg	
Purity	> 99,9%	> 99%	
GAS PURIFICATION SYST	EM		
Industrial purification system	with automatic regeneration based on deoxidiser &	Temperature Swing Absorption Dryers	
H ₂ Quality	Up to 99,999% (Water vacours 1 ppm, 0x 5 ppm, Nx 5 ppm)		
INSTALLED POWER			
Voltage	400 V AC		
Frequency	50 Hz		
Stack consumption	4,4 kWh/Nm ³ of H ₂		

ANEXO C - ESPECIFICAÇÕES DAS CÉLULAS A COMBUSTÍVEL

Emergency Power Generator | G5 Fuel Cell Generator | GenCell

PER	FOR	MAM	VCE
			acr.

5kW
-48 VDC / +48 VDC / 230 VAC / 130 VDC
Usable heat, water vapor
15 hours at 5kW

FUEL

Hydrogen	99.95% or higher	
Fuel consumption	70 g/kWh	
Input pressure	300-500 kPa	

fechnology	Fuel cell	Proton exchange membrane
Performance	Rated net power	30 kW
	Operating DC voltage range	85 - 180V
	Current	0-300 A
Physical	Dimensions (I x w x h)	900 x 480 x 375 mm ¹
	Weight	125 kg (fuel cell module)
Fuel	Туре	Gaseous hydrogen
	Composition	As per SAE specification J2719
Operation	Oxidant	Air
	Stack coolant	50/50 pure ethylene glycol and deionized water
		WEG 60° to 70°C
	Fuel supply pressure	8 barg nominal
	Fuel flow rate	0.7 g/s maximum

HYD	RO	G(E)NI	CS
CUIET DOW	EDIEN	EDOITE	VOUD	

SHIFT POWER | ENERGIZE YOUR WORLD

trical Output	
	1 MVVe
trical Efficiency	>50% LHV at BOL
tem Output Voltage	380 - 480 VAC
tem Output Frequency	50 - 60 Hz
kage Design Life	20 years with LTSA
ensions: (H) x (W) x (L)	9.6 x 8 x 40 feet (x2)
ght	32,000 kg
irogen²	> 99.99%
l Consumption	750 Nm ³ /h per1MW ³
Electrical Input Power	35 kW continuous, 40 kW at start-up
	tmcai Efficiency tem Output Voltage tem Output Frequency kage Design Life ensions: (H) × (W) × (L) ght irogen [®] I Consumption Electrical Input Power

3-1-5) Efficiency (not guaranteed)

Electrical efficiency: 48% (Measured <u>at this point</u> based on LHV standard at rated load.) However, the efficiency will decrease gradually over time.

SureSource 3000 =

PERFORMANCE

Gross Power Output		Water Consumption			
Power @ Plant Rating	2,800 kW	Average	9 gpm		
Standard Output AC voltage	13,800 V	Peak during WTS backflush	30 gpm		
Standard Frequency	60 Hz				
Optional Output AC Voltages	By Request	Water Discharge			
Optional Output Frequency	50 Hz	Average	4.5 gpm		
		Peak during WTS backflush	30 gpm		
Efficiency					
LHV	47 +/- 2 %	Pollutant Emissions			
		NOx	0.01 lb/MWh		
Available Heat		SOx	0.0001 lb/MWh		
Exhaust Temperature	700 +/- 50 °F	PM10	0.00002 lb/MWh		
Exhaust Flow	36,600 lb/h				
Allowable Backpressure	5 iwc	Greenhouse Gas Emissions			
		CO2	980 lb/MWh		
Heat Energy Available for Recovery		CO2 (with waste heat recovery)	520-680 lb/MWh		
(to 250 °F)	4,433,000 Btu/h				
(to 120 °F)	7,460,000 Btu/h	Sound Level			
		Standard	72 dB(A) at 10 feet		
Fuel Consumption					
	NO. 1917-1919-1919				

Natural gas (at 930 Btu/ft3) Heat rate, LHV

362 scfm 7,260 Btu/kWh

- Nominal Output Power: 100 kVA

- Output Voltage: 3 Phase 400 VAC 50 Hz

- Hydrogen Input Pressure: 6 bar +/- 1 bar

- Hydrogen Consumption: 6 kg/h (67 Nm3/h)

- Hydrogen Quality: ISO 14687-2 /SAE J2719

Proton Motor Fuel Cell GmbH Benzstr. 7 D-82178 Puchheim

ANEXO D – DIAGRAMA UNIFILAR DA INTEGRAÇÃO GERAL

ANEXO E – SIMULAÇÃO DA PLANTA SOLAR FOTOVOLTAICA

	PVSYST V6.61	BLUE SOL EN	ERGIA SOLAR	17/04/18 Page 1/4
energie solar				
Gr	id-Connected Syste	m: Simulation	on parameters	
Project : S	FCR Porto Primavera			
Geographical Site	Rosana-Si	•	Country	Brazil
Situation Time defined as	Latitud Legal Time Albed	e -22.49° S e Time zone U o 0.20	T-3 Longitude	-52.95° W 311 m
Meteo data:	Rosana-Si	P Meteonorm 7	.1 (1991-2010), Sat=1	00% - Synthetic
Simulation variant : E	stimativa de geração 1			
	Simulation date	e 17/04/18 14h	57	
Simulation parameters				
Collector Plane Orientation	Ti	t 25°	Azimuth	25°
Models used	Transpositio	n Perez	Diffuse	Perez, Meteonorm
Horizon	Free Horizo	n		
Near Shadings	No Shading	s		
PV Arrays Characteristics PV module Original PVsyst database Sub-array "Trouver un sync	(2 kinds of array defined) Si-mono Mode Manufacture onvme (matrix?) #1"	r Canadian So	CPTL lar Inc.	
Number of PV modules Total number of PV modules Array global power Array operating characteristic	In serie: Nb. module: Nominal (STC s (50°C) U mp;	s 20 modules 900) 297 kWp 0 672 V	In parallel Unit Nom. Power At operating cond. I mpp	45 strings 330 Wp 266 kWp (50°C) 397 A
Sub-array "Trouver un synd Number of PV modules Total number of PV modules Array global power Array operating characteristic	nyme" In serie: Nb. module: Nominal (STC s (50°C) U mp;	s 21 modules s 315) 104 kWp o 705 V	In parallel Unit Nom. Power At operating cond. I mpp	15 strings 330 Wp 93.3 kWp (50°C) 132 A
Total Arrays global power	Nominal (STC Module area	401 kWp 2362 m ²	Total Cell area	1215 modules 2137 m ²
Inverter Custom parameters definit Characterístics	ion Manufacture Operating Voltage	ECO 27.0-3-4 r Fronius Interne 580-850 V	s national Unit Nom. Power	27.0 kWac
Sub-array "Trouver un sync Sub-array "Trouver un sync	onyme (matrix?) #1inverter	s 9 units s 3 units	Total Power Total Power	243 kWac 81 kWac
Total	Nb. of inverter	s 12	Total Power	324 kWac
PV Array loss factors				
Array Soiling Losses Thermal Loss factor	Uc (const) 29.0 W/m²K	Loss Fraction Uv (wind)	3.0 % 0.0 W/m²K / m/s
Wiring Ohmic Loss	Array# Array# Globa	1 29 mOhm 2 90 mOhm	Loss Fraction Loss Fraction Loss Fraction	1.5 % at STC 1.5 % at STC 1.5 % at STC 2.0 %
Module Quality Loss Module Mismatch Losses			Loss Fraction Loss Fraction	-0.4 % 1.0 % at MPP

PVsyst Licensed to Blue Sol Comercial Importadora e Exportadora Ltda (Brazil)

BlueSo		VSYST V6.61	BLUE SOL ENE	ERGIA SOLAR	17/04/18	Page
	G	rid-Connected	d System: Mair	n results		
Project :	SFCR	Porto Primavera				
Simulation variant :	Estima	tiva de geração	1			
Main system parameter	s	System ty	pe Grid-Connect	ed		
PV Field Orientation			tilt 25°	azimuth	25°	
PV modules		Mo	del CS6U-330M C	PTL Pnom	330 Wp	
PV Array		Nb. of modu	les 1215	Pnom total	401 kWp	
Inverter		Mo	del ECO 27.0-3-S	Pnom	27.00 kW a	С
Inverter pack		Nb. of ur	nits 12.0	Pnom total	324 kW ac	
User's needs		Unlimited load (g	rid)		n the state is not be	
Main simulation results System Production	e I	Produced Ener	rgy 658.0 MWh/ye	ar Specific prod.	1641 kWh/k	(Wp/ye
		Performance Rabo	PR 02.30 %			
Normalized productions (per i	installed kWp): Nominal power 401 kWp	,	Performance Rat	tio PR	
Lc : Collection Loss (PV-array lo	mases) 0.251	White Window	0.0 mm make	ormancia Platio (17/ Yr) 2.824		
a face						
g 2 1 Juni Fulb Mar Age May	t t t t	Aug Sep Old Nov Dec Estimat	tiva de geração 2	Mar Apr May Jun Ju	Ang Sep Cit	Nov De
Den Peter Age May	t sta t	Aug Say Oct Nov Dec Estimat Balances	tiva de geração 2 and main results	Mar Apr May Jun Ju	Aug Sep Oct	Nov De
ng 2 2 1 Juni L Full Mar Age May	GlobHor kWh/m²	Aug Sep Old Nov Dec Estimat Balances Mitther TAmb	tiva de geração 2 s and main results	Mar Apr May Jun Ju EArray E_Gr	Aug Sep Out	Ner D
January	GlobHor kWh/m ³ 188.5	Aug See Oct Nov Der Estimat Balances DiffHor T Amb KWh/m ³ [°] C 83.69 25.36	tiva de geração 2 and main results Giobinc GlobEff KWh/m² KWh/m²	Mar Apr May Jun Ju EArray E_Gr MWh MWI 56.28 55.2	id PR 0.814	Nov Gr
January February	GlobHor kWh/m ² 188.5 160.0	Aug See Old Nov Dec Estimat Balances Whim ⁹ [°] C 83.69 25.36 76.91 25.33	tiva de geração 2 and main results Giobinc GiobEff KWh/m² KWh/m² 169.2 159.8 154.2 146.0	Mar Apr May Jun Ju EArray E_Gr MWh MWI 56.28 55.2 51.17 50.2	id PR h 2 0.814 3 0.813	Nov Gu
January February March	GlobHor kWb/m ² 188.5 160.0 170.6	Aug See Od Nov Dec Estimat Balances Whim? 'C 83.69 25.36 76.91 25.33 78.70 25.93	Giobine Giobine Giobine Giobine KWh/m² 109.2 159.8 154.2 146.0 174.3 165.3 165.3	Mar Apr May Jon Jak Mar Apr May Jon Jak MWh MWh 56.28 55.2 51.17 50.2 57.73 56.6	Avg Sep Oct Idd PR h	Nov De
January February March April	GlobHor kWb/m ² 188.5 160.0 170.6 141.1	Aug Sep Od Nov Dec Estimat Balances Whim ² °C 83.69 25.36 76.91 25.33 78.70 25.93 58.82 24.05	Giobinc Globinc Globert KWh/m ⁴ KWh/m ⁴ KWh/m ⁴ 169.2 159.8 154.2 161.1 152.9	Mar Apr May Jun Jul EArray E_Gr MWh MWI 56.28 55.2 51.17 50.2 57.73 56.6 54.14 53.10	Idd PR h 0.814 3 0.813 8 0.811 6 0.823	New De
January February March April May	GlobHor kWh/m ² 188.5 160.0 170.6 141.1 123.6	Aug See Oct Nov Dec Estimat Balances Wh/m² °C 83.69 25.36 76.91 25.33 78.70 25.93 58.82 24.05 44.97 20.11	Giobinc GlobEff KWh/m² KWh/m² 164.2 169.8 164.2 169.8 164.2 169.3 161.1 152.9 152.6 145.3	Mar Apr May 3.m 3.d EArray E_Gr MWh MWi 56.28 55.2 51.17 50.2 57.73 56.6 54.14 53.10 52.18 51.2	Idd PR h 0.814 3 0.813 6 0.823 2 0.837	Nov De
Jan Pet Mar Apr May Jan Pet Mar Apr May January February March April May June	GiobHor kWh/m ³ 188.5 160.0 170.6 141.1 123.6 111.9	Aug Sag Out Nov Date Estimat Balances biffHor T Amb kWh/m² °C 83.69 25.36 76.91 25.33 58.82 24.05 44.97 20.11 41.29 19.27	Side Control Control <thcontrol< th=""> <thcontrol< th=""> <thcont< td=""><td>Bar Apr May Jun Jul Mar Apr May Jun Jul MWh MWh MWh MWh 56.28 55.2 51.17 50.2 51.17 50.2 51.17 50.2 57.73 56.6 54.14 53.11 52.18 51.2 50.27 49.3</td><td>Aug Sep Out Idd PR h 0.814 3 0.813 8 0.811 5 0.823 2 0.837 4 0.850</td><td>Nov De</td></thcont<></thcontrol<></thcontrol<>	Bar Apr May Jun Jul Mar Apr May Jun Jul MWh MWh MWh MWh 56.28 55.2 51.17 50.2 51.17 50.2 51.17 50.2 57.73 56.6 54.14 53.11 52.18 51.2 50.27 49.3	Aug Sep Out Idd PR h 0.814 3 0.813 8 0.811 5 0.823 2 0.837 4 0.850	Nov De
Jan Peb Mar Age May Jan Peb Mar Age May January February March April May June July	GiobHor kWh/m² 188.5 160.0 170.6 141.1 123.6 111.9 123.9 123.9	Aug Sag Out Nov Date Estimat Balances biffHor T Amb kWh/m² °C 83.69 25.36 78.70 25.33 58.82 24.05 44.97 20.11 41.29 19.27 41.06 18.50	Giobinc Giobinc Giobinc KWhim ³ 169.2 159.8 154.2 146.0 174.3 169.2 159.8 154.2 154.2 146.0 174.3 152.6 145.3 165.3 144.7 137.9 150.5 160.5 153.0	Bar Apr May Jun Jun <td>id PR h 2 0.814 3 0.813 8 0.813 8 0.813 9 0.823 2 0.837 4 0.850 8 0.848 0 .848</td> <td>Nov De</td>	id PR h 2 0.814 3 0.813 8 0.813 8 0.813 9 0.823 2 0.837 4 0.850 8 0.848 0 .848	Nov De
January February February March April May July July August	GiobHor KWh/m ² 188.5 160.0 170.6 141.1 123.6 111.9 123.9 141.8 111.9 123.9 141.8	Aug Sag Out Nov Dat Estimat Balances Balances Balances biffHor T Amb °C 83.69 25.36 76.91 25.33 78.70 25.93 58.82 24.05 54.4.97 20.11 41.29 19.27 41.06 18.50 49.85 21.24 49.85 21.84 49.85 21.84 49.85 21.84 49.85 21.84 49.85 21.84 49.85 21.84 49.85 21.84 49.85	Giobine Globine GlobEff KWh/m² 159.8 154.2 159.8 154.2 146.0 174.3 165.3 161.1 152.6 145.3 161.1 152.9 160.5 153.0 160.5 153.0 160.6	Mar Apr May 3at 3at Mar Apr May 3at 3at MWh MWh 56.28 55.2 51.17 50.2 57.73 56.6 54.14 53.14 52.18 51.2 50.27 49.3 55.00 54.5 57.33 56.3 56.30	id PR h 2 0.814 3 0.813 8 0.813 8 0.813 8 0.813 9 0.837 4 0.850 8 0.848 0 0.831	Nov De
January February March April July August September	GlobHor kWh/m ⁴ 188.5 160.0 170.6 141.1 123.6 111.9 123.9 141.8 158.8	Aug Sage Out Nov Date Estimat Balances Balances 369 25.36 76.91 25.33 78.70 25.93 58.82 24.05 24.05 44.97 20.11 19.27 41.06 18.50 49.85 49.85 21.24 63.06	Giobinc Globinc GlobEff KWh/m² 169.2 159.8 154.2 146.0 174.3 165.3 161.1 152.9 122.6 145.3 144.7 137.9 160.5 153.0 169.0 160.8 172.3 163.6	Mar Apr May Jan Jan Mar Apr May Jan Jan MWh MWh 56.28 55.2 51.17 50.2 57.73 56.6 54.14 53.12 52.18 51.2 50.27 49.3 55.60 54.5 57.33 56.3 58.30 57.2 59.20 57.2	id PR h 2 0.814 3 0.813 8 0.813 8 0.813 8 0.813 8 0.813 8 0.837 4 0.850 8 0.837 4 0.850 8 0.831 5 0.829	Nov Da
January February March April May July August September October	GlobHor kWh/m ³ 188.5 160.0 170.6 141.1 123.6 111.9 123.9 141.8 158.8 179.4 158.8 179.4	Aug See Out Nov Det Estimat Balances MWh/m ² °C 63.69 25.36 76.91 25.33 78.70 25.93 58.82 24.05 44.97 20.11 41.29 19.27 41.06 18.50 49.85 21.24 63.06 21.77 75.92 24.55 66.96 20.07	Giobinc Globinc Globinc KWh/m² KWh/m² KWh/m² 169.2 159.8 154.2 161.1 152.9 152.6 162.5 146.3 161.1 169.2 159.8 154.2 161.1 152.9 152.6 162.5 153.0 160.5 169.0 160.8 172.3 176.2 167.1 177.2 167.1	EArray E_Gr Mar Apr May Ant Ant Mar Apr May Ant Ant Mar S6.28 S5.22 S1.17 S0.22 S1.17 S0.22 S1.17 S0.22 S7.73 S6.66 S4.14 S3.11 S2.18 S1.22 S0.27 49.3 S5.60 S4.54 S1.23 S6.30 S7.33 S6.30 S7.22 S8.40 S7.33 S6.40 S7.33 S6.30 S7.22 S8.40 S7.33 S6.40 S7.33 S6.30 S7.22 S8.40 S7.33 S6.40 S7.33 S6.30 S7.22 S8.40 S7.33	id PR 1 0.814 3 0.813 8 0.813 8 0.813 8 0.811 6 0.823 2 0.837 4 0.850 8 0.848 0 0.831 5 0.829 2 0.811	Nor Da
January February March April May July August September October November	GlobHor kWh/m ³ 188.5 160.0 170.6 141.1 123.6 111.9 123.9 141.8 158.8 179.4 192.2 200 5	Aug See Out Nov Der Estimat Balancer Wh/m ³ °C 63.69 25.36 76.91 25.33 78.70 25.93 58.82 24.05 44.97 20.11 41.29 19.27 41.06 18.50 49.85 21.24 63.06 21.77 75.92 24.55 85.86 24.64 41.37 9 76 55	Giobinc Globinc Globert KWh/m³ KWh/m³ KWh/m³ 169.2 159.8 154.2 169.2 159.8 154.2 169.2 159.8 154.2 169.2 159.8 155.6 152.6 145.3 144.7 169.5 153.0 160.8 172.3 163.6 176.2 176.2 167.1 177.2 180.6 176.2 167.1	Mar Apr May Jun Jun Mar Apr May Jun Jun Mar Apr May Jun Jun Mar May May Jun Jun S6.28 S522 S1.17 S0.22 S7.73 S6.60 S4.14 S2.18 S1.12 S0.27 49.3 S56.60 S4.5 S7.33 S6.30 S7.27 58.40 S7.33 S6.30 S7.21 S8.40 S7.33 S6.30 S7.21 S8.40 S7.31 S6.30 S7.21 S8.40 S7.33 S6.30 S7.21 S8.40 S7.31 S6.30 S7.21 S8.40 S7.31 S6.30 S7.21 S8.40 S7.31 S6.30 S6.20 S6.2	id PR h 2 0.814 3 0.813 8 0.813 8 0.813 8 0.813 8 0.813 8 0.837 4 0.850 8 0.837 4 0.850 8 0.831 5 0.829 2 0.811 1 0.817 1 0.817	Nor De
January February March April July August September October November December	GiobHor KWh/m ² 188.5 160.0 170.6 141.1 123.6 111.9 123.9 141.8 158.8 179.4 192.2 202.5 1894.2	Aug Sag Out Nov Dat Estimat Balances DiffHor T Amb KWh/m* *C 83.69 25.36 76.91 25.33 78.70 25.93 58.82 24.05 44.97 20.11 41.29 19.27 41.06 18.50 49.85 21.24 63.06 21.77 75.92 24.65 85.86 24.64 81.77 25.55 701.90 23.01	Giobinc Globinc Globinc KWb/m² Globinc GlobEff KWb/m² Size 159.8 154.2 146.0 174.3 169.2 159.8 165.3 161.1 152.9 152.6 144.7 137.9 160.5 169.0 160.8 177.2 160.6 170.4 1091.9	Mar Apr May Jan Jan Mar Apr May Jan Jan MWh MWh MWh 56.28 55.2 51.17 50.2 57.73 56.6 54.14 51.2 50.27 49.3 55.60 54.5 57.33 56.3 58.30 57.2 58.40 57.3 59.10 58.0 69.76 58.6	id PR h 2 0.814 3 0.813 8 0.813 8 0.813 8 0.813 8 0.813 8 0.813 8 0.813 8 0.813 8 0.813 8 0.813 9 0.837 4 0.850 8 0.831 5 0.823 2 0.811 1 0.817 6 0.810 15 0.824	Nov Da
January January February March April May June July August September October November December Year	GiobHor kWh/m ³ 188.5 160.0 170.6 141.1 123.6 111.9 123.9 141.8 158.8 179.4 192.2 202.5 1894.2	Arg Sag Od Nov Date Estimat Balances DiffHor T Amb kWh/m² °C 83.69 25.36 76.91 25.33 58.82 24.05 44.97 20.11 41.29 19.27 41.06 18.50 49.85 21.24 63.06 21.77 75.92 24.55 85.86 24.64 81.77 26.55 781.90 23.01	Giobinc Giobinc Giobinc KWh/m² KWh/m² KWh/m² 169.2 159.8 165.3 161.1 152.9 152.6 160.5 153.0 166.5 160.5 153.0 166.8 172.3 163.6 170.2 177.2 167.6 180.6 177.2 167.6 180.6 1991.9 1889.7	Bar Apr May Jan Jan Mar Apr May Jan Jan MWh MWh MWh 56.28 552 51.17 50.2 57.73 56.6 54.14 53.1 55.29 51.2 50.27 49.3 55.60 54.3 57.33 56.3 57.33 56.3 57.33 56.3 58.30 57.2 58.40 57.3 59.10 58.0 59.70 58.6 670.26 657.9	Avg Sep Oct 6d PR h 2 0.814 3 0.813 0.813 8 0.811 0.850 8 0.850 0.831 5 0.829 0.811 1 0.817 0.810 15 0.824 0.824	Nov De
Jan Pel Mar Aer May Jan Pel Mar Aer May Jan Pel Mar Aer May January February March April May June July August September October November December Year Legends: GiobHor	GiobHor kWh/m² 188.5 160.0 170.6 141.1 123.6 111.9 123.9 141.8 158.8 179.4 192.2 202.5 1894.2 Horizo	Arg Sag Od Nov Date Estimat Balances DiffHor T Amb KWh/m² °C 83.69 25.36 76.91 25.33 78.70 26.53 58.82 24.05 44.97 20.11 41.29 19.27 41.06 18.50 49.85 21.24 63.06 21.77 75.92 24.65 85.86 24.64 81.77 26.55 781.90 23.01	Giobinc Giobinc Giobinc KWhim ³ 169.2 159.8 154.2 146.0 174.3 169.2 159.8 154.2 152.6 146.3 144.7 137.9 160.5 153.0 169.0 160.8 172.3 163.8 177.2 167.6 180.6 170.4 1991.9 1889.7	Bar Apr May Jan Jan Mar Apr May Jan Jan Mar Apr May Jan Jan Mar May May May Jan S6.28 S52.25 S52.25 S52.25 S52.25 S1.17 S02 S57.73 S66.65 S57.33 S66.30 S7.33 S68.30 S72 S8.40 S73.3 S68.00 S97.33 S68.00 S97.33 S68.00 S97.33 S68.00 S97.30 S68.00 S97.30 S68.00 S97.73 S9.60 S97.73 <td>Avg Sep Oct 6d PR h 2 0.814 3 0.813 8 8 0.811 6 6 0.823 2 2 0.837 4 4 0.850 8 0 0.831 5 5 0.829 2 2 0.811 1 1 0.817 6 0.850 0.824</td> <td>Nov De</td>	Avg Sep Oct 6d PR h 2 0.814 3 0.813 8 8 0.811 6 6 0.823 2 2 0.837 4 4 0.850 8 0 0.831 5 5 0.829 2 2 0.811 1 1 0.817 6 0.850 0.824	Nov De
January February January February March April May June July August September October November December Year Legends: GlobHor DiffHor	GiobHor KWh/m² 188.5 160.0 170.6 141.1 123.6 111.9 123.9 141.8 158.8 179.4 192.2 202.5 1894.2 Horizo Horizo	Aug Sag Out Nov Date Estimat Balances DiffHor T Amb KWh/m² °C 83.69 25.36 76.91 25.33 78.70 25.93 58.82 24.05 44.97 20.11 41.29 19.27 41.06 18.50 49.85 21.24 63.06 24.65 85.86 24.64 81.77 25.55 781.90 23.01	Giobine Giobine Giobine KWhim ³ Giobine Giobine KWhim ³ 166.2 159.8 154.2 146.0 174.3 165.5 145.3 161.1 152.6 145.3 169.0 160.8 172.3 163.6 176.2 167.1 180.6 170.4 1991.9 1889.7	Mar Apr May Jan Jan Mar Apr May Jan Jan Mar Apr May Jan Jan Mar May San Jan Jan Mar May San Jan Jan Mar May San Jan Jan Mar May May Jan Jan San San May May Jan San San San Jan Jan San San San Jan Jan San San San San Jan San San San San San San San <	Avg Sep Oct Idd PR h 2 0.814 3 0.813 0.813 8 0.811 0.823 2 0.837 0.850 8 0.831 0.831 5 0.829 2 2 0.811 0.817 6 0.810 0.55 15 0.824 or IAM and shadings output of the array defined on the array def	Nov CH

PVsyst Licensed to Blue Sol Comercial Importadora e Exportadora Ltda (Brazil)