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Resumo

KOLOTELO, Guilherme Kairalla. Projeto de Filtro e de Controle via Realimentação de Saída para Sistemas Afins

com Comutação a Tempo Contínuo, Campinas, Faculdade de Engenharia Mecânica, Universidade Estadual de

Campinas, 2018. Dissertação de Mestrado.

Esta dissertação trata de dois problemas de grande interesse no estudo de sistemas dinâmicos, a saber, o

projeto de controle via realimentação de saída e o projeto de filtros para sistemas afins com comutação a tempo

contínuo. Estes sistemas possuem particularidades interessantes que vêm atraindo a atenção da comunidade

científica nas últimas décadas, seja pelos desafios teóricos ou pelo seu grande potencial para aplicações práticas,

principalmente na área de eletrônica de potência. Uma das suas características principais é o fato destes

sistemas possuírem vários pontos de equilíbrio, o que torna a análise e o projeto de controle e de filtros muito

mais abrangentes. Em ambos os problemas mencionados, para assegurar a qualidade do projeto final, índices

de desempenhoH2 eH∞ são levados em consideração. Basicamente, o texto desta dissertação pode ser dividido

em duas partes principais. Na primeira, o objetivo é realizar o projeto simultâneo de um controlador afim de

ordem completa e de uma regra de comutação dependentes somente da saída medida, de forma a assegurar

estabilidade assintótica e desempenho adequado para o sistema global. Para esta classe de sistemas, a literatura

apresenta somente resultados relacionados ao projeto da regra de comutação como única variável de controle.

Exemplos acadêmicos colocam em evidência a validade da técnica proposta e a importância da atuação conjunta

de ambas as estruturas de controle projetadas. A segunda parte é dedicada ao projeto de filtros afins com

comutação. Mais especificamente, o filtro é projetado em conjunto com uma regra de comutação estabilizante

dependente da saída medida, assegurando um custo garantido mínimo H2 ou H∞ para o erro de estimação.

Além disso, é demonstrado que o filtro que garante o custo ótimo apresenta estrutura de observador e pode ser

determinado de maneira independente da regra de comutação, indicando a validade do Princípio da Separação,

bastante conhecido em teoria de controle. A efetividade do filtro afim é demonstrada através da sua aplicação

em um conversor de potência flyback CC-CC. Segundo o nosso conhecimento, esta é a primeira tentativa de se

tratar problemas de filtragem para sistemas afins com comutação. Vale ressaltar que todas as condições obtidas

são expressas em termos de desigualdades matriciais lineares e podem ser resolvidas sem grandes dificuldades

através de ferramentas computacionais já existentes na literatura.

Palavras-chave: Sistemas Afins com Comutação; Controle H2 e H∞; Filtragem H2 e H∞; Desigualdades

Matriciais Lineares.



Abstract

KOLOTELO, Guilherme Kairalla. Output Feedback Control and Filter Design for Continuous-Time Switched

Affine Systems, Campinas, School of Mechanical Engineering, University of Campinas, 2018. Master’s Thesis.

This dissertation tackles two problems of great interest in the study of dynamical systems, namely, the output

feedback control design problem, and the filtering problem in the context of continuous-time switched affine

systems. These systems and their unique properties, have been gathering much interest within the scientific

community over the past decades, due to the theoretical challenges they pose, as well as their wide scope of

practical applications, especially in the field of power electronics. One of their particular characteristics is

the existence of several equilibrium points, thus making the analysis and design of controllers and filters a

much broader problem. For both cases, to assure a suitable performance of the overall system, the H2 and H∞

performance indices are considered. In essence, this work can be divided in two main parts. The first deals

with the simultaneous design of a full-order affine controller and a switching rule, both dependent only on the

measured output, that together assure asymptotic stability and performance of the switched system. For this

class of systems, existing results in the literature treat only the problem of designing a switching function that

is the single control variable. Academic examples illustrate the validity of the proposed techniques, and make

clear the importance of the joint action of both control structures. The second part is dedicated to the design of

switched affine filters. More specifically, the filter is designed together with a stabilizing switching function,

dependent on the measured output, assuring a minimum H2 or H∞ guaranteed cost for the estimation error.

Furthermore, it is proved that the optimal guaranteed cost filter presents an observer-based structure and can

be designed independently of the switching function, indicating that the separation principle, well-known in

control theory, holds. The effectiveness of the affine filter is demonstrated by means of an application consisting

in a flyback DC-DC power converter. To the best of the authors’ knowledge, the classical filtering problem in

the context of switched affine systems has not been treated in the literature yet. It should be noted that the

design conditions are expressed in terms of linear matrix inequalities, which can be solved without difficulty by

means of readily available tools.

Keywords: Switched Affine Systems; H2 and H∞ Control; H2 and H∞ Filtering; Linear Matrix Inequalities.
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Abbreviations

DC Direct Current

LMI Linear Matrix Inequality

LT I Linear Time-Invariant
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R+ Set of non-negative real numbers.

C Set of complex Numbers.

R
n×m Set of real matrices of dimension n×m.

K Set composed of the first N positive natural numbers K≔ {1, · · · ,N }.

H Set of Hurwitz matrices.
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Chapter 1

Introduction

1.1 Motivation

F
rom the simplest cellphone charger to the most complex bipedal robot, the use of digital control

systems that incorporate decision-making algorithms to act upon continuous-time processes is

pervasive in modern times. This interaction between systems of continuous nature at a lower

level, and discrete events at a higher level, is subsumed under the term hybrid systems. For

example, the switching of a transistor in a power converter, an automotive transmission changing gears, a

thermostat turning the heat on or off, or an aircraft flight control system alternating between different flight

modes are some of the many real-life processes that exhibit an intrinsically hybrid behavior. In many of

these applications, the employment of filtering and estimation techniques is also useful to recover valuable

information from noisy or corrupted signals. This information sometimes cannot be directly measured from

the process, but is essential to successfully implement many widely used control methodologies.

Motivated by the remarkable advancement of embedded systems over these past decades, and its

application in control systems and filtering, the study of hybrid systems has never had more relevance than it

does now. Although in widespread use today, the history of hybrid systems is fairly recent, stemming from the

introduction, and subsequently rapid adoption of the electromagnetic relay in industrial automation by the mid

1900’s. Since then, progressively more sophisticated hybrid systems displaying unique and complex behaviors

have emerged, and with them, the necessity to develop tools and techniques for the modeling, analysis, control,

and filtering of these types of systems, taking into account the intertwined nature of the continuous-time and

discrete-time dynamics displayed by these systems. Further details on this topic can be found in the references

[1, 2] which discuss at length many of the concepts and challenges presented by hybrid systems.

A particularly important subclass of hybrid systems, known as switched systems, has gathered much

attention lately due to its usefulness in modeling a wide range of applications. For instance, active and semi-

active automotive suspension control [3, 4], the control of wind turbines [5], power electronics [6, 7], aircraft

roll angle control [8], and autonomous robotics [9, 10]. In essence, these systems are comprised of a finite set

of subsystems, defining its available modes of operation, and a switching signal that selects which mode will

be active at each instant of time. As such, these systems exhibit a complex and nonlinear dynamical behavior,

distinct to that of their modes of operation. Furthermore, a suitable switching signal may stabilize the switched

system in a situation where all modes of operation are unstable, or conversely, it may destabilize a switched

system even in the case where all subsystems are stable. This underscores the importance of the switching

signal, which can be an arbitrary time-dependent signal, such as an external input or disturbance, or a control

variable to be designed. In both cases, the control problem is centered on developing conditions for stability,
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while filtering and estimation problems deal with conditions that assure the convergence of an estimated signal.

Additionally, assuring certain performance criteria for the design of controllers and filters is often considered,

given its relevance for practical applications. The books [11] and [12] as well as the survey paper [13] explore

these topics in greater detail.

The subsystems that together constitute the switched system may individually present different kinds of

dynamical behavior. In this work, the focus is given to switched systems comprised of affine subsystems, referred

to as switched affine systems. This case is more general when compared to a switched system composed of linear

subsystems, and it introduces greater difficulty by giving rise to a set of attainable nontrivial equilibrium points.

This particular characteristic brings light to the relevance of this category of switched systems, especially given

the multitude of applications that can be modeled in this framework. One such application is the previously

mentioned switched mode DC-DC power converter, whose switched nature and affine dynamical behavior,

make switched affine systems especially suited to model these electronic circuits. These circuits are ubiquitous,

and power nearly all electronic devices in everyday life. As such, several publications in the literature treat the

control design problem for the buck, boost, buck-boost and flyback topologies [14, 15, 16, 17, 18], concerned with

devising an appropriate switching function tasked with attaining a desired behavior.

Many results regarding the design of an appropriate switching function, also referred to as a switching

rule, in order to guarantee asymptotic stability of switched linear systems are already solidly established

[15, 19, 20, 21, 22, 23, 24, 25] some of which also deal with performance criteria, such as the H2 or H∞ indices,

and will be presented in greater detail in Chapter 3. With regard to switched affine systems, some references

consider exclusively the action of a switching function dependent on state information, capable of stabilizing

the system [26, 27, 28], while others deal with the joint action of a switching function, alongside a control

law [29], which is based on a set of state feedback matrix gains and a state dependent switching rule assuring

asymptotic stability of the closed-loop system, while guaranteeing optimal H2 or H∞ costs.

In practical applications, however, it is not uncommon for some state variables to be unavailable, whether

due to the difficulty or expense in effecting these measurements; because of physical constraints in sensor

placement or size; or simply due to the unavailability of sensors to measure a certain state variable. As such,

control design methodologies that rely on output information in place of state information constitute a very

relevant and applicable topic of study. Existing results in the literature consider the case where the only control

variable is an output-dependent switching rule [16, 30] implemented by means of a switched dynamical filter,

responsible for providing the needed information. On the other hand, as of yet, results in the literature treating

the control design problem considering the joint action of an output dependent stabilizing switching function

and a dynamical controller, exist only for switched linear systems [24]. To fill this void in the context of

switched affine systems, this work proposes design conditions for these control structures in order to assure H2

and H∞ performance indices, as available in [31]. More specifically, the results of [24] are generalized to take

into account the simultaneous design of an output-dependent switching rule and a full-order affine controller

that together guarantee global asymptotic stability of a desired equilibrium point, as well as an upper bound

for the H∞ performance index. Whenever the external input is available for measurement or estimation, less
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conservative conditions can be obtained by considering a switching rule dependent not only on the measured

output, but also on the external input information. The simultaneous design of both control structures assuring

an H2 guaranteed cost and global asymptotic stability of the equilibrium point is also considered in this work.

These approaches do not require any stability property of the individual subsystems, and guarantee stability

even in the case where the subsystems are not individually controllable, or when a stable convex combination

of dynamical matrices cannot be verified. Furthermore, the proposed techniques allow for a wider range of

equilibrium points to be attained when compared to existing methods. This reinforces the importance of the

joint action of both control structures, and will be discussed at length in Chapter 4.

In a similar vein, these results were generalized to treat the classical filtering problem for switched

systems, which thus far had only been treated for the linear case. In this context, the following publications

consider either time-dependent switching functions [32, 33, 34], or the joint design of a stabilizing switching

function along with a switched filter [35], while taking into account either H2 or H∞ guaranteed costs. For the

more general case of switched affine systems, only the problem of state estimation, as in references [36] and

[37] is tackled, under the simpler switched observer-based structure. The absence of publications in this topic

compelled us to develop methodologies for the classical filter design problem for continuous-time switched

affine systems. The conditions here introduced are based on a full-order switched affine filter, which is designed

in tandem with an output-dependent stabilizing switching function, collectively assuring an H2 or H∞ upper

bound for the estimation error. Furthermore, it is proved that the optimal H2 and H∞ guaranteed cost filters

present a simpler observer-based structure, and can be designed independently of the switching rule, indicating

the validity of the separation principle, well-known in control theory. Chapter 5 introduces these results, and

comments on these findings.

1.2 Publications

This dissertation is based in part on the following papers:

• G. K. Kolotelo and G. S. Deaecto, “Controle H2 e H∞ via Realimentação de Saída de Sistemas Afins com

Comutação por Ação Conjunta de Função de Comutação e Entrada de Controle”, in Anais do Congresso

Brasileiro de Automática, 2018. 1

• G. K. Kolotelo, L. N. Egidio, and G. S. Deaecto, “H2 and H∞ Filtering for Continuous–Time Switched

Affine Systems”, in Proceedings of the 9th IFAC Symposium on Robust Control Design (ROCOND), vol.

51(25), pp. 184–189, 2018. 2 Honorable mention as finalist for the Young Author Award.

• G. K. Kolotelo, L. N. Egidio, and G. S. Deaecto, “Projeto de Filtros com ComutaçãoH2 eH∞ para Sistemas

Afins a Tempo Contínuo”, in Anais do Congresso Brasileiro de Automática, 2018. 3

1http://www.swge.inf.br/proceedings/paper/?P=CBA2018-0598
2https://doi.org/10.1016/j.ifacol.2018.11.102
3http://www.swge.inf.br/proceedings/paper/?P=CBA2018-0278
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1.3 Outline of Chapters

This work is divided in 5 chapters, explained in brief:

• Chapter 1: Introduction

Presents the motivation and sets the context for the topics that are treated in this work.

• Chapter 2: Preliminaries

Reviews the fundamental concepts of dynamical systems, important for the next chapters. In particular,

the stability properties of dynamical systems are studied via Lyapunov’s stability theory. Lastly,

performance criteria for these systems are defined.

• Chapter 3: Switched Systems

Broaches the subject of switched systems, and discusses in greater detail their unique features. Next,

well-known results in the literature are introduced, which present conditions for the stability of

switched linear and affine systems. Finally, the H2 and H∞ performance indices for switched affine

systems are defined, important for the subsequent chapters.

• Chapter 4: Joint Action Output Feedback Control

Presents the contributions of this dissertation with regard to the joint design of an output-dependent

switching rule alongside a full-order affine controller. More specifically, the methodology for the design

of a full-order switched dynamical controller and a switching function that together assure global

asymptotic stability of a desired equilibrium point, as well as assuring the H2 and H∞ performance

indices is introduced. A set of numerical examples are provided to illustrate the theory.

• Chapter 5: Filtering and Estimation

This chapter presents the contributions of this dissertation with regard to the filtering and estimation

problem in the scope of switched affine systems. Conditions for the design of a switched dynamical

filter along with a stabilizing switching function are introduced, assuring the H2 or H∞ guaranteed

costs for the estimation error. Numerical examples are supplied to validate the theory.

• Chapter 6: Conclusion

Summarizes the topics explored by this dissertation, and examines some prospects for future develop-

ments in this subject.
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Chapter 2

Preliminaries

T
he analysis of stability properties in the context of switched systems is largely based on the theory

of stability introduced by Lyapunov, due to the nonlinear behavior that is intrinsic to these types

of systems. As such, prior to delving into this subject, we review some key ideas and definitions

that permeate this work, and constitute the theoretical basis under which its results depend.

The purpose of this chapter is to introduce the underlying concepts concerning the stability analysis and

performance indices for Linear Time-Invariant systems, henceforth referred to as LTI systems. Firstly, following

a brief discussion on the concepts of equilibrium and stability, Lyapunov’s stability theory is introduced. More

specifically, the second method of Lyapunov, also known as the direct method, extensively used in the analysis

and control of nonlinear systems, will be used to establish the conditions under which stability properties of a

dynamical system are verified for a certain equilibrium point. Lastly, the definition of the H2 and H∞ norms

for LTI systems will be presented. These ideas are extremely important in classical control theory, and will be

extended to deal with the stability analysis and the control and filter design problems for switched systems,

considered in the next chapters. The books [38, 39, 40] will be used to support the discussions throughout.

2.1 Stability of LTI Systems

Before investigating the stability properties of dynamical systems in the following sections, let us first introduce

some basic concepts and notations with regard to linear dynamical systems. The state space representation of a

continuous-time LTI system is given by

ẋ(t) =Ax(t) +Bu(t) +Hw(t), x(0) = x0

y(t) = Cx(t) +Dw(t)

z(t) = Ex(t) +Fu(t) +Gw(t)

(2.1)

where x(t) ∈ Rnx is the state vector, with the number of states nx being referred to as the order of the system,

u(t) ∈ Rnu is the control input, w(t) ∈ Rnw is the disturbance, y(t) ∈ Rny is the measured output, and z(t) ∈ Rnz is

the performance output. Also A, B, H, C, D, E, F, and G are constant matrices of appropriate dimensions. In

the case of G = 0, the system is known as a strictly proper system. For simplicity, we initiate our discussions

considering the following unforced LTI system

ẋ(t) =Ax(t), x(0) = x0 (2.2)

which disregards the inputs and outputs of system (2.1), allowing us to analyze its stability properties.
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2.1.1 Equilibrium Points

A state vector xe ∈ R
nx is termed an equilibrium point of the system if once x(t) = xe, for some t = t0, the system

remains at the equilibrium point from that moment onwards, that is, x(t) = xe, ∀t ≥ t0, or equivalently, ẋ(t) = 0

for t ≥ t0. For the case of linear systems, the origin xe = 0 will always be an equilibrium point. Moreover, it

will be the single equilibrium point of the system, unless matrix A is singular, in which case, there may exist

multiple equilibrium points beyond xe = 0. These equilibrium points are then given by the null space of the

matrix A, that is, x ∈ Rnx such that Ax = 0. See the books [38, 39] for more details.

For convenience, any equilibrium point can be shifted to the origin by means of the change of variables

ξ(t) = x(t)−xe with no loss of generality, see [39, 40]. This choice will facilitate some of our subsequent analyses.

2.1.2 Stability of Dynamical Systems

The concept of stability for dynamical systems is defined in terms of an equilibrium point. More specifically,

[38] defines the equilibrium point xe ∈ R
nx as stable if whenever the state vector is moved slightly away from

that point, it tends to return to it, or at least does not keep moving further away. In other words, the state vector

remains within a bounded region of the state space around the equilibrium point. Furthermore, if whenever

t→∞, the state vector x(t)→ xe, then the equilibrium point is referred to as asymptotically stable. Whenever

the concept of stability only holds for initial conditions within a certain region of the state space, the equilibrium

point is said to be locally stable. If, however, it is valid for any given initial condition, , the equilibrium point

is said to be globally stable. Moreover, the equilibrium point is known as globally asymptotically stable if

x(t)→ xe as t→∞, for any initial condition in the state space.

For the specific case of LTI systems, necessary and sufficient conditions for the stability of continuous-

time systems can be derived by studying the eigenvalues of the matrix A. For these systems, an equilibrium

point is globally asymptotically stable if and only if all eigenvalues of A are located at the open left half of the

complex plane, that is, the eigenvalues have strictly negative real part. In this case, the matrix A is said to be

Hurwitz, or A ∈ H, where H is defined as the set of Hurwitz matrices.

2.2 Lyapunov Stability Theory

For many decades, one of the most useful and relevant techniques for the evaluation of stability properties for

linear and nonlinear systems has been the theory introduced by Lyapunov in his seminal work The General

Problem of the Stability of Motion, originally published in 1892, and later translated [41]. When compared to

linear systems, nonlinear systems may exhibit new and complex behaviors. This, coupled with the fact that

explicit analytical solutions most often cannot be attained for these systems, sheds light upon the importance

of Lyapunov’s findings. The theory is comprised of two widely used methods, commonly referred to as the

linearization or indirect method, and the direct method. The latter will be used extensively throughout this
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work, and is introduced below in the context of LTI systems, followed by a brief discussion of its applicability

on the stability analysis of affine nonlinear systems.

2.2.1 Lyapunov’s Direct Method

Lyapunov’s direct method, as defined in [38, 39, 40], can be used to evaluate the stability of linear and nonlinear

systems in an indirect manner, enabling the characterization of the stability properties of all equilibrium points

for a given system, without the need to derive explicit numerical or analytical solutions. The stability analysis

is based on a scalar energy-like or summarizing function, dependent on the state vector. The purpose of this

function, known as a Lyapunov function, is to describe the behavior of the entire dynamical system as a function

of time, and allow conclusions to be inferred on the stability of the set of its governing differential equations.

The search for a suitable Lyapunov function may be a difficult task for more sophisticated systems, since it must

respect the requirements introduced below.

2.2.1.1 Lyapunov Function

A scalar function v(x) :D→ R, with D ⊂ R
nx being a region of the state space containing x = 0, is a Lyapunov

function if it satisfies the following set of conditions [38, 40]:

1. v(x) is continuously differentiable

2. v(0) = 0

3. v(x) > 0, ∀x ∈D, x , 0

4. v̇(x(t)) ≤ 0, ∀x ∈D

If, for a given Lyapunov function candidate, these requirements are verified for the system under consideration,

then the equilibrium point xe = 0 is stable. Moreover, whenever

5. v̇(x(t)) < 0, ∀x ∈D, x , 0

is satisfied, then xe = 0 is asymptotically stable. Additionally, if

6. ‖x‖ →∞ ⇒ v(x)→∞, D = R
nx radially unbounded

can also be verified, then the equilibrium point at the origin is globally asymptotically stable.

2.2.1.2 Lyapunov Stability Analysis of LTI Systems

For LTI systems, an adequate choice for the Lyapunov function v(x(t)), or simply v(x), is the quadratic form of a

symmetric positive definite matrix P ∈ Rnx×nx , that is

v(x) = xTPx (2.3)
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It can be verified that this function meets all the conditions of a Lyapunov function. Indeed, conditions (1)− (3)

are evidently verified, as well as condition (6). In addition, consider its time derivative

v̇(x) = ẋTPx+ xTPẋ

= xT
(

ATP+PA
)

x

= −xTQx

(2.4)

where Q ∈ Rnx×nx is a symmetric matrix defined by the so-called Lyapunov equation

ATP+PA+Q = 0 (2.5)

It can be shown that the validity of condition (5) is verified whenever matrix A is Hurwitz. Indeed, given

a positive definite matrix Q there exists a unique positive definite matrix P that is a solution to the Lyapunov

equation (2.5). Furthermore, the existence of P ≻ 0 satisfying the Lyapunov equation is not only a sufficient but

also a necessary condition for global asymptotic stability of the equilibrium point x = 0. The proof of sufficiency

follows from the fact that the Lyapunov equation is satisfied, and v̇(x) < 0 assures the asymptotic stability of the

system. The proof of necessity implies in demonstrating that a unique solution P always exists. Indeed, take a

matrix P defined by

P =

∫ ∞

0
eA

T tQeAt dt (2.6)

Whenever matrix A is Hurwitz, and consequently all its eigenvalues have strictly negative real part, this integral

exists. Furthermore, it can be verified that the matrix P is symmetric positive definite, since for any vector

q ∈ Rnx , such that q , 0, we have

qTPq =

∫ ∞

0
qT eA

T tQeAtq dt

=

∫ ∞

0
xTQx dt

(2.7)

where x(t) = eAtq is the analytical solution of the system ẋ(t) =Ax(t), when assigning q = x(0). As such, since

Q ≻ 0, then P must be positive definite. Finally, by substituting (2.6) in (2.5) we have

ATP+PA =

∫ ∞

0
AT eA

T tQeAt dt +

∫ ∞

0
eA

T tQeAtA dt

=

∫ ∞

0

d

dt

(

eA
T tQeAt

)

dt

= lim
t→∞

eA
T tQeAt −Q

= −Q

(2.8)

which comes from the fact that when matrix A is Hurwitz, then limt→∞ eA
T tQeAt = 0, and thus the Lyapunov

equation is verified. In order to demonstrate the uniqueness of the solution P, suppose that there exists another
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solution P̃ , P for the same matrix Q, in this case, from (2.5) we have

AT (P− P̃) + (P− P̃)A = 0 (2.9)

By multiplying to the left of this equality by eA
T t and to the right by its transpose, we have

eA
T t

(

AT (P− P̃) + (P− P̃)A
)

eAt =
d

dt

(

eA
T t

(

P− P̃
)

eAt
)

= 0 (2.10)

Thus, eA
T t

(

P− P̃
)

eAt is constant for all t ≥ 0. By evaluating this term for t = 0 and t→∞, it becomes clear that

P̃ = P must hold true, indicating that the solution P is indeed unique for a given matrix Q.

These ideas give rise to the following theorem, as stated in [40], prescribing global asymptotic stability of

the origin for LTI systems, in terms of the solution of the Lyapunov equation

Theorem 2.1. A matrix A is Hurwitz, that is, the eigenvalues of A have strictly negative real part if and only if, for

any given symmetric positive definite matrixQ, there exists a unique symmetric positive definite matrix P that satisfies

the Lyapunov equation (2.5).

It is worth noting that although the stability analysis of LTI systems can be easily performed by evaluating

the eigenvalues of the dynamical matrix A, this analysis is rendered moot when studying other types of systems,

such as switched systems, presented in more detail in the subsequent chapters. This emphasizes the usefulness

of Lyapunov’s theory, which allows the characterization of the stability properties of more complex nonlinear

systems in an indirect manner.

Finally, a related point to consider is that the Lyapunov equation was originally expressed in terms of

linear matrix inequalities, in the form known as the Lyapunov inequality

ATP+PA ≺ 0 (2.11)

This inequality was originally solved for P analytically, via a set of linear equations, by choosing any Q ≻ 0

that satisfied (2.5), as discussed in [42]. Only in the 1980’s it would become clear that the Lyapunov inequality

could be solved numerically by means of convex optimization algorithms, with great efficiency. Throughout this

work, we will focus on expressing stability conditions and control design problems in terms of Linear Matrix

Inequalities, from this point onwards referred to as LMIs, which can be solved without difficulty by several

standard and readily available tools.

2.2.1.3 Lyapunov Stability Analysis of Affine Systems

The analysis of stability in the context of switched affine systems is central to the topics explored in this work.

As such, it is important to initially study the stability properties of the affine subclass of nonlinear systems. To

this extent, consider the following affine system

ẋ(t) =Ax(t) +b, x(0) = x0 (2.12)
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where b ∈ Rnx is the affine term. Notice that whenever b = 0, this system reduces to the linear case, previously

presented. Also, recall that by the definition of an equilibrium point, we have ẋ(t) = 0. Thus, the equilibrium

point of the affine system can be calculated as

xe = −A
−1b (2.13)

As previously mentioned, in order to simplify evaluating the stability properties of this system by means of

Lyapunov’s direct method, and incurring no loss of generality, the state vector ξ(t) = x(t)− xe is defined, and we

now consider the system (2.12) shifted to the origin, as such

ξ̇(t) =Aξ(t), ξ(0) = ξ0 (2.14)

Observe that the problem can now be treated as an LTI system, such that the methodology and conditions for

stability introduced in Section 2.2.1.2 remain valid for the analysis of affine time invariant systems. In this case,

for a certain affine system under consideration, whenever there exists P ≻ 0 such that the Lyapunov inequality

(2.11) is satisfied for this system, then xe is a globally asymptotically stable equilibrium point, since for ξ→ 0

as t→∞, we have x→ xe.

2.3 Performance Indices for LTI Systems

In this section, the H2 and H∞ norms for LTI systems are introduced. These norms are used extensively in

control design, see [40, 42, 43, 44], to characterize the effects of a given input signal on the output of the system.

They will be expressed both with respect to the transfer function of the system, as well as in terms of its impulse

response, where the latter will be essential to allow their generalization in order to deal with switched systems,

thus providing an effective measure of performance for this class of systems. But first, some fundamental

concepts that are important to the development of the next topics will be presented, namely, Parseval’s Theorem

for continuous-time LTI systems, and the L2 space.

2.3.1 Parseval’s Theorem

Consider the function f(t) : [0,∞)→ R
n and its Laplace transform F(s), as well as the conjugate transpose F(s)∗,

whose domain dom(F), contains the imaginary axis. Parseval’s theorem is then defined by [45] as

∫ ∞

0
f(t)T f(t) dt =

1

2π

∫ ∞

−∞

F(jω)∗F(jω)dω

=
1

π

∫ ∞

0
F(jω)∗F(jω)dω

(2.15)

This will later be employed for the calculation of the H2 and H∞ norms in the coming sections. It should be

noted that the second equality of (2.15) is valid only when f(t) ∈ Rn, since in this case F(jω)∗ = F(−jω)T .
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2.3.2 L2 Space

The norm ‖ · ‖ : Rn→ R, as defined in [40, 46], is a real-valued function satisfying the following four axioms, for

all vectors u,v ∈ Cn and all α ∈ R:

• ‖v‖ ≥ 0 Nonnegativity

• ‖v‖ = 0 if and only if v = 0 Positivity

• ‖αv‖ = |α|‖v‖ Homogeneity

• ‖u+ v‖ ≤ ‖u‖+ ‖v‖ Triangle Inequality

One specific example, the Euclidean norm, defined for any vector x ∈ Rn

‖x‖2 =















n
∑

i=1

|xi |
2















1/2

=
(

xT x
)1/2

(2.16)

is perhaps the most commonly used norm. The definition of a norm, however, is not exclusive to finite-

dimensional vector spaces. It is also useful to define the L2 norm for continuous real-valued functions of the

form f(t) : [0,∞)→ R
n, as such

‖f‖L2 =

(∫ ∞

0
‖f(t)‖22 dt

)1/2

=

(∫ ∞

0
f(t)T f(t) dt

)1/2

(2.17)

If the integral amounts to a finite value, the function f(t) is called a square-integrable function. This characteri-

zation of the norm for a function will be helpful to measure the magnitude of the input and output signals of a

dynamical system, allowing for the definition of the performance criteria introduced in the next section.

2.3.3 System Definition

The H2 and H∞ norms are introduced considering the following LTI system, defined for t ≥ 0, with matrix A

Hurwitz.

ẋ(t) =Ax(t) +Hw(t), x(0) = 0

z(t) = Ex(t) +Gw(t)
(2.18)

where x(t) ∈ Rnx is the state vector, w(t) ∈ Rnw is the disturbance, z(t) ∈ Rnz is the performance output, and

matrices A,H,E,G are of appropriate dimensions. Also consider the transfer matrix Hwz(s) ∈ R
nz×nw of system

(2.18), from the input w to the output z, given by

Hwz(s) = E(sI−A)−1H+G (2.19)

with s ∈ C. We can now proceed to the definition of the H2 and H∞ norms for continuous-time LTI systems.
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2.3.4 H2 Norm for LTI Systems

The H2 norm can be interpreted as a measure of the energy of the output signal of a dynamical system, when

driven by an impulse. Other interpretations, such as in the context of stochastic systems exist, but will not be

discussed in this work. For the continuous-time LTI system (2.18), the H2 norm may be calculated whenever a

strictly proper transfer matrix Hwz(s) is considered, that is, with G = 0. In this case, the H2 norm is defined by

reference [47] as

‖Hwz(s)‖
2
L2

=
1

2π

∫ ∞

−∞

tr (Hwz(jω)∗Hwz(jω))dω (2.20)

By applying Parseval’s Theorem, introduced in (2.15), the H2 norm can be expressed in the time domain, as

such

‖Hwz(s)‖
2
L2

=

∫ ∞

0
tr

(

hwz(t)
Thwz(t)

)

dt (2.21)

By realizing that the impulse response hwz(t) of the system, when initial conditions are set to zero, is

hwz(t) =



















EeAtH, t ≥ 0

0, otherwise
(2.22)

and that for multiple-input, multiple-output systems, hwz(t) is of the form

hwz(t) =































h11(t) . . . hnw (t)
...

. . .
...

hnz (t) . . . hnznw (t)































(2.23)

then, from (2.21) and (2.23), the H2 norm can be written as

‖Hwz(s)‖
2
L2

=

nw
∑

k=1

nz
∑

i=1

∫ ∞

0
h2ik(t) dt (2.24)

It is interesting to note that a smaller H2 norm is generally associated to a faster convergence of the state

trajectories to the equilibrium point. Also, for single-input, single-output systems, theH2 norm becomes simply

the L2 norm of the impulse response for the system in question. This emphasizes the need of considering

a strictly proper system in order to obtain a finite H2 norm. Furthermore, observe that equation (2.24) may

alternatively be expressed as

‖Hwz(s)‖
2
L2

=

∫ ∞

0
tr

(

HT eA
T tETEeAtH

)

dt =

∫ ∞

0
tr

(

EeAtHHT eA
T tET

)

dt (2.25)

This allows the H2 norm to be stated either as

‖Hwz(s)‖L2 =
√

tr (HTLoH) , or ‖Hwz(s)‖L2 =
√

tr (ELcET ) (2.26)
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where the matrices Lo and Lc are respectively referred to as the controllability Gramian and the observability

Gramian, given by

Lo =

∫ ∞

0
eA

T tETEeAtdt, and Lc =

∫ ∞

0
eAtHHT eA

T tdt (2.27)

These are, in turn, the solutions to their associated Lyapunov equations, briefly discussed in Section 2.2.1.2, as

follows

ATLo +LoA+ETE = 0, and ALc +LcA
T +HHT = 0 (2.28)

Observe that the H2 norm, expressed in this manner, can be easily solved via numerical methods by the

following convex optimization problem, subject to LMI constraints, as shown in [42]

min tr
(

HTPH
)

subject to: P ≻ 0

ATP+PA+ETE ≺ 0

(2.29)

min tr
(

EPET
)

subject to: P ≻ 0

AP+PAT +HHT ≺ 0

(2.30)

It is important to note that the ‘min’ and ‘inf’ terms for optimization problems can be used interchangeably

whenever we consider that the non-compact set of constraints is closed by the numerical solver to a known

tolerance ǫ > 0. As such, the solution P obtained is arbitrarily close to the respective solutions of Lc or

Lo in (2.27). In this case, the H2 norm is given by ‖Hwz(s)‖
2
L2

= tr
(

HTLoH
)

< tr
(

HTPH
)

, or alternatively

‖Hwz(s)‖
2
L2

= tr
(

ELcE
T
)

< tr
(

EPET
)

.

2.3.5 H∞ Norm for LTI Systems

The H∞ norm characterizes a measure of the greatest possible L2 gain of the system, which is the ratio between

the L2 norm of the output signal and the L2 norm of a square integrable input signal, across all input channels,

that maximizes this ratio. It is defined for system (2.18), considering external inputs w ∈ L2, and is defined by

[40] as

‖Hwz(s)‖∞ = sup
ω∈R

σmax (Hwz(jω)) (2.31)

where σmax(Hwz(jω)) =
√

λmax (Hwz(jω)∗Hwz(jω)) is the maximum singular value of Hwz(jω), and λmax(·) is the

greatest eigenvalue of a matrix. For single-input, single-output systems, the H∞ norm becomes simply the peak

gain observed for the frequency response of Hwz(jω), ω ∈ R.

The H∞ norm of system (2.18) can also be defined in the time domain, as demonstrated in [40, 48], by

the following

‖Hwz(s)‖∞ = sup
0,w∈L2

‖z‖L2
‖w‖L2

(2.32)

Alternatively, (2.32) can be rewritten as ‖Hwz(s)‖∞ ≤ γ when considering a scalar γ > 0 such that

∫ ∞

0
z(t)T z(t) dt ≤ γ2

∫ ∞

0
w(t)Tw(t) dt, w(t) , 0, w(t) ∈ L2, t ≥ 0 (2.33)
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This definition allows the H∞ norm to be expressed completely in terms of the input and output signals in the

time domain. When considering performance indices for switched systems, this becomes especially important,

since these systems cannot be expressed in terms of transfer functions, as will become clear in the forthcoming

chapter.

As for the H2 norm, the upper bound for H∞ norm can also be calculated by means of a convex

optimization problem subject to LMI constraints. By considering the quadratic Lyapunov function v(x) = xTPx,

with P ≻ 0, we have

v̇(x) = ẋTPx+ xTPẋ+ (zT z− zT z) + (γ2wTw−γ2wTw)

=
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w
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ATP+PA+ETE PH+ETG

HTP+GTE GTG−γ2I
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− zT z+γ2wTw

< −zT z+γ2wTw

(2.34)

where the inequality arises by imposing

















ATP+PA+ETE •

HTP+GTE GTG−γ2I

















≺ 0 (2.35)

Notice that a necessary condition for the feasibility of this inequality is that block (1,1) of this inequality

be negative definite, or ATP+PA+ETE ≺ 0, thus implying in v̇(x) < 0, reinforcing the fact that the system is

asymptotically stable. Finally, by integrating both sides of (2.34) from t = 0 to t→∞, we have

∫ ∞

0
v̇(x) dt <

∫ ∞

0
−zT z+γ2wTw dt

lim
t→∞

v(x(t))− v(x(0)) < −‖z‖2L2 +γ2‖w‖2L2

(2.36)

which becomes (2.32), since limt→∞ v(x(t)) = 0, as the system is globally asymptotically stable, and v(x(0)) = 0,

given that x(0) = 0. As such, whenever (2.35) is satisfied, the inequality (2.34) is guaranteed, and by consequence,

so is (2.32). By means of a convex optimization problem, described in terms of LMIs, the H∞ norm can be

calculated with no difficulty, as follows

min ρ

subject to: P ≻ 0, ρ > 0




























ATP+PA • •

HTP −ρI •

E G −I





























≺ 0

(2.37)

where the last inequality is equivalent to (2.35), made clear by applying Schur complement with respect to −I.

The H∞ norm is then given by ‖Hwz(s)‖∞ < γ , with ρ = γ2. Again, as in the H2 case, the solution ρ is arbitrarily

close to the analytical solution, only by the specified tolerance ǫ > 0 of the numerical solver.
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Chapter 3

Switched Systems

I
n this chapter, we introduce the concept of switched systems, followed by the study of the

stability properties of switched linear and affine systems, as well as relevant performance criteria,

generalized from the concepts established in the previous chapter. The topics presented in this

chapter review several foundational results already existent in the literature, such as the papers

[13, 19] for switched linear systems, and [15, 29] for switched affine systems. The books [11] and [12] are also

important to support many of the ideas presented later in this work.

3.1 Introduction

Switched systems constitute a subclass of hybrid systems, in the sense that these systems are governed by a set

of modes of operation, each of which may be represented by a dynamical system, and are coupled with discrete

switching events across these modes, thus affecting the trajectory of the overall system. The switching between

modes is orchestrated by a switching function, also known as a switching rule, denoted by σ(·). It encompasses

a decision-making process that selects values within a set K≔ {1, . . . ,N }, at every instant of time, such that each

i ∈K corresponds to an individual mode of operation, referred to as a subsystem of the switched system. This

chapter will first deal with the so-called continuous-time switched linear systems, which concern the case where

all subsystems are governed by linear dynamical systems, and subsequently, we discuss the continuous-time

switched affine systems, pertaining to the situation where at least one of the subsystems presents a nonzero

affine term, contemplating the main focus of this work.

The effect of switching in switched systems is not trivial, since not only does it establish the nonlinear

and time-varying nature of these systems, but also, the stability properties of the switched system are inherently

dependent on the switching signal. Indeed, it may give rise to complex and unprecedented behaviors, even

when simple subsystems are considered. An example of this is the occurrence of sliding modes, in which the

switched system switches infinitely fast. This specific situation, although sometimes undesirable, allows for a

behavior significantly different than that of each isolated subsystem, and in the case of switched affine systems,

it introduces new attainable equilibrium points that are distinct from those of each subsystem, a topic that will

be discussed in greater detail shortly. It is important to note that although the switching function plays an

important part in the trajectory of the switched system, the continuous state evolves without discontinuities,

that is, the state does not jump impulsively on switching events.

To illustrate how the stability properties of a switched system are intertwined with the switching signal,

consider a switched system ẋ =Aσx, composed of two stable linear subsystems. When subject to a specifically

crafted switching signal σ(t), the switched system may prove to be unstable, as exemplified in Figure 3.1. This is
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despite the fact that these two subsystems individually display a monotonically decreasing Lyapunov function

v(x) = xTPσx, for σ = i, and for all t ≥ 0, with i = {1,2}. In the figure it can be observed that although v(x(t))

decreases in between switching events, an upward trend for v(x(t)) can be seen, indicating that the switching

signal under consideration destabilizes the switched system. Indeed notice that the state trajectories do not

converge to the origin. Fortunately, a suitable switching rule can also be used to stabilize the switched system.
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Figure 3.1: Lyapunov function for a destabilizing switching signal.

Given its crucial role on the behavior of switched systems, it is important to characterize the switching

function σ(·). This function may be either an arbitrary time-dependent function, or a control variable to be

designed. In the first case, the central problem is determining conditions to assure stability for some unknown

switching signal σ(t) : R+→K, such as a disturbance, an assigned external input, or a signal which may model

the effects of a component failure. On the other hand, the second case concerns the design of a switching

function σ(·) ∈K, which can be state or output dependent, in order to guarantee stability of the switched system.

The survey [13] reviews stability conditions for a variety of switched systems that have been introduced in the

literature throughout the past decades.

The design of a switching function σ(·) as a control variable attracts much interest, as an appropriate

choice for this function may assure stability even in the case where all subsystems are unstable. Furthermore,

whenever all subsystems are stable, it may improve the performance of the overall system when compared to

that of each isolated subsystem, in this case, the switching function is said to be strictly consistent [25]. This

scenario also has a wide scope of applications, such as the automatic transmission of an automobile, the problem

of temperature regulation by a thermostat, and several applications on power electronics systems. Given that

such systems are intrinsically switched, it makes sense to model these in a switched system framework. Several

results in the literature deal with the design of a stabilizing switching rule with applications on switched mode
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DC-DC power converters, more specifically the buck-boost, see [14, 17], and the flyback converters, in [18].

It is also relevant to consider performance metrics when designing switching functions for switched

systems. In this work, the H2 and H∞ performance indices will be presented, as introduced in [23, 24, 25] for

the linear case, and in [15, 29] for the affine case. These indices generalize the H2 and H∞ norms introduced in

Chapter 2, as they cannot be directly employed since they have been defined in terms of the transfer function of

an LTI system. It should be noted that even though each isolated subsystem may possess a frequency domain

representation, the switched system does not, due to its nonlinear and time-varying characteristics that stem

from the influence of the switching function. It will become evident, however, that whenever the switching

function remains fixed at a certain subsystem σ(t) = i, ∀t ≥ 0, these indices are equivalent to the square of

the H2 or H∞ norms for the i-th subsystem. These performance criteria will be essential when we treat the

problems of output feedback control and filter design in the coming chapters, as we seek to develop techniques

that minimize these indices.

3.2 Stability of Switched Linear Systems

Consider the state space representation of an unforced continuous-time switched linear system

ẋ(t) =Aσx(t), x(0) = x0 (3.1)

where x(t) ∈ Rnx is the state vector, and σ(·) ∈K, forK≔ {1, . . . ,N }, is the switching rule, a piecewise continuous

function, which selects one of the N available subsystems as active, at each instant of time. Notice that the

origin is the single equilibrium point of the system.

In this case, the problem consists in determining an appropriate switching rule σ(·), capable of stabilizing

the overall switched system, and making the origin xe = 0 a globally asymptotically stable equilibrium point.

The work of [19] introduces some circumstances which must be satisfied, so that a stabilizing switching rule is

guaranteed to exist. These conditions are derived under Lyapunov’s direct method, introduced in Section 2.2,

by adopting the quadratic Lyapunov function v(x) = xTPx, with P ≻ 0. Furthermore, these conditions will be

expressed in terms of LMIs.

In the context of switched linear systems, several well established results for stabilizing switching rules

exist, some of which are based on different Lyapunov functions. This work, however, will mostly deal with

the quadratic Lyapunov function, associated with the min-type switching function, for reasons which will be

discussed shortly.

3.2.1 Switching Rules for Switched Linear Systems

Over the past decades, several results in the literature have introduced different switching rules for switched

linear systems, along with their respective conditions for stability, and with varying degrees of conservativeness.



CHAPTER 3. SWITCHED SYSTEMS 31

Switching rules of the form σ(x(t)), σ(y(t)), and σ(x(t),w(t)) have been proposed, depending whether these

measurements are accessible in order to successfully implement the rule. At the moment, we will turn our focus

to switching rules dependent on the system state, σ(x(t)), and considering the quadratic Lyapunov function,

as in [15, 19, 20, 21, 22]. Some other results available in the literature will be shown in brief towards the

conclusion of this section.

3.2.1.1 Quadratic Lyapunov Function

The min-type switching rule σ(x(t)) : Rnx → K, introduced by [15, 19, 20, 22], is defined as follows for the

switched linear system (3.1)

σ(x) = arg min
i∈K

xTPAix (3.2)

where P ∈ Rnx×nx is a symmetric positive definite matrix. This switching rule guarantees global asymptotic

stability of the equilibrium point x = 0 for the system (3.1), considering the quadratic Lyapunov function

v(x) = xTPx, whenever there exists a vector λ0 ∈ΛN , such that Aλ0 is Hurwitz. It is interesting to observe that

this switching rule is equivalent to

σ(x) = arg min
i∈K

v̇i (x) (3.3)

Indeed, if we recognize that v̇i (x) = xT
(

AT
i P+PAi

)

x for the i-th subsystem, then

σ(x) = arg min
i∈K

xT
(

AT
i P+PAi

)

x

= arg min
i∈K

2 xTPAix
(3.4)

which is equivalent to rule (3.2) as stated.

The following theorem, available in [15], gives the conditions under which the min-type switching rule

stabilizes the switched linear system (3.1).

Theorem 3.1. Consider the switched linear system (3.1) and a vector λ0 ∈ΛN . If there exists a matrix P ≻ 0, such

that

AT
λ0
P+PAλ0 ≺ 0 (3.5)

then the following switching rule

σ(x) = arg min
i∈K

xTPAix (3.6)

makes the equilibrium point xe = 0 globally asymptotically stable.

Proof. The proof is available on [15], but will be reproduced below for convenience. The stabilizing nature of

the min-type switching rule for the system (3.1) is demonstrated via Lyapunov’s direct method, by verifying

that it indeed ensures that the time derivative of the quadratic Lyapunov function under consideration is strictly
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negative for any trajectory x , 0, as follows

v̇(x) = xT
(

AT
σP+PAσ

)

x

=min
i∈K

xT
(

AT
i P+PAi

)

x (3.7)

= min
λ∈ΛN

xT
(

AT
λP+PAλ

)

x (3.8)

≤ xT
(

AT
λ0
P+PAλ0

)

x (3.9)

< 0 (3.10)

where equality (3.7) comes from applying the switching rule (3.6); equality (3.8) comes from the fact that the

minimum of an objective function that is linear in λ always occurs at one of the vertices of the convex polytope

defined by λ ∈ΛN , and thus, selecting the i-th subsystem is equivalent to setting the i-th element of λ to 1, and

the remainder to 0; inequality (3.10) stems from the fact that since there exists a vector λ0, such that a convex

combination of the subsystems is Hurwitz, then at any given time, the minimum of the objective function in λ

will be always less than or equal to that of the convex combination. Finally, v̇(x) < 0 follows from the fact that

Aλ0 is Hurwitz, and thus, AT
λ0
P+PAλ0 ≺ 0.

The following simple example, based on [19], provides a valuable discussion on the operation of the

min-type switching rule.

Example 3.1

Consider the switched linear system (3.1), comprised of two unstable subsystems, with matrices A1 and A2.

Also, consider a symmetric positive definite matrix P ≻ 0, and suppose that a given λ0 = [µ 1−µ]T , with

µ ∈ (0,1) exists, such that Aλ0 = µA1 + (1−µ)A2 is Hurwitz. Let symmetric matrices Q1 and Q2 defined as

Q1 =AT
1 P+PA1 and Q2 =AT

2 P+PA2

Notice that, since Aλ0 ∈ H, and undertaking the stability analysis by Lyapunov’s direct method under the

quadratic Lyapunov function, the following inequality

AT
λ0
P+PAλ0 ≺ 0

is verified, thus implying that Qλ0 ≺ 0. Indeed, for all x ∈ Rnx , x , 0, we have

xT
(

AT
λ0
P+PAλ0

)

x = xTQλ0x < 0

Expanding this convex combination in λ0, we have

µ
(

xTQ1x
)

+ (1−µ)
(

xTQ2x
)

< 0
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This suggests that either

xTQ1x < 0 and/or xTQ2x < 0

However, by our initial hypothesis that both subsystems are not Hurwitz, there does not exist a matrix P1 ≻ 0

such that AT
1 P1 +P1A1 ≺ 0, nor does exist P2 ≻ 0 satisfying AT

2 P2 +P2A2 ≺ 0. This, coupled with the fact that

Qλ0 ≺ 0, implies that indeed matricesQi , i ∈ {1,2} are sign indefinite, and thus, the sign of xTQix are dependent

of the value of x. As such, it can be inferred that while neither subsystem is stable for all x(t), as the state

trajectory progresses in time, xTQ1x and xTQ2x take turns in becoming strictly negative, as a consequence of

Qi being sign indefinite, thus always guaranteeing AT
λ0
P+PAλ0 ≺ 0 at any given moment in time.

Notice that xT
(

AT
i P+PAi

)

x = xTQix is precisely the time derivative of the quadratic Lyapunov function

for the i-th subsystem. The min-type switching rule, which works by selecting the subsystem whose value

of xT
(

AT
i P+PAi

)

x is minimum, thus guarantees that the time derivative of the Lyapunov function is strictly

negative for all instants of time. �

It is important to note that no stability property is imposed on the individual subsystems, however a

recurrent condition in the literature, applicable to the results in this chapter, and employed by this example,

is that the convex combination of matrices Aλ0 , for λ0 ∈ ΛN , be Hurwitz, or equivalently Aλ0 ∈ H. This

requirement is sufficient to assure that a stabilizing switching rule exists, as discussed in [19, 20].

The following numerical example, where switching across two unstable subsystems is considered,

illustrates this case, for the min-type switching rule.

Example 3.2

Consider the switched linear system (3.1) consisting of the following two unstable subsystems

A1 =

















−10 3

8 −1

















, A2 =

















−1 2

4 −6

















Notice that the equilibrium points of both these subsystems are unstable saddle points, as illustrated by

the phase portrait in Figure 3.2. In this example, for a value of λ0 = [0.5 0.5]T , a Hurwitz convex combination

Aλ0 is verified.

Figure 3.2 displays the phase portraits of each isolated subsystem, considering trajectories evolving

from initial conditions x0 around a unit circle, indicated by the line ‘ ’ centered at the origin ‘ ’, that is,

x0 = [cos(θ) sin(θ)]T , θ ∈ [0,2π]. In order to implement the switching rule (3.6) of Theorem 3.1, first, a matrix

P ≻ 0 is calculated satisfying condition (3.5) of Theorem 3.1. For the value of λ0 given, we have considered the

following

P =

















30.2067 62.5002

62.5002 135.1940

















It can be verified that the switching rule is able to successfully stabilize the switched system, by inspecting
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Figure 3.2: Phase portrait for each unforced linear subsystem.

the state trajectories and phase portrait1 in Figures 3.3 and 3.4, respectively, which asymptotically converge to

the origin, as desired.
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Figure 3.3: Trajectories of each state for the switched linear system under Theorem 3.1.

Also, in Figure 3.4 the boundaries in which switching events occur, referred to as a switching surface, are

indicated by the line ‘ ’. This situation arises whenever xTPA1x = xTPA2x which, in this case, produces two

straight lines intersecting at the origin. Notice that when at the switching surface, the switching rule may either

select another subsystem as active, transitioning from one dynamical behavior to another, or it may also cause

the occurrence of sliding modes. In this example, this phenomenon is distinctly visible in Figure 3.4, where

the two subsystems switch at an arbitrarily high frequency, resulting in a behavior distinct from that of each

1Numerical simulations of switched systems were carried out using the SWSYSToolbox for MATLAB, developed by the author. The
toolbox is available at https://github.com/gkolotelo/SWSYSToolbox, along with the detailed documentation.
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Figure 3.4: Phase portrait for the switched linear system under Theorem 3.1.

isolated subsystem, and cause the state trajectory to evolve along the switching surface towards the equilibrium

point, as indicated by the arrows ‘ ’ along this surface. �

3.2.1.2 Min-Type Lyapunov Function

As alluded to earlier, less conservative results when compared to those based on quadratic Lyapunov functions

have been obtained, such as those derived from multiple Lyapunov functions, introduced by [2, 49], and from

the min-type piecewise quadratic Lyapunov function, as shown in [50, 51]. The latter two adopt the following

Lyapunov function

v(x) = min
i∈K

xTPix (3.11)

with matrices Pi ≻ 0, ∀i ∈K, being the solutions of the well-known Lyapunov-Metzler inequalities

AT
i Pi +PiAi +

N
∑

j=1

πjiPj +ET
i Ei ≺ 0, i ∈K (3.12)

where Π =
{

πji

}

is a subclass of Metzler matrices satisfying the additional property

N
∑

j=1

πji = 0, i ∈ {1, . . . ,N } (3.13)

Under these conditions, the following switching rule

σ(x) = arg min
i∈K

xTPix (3.14)
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guarantees global asymptotic stability of the origin. An important remark, as discussed in [52], is that the

inequalities (3.12) are less conservative than assuring the existence of a Hurwitz convex combination of

subsystem matrices, as required in Theorem 3.1. Unfortunately, the generalization of the Lyapunov-Metzler

inequalities to cope with switched affine systems is not trivial due to the difficulty of dealing with the affine

terms and the different equilibrium points which are introduced. As such, this work pays special attention

to conditions based on a quadratic Lyapunov function. In addition, the inequalities in (3.12) are non-convex

due to the product of matrix variables, and may be difficult to solve for an arbitrary number of subsystems.

Alternative conditions, easier to solve but more conservative, are available in [50].

3.3 Stability of Switched Affine Systems

In this section, we introduce the fundamental concepts of switched affine systems that will be extensively used

throughout the remainder of this work. Furthermore, we engage in discussions about the unique characteristics

of these types of systems, and how these features are useful for modeling many practical applications.

Consider the following state space representation of an unforced continuous-time switched affine system

ẋ(t) =Aσx(t) +bσ , x(0) = x0

z(t) = Eσx(t)
(3.15)

where x(t) ∈ Rnx is the state vector, bi ∈ R
nx are the affine terms, σ(·) ∈K is the switching rule, and z(t) ∈ Rnz is

the performance output, which will allow for the definition of performance indices for these systems later on.

Notice that whenever bi = 0 for all i ∈K, the system (3.15) reduces to a continuous-time switched linear system,

whose sole equilibrium point is the origin. However, for the more general case of bi , 0, for at least one i ∈K,

system (3.15) may exhibit several distinct equilibrium points, constituting a subset of the state space. This

imposes greater difficulty in the study of the stability properties of these systems, as will soon become evident.

Definition 1. The set of all equilibrium points of the system (3.15) is given by

Xe =
{

xe ∈ R
nx : xe = −A

−1
λ bλ, λ ∈ΛN

}

(3.16)

Notice that this definition requires that Aλ be nonsingular and provides the unique equilibrium point

xe = −A
−1
λ bλ. However, for the case where Aλ is singular, any choice of equilibrium points xe satisfying

Aλxe +bλ = 0 is possible. With no loss of generality, system (3.15) can be shifted so as to move the equilibrium

point xe ∈ Xe to the origin by defining the new state vector ξ(t) = x(t)− xe, resulting in the equivalent system

ξ̇(t) =Aσξ(t) + ℓσ , ξ(0) = ξ0

ze(t) = Eσξ(t)
(3.17)

where ℓi =Aixe +bi , for all i ∈K, are the new affine terms, and ze(t) = z(t)−Eσxe is the shifted output. It should
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be noted that for global asymptotic stability, we have ξ(t)→ 0 as t→∞, and in this condition, x(t)→ xe for

system (3.15). Furthermore, observe that whenever xe ∈ Xe, with an associated λ0 ∈ΛN , we have ℓλ0 = 0. This

choice of state variables will simplify our further developments.

3.3.1 Switching Rules for Switched Affine Systems

On the realm of switched affine systems, fewer switching rules have been introduced, when compared to

switched linear systems. The authors [26, 27, 28] present state dependent switching rules, whereas the

references [16, 30] introduce an output dependent switching function. In this section we first present the

min-type switching rule, originally devised in [26], along with conditions for global asymptotic stability of

xe ∈ Xe. This is followed by the introduction of the concept of guaranteed cost for switched systems, which will

be important for the definition of H2 and H∞ performance indices towards the end of this chapter.

3.3.1.1 Min-Type Switching Rule

The following theorem introduces the consolidated results of [15, 26], which present conditions that assure

global asymptotic stability of a desired equilibrium point xe ∈ Xe.

Theorem 3.2. Consider the switched affine system (3.17), and a chosen xe ∈ Xe of interest with its associated λ0 ∈ΛN .

If there exists a matrix P ≻ 0, such that

AT
λ0
P+PAλ0 ≺ 0 (3.18)

then the following switching rule

σ(ξ) = arg min
i∈K

ξTPAiξ +ξ
TPℓi (3.19)

makes the equilibrium point xe ∈ Xe globally asymptotically stable.

Proof. The proof, available in [26], is presented below for convenience, and explained throughout its unraveling.

When adopting the switching strategy (3.19), and realizing that it is equivalent to

σ(ξ) = arg min
i∈K

ξT
(

AT
i P+PAi

)

ξ +2ξTPℓi (3.20)

then the time derivative of the quadratic Lyapunov function v̇(ξ(t)), for any state trajectory ξ , 0, is given by

v̇(ξ) = ξ̇
T
Pξ +ξTPξ̇

= ξT
(

AT
σP+PAσ

)

ξ +2ξTPℓσ

=min
i∈K

ξT
(

AT
i P+PAi

)

ξ +2ξTPℓi

= min
λ∈ΛN

ξT
(

AT
λP+PAλ

)

ξ +2ξTPℓλ

≤ ξT
(

AT
λ0
P+PAλ0

)

ξ +2ξTPℓλ0

< 0 (3.21)
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which unfolds in a similar manner to the proof of the min-type switching rule for switched linear systems,

presented in Section 3.2.1.1, when recalling the fact that ℓλ0 = 0, and that Aλ0 is Hurwitz, as ensured by

condition (3.18), thus making inequality (3.21) valid.

Notice that this theorem encompasses Theorem 3.1, since in the event that bi = 0, ∀i ∈K, they become

equivalent. It is also important to observe that not all equilibrium points xe ∈ Xe are attainable, but in fact only

those for which the vectors λ ∈ΛN satisfy Aλ ∈ H. Thus, in the uncommon case where there exists no stable

convex combination of dynamical matrices, the system is not stabilizable under Theorem 3.2.

Overall, this result is very attractive for a range of real-life applications, since it allows the switched

system to operate at a chosen equilibrium point of interest, different than those of the individual subsystems.

The works of [14, 15, 17, 18] apply this particular characteristic of switched affine systems to different topologies

of DC-DC power converters with great success. A numerical example is presented below to demonstrate the

validity of Theorem 3.2 with respect to the min-type switching rule for switched affine systems.

3.3.1.2 Example

The following numerical example illustrates the peculiarities of switched affine systems and how the switching

function plays an important role in guaranteeing asymptotic stability for this class of switched systems.

Example 3.3

Consider the switched affine system (3.15) comprised of a stable and an unstable subsystem, as follows

A1 =

















8 0

1 2

















, A2 =

















−2 −9

5 −4

















, b1 =

















5

7

















, b2 =

















7

−3

















whose respective equilibrium points are

xe1 =

















−0.625

−3.1875

















, xe2 =

















1.0377

0.5472

















For the equilibrium point of interest xe = [0.9158 0.8160]T ∈ Xe, with its associated vector λ0 = [0.15 0.85]T ,

a Hurwitz convex combination Aλ0 ∈ H is verified. In Figure 3.5, we can observe the dynamical behavior of

each isolated subsystem in the ξ = x− xe phase plane, where ‘ ’ denotes the origin of the shifted system ξ = 0.

For subsystem 1, we have considered initial conditions ξ0 = x0 + xe1 − xe describing points over the line ‘ ’

from x0 = [2 − 2]T to x0 = [−2 2]T . For subsystem 2 we have considered initial conditions ξ0 = x0 − xe with

x0 = 3× [cos(θ) sin(θ)]T , θ ∈ [0,2π], corresponding to points distributed around the circle ‘ ’. Notice that the

equilibrium point xe1 , marked by ‘ ’, is an unstable node, whereas xe2 , indicated by ‘ ’, is a stable focus, also,

notice how xe differs from the equilibrium points of the isolated subsystems. These different behaviors across

subsystems bring about complex dynamical behaviors for the overall switched system, as will become clear.
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Figure 3.5: Phase portrait for each unforced affine subsystem.

Before proceeding, the vectors ℓi = Aixe +bi , for i ∈ {1,2} are calculated. We have also considered the

matrix P ≻ 0 as follows

P =

















0.2491 −0.0650

−0.0650 0.4107

















which satisfies the LMI constraint (3.18) of Theorem 3.2. Implementing the switching rule (3.19), and allowing

initial conditions distributed around the circle indicated by ‘ ’ with ξ0 = 2× [cos(θ) sin(θ)]T +ξ•, θ ∈ [0,2π],

where ξ• = [−0.6079 − 1.0480]T , the switched system is successfully stabilized, as observed in the phase portrait

shown in Figure 3.6. Notice that ξ• is the center of the switching surface, indicated in Figure 3.6 by the line ‘ ’,

taking place when ξTPA1ξ +ξ
TPℓ1 = ξ

TPA2ξ +ξ
TPℓ2, and forming, in this case, an ellipse.
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Figure 3.6: Phase portrait for the switched affine system under Theorem 3.2.
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Notice that when the trajectory is outside this ellipse, it assumes the behavior of subsystem 2, conversely,

when inside the ellipse, the trajectory follows the dynamical behavior of subsystem 1. It is interesting to

observe that when at the switching surface, the trajectory may exhibit a particular behavior, characteristic of

switched systems, known as sliding mode. Observe in Figure 3.6 that when evolving in sliding modes, the

trajectories converge to the equilibrium point ‘ ’, as indicated by the arrows ‘ ’ along the switching surface.

This phenomenon, resulting from an arbitrarily fast switching between subsystems, or chattering, is sometimes

an undesirable condition in real-life systems, given the increased equipment wear that may result. However, it

may also be a sought after situation, when it allows for the stability of the overall system. This is the case of

switched affine systems, where sliding modes are a crucial aspect, making it possible for an equilibrium point

different than that of each isolated subsystem to be attained, as evidenced by this example.

Figure 3.7 reveals the states of the switched affine system asymptotically reaching the equilibrium point

ξ = 0, or equivalently, x = xe, as time progresses, for all the initial conditions considered.

0 0.5 1 1.5 2 2.5 3
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Figure 3.7: Trajectories of each state for the switched affine system under Theorem 3.2.

This example aimed to demonstrate some of the unique and complex behaviors displayed by switched

affine systems and to motivate our further discussions and interest in this class of systems.

�

3.3.1.3 Min-Type Switching Rule and Guaranteed Cost

A guaranteed cost is an upper bound for a certain performance criteria of a dynamical system. In this work, we

consider as cost function the L2 norm of the performance output ‖ze‖L2 for the switched affine system (3.17).

This section will demonstrate how the quadratic Lyapunov function can be used to ensure this upper bound for

this class of switched systems, as shown in references [14, 15]. To this end, the following theorem is borrowed

from the reference [15].
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Theorem 3.3. Consider the switched affine system (3.17), and a chosen xe ∈ Xe of interest with its associated λ0 ∈ΛN .

If there exist a matrix P ≻ 0, and symmetric matrices Qi , such that

AT
i P+PAi +ET

i Ei +Qi ≺ 0, ∀i ∈K (3.22)

Qλ0 � 0 (3.23)

then the following switching rule

σ(ξ) = arg min
i∈K
−ξTQiξ +2ξTPℓi (3.24)

makes the equilibrium point xe ∈ Xe globally asymptotically stable, and the guaranteed cost

‖ze‖
2
L2

< ξT0 Pξ0 (3.25)

holds.

Proof. The proof is available in [53], and follows from the definition of the guaranteed cost in [15]. Considering

the switching strategy (3.24), the time derivative of the quadratic Lyapunov function is given by

v̇(ξ) = ξ̇
T
Pξ +ξTPξ̇

= ξT
(

AT
σP+PAσ

)

ξ +2ξTPℓσ +
(

zTe ze − z
T
e ze

)

= ξT
(

AT
σP+PAσ +ET

σEσ

)

ξ +2ξTPℓσ − z
T
e ze

< −ξTQσξ +2ξTPℓσ − z
T
e ze (3.26)

= min
i∈K
−ξTQiξ +2ξTPℓi − z

T
e ze

= min
λ∈ΛN

−ξTQλξ +2ξTPℓλ − z
T
e ze

≤ −ξTQλ0ξ +2ξTP ℓλ0 − z
T
e ze

≤ −zTe ze (3.27)

for any state trajectory ξ , 0, where inequality (3.26) comes from the conditions (3.22) of Theorem 3.3, and

inequality (3.27) stems from the fact that Qλ0 � 0 and ℓλ0 = 0. Thus, global asymptotic stability is guaranteed

for the equilibrium point xe, since z
T
e ze ≥ 0. Finally, by integrating both sides of (3.27) we have

∫ ∞

0
v̇(ξ) dt < −

∫ ∞

0
ze(t)

T ze(t) dt

lim
t→∞

v(ξ(t))− v(ξ(0)) < −

∫ ∞

0
ze(t)

T ze(t) dt

∫ ∞

0
ze(t)

T ze(t) dt < v(ξ0)

‖ze‖
2
L2

< ξT0 Pξ0

(3.28)

where ξ0 = ξ(0), and limt→∞ v(ξ(t)) = 0, since the system is asymptotically stable. This assures the guaranteed
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cost for the system ‖ze‖
2
L2

< ξT0 Pξ0 whenever ze(t) is square-integrable.

It is worth noticing that (3.22) together with (3.23) are equivalent to

AT
λ0
P+PAλ0 +

N
∑

i=0

λiE
T
i Ei ≺ 0 (3.29)

as shown in [52], which indicates that the matrices Ei directly influence matrix P, and consequently, the

guaranteed cost for the system, as is to be expected. Furthermore, the above inequality requires that Aλ0 be

Hurwitz. This, however, is not an onerous imposition, since matrices Qi , ∀i ∈K, are sign indefinite, and thus

no stability property is required from the subsystem matrices Ai themselves, for all i ∈K.

To implement Theorem 3.3, matrices P and Qi , for i ∈K, important for the switching rule (3.24), can be

calculated numerically by solving the following convex optimization problem, subject to the LMI constraints

(3.22) and (3.23) of Theorem 3.3, that is

min ξT0 Pξ0

subject to: P ≻ 0

AT
i P+PAi +ET

i Ei +Qi ≺ 0, ∀i ∈K

Qλ0 � 0

(3.30)

This result is key for the definition of an upper bound for the H2 and H∞ performance indices, which will be

introduced in the next section.

The following corollary proposes a min-type linear switching rule, possible in the event that all subsys-

tems are individually stable, a situation that often occurs when considering practical applications.

Corollary 3.1. Consider the switched affine system (3.17), and a chosen xe ∈ Xe of interest. If there exists a matrix

P ≻ 0, such that

AT
i P+PAi +ET

i Ei ≺ 0, ∀i ∈K (3.31)

then the following switching rule

σ(ξ) = arg min
i∈K

ξTPAixe (3.32)

makes the equilibrium point xe ∈ Xe globally asymptotically stable, and the guaranteed cost

‖ze‖
2
L2

< ξT0 Pξ0 (3.33)

holds.

Proof. The proof is a direct consequence of Theorem 3.3. By imposing Qi � 0, for all i ∈K.

The conditions in the corollary require that all the subsystems be quadratically stable, that is, Ai ∈ H, ∀i ∈

K and additionally, they must admit the same matrix solution P ≻ 0. Although this result is more conservative

when compared to Theorem 3.3, it is useful when considering practical applications, as it guarantees global
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asymptotic stability for any xe ∈ Xe, by only calculating the matrix P once, in contrast to Theorem 3.3, where

P depends on the value of λ0. This allows for the equilibrium point to change at execution time by simply

altering xe as desired on the switching rule (3.32).

3.4 Performance Indices

This section aims to introduce the concept of performance indices for switched systems, as well as propose

suboptimal switching rules that assure an upper bound for these indices. For theH2 case, the results of Theorem

3.3 will be generalized, where a state dependent switching function is proposed. For theH∞ case, two switching

rules are introduced, one dependent on the system state, and another, less conservative, that also depends on

the external disturbance. These concepts have already been tackled in [23, 24, 25], in the context of switched

linear systems, as well as in [16, 29] for the case of switched affine systems.

In this section, the following switched affine system is considered, already in its shifted representation,

such that the origin is its unique equilibrium point

ξ̇(t) =Aσξ(t) +Hσw(t) + ℓσ , ξ(0) = 0

ze(t) = Eσξ(t) +Gσw(t)
(3.34)

For this system, ξ(t) ∈ R
nx is the state vector, ℓi ∈ R

nx are the affine terms, σ(·) ∈ K is the switching rule,

ze(t) ∈ R
nz is the performance output, and w(t) ∈ R

nw is the external disturbance input. The following

performance indices will establish a relationship between this disturbance and the performance output.

3.4.1 H2 Performance Index for Switched Systems

As for the case of the H2 norm for LTI systems, we must consider Gi = 0 for all i ∈K in order to ensure that the

output ze(t), when associated to external impulsive disturbances, be square-integrable.

The H2 performance index is defined as in [25] by

J2(σ) =

nw
∑

k=1

‖zek ‖
2
L2

(3.35)

where zek (t) refers to the output of system (3.34) associated to an impulsive disturbance applied to the k-th

input, or in other words, w(t) = δ(t)ψk , such that ψk , for k ∈ {1, . . . ,nw} form a standard basis. Considering this,

observe that (3.35) can also be expressed as

J2(σ) =

nw
∑

k=1

∫ ∞

0
zTek (t)zek (t) dt =

nw
∑

k=1

nz
∑

i=1

∫ ∞

0
zeik (t)

2 dt (3.36)

where zeik (t) refers to the i−th output channel with respect to a disturbance applied at the k−th input.
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For an LTI system, the H2 norm introduced in (2.24) can be defined in terms of the frequency response

of the system, however this is not the case for switched systems, as they do not admit a transfer matrix due

to the action of the switching rule. Nevertheless, notice that whenever the switching rule remains fixed at a

certain subsystem, that is σ(t) = i, for all t ≥ 0, then the H2 index is indeed equivalent to the square of the H2

norm, since in this case, zeik (t), for an impulsive disturbance, equates to hik(t) of (2.24).

To deal with switched systems, the upper bound of the H2 performance index is defined by considering

the guaranteed cost introduced in Theorem 3.3, which was obtained with w(t) = 0, and for an arbitrary initial

condition. Notice that the system (3.34) subjected to an impulsive disturbance w(t) = δ(t)ψk can be cast as

system (3.17) when ξ(0) =Hσ(0)ψk is assigned. This can be verified by integrating (3.34)

∫ t

0
ξ̇(t) dt =

∫ t

0
Aσξ(t) + ℓσ dt +

∫ t

0
Hσw(t) dt

ξ(t)−ξ(0) =

∫ t

0
Aσξ(t) + ℓσ dt +Hσ(0)ψk

ξ(t)−Hσ(0)ψk =

∫ t

0
Aσξ(t) + ℓσ dt

(3.37)

Hence, the upper bound for the H2 index can be calculated by using result (3.25) from Theorem 3.3

J2(σ) =

nw
∑

k=1

∫ ∞

0
zTek (t)zek (t) dt

<

nw
∑

k=1

ξT (0)Pξ(0)

=

nw
∑

k=1

ψT
k H

T
j PHjψk

= tr
(

HT
j PHj

)

(3.38)

where P satisfies theorem 3.3, and σ(0) = j is the initial value of the switching rule, chosen appropriately.

Two choices for this value may be of interest: The choice of j ∈ K that minimizes an upper bound of J2 or,

alternatively, the worst case choice of j , making the switching function robust with respect to σ(0) ∈K. More

information of this topic can be found in the reference [23].

Finally, it is also worth mentioning that, although this definition has been established for the shifted

system (3.17), by considering the performance output ze(t), this result equally guarantees an upper bound

for the system (3.15) whose performance output is z(t), since these outputs are shifted by a known amount

ze(t) = z(t)−Eσxe. With this, the following theorem can be stated.

Theorem 3.4. Consider the switched affine system (3.34), with Gi = 0 for all i ∈K, and a chosen xe ∈ Xe of interest

with its associated λ0 ∈ΛN . If there exist a matrix P ≻ 0, and symmetric matrices Qi , such that

AT
i P+PAi +ET

i Ei +Qi ≺ 0, ∀i ∈K (3.39)

Qλ0 � 0 (3.40)
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then the following switching rule

σ(ξ) = arg min
i∈K
−ξTQiξ +2ξTPℓi (3.41)

makes the equilibrium point xe ∈ Xe globally asymptotically stable, and assures the H2 guaranteed cost

J2(σ) < tr
(

HT
j PHj

)

(3.42)

with σ(0) = j given.

Proof. The proof follows from Theorem 3.3, taking into account the relations (3.37) and (3.38).

The following convex optimization problem allows for the numerical calculation of matrices P and Qi ,

for i ∈K, required to implement the switching rule (3.41) of Theorem 3.4, with j ∈K chosen appropriately.

min tr
(

HT
j PHj

)

subject to: P ≻ 0

AT
i P+PAi +ET

i Ei +Qi ≺ 0, ∀i ∈K

Qλ0 � 0

(3.43)

In this manner, the upper bound for the H2 performance index is given by J2(σ) < tr
(

HT
j PHj

)

.

3.4.1.1 Example

A simple numerical example, based on Example 3.3, is provided to illustrate the H2 state feedback control

design technique of Theorem 3.4.

Example 3.4

Consider the switched affine system of Example 3.3, with the additional matrices

E1 = E2 = I, H1 =

















1

0

















, H2 =

















−1

1

















A Hurwitz convex combination Aλ0 occurs at λ0 = [0.2 0.8]T , with the associated equilibrium point xe =

[0.8492 0.9167]T ∈ Xe. In order to implement the switching rule (3.41) of Theorem 3.4, the vectors ℓi =Aixe+bi ,

for i = {1,2} are first calculated, and the matrices P, Q1, and Q2 are obtained by solving the convex optimization

problem (3.43), resulting in the following matrices

P =

















0.3290 −0.1190

−0.1190 0.4847

















, Q1 =

















−6.0266 0.7058

0.7058 −2.9389

















, Q2 =

















1.5066 −0.1765

−0.1765 0.7347

















which are associated to the guaranteed cost J2(σ) < 0.3290 for σ(0) = 1. For comparison, by choosing σ(0) = 2,

the guaranteed cost for the switched system would be J2(σ) < 1.0518. This cost would be robust against the
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choice of σ(0). The trajectories in time for each state can be seen in Figure 3.8 for w(t) = δ(t)ψ1, which is

equivalent to an initial condition ξ(0) =H1ψ1 =H1, as only one input channel is present, as discussed in Section

3.4.1. The figure reveals that the system state trajectories asymptotically converge to ξ = 0, as expected. In

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

-0.2

-0.1

0

0.1

0.2

Figure 3.8: Trajectories of each state for the switched affine system under Theorem 3.4.

addition, observe in Figure 3.9 the behavior of the switching rule. It can be seen that the switched system clearly

evolves in sliding modes starting at t ≈ 0.21 seconds, in order to maintain the system at the equilibrium point.

0 0.5 1 1.5 2 2.5 3 3.5 4

1

2

0.2139 0.21395 0.214 0.21405

1

2

Figure 3.9: Switching rule for the switched affine system under Theorem 3.4.

Finally, by numerical integration of the product ze(t)
T ze(t) from t = 0 to t → ∞, the actual H2 cost

obtained from the implementation of the switching function (3.41) was calculated as being J2 = 0.0705 < 0.3290,

within the cost guaranteed by Theorem 3.4. �

3.4.2 H∞ Performance Index for Switched Systems

In a manner analogous to the definition of theH∞ norm (2.32) established for LTI systems, theH∞ performance

index for switched systems is defined as in [25] by

J∞(σ) = sup
0,w∈L2

‖ze(t)‖
2
L2

‖w(t)‖2L2

(3.44)
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or, by considering the scalar ρ > 0, we can write J∞(σ) < ρ, with ρ being an upper bound for this index.

Following the same reasoning as in the proof of Theorem 3.3, the upper bound for the H∞ index can be

inferred from the time derivative of the quadratic Lyapunov function, for state trajectories ξ , 0, as follows

v̇(ξ) = ξ̇
T
Pξ +ξTPξ̇

= ξT
(

AT
σP+PAσ

)

ξ +wTHT
σPξ +ξ

TPHσw+2ξTPℓσ +
(

zTe ze − z
T
e ze

)

+ ρ
(

wTw−wTw
)

= ξT
(

AT
σP+PAσ +ET

σEσ

)

ξ +wT
(

HT
σP+GT

σEσ

)

ξ +ξT
(

PHσ +ET
σGσ

)

w+

+wT
(

GT
σGσ − ρI

)

w+2ξTPℓσ − z
T
e ze + ρwTw

=

















ξ

w

















T 















AT
σP+PAσ +ET

σEσ PHσ +ET
σGσ

HT
σP+GT

σEσ GT
σGσ − ρI

































ξ

w

















+2ξTPℓσ − z
T
e ze + ρwTw

(3.45)

Two switching strategies, which provide different H∞ guaranteed costs, are introduced along with their

respective conditions for stability. The first strategy relies solely on the state information, while the other, a less

conservative result, assumes that the external input is either available, or can be measured or estimated. The

results of this section are also available in the reference [29].

3.4.2.1 State-Input Dependent Switching Rule

The following theorem, as presented in [29], states conditions for the control design problem of a stabilizing

switching function dependent on the system state ξ(t) and also on the external disturbance w(t), providing an

upper bound for the H∞ performance index.

Theorem 3.5. Consider the switched affine system (3.34), and a chosen xe ∈ Xe of interest with its associated λ0 ∈ΛN .

If there exist a matrix P ≻ 0, and a scalar ρ > 0, such that

∑

i∈K

λ0iLi (ρ,P) ≺ 0 (3.46)

with

Li (ρ,P) =

















AT
i P+PAi +ET

i Ei •

HT
i P+GT

i Ei GT
i Gi − ρI

















(3.47)

then the following switching rule

σ(ξ,w) = arg min
i∈K

















ξ

w

















T

Li (ρ,P)

















ξ

w

















+2ξTPℓi (3.48)

makes the equilibrium point xe ∈ Xe globally asymptotically stable, and guarantees the upper bound for the H∞

performance index J∞(σ) < ρ.

Proof. The proof is available in [29], but is demonstrated here for convenience. By adopting the switching

strategy in Theorem 3.5, the time derivative of the quadratic Lyapunov function, considered for an arbitrary
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state trajectory ξ , 0, is calculated from (3.45) as follows

v̇(ξ) =

















ξ

w

















T

Lσ (ρ,P)

















ξ

w

















+2ξTPℓσ − z
T
e ze + ρwTw

=min
i∈K

















ξ

w

















T

Li (ρ,P)

















ξ

w

















+2ξTPℓi − z
T
e ze + ρwTw

= min
λ∈ΛN

∑

i∈K

λi

















ξ

w

















T

Li (ρ,P)

















ξ

w

















+2ξTPℓλ − z
T
e ze + ρwTw

≤
∑

i∈K

λ0i

















ξ

w

















T

Li (ρ,P)

















ξ

w

















+2ξTPℓλ0 − z
T
e ze + ρwTw

< −zTe ze + ρwTw (3.49)

where inequality (3.49) comes from condition (3.46), and by recalling that ℓλ0 = 0. Notice that, for w(t) = 0, we

have v̇(ξ(t)) < 0, and as such, the equilibrium point ξ = 0 is globally asymptotically stable. This allows for the

calculation of the upper bound ρ, by integrating both sides of (3.49), as such

v̇(ξ) < −zTe ze + ρwTw
∫ ∞

0
v̇(ξ) dt < −

∫ ∞

0
zTe ze dt + ρ

∫ ∞

0
wTw dt

lim
t→∞

v(ξ(t))− v(ξ(0)) < −‖ze‖
2
L2

+ ρ‖w‖2L2

‖ze‖
2
L2

< ρ‖w‖2L2

(3.50)

where limt→∞ v(ξ(t)) = 0, for an asymptotically stable system, and v(ξ(0)) = 0, since ξ(0) = 0. For any

disturbance w(t) ∈ L2, w(t) , 0, ρ gives the upper bound for the H∞ performance index

J∞(σ) = sup
0,w∈L2

‖ze‖
2
L2

‖w‖2L2

< ρ (3.51)

as desired.

Theorem 3.5 may be implemented by solving the following convex optimization problem

min ρ

subject to: P ≻ 0, ρ > 0
∑

i∈K

λ0iLi (ρ,P) ≺ 0

(3.52)

The solution to this problem provides the matrix P, important for the switching rule (3.48) as well as the upper

bound J∞(σ) < ρ for the H∞ performance index.
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3.4.2.2 State Dependent Switching Rule

A second switching strategy dependent only on state information σ(ξ) is relevant whenever the disturbancew(t)

is unavailable for measurement. To accomplish this, we consider a disturbance w(t)⋆ , such that it maximizes

the product

sup
w∈L2

















ξ

w

















T

Li (ρ,P)

















ξ

w

















(3.53)

By defining the function f (ξ,w) as the matrix product

f (ξ,w) =

















ξ

w

















T

Li (ρ,P)

















ξ

w

















= ξT
(

AT
i P+PAi +ET

i Ei

)

ξ +2ξT
(

PHi +ET
i Gi

)

w+wT
(

GT
i Gi − ρI

)

w (3.54)

taking the partial derivative of f (ξ,w) with respect to w(t), and subsequently setting it to zero

∂

∂w
f (ξ,w) = 2

(

HT
i P+GT

i Ei

)

ξ +2
(

GT
i Gi − ρI

)

w = 0 (3.55)

the disturbance input w(t)⋆ can be calculated

w(t)⋆ = −
(

GT
i Gi − ρI

)−1 (

HT
i P+GT

i Ei

)

ξ(t) (3.56)

Finally, by evaluating the second derivative of f (ξ,w) with respect to w(t)

∂2

∂w2
f (ξ,w) = 2

(

GT
i Gi − ρI

)

(3.57)

we have that whenever (GT
i Gi − ρI) is negative definite, the input w(t)⋆ maximizes the matrix product f (ξ,w).

Substituting w(t)⋆ = −
(

GT
i Gi − ρI

)−1 (

HT
i P+GT

i Ei

)

ξ(t) for the disturbance w(t) in f (ξ,w), and thus

eliminating its dependency, we obtain

f (ξ) = ξT
(

AT
i P+PAi +ET

i Ei −
(

PHi +ET
i Gi

)(

GT
i Gi − ρI

)−1 (

HT
i P+GT

i Ei

)

)

ξ (3.58)

By defining the matricesNi (ρ,P), for all i ∈K as

Ni (ρ,P) =AT
i P+PAi +ET

i Ei −
(

PHi +ET
i Gi

)(

GT
i Gi − ρI

)−1 (

HT
i P+GT

i Ei

)

(3.59)

and introducing symmetric matrices Qi , for i ∈K, then we have that the following inequalities are satisfied

Ni (ρ,P) +Qi ≺ 0 (3.60)
(

GT
i Gi − ρI

)

≺ 0 (3.61)
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whenever the condition below is verified





























AT
i P+PAi +Qi • •

HT
i P −ρI •

Ei Gi −I





























≺ 0, ∀i ∈K (3.62)

Indeed, by successively applying Schur complement to (3.62) with respect to −I and (GT
i Gi − ρI), we recover

the inequalities (3.60) and (3.61). It is based on this condition, that the theorem presented below guarantees

global asymptotic stability while assuring the upper bound for the H∞ performance index J∞(σ) < ρ.

Theorem 3.6. Consider the switched affine system (3.34), and a chosen xe ∈ Xe of interest with its associated λ0 ∈ΛN .

If there exist a matrix P ≻ 0, symmetric matrices Qi , and a scalar ρ such that

Qλ0 � 0 (3.63)




























AT
i P+PAi +Qi • •

HT
i P −ρI •

Ei Gi −I





























≺ 0, ∀i ∈K (3.64)

then the switching rule

σ(ξ) = arg min
i∈K

−ξTQiξ +2ξTPℓi (3.65)

makes the equilibrium point xe ∈ Xe globally asymptotically stable and guarantees the upper bound for the H∞

performance index J∞(σ) < ρ.

Proof. The complete proof can be found in [29], but is discussed here for use in the next chapters. Adopting

the switching strategy defined above, the time derivative of the quadratic Lyapunov function, for any arbitrary

trajectory ξ , 0, is calculated from (3.45) as

v̇(ξ) =

















ξ

w

















T

Lσ (ρ,P)

















ξ

w

















+2ξTPℓσ − z
T
e ze + ρwTw

≤ sup
w∈L2

















ξ

w

















T

Lσ (ρ,P)

















ξ

w

















+2ξTPℓσ − z
T
e ze + ρwTw (3.66)

= ξTNσ (ρ,P)ξ +2ξTPℓσ − z
T
e ze + ρwTw (3.67)

< −ξTQσξ +2ξTPℓσ − z
T
e ze + ρwTw (3.68)

= min
i∈K

−ξTQiξ +2ξTPℓi − z
T
e ze + ρwTw

≤ min
λ∈ΛN

−ξTQλξ +2ξTPℓλ − z
T
e ze + ρwTw

≤ −ξTQλ0ξ +2ξTPℓλ0 − z
T
e ze + ρwTw

≤ −zTe ze + ρwTw (3.69)
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where equality (3.67) comes from the fact that from definition (3.54) the supremum indicated in (3.66) provides

(3.58) with Ni(ρ,P) defined in (3.59); inequality (3.68) stems from (3.64), which is equivalent to (3.60); and

inequality (3.69) arises from condition (3.63), and by realizing that ℓλ0 = 0. Once again, we have that for

w(t) = 0, v̇(ξ(t)) < 0, and consequently, the equilibrium point ξ = 0 is globally asymptotically stable, and the

upper bound for the H∞ performance index J∞(σ) < ρ is guaranteed, as previously demonstrated in the proof

of Theorem 3.5.

It should be noted that Theorems 3.5 and 3.6 do not impose that Ai be Hurwitz, for all i ∈K, because of

the presence of the matrices Qi , i ∈K as discussed in the previous sections. However, conditions (3.46) and

(3.64) do require that Aλ ∈ H, as has been recurrent thus far.

Furthermore, an important aspect of Theorem 3.6 is that the conditions are based on the fact that Qλ � 0,

and as such,
∑

i∈KλiNi (ρ,P) ≺ 0, leading us to the conclusion that

Nλ(ρ,P) �
∑

i∈K

λiNi (ρ,P) ≺ 0, λ ∈ΛN

which indicates that a less conservative, and thus more desirable condition would beNλ(ρ,P) ≺ 0. Unfortunately,

in most cases, a stability condition assured by this inequality does not exist for the more general class of switched

systems. For the special case where the matrices Hi , Ei , and Gi are constant throughout the subsystems, that

is, Hi =H, Ei = E and Gi =G, ∀i ∈K, we have that Nλ(ρ,P) =
∑

i∈KλiNi(ρ,P), and thus, a stability condition

based on the convex combination of subsystem matrices holds true. Notice that, for the conditions of Theorem

3.5, the same conclusion can be drawn without requiring that matrices Hi be constant across subsystems.

To implement the switching rule (3.65) of Theorem 3.6, the following convex optimization problem,

subject to LMI constraints

min ρ

subject to: P ≻ 0, ρ > 0

Qλ0 � 0




























AT
i P+PAi +Qi • •

HT
i P −ρI •

Ei Gi −I





























≺ 0, ∀i ∈K

(3.70)

provides the matrices Qi , for i ∈K, as well as the matrix P required by the switching rule, with ρ being the

upper bound for the H∞ performance index.

3.4.2.3 Example

The following numerical example, based on Example 3.3, compares the upper bounds for H∞ performance

index guaranteed by Theorems 3.5 and 3.6.
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Example 3.5

Consider the switched affine system of Example 3.3, with

E1 = E2 =
[

1 1

]

, H1 =

















3

0

















, H2 =

















−3

3

















Before implementing the switching rule (3.48) of Theorem 3.5, matrix P has been calculated by solving the

optimization problem (3.52), which in this case yielded

P =

















0.7339 −0.2187

−0.2187 1.2374

















along with the guaranteed cost of J∞(·) < 4.0697. Similarly, for Theorem 3.6, the matrices P, Q1, and Q2 were

calculated by solving (3.70), resulting in

P =

















0.7669 −0.2638

−0.2638 1.2982

















, Q1 =

















−13.4815 0.5943

0.5943 −6.2805

















, Q2 =

















3.3704 −0.1486

−0.1486 1.5701

















associated to the guaranteed cost J∞(·) < 7.1601, slightly larger than that guaranteed by Theorem 3.5, which is

to be expected given the greater conservativeness of its conditions. By applying the following disturbance to

the system

w(t) =



















sin(πt), 2 ≤ t ≤ 5

0, otherwise

the trajectories in time for each state can be seen in Figure 3.10, for Theorem 3.5, and Figure 3.12, for Theorem

3.6. Notice that, after the disturbance ceases, the respective switching functions are able to successfully stabilize

the systems to the equilibrium point ξ = 0.

0 2 4 6 8 10

-1.5

-1

-0.5
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0

0.5

1

Figure 3.10: Trajectories of each state for the switched affine system under Theorem 3.5.

Observe in Figures 3.11 and 3.13 the behavior of the switching rule for Theorems 3.5 and 3.6, respectively.

Although similar at first, the high switching frequencies make it difficult to promptly gauge their effects, notice
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however, that the dynamical behavior of the switched system under both theorems is in fact distinct.

0 1 2 3 3.7 4 5 6 7 8 9 10

1

2

3.65 3.7 3.75

1

2

Figure 3.11: Switching rule for the switched affine system under Theorem 3.5.
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Figure 3.12: Trajectories of each state for the switched affine system under Theorem 3.6.

0 1 2 3 3.55 4 5 6 7 8 9 10

1

2

3.5 3.55 3.6

1

2

Figure 3.13: Switching rule for the switched affine system under Theorem 3.6.

For the H∞ case it is not possible to obtain the actual cost J∞(σ) by numerical integration, in contrast

with the analysis employed for the H2 case, since the worst case external input w(t) for switched system is in

general extremely difficult to calculate. �
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3.5 Concluding Remarks

Throughout this chapter, the fundamental concepts of switched systems were introduced. First, we discussed

the importance of the switching function on the dynamical behavior of a switched system, along with a brief

review of existing results in the literature and the many possible applications of switched systems. Then,

stabilizing switching rules for switched linear systems were introduced. This was followed by a discussion on

switched affine systems, and how this more general class of systems presents a greater theoretical challenge

when dealing with the design of stabilizing switching rules. Finally, the H2 and H∞ performance indices, first

studied for LTI systems, are presented in the context of switched affine systems, along with different switching

rules that guarantee these indices. These topics will be key to the contributions of this work, discussed in the

following chapters.

Several examples across the chapter illustrate the unique and complex dynamical behaviors which are

imparted by the switching function, helping to demonstrate the theory on switched linear and affine systems.
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Chapter 4

Joint Action Output Feedback Control

T
he previous chapters introduced underlying concepts that are essential to the main contributions

of this work. This chapter is dedicated to one of these contributions, which consists of the H2

and H∞ dynamic output feedback control design for continuous-time switched affine systems

by considering the simultaneous design of a full-order switched dynamical controller and a

switching function. To the best of the author’s knowledge, this is the first time that the joint design of two

control structures are taken into account in the context of output feedback control of switched affine systems,

and have resulted in the following publication [31] in which the contents of this chapter are based upon.

4.1 Introduction

Most results available in the literature treat the control design problem for switched affine systems considering

the switching function as the sole control variable to be determined. Some results, which have previously

been mentioned, deal with the design of state dependent switching rules, such as in [26, 27, 28], while others

consider an output dependent switching rule [16, 30]. In [30], the switching rule is implemented by means

of a full-order switched affine observer, while [16] considers the design of a full-order switched dynamical

filter to provide the information needed by the switching function. However fewer references treat the control

design problem considering the joint action of a switching rule in tandem with a control law u(t). The following

reference [29] approaches this problem by adopting a state dependent switching rule σ(x(t)) paired with a

control law of the form u(t) =Kσx(t), σ ∈K. However, in many situations the state vector is not available for

measurement, which is the case of several practical applications, and therefore the technique proposed in [29]

cannot be applied.

Given the above, the control design problem considering two output-dependent control structures is

clearly a relevant topic of research, having only been tackled for the case of switched linear systems in [24] and

[54]. As such, the results of this chapter generalize the ideas introduced by [16, 24, 29] to deal with the joint

design of two stabilizing control variables in the context of switched affine systems.

More specifically, a full-order switched dynamical controller, together with an output dependent switch-

ing rule are proposed in order to guarantee global asymptotic stability of the desired equilibrium point, as well

as to assure H2 and H∞ guaranteed costs. In the H∞ case, a switching function taking into account output and

input information is also introduced, which is less conservative than that based only on the measured output,

but in turn requires that the external input be available or estimated.

Some important characteristics of this newmethodology are that not only no stability property is expected

from the individual subsystem matrices Ai , for all i ∈ K, but also it is no longer required that Aλ ∈ H, an
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assumption which has permeated the results of the previous chapters. This characteristic is very compelling

since it allows a larger set of equilibrium points Xe of the switched system to be attainable, instead of only

the subset where Aλ is Hurwitz. This is made possible by the joint action of both control structures, and will

become clear throughout the course of the chapter.

4.2 Problem Statement

Consider the switched affine system with the following state space representation, already given in its shifted

configuration, that is, with ξ(t) = x− xe

ξ̇(t) =Aσξ(t) +Bσu(t) +Hσw(t) + ℓσ , ξ(0) = 0

ye(t) = Cσξ(t) +Dσw(t)

ze(t) = Eσξ(t) +Fσu(t) +Gσw(t)

(4.1)

where ξ(t) ∈ Rnx is the state vector, considered to be unavailable for measurement, u(t) ∈ Rnu is the control

input to be designed, w(t) ∈ Rnw is the external disturbance, ye(t) ∈ R
ny is the measured output, ze(t) ∈ R

nz is

the performance output, and ℓi =Aixe +bi for all i ∈K are the affine terms. Notice that ye(t) = y(t)−Cσxe, with

y(t) = Cσx(t) +Dσw(t), when expressed in terms of x(t).

Recall from Definition 1 that whenever bi , 0 for some i ∈ K, the switched system possesses several

equilibrium points, characterizing the subset of the state space given by

Xe =
{

xe ∈ R
nx : xe = −A

−1
λ bλ, λ ∈ΛN

}

(4.2)

A given choice of xe ∈ Xe, with its associated vector λ0 ∈ΛN completes the definition of system (4.1).

Our main objective is to design a control law u(t), implemented via a full-order switched dynamical

controller, and dependent on the measured output ye(t), along with a switching function σ(ye(t)) : R
ny →K

that together are capable of guaranteeing global asymptotic stability of a chosen equilibrium point xe ∈ Xe.

Notice that this is equivalent to a dependency on y(t), as ye(t) is simply shifted by a known amount. These two

control structures must also assure upper bounds for the H2 and H∞ performance indices.

To this end, the following full-order switched affine controller is proposed, with state space representation

given by

Cσ :



















˙̂ξ(t) = Âσ ξ̂(t) + B̂σye(t) + ℓ̂σ , ξ̂(0) = 0

u(t) = Ĉσ ξ̂(t)
(4.3)

where ξ̂ ∈ Rnx is the state vector of the controller and u(t) ∈ Rnu is the control signal. Matrices Âi , B̂i , Ĉi , as well

as the affine term ℓ̂i , for all i ∈K, of appropriate dimensions, are to be determined. The controller state ξ̂ will

not only be used to provide the control signal u(t), but will also make it possible to implement the switching

function σ(ye(t)).
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System Dynamics

Controllerσ

w(t)

ye(t)
ξ̂(t)

ze(t)

u(t)

Figure 4.1: Closed-loop system.

By connecting the controller (4.3) to the switched system (4.1), as illustrated in Figure 4.1, and defining

the state vector ξ̃(t) =
[

ξ(t)T ξ̂(t)T
]T
∈ R2nx , the following augmented system emerges

˙̃ξ(t) = Ãσ ξ̃(t) + H̃σw(t) + ℓ̃σ , ξ̃(0) = 0

ze(t) = Ẽσ ξ̃(t) + G̃σw(t)
(4.4)

with matrices given by

Ãi =

















Ai BiĈi

B̂iCi Âi

















, ℓ̃i =

















ℓi

ℓ̂i

















, H̃i =

















Hi

B̂iDi

















, Ẽi =
[

Ei FiĈi

]

, G̃i =Gi (4.5)

The control design problem consists in determining appropriate conditions that will satisfy Theorems

3.4, 3.5, and 3.6, introduced in Chapter 3, for the augmented system (4.4), thus guaranteeing global asymptotic

stability of the closed-loop system, and assuring an upper bound for the H2 and H∞ performance indices, as

defined in (3.35) and (3.44), respectively.

4.3 Preliminaries

Before proceeding, we first address the problem of obtaining a switching rule that forgoes any dependency on

the unknown system state, a result that will be used for the two first theorems, and will be further extended

to deal with a switching rule also relying on the external input. To accomplish this, we first define the block

symmetric matrices P̃ and P̃−1 as follows

P̃ =

















Y V

VT Ŷ

















, P̃−1 =

















X U

UT X̂

















(4.6)

such that the product P̃−1P̃ = I holds. This implies in the following relations

XY+UVT = I, XV+UŶ = 0, UTY+ X̂VT = 0, UTV+ X̂Ŷ = I (4.7)
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Let Q̃i be the block symmetric matrix

Q̃i =

















0 0

0 Q̂i

















, i ∈K (4.8)

Now recall the following switching rule, employed in Theorems 3.4 and 3.6, and applied to the augmented

system (4.4)

σ(ξ̃) = arg min
i∈K
−ξ̃

T
Q̃i ξ̃ +2ξ̃

T
P̃ℓ̃i (4.9)

Let us first consider the matrix product ξ̃
T
Q̃i ξ̃. Observe that the structure of Q̃i has been defined in order to

eliminate any dependency on the unknown system state ξ(t). Also, notice that the choice of a constant matrixM

for block (1,2), and a constant symmetric matrix N for block (1,1) of Q̃i , would also be possible, since although

the product ξ̃
T
Q̃i ξ̃ would depend on ξ(t), as such

ξ̃
T
Q̃i ξ̃ = ξTNξ +2ξ̂

T
MTξ + ξ̂

T
Q̂i ξ̂, i ∈K (4.10)

the terms ξTNξ and ξ̂
T
MTξ are not indexed, and thus, would be constant across i ∈ K. This would allow

for the definition of an equivalent switching function considering only the product ξ̂
T
Q̂i ξ̂, as desired. This

approach, however, has not shown any advantage with regard to the optimality of the guaranteed cost over the

structure of Q̃i originally defined in (4.8). As such, we base this technique on this simpler choice of Q̃i .

Now we consider the product ξ̃
T
P̃ℓ̃i , as follows

ξ̃
T
P̃ℓ̃i =

















ξ

ξ̂

















T 















Y V

VT Ŷ

































ℓi

ℓ̂i

















(4.11)

Notice that by assuring Yℓi +Vℓ̂i = 0, the first nx rows of term P̃ℓ̃i are null, as such, the dependency on the

system state is eliminated by making the appropriate choice of ℓ̂i as

ℓ̂i = −V
−1Yℓi , ∀i ∈K (4.12)

where V is such that ∃V−1. Observe that this choice also guarantees the nullity of ℓ̃λ0 = 0, since ℓλ0 = 0, as such

ℓ̃λ0 =

















ℓλ0

ℓ̂λ0

















=

















ℓλ0

−V−1Yℓλ0

















= 0 (4.13)

The term ξ̃
T
P̃ℓ̃i , given in (4.11), with (4.12) and the relations Ŷ = −U−1XV and VT = U−1 (I−XY) from (4.7),

can be rewritten as

ξ̃
T
P̃ℓ̃i =

















ξ

ξ̂

















T 















0

VT ℓi + Ŷℓ̂i

















= ξ̂
T
(VT ℓi + Ŷℓ̂i ) = ξ̂

T
U−1ℓi (4.14)

Thus, as desired, the switching rule can be expressed with a dependency solely on the state of the controller ξ̂,
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that is

σ(ξ̃) = σ(ξ̂) = arg min
i∈K
−ξ̂

T
Q̂i ξ̂ +2ξ̂

T
U−1ℓi (4.15)

The problem now consists in finding conditions that can be expressed in terms of LMIs, allowing us

to obtain the matrices Âi , B̂i , Ĉi , and vectors ℓ̂i , for i ∈K, needed to implement the dynamical controller, as

well as matrices Q̂i and U−1 important for the switching rule σ(·), that guarantee the H2 and H∞ performance

indices. The following two sections introduce these conditions based on the structures of Q̃i and ℓ̃i just defined.

4.4 H2 Control Design

In this section, we will generalize Theorem 3.4 for the augmented system (4.4) in order to deal with the two

control structures proposed, thus guaranteeing an upper bound for the H2 performance index. It is assumed

that Gi = 0, ∀i ∈K, so as to work exclusively with strictly proper subsystems.

Theorem 4.1. Consider the switched affine system (4.1), and a chosen xe ∈ Xe of interest with its associated vector

λ0 ∈ΛN . If there exist symmetric matrices X, Y, Ri , and S, and matrices Li and Wi , for all i ∈K, such that

Rλ0 � 0 (4.16)

















He {AiX+BiWi }+Ri •

EiX+FiWi −I

















≺ 0, ∀i ∈K (4.17)

He {YAi +LiCi }+ET
i Ei ≺ 0, ∀i ∈K (4.18)





























S • •

Hj X •

YHj +LjDj I Y





























≻ 0 (4.19)

with j = σ(0) given, then the following switching rule

σ(ξ̂) = arg min
i∈K
−ξ̂

T
Q̂i ξ̂ +2ξ̂

T
X−1ℓi (4.20)

along with controller (4.3), whose matrices are given by

Âi = (Y−X−1)−1
(

YAi +YBiWiX
−1 +LiCi +AT

i X
−1 +ET

i Ei +ET
i FiWiX

−1
)

,

B̂i = −(Y−X
−1)−1Li , Ĉi =WiX

−1,

ℓ̂i = (Y−X−1)−1Yℓi , Q̂i = X−1RiX
−1

(4.21)

make the equilibrium point xe ∈ Xe globally asymptotically stable, and assure the H2 guaranteed cost

J2(σ,Cσ ) < tr (S) (4.22)
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for the system.

Proof. The proof consists in demonstrating the validity of Theorem 3.4 whenever the conditions of Theorem

4.1 are satisfied. To this end, consider matrices P̃, P̃−1, Q̃i , and vector ℓ̂i previously defined, and inequalities

(3.39) and (3.40) of Theorem 3.4 expressed in terms of the augmented system (4.4)

ÃT
i P̃+ P̃Ãi + ẼT

i Ẽi + Q̃i ≺ 0, ∀i ∈K (4.23)

Q̃λ0 � 0 (4.24)

It becomes clear that inequality (4.23) and (4.24) are nonlinear with respect to the matrix variables after

substituting for the augmented matrices Ãi , Ẽi , P̃, and Q̃i , i ∈K. In order to obtain conditions based on LMIs,

we define the transformation matrix Γ̃ as

Γ̃ =

















X I

UT 0

















(4.25)

First, consider the inequality (4.23) multiplied by the transformation matrix Γ̃ as follows

He
{

Γ̃
T
P̃Ãi Γ̃

}

+ Γ̃
T
ẼT
i Ẽi Γ̃ + Γ̃

T
Q̃i Γ̃ ≺ 0 (4.26)

whose intermediary products are given by

Γ̃
T
P̃Ãi Γ̃ =

















AiX+BiĈiU
T Ai

YAiX+YBiĈiU
T +VB̂iCiX+VÂiU

T YAi +VB̂iCi

















Ẽi Γ̃ =
[

EiX+FiĈiU
T Ei

]

, Γ̃
T
Q̃i Γ̃ =

















UQ̂iU
T 0

0 0

















(4.27)

Denoting Ri =UQ̂iU
T , Li =VB̂i , and Wi = ĈiU

T , inequality (4.26) becomes

















He {AiX+BiWi }+Ri + (EiX+FiWi )
T (EiX+FiWi ) •

YAiX+YBiWi +LiCiX+VÂiU
T +AT

i +ET
i (EiX+FiWi ) He {YAi +LiCi }+ET

i Ei

















≺ 0 (4.28)

We can choose Âi in order to make block (2,1) of (4.28) null, thus obtaining simply

He {YAi +LiCi }+ET
i Ei ≺ 0 (4.29)

















He {AiX+BiWi }+Ri •

EiX+FiWi −I

















≺ 0 (4.30)

Indeed, (4.29) comes directly from block (2,2) of (4.28), and inequality (4.30) is obtained by applying Schur

complement on block (1,1) of (4.28) appropriately. It can be seen that whenever these inequalities are satisfied,

condition (4.23) from Theorem 3.4 is verified. Also, observe that (4.16) assures that Q̃λ0 � 0, thus satisfying

condition (4.24) of Theorem 3.4 for the augmented system (4.4).
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Notice that any arbitrary choice of U can be made, without loss of generality, so long ∃U−1. The specific

choice of U = X is considered in throughout work. In this case, from the relations in (4.7), we have that

V = X−1 −Y, and thus we obtain the identities in (4.21). Furthermore, notice that the switching rule

σ(ξ̂) = arg min
i∈K
−ξ̂

T
Q̂i ξ̂ +2ξ̂

T
X−1ℓi (4.31)

comes directly from (4.15) when considering U = X, as well as matrix Q̂i in (4.21).

Finally, we have that the following inequality





























S • •

Hj X •

YHj +LjDj I Y





























≻ 0 (4.32)

is equivalent to
















S •

Γ̃
T
P̃H̃j Γ̃

T
P̃Γ̃

















≻ 0 (4.33)

with intermediary terms given by

Γ̃
T
P̃Γ̃ =

















X I

I Y

















(4.34)

H̃T
j P̃Γ̃ =

[

HT
j HT

j Y+DT
j L

T
j

]

(4.35)

By multiplying inequality (4.33) to the left by diag(I, (Γ̃
T
)−1), to the right by its transpose, and subsequently

applying Schur complement with respect to P̃, we obtain H̃T
j P̃H̃j ≺ S, and thus

J2(σ,Cσ ) < tr
(

H̃T
j P̃H̃j

)

< tr (S) (4.36)

with j = σ(0), is guaranteed as in Theorem 3.4. This concludes the proof.

This theorem presents a few compelling characteristics. First, notice that the inequalities in (4.17) do not

require that the closed-loop matrices Acl,i =Ai +BiKc,i , with Kc,i =WiX
−1, be Hurwitz, since matrices Ri are

sign indefinite. Thus, Theorem 4.1 can assure stability of the switched system even for the case where each

individual subsystem is not stabilizable. Also, notice that not only there is no imposition on matrices Ai ∈ H,

but no convex combination of subsystem matrices Aλ ∈ H needs to exist, a recurrent condition throughout the

results introduced in chapter 3. Instead, inequalities (4.16) and (4.17) impose that

∑

i∈K

λ0i

(

He
{

Acl,iX
}

+XET
cl,iEcl,iX

)

≺ 0 (4.37)

with Ecl,i = Ei +FiKc,i , i ∈K. In other words, it is now only necessary that a stable convex combination of the

closed loop matrices exists. These considerations bring to light the fact that Theorem 4.1 is able to guarantee
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global asymptotic stability of the equilibrium point even in the case where a control law u(t) and a switching

rule σ(t) are unable to do so independently, allowing for a broader scope of problems to be considered. This

interesting scenario is considered in a numerical example presented shortly. It should be noted that although

the inequalities in (4.18) impose that the closed loop matrices Ai +Ko,iCi , with Ko,i = Y−1Li , be quadratically

stable with respect to Y, this is not a demanding requirement, since these inequalities are uncoupled from

(4.17), through the different matrix variables Y and X. Furthermore, the matrix gains Ko,i depend on the index

i, and thus are independent for each constraint. Finally, notice that as in Theorem 3.4, an appropriate choice of

σ(0) ∈K can be made to optimize the H2 performance index, or alternatively, by considering j of worst case,

the H2 control design problem is made robust with respect to σ(0), as discussed in the previous chapter.

When compared to existing results in the literature, such as [30] and [16], Theorem 4.1 presents more

lenient conditions. The first reference requires that all matrices Ai be Hurwitz, thus being a more conservative

result, while the latter requires Aλ ∈ H, since a control law u(t) is not taken into account.

The following optimization problem, subject to the LMI conditions in Theorem 4.1, provides the matrices

necessary to implement the dynamical controller and switching rule, through the relations in (4.21).

min tr(S)

subject to: (4.16), (4.17), (4.18), and (4.19)
(4.38)

The next examples aim to illustrate the relevance and usefulness of the proposed methodology. The first

two reminisce the switched affine system of Example 3.3, while the second is based on the example of [31].

4.4.1 Examples: H2 Control Design

In the following two examples, the switched affine system of Example 3.3 is considered, with the additional

inputs u(t) and w(t), and outputs ye(t) and ze(t), as in (4.1).

Example 4.1

Consider the switched affine system (4.1) with dynamical matrices given in Example 3.3, and with

B1 = B2 =

















10

10

















, H1 =

















1

0

















, H2 =

















−1

1

















, F1 = F2 =

















4

1

















,

C1 = C2 =
[

1 1

]

, D1 =D2 = 1, E1 = E2 = I, G1 =G2 = 0

By choosing the equilibrium point xe = [0.2982 1.2586]T ∈ Xe of interest, associated to λ0 = [0.4 0.6]T , it can

be verified that the convex combination Aλ0 is in fact not Hurwitz, as such, Theorem 3.4 cannot guarantee

global asymptotic stability of this equilibrium point, and thus, another approach must be used. For instance, a

state feedback control design technique may be employed if the state is available for measurement, however in

many situations, this is not the case. The methodology introduced in this work addresses this scenario, and will

be demonstrated in this example.
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First, in order to implement the two control structures, the convex optimization problem (4.38) is solved

for σ(0) = 2, obtaining the minimum guaranteed cost J2(σ,Cσ ) < 34.1051. Via the identities in (4.21), the

following matrices, used to implement the dynamical controller Cσ , are obtained

Â1 =

















−4.8637 −4.8656

1.1615 1.1621

















× 104, Â2 =

















−17.7251 −16.3277

4.1664 −7.3999

















, B̂1 =

















4.8646

−1.1617

















× 104, B̂2 =

















11.0817

−0.5102

















,

Ĉ1 = Ĉ2 =
[

−0.2287 −0.1773

]

, ℓ̂1 =

















1.6111

12.4843

















, ℓ̂2 =

















−1.0741

−8.3229

















as well as the matrices important for the switching rule

Q̂1 =

















−0.2608 0.7002

0.7002 −1.3657

















, Q̂2 =

















0.1739 −0.4668

−0.4668 0.9105

















, X =

















101.7381 10.6627

10.6627 5.5607

















For the initial condition ξ̃0 = H̃2ψ1 = H̃2, the trajectories in time for each state can be seen in Figure 4.2.

The output ze(t) and control signal u(t) are shown in Figure 4.3. Notice that the joint action of both control

inputs, σ(ye(t)) and u(t), were able to asymptotically stabilize the switched system. Furthermore, by numerical
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Figure 4.2: Trajectories of each state for the switched affine system under Theorem 4.1.
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Figure 4.3: Output and control signal for the switched affine system under Theorem 4.1.
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integration of the product ze(t)
T ze(t), the actual H2 cost of the switched system was calculated as J2 = 5.2066 <

34.1051, within that assured by Theorem 4.1. �

Example 4.2

Consider again the switched affine system, as well as the controller and switching rule matrices obtained in

Example 4.1. We now consider multiple initial conditions distributed around a circle denoted by the line ‘ ’ of

radius 10 centered at the origin ‘ ’, that is, ξ0 = ξ̂0 = 10× [cos(θ) sin(θ)]T , θ ∈ [0,2π] and that no disturbances

are being applied to the system.

Figure 4.4 shows the phase portrait of the system and controller for this scenario. The equilibrium points

of subsystems 1 and 2 are indicated by ‘ ’ and ‘ ’, respectively. It can be observed that the switching surface,

in this case a hyperbole denoted by the line ‘ ’, and given by −ξ̂
T
Q̂1ξ̂ + 2ξ̂

T
X−1ℓ1 = −ξ̂

T
Q̂2ξ̂ + 2ξ̂

T
X−1ℓ2,

distinguishes only the modes of operation of the controller, as it depends solely on the controller state ξ̂(t).

Notice that the switched system is successfully stabilized for all initial conditions considered, even though the

two control structures rely exclusively on ξ̂(t).

-15 -10 -5 0 5 10
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5
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(a) System.
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-10
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(b) Controller.

Figure 4.4: Phase portrait for the switched affine system under Theorem 4.1.

Figures 4.5a and 4.5b show in greater detail the phase portrait of the system and controller near the

equilibrium point. It is interesting to notice that, for some trajectories, when the controller state reaches the

switching surface, it evolves in sliding modes in an opposite direction to the equilibrium point until, at a certain

instant of time, it begins to slide towards the origin. Nevertheless, both the system state and the controller state

asymptotically converge to equilibrium point ξ = 0 as t→∞. This phenomenon can be observed more clearly in

Figures 4.5c and 4.5d, which display a single trajectory from the initial condition ξ̃0 = [9.24 3.83 9.24 3.83]T .

This behavior, although unexpected, results from the fact that the quadratic Lyapunov function is dependent

on the augmented system vector, v(ξ̃(t)), and as a result, its time derivative depends both on the system and

controller states. Thus, even in this interesting situation, v̇(ξ̃(t)) < 0 occurs as expected, which is evidenced in
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(d) Controller. Selected trajectory.

Figure 4.5: Detailed phase portrait for the switched affine system under Theorem 4.1.
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Figure 4.6: Lyapunov function and its time derivative for the switched affine system under Theorem 4.1.

Figure 4.6, for the selected trajectory, indicating that the overall switched system is asymptotically stable. �

The third example, also available in [31], illustrates a particular case in which the proposed technique

can guarantee stability of the switched system and an upper bound for the H2 performance index, where

existing results in the literature, for the situation where the system state is unavailable for measurement, cannot.

Example 4.3

Consider the switched affine system (4.1) comprised of the following three unstable subsystems, for i ∈ {1,2,3}

A1 =





























−3 0 0

0 5 0

0 0 2





























, A2 =





























5 0 0

0 −7 0

0 0 −6





























, A3 =





























−4 0 0

0 8 0

0 0 −9





























, b1 = b3 =





























1

1

0





























, b2 =





























0

2

2





























,

Bi =





























10

10

0





























, Hi = I, C1 =





























0

1

1





























, C2 =





























1

0

0





























, C3 =





























0

10

0





























, Ei = I, Gi = 0, Di =
[

1 1 1

]

, Fi =





























1

1

1
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also available in [31]. It is important to observe that the matrix pairs (Ai ,Bi ) are not individually controllable

for the subsystems i ∈ {1,2,3}, and that there exists no λ ∈Λ3 such that a convex combination Aλ is Hurwitz.

As such, only the joint action of a switching function operating alongside a control law, as proposed in this

work, are able to successfully stabilize the switched system.

By choosing the equilibrium point xe = [0.636 − 0.517 0.237]T ∈ Xe of interest, associated to the vector

λ0 = [0.2 0.3 0.5]T , we proceed with solving the convex optimization problem (4.38). For the present example,

a guaranteed cost of J2(σ,Cσ ) < 18.6502 for σ(0) = 3 was obtained, along with the following set of matrices

Y =





























116.8807 68.5008 110.6348

68.5008 50.1472 79.2307

110.6348 79.2307 129.5470





























, X =





























183.9763 126.7359 115.2653

126.7359 88.5686 80.6768

115.2653 80.6768 85.1066





























,

W1 =





























−145.2052

−101.9092

−93.5959





























T

, W2 =





























−145.2252

−101.9232

−93.6103





























T

, W3 =





























−145.1352

−101.8601

−93.5454





























T

,

L1 =





























0.0956

−1.5061

−1.4760





























× 103, L2 =





























−3.6887

−0.0868

−0.1354





























× 104, L3 =





























−104.7484

−73.1233

−115.8267





























important to implement the dynamical controller and the switching rule by considering the identities in (4.21).

For the initial condition ξ̃0 = H̃3ψ1 = [1 0 0 0.0863 3.0471 − 1.0459]T , the trajectories in time for the

system and controller states can be seen in Figure 4.7. The output ze(t) and control signal u(t) are shown in

Figure 4.8. Notice that the effect of the control effort is nontrivial, and plays a crucial role in stabilizing the

switched system. In fact, the joint action of both control structures was needed to stabilize the switched system
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Figure 4.7: Trajectories of each state for the switched affine system under Theorem 4.1.

at the desired equilibrium point xe. By numerical integration of the product ze(t)
T ze(t) for all three initial

conditions ξ̃0 = H̃3ψi , for i ∈ {1,2,3}, we obtain the actual H2 cost of the system J2 = 2.3490 < 18.6502.

Finally, Figure 4.9 shows the switching rule σ(ye(t)) for this example. Notice how at t ≈ 0.13 seconds,
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Figure 4.8: Output and control signal for the switched affine system under Theorem 4.1.
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Figure 4.9: Switching rule for the switched affine system under Theorem 4.1.

the system evolves towards the equilibrium point in a sliding mode, indicated by the fast switching across the

three subsystems. The zoomed-in interval of time in the figure reveals that the numerical simulation actually

progresses over discrete steps of time, in reality, however, the switching events would occur arbitrarily fast. �

The next section is dedicated the H∞ control design problem, where two different approaches for the

switching function are proposed.

4.5 H∞ Control Design

In this section, in order to treat the simultaneous design of the two control structures proposed, namely the

switching function and the full-order switched dynamical controller, so that together they may assure an H∞

guaranteed cost, Theorems 3.5 and 3.6 are generalized. Let us recall that for the H∞ case we are concerned

with disturbances w(t) ∈ L2. First, the H∞ control design problem considering a switching function that relies

solely on output information is introduced. This technique is of much importance, since in many occasions the

disturbance is not available for measurement or it is not known beforehand. Nevertheless, in the event that the
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disturbance is available, a second, less conservative approach is introduced afterwards, which may provide a

significantly improved H∞ performance, as it will become clear in the illustrative example.

4.5.1 Output Dependent Switching Rule

The next theorem generalizes the results of Theorem 3.6, and presents LMI conditions for the proposed H∞

control design technique, which assures global asymptotic stability of the desired equilibrium point as well

as an upper bound for the H∞ performance index, for the case where the switching rule depends only on the

measured output.

Theorem 4.2. Consider the switched affine system (4.1), and a chosen xe ∈ Xe of interest with its associated λ0 ∈ΛN .

If there exist symmetric matrices X, Y, Ri , matrices Li and Wi , for all i ∈K, and a scalar ρ, such that

Rλ0 � 0 (4.39)

















X •

I Y

















≻ 0 (4.40)





























He {AiX+BiWi }+Ri • •

HT
i −ρI •

EiX+FiWi Gi −I





























≺ 0, ∀i ∈K (4.41)





























He {YAi +LiCi } • •

HT
i Y+DT

i L
T
i −ρI •

Ei Gi −I





























≺ 0, ∀i ∈K (4.42)

then the following switching rule

σ(ξ̂) = arg min
i∈K
−ξ̂

T
Q̂i ξ̂ +2ξ̂

T
X−1ℓi (4.43)

along with controller (4.3), whose matrices are given by

Âi = (Y−X−1)−1
(

YAi +YBiWiX
−1 +LiCi +AT

i X
−1 +ET

i Ei +ET
i FiWiX

−1 +Mi (ρI−G
T
i Gi )

−1N i

)

,

B̂i = −(Y−X
−1)−1Li , Ĉi =WiX

−1,

ℓ̂i = (Y−X−1)−1Yℓi , Q̂i = X−1RiX
−1

(4.44)

withMi = YHi +LiDi +ET
i Gi andN i =HT

i X
−1 +GT

i Ei +GT
i FiWiX

−1, make the equilibrium point xe ∈ Xe globally

asymptotically stable, and assure the H∞ guaranteed cost

J∞(σ,Cσ ) < ρ (4.45)

for the system.

Proof. Similarly to Theorem 4.1, this proof consists in demonstrating the validity of Theorem 3.6 whenever the
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conditions of Theorem 4.2 are verified. For this, consider matrices P̃, P̃−1, Q̃i , and vector ℓ̂i previously defined,

and inequalities (3.63) and (3.64) of Theorem 3.6, applied to the augmented system (4.4)

Q̃λ0 � 0 (4.46)




























ÃT
i P̃+ P̃Ãi + Q̃i • •

H̃T
i P̃ −ρI •

Ẽi G̃i −I





























≺ 0, ∀i ∈K (4.47)

In order to linearize inequality (4.47), we again consider the transformation matrix Γ̃ in (4.25), and multiply to

the left of (4.47) by diag(Γ̃
T
,I,I), and to the right by its transpose, as follows





























Γ̃ 0 0

0 I 0

0 0 I





























T 



























ÃT
i P̃+ P̃Ãi + Q̃i P̃H̃T

i ẼT
i

H̃T
i P̃ −ρI G̃T

i

Ẽi G̃i −I

























































Γ̃ 0 0

0 I 0

0 0 I





























≺ 0, ∀i ∈K (4.48)

whose intermediary products were determined in the proof of Theorem 4.1, and are given in (4.27), and (4.35).

By adopting Ri =UQ̂iU
T , Li =VB̂i , and Wi = ĈiU

T , inequality (4.48) can be expressed as











































He {AiX+BiWi }+Ri • • •

YAiX+YBiWi +LiCiX+VÂiU
T +AT

i He {YAi +LiCi } • •

HT
i HT

i Y+DT
i L

T
i −ρI •

EiX+FiWi Ei Gi −I











































≺ 0 (4.49)

Applying Schur complement successively with respect to −I, followed by (ρI−GT
i Gi ), the following inequality

is obtained
















Ξi •

Ωi Υi

















≺ 0 (4.50)

where the intermediary terms are given by

Ξi = He {AiX+BiWi }+Ri + (EiX+FiWi )
T (EiX+FiWi )+

+
(

HT
i +GT

i (EiX+FiWi )
)T (

ρI−GT
i Gi

)−1 (

HT
i +GT

i (EiX+FiWi )
)

(4.51)

Υi = He {YAi +LiCi }+ET
i Ei +

(

HT
i Y+DT

i L
T
i +GT

i Ei

)T (

ρI−GT
i Gi

)−1 (

HT
i Y+DT

i L
T
i +GT

i Ei

)

(4.52)

Ωi = YAiX+YBiWi +LiCiX+VÂiU
T +AT

i +ET
i (EiX+FiWi )+

+
(

HT
i Y+DT

i L
T
i +GT

i Ei

)T (

ρI−GT
i Gi

)−1 (

HT
i +GT

i (EiX+FiWi )
)

(4.53)

By choosing Âi so as to make Ωi = 0, and by applying Schur complement appropriately on Ξi and Υi ,



CHAPTER 4. JOINT ACTION OUTPUT FEEDBACK CONTROL 70

we arrive at the inequalities (4.41) and (4.42), respectively. As such, whenever these inequalities are verified,

that is Ξi ≺ 0 and Υi ≺ 0 hold, then (4.49) is satisfied, in turn making condition (4.47) of Theorem 3.6 for the

augmented system (4.4) valid.

Also, inequality (4.40) assures P̃ ≻ 0, which can be verified by applying the transformation matrix as such

Γ̃
T
P̃Γ̃ ≻ 0. In addition, we have that inequality Rλ0 � 0 assures Q̃λ0 � 0, verifying condition (4.46) of Theorem

3.6 for the augmented system. Finally, by assigning U = X without loss of generality, as discussed in Theorem

4.1, the identities in (4.44) are obtained, and the switching rule (4.43) comes from (4.15). Thus, as in Theorem

3.6, the guaranteed cost

J∞(σ,Cσ ) < ρ (4.54)

for the augmented system holds, concluding the proof.

Theorem 4.2 generalizes the results of [16] to cope with the joint design of the two proposed control

structures. The same remarks as for theH2 remain valid, where the requirement for a stable convex combination

of matrices Aλ is eschewed, as well as the need for the pairs (Ai ,Bi ), ∀i ∈K of the subsystems to be controllable.

The matrices required to implement the dynamical controller and switching rule proposed in Theorem

4.2, can be calculated numerically via the following convex optimization problem, subject to LMI constraints

min ρ

subject to: (4.39), (4.40), (4.41), and (4.42)
(4.55)

It is important to mention that optimization problems subject to LMI constraints dealing with the

minimization of H∞ performance may produce ill-conditioned solutions, as discussed in [55]. To overcome this

problem, it is proposed that a fixed, suboptimal ρ > 0 be supplied, and the objective function tr
(

(

Y−X−1
)−1

)

be

minimized, as this term multiplies matrices Âi , for i ∈K. Since the proposed objective function is not linear on

the decision variables, consider the following LMI constraint





























S • •

I Y •

0 I X





























≻ 0 (4.56)

Notice that, by applying Schur complement successively with respect to X, and then with respect to
(

Y−X−1
)

,

we obtain
(

Y−X−1
)−1
≺ S. Thus, for a given ρ > 0, the following optimization problem

min tr(S)

subject to: (4.39), (4.41), (4.42), and (4.56)
(4.57)

yields controller matrices with greater numerical stability overall.

The next section deals with the H∞ output feedback control design problem based on less conservative

conditions, which consider that the external input w(t) is either known, or can be measured or estimated.
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4.5.2 Output-Input Dependent Switching Rule

The next theorem generalizes the conditions of Theorem 3.5 to deal with the two control structures proposed,

whit together assure global asymptotic stability of the equilibrium point, and an H∞ guaranteed cost, for the

case where the switching rule depends not only on the measured output, but also on the disturbance.

Theorem 4.3. Consider the switched affine system (4.1), and a chosen xe ∈ Xe of interest with its associated λ0 ∈ΛN .

If there exist symmetric matrices X, Y, Ri , and Zi , matrices Ji , Li , and Wi , for all i ∈K, and a scalar ρ > 0, such that

















Rλ0 •

JTλ0 Zλ0

















� 0 (4.58)

















X •

I Y

















≻ 0 (4.59)





























He {AiX+BiWi }+Ri • •

HT
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≺ 0, ∀i ∈K (4.60)
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HT
i Y+DT

i L
T
i −ρI+Zi •

Ei Gi −I





























≺ 0, ∀i ∈K (4.61)

then the following switching rule

σ(ξ̂,w) = arg min
i∈K
−

















ξ̂

w

















T

Qi

















ξ̂

w

















+2ξ̂
T
X−1ℓi (4.62)

with

Qi =

















Q̂i •

JTi X
−1 Zi

















(4.63)

along with controller (4.3), whose matrices are given by

Âi = (Y−X−1)−1
(

YAi +YBiWiX
−1 +LiCi +AT

i X
−1 +ET

i Ei +ET
i FiWiX

−1 +Mi (ρI−G
T
i Gi −Zi )

−1N i

)

,

B̂i = −(Y−X
−1)−1Li , Ĉi =WiX

−1,

ℓ̂i = (Y−X−1)−1Yℓi , Q̂i = X−1RiX
−1

(4.64)

withMi = YHi +LiDi +ET
i Gi andN i =HT

i X
−1 + JTi X

−1 +GT
i Ei +GT

i FiWiX
−1, make the equilibrium point xe ∈ Xe

globally asymptotically stable, and assure the H∞ guaranteed cost

J∞(σ,Cσ ) < ρ (4.65)
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for the system.

Proof. The proof is based on demonstrating that Theorem 3.5 is valid when the conditions of Theorem 4.3 are

satisfied for the augmented system (4.4), considering matrices P̃, P̃−1, and vector ℓ̂i previously defined. But

first, we define the following structured matrix

Õi =

















Q̃i
˜̄Qi

˜̄QT
i Zi

















=

































0 0 0

0 Q̂i Q̄i

0 Q̄T
i Zi

































, ∀i ∈K (4.66)

where Q̂i ∈ R
nx×nx , Q̄i ∈ R

nx×nw , and Zi ∈ R
nw×nw . It will become clear that this specific choice for the structure

of Õi is important to eliminate the dependency on the unknown system state ξ(t) by the switching rule (3.48)

of Theorem 3.5, which when expressed in terms of the augmented system, is as follows

σ(ξ̃,w) = arg min
i∈K

















ξ̃

w

















T

L̃i (ρ, P̃)

















ξ̃

w

















+2ξ̃
T
P̃ℓ̃i (4.67)

Observe that condition (3.46) of Theorem 3.5 for the augmented system is equivalent to the following set of

inequalities

L̃i (ρ, P̃) + Õi ≺ 0, ∀i ∈K (4.68)

together with Õλ0 � 0, where

L̃i (ρ, P̃) =

















ÃT
i P̃+ P̃Ãi + ẼT

i Ẽi •

H̃T
i P̃+ G̃T

i Ẽi G̃T
i G̃i − ρI

















, i ∈K (4.69)

By applying Schur complement in (4.68) with respect to
(

G̃T
i G̃i − ρI

)

, the equivalent inequality





























ÃT
i P̃+ P̃Ãi + Q̃i • •

H̃T
i P̃+ ˜̄QT

i −ρI+Zi •

Ẽi G̃i −I





























≺ 0 (4.70)

is obtained. Multiplying to the left of this inequality by diag(Γ̃
T
,I,I), and to the right by its transpose, in a

similar manner to (4.48), then by considering the intermediary products given by (4.27), and (4.35), and further

denoting Ri = UQ̂iU
T , ˜̄QT

i Γ̃ =
[

JTi 0
]

, with JTi = Q̄T
i U

T , Li = VB̂i , and Wi = ĈiU
T , the following inequality

emerges










































He {AiX+BiWi }+Ri • • •

YAiX+YBiWi +LiCiX+VÂiU
T +AT

i He {YAi +LiCi } • •

HT
i + JTi HT

i Y+DT
i L

T
i −ρI+Zi •

EiX+FiWi Ei Gi −I











































≺ 0 (4.71)
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In a similar fashion to Theorem 4.2, we apply Schur complement successively with respect to −I followed by
(

G̃T
i G̃i − ρI+Zi

)

, thus obtaining
















Ξi •

Ωi Υi

















≺ 0 (4.72)

where the intermediary terms are given by

Ξi = He {AiX+BiWi }+Ri + (EiX+FiWi )
T (EiX+FiWi )+

+
(

HT
i + JTi +GT

i (EiX+FiWi )
)T (

ρI−GT
i Gi +Zi

)−1 (

HT
i + JTi +GT

i (EiX+FiWi )
)

(4.73)

Υi = He {YAi +LiCi }+ET
i Ei +

(

HT
i Y+DT

i L
T
i +GT

i Ei

)T (

ρI−GT
i Gi +Zi

)−1 (

HT
i Y+DT

i L
T
i +GT

i Ei

)

(4.74)

Ωi = YAiX+YBiWi +LiCiX+VÂiU
T +AT

i +ET
i (EiX+FiWi )+

+
(

HT
i Y+DT

i L
T
i +GT

i Ei

)T (

ρI−GT
i Gi +Zi

)−1 (

HT
i + JTi +GT

i (EiX+FiWi )
)

(4.75)

By making the adequate choice of Âi in order to makeΩi = 0, ∀i ∈K, and by applying Schur complement

as appropriate on Ξi and Υi , the inequalities (4.60) and (4.61) are obtained, respectively. In this manner,

whenever these inequalities are satisfied, that is, when Ξi ≺ 0 and Υi ≺ 0 hold, we have that inequality (4.71)

is verified, thus making condition (4.68) valid. This, together with (4.58), which guarantees that Õλ0 � 0 is

verified, satisfy condition (3.46) of Theorem 3.5 for the augmented system. Once again, inequality (4.40) assures

P̃ ≻ 0.

Finally, by making the particular choice U = X, the identities in (4.64) are obtained, and the switching

rule (4.62) with (4.63) comes from (4.67) since

σ(ξ̃,w) = argmin
i∈K

















ξ̃

w

















T

L̃i (ρ, P̃)

















ξ̃

w

















+2ξ̃
T
P̃ℓ̃i

≡ argmin
i∈K
−

















ξ̃

w

















T

Õi

















ξ̃

w

















+2ξ̃
T
P̃ℓ̃i

= argmin
i∈K
−

















ξ̂

w

















T

Qi

















ξ̂

w

















+2ξ̂
T
X−1ℓi (4.76)

when considering that Q̂i = U−1Ri(U
T )−1, JTi = Q̄T

i U
T , and the choice U = X, and also recalling that the

previously determined ℓ̂i allows for (4.14) which removes any dependency on the system state. In this manner,

as in Theorem 3.5, the guaranteed cost

J∞(σ,Cσ ) < ρ (4.77)

is assured for the augmented system. This concludes the proof.

This theorem again generalizes the results from [29] in order to deal with the simultaneous design of the
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two control structures proposed, but considering a switching function dependent also on the external input.

As for the previous theorems, Theorem 3.5 does not impose the existence of a stable convex combination of

matrices Aλ, and the need for the pairs (Ai ,Bi ), ∀i ∈ K to be individually controllable, for each subsystem.

As such, the proposed conditions for the H∞ control design problem assure global asymptotic stability of the

equilibrium point xe ∈ Xe of interest even when a control law u(t) and a switching rule σ(t) are ineffective when

acting independently. As for the H2 case, this particular situation is demonstrated in a numerical example.

The solution to the following optimization problem provides the necessary matrices for implementing

the dynamical controller and the switching rule proposed in Theorem 4.3, considering the identities in (4.64)

min ρ

s. to: (4.58), (4.59), (4.60), (4.61), and ρ > 0
(4.78)

Additionally, as discussed in Theorem 4.2, in order to avoid ill-conditioned matrix solutions, by providing a

fixed, suboptimal ρ > 0, the following optimization problem

min tr(S)

s. to: (4.56), (4.58), (4.60), (4.61), and ρ > 0
(4.79)

results in matrices with greater numerical stability for the dynamical controller.

In the next section, we present two examples on H∞ control design to illustrate the two proposed

switching rules. Again, these examples are based on [31], and will serve to compare these results.

4.5.3 Example: Output Dependent Switching Rule

This example, also based on that of reference [31], illustrates the H∞ control design problem for the case where

only the measured output is available. It is important to recall that in this example, only the joint action of the

switching function together with a control effort, provided by the switched dynamical controller, is capable of

successfully stabilizing the switched system.

Example 4.4

Consider once again the switched affine system of Example 4.3. In order to implement the switching strategy in

(4.43) and the affine controller of Theorem 4.2, the matrices Y, X, Wi , and Li are obtained as follows

Y =





























5.8486 0.0509 1.0488

0.0509 6.5174 10.0155

1.0488 10.0155 18.2095





























, X =





























244.9140 169.4628 159.3359

169.4628 118.5251 111.5770

159.3359 111.5770 116.9782





























,

W1 =





























−194.5703

−136.5212

−129.2966





























T

, W2 =





























−194.5709

−136.5216

−129.2970





























T

, W3 =





























−194.5700

−136.5210

−129.2964





























T

,
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L1 =





























−2.3160

−61.1186

−65.3486





























, L2 =





























−57.9068

−5.5279

−9.7579





























, L3 =





























−2.3158

−561.3437

−9.7562





























by solving the convex optimization problem in (4.55) followed by (4.57). Implementing the dynamical controller

Cσ and the switching rule, by means of the identities in (4.44), Theorem 4.2 assures asymptotic stability of the

equilibrium point ξ = 0, as well as the upper bound J∞(σ,Cσ ) < 166.7720 for the H∞ performance index.

By considering the following disturbance

w(t) =



















[0 5 0]T , 0.5 ≤ t ≤ 1.5

0, otherwise

the trajectories in time for the system and controller states can be seen in Figure 4.10. The performance output

ze(t) and the control effort u(t), as produced by the controller, are shown in Figure 4.11. Also, observe in Figure

4.12 the behavior of the switching rule. Notice how the control effort and the switching rule exhibit a complex
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Figure 4.10: Trajectories of each state for the switched affine system under Theorem 4.2.
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Figure 4.11: Output and control signal for the switched affine system under Theorem 4.2.

behavior while the disturbance is being applied, and how their joint action is able to asymptotically stabilize
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0 0.5 1 1.5 2 2.5 3

1

2

3

0.754 0.7542 0.7544 0.7546 0.7548 0.755

1

2

3

Figure 4.12: Switching rule for the switched affine system under Theorem 4.2.

the switched system to the equilibrium point as the disturbance ceases. �

The next example compares the results of Example 4.4, obtained for Theorem 4.2, to those of Theorem

4.3, which are based on less conservative conditions.

4.5.4 Example: Output-Input Dependent Switching Rule

This example considers the switched system of Example 4.4, now assuming that the disturbance w(t) is known,

and serves as a comparison between the two switching rules introduced for the H∞ control design problem.

Example 4.5

Constructing upon Example 4.4, the following matrices are calculated by solving the optimization problem in

(4.78) followed by (4.79), in order to implement the switching rule (4.62) and the controller Cσ of Theorem 4.3,

by considering the identities in (4.64)

Y =





























0.4120 −0.2157 0.6139

−0.2157 6.5200 10.0130

0.6139 10.0130 18.2039





























, X =





























246.2547 170.3845 160.2929

170.3845 119.1525 112.2339

160.2929 112.2339 117.6591





























,

W1 =





























−195.6495

−137.2608

−130.0659





























T

, W2 =





























−195.6426

−137.2560

−130.0610





























T

, W3 =





























−195.6394

−137.2537

−130.0587





























T

,

L1 =





























−0.2434

−61.3656

−65.5285





























, L2 =





























−5.0956

−1.6023

−2.9202





























, L3 =





























−0.4222

−11.1887

−17.6459





























For this example, the guaranteed cost J∞(σ,Cσ ) < 38.6818 is assured, a cost 76.8% smaller than that assured by

Theorem 4.2, an expected result due to the reduced conservativeness of its conditions. As stated, in this example
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we assume that the disturbance is known, thus allowing the switching rule (4.62) to be implemented. Adopting

the same disturbance of Example 4.4, the trajectories in time for each state of the system and controller can be

seen in Figure 4.13. The performance output as well as the control effort can be observed in Figure 4.14. The
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Figure 4.13: Trajectories of each state for the switched affine system under Theorem 4.3.
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Figure 4.14: Output and control signal for the switched affine system under Theorem 4.3.

switching rule of Theorem 4.3 for this example can be seen on Figure 4.15. Notice the stark difference between

0 0.5 1 1.5 2 2.5 3
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1.4995 1.5 1.5005

1
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3

Figure 4.15: Switching rule for the switched affine system under Theorem 4.3.
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the behaviors of the switching rules and control efforts of Theorems 4.2 and 4.3. �

4.6 Concluding Remarks

In this chapter we tackled the output feedback control design problem for continuous-time switched affine

systems by considering the joint action of a control law u(t) and a switching function σ(ye(t)), implemented

by means of a switched affine controller. The conditions obtained are expressed in terms of LMIs, and assure

the global asymptotic stability of a desired equilibrium point of the switched subsystem, as well as an upper

bound for theH2 andH∞ performance indices. The control design methodologies presented generalize existing

results in the literature, thus providing less conservative conditions which allow for a wider scope of problems

to be considered.

Five examples illustrated the effectiveness of the proposed techniques, and demonstrated the particular

case where only the joint action of both control structures is capable of stabilizing the switched system.
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Chapter 5

Filtering and Estimation

S
everal results that deal with state and output feedback control design of a stabilizing switching

function already exist in the literature, as discussed thoroughly in the previous chapters. How-

ever, less attention has been given to filtering problems for switched systems, while considering

theH2 andH∞ performance indices. This chapter aims to address the classical filtering problem

for continuous-time switched affine systems, considering the joint design of a full-order switched affine filter

and an output dependent stabilizing switching rule, together assuring an upper bound for the H2 and H∞

guaranteed costs for the estimation error. To the best of the author’s knowledge, the classical filtering problem

in the context of switched affine systems has not been treated in the literature as of yet, except for the following

publications [56, 57] which are the basis for this chapter.

5.1 Introduction

Given a dynamical system, the classical filtering problem consists in determining some information of interest

from the measurement of a certain output of this system, which may be corrupted by process noise. This

information is often internal to the system, and either cannot be directly measured or can only be measured

with some degree of uncertainty. The concept of filtering is thus of great importance for practical applications

due to the common occurrence of disturbances in measurements, for instance those arising from a noisy sensor,

as well as the difficulty in measuring full state information from physical systems. A common example is that of

a sensorless DC motor speed controller, where the speed of the DC motor is not available, and must be inferred

from the measured armature current and voltage, which may be corrupted by noise. In this case, an appropriate

filter can be applied to estimate the DC motor speed from the available measurements, allowing a closed-loop

control system to be implemented.

This chapter introduces a methodology for the design of dynamical filters, more specifically a full-order

continuous-time switched affine filter is considered, with optimalH2 orH∞ guaranteed costs for the estimation

error. In this work, the estimation error is defined as the difference between the unavailable signal of interest

and the estimated signal, output by the filter. The design of an output dependent stabilizing switching function

is considered alongside the switched affine filter. In the literature thus far, references [32], [33], and [34] have

considered the design of switched filters for continuous-time switched linear systems, limited to the scope of

time-dependent switching functions, considering either H2 or H∞ guaranteed costs. However, few references

treat the joint design of a switching function along with the switched filter, see [35] as an example. In the

mentioned references, only linear systems have been considered. For the more general case of switched affine

systems, considered in this work, even fewer references have explored this topic, see [36] and [37]. These,
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however, consider only the simpler observer-based structure.

The proposed techniques do not require that the individual subsystem matrices Ai , for i ∈K, exhibit

any stability properties. As is recurrent in the literature, only the convex combination of these matrices must

be Hurwitz Aλ ∈ H, for some vector λ ∈ΛN . Moreover, it is proved that the minimum guaranteed cost filters

actually present an observer-based structure and can be designed independently of the switching function,

indicating that the well-known separation principle is valid.

5.2 Problem Statement

Consider the following state space representation of a switched affine system, already provided in its shifted

arrangement

ξ̇(t) =Aσξ(t) +Hσw(t) + ℓσ , ξ(0) = 0

ye(t) = Cσξ(t) +Dσw(t)

ze(t) = Eσξ(t) +Gσw(t)

(5.1)

where ξ(t) ∈ Rnx is the state vector, w(t) ∈ Rnw is an external disturbance, or process noise, ye(t) ∈ R
ny is the

measured output, ze(t) ∈ R
nz is the performance output, or the unavailable signal of interest, and ℓi =Aixe +bi

for all i ∈ K are the affine terms. Again, notice that ye(t) = y(t) − Cσxe, with y(t) = Cσx(t) +Dσw(t), and

ze(t) = z(t)−Eσxe, with z(t) = Eσx(t) +Gσw(t) when expressed in terms of the state space representation in x(t).

From Definition 1, whenever bi , 0 for some i ∈ K, the switched system possesses several nontrivial

equilibrium points, which characterize the subset of the state space given by

Xe =
{

xe ∈ R
nx : xe = −A

−1
λ bλ, λ ∈ΛN

}

(5.2)

The definition of system (5.1) is then made complete with xe ∈ Xe, and its associated vector λ0 ∈ΛN . Differently

from Chapter 4, as it will become clear in the following sections, it is now needed that Aλ ∈ H be satisfied for a

given vector λ ∈ΛN associated to the desired equilibrium point.

Also, consider a full-order switched affine filter with state space representation given by

Fσ :



















˙̂ξ(t) = Âσ ξ̂(t) + B̂σye(t) + ℓ̂σ , ξ̂(0) = 0

ẑe(t) = Êσ ξ̂(t) + F̂σye(t)
(5.3)

where ξ̂ ∈ Rnx is the state vector of the filter, of same dimension as the switched system being considered, which

will be available to the switching rule, and ẑe(t) is the filter output, or the signal of interest being estimated.

By connecting the filter (5.3) to the switched system (5.1), as shown in Figure 5.1 we define the estimation

error as e(t) = ze(t)− ẑe(t), or the difference between the unavailable signal of interest and the estimated signal,

output by the filter.
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System Dynamics

Filter Dynamicsσ

+
w(t)

y(t)

ξ̂(t)

ze(t)

ẑe(t)

−

e(t)

Figure 5.1: System interconnection.

As such, by defining ξ̃(t) =
[

ξ(t)T ξ̂(t)T
]T
∈ R2nx , the following augmented state space representation

˙̃ξ(t) = Ãσ ξ̃(t) + H̃σw(t) + ℓ̃σ , ξ̃(0) = 0

e(t) = Ẽσ ξ̃(t) + G̃σw(t)
(5.4)

is obtained, where ξ̃(t) is the augmented system state vector, and the augmented system matrices are given by

Ãi =

















Ai 0

B̂iCi Âi

















, ℓ̃i =

















ℓi

ℓ̂i

















, H̃i =

















Hi

B̂iDi

















, Ẽi =
[

Ei − F̂iCi −Êi

]

, G̃i =
(

Gi − F̂iDi

)

(5.5)

The main goal of this chapter consists in determining a dynamical filter Fσ alongside an output-dependent

switching function σ(ye(t)) in order to guarantee global asymptotic stability of the equilibrium point ξ̃ = 0,

thus assuring stability of both the system and filter dynamics, for a given xe ∈ Xe of interest. Notice that

although the switching function is dependent on ye(t), this is in fact equivalent to a dependency on y(t),

and will be implemented by means of the filter state ξ̂(t). This is achieved by generalizing the previously

introduced Theorems 3.4, and 3.6 for the augmented system (5.4). Furthermore, upper bounds for the H2 and

H∞ performance indices for switched systems, previously introduced, must be assured for the estimation error.

5.3 Preliminaries

In a similar fashion to that undertaken in Chapter 4, we first consider a switching function that eliminates any

dependency on the system state, as it is unavailable in filtering and estimation problems. For this, recall the

block symmetric matrices P̃ and P̃−1

P̃ =

















Y V

VT Ŷ

















, P̃−1 =

















X U

UT X̂

















(5.6)

implying in the following relations

XY+UVT = I, XV+UŶ = 0, UTY+ X̂VT = 0, UTV+ X̂Ŷ = I (5.7)
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such that P̃−1P̃ = I holds. Also recall the block symmetric matrix Q̃i

Q̃i =

















0 0

0 Q̂i

















, i ∈K (5.8)

and the switching rule of Theorems 3.4 and 3.6, for the augmented system (5.4)

σ(ξ̃) = arg min
i∈K
−ξ̃

T
Q̃i ξ̃ +2ξ̃

T
P̃ℓ̃i (5.9)

As previously discussed, the structure adopted in Q̃i , together with the specific choices for ℓ̂i given by

ℓ̂i = −V
−1Yℓi , ∀i ∈K (5.10)

with V such that ∃V−1, allow for the elimination of the dependency on the system state ξ(t). By employing the

relations Ŷ = −U−1XV and VT =U−1 (I−XY), from (5.7), the switching function becomes dependent exclusively

on the state of the filter ξ̂(t), as such

σ(ξ̃) = σ(ξ̂) = arg min
i∈K
−ξ̂

T
Q̂i ξ̂ +2ξ̂

T
U−1ℓi (5.11)

The following sections introduce conditions expressed in terms of LMIs, under which the matrices

Âi , B̂i , Êi , F̂i , and the vectorℓ̂i , for i ∈K can be obtained, as well as the matrices Q̂i andU−1, needed to implement

the dynamical filter and the switching rule σ(·), and which together guarantee an H2 or H∞ performance index

for the estimation error. In this chapter, the structures of P̃, P̃−1, Q̃i , and ℓ̂i just introduced will be used

throughout.

5.4 H2 Filter Synthesis

This section deals with the generalization of Theorem 3.4 for the augmented system (5.4). We consider matrices

G̃i =Gi = 0, ∀i ∈K, in order to deal with strictly proper subsystems. The following theorem provides conditions

that assure the asymptotic convergence of the estimation error as well as an upper bound for itsH2 performance

index.

Theorem 5.1. Consider the switched affine system (5.4) and a chosen equilibrium point xe ∈ Xe with its associated

λ0 ∈ΛN . If there exist symmetric matrices Z, Y, S, Ri , and matrices Li , for all i ∈K, such that

Rλ0 � 0 (5.12)

AT
i Z+ZAi +Ri ≺ 0, ∀i ∈K (5.13)

He {YAi +LiCi }+ET
i Ei ≺ 0, ∀i ∈K (5.14)
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S • •

ZHj Z •

YHj +LjDj Z Y





























≻ 0 (5.15)

with j = σ(0) given, then the following switching rule

σ(ξ̂) = arg min
i∈K
−ξ̂

T
Q̂i ξ̂ +2ξ̂

T
Zℓi (5.16)

along with filter (5.3) whose matrices are given by

Âi = (Y−Z)−1
(

AT
i Z+YAi +LiCi

)

,

B̂i = (Z−Y)−1Li , Êi = Ei ,

F̂i = 0, ℓ̂i = (Y−Z)−1Yℓi , Q̂i = Ri

(5.17)

assure the H2 guaranteed cost

J2(σ,Fσ ) < tr (S) (5.18)

for the estimation error.

Proof. The proof unfolds by demonstrating the validity of Theorem 3.4 whenever the conditions of Theorem

5.1 are satisfied. For this, consider matrices (5.6), along with the relations in (5.7), matrix (5.8), and the identity

(5.10), as well as inequalities (3.39) and (3.40) of Theorem 3.4 for the augmented system (5.4), as such

ÃT
i P̃+ P̃Ãi + ẼT

i Ẽi + Q̃i ≺ 0 (5.19)

Q̃λ0 � 0 (5.20)

By adopting the transformation matrix Γ̃ as

Γ̃ =

















I I

UTX−1 0

















(5.21)

and multiplying (5.19) by Γ̃, as follows

He
{

Γ̃
T
ÃT
i P̃Γ̃

}

+ Γ̃
T
ẼT
i Ẽi Γ̃ + Γ̃

T
Q̃i Γ̃ ≺ 0 (5.22)

whose intermediary products are given by

Γ̃
T
ÃT
i P̃Γ̃ =

















AT
i X
−1 AT

i Y+CT
i B̂

T
i V

T +X−1UÂT
i V

T

AT
i X
−1 AT

i Y+CT
i B̂

T
i V

T

















Ẽi Γ̃ =
[

Ei − F̂iCi − ÊiU
TX−1 Ei − F̂iCi

]

, Γ̃
T
Q̃i Γ̃ =

















X−1UQ̂iU
TX−1 0

0 0

















(5.23)
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and by denoting Z = X−1, Li =VB̂i , and Ri = ZUQ̂iU
TZ, the resulting inequality is obtained

















Ξi •

Ωi Υi

















≺ 0 (5.24)

with

Ξi = He {ZAi }+Ri + (Ei − F̂iCi − ÊiU
TZ)T (Ei − F̂iCi − ÊiU

TZ) (5.25)

Υi = He {YAi +LiCi }+ (Ei − F̂iCi )
T (Ei − F̂iCi ) (5.26)

Ωi =AT
i Z+YAi +LiCi +VÂiU

TZ+ (Ei − F̂iCi )
T (Ei − F̂iCi − ÊiU

TZ) (5.27)

Notice that by making the following choice of Âi

Âi = −V
−1

(

AT
i Z+YAi +LiCi + (Ei − F̂iCi )

T (Ei − F̂iCi − ÊiU
TZ)

)

Z−1(UT )−1 (5.28)

so as to make Ωi = 0, we obtain the following two inequalities

He {YAi +LiCi }+ (Ei − F̂iCi )
T (Ei − F̂iCi ) ≺ 0, ∀i ∈K (5.29)

















He {ZAi }+Ri •

Ei − F̂iCi − ÊiU
TZ −I

















≺ 0, ∀i ∈K (5.30)

Also, by further making the choices of F̂i = 0, which is a consequence of our assumption of Gi = 0, ∀i ∈K, and

Êi = EiZ
−1(UT )−1, thus making block (2,1) of (5.30) null, now allows us to obtain inequality (5.13) and (5.14).

Thus, it becomes evident that whenever these two inequalities are satisfied, then inequality (5.24) is valid, and

consequently, condition (5.19) of Theorem 3.4 for the augmented system is also verified. Furthermore, observe

that Rλ0 � 0 is satisfied if and only if Q̃λ0 � 0, and in this case, condition (5.20) of Theorem 3.4 is also verified.

As in Chapter 4, the choice of U = X can be made, without incurring loss of generality, and thus, from the

relations in (5.7), which imply in V =VT = Z−Y and Ŷ = −V we obtain the identities in (5.17). The switching

rule (5.16) is obtained directly from (5.9) by recalling that U−1 = Z, and considering that matrix Q̂i is obtained

from (5.17), as such

σ(ξ̂) = arg min
i∈K
−ξ̂

T
Q̂i ξ̂ +2ξ̂

T
Zℓi (5.31)

Finally, inequality (5.15) is equivalent to

















S •

Γ̃
T
P̃H̃j Γ̃

T
P̃Γ̃

















≻ 0 (5.32)
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whose intermediary products are given by

Γ̃
T
P̃Γ̃ =

















Z •

Z Y

















, Γ̃
T
P̃H̃j =

















ZHj

YHj +LjDj

















(5.33)

By multiplying inequality (5.32) to the left by diag(I, (Γ̃
T
P̃)−1), to the right by its transpose, and applying Schur

complement with respect to P̃−1 in block (2,2) of the ensuing inequality, we obtain

H̃T
j P̃H̃j ≺ S (5.34)

consequently, the upper bound for the guaranteed cost

J2(σ,Fσ ) < tr
(

H̃T
j P̃H̃j

)

< tr (S) (5.35)

is assured as in Theorem 3.4, with j = σ(0) given. The proof is concluded.

The following convex optimization problem, subject to the LMI constraints of Theorem 5.1, allows

solving for the matrix variables required to implement the proposed filter Fσ and the switching rule

min tr(S)

s. to: (5.12), (5.13), (5.14), and (5.15)
(5.36)

by means of the identities in (5.17).

A few relevant remarks on Theorem 5.1 can be raised. First, notice that the inequalities in (5.13) reveal

that there is no imposition on matrices Ai being Hurwitz, since matrices Q̂i are sign indefinite. However, it is

required that Aλ0 be Hurwitz, for λ0 ∈ΛN , as is often recurrent in the literature. Also, observe that inequality

(5.14) requires the existence of matrices Ki = Y−1Li , such that Ai +KiCi be quadratically stable for all i ∈K.

This, however, is not a severe imposition, because the matrix gains Ki are index-dependent. Finally, notice that

the choice of σ(0) ∈K has a direct effect on the performance index, as discussed in Section 3.4. As such, two

useful approaches may be considered: firstly, a choice of j such that the guaranteed cost of J2 is minimized; and

secondly, the worst case choice of j , making the filter and switching rule design robust with respect to σ(0) ∈K.

An important finding is that the optimal guaranteed cost filter actually displays the simpler observer-

based structure, as introduced by the next corollary.

Corollary 5.1. Consider the switched affine system (5.4) and a chosen equilibrium point xe ∈ Xe with its associated

λ0 ∈ΛN . If there exist a symmetric positive definite matrix Z, symmetric matrices Y, S, and matrices Li , for all i ∈K,

such that

AT
λ0
Z+ZAλ0 ≺ 0 (5.37)

He {YAi +LiCi }+ET
i Ei ≺ 0, ∀i ∈K (5.38)
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and
















S •

YHj +LjDj Y

















≻ 0 (5.39)

with j = σ(0) given, are satisfied, then switching rule

σ(ξ̂) = arg min
i∈K
−ξ̂

T
Q̂i ξ̂ +2ξ̂

T
Zℓi (5.40)

with matrices

Q̂i = (Aλ0 −Ai )
TZ+Z(Aλ0 −Ai ) (5.41)

along with filter (5.3) whose matrices are given by

Âi =Ai − B̂iCi ,

B̂i = −Y
−1Li , Êi = Ei ,

F̂i = 0, ℓ̂i = ℓi

(5.42)

assure the H2 guaranteed cost

J2(σ,Fσ ) < tr (S) (5.43)

for the estimation error.

Proof. For the proof of this corollary, first notice that (5.37) is equivalent to (5.12) together with (5.13). Indeed,

by considering matrices Q̂i = Ri as in (5.41), condition (5.13) becomes (5.37), in addition, we have that Q̂λ0 = 0,

thus inequality (5.12) holds with equality.

Furthermore, notice that by multiplying (5.12) and (5.13) by a scalar ǫ > 0, it becomes evident that the

choice (ǫZ,ǫRi )→ (Z,Ri ), with ǫ→ 0+ can be made without imposing conservatism. Thus, the second row and

columns of (5.15) can be eliminated, and this inequality is simplified to (5.39).

Notice that the switching rule (5.16) is also not impacted by this choice, as ǫ is a positive scalar, which is

constant over i ∈K. Finally, the relations in (5.42) follow immediately from (5.17), as ǫ→ 0+. This concludes

the proof.

Corollary 5.1 makes evident that the filter for which the H2 guaranteed cost of Theorem 5.1 is optimal

presents the simpler observer-based structure. Indeed, by considering the identities in (5.42), and denoting

matrices Ki = Y−1Li , for all i ∈K, the state space representation of filter (5.3) becomes

˙̂ξ(t) =Aσ ξ̂(t) +Kσ

(

Cσ ξ̂(t)− ye(t)
)

+ ℓσ , ξ̂(0) = 0 (5.44)

In addition, Corollary 5.1 now allows the switching rule design and the observer design to be carried out

independently. We can verify this by realizing that the matrix variable Z, which is now the only variable present

in the switching function, exerts no influence on the LMIs in (5.38) and (5.39), in which the performance of the

filter depends upon. This reveals that the separation principle, well-known in control theory, holds in the more
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complex case of switched affine systems.

Moreover, Corollary 5.1 encompasses existing results in the literature, where no H2 or H∞ performance

indices are considered, and in addition, does not require that the subsystemmatricesAi , ∀i ∈K be quadratically

stable, as necessary in [30].

To obtain the required matrices to implement the observer and switching rule of Corollary 5.1, the

following convex optimization problem, subject to LMI constraints, can be solved

min tr(S)

s. to: (5.37), (5.38), (5.39), and Z ≻ 0
(5.45)

considering the identities in (5.17) and (5.41).

5.4.1 Examples: H2 Filter Synthesis

This numerical example, as presented in [56], deals with the design of the optimalH2 filter for a switched affine

system with two unstable subsystems.

Example 5.1

Consider the switched affine system (5.1) composed of two unstable subsystems, as follows

A1 =

















0 1

−5 1

















, A2 =

















0 1

2 −5

















, b1 =

















1

0

















, b2 =

















0

1

















,

H1 =H2 =

















5 0

0 5

















, C1 = C2 =
[

1 0

]

, D1 =D2 =
[

1 1

]

, E1 = E2 = I

Notice that the equilibrium point of A1 is an unstable focus, while that of A2 is an unstable saddle. A

Hurwitz convex combination Aλ0 can be verified at λ0 = [0.47 0.53]T , corresponding to the equilibrium point

xe = [1.21 − 0.47]T ∈ Xe. Solving the convex optimization problem in (5.45), under the conditions of Corollary

5.1, and adopting σ(0) = j = 1, the upper bound for the H2 performance index J2(σ,Fσ ) < 76.79 was obtained,

along with the matrices Z, Y, L1, and L2, as follows

Z =

















1.3702 0.3876

0.3876 0.4072

















, Y =

















2.8488 −1.0732

−1.0732 0.5732

















, L1 =

















−5.8662

1.0906

















, L2 =

















−7474.3

−8.7258

















used to implement the observer and the switching function, through the identities in (5.42) and (5.41).

Considering the disturbance w(t) = δ(t)ψ2, which as previously discussed, is equivalent to the initial

condition ξ̃0 = H̃1ψ2 = [0.00 5.00 4.56 6.63]T , we obtain the trajectories in time for the system and filter

states, as well as the estimation error, presented in Figure 5.2. Notice that the estimation error asymptotically

converges to zero, and that the switching rule was capable of stabilizing the switched system, as desired.

Observe that after t ≈ 0.49 seconds, the switched system begins evolving in sliding modes, as a conse-
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Figure 5.2: Trajectories of system and filter state, and estimation error under Theorem 5.1.

quence of the switching function. Finally, via numerical integration of the product e(t)T e, and considering both

initial conditions H̃1ψ1 and H̃1ψ2, the actual H2 cost J2 = 31.10 < 76.79 was obtained, within that assured by

Theorem 5.1 for the estimation error.

�

The next example tackles an application for the proposed filtering technique, based on a simplified

flyback DC-DC power converter subject to a change in its operating point, or setpoint, while in operation. This

example is also available in the reference [57].

Example 5.2

This example considers the simplified flyback converter topology illustrated in Figure 5.3. The book [58]

provides further details on the subject.

•

•n

S

+

−

Vin

r

im

Lm

D

C RL

+

−

Vo

Figure 5.3: flyback power converter.

For this example, we consider the following component values: Vin = 12V; Lm = 0.848mH; r = 1.129Ω;

C = 2.2mF; RL = 120Ω, and n = 2, the transformer turns ratio. Furthermore, we consider that the output voltage

is the only available measurement, as is often the case in practical applications, by defining matrices C1 and C2

appropriately.

The flyback power converter, along with many other topologies for DC-DC power converters, can be
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readily modeled in a switched affine system framework (5.1). By defining the unshifted state vector as

x(t) = [im(t) Vo(t)]
T , the following matrices define the dynamical behavior of the system

A1 =

















−r/Lm 0

0 −1
RLC

















, A2 =

















−r/Lm −n/Lm

n/C −1
RLC

















, b1 =

















Vin
Lm

0

















, b2 =

















0

0

















, H1 =H2 =

















1 0

1 0

















,

C1 = C2 =
[

0 1

]

, D1 =D2 =
[

0 1

]

, E1 = E2 = I, G1 =G2 = 0

We consider for this example that a change in the operating point of the flyback converter occurs at t = 0.25

seconds, from xe1 = [1.12A 35.03V]T ∈ Xe, associated to λ1 = [0.9187 0.0813]T , to xe2 = [2.56A 50.01V]T ∈ Xe,

associated to λ2 = [0.8691 0.1309]T . The following convex optimization problem is considered

min tr(S)

s. to: (5.13), (5.14), (5.15),

Rλ1 � 0

Rλ2 � 0

which differs from (5.36) by considering the conditions of Theorem 5.1 however imposing both setpoints

simultaneously. The upper bound for the H2 performance index was obtained as J2(σ,Fσ ) < 0.0026 for

σ(0) = j = 2 along with the following matrices

Z =

















0.3876 0.1425

0.1425 1.1628

















× 10−3, Y =

















0.5185 0.2094

0.2094 1.6526

















× 10−3,

L1 =

















0.08492

−268.33

















, L2 =

















−1.2242

−57.552

















× 10−8, Q1 =

















0.75 0.141

0.141 −0.011

















, Q2 =

















−1.535 −0.356

−0.356 0.502

















required to implement the filter Fσ and switching function, via the relations in (5.17).

Initiating the system from null initial conditions x0 = 0 and ξ̂0 = 0, Figure 5.4 presents the trajectories in

time for the current and output voltage for the flyback power converter. The filter implementation enabled a

rapid convergence of the estimation error to zero, as seen in Figure 5.5. The change in operating points from

xe1 to xe2 is clearly visible at t = 0.25 seconds, and the switching function, shown in Figure 5.6, is effective in

stabilizing the system to the new equilibrium point xe2 . Notice in the zoomed-in interval of time the change in

its behavior when the change of setpoints occurs.

This example demonstrates how the proposed technique for H2 filtering may be used in a power

electronics application, such as the flyback DC-DC power converter, considering the more realistic scenario

where the output voltage is the only available measurement, as well as that of dealing with changes in setpoints

during operation.

�
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Figure 5.4: Trajectories of each state for the switched affine system under Theorem 5.1.
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Figure 5.5: Trajectories of the estimation error under Theorem 5.1.
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Figure 5.6: Switching rule for the switched affine system under Theorem 5.1.

5.5 H∞ Filter Synthesis

This section generalizes Theorem 3.6 to deal with the classical filtering problem assuring the H∞ performance

index for the estimation error in the context of switched affine systems. Recall that for theH∞ case, disturbances
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w(t) ∈ L2 are considered. Furthermore, similarly to the proposed H2 filter, it will be demonstrated that the

minimum H∞ guaranteed cost filter also presents an observer-based structure, and which can be designed

independently of the switching function.

Theorem 5.2. Consider the switched affine system (5.4) and a chosen equilibrium point xe ∈ Xe with its associated

λ0 ∈ΛN . If there exist symmetric matrices Z, Y, and Ri , and matrices Ni and Li , for all i ∈K, and a scalar ρ, such

that

Y ≻ Z ≻ 0 (5.46)

Rλ0 � 0 (5.47)

















AT
i Z+ZAi +Ri •

HT
i Z −ρI

















≺ 0, ∀i ∈K (5.48)





























He {YAi +LiCi } • •

HT
i Y+DT

i L
T
i −ρI •

Ei −NiCi Gi −NiDi −I





























≺ 0, ∀i ∈K (5.49)

then the following switching rule

σ(ξ̂) = arg min
i∈K
−ξ̂

T
Q̂i ξ̂ +2ξ̂

T
Zℓi (5.50)

along with filter (5.3) whose matrices are given by

Âi = (Y−Z)−1
(

AT
i Z+YAi +LiCi + ρ−1(YHi +LiDi )H

T
i Z

)

B̂i = (Z−Y)−1Li , Êi = Ei −NiCi + ρ−1(Gi −NiDi )H
T
i Z

F̂i =Ni , ℓ̂i = (Y−Z)−1Yℓi , Q̂i = Ri

(5.51)

assure the H∞ guaranteed cost

J∞(σ,Fσ ) < ρ (5.52)

for the estimation error.

Proof. The proof unfolds by demonstrating the validity of Theorem 3.6 whenever the conditions of Theorem

5.2 are met. Again, we consider matrices (5.6), as well as the identities in (5.7), vectors (5.10), and the matrices

Q̃i , whose structure is defined in (5.8). First, consider inequalities (3.63) and (3.64) of Theorem 3.6, applied to

the augmented system (5.4), as such

Q̃λ0 � 0 (5.53)




























ÃT
i P̃+ P̃Ãi + Q̃i • •

H̃T
i P̃ −ρI •

Ẽi G̃i −I





























≺ 0, ∀i ∈K (5.54)

By considering again the transformation matrix Γ̃ defined in (5.21), multiplying the left hand side of (5.54) by
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diag(Γ̃,I,I), the right hand side by its transpose, and proceeding similarly as in Theorem 5.1, the intermediary

products are given by (5.23) and (5.33) when denoting Z = X−1 and Li =VB̂i . By further denoting Ni = F̂i and

Ri = X−1UQ̂iU
TX−1, we obtain the following inequality











































He {ZAi }+Ri • • •

Vi He {YAi +LiCi } • •

HT
i Z HT

i Y+DT
i L

T
i −ρI •

Ei −NiCi − ÊiU
TZ Ei −NiCi Gi −NiDi −I











































≺ 0, ∀i ∈K (5.55)

where Vi = AT
i Z+YAi +LiCi +VÂiU

TZ. By performing the Schur complement with respect to the two last

rows and columns of (5.55), the following inequality ensues

















Ξi •

Ωi Υi

















≺ 0, ∀i ∈K (5.56)

where, definingT =
(

ρI− (Gi −NiDi )
T (Gi −NiDi )

)

, we have

Ξi = He {ZAi }+Ri +
(

Ei −NiCi − ÊiU
TZ

)T (

Ei −NiCi − ÊiU
TZ

)

+

+
(

HT
i Z+ (Gi −NiDi )

T
(

Ei −NiCi − ÊiU
TZ

))T
T−1

(

HT
i Z+ (Gi −NiDi )

T
(

Ei −NiCi − ÊiU
TZ

))

(5.57)

Υi = He {YAi +LiCi }+ (Ei −NiCi )
T (Ei −NiCi )+

+
(

HT
i Y+DT

i L
T
i + (Gi −NiDi )

T (Ei −NiCi )
)T
T−1

(

HT
i Y+DT

i L
T
i + (Gi −NiDi )

T (Ei −NiCi )
)

(5.58)

Ωi =Vi + (Ei −NiCi )
T
(

Ei −NiCi − ÊiU
TZ

)

+

+
(

HT
i Y+DT

i L
T
i + (Gi −NiDi )

T (Ei −NiCi )
)T
T−1

(

HT
i Z+ (Gi −NiDi )

T
(

Ei −NiCi − ÊiU
TZ

))

(5.59)

By choosing Âi so as to make Ωi = 0, inequality (5.56) is equivalent to (5.49) together with





























He {ZAi }+Ri • •

HT
i Z −ρI •

Ei −NiCi − ÊiU
TZ Gi −NiDi −I





























≺ 0, ∀i ∈K (5.60)

where condition (5.60) was obtained from Ξi and inequality (5.49) was derived from Υi , in both cases by

performing Schur complement as appropriate. In addition, by swapping the second and third rows and

columns of (5.60), as such





























He {ZAi }+Ri • •

Ei −NiCi − ÊiU
TZ −I •

HT
i Z (Gi −NiDi )

T −ρI





























≺ 0, ∀i ∈K (5.61)
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and performing Schur complement with respect to −ρI, it can be verified that by choosing Êi in order to

make block (2,1) of the resulting inequality null, then inequality (5.61) becomes equivalent to condition (5.48),

together with the following inequality

















−ρI •

Gi −NiDi −I

















≺ 0, ∀i ∈K (5.62)

which is also enforced by (5.49). As such, whenever inequalities (5.48) and (5.49) are satisfied, then both main

diagonal blocks of (5.56) are negative definite, thus inequality (5.55) is valid, and consequently, so is condition

(5.54) of Theorem 3.6, for the augmented system. Furthermore, inequalities (5.46) assure P̃ ≻ 0, and we have

that Rλ0 � 0 is satisfied if and only if Q̃λ0 � 0, assuring that condition (5.53) of Theorem 3.6 for the augmented

system holds.

Finally, by again choosing matrix U = X, the identities in (5.51) are verified, and the switching rule (5.50)

is obtained from (5.9). As in Theorem 3.6, the upper bound for the H∞ performance index

J∞(σ,Fσ ) < ρ

is guaranteed for the estimation error. This concludes the proof.

The matrices required to implement the filter and the switching rule proposed in Theorem 5.2 can be

obtained numerically by solving the following convex optimization problem, subject to LMI constraints

min ρ

s. to: (5.46), (5.47), (5.48), and (5.49)
(5.63)

by considering the identities in (5.51).

As discussed in Chapter 4, the ill-conditioning of H∞ problems is a possible occurrence for convex

optimization programs subject to LMI constraints. To circumvent this in the case of Theorem 5.2, we propose

that a fixed suboptimal ρ > 0 be provided, and the term (Y − Z)−1 be minimized, thus providing greater

numerical stability for filter matrices. To obtain a linear objective function to this end, consider a symmetric

matrix S, such that
















S •

I Y−Z

















≻ 0 (5.64)

Notice that, by Schur complement, this inequality is equivalent to (Y−Z)−1 ≺ S. Thus, the following optimization

problem, for a given ρ > 0

min tr(S)

s. to: (5.47), (5.48), (5.49), (5.64), and Z ≻ 0
(5.65)

allows for filter matrices with greater numerical stability.

Similarly to Theorem 5.1, the optimal guaranteed cost filter of Theorem 5.2 also displays an observer-
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based structure. This result is introduced in the next corollary.

Corollary 5.2. Consider the switched affine system (5.4) and a chosen xe ∈ Xe with its associated λ0 ∈ΛN . If there

exist symmetric matrices Z ≻ 0 and Y ≻ 0, matrices Ni and Li , for all i ∈K, and a scalar ρ, such that

AT
λ0
Z+ZAλ0 ≺ 0 (5.66)





























He {YAi +LiCi } • •

HT
i Y+DT

i L
T
i −ρI •

Ei −NiCi Gi −NiDi −I





























≺ 0, ∀i ∈K (5.67)

are satisfied, then the switching rule

σ(ξ̂) = arg min
i∈K
−ξ̂

T
Q̂i ξ̂ +2ξ̂

T
Zℓi (5.68)

with

Q̂i = (Aλ0 −Ai )
TZ+Z(Aλ0 −Ai ) (5.69)

along with filter (5.3) whose matrices are given by

Âi =Ai − B̂iCi , B̂i = −Y
−1Li

Êi = Ei −NiCi , F̂i =Ni , ℓ̂i = ℓi

(5.70)

assure the H∞ guaranteed cost

J∞(σ,Fσ ) < ρ (5.71)

for the estimation error.

Proof. In a much similar manner to Corollary 5.1, this result is verified by effecting the replacement (ǫZ,ǫRi )→

(Z,Ri ) in Theorem 5.2, with ǫ→ 0+. Under this choice, inequality (5.67) becomes explicitly decoupled from

(5.48). This can be noticed by realizing that (5.48), when considering this replacement, is equivalent to

He {ZAi }+Ri + ǫρ−1ZHHTZ ≺ 0 (5.72)

and the dependency on ρ is eliminated as ǫ→ 0+. The proof is concluded.

It is important to note that the same remarks on Theorem 5.1 remain valid for the H∞ filter, particu-

larly that no imposition on individual subsystem matrices Ai being Hurwitz is made, only on their convex

combination Aλ0 , for λ0 ∈ΛN , and also, inequality (5.49) requires matrices Ki = Y−1Li , such that Ai +KiCi be

quadratically stable for all i ∈K, which, as already mentioned, is not a severe imposition, given that the matrix

gains Ki are index-dependent. Finally, observe that, as for the H2 case, the separation principle is again valid,

allowing the switching function and the observer to be designed independently.
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The following convex optimization problem can be solved to obtain the matrices needed to implement

the proposed observer and switching rule of Corollary 5.2

min ρ

s. to: (5.66), (5.67), and Z ≻ 0
(5.73)

considering the relations in (5.70) and (5.69). Additionally, the following convex optimization problem

min tr(S)

s. to: (5.66), (5.67), (5.64), and Z ≻ 0
(5.74)

for a given ρ > 0, arbitrarily close to the optimal value, provides for observer matrices with greater numerical

stability, as previously discussed.

5.5.1 Examples: H∞ Filter Synthesis

The following example illustrates the effectiveness of the proposed H∞ filter design methodology, even in the

case where all subsystems are unstable. This example can also be found in reference [57].

Example 5.3

Consider the switched affine system (5.1) comprised of three unstable subsystems, with matrices

A1 =





























0 1 0

0 0 1

2 −5 1





























, A2 =





























0 1 0

0 0 1

10 −10 −10





























, A3 =





























0 1 0

0 0 1

−2 2 −1





























, b1 =





























1

0

1





























, b2 =





























0

1

0





























, b3 =





























1

0

−1





























,

Hi = I, Ci = [1 1 1], Di = [1 1 1], Ei = I, ∀i ∈K

Notice that the equilibrium point of subsystem 1 is a node-focus, while that of subsystem 2 is a saddle, and the

equilibrium point of subsystem 3 is a saddle-focus. Furthermore, at λ0 = [0.1822 0.1022 0.7156]T , the convex

combination Aλ0 is Hurwitz. For this example, the following disturbance is considered

w(t) =



















[0 3 0]T , 5 ≤ t ≤ 10

0, otherwise

By solving the conditions of Corollary 5.2 by means of the convex optimization problem in (5.73), the upper

bound ρ < 12.9952 for the H∞ performance index was obtained. Then, by solving (5.74) for a value of ρ

arbitrarily close to the optimal, the following matrices Z, Y, Li , and Ni , for i ∈ {1,2,3} are obtained

Z =





























7.2934 18.462 11.161

18.462 59.968 37.788

11.161 37.788 24.616





























, Y =





























6.4159 2.9275 0.1251

2.9275 5.2256 0.0728

0.1251 0.0728 0.1044





























,
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L1 =





























−7.424

−7.035

−4.403





























, L2 =





























−7.498

−7.083

−4.445





























, L3 =





























−7.581

−7.102

−4.481





























, N1 =





























0.338

0.337

0.325





























, N2 =





























0.334

0.333

0.333





























, N3 =





























0.324

0.338

0.338





























These matrices are needed to implement the observer and the switching function of Corollary 5.2 by means

of the identities in (5.70). Figure 5.7 presents the trajectories in time for the state of the system and filter.

Notice how the switching function is successfully able to stabilize the switched system, so that it asymptotically

converges to the desired equilibrium point once the disturbance is removed. Meanwhile, Figure 5.8 displays the
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Figure 5.7: Trajectories of system and filter output under Corollary 5.2.

behavior of the switching rule. Observe how its behavior changes once the disturbance is applied. Furthermore,

0 2 4 6 8 10 12 14 16 18 20

1

2

3

6.3826 6.38265 6.3827 6.38275

1

2

3

Figure 5.8: Switching rule for the switched affine system under Corollary 5.2.

notice that the observer is successful in estimating the system state, quickly converging once the disturbance

ceases. This example demonstrates how the proposed H∞ filter design methodology is successful when dealing

with switched affine systems composed of unstable subsystems. �

The next example considers a state estimation problem for the flyback power converter of Example 5.2

under Corollary 5.2, where the output voltage is the only available measurement, and subject to process noise.

This situation reflects a real-life scenario for DC-DC power converters.
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Example 5.4

For this example, also available in the reference [56], recall the the flyback power converter of Example 5.2,

however with the additional matrix

H1 =H2 =

















1 1

1 1

















and consider a stable convex combination Aλ0 for the vector λ0 = [0.92 0.08]T to which the equilibrium point

xe = [3.3187A 26.981V]T ∈ Xe is associated. To implement Corollary 5.2, the convex optimization problem

(5.73) is solved, through which we obtain the guaranteed cost J∞(σ,Fσ ) < 0.05920, associated to the following

matrices

Z =

















0.3328 0.0833

0.0833 0.0401

















, Y =

















2.3068 −0.0001

−0.0001 0.0514

















,

L1 =

















−2.2984

−0.1533

















, L2 =

















−2.3073

−0.1133

















, N1 =

















18.487

−6.2442

















× 10−8, N2 =

















−15.030

−684.90

















× 10−8

needed to implement the observer and the switching rule. We have considered the following disturbance

w(t) =



















[0 5]T , 0.2 ≤ t ≤ 0.7

0, otherwise

which, due to the choices of Ci and Hi , i ∈K, behaves as a constant noise applied to the voltage measurement,

as well as to the dynamics of both states of the switched system. The state trajectories in time for the system

and filter states are shown in Figure 5.9, along with the estimation error.
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Figure 5.9: Trajectories of system and filter state, and estimation error under Corollary 5.2.

Notice that while the disturbance is being applied, the filter is capable of maintaining the estimation

error within −0.3568V, which is small when compared to the operating point of the switched system. Further-

more, after the disturbance ceases, the error rapidly converges to zero and the switching function is able to

asymptotically stabilize the switched system. �
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5.6 Concluding Remarks

This chapter introduced a methodology for dealing with the classical filtering problem in the context of

switched affine systems. The switched dynamical filter was designed along with an output dependent stabilizing

switching function to assure H2 and H∞ guaranteed costs for the estimation error. It was proved that the

optimal H2 and H∞ filters actually present the simpler observer-based structure, and that in this case, the

switching function and filter design are completely independent, revealing that the separation principle also

holds in the more complex case of continuous-time switched affine systems.

Four examples, with two based on a flyback power converter, were provided to illustrate the theory and

demonstrate the effectiveness of the proposed methodologies in various situations.
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Chapter 6

Conclusion

O
ver the course of this work, we have treated the problems of output feedback control and

filter design for continuous-time switched affine systems. First, we presented some important

concepts with regard to dynamical systems, focusing on their stability properties, as well as on

the definition of the H2 and H∞ norms for linear time invariant systems. With these concepts

on hand, we then introduced the subclass of hybrid systems known as switched systems, and presented some

results already available in the literature on switched linear and affine systems. Examples and discussions

throughout Chapter 3 provided valuable insight into several peculiarities and interesting characteristics of

this important subclass of systems. For instance, the occurrence of sliding modes, which is a phenomenon

characteristic of switched systems that sometimes may be undesirable, due to the high switching frequencies

involved, is otherwise crucial when the goal is to attain asymptotic stability of an equilibrium point in a

switched affine system, since the desired equilibrium point is in general different than those of the individual

subsystem.

For this subclass of hybrid systems, the switching function plays a central role, giving rise to complex

and unusual dynamical behaviors. Indeed, a specific choice for this function can guarantee stability even

in case where all subsystems are unstable, or in the situation where all subsystems are stable, it may lead

to an enhanced performance when compared to that of the individual subsystems. On the other hand, the

overall behavior of the switched system becomes more difficult to analyze mathematically, given the nonlinear

and time-variant characteristics imparted by the switching function. As such, most of the classical tools and

methodologies developed for the analysis and control of dynamical systems, some of which were introduced

in Chapter 2, cannot be employed anymore. For instance, the definition of H2 and H∞ norms can no longer

be used, as the switched system cannot be represented by a transfer function. Given this, novel performances

indices have been introduced in the literature, and presented with detail towards the end of Chapter 3.

Despite the many mathematical challenges involved in studying these types of systems, the use of a

switched system framework for practical applications is especially compelling, since they can directly model a

wide range of real-life processes, thus warranting the great interest in this field of research. It is within this

scenario that the main contributions of this work are proposed. More specifically, in order to deal with the more

realistic case where the state measurements are unavailable, in Chapter 4 we introduced a technique based

on the simultaneous design of two control structures, namely an output dependent switching function and a

switched dynamical controller, that together guarantee global asymptotic stability as well as the H2 and H∞

performance criteria for switched affine systems. The proposed methodology, to the extent of our knowledge,

is first being treated in this work, having already originated the recent publication [31]. The same control

structure has already been adopted in the literature, but only for the simpler case of switched linear systems.

Compared to the existing approaches on switched affine systems, the results in this work allow for a greater
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number of equilibrium points to be attained, as the need for a Hurwitz convex combination of dynamical

subsystem matrices Aλ is no longer imposed, a recurrent condition in the literature. Instead only the convex

combination of closed-loop dynamical matrices must be stable. Furthermore, the proposed techniques are able

to guarantee global asymptotic stability of the desired equilibrium point even in the case where all subsystems

are not individually controllable. This reveals the importance of the joint action of both these control structures

for the stability of switched affine systems.

Also, in Chapter 5, two results on the classical filtering problem in the context of switched affine systems

are also presented. This prominent problem, to the best of our knowledge, has so far only been treated for

the linear case. For these systems, existing publications consider either time-dependent switching functions,

or the joint design of a stabilizing switching function along with a switched filter. However for the more

general case of switched affine systems, existing results consider only the state estimation problem under a

switched observer structure. The conditions obtained in this work have already been introduced in the recent

publications [56] and [57], and are based on a full-order switched affine filter, which is designed together with

an output-dependent stabilizing switching function, that collectively assure an H2 or H∞ guaranteed cost for

the estimation error. Furthermore, it is proved that the optimal guaranteed cost H2 and H∞ filters present a

simpler observer-based structure, and in this case, it is shown that the filter can be designed independently

of the switching function, indicating the validity of the separation principle for the more complex case of

continuous-time switched affine systems.

Numerical examples introduced along Chapters 4 and 5 are used to validate the proposed techniques,

and showcase the unique features of our contributions, as well as how they contrast with existing results.

More specifically, examples considering non-controllable subsystems where no stable convex combination of

dynamical matrices exist are considered, as well as examples based on power electronics applications. These

examples illustrated that the results obtained in this work successfully accomplished our objectives.

Many topics of research in the context of switched affine systems remain to be explored, some of which

stand to have much impact for practical applications. Specifically, the development of robust conditions for

control design have much relevance for applications in power electronics, as many electrical component values

cannot be precisely identified, or vary during operation. Another interesting topic is the development of

conditions that guarantee stability considering only the partial knowledge of the equilibrium point of interest,

while assuring global asymptotic stability of the switched system.
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