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“In the middle of every difficulty lies opportunity.”

(Albert Einstein)



RESUMO

Este trabalho descreve a implementação de uma arquitetura de software serial e paralela deno-

minada (hp)2FEM para o Método de Elementos Finitos de Alta Ordem (MEF-AO). O projeto

do software foi realizado de forma a facilitar e promover a reutilização e a manutenção do có-

digo. A implementação baseia-se no paradigma de programação orientada a objeto em C++. É

possível usar diferentes ordens de aproximação para os elementos da malha. O uso de malhas

com distribuição de graus não-uniformes permite aumentar a ordem de interpolação apenas nos

elementos com maior gradiente na solução aproximada. Procedimentos eficientes para o cálculo

das matrizes elementares permitem ganhos expressivos em termos de tempo de processamento

e memória. Um algoritmo local baseado no método de mínimos quadrados é apresentado para a

obtenção dos coeficientes da aproximação. Este algoritmo requer a solução de um sistema linear

de equações para cada elemento e obtém os coeficientes da aproximação local pela inversão das

matrizes elementares. A solução global para os coeficientes compartilhados por dois ou mais

elementos é obtida por uma média ponderada das soluções locais e das medidas dos elementos

(comprimento, área e volume). Resultados para distribuição de ordens não-uniforme são apre-

sentados para malhas de quadrados e hexaedros no problema de projeção. O perfilamento do

código é analisado para quantificar os ganhos em termos de memória e processamento. Resulta-

dos de escalabilidade para paralelismo híbrido com OpenMP e MPI apresentam um bom ganho

de velocidade, solucionando problemas estruturais transientes lineares e não-lineares com inte-

gração temporal explícita. Além disso, verificou-se escalabilidade forte e fraca para o modelo

paralelo utilizando bibliotecas de álgebra linear otimizadas. A escalabilidade e o perfilamento

foram avaliados no computador IBM Blue Gene/Q - Mira executando o solver local de projeção

em 32768 nós de computação com até 840 milhões de graus de liberdade. O procedimento local

explícito foi processado no computador Kahuna com processadores HT Intel Xeon E5-2670, lo-

calizado no CCES Unicamp. As análises de desempenho do algoritmo paralelo explícito foram

realizadas para malhas de um virabrequim com até 1,791 milhões de elementos e 400 milhões

de graus de liberdade.

Palavras-Chave: Arquitetura de Software; Método dos Elementos Finitos; Métodos de Alta

Ordem; C++; Programação Paralela; MPI; OpenMP; IBM Blue Gene.



ABSTRACT

This work describes the implementation of a serial and parallel software architecture called

(hp)2FEM for the high-order finite element method (HO-FEM). The software was designed

to facilitate reusability and ease of maintenance. The implementation is based on the object-

oriented paradigm in C++. It is possible to use different polynomial approximation orders for

the mesh elements. The use of meshes with non-uniform degree distribution allows increasing

the polynomial order just in elements with higher gradients in the approximate solution. Effi-

cient procedures to calculate element matrices allow significant gains in terms of processing

time and memory. A local algorithm based on the least-squares method is presented to obtain

the approximation coefficients. This algorithm requires the solution of a linear system of equa-

tions for each element and obtain the local approximation coefficients by the inversion of the

element matrices. The global solution for the coefficients shared by two or more elements are

obtained by a weighted average of the local solutions and element measures (length, area or

volume). Results for non-uniform order distribution are presented for meshes of squares and

hexahedra with the projection problem. Code profile is analyzed to quantify the gains in terms

of memory and processing. Scalability results for hybrid parallelism with OpenMP and MPI

presented good speedup, solving linear and non-linear transient analysis problems with explicit

time integration. In addition, there were weak and strong scalability for the parallel model us-

ing optimized linear algebra libraries. Scalability and profiling were evaluated in the IBM Blue

Gene/Q Mira computer running the projection local solver on 32768 computer nodes with up

to 840 million degrees of freedom. The explicit local solver was run in the Kahuna cluster with

HT Intel Xeon E5-2670 processors, located at CCES Unicamp. Performance analyzes of the

parallel solver in this cluster were performed by running crankshaft meshes with up to 1,791

million elements and 400 million of degrees of freedom.

Keywords: Software Architecture; Finite Element Method; High Order Methods; C++; Parallel

Programming; MPI; OpenMP; IBM Blue Gene.
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1 INTRODUCTION

Computer simulations use numerical models to analyze physical problems, allowing

the modification of parameters and initial conditions to provide relevant information about their

behavior. In this context, the finite element method (FEM) is a numerical procedure that obtains

approximate solutions of boundary value problems (BVPs). This method calculates the approx-

imate solution of BVPs in the whole domain through a discretization into sub-domains called

finite elements. The high-order FEM (HO-FEM), also called spectral hp-FEM, obtains a con-

verged approximate solution by mesh refinement and increasing the polynomial order of the in-

terpolation functions (KARNIADAKIS; SHERWIN, 2005; BITTENCOURT, 2014). The devel-

opment of finite element software architectures that support several applications and are generic,

flexible, and reusable has been considered in the literature (MACKERLE, 2004; BANGERTH

et al., 2007; KAWABATA et al., 2009; ANZT et al., 2010). The HO-FEM makes significant

demands on memory and processing resources, mainly in complex applications where high-

performance computing is required.

Many commercial software implementing the FEM have been developed in the last

six decades, for instance Ansys, Nastran, Adina, LS-Dyna, Abaqus, HyperMesh, COMSOL,

among others. Most of them implements the h-version of the FEM, where the approximate so-

lution is improved by refining the size of elements, for many different problems including struc-

tures, electromagnetism, fluid mechanics, acoustics and many others. The p- and hp-versions

of the FEM, later called HO-FEM, were created at the end of the 1970 decade and the main

feature is the exponential convergence rate of approximations for smooth solutions. One of the

main historical difficulties to the dissemination of these versions was the lack of commercial

and open-source software. StressCheck was one of the first finite element analysis software

based on the p-FEM with focus on solid mechanics. However, it was inefficient for the analysis

of practical problems (ESRD, 2009).

Analogously, many open source software for the FEM have been developed such as

CalculiX, deal.II, Dune, Elmer, FEniCS, FreeFEM, GetFEM++, Hermes, Libmesh, MOOSE,

RANGE, Z88, PZ, among others. Many of these software packages implement the p- and hp-

versions of the FEM and are based on the object-oriented paradigm using the C++ and Python

languages.

Nowadays, there is a large community working on high-order numerical methods,

see references herein (KARNIADAKIS; SHERWIN, 2005; BITTENCOURT, 2014). Along the

last two decades, many improvements were developed including basis functions, efficient nu-

merical integration and differential quadrature, efficient solvers and pre-conditioners, mesh gen-

eration, visualization of results and applications in many different problems.
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The (hp)2FEM software was developed based on previous versions of the ACD-

POOP and SAT software (GUIMARÃES; FEIJÓO, 1989; BITTENCOURT et al., 1998) im-

plemented at the National Laboratory for Scientific Computing (LNCC) and by the UNICAMP

group where this thesis was developed. This group developed also the (hp)2FEM MATLAB ver-

sion applied mainly to structural analysis (NOGUEIRA Jr., 2002; VAZQUEZ, 2004; VAZQUEZ,

2008; MIANO, 2009; BARGOS, 2009; SANTOS, 2011; FURLAN, 2011; AUGUSTO, 2012).

The MATLAB architecture was designed taking into account arbitrary polynomial orders, use

of nodal and modal bases, numerical integration procedures and efficient calculation of element

operators.

In Valente (2012), the (hp)2FEM MATLAB architecture was expanded and ported

to the C++ language. The work of this thesis consisted of the hybrid parallelism implementation

applied to different problems. The local solution algorithms based on the least squares method

and the possibility of using meshes with non-uniform polynomial distribution on hybrid archi-

tectures make the software suitable for the next generation of exaflops computers (BUNGARTZ

et al., 2020).

1.1 LITERATURE REVIEW AND RELATED FINITE ELEMENT SOFTWARE

Bangerth et al. (2007) proposed a modular architecture and a partitioned library in

C++ for the FEM without loss of performance. The goal was to organize the code in independent

modules that can be arbitrarily used. In specific cases, preprocessor directives and constants are

used to construct finite element meshes, avoiding the use of virtual methods and reducing the

system overhead.

Cantwell et al. (2011) proposed to encapsulate the spectral/hp method in the Nek-

tar++ software for fluid dynamics applications (“NECKTAR++. . . , 2013). The best combina-

tions of h (mesh size) and p (polynomial order) refinements were studied for the Helmholtz

problem.

In Kawabata et al. (2009), Fu (2008), authors used the FEM in parallel cluster envi-

ronments and identified the bottlenecks of running the parallel software. The work in Kawabata

et al. (2009) identified the parts of code with the highest memory demand and time consump-

tion, and then implemented parallel processing in these pieces of code. In Fu (2008), three

different meshes were considered for a two-dimensional plane strain model of a dam and its

foundations. Two parameters were changed: the interpolation order for each mesh and the num-

ber of processors. The author concluded that the increase in degrees of freedom enabled better

performance. However, the increased number of processors improved the performance up to a

certain limit depending on the communication and synchronization overheads.

In terms of parallel strategies for finite difference schemes, a space-filling curve al-

gorithm was used to solve workload imbalance of static partition of the domain in (WANG et
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al., 2015a; WANG et al., 2015b). The development of an adaptive mesh refinement procedure

based on finite differences was proposed in (WANG et al., 2015a). In Wang et al. (2015b),

ParMetis is used for grid partitioning of a black oil discrete model. Other works involve differ-

ent numerical methods such as (OGUIC et al., 2015), where the 3D Navier-Stokes equations

based on fourth-order compact schemes are solved, with hybrid OpenMP/MPI parallelization,

presenting attractive scalability when using up to four MPI tasks. A different parallel strategy

was used by (CHAN et al., 2016), focusing on high order discontinuous Galerkin methods using

a single GPU with an unified approach to multi-threading programming model.

The deal.ii package is a C++ library with a Lesser General Public License (LGPL)

(BANGERTH et al., 2007). The unified interface of deal.ii can handle problems in one, two,

or three dimensions and enables adaptive mesh refinement through error estimators and local

indicators. This FEM package works by adapting h, p, and hp for continuous and discontinuous

Lagrange, Nedelec, and Raviart-Thomas elements for any polynomial order. deal.ii also imple-

ments parallelism, with scalable simulations of up to 16000 processors using multithreading

and Message Passing Interface (MPI) ranks.

The Libmesh package was created with the goal of supporting adaptive h-refinement.

Nowadays, it also works with finite element and finite volume simulations for p and hp refine-

ments for some element types (KIRK et al., 2006). The libraries offer procedures that allow

developers to perform a few calls of the principal functions, rather than many calls to smaller

functions, thus avoiding the overhead caused by virtual function calls of abstract base classes.

Code debugging for smaller problems in 2D can be applied immediately to large problems.

Libmesh uses algorithms from METIS and PARMETIS to partition weighted graphs in serial

and parallel for 1D, 2D, and 3D meshes. The software uses other external tools as iterative

solvers and preconditioners in serial applications such as LASPack and parallel applications

using PETSc.

The z88 freeware software project operates on Linux, Windows, and Mac OS X

(RIEG, 2014). This FEM package can solve non linear problems with large displacements,

linear static analysis, thermal and thermomechanical problems, and natural frequency problems.

This software has three kinds of solvers: a direct Cholesky solver with Jennings storage, an

iterative solver for sparse matrices with conjugate gradient (CG) preconditioners and a direct

solver with sparse storage and multi-core processing.

In addition to the FEM, the Distributed and Unified Numerics Environment (DUNE)

supports finite volume and finite difference methods (BLATT; BASTIAN, 2008). DUNE is of-

fered with a GPL 2 license with runtime exception, which allows its use in proprietary soft-

ware. Among the available linear algebra methods, DUNE uses BLAS1 (basic linear algebra

subroutine) functions, stationary iterative methods, and parallel preconditioners for the multi-

grid method. The software also supports parallelization with h and p refinements. The imple-

mented solvers can handle linear and non linear problems using time discretization methods,
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e.g., Runge–Kutta and multistep methods. DUNE uses static polymorphism, allowing the com-

piler to apply additional optimization, e.g., inline functions. The software is modulated to allow

each package to be tested independently.

Nektar++ is a finite element package that allows operations with low (h-version)

and high (p-version) polynomial orders (CANTWELL et al., 2015). Nektar++ is designed to

operate with meshes of hybrid elements, i.e., prisms and hexahedrons, triangles, quadrilaterals,

and tetrahedra. In addition, it is possible to define domains with segments, planes, volumes,

curves, and surfaces. The software works with continuous and discontinuous Galerkin opera-

tors. Nektar++ has a parallel version which had strong scalability up to 2048 cores.

The Hermes software was developed as a fast development of FEM solvers (SOLIN

et al., 2014). It implements hp adaptivity, but only works on 2D applications and for polyno-

mial orders of up to 10. Furthermore, Hermes runs with multithreading parallelization using

OpenMP. This package has its own module for data visualization using OpenGL and VTK to

output meshes and solutions.

The library GetFEM++ solves linear and nonlinear systems of partial differential

equations (“GETFEM++. . . , ). The library is written in C++ with interfaces for Python, Matlab,

and Scilab, which collaborate with GetFEM++ for post-processing operations. Among the main

features, the library was designed with variables, data, and terms for the solution of classic mod-

els such as the Helmholtz problem with Dirichlet, contact and Neumann boundary conditions

and elasticity in small and large deformations. There is also a module for generating regular

meshes or importing meshes with GID, GMSH, and EMC2 formats.

The Multiphysics Object-Oriented Simulation Environment (MOOSE) is a finite

element framework (GASTON et al., 2009) with high-level interfaces and simple APIs that fa-

cilitate the implementation of real-world problems. MOOSE performs h, p, and r refinements.

It is possible to build the domain geometry, generate meshes, and visualize the solution pro-

cess and final results. The FEM module and mesh adaptivity are accessed through the libMesh

library.

The object-oriented framework PZ implements one-, two- and three-dimensional

finite elements with arbitrary interpolation orders, various solvers as Krylov space, direct and

iterative methods. The PZ makes a substantial distinction between the generation of approxima-

tion spaces, the geometric modeling, and the definition of the variational statement (DEVLOO,

1997; DEVLOO; LONGHIN, 2002).

Unlike the packages mentioned above, the purpose of this work was the imple-

mentation of the HO-FEM software with local solvers and hybrid parallelism. In addition, the

software allow, using local solvers, the simpler use of non-uniform interpolation in the elements.
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1.2 RESEARCH OBJECTIVES AND CONTRIBUTIONS

The main objective of this thesis was to develop an open source software for the

HO-FEM using local algorithms, based on least squares, for transient linear and non-linear

structural problems with explicit temporal integration. The system of equation are solved for

each element and the global solutions are obtained by the weighted average of the local solutions

at the element interfaces. These local algorithms were implemented for parallel execution in

clusters of heterogeneous machines with multiple nodes and cores. The (hp)2FEM package

was written in C ++ and is available at www.hp2fem.org. It has been tunned for the IBM Power

and Intel-X86 architectures, allowing testing and profiling of the sub-packages independently.

The main contributions of this work are as follows:

• The development of a software architecture for the HO-FEM and its parallel implementa-

tion on hybrid computers using the libraries MPI and OpenMP, considering the possibility

of non-uniform polynomial distribution (p-non-uniform) for the elements.

• A topology mapping for the sub-domain meshes avoiding deadlock among processors

during the exchange of messages. The finite element coordinates are used to construct

the mapping of the local degrees of freedom stored in each partition to send and receive

solutions among neighbor sub-domain meshes.

• Scalable hybrid parallel implementation of linear and non-linear transient solvers using

linear algebra packages such as BLAS and LAPACK. The high order data are generated

locally in each sub-domain reducing the memory usage.

We presented the scientific works in the following conferences:

• J.L. Suzuki, G.L. Valente, C.F. Rodrigues, M.L. Bittencourt, Application of high-order

minimum energy bases for transient non-linear structural problems. MECSOL-2017, Joinville,

2017.

• G.L. Valente, E. Borin. and M.L. Bittencourt. Optimization of the high performance soft-

ware (hp)2FEM : a C++ framework for the high-order finite element method. ICOSA-

HOM2016 - International Conference on Spectral and High Order Methods, Rio de Janeiro,

RJ, 2016.

• G.L. Valente, M.L. Bittencourt and E. Borin. High order finite element method on the

IBM power systems. High performance computing applied to structural mechanics. 5th

European Conference on Computational Mechanics (ECCM V), Barcelona, Espanha,

2014.
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• G.L. Valente, M.L. Bittencourt and E. Borin. Perfilamento e otimização do (hp)2FEM no

IBM Blue Gene/P. IV Escola Regional de Alto Desempenho de São Paulo. São Carlos,

SP, 2013.

The following papers have been submitted to journals:

• G.L. Valente, M.L. Bittencourt and E. Borin. (hp)2FEM - A p-non-uniform software

architecture for the high-order finite element method on massively parallel computers.

• A.P.C. Dias, J.L. Suzuki, G.L. Valente and M.L. Bittencourt,. Minimum energy high-

order bases applied to non-linear structural and contact problems.

1.3 LAYOUT OF THE THESIS

The thesis is presented in seven chapters. Concepts of the HO-FEM important to

this work are described in Chapter 2: the tensor product procedure to calculate the element

operators which were fundamental to accelerate (hp)2FEM reducing the memory usage; the

local solvers of the (hp)2FEM ; the p-non-uniform approach applied to the projection problem;

and the central difference local solvers applied to linear and non-linear problems.

Chapter 3 presents the primary concepts of high-performance computing (HPC)

used in this thesis. In summary, the characteristics of a parallel system using distributed and

shared memory, the interfaces and/or libraries employed to implement the parallel version of

(hp)2FEM and the main scalability measures are described.

The framework architecture is presented in Chapter 4 with the low-coupling hierar-

chy of classes implemented with C++ object-oriented programming. This chapter also presents

a short description of the framework to implement the HO-FEM package. Subsequently, the key

features of the (hp)2FEM considered as contributions are also discussed. We also describe the

parts of (hp)2FEM and the C++ classes which were remodeled to accelerate the serial version;

for instance, adapting some functions to use external optimized linear algebra libraries.

The parallel version of the (hp)2FEM is discussed in Chapter 5. The implementa-

tion of partitioning of the global finite element meshes and the methodology to distribute them

among processors are described. Besides, four different cases to distribute and solve a global

finite element model are presented. At last, a parallel version of the central difference local

method using hybrid parallelism with OpenMP and MPI is discussed.

Results are presented in Chapter 6 considering the evolution of the software accel-

eration of the serial version to the scalability of the parallel version. We give the configurations

of the supercomputers used at the Argonne National Laboratory of the U.S Department of En-

ergy and the cluster of Intel system provided by the Center for Computational Engineering &

Sciences located at the Institute of Chemistry of Unicamp. We present the software validation
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for p-non-uniform meshes to projection problem as the scalability cases to the same solver. For

time integration solvers, we use the central difference local method to evaluate the scalability

of the parallel version of the (hp)2FEM . The final considerations and future works are then

presented in Chapter 7.
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2 FUNDAMENTAL CONCEPTS OF THE HIGH ORDER - FINITE EL-

EMENT METHOD (HO-FEM)

In traditional FEM, the most significant demand for computing resources comes

from solving the systems of equations obtained from an approximation procedure. For HO-

FEM, the increase in the order of shape functions results similarly in larger processing time

for calculating the element matrices. In some cases, the computation time is of the same order

of magnitude as for the solution of the systems of equations (KARNIADAKIS; SHERWIN,

2005; BITTENCOURT, 2014). Also, the element matrices and shape functions calculated on

integration points require a large amount of memory.

This chapter describes a technique based on the tensor product of one-dimensional

matrices to construct square and hexahedron matrices. Similarly, we present a technique for

solving systems of equations based on element matrices and least-squares smoothing on the

element boundaries. We describe the projection problem used as an application to accelerate

(hp)2FEM . Additionally, element wise linear and non-linear transient solvers with explicit

time integration are described.

This chapter does not intend to present an overall description of the HO-FEM, but

just the main aspects used in this work. More complete presentation of the HO-FEM may be

found in (KARNIADAKIS; SHERWIN, 2005; BITTENCOURT, 2014)

2.1 NODAL BASIS FUNCTIONS

This section summarizes the construction of nodal interpolation functions for line,

square, and hexahedron finite elements defined in their standard coordinate systems, illustrated

in Figure 2.1, using the Lagrange polynomials according to Karniadakis and Sherwin (2005),

Bittencourt (2014).

Consider a set of P1+1 nodal or collocation points on the standard one-dimensional

element in the interval −1 6 ξ1 6 1, as illustrated in Figure 2.2. The Lagrange polynomial of

degree P1 associated to an arbitrary node a, denoted as LP
a (ξ1), is given by

L(P1)
a (ξ1) =

∏
P
b=0,a6=b

(

ξ1−ξ1b

)

∏
P
b=0,a6=b

(

ξ1a−ξ1b

) , (2.1)

where L(0)
a (ξ1) = 1. The Lagrange polynomials have the collocation property L(P1)

a (ξ1b) = δab,

where δab is the Kronecker’s delta.

The nodal shape functions of the one-dimensional elements, denoted as Np(ξ1),

are given by the Lagrange polynomials. The shape functions are commonly associated to the

element topological entities. In the case of the line element, the topological entities are the
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(a) Line element in the local coor-
dinate system ξ1

ξ
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2ξ

(1,1)
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(b) Square element in the local coordi-
nate system ξ1×ξ2.
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ξ

ξ

ξ

(-1,-1,-1)

3

1

(c) Hexahedron element in the lo-
cal coordinate system ξ1×ξ2×
ξ3.

Figure 2.1. Line, square and hexahedron elements in their standard coordinate
systems (BITTENCOURT, 2014).
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1−1
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ξ ξ

Figure 2.2. Nodal points on the standard coordinate system ξ1 of the line ele-
ment (BITTENCOURT, 2014).

vertices and body, which corresponds to the node indices (p = 0 and p = P1) and (0 < p < P1),

respectively. The interpolation functions are indicated by

Np(ξ1) 7→ φp(ξ1) =















L(P1)
0 (ξ1), p = 0,

L(P1)
P1

(ξ1), p = P1,

L(P1)
p (ξ1), 0 < p < P1,

. (2.2)

For square and hexahedron elements, the shape functions are given by the tensor

product of the one-dimensional shape functions (see Figures 2.3 and 2.4), respectively, by Bit-

tencourt (2014)

Ni(ξ1,ξ2) = φp(ξ1)φq(ξ2), (2.3)

Ni(ξ1,ξ2,ξ3) = φp(ξ1)φq(ξ2)φr(ξ3), (2.4)

where p, q and r are tensor product indices associated with the topological entities of the ele-

ment such that 0≤ p≤ P1, 0≤ q≤ P2 and 0≤ r≤ P3; P1, P2 and P3 are the polynomial orders in

directions ξ1, ξ2, and ξ3, respectively; i = 1, . . . ,(P+1)2 for square and i = 1, . . . ,(P+1)3 for

hexahedron. We assume here that P = P1 = P2−P3. It is possible to define procedures to con-

struct the tensor indices p, q and r for any polynomial order P. Observe that as the polynomial

order increases, the number of body shape functions of hexahedron increases very fast with the

cubic power of P. In this way, it is very important to construct the shape functions using the

tensor product of the one-dimensional functions, avoiding large memory demand.
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Figure 2.3. Tensor construction of square shape functions (BITTENCOURT,
2014).
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Figure 2.4. Tensor construction of shape functions for hexahedra (BITTEN-
COURT, 2014).

The shape functions of squares are associated with the element topological entities,

which include four vertices (V1,V2,V3,V4), four edges (E1,E2,E3,E4), and one face (F1), illus-

trated in Figure 2.5b. The indices p and q of Equation (2.3) are associated to the topological

entities according to Figure 2.5c.

P2

P10

p

q

0

(a) Indices p and q.

V3V4

V1 V2E1

E2

E3

E4 F1

(b) Topological entities.

(1,1)(0,1)

(0,0) (1,0)

(1,q)(0,q) (p,q)

(p,0)

(p,1)

(c) Entities and indices p
and q.

Figure 2.5. Association between the topological entities and tensor indices p
and q in the square (adapted from (BITTENCOURT et al., 2007)).

Figures 2.6a illustrates the tensor indices p, q and r for the hexahedron. Figures 2.6b

and 2.6c illustrate the topological entities of the hexahedron, which are constituted of eight

vertices (V1 to V8), twelve edges (E1 to E12), six faces (F1 to F6), and one volume (B1). Figure 2.7

presents the relation between indices p, q, and r and the topological entities.

When applying the FEM in the analysis of a linear elastic solid, we should interpo-

late, besides the displacement field, the geometry of the body by means of the coordinates of
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Figure 2.6. Indices p, q, and r and topological entities of the hexahedron (BIT-
TENCOURT, 2014).
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Figure 2.7. Association between indices p, q, and r and the topological entities
of the hexahedron (BITTENCOURT, 2014).

the boundary points. For this purpose, we can apply the same set of shape functions used for

the displacement field, defining the class of isoparametric finite elements.

Denoting x, y, and z as the coordinates of points of a finite element relative to a

global reference system, we can write the following relations to interpolate the element geom-

etry, from the nodal coordinates and interpolation functions expressed in the local system, that

is,

x(ξ1,ξ2,ξ3) =
Ne

∑
i=1

φi(ξ1,ξ2,ξ3)xi,

y(ξ1,ξ2,ξ3) =
Ne

∑
i=1

φi(ξ1,ξ2,ξ3)yi, (2.5)

z(ξ1,ξ2,ξ3) =
Ne

∑
i=1

φi(ξ1,ξ2,ξ3)zi,

where Ne is the number of nodes of the element and (xi,yi,zi) are the global Cartesian coordi-

nates of node i of the element. The previous equations define the geometric mapping from the

local to the global coordinate system as illustrated for a quadrangular element in Figure 2.8.

The finite element operators involve derivatives of the shape functions to the global

coordinates x, y and z. As the shape functions are constructed in terms of the standard reference
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Figure 2.8. Example of transformation between the local and global reference
systems using the shape functions (BITTENCOURT, 2014).

system of the element, the chain rule must be used to obtain these global derivatives.

For example, consider the component ux(x,y,z) of the displacement vector field

u(x,y,z) expressed in terms of the local coordinates by expressions (2.5), that is,

ux(x,y,z) = ux (x(ξ1,ξ2,ξ3),y(ξ1,ξ2,ξ3),z(ξ1,ξ2,ξ3)) .

Using the chain rule, we can calculate the partial derivatives of the scalar function ux relative to

the local coordinates ξ1, ξ2 and ξ3 as

ux,ξ1
= ux,xx,ξ1

+ux,yy,ξ1
+ux,zz,ξ1

,

ux,ξ2
= ux,xx,ξ2

+ux,yy,ξ2
+ux,zz,ξ2

, (2.6)

ux,ξ3
= ux,xx,ξ3

+ux,yy,ξ3
+ux,zz,ξ3

.

We have, in matrix notation,










ux,ξ1

ux,ξ2

ux,ξ3











=







x,ξ1
y,ξ1

z,ξ1

x,ξ2
y,ξ2

z,ξ2

x,ξ3
y,ξ3

z,ξ3

















ux,x

ux,y

ux,z











= [J]











ux,x

ux,y

ux,z











, (2.7)

where [J] is the Jacobian matrix of the transformation between the local and global reference

systems. Inverting the Jacobian matrix, we obtain the partial derivatives of ux relative to the

global coordinates x, y, and z, that is,










ux,x

ux,y

ux,z











= [J]−1











ux,ξ1

ux,ξ2

ux,ξ3











. (2.8)

This same procedure can be employed to obtain the partial derivatives of the element

shape function φi relative to the global variables x, y, and z, as required in the expression of the

stiffness matrix of elements. Thus,










φi,x

φi,y

φi,z











= [J]−1











φi,ξ1

φi,ξ2

φi,ξ3











. (2.9)
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2.2 TENSOR PRODUCT OF ONE-DIMENSIONAL MATRICES

As presented in the last section, the shape functions for square and hexahedron are

constructed by the tensor product of one-dimensional shape functions. Similarly, this work im-

plements a procedure to construct mass and stiffness matrices for two and three-dimensional

elements using the tensor product of the one-dimensional elements matrices. This procedure,

denominated here D1−MAT RICES, is similar to the sum factorization presented in the litera-

ture (KARNIADAKIS; SHERWIN, 2005) and will be illustrated to the mass matrix.

The coefficients of the one-dimensional standard mass matrix of line elements, de-

noted as M1D
i j , are given by

M1D
i j =

∫ 1

−1
φi(ξ1)φ j(ξ1)dξ1. (2.10)

The coefficients of the mass matrix for a quadrilateral are

M2D
i j =

∫ 1

−1

∫ 1

−1
Ni(ξ1,ξ2)N j(ξ1,ξ2)|J|dξ1dξ2, (2.11)

where |J| is the determinant of the Jacobian matrix of Equation (2.7).

Substituting Equation (2.3) into Equation (2.11), we obtain the coefficients of the

quadrilateral mass matrices in terms of the coefficients of the one-dimensional mass matrices

calculated on integration points (k, l) as

M2D
i j =

∫ 1

−1
φa(ξ1)φp(ξ1)

(

∫ 1

−1
φb(ξ2)φq(ξ2)|J|dξ2

)

dξ1

= Σ
n1
k=1Σ

n2
l=1M1D

ap (ξ1k)M
1D
bq (ξ2l)WlWk|Jkl|, (2.12)

where (n1, n2), (Wk,Wl) and (ξ1k ,ξ2l) are the number of integration points, weights and coordi-

nates in local directions ξ1 and ξ2, respectively.

For undistorted elements, the Jacobian is constant and can be factored from the

integral operation. Thus, the Equation (2.12) can be rewritten as

M2D
i j = |J|

[

(Σn1
k=1M1D

ap (ξ1k)Wk)(Σ
n2
l=1M1D

bq (ξ2l)Wl)
]

= |J|M1D
ap M1D

bq . (2.13)

Similarly, the coefficients of the mass matrix for the hexahedron can be obtained by

multiplying the coefficients of the one-dimensional matrices as

M3D
i j =

∫ 1

−1

∫ 1

−1

∫ 1

−1
Ni(·)N j(·)|J|dξ1dξ2dξ3. (2.14)

Substituting Equation (2.4) into Equation(2.14), the three-dimensional mass matrix

can be written in terms of the one-dimensional mass matrices calculated on integration points
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(k, l,m) as

M3D
i j =

∫ 1

−1
φa(ξ1)φp(ξ1)

∫ 1

−1
φb(ξ2)φq(ξ2)

∫ 1

−1
φc(ξ3)φr(ξ3)|J|dξ3dξ2dξ1

= Σ
n1
k=1Σ

n2
l=1Σ

n3
m=1M1D

ap (ξ1k)M
1D
bq (ξ2l)M

1D
cr (ξ3m) (2.15)

|Jklm|WmWlWk,

where n1, n2, n3, Wk, Wl , and Wm are the number of integration points and weights in local

directions ξ1, ξ2, and ξ3, respectively.

The terms of the Jacobian matrix for undistorted elements are again constant and

can be factored from the integral operation. Therefore,

M3D
i j = |J|

[

M1D
ap M1D

bq M1D
cr

]

. (2.16)

2.3 PROJECTION PROBLEM

The projection problem determines the approximate solution ū of a function u de-

fined in the domain Ω through a linear combination of the global basis functions {Φi}
n
i=1.

Therefore,

u≈ ū =
n

∑
i=1

uiΦi, (2.17)

where ui are the approximation coefficients. In matrix notation,

ū = [N]{u}. (2.18)

[N] = [Φ1 Φ2 . . . Φn] is the matrix of the global shape functions.

The approximation error function is given by

e = u− ū. (2.19)

Figure 2.9 gives the interpretation of the error function e as the minimum distance between the

solution u and the hyperplane of dimension n defined by the interpolation functions {Φi}
n
i=1.

The best approximation ū for u is obtained when the error function e is orthogonal

to each interpolation function φi. Therefore,
∫

Ω
eΦidΩ = 0 i = 1, . . . ,n. (2.20)

Substituting Equation (2.19) into Equation (2.20), we have
∫

Ω
ūΦidΩ =

∫

Ω
uΦidΩ. (2.21)
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Figure 2.9. Interpretation of the error function in the projection problem.

Substituting now Equation (2.17) into Equation (2.21) results in the following ex-

pression:
n

∑
i=1

ui

∫

Ω
ΦiΦ jdΩ =

∫

Ω
uΦ jdΩ j = 1, ...,n. (2.22)

The previous expression can be rewritten as

n

∑
i, j=1

Mi ju j = b j, (2.23)

where Mi j are the coefficients of the mass or projection matrix given by

Mi j =
∫

Ω
ΦiΦ jdΩ, (2.24)

and b j denotes the coefficients of the body load vector

b j =
∫

Ω
uΦ jdΩ. (2.25)

The system of equations (2.23) may be expressed in matrix format as

[M]{u}= { f}, (2.26)

where [M], {u} and { f} are the global mass matrix, the global vector of unknown coefficients

and the global body load vector. They are obtained by the assembling of the element contribu-

tions. For a mesh of Nel elements, we have

[M] =
Nel
⋃

e=1

[Me], (2.27)

{u} =
Nel
⋃

e=1

{ue}, (2.28)

{ f} =
Nel
⋃

e=1

{ fe}, (2.29)

and [Me], {ue} and { fe} are the mass matrix, the vector of unknown coefficients and the body

load vector of each element e. The assembling procedure is illustrated in Figure 2.10. The
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(2)

Fe
(3)
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(4)
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(5)

Fe
(6)

Figure 2.10. The global solution representation for the projection problem.

unknown vector {u} is calculated using direct or iterative methods for the solution of systems

of equations.

Matrix [Me] and vector { fe} are given in terms of the element shape functions

{φi}
Ne
i=1 for hexahedra as

[Me] =
∫ 1

−1

∫ 1

−1

∫ 1

−1
ρ[Ne]

T [Ne]|Je|dξ1dξ2dξ3, (2.30)

{ fe} =
∫ 1

−1

∫ 1

−1

∫ 1

−1
[Ne]

T u|Je|dξ1dξ2dξ3, (2.31)

where ρ is the density and [Ne] = [φi φ2 . . . φNe ] is the matrix of the shape functions for element

e.

The error is given in terms of the L2-error norm as

‖e‖L2
=

√

∫

Ω
(u− ū)2 dΩ. (2.32)

For a mesh of Nel hexahedra, we have

‖e‖L2
=

√

√

√

√

Nel

∑
e=1

∫ 1

−1

∫ 1

−1

∫ 1

−1
(u|e− ūe)

2 |Je|dξ1dξ2dξ3, (2.33)

where u|e is the restriction of the function u to element e.

2.4 ELEMENT WISE SOLVER

The element wise solution strategy is obtained from each element independently.

Thus, the global matrix and body load vector are not assembled. The system of linear equations

is solved locally for each element as illustrated in Figure 2.11. Next, the global solution vector

{u} is calculated through a weighted average of the local element solutions and the element

measures as

ui =
∑

Nep
j=1 ui, jS j

∑
Nep
j=1 S j

, (2.34)
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where ui is the global solution for degree of freedom i, ui, j is the local solution for degree

of freedom i computed for each element j, S j is the measure for element j and Nep is the

number of elements sharing degree of freedom i (BITTENCOURT; FURLAN, 2011; Y.YU et

al., 2014). The denominator in the previous expressions represents the sum of the measures of

the elements which share the degree of freedom i. This set of elements is called patch and its

measure is denoted by

Sp =
Nep

∑
j=1

S j. (2.35)

Therefore, Equation (2.34) may be rewritten as

ui =
∑

Nep
j=1 ui, jS j

Sp
, (2.36)

Figure 2.11. Element wise solution scheme for the projection problem.

2.5 p-NON-UNIFORM PROCEDURE

In this section, we propose a p-non-uniform strategy for the HO-FEM using the lo-

cal method presented in the previous section. This approach allows different polynomial orders

for the mesh elements, as shown in Figure 2.12 for a square mesh with four elements.

Figure 2.12(a) illustrates a p-uniform mesh with interpolation order two for all ele-

ments. Figure 2.12(b) presents the same mesh with the non-uniform polynomial orders 2, 3, 2, 2

(a) p-Uniform mesh (b) p-Non-uniform
mesh

Figure 2.12. Mesh of quadratic elements with uniform and non-uniform poly-
nomial order distribution.
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for elements 1, 2, 3, and 4, respectively. The solution on edges with different orders are mapped

to a common order from the element solutions. For example, the local solution of element 2 on

the shared edge with element 1 is interpolated to order 2 before the calculation of the global

coefficients given by Equation (2.36).

Higher interpolation orders can be used only to those elements with high solution

gradients identified by an error estimator, not use in this work. Consequently, the total number

of variables in the system of equations is reduced. In this study, the L2-error norm calculated

using the p-uniform and p-non-uniform strategies will be considered for projection solver in

Section 6.2.

The local methods were implemented using different strategies to solve the linear

system of equations. The strategies are chosen according to mesh type and polynomial order

distribution. For example, for uniform mesh and p-uniform distribution, the mass and Jacobian

matrices are the same for all elements and need to be calculated just for one element. Consen-

quently, memory demand is reduced as shown in Section 6.3.

These strategies also defined the manner to parallelize the linear and non-linear

transient solvers discussed in Sections 2.6 and 2.7. These solvers use two-different approaches

with multi-threaded parallelism based on the construction of lumped or consistent mass matrices

discussed in Section 2.6.

2.6 EXPLICIT FINITE ELEMENTS IN LINEAR TRANSIENT ANALYSIS

The discrete linear dynamic equilibrium equation for a mechanical component is

given by

[M]{üt}+[C]{u̇t}+[K]{ut}= { f t}, (2.37)

where [M], [C] and [K] are the global mass, damping and stiffness matrices; {üt}, {u̇t} and {ut}

are the global acceleration, velocity and displacement vectors of the degrees of freedoms at time

t; { f t} is the global load vector at time t applied to the degrees of freedom of the finite element

model.

Given initial conditions for the displacement and velocity vectors at t0, the solution

of Equation (2.37) consists in calculating the displacement vector {ut} for specific time instants

using explicit and implicit time integration methods. In this work, we will consider the explicit

central difference method (BATHE, 1996).

Consider the time interval [t0, t f ] discretized in N time steps of length ∆t, i.e., t0,

t0 +∆t, t0 +2∆t, . . . , t0 +N∆t. The following central difference approximation is applied to the

acceleration vector at the time step tn = t0 +n∆t:

{ü(n)}=
1

∆t2 ({u
(n−1)}−2{u(n)}+{u(n+1)}). (2.38)
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The velocity vector also is approximated by the central difference scheme as

{u̇(n)}=
1

2∆t
({u(n+1)}−{u(n−1)}). (2.39)

Replacing Equations (2.38) and (2.39) in (2.37), we obtain the system of equations

that gives the displacement vector at time step tn+1 as follow:

[M̂]{u(n+1)}= { f̂ (n)}, (2.40)

where,

[M̂] = a0[M]+a1[C], (2.41)

[ f̂ (n)] = { f (n)}− ([K]−a2[M]){u(n)}− (a0[M]−a1[C]){u(n−1)}. (2.42)

The constants in the previous equations are a0 =
1

∆t2 , a1 =
1

2∆t and a2 = 2a0. Note that the dis-

placement vector {u(n+1)} depends only on the terms calculated at the previous time steps. For

this reason, the method is known as explicit. Neglecting the damping effect, Equations (2.41)

and (2.42) reduces to

[M̂] = a0[M], (2.43)

[ f̂ (n)] = { f (n)}− ([K]−a2[M]){u(n)}−a0[M]{u(n−1)}. (2.44)

Given the initial conditions at time step t0 for the displacement {u(0)} and velocity

{u̇(0)} vectors, the initial acceleration {ü(0)} is calculated from Equation (2.37) as

{ü(0)}= [M]−1({ f (0)}− [K]{u(0)}). (2.45)

Equation (2.44) requires the vector {u(−1)} at time step t0 (n = 0), which is calcu-

lated combining Equations (2.38) and (2.39), obtaining

{u(−1)}= {u(0)}−∆t{u̇(0)}+
∆t2

2
{ü(0)}. (2.46)

The element wise version for the explicit central difference method solves the sys-

tem of equations given in (2.40) for each element e of the finite element mesh. Therefore,

[M̂e]{u
(n+1)
e }= { f̂ (n)e }. (2.47)

Neglecting the damping effect, we obtain the following equations:

[M̂e] = a0[Me], (2.48)

{ f̂e
(n)
}= { f (n)e }− [Ke]{u

(n)
e }+(a2−a0)[Me]({u

(n)
e }−{u

(n−1)
e }). (2.49)
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The velocity and acceleration vectors are calculated for each element using the ex-

pressions

{ü(n)e }= a0({u
(n−1)
e }−2{u(n)e }+{u

(n+1)
e }), (2.50)

{u̇(n)e }= a1({u
(n+1)
e }−{u(n−1)

e }). (2.51)

The global displacement vector at time step tn+1 and the velocity and acceleration

vectors at time step tn are calculated from Equations (2.50) and (2.51) similarly to ((2.36) as

follows:

{u(n+1)}=
Nel
⋃

e=1

{u(n+1)
e }

Se

Sp
, (2.52)

{u̇(n)}=
Nel
⋃

e=1

{u̇(n)e }
Se

Sp
, (2.53)

{ü(n)}=
Nel
⋃

e=1

{ü(n)e }
Se

Sp
. (2.54)

The vector of equivalent forces on the element e, { f (n)e }, in Equation (2.49) is ob-

tained from the respective global vector { f (n)} using

{ f (n)e }← { f (n)}
Se

Sp
. (2.55)

Considering that the global vectors are obtained from Equations (2.52), (2.53) and

(2.54), the corresponding element vectors are updated using the numbering of the degrees of

freedom for each element such that

{u(n+1)
e }← {u(n+1)}, (2.56)

{u̇(n)e }← {u̇
(n)}, (2.57)

{ü(n)e }← {ü
(n)}. (2.58)

The internal load vector obtained from the global vectors calculated in (2.52) to

(2.50) does not reach the equilibrium with the applied external loads and the difference will

generate a residue vector. The internal load vector for element e is calculated as

{ f (n+1)
i,e }= [Me]{ü

(n)
e }+[Ke]{u

(n)
e }. (2.59)

The following global vector of internal loads is obtained using the assembling procedure:

{ f (n+1)
i }=

Nel
⋃

e=1

{ f (n+1)
i,e }. (2.60)
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However, this vector does not balance the external force vector { f (n+1)} for the next

time step tn+1. In this way, the following residue vector is calculated:

{r}= { f (n+1)}−{ f (n+1)
i }, (2.61)

and assigned to the element load vectors to the subsequent time step as

{ f (n+1)
e }← {r}

Se

Sp
. (2.62)

The procedure presented here is repeated for each time step until reaching the final

time t f .

When using nodal basis, the consistent element and global mass matrices may be

replaced by the respective spectral or lumped mass matrices which are diagonal. This makes the

solution of systems of equations (2.40) and (2.47) trivial.

2.7 EXPLICIT FINITE ELEMENTS FOR NON-LINEAR TRANSIENT ANALYSIS

Consider the discrete equation of motion for a nonlinear structural problem, involv-

ing large displacements and deformations and neglecting damping, given by

[M]{üt}= { f t}−{ f t
i }, (2.63)

where { f t
i } is the vector of the internal nodal loads at time t, which contains all the nonlinearities

of the problem.

In the explicit nonlinear algorithm, the acceleration {ü(n)} and velocity {u̇(n)} vec-

tors at time step tn are approximated by (2.38) and (2.39), respectively. Replacing these expres-

sions in Equation (2.63), we obtain the same expression as for the linear explicit method given

in (2.40). However, the vector { f̂ (n)} depends now on the vector { f (n)i } such that

{ f̂ (n)}= { f (n)}−{ f (n)i }+[M]
(

a2{u
(n)}−a0{u

(n−1)}
)

. (2.64)

The displacement vector {u(n+1)} is obtained by solving the system of Equations (2.40) stated

here as

{u(n+1)}= [M̂]−1{ f̂ (n)}. (2.65)

The constants used in the previous expressions are the same of the linear explicit method.

Given the initial conditions at t = t0 (n = 0) for the displacement {u0} and velocity

{u̇0} vectors, the initial acceleration is calculated from (2.63) as

{ü(0)}= [M]−1({ f (0)}−{ f (0)i }). (2.66)

Note that Equation (2.64) also requires of the displacement vector {u−(1)} for n= 0,

which is obtained in the same way as for the linear explicit method using Equation (2.46).
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The local version of the previous procedure is discussed below. For any time step

n, the external load vector { f n
e } for element e is obtained from the external global load vector

{ f n} minus the vector of the internal forces { f n
i } using the smoothing procedure. Therefore.

{ f t
e}← ({ f t}−{ f t

i })
Se

Sp
. (2.67)

The previous equation means that the coefficients of the global loading vector { f t}− { f t
i },

which correspond to the degrees of freedom of the element, are multiplied by Se
Sp

and assigned

to the element load vector { f t
e}.

The global vectors of the initial conditions can be assigned to the vectors of the

element again using the numbering of degrees of freedom. The displacement vector {u(−1)
e }

can be calculated for each element using an expression similar to (2.46), but using the element

vectors. Using the smoothing procedure, the global vector is determined.

For each time step, Equation (2.40) is solved for each element. The effective loading

vector for each element e is given by

{ f̂ t
e}= { f t

e}−{ f t
i,e}+[Me](a2{u

t
e}−a0{u

(n−1)
e }). (2.68)

From the element solution vectors, the displacement, velocity and acceleration global

vectors are obtained by the smoothing procedure using the element measurements, respectively,

by (2.52), (2.53) and (2.54).

As in the linear method, the coefficients of the previous global vectors for homoge-

neous boundary conditions are assigned zero value. Once that the global vectors are obtained,

the element vector of displacement {u(n+1)
e }, velocity {u̇(n)e } and acceleration {ü(n)e } are ob-

tained using (2.56), (2.57) and (2.58), respectively.

The equivalent nodal inertia force vector for each element is calculated as

{ f (n)inertia,e}= [Me]{ü
(n)
e }. (2.69)

It can be seen that the acceleration vector {ü(n)e } is available at time step n. Thus, the global

inertia load vector is assembled from the element loading vector { f (n)inertia,e} as

{ f (n)inertia}=
Nel
⋃

e=1

{ f (n)inertia,e}. (2.70)

The external { f (n+1)} and internal { f (n+1)
i } global load vectors are calculated at time tn+1 and

the following residue vector is obtained

{r}= { f (n+1)}−{ f (n+1)
i }−{ f (n)inertia}. (2.71)

Analogously to the linear method, the global residue vector is assigned back to the

degrees of freedom of each element and used in the next time step tn+1. Therefore,

{ f (n+1)
e }← {r}

Se

Sp
. (2.72)
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This procedure is repeated until the final time t f .

The element wise methods were implemented in (hp)2FEM with distributed and

shared-memory parallelism. These strategies have the advantage of solving local systems of

equations with order given by the number of element unknowns which are much smaller than

the number of global unknowns. These features allowed for flexibility to implement the hybrid

parallel methods using multi-threads to construct the mass and stiffness matrices and distributed

computing to solve different mesh subdomains.
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3 BASIC CONCEPTS ON HIGH PERFORMANCE COMPUTING

The term High-Performance Computing can be used to describe computers with a

high level of processing power that works in parallel to solve complex applications (QUIN-

TERO, 2014). However, there are many aspects that do not strictly address this definition of

high-performance computing. For example, the use of clusters, distributed memory program-

ming, shared memory, optimized libraries as BLAS and LAPACK to linear algebra, and solution

of the linear system of equations are also important. Another aspect is the hardware architecture

knowledge, e.g., the proper use of memory hierarchy to improve access to available resources,

avoiding cache misses and page faults.

A parallel computing environment is made up of hardware and software resources,

as well as their interactions. Hardware resources are made up of personal computers, worksta-

tions, and clusters. Clusters must use fast communication devices to achieve high-performance

parallel computing since there may be high latency on the network, causing low-performance

(GUEDES, 2009).

The main goal of parallel application development is to reduce job execution time

by dividing a problem into many parts. The division creates tasks that will be executed in many

processors, aiming to speedup and making the best use of memory resources. In general terms,

the problem’s size, solution approaches, algorithm, and application features determine how the

resources provided, and the allocated processes should be used in a parallel computing environ-

ment.

The performance gain in parallel applications comes with difficulties by combin-

ing computer architecture and algorithms. Examples are the deterministic loss of the solution

precision between the sequential and parallel programs and the reordering of resources due to

network behavior. Besides that, there could be deadlock events, mainly in scenarios of synchro-

nized communication. Deadlock happens when one or more processes wait for another process

resource to be available, and that process is also waiting simultaneously for the availability of

resources allocated to another process that invoked it.

It is important to develop high-performance applications that minimize the cost of

algorithm coding. Consequently, right after bug fixing, distribution, and communication aspects

of parallel software, the next step is to analyze and improve program performance. Besides, the

type of communication among processes and the main metrics of parallel programs are also

relevant, as shown in Chapter 6.
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3.1 FUNDAMENTALS OF PARALLEL COMPUTING AND STRATEGIES

The implementation of parallel software may follow the explicit and implicit method-

ologies.

In the explicit parallelism methodology, the programmer accounts for the following

aspects:

• identify the tasks that can be executed in parallel,

• assign the tasks to the processors,

• control the flow of execution, indicating the set of synchronizing points, and

• knowledge about the hardware architecture to develop dedicated code to improve per-

formance (for example, increase local computing load and decrease message exchanging

among processors).

In the implicit parallelism methodology, the parallel program’s main functionalities,

as controlling and synchronizing, could be inferred by the compiler. It also detects the potential

of parallelism and assignment of the respective tasks to parallel threads for execution.

The explicit and implicit implementation are outlined following the steps of the Fos-

ter’s methodology to develop a parallel program (SCHMIDT et al., 2017). This methodology

establishes a problem’s parallelization in the following steps: partitioning or decomposition,

communication or synchronization, agglomeration, and mapping that will be detailed below.

Explicit and implicit parallelism methodologies may be combined. This combina-

tion should use the best advantages of these methodologies, such as defining which parts of the

parallel program should have more automatic or programmer control. In one of the combined

cases, the programmer can identify the tasks parallelized, but the decomposition, communica-

tion, and mapping are automatic. Another way is to have the decomposition defined explicitly,

but implicit communication and mapping. We can also have only automatic communication,

with the task decomposition and assignment to processors explicitly. Finally, the programmer

may have more control of communication among processes, but the data synchronization or

updating processes would be automatic.

The parallel decomposition algorithms are classified as domain or functional. For

the domain decomposition, data are divided and distributed to processors that perform the same

task. Functional decomposition occurs when tasks are divided before data. Consequently, the

size of the tasks on the sub-domain defines the granularity of parallelism, which could be fine-

grained, medium-grained, or coarse-grained (HAGER; WELLEIN, 2010).

In parallel applications, the communication by processors topology has some spe-

cific characteristics and may be structured and non-structured. Structured communication may
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use a tree or network, while non-structured communication uses, for instance, an arbitrary

graph. Besides that, communication is static when a set of processors has a pre-established

transmission topology. Dynamic communication occurs when data transfer in a set of proces-

sors changes during the parallel execution. Other characteristics of parallel communication are:

⊲ Scope:

• Global - communication among all processors.

• Local - communication just established among neighbors’ processors.

⊲ Synchronism:

• Synchronous - the tasks are executed in a coordinated and/or synchronized manner.

• Asynchronous - the tasks are executed independently. Each processor does not need

to wait for each other for data transferring.

Agglomeration is defined by grouping two or more tasks into larger ones allowing

to decrease the communication cost by increasing the computational granularity, thus obtaining

better reuse of parts of the serial program. Agglomeration also allows decreasing the number of

communications performed due to grouping tasks with small communication tasks.

Mapping is the last step of the Foster’s methodology and where task attribution to

processors occurs, aiming to increasing their usage and decreasing communication among them.

Optimum percentage use of processors is obtained through load balancing, such that processors

will end execution simultaneously for the same number of tasks. In summary, concurrent tasks

should be allocated on different processors and more frequent communication tasks in the same

processor.

Based on these characteristics, some aspects should be considered to avoid any

performance degradation in parallel programs:

• The granularity of decomposition - the number and size of tasks determine the cost of

parallel execution.

• Load balance - all processors should keep busy during the parallel execution.

• Synchronization delay - data exchange among several processors, could cause problems

with memory contention.

• Communication delay - use of distributed memory makes communication naturally slower.
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3.2 DISTRIBUTED MEMORY MULTIPROCESSOR SYSTEMS

Distributed computation is when a program runs on machines consisting of mul-

tiple computers, and each computer has exclusive access to its local memory. Programs must

exchange messages for communication and synchronization among processes. Also, data gran-

ularity is coarse when using domain decomposition in multicomputer systems.

In this context, one software that enables this type of programming is the Message

Passing Interface (MPI). The MPI is a message passing library standard designed by academics,

software library developers, researchers, and users to function on various parallel computing ar-

chitectures. This library specifies names, calling sequences, and results of subroutines or func-

tions for many users writing portable message-passing programs in C/C++ and Fortran (GROPP

EWING LUSK, 2014). As a result, any application using MPI is considered a set of processes

in the computing environment. One of the main advantages of MPI is portability across differ-

ent machines. However, parallel programming development is explicit; that is, the programmer

needs to identify parallelism regions to use MPI routines.

One type of communication used with MPI is peer-to-peer, i.e., message exchanging

only between two processes. The respective routines can be blockers, which only return from

the call after some events occur, such as waiting for a given data set to be delivered. Examples

of blocking routines used in this work are MPI_Send and MPI_Recv for sending and receiving

messages, respectively. On the other hand, non-blocking communication allows the execution

to continue without waiting for any events that determine the routine execution completion.

Another form of communication is collective, which involves all processes within

the same process group. This is often used to handle common data set by the processes of

a group. Collective communication routines are defined by blocking peer-to-peer communi-

cation routines. The main communication routines used in this work were MPI_Allgather,

which allows all processes to send information to and collect information from each process;

MPI_Allgatherv, a variation of the previous routine, allowing both sent and collected informa-

tion of different sizes; MPI_Allreduce, which combines the results of all processes according

to the defined MPI operation type (MPI_Op) and returns the result to all processes; MPI_Scan,

which performs partial reductions of data from a set of processes; and MPI_Barrier, which

performs synchronization of all processes in a group (GROPP EWING LUSK, 2014).

3.3 SHARED MEMORY AND MULTITHREADED PROCESSORS

The concept of parallelism can be given in terms of threads or processes. A thread

can be defined as a program control line flow. Threads share the same memory allocation and

may have their own resources during program execution, such as program counter or execution

stack to allocate local variables. Threads can also communicate with each other through access

to the same memory allocation and synchronization through mutual exclusion mechanisms.
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Processes have the same characteristics as threads, but they use a private memory

allocation. Inter-process communication is accomplished through message exchange, as men-

tioned in the previous section by using MPI (GROPP EWING LUSK, 2014). Figure 3.1 presents

a comparison between threads and processes, where one or more threads can be within the same

process.

One Thread

One Process

One Thread by Process

Multi-Processes

Multi-Threads

Multi-Processes

Multi-Threads

One Process

Figure 3.1. Composition of threads and processes.

The parallelism implementation in the shared-memory systems may be applied by

coordinating two or more threads. Among the interfaces for multi-thread programming, we

chose OpenMP (BOARD., 2013), which is portable and has three main elements: environment

variables, execution libraries, and building directives. OpenMP is maintained by a group of

hardware and software companies and available for C/C++ and Fortran languages.

OpenMP parallel programming is explicit and allows full control of the code. The

directives always start with "#pragma omp" in C/C++, as presented in Chapter 5. These di-

rectives allow defining parallel regions within the code, set the permissions of variables in the

parallel region, define threads’ behavior, and apply operations on them.

3.4 PARALLEL SCALABILITY PARAMETERS AND MEASURES

Consider a parallel application running with p processes, which can be a combi-

nation of cores and/or nodes in a system, such as the IBM Blue Gene described in Chapter 6.

This application’s expected optimal performance is p times faster than the time of the respective

serial application. This result is known as linear speedup. For example, if the execution times

of the parallel and serial programs are, respectively, Tp and Ts, the ideal execution time of the

parallel program is Tp = Ts/p (PACHECO, 2011).

Due to several factors, linear speedup is not easy to achieve. One of the possible

overheads is implementing mechanisms such as semaphores to avoid concurrency problems
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among processes (KLEIN et al., 2003). Such problems are common in parallel programs that

share the same memory allocation, also known as the critical section. Another factor is the

overhead time for data transmission by processes, which can be much longer than local mem-

ory access time. In general, the greater the number of processes p, the larger the communication

overhead increase. Besides, the tasks of partitioning and data distribution should also be con-

sidered.

The Speedup S is defined by the ratio of the run times of the serial (Ts) and parallel

(Tp with p processors). Therefore,

S =
Ts

Tp
. (3.1)

Ts can be determined by executing: a) the parallel program in one core of the multi-core ma-

chine, b) the serial program in a parallel machine process, c) the best serial program algorithm

in a parallel machine process, or, d) the best serial program algorithm in a standard machine. In

this work, we used option c), thus avoiding the overheads of communication, partitioning, and

data distribution. Overheads in the parallel applications may occur even considering the execu-

tion with one process. The speedup measured in this case is called absolute speedup. Option a)

is known as the relative speedup.

Another cost metric used is the efficiency of E obtained by the ratio of speedup to

the number of processors. Therefore,

E =
Ts

pTp
=

S
p
. (3.2)

This metric is the normalized speedup measure representing the percentage value

of theoretical or ideal speed achieved (MASUERO, 2009; FERREIRA, 2006). In summary, E,

S and Tp depend on the number of processes p. On the other hand, problem’s size influences the

results obtained for E, S, Tp, and Ts.

Efficiency achieves the maximum value of 1 and tends to 0 as the number of pro-

cesses increases, considering a fixed-size problem (DUNN, 2003). The primary metrics S and

E define how much faster the parallel code is compared to serial code, considering the ideal

speedup (PACHECO, 2011).

3.4.1 Strong scalability

Since some processing must be done synchronously, not all parts of the code can be

parallelized. The total execution time of a program is the sum of serial and parallel portions. In

this context, the parallel run-time can be defined according to the Amdahl law as (AMDAHL,

1967)

Tp = (1−P)Ts +

(

P
N

)

Ts, (3.3)

where Tp is the parallel time for a specific number of processors N, P, and (1− P) are the

parallel and serial percentages of the code, and Ts is the serial time. If N = 1, then the serial and



49

parallel times are the same. The speedup can also be obtained as

Sp =
1

(1−P)+ P
N

(3.4)

Amdahl’s work found an upper limit of speedup in parallel programs from Equation

(3.4). The parallel part (P/N) will be zero by increasing the number of processors to infinity.

Thus, the maximum speedup can be calculated by 1/(1−P). If the serial portion of the algo-

rithm is too large, then the speedup will be 1. However, if this part is too small, then the speedup

will be constrained by the serial percentage (1−P) (ROSÁRIO, 2012).

Therefore, Amdahl’s law shows that the performance range depends on limiting the

serial part of the program because the parallel portion can only be optimized by increasing the

number of parallel machines by multi-threaded or multi-process, i.e., it is not possible to obtain

an infinite gain just by increasing the number of processors.

Strong scalability emerged through Amdahl’s law. A parallel program is scalable if

the calculated efficiency is maintained, given a fixed problem size and increasing the number of

processing units. Thus, scaling is defined as strong if performance increases as the number of

processors also increase proportionally.

3.4.2 Weak scalability

Contrary to Amdahl’s law, Gustafson (1988) found out that parallelism can also

increase according to the problem size for many engineering problems. Also, it was observed

that a rather small increase occurs in the serial piece compared to the parallel portion. In this

context, weak scalability, also known as Gustafson’s law, states that a correct way to evaluate

scalability is by increasing problem size and number of processors simultaneously.

In this way, poor scalability is evaluated by increasing the problem’s size in propor-

tion to the number of processors or threads. Consequently, parallel programs will be considered

weakly scalable when efficiency is maintained by increasing these two factors (problem size

and number of processes) in the same proportion (KAMINSKY, 2016).

Weak scalability can be measured by the quantity Sizeup(N,P) similarly to the

speedup of Equation 3.1, but considering the increase in the problem size and the computation

ratio simultaneously. It is determined by multiplying the problem size proportion and the serial

and parallel execution time ratio. For a problem size N and P processors, it is defined by the

following expression:

Sizeup(N,P) =
N(P)
N(1)

Ts(N(1),1)
Tp(N(P),P)

, (3.5)

where N(P) is the problem size for P parallel processes; N(1) is the problem size for serial

run; Ts(N(1),1) and Tp(N(P),P) are the serial and parallel execution times, respectively. If the

problem size of serial and parallel applications are the same, that is, N(P) = N(1), the Sizeup

metric will be equal to the speedup of Equation (3.1).
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The efficiency metric will determine how close Sizeup is to the ideal value. In this

sense, the ideal will be linear and occur when parallel and serial executions are performed

simultaneously. In that case, the parallel program running in P processors must have the problem

size P times the problem size with 1 process. Efficiency in weak scalability is defined by the

ratio between Sizeup and the number of processors, that is,

E(N,P) =
Sizeup(N,P)

P
, (3.6)

Analogously to the Equation 3.2, efficiency may have values in the range [0,1]. For the ideal

case, efficiency will be 1; otherwise, the efficiency will be less than 1 (KAMINSKY, 2016).
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4 (HP)2FEM ARCHITECTURE MODEL

The architecture of the (hp)2FEM software was designed to allow flexibility and

generalization, facilitating the use, maintenance, and creation of new classes.

A software architecture defines a set of structures needed to describe the system

and collaborate to make high-level decisions. It performs the role of linking the requirement

and process phases (CLEMENTS et al., 2010; GARLAN; SHAW, 1994).

A software architecture can be developed using top-down and/or bottom-up strate-

gies. In the former, the system is recursively decomposed in modules or functions, until they are

recognized as being easily implementable. The top-down strategy describes the state of a cen-

tralized and shared system with active functions. We developed the (hp)2FEM software using

the bottom-up approach; the system is viewed as a set of blocks and its state is decentralized

among the objects. In this way, each object operates on its own state (JALOTE, 2012).

4.1 INFRASTRUCTURE AND INTERFACES TO OTHER LIBRARIES

In addition to the development strategies, we used tools to manage each software

module independently in the phases of modeling, implementation, error handling, memory leak

checking and tuning.

4.1.1 Modeling and documentation

The Unified Modeling Language (UML) diagrams and the program documentation

were developed using the Metamill tool, a multiplatform software for UML 2.3 (FERNANDES,

2011). The class documentation was generated by the Doxygen software. These tools, as well

as UML, supported the development process, simplifying the generation and visualization of

the source code.

The modeling, implementation, and documentation steps were developed concur-

rently using the bottom-up approach. All documentation is available at www.hp2fem.org.

4.1.2 Symbolic-numeric analyzer

We developed a symbolic-numeric analyzer that allows users to describe boundary

conditions and loads and other model attributes using symbolic expressions or functions in

terms of spatial coordinates (X , Y , Z) and time T . This feature allows the validation of solvers

in the (hp)2FEM architecture using manufactured solutions. The symbolic-numeric analyzer

was implemented using lex and yacc, which are open-source libraries for creating lexical and

syntactic analyzers (LEVINE, 2009).
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4.2 KEY FEATURES

(hp)2FEM software was originally developed for structural mechanics, but it is also

possible to use the basic infrastructure to implement solvers for other problems. It has the fol-

lowing features:

• Nodal and modal tensor bases for low- and high-order approximations (BITTENCOURT

et al., 2007; KARNIADAKIS; SHERWIN, 2005).

• Tensor-based Gauss–Jacobi, Gauss–Radau–Jacobi and Gauss–Lobato–Jacobi quadrature

rules (BITTENCOURT; VAZQUEZ, 2009; KARNIADAKIS; SHERWIN, 2005).

• Different data structures for symmetric and sparse matrices. These structures allocate

memory and operate on one-dimensional arrays.

• Storage of the relation between the geometry represented by non-uniform rational basis

spline (NURBS) and the finite element mesh.

• Different material models through generalization, which makes simpler to add specific

new material models when required.

• Builds the nodal incidences and coordinates for the high-order elements with planar and

curved faces.

• p-non-uniform polynomial order distribution, i.e., different polynomial orders for finite

elements.

• Use of element groups for the global mesh, allowing different element shapes in the same

mesh.

• Use of tensor product of one-dimensional operators to calculate the shape functions and

operators for two and three dimensions.

• Converts symbolic functions to numeric values using a symbolic-numeric analyzer.

• Particular efficient solvers for distorted and non-distorted meshes.

• Different meshes for the input data, solution, mapping, and post-processing with different

polynomial orders. The input mesh is for elements with straight edges and planar faces.

The boundary elements may have curved edges and faces. Using the definition of curves

and surfaces represented by NURBS, it is possible to generate high-order nodes for the

boundary elements. Generally, the mapping mesh has an interpolation order that is smaller

than the solution mesh. In addition, the mapping mesh uses shape functions based on

Lagrange polynomials. The post-processing mesh contains a fixed polynomial order to

generate the results.
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4.3 CLASS MODEL AND DATA FLOW EXECUTION

The main packages of the (hp)2FEM architecture are depicted in Figure 4.1 and

described in the next sections.

<<Global Solver>> <<Element Solver>>

<<DS>>

<<Interpolation>>

<<FEGroups>>

<<Model>>

<<Solver>>

Figure 4.1. Main packages of the (hp)2FEM architecture.

4.3.1 DS - Data Structure package

The classes of the DS package contain various matrix types, such as symmetric

and sparse matrices (BITTENCOURT, 2000). The package performs matrix and vector opera-

tions and implements direct and iterative methods for solving linear system of equations. The

data structures of the matrices use one-dimensional arrays allocated using aligned memory for

improved performance.

DS uses C++ templates to implement classes of arrays and tables (BITTENCOURT,

2000). This C++ feature allows the class methods and parameters to work with many different

data types (VANDEVOORDE; JOSUTTIS, 2003). The most frequently used classes with tem-

plates in (hp)2FEM are OneIndexTable and TwoIndexTable.

These data structures are important because of their flexibility to store data of finite

element models. The OneIndexTable and TwoIndexTable classes are used to store multiple

data as the interpolation function values on the integration points for all different polynomial

orders given in the input files.

The data structure of the TwoIndexTable class is illustrated in Figure 4.2. This class

is organized by three one-dimensional arrays (one for data and the other two for indices), which

are used for indexing ranges of elements of the data array and dividing them into groups and

subgroups of values. For instance, consider the storage of shape function values on the integra-
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tion points. The shape functions are stored in the data array of the TwoIndexTable instance and

separated in subgroups of functions according to the polynomial and integration orders. Conse-

quently, the shape functions for all polynomial orders used in a given problem can be accessed

for all integration orders, or accessed only for a given polynomial and integration order.

The DS package classes are used extensively in other packages. They implement

methods for the allocation and deallocation of data, memory management, and linear algebra

with BLAS and LAPACK (DONGARRA, 2003). These characteristics greatly simplify the code

development for the finite element classes and solvers (BITTENCOURT, 2000).

Figure 4.2. Illustration of the data structure of TwoIndexTable class.

4.3.2 Interpolation package

The Interpolation package is used to generate the nodal and modal one-dimensional

interpolation functions based on Lagrange, Jacobi, Legendre, Hermite, and Lobatto polynomial

bases (BITTENCOURT et al., 2007; BITTENCOURT, 2014). The polynomial orders and the

integration and collocation coordinates are the main input data for calculating the values of

shape functions and their derivatives for each polynomial basis implemented.

The classes for the one-dimensional polynomial bases are encapsulated by the class

ShapeFunctions, which is responsible for calculating the interpolation functions and deriva-

tives on the integration and collocation points. Information about the integration and colloca-

tion points is encapsulated by another set of classes, specifically IntegrationPoints and Col-

locationPoints. The calculation and storage of interpolation functions occur independently for

lines, squares, triangles, hexahedra, and tetrahedra. However, triangles and tetrahedra elements

were not used in this work. An important aspect in the construction of the interpolation func-

tions for two and three dimensions is the use of the tensor product of the one-dimensional bases

(BITTENCOURT et al., 2007).

4.3.3 FEGroups package

The FEGroups package represents the finite element groups. Each group has finite

elements with the same characteristics in terms of material, shape, and interpolation functions.
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Figure 4.3. Material class diagram.

This package is also responsible for calculating the element operators, such as mass and stiffness

matrices and load vectors implemented by the FiniteElement class.

The Mapping class is included in this package and is responsible for calculating

the Jacobian matrix and the element measures (length, area, and volume).

The Mesh class stores the coordinates and polynomial orders of each element, as

well as, the indices of their degrees of freedom and incidence. (hp)2FEM software allocates in-

stances of this class to four mesh types (input, solution, mapping, and post-processing) that can

have different polynomial orders. The mapping and solution classes may have p-non-uniform

distributions for the elements.

The hierarchy of classes shown in Figure 4.3 is used in the FEGroups package. The

Material class defines different material models used by the applications implemented in the

Solver package. The use of inheritance and dynamic polymorphism concepts allows flexibility

when defining new material types.

Model package

The Model package manages all finite element groups stored in the instance of

FEGroups class. This package builds and manages the main characteristics of the discrete

model, i.e., numbering of degrees of freedom, incidences, coordinates, boundary conditions,

and load sets. The diagram of this class is illustrated in Figure 4.4.

Furthermore, the package stores the relations between mesh and geometry that are

used as input parameters of the finite element model. In this case, it is possible to obtain all

nodes, element edges, and faces of geometric surfaces with a distributed load. The geometry

is stored using the NURBS representation, with data obtained during the preprocessing stage

(SEVILLA et al., 2008).

The mesh topology is built and managed in the Model package through the Mesh-

Topology class. The topology stores the mesh entities in tables as node–element and element–
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Figure 4.4. Diagrams of Model and Solver classes.

element relations. The HighOrder class is responsible for generating the new incidences and

coordinates from the input mesh and given mapping polynomial orders. The MeshTopology

package is shown in Figure 4.5.

Figure 4.5. Classes of the MeshTopology package.

Solver package

The solver procedures are implemented in the solver package. There are two main

solution strategies for the finite element mesh. In the first one, the solution is calculated glob-

ally for the element operators assembled in global sparse matrices. In the second approach,

the solutions are calculated locally, i.e., element by element, as described in Section 2.4. The

software contains solvers for permanent (static) problems, Newton’s method for non linear elas-

ticity, explicit and implicit methods for transient analysis and phase field models for damage and

fracture. The diagram of this class is illustrated in Figure 4.4.

4.4 REMODELING AND OPTIMIZATIONS OF THE (hp)2FEM SOFTWARE

One of the main goals of this work was to tune the (hp)2FEM software on high

performance computing architectures. Chapter 5 discusses the code optimization applied to



57

speedup the execution time of (hp)2FEM .

As a first step in accelerating the code, we applied profiling tools and APIs from

the Argonne Leadership Computing Facility (ARGONNE, 2015) and Center for Computing in

Engineering & Sciences (CCES, 2020). As expected, code profiling revealed that a significant

portion of the execution time was associated with the solver. Because solvers rely on matrix–

matrix and matrix–vector operations, we first identified and replaced segments of the code by

calls to BLAS. The machine vendors provide highly optimized versions of these routines in

libraries, which can be easily linked to the code. We also used functions from the LAPACK

library (DONGARRA, 2003) to solve the linear systems.

The assembly code profile revealed that the compiler was unable to automatically

hoist some loop-invariant computations out of their respective loops. Hence, we manually modi-

fied the code to hoist the loop-invariant computations. We also used special flags of the compiler

(-qhot (GILGE, 2014a)) to perform more aggressive loop unrolling, which provided significant

performance benefits.

We calculate shape functions for squares and hexahedra using the tensor product

of the one-dimensional matrices (D1-Matrices procedure); the equations are described in Sec-

tion 2.2. The element matrices are denser for high-order shape functions. Hence, this procedure

reduced the time and memory consumption when using high-order polynomials, as will be dis-

cussed in Chapter 6.
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5 PARALLELIZATION OF THE (hp)2FEM SOFTWARE

This chapter discusses the parallelization of the elementwise solvers of the (hp)2FEM

for projection problems and explicit transient analyses discussed in Chapter 2. The main changes

considered in the parallel implementation are in the upper layer of the (hp)2FEM architec-

ture. Sections 5.1 to 5.4 describe how the finite element model is partitioned and the parallel

procedures considered to renumber the nodes on the interfaces of partitions/sub-domains. In

Section 5.5, the solutions to avoid deadlock during communication are presented. Finally, Sec-

tion 5.6 describes the implementation of the central difference elementwise method, used to

linear and non-linear structural problems. The parallel versions are implemented using MPI and

OpenMP, respectively, for execution on distributed and shared memory based high-performance

computing systems.

5.1 MESH PARTITIONING

The finite element mesh is partitioned using the METIS library (KARYPIS, 2011),

which uses procedures based on graph theory (NETTO, 2012). Different processes manage each

partition. Initially, the element mesh is converted to a weighted graph that guides the METIS

library in the partitioning procedure, looking for minimizing the interfaces (formed by element

faces, edges, and nodes) of partitions and reducing communication costs among the processes.

The local information about each partition is stored in attributes of the PartitionData class,

illustrated in Figure 5.1, of the Solver Package. Each process exchanges information about its

partition boundary using MPI routines. Subsequently, each process constructs data structures

to map the partition boundary elements and nodes to synchronize partial results to neighboring

processes/partitions.

PartitionData is instantiated as an attribute of the Solver class, replacing the use of

attributes of the GlobalModel instance that stores all the parameters of the serial finite element

model. In summary, each process executes the following steps to construct information for its

partition:

1) The input mesh, which in most cases is composed of linear elements, is read and converted

into a graph;

2) The METIS library is invoked to partition the graph;

3) Each partition is associated with one process labeled with the MPI rank (process ID). A

data structure is created to store the internal and boundary elements, the list of neighbor-

ing partitions, and the mapping between the global and local element and node numbers.



59

4) The incidences, degrees of freedom, and boundary conditions in the local partition are

renumbered, and data structures are created to map the local and global incidences of the

partition boundary elements.

The parallel methods for the local solvers were implemented in the ElementEle-

mentSolver class described in Section 4.3. In the ElementElementSolver class, the parallel

algorithms were designed using the local numbering of incidences and degrees of freedom of

the partition elements. Besides that, the parallel elementwise solvers allocate the vector Patch-

Measure to store the element measures for weighting the local solutions.

MPI is used to exchange the local PatchMeasure and the solution of the boundary

elements among processes. In the projection solver, the system of equations for the internal

elements is calculated separately from the boundary elements. For the transient analysis solvers,

the local solutions are calculated for all partition elements and sent to neighbors. The local

vector PatchMeasure is exchanged one time among partitions, before the time step loop. Next,

the local solution of the system of equations is received by the neighboring partitions. After that,

the local solution on the boundary elements is updated and weighted using the PatchMeasure

vector. As a result, each partition computes the global solution for its degrees of freedom. The

energy norm of the approximated solution is also calculated in parallel.

5.2 PARTITION DATA CLASS

A summary view of the PartitionData class with its key attributes is illustrated in

Figure 5.1. This class belongs to the Solver package of Figure 4.1 and stores information of

the mesh partitions used in the parallel distributed memory strategies to be discussed later. The

class has data structures for the local incidences and auxiliary arrays for the boundary degrees

of freedom of the partition. This class implements the methods to build the required structures

for different parallel strategies used to exchange solutions of the system of linear equations

among partitions. Additionally, the class has the parameters for loading and balancing used by

the METIS library for partitioning the global mesh.

The key attributes of the PartitionData class illustrated in Figure 5.1 are built from

the output variables of the METIS library. These attributes are instances of classes of the DS

package (Section 4.3.1) and store, for example, the mapping of the local (LocalElements) and

boundary (BoundaryElements) elements to global numbers as well the incidences (LocalInci-

dences). Furthermore, some attributes store the mesh topology for each sub-domain, e.g., an ar-

ray with the numbering and the total number of neighbors (NeighborsPartitions). The boundary

solutions are updated using the degrees of freedom indices. The variables BoudaryIndicesRecv

and BoudaryIndicesSend are used to access the boundary solution when sending to or receiving

from solutions of other partitions.
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Solver

Solver
GlobalModel : Model
PartitionModel : Model

PartitionData

+ PartitionId : long
+ LocalElements : BuiltInArray<long>
+ BoundaryElements : BuiltInArray<long>
+ LocalIncidences : OneIndexTable<long>
+ BoundaryIndicesRecv : OneIndexTable<long>
+ BoundaryIndicesSend : OneIndexTable<long>
+ NeighborsInfo : OneIndexTable<long>
+ NeighborsPartitions : BuiltInArray<long>
+ NumAdjPartitions : unsigned long

- SearchPartitionOfNeighbor(...)
+ Partitioner(...)
# BuildPartitionElements(...)
# SetInternalAndBoundaryElements_PartitionModel(...)
# StoreBoundaryIndicesByNeighbors(...)

Figure 5.1. PartitionData class diagram.

The method Partitioner(...) handles the algorithm for partitioning of the finite el-

ement meshes. It prepares the input of variables for METIS whose results are used by Build-

PartitionElements and SetInternalAndBoundaryElements_PartitionModel(...) methods to gen-

erate the local information in a partition. The StoreBoundaryIndicesByNeighbors(...) variable

stores the values for the boundary elements indicating if the neighborhood is in terms of a

node, edge or face as will be explained later. This information is used to set up the variables

BoudaryIndicesRecv and BoudaryIndicesSend.

5.3 METIS FUNCTIONS FOR MESH PARTITIONING

The manner the mesh is partitioned for the processes and the mapping of nodes and

degrees of freedom among the neighboring partitions is important to increase the performance

when exchanging messages. The reduction of the communication time between processes is

an NP-Hard problem (non-deterministic polynomial acceptable problem) due to the exponen-

tial growth of the number of options to distribute the finite elements in distributed computers

(FERREIRA, 2012).

The algorithms for partitioning finite element meshes were implemented using the

METIS library, a software package for partitioning unstructured graphs and meshes developed

at the University of Minnesota (GUEDES, 2009).

Function PartGraphRecursive of METIS was used to set loading and balancing to

the finite element mesh. Firstly, the mesh was converted to a graph. Then, we wrote the code to

store the input parameters for the PartGraphRecursive function.

Figure 5.2 shows how a mesh is converted to a graph: the elements are the vertices,

and the neighborhood among them are the edges of the graph. Each edge has a weight that
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corresponds to the number of shared nodes between two neighbor elements. For instance, the

eight-node hexahedron can share one, two, or four nodes. Here, each of these possibilities will

correspond to different weights for the graph edge, consequently changing how the graph will be

partitioned. Furthermore, the number of shared nodes are increased by high-order polynomials

used for each finite element.
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(a) Finite element mesh.
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(b) Mesh converted to a weighted
graph.

Figure 5.2. Example of conversion of finite element mesh to weighted graph.

The signature for the PartGraphRecursive function is int METIS_PartGraphRe-

cursive ( idx_t nvtxs, idx_t xadj, idx_t adjncy, idx_t vsize, idx_t adjwgt, idx_t nparts, idx_t

options, idx_t part ). The main parameters used to input ([in]) and output ([out]) data are as

follows:

• nvtxs[in]: number of vertices of the graph; in this case, the number of mesh elements.

• xadj[in]: array to map adjacency list adjncy. The xadj[i] variable is used to access the first

neighbor of element i into the adjncy array. The number of neighbors can be obtained by

xadj[i+1]−xadj[i].

• adjncy[in]: adjacency list which stores neighbors of each vertex.

• adjwgt[in]: an array with the weights of the edges. The weights are the number of shared

nodes between elements. The size of adjwgt is 2×m, where m is the number of graph

edges.

• nparts[in]: number of partitions to divide the graph.

• options[in]: an array that allows configuring the characteristics or behavior of the METIS

algorithm.

• edgecut[out]: returns the sum of the edge path’s weights where the graph was partitioned.

If there are no weights on the edges, the number of graph edges will be returned. Fig-

ure 5.3 shows an example of a partitioned graph. The value of edgecut will be the sum of

weights of edges (2,3), (18,19), (19,16), (16,17) and (10,9). The algorithm’s goal is to

obtain the smallest value of edgedcut minimizing the communication between partitions.



62

1

14

13

12
11 10 9 8

7

6

5
432

18

15

19 20

1716

Figure 5.3. Partitioned graph with the edgecut parameter.

• partitions[out]: the result of the graph partitioning. The array size is the number of mesh

elements or graph vertices defined by nvtxs, and each position represents a finite element

i. The value stored in the array index i is the partition number assigned to the element i.

For meshes associated with complex geometry and distorted elements, as for the

crankshaft used in Chapter 6, we employ a multilevel k-way graph partitioning (METIS_Part-

GraphKway). The algorithm has the same outputs as the PartGraphRecursive or multilevel

bisection method explained earlier. The multilevel k-way algorithm has three phases: coarsen-

ing, initial partitioning, and uncoarsening. The coarsening step groups vertices, scaling down

the size of the graph to a few hundred vertices. The initial partitioning computes the coarse

graph in k-way partitions. At last, the smallest graphs are sequentially extrapolated in larger

graphs until the original graph size is reached (GUEDES, 2009). Results with this algorithm

will be shown in Section 6.8.

5.4 PARALLEL NUMBERING ALGORITHMS TO INTERFACES OF PARTITIONS

The algorithms described in this section are applied to the MPI communication

among the processes. These algorithms support the message exchange for parallel solvers us-

ing different numbering of incidences on the partition boundary. Consequently, the exchanging

of solutions among partitions is modified. Each partition stores the local incidences and node

numbering to support the assembly of the global solution of solvers. Some procedures use a

mapping structure to convert from global to local or local to global numbering.

The algorithms considered in this section use the element topological entities. They

are the vertices and edges for squares and vertices, edges, and faces for hexahedra. Figure 5.4

shows the topological entities and their labels or indices for square and hexahedron considered

in (hp)2FEM .

5.4.1 Overlapping algorithm

The overlapping procedure was implemented to avoid communication overhead

when increasing the number of mesh elements and their polynomial orders. Figure 5.5 shows the
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Figure 5.4. Topological entities and their indices for square and hexahedron in
(hp)2FEM .

partition of a domain into four sub-domains P1, P2, P3, and P4. Each sub-domain is allocated

to one process and solves the elementwise problem.

Domain

Figure 5.5. Domain decomposition in four sub-domains.

The global domain result is computed by the assembly of the local solutions from

the four partitions or sub-domains. Generally, updating the global solution on the sub-domain

boundaries is done by exchanging messages among the processes. To avoid this cost of com-

munication, the boundary information for neighbors of each sub-domain is duplicated.

Figure 5.6 shows the overlapping algorithm implemented in (hp)2FEM . The sub-

domains P1 and P2 store data from their neighbors. For instance, data for elements on the

boundary of the adjacent partitions are copied. Based on that, the global solution for the degrees

of freedom is updated for each partition’s original boundary, avoiding communication among

processes.

Figure 5.6. Overlapping algorithm and duplicated regions.

The method BuildOverlappingData of the PartitionData class (Figure 5.1) imple-

ments Algorithm 5.1 and builds three storage structures. This algorithm saves the numbering of
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elements adjacent to the boundaries for a specific partition ID, the incidence, and the element

topological entities (node, edge, or face) of these adjacent elements.

Algorithm 5.1 Algorithm for the BuildOverlappingData method.
Input: Global Solution Mesh, Partition Boundary Elements, Adjacent Partitions.
Output: Partition Boundary Elements, Element Incidences, Element Topological Indices.
begin

⊲ Allocates the local incidences in the ID partition;
⊲ Builds the mapping array to map global-local incidences;
⊲ Numbers the local partition incidences;
⊲ Assigns the incidences to adjacent elements of the partition (or boundaries elements).

Build Data of Overlapping Region
begin

• Calculates and allocates the size of adjacent elements to the ID partition;
• Calculates and allocates the size of the vector to store the partition number for each adja-

cent element in the boundary region.
• Saves the adjacent elements of the boundary region and the partition ID number to which

the element belongs.
• Computes the numbering of incidences and topology indices to adjacent elements of the

partition.

The overlapping algorithm is used in the local projection solver of Section 2.3 im-

plemented in the ElementElementSolver class. The solution of the system of linear equation

is performed in two stages. First, the systems of equations are solved for elements in the over-

lapping regions. In the second stage, the systems are solved locally for the internal elements,

and their solutions are saved into the same vector used by the elements in the overlapping re-

gions. The error norm is also calculated in parallel. The performance of this algorithm will be

presented in Chapter 6.

5.4.2 Sequential numbering algorithm for boundary nodes

This algorithm aims to number first the boundary nodes of each partition sequen-

tially, avoiding the exchange of the node numbering arrays when communicating with neigh-

boring partitions.

This algorithm starts by numbering the boundary nodes of partitions’ interfaces in

a clockwise direction, sequential, and synchronized, using each partition label. Figure 5.7 illus-

trates the partitions, the node numbering for partitions 0 and 3, and the way they communicate

with other sub-domains.

Partition 0 has boundaries with partitions 1, 8, 6, 2 and 3; partition 3 sends and

receives data to partitions 0 and 2. The partitions need only to send the first node number and

the offset of the local solution vectors. Based on that, the partition receiving the solution vector
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knows how to address the correct positions to update its boundary solution. Consequently, it

will not be necessary to exchange all node numbers.
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(a) Partitions for a square mesh.
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other partitions.

Figure 5.7. Numbering of boundary incidences by sequential algorithm.

The starting partition is that one with the minimum partition ID found by scanning

the boundary elements. The ID used depends on the load balancing given by the METIS_Part-

GraphKway function of METIS because some MPI ranks maybe not assigned. For example,

suppose we are running five processes, but METIS partitioned the mesh with three partitions

and assigned the MPI ranks [4,2,3]. In this case, the first partition to start the sequential renum-

bering algorithm is partition 2.

This algorithm is applied to square meshes. The main idea is to reduce the memory

usage for each partition and size of messages with the MPI communication for the local solvers.

The steps of the algorithm are described as follow:

1. Search the first valid partition and determines the first element to start, which must share

an edge with another partition.

2. Renumber the interface nodes for each neighboring partition. The method scans all shared

edges with other partitions. The renumbering of nodes is generated using the incidence or-

dering generated by (hp)2FEM . This stage will save the node number of the first renum-

bered node and the number of nodes for each neighboring partition.

3. Get the next partition using the last renumbered edge. Subsequently, the first global ele-

ment and edge will be sent to the next process to renumber its local nodes. The interface

elements from a partition are known by their neighboring partition.

4. The next process receives the first element and the topological element index, which was

used to start the numbering of the interface local nodes. Given that, three conditions may

happen:
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a) If the process has not yet performed the renumbering of nodes and received the first

element and edge to start the numbering, the algorithm returns to step two.

b) If the process already did the local nodal renumbering, searches for the next partition

to be renumbered. Following, go to step two.

c) If the process has not yet performed the local renumbering and not received the

first edge and element, the algorithm will search the first edge and element using

the topological element indices and its neighboring partitions. The element found

must be the first shared with the neighbor partition, considering clockwise direction

through the elements. Subsequently, the algorithm will repeat step two.

5. Renumber other local incidences that are not on the boundary. The internal renumbering

is made following the sequence of the topological element indices of the global mesh.

Therefore, the renumbering will not be sequential.

6. The data structure to save the local incidence numbering is split into the internal and

boundary incidences.

5.4.3 Non sequential numbering algorithm for boundary nodes

The non sequential algorithm is an independent manner to renumber the interface

nodes of partitions when compared to the sequential procedure of the previous section. How-

ever, the global interface nodes must be exchanged among partitions to map the correct local

boundary node number of another partition.

The algorithm starts with each process finding and numbering the global boundary

nodes locally into the partition and sending them to its neighbor sub-domains. After receiving

this information, the neighboring partition uses global-local mapping to indicate the local nodes’

interface. Consequently, each partition will store the local interface nodes in the same position

that the global nodes were received. This ordering is essential to update solution values in the

correct positions during the solver processing. The partitions will exchange only a part of the

solution arrays. The solution arrays’ indices will not be sent because they already have pre-

processed to update the boundary nodes’ solution. This algorithm has the following steps:

1. Set a table that stores the numbering of global nodes shared with each neighboring parti-

tion;

2. Renumber the local nodes for each boundary element of partition;

3. Renumbers the local nodes for each internal element.

4. Construct the data structures to store the local internal and boundary nodes of the parti-

tion.
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5. Allocate index arrays to map the local incidences of the partition and its neighbors. This

array is filled using the shared global nodes. Thus, an auxiliary map will be used to convert

the indices from global to local.

6. Sort and send the shared global nodes for each neighboring partition. Sending and receiv-

ing the local solution arrays among the partitions will follow this ordering, allowing the

correct update of the shared interface nodes’ solutions.

The solvers will use the data structure to map local incidences among partitions to exchanging

the local solutions.

5.4.4 Non sequential numbering for boundary nodes using the PartitionModel object

As mentioned before, each process reads the global finite element model and stores

the mesh parameters (nodal coordinates and element incidences) and other attributes (material

properties, loads, boundary conditions, polynomial order, solver directives, and many others)

in the attributes of the Model class presented in Section 4.3.3. After the METIS library returns

with the information on the mesh partitioning; each process will manage one sub-domain. For

the given polynomial order, the HighOrder class generates the high-order nodal coordinates

and element incidence but still using the global model stored in the instance of the Model

class for each partition. As the high-order data may demand much memory, depending on the

polynomial order and the number of elements, the advantages of partitioning the finite element

model may be lost. This occurs because, in the serial version of (hp)2FEM , the high-order

information is generated for all global model elements.

To overcome this limitation, the PartitionModel instance of the Model class is al-

located for each partition and the GlobalModel object reads only the required parameters from

the input files. The high-order incidences and coordinates are generated only for each partition

element, avoiding the higher computational cost and especially memory space.

Also, it was necessary to add auxiliary structures of type OneIndexTable. These

tables are used to map global and local incidences since the common boundary incidences

between the partitions are identified using the global numbering. Consequently, there is an in-

crease in the use of memory for high order elements and communication time of MPI messages

during the creation of these auxiliary structures. On the other hand, the considered algorithm

now uses only local information of high-order incidences and nodal coordinates, reducing the

computational cost for memory and synchronization time using MPI functions. The creation

of high-order information in each sub-domain allowed increasing the number of processors, as

described in Chapter 6.

The algorithm proposed here builds two auxiliary tables of type OneIndexTable,

BoundaryIncidRecv, and BoundaryIndicesSend, which will be used in the solver for updating

the solution of degrees of freedom on the partition boundary. These tables are created from the
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topological indexes (node, edge, and face) of the neighbor’s elements, as we will see below.

The tables store the local incidence for each neighbor element. The BoundaryIncidRecv table

stores the incidences using the element topological entities of (hp)2FEM and exemplified in

Figure 5.4. The organization of the table BoundaryIncidSend follows the order of incidence

numbering of the neighbor element of the current partition. In this way, the BoundaryIncidSend

table will be used to access the boundary solution sent to neighboring partitions and the table

BoundaryIncidRecv to update the boundary solutions of the current partition.

There are other auxiliary structures created from the METIS partitioning that will be

needed before creating the BoundaryIncidRecv and BoundaryIndicesSend tables. These struc-

tures store information about the boundary of partitions. They allowed to optimize and simplify

data access when creating the mapping of boundary incidences between neighboring partitions,

as they only consider the local incidence numbering.

The PartitionData class associates these auxiliary structures with the boundary

elements from the element topological indexes. The local incidences and nodal coordinates

are accessed from the topological indexes of the element. The main auxiliary structures are

computed in the following order after the METIS partitioning:

• Array of boundary elements;

• Array of internal elements;

• Array of neighboring partitions of each partition;

• Mapping table between global and local element numbers;

• Table with information about each boundary element.

The last variable is BoundaryElementInfo, an instance of OneIndexTable. Data stored in this

table have information associated with each boundary element of each subdomain. This table

stores for each boundary element: the adjacent element, the shared topologic entity (node, face,

edge), the partition ID, the partition ID of the adjacent element, and the number of shared

vertices.

Table NeighborsInfo of PartitionData is also allocated as an instance of the OneIn-

dexTable class. This table is computed from the auxiliary table BoundaryElementInfo. The in-

formation stored in both tables are the same. However, NeighborsInfo’s data is associated by

neighboring partitions and not for boundary elements or the partition as in the BoundaryEle-

mentInfo table. The tables BoundaryIndicesSend and BoundaryIndicesRecv are built from the

storage order of the NeighborsInfo table.

An example of the data stored in NeighborsInfo variable is given in Tables 5.1 to 5.2

for a mesh of 15 quadratic elements partitioned into 3 sub-domains as shown in Figure 5.8.
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The partitions 1, 2, and 3 are represented by the colors red, green, and yellow, respectively.

Tables 5.1 to 5.3 store, for each neighbor partition, information about the boundary elements

and their adjacent ones in neighboring partitions. In this way, each row of these tables are

organized in the following order:

1. The number of the boundary element of the current partition.

2. The number of the adjacent elements of the neighboring partition.

3. The topological entity is shared by the element and one of its adjacents, which have values

0, 1, and 2 for the node, edge, and face, respectively.

4. The local number of the topological entity is shared by the boundary element and its

adjacent. For a quadratic element the values are [0,3] for node, [0,3] for edge and [0,5]

for the face.

5. The number of vertices shared between the boundary element and its adjacent.

6. The number of the topological entity of the adjacent element.

P1

P2

P3

Figure 5.8. Mesh of square partitioned in three sub-domains using the METIS
library.

Data in Tables 5.1 to 5.3 were organized in this way so that, based on the incidences

of elements at the interfaces of neighboring partitions, the incidences for the same topological

entity of the neighbor elements are obtained. The algorithm works according to the following

conditions:

• If the current partition ID is greater than the neighboring partition ID, data will be ordered

by the numbering of the adjacent elements and then by the numbering of the boundary

elements of the partition;
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Table 5.1 – NeighborsInfo table for partition 1.

Partition 1
Number of neighboring partitions: 2

Neighboring ID: 2

Boundary Adjacent Entity Entity # (Boundary) # Vertices Entity # (Adjacent)

1 2 1 1 2 3
1 7 0 2 1 0
6 2 0 1 1 3
6 7 1 1 2 3
11 7 0 1 1 3

Neighbor ID: 1

Boundary Adjacent Entity Entity # (Boundary) # Vertices Entity # (Adjacent)

6 12 0 2 1 0
11 12 1 1 2 3

Table 5.2 – NeighborsInfo table for partition 2.

Partition 2
Number of neighboring partitions: 2

Neighbor ID: 1

Boundary Adjacent Entity Entity # (Boundary) # Vertices Entity # (Adjacent)

2 1 1 3 2 1
7 1 0 0 1 2
2 6 0 3 1 1
7 6 1 3 2 1
7 11 0 3 1 1

Neighbor ID: 3

Boundary Adjacent Entity Entity # (Boundary) # Vertices Entity # (Adjacent)

7 12 1 2 2 0
7 13 0 2 1 0
8 12 0 3 1 1
8 13 1 2 2 0
8 14 0 2 1 0
9 13 0 3 1 1
9 14 1 2 2 0

• otherwise, the current partition ID will be less than the neighboring partition ID and the
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Table 5.3 – NeighborsInfo table for partition 3.

Partition 3
Number of neighboring partitions: 2

Neighbor ID: 1

Boundary Adjacent Entity Entity # (Boundary) # Vertices Entity # (Adjacent)

12 6 0 0 1 2
12 11 1 3 2 1

Neighbor ID: 2

Boundary Adjacent Entity Entity # (Boundary) # Vertices Entity # (Adjacent)

12 7 1 0 2 2
13 7 0 0 1 2
12 8 0 1 1 3
13 8 1 0 2 2
14 8 0 0 1 2
13 9 0 1 1 3
14 9 1 0 2 2

ordering will be established first by the numbering of the boundary elements and then by

the adjacent boundary elements.

This organization guarantees an ordering between neighboring elements of neighboring parti-

tions by topological indices, which allowed gains in performance and ease of preparation of the

auxiliary tables BoundaryIncidRecv and BoundaryIncidSend.

In the following step, most of the mesh data stored in the GlobalModel object of

Model class is deleted to save memory space. The PartitionModel object of Model class is

constructed calling methods of (hp)2FEM . These methods map the boundary conditions and

load sets of the global into each partition using local numbers. Then, groups, incidences, and

coordinates are renumbered locally in each partition, and the high-order incidences and coordi-

nates are generated. Figure 5.9 shows the main methods used to create the data structure for the

(hp)2FEM parallel version. The high-order coordinates and incidences will be set up according

to the polynomial orders of the solution, mapping, and post-processing meshes, which may use

different polynomial orders.

Finally, the tables BoundaryIndicesRecv and BoundaryIndicesSend are generated

for nodal basis as follows:

1. Calculate the size of each row of tables that will be used to update and send boundary

incidences between neighboring partitions. This size is obtained by using data of table
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BuildPartitionModel

BuildPartitionFEGroups

BuildPartitionMeshes BuildPartitionMaterial

BuildPartitionGroup

Convert the global boundary conditions and loads to local;

Calculates the local groups for each partition;

Generate the local incidences according to global incidence data structure;

Map the global coordinates to local;

Generate high order coordinates and incidences locally.

Figure 5.9. PartitionModel package of the parallel (hp)2FEM .

NeighborsInfo. The maximum number of boundary incidences for each neighboring par-

tition is obtained by means of the topological entity (node, face, edge) of the boundary

element and the polynomial order.

2. Calculate local incidence and nodal coordinates for each boundary element of the parti-

tion using the order given in table NeighborsInfo for topological indexes of the boundary

elements. In this step, the BoundaryIndicesRecv table is built.

3. Exchange of boundary coordinates between neighboring partitions using the Algorithm 5.4

to obtain the correct order that the neighboring partition accesses the incidence for the

same topological entity. The use of coordinates is necessary, as the same topological en-

tity may differ between boundary elements and their adjacents.

4. Finally, for each neighboring partition and each element in table NeighborsInfo, the

BoundaryIndicesSend table is created with the incidences already ordered for the so-

lution array be accessed by the neighboring partition. Data of BoundaryIndicesSend will

be filled using table BoundaryIndicesRecv and the topological entity coordinates of each

boundary element.

BoundaryIndicesRecv and BoudaryIndicesSend tables are used in the elementwise

solvers of Sections 5.6 and 2.7. The same structures are also used for the global solvers of

(hp)2FEM .

5.5 THE DISTRIBUTED ALGORITHM FOR AVOIDING DEADLOCK PROBLEMS.

Due to concurrency, deadlock problems are common in parallel applications. It oc-

curs when one or more processes wait for data or resources from another process. Some ap-

proaches were developed in (hp)2FEM to use more nodes and cores as possible in clusters, for

example, the IBM Blue Gene/Q described in Section 6.1. Before implementing the deadlock

algorithm, it was not possible to run meshes with more than one thousand hexahedra and poly-

nomial orders up to four for the local projection solver. The overlapping algorithm, described in
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Section 5.4.1, improved this limitation, allowing to run meshes with more elements and nodes

of the IBM Blue Gene/Q. In this case, meshes with one million hexahedra and polynomial order

up to four using 16 thousand processes were used. However, the performance was not good, as

will be discussed in Section 6. The deadlock problem was identified in the IBM Blue Gene/Q

computer only when using more than 1,024 processes/nodes.

The earlier solver version using point-to-point communication with MPI caused

deadlock among the processes. Larger finite element meshes increase MPI communication mes-

sages’ size and, consequently, the wait time to receive a message from neighboring processes.

As a result, the code may experience deadlock and processes wait for tasks that will never be

completed.

Algorithm 5.2 is a classic example of the deadlock problem. Processes A and B try

to send data to each other, and both processes keep waiting to begin a new task. The situation can

be avoided by choosing one process to send and the other to receive the data first, as illustrated

in

Algorithm 5.2 Deadlock between two processes.

if Process A then
// Process A

Send_Data_To(Process B);
Receive_Data_From(Process B);

else
// Process B

Send_Data_To(Process A);
Receive_Data_From(Process A);

Algorithm 5.3 An algorithm to solve the deadlock between two processes.

if Process A then
// Process A

Receive_Data_From(Process B);
Send_Data_To(Process B);

else
// Process B

Send_Data_To(Process A);
Receive_Data_From(Process A);

A similar strategy can be used for more than two processes. In this case, the algo-

rithms classify the processes into two categories: those who send and those who receive the

message first. Some point-to-point communication cases classify sending or receiving using the

processes IDs; for example, processes with odd IDs for sending and processes with even IDs for

receiving data first. In another case, communication uses the topology of the processes: those

on the right send and those on the left receive data as the first task (PACHECO, 2011; HAGER;

WELLEIN, 2010).
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Based on point-to-point communication and Algorithm 5.3, we propose in this work

a mapping algorithm for the partitions with the same characteristics. The algorithm was pro-

posed according to the four-color theorem. This theorem, proved by Appel and Haken in (Appel;

Haken, 1977), stated that a plane divides a domain into continuous regions generating a map.

Subsequently, no more than four colors are assigned to the regions, considering that neigh-

boring regions can not have the same color (Appel; Haken, 1977; CHARTRAND; ZHANG,

2008). This map can be characterized by a two-dimensional finite element mesh, as illustrated

in Figure 5.10.

Figure 5.10. Color map for partitions for square finite element mesh.

Figure 5.10 presents the partitions of a global finite element mesh. The worst-case

is when each partition has only one element, as shown in Figure 5.10. We assign colors to a

3D partitioned finite element mesh avoiding the same color between neighboring partitions,

requiring a maximum of twenty-six colors to paint the global mesh regions.

Similarly to Algorithm 5.3, the procedure for color mapping for all partitions is

a pre-processing step and avoids deadlocks for finite element meshes. The general method is

shown in Algorithm 5.4. The starting color label is 0 and goes to the maximum number of colors

to paint a partitioned mesh. The partitions with the same color label i will send first the solution

vectors to the neighboring partition with a larger label i+ 1. Meanwhile, the partitions that do

not have the same color i receive the solution and send back the solution vectors computed for

the degrees of freedom.
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Algorithm 5.4 Point-to-point communication using the color mapping algorithm for the
(hp)2FEM partitions (ExchangeBoundariesSolutions).
Input: Color map of the mesh partitions, neighboring partitions array, data to exchange on

point-to-point MPI communication
/* Synchronization phase */

foreach i = 0; i < number_of_colors; i++ do
if my_partition.color == i then

/* Color time. Send, then receive */

/* Send to neighbors. */

foreach n = 0; n < my_partition.number_of_neighbors; n++ do
if neighbors[n].color > i then

send_to (neighbors[n]);

/* Receive from neighbors. */

foreach n = 0; n < my_partition.number_of_neighbors; n++ do
if neighbor[n].color > i then

receive_from (neighbor[n]);

else if my_partition.color > i then
/* Receive from neighbors with color time. */

foreach n = 0; n < my_partition.number_of_neighbors; n++ do
if neighbor[n].color == i then

receive_from (neighbor[n]);

/* Send to neighbors. */

foreach n = 0; n < my_partition.number_of_neighbors; n++ do
if neighbor[n].color == i then

send_to (neighbor[n]);

/* my_partition.color < i : sync. already done. */

The procedure to assign color IDs to the global mesh partitions was implemented

in the PartitionData class. The implemented algorithm allowed to execute of the projection

solver with three-dimensional meshes with more than one million elements and increase the

polynomial order, as will be shown in Chapter 6.

5.6 PARALLEL TRANSIENT EXPLICIT ELEMENTWISE SOLVERS

This section presents the key steps for the parallel implementation of the transient

explicit elementwise solvers discussed in Sections 2.6 and 2.7 for linear and non-linear prob-

lems, respectively. The description below considers the linear version, and the non-linear ver-

sion is similar.

As explained in Section 2.4, the central difference local solvers computes the sys-

tems of linear equations operating in an elementwise fashion. The parallel implementation used

shared and distributed memory with MPI and OpenMP described in Chapter 3. The solutions

for the displacement {u(n+1)} and acceleration {ü(n+1)} vectors at time steps of each partition

is exchanged to the neighboring partitions using Algorithm 5.4.
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Two instances of the OneIndexTable class are used to store the element stiffness

and mass matrices for the transient analyses. The rows store the matrices for each element of

the sub-domain. Some auxiliary variables were also allocated for each element, for example the

element load vector { fe} and displacement vector {ue}. In addition, the vector for the displace-

ment, velocity, and acceleration of the partition are also required.

The considered problem may have different load conditions, which are input using

the concept of load cases. Each load case is a set of different loads applied to the edges, faces,

or body of elements. Each element load generates a vector of nodal equivalent loads. The Com-

puteLoadVector method of the Solver class calculates the nodal equivalent loads for each load

case of the partition.

In many parts of the (hp)2FEM , OpenMP multithreading solutions were used. For

loads, an OpenMP thread is used to calculate the equivalent load for the elements. Consider the

example of Figure 5.11, where three partitions are used. Each edge load is computed by one

thread using local attributes of the partition, and the thread performs the numerical integration

of the load intensity using the shape functions obtained from the Interpolation package. For

the symbolic load intensities, the symbolic analyzer procedure is used to evaluate the variables

X , Y , and Z on the integration points.
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Figure 5.11. Use of MPI and OpenMP in (hp)2FEM to calculate the load vec-
tors.

The initial acceleration vector
{

u(0)
}

must be calculated before the main loop of

the explicit method. The product of the stiffness matrix [K] by the initial displacement
{

u(0)
}

or
{

u(n−1)
}

is done and used in Equation (2.45). Subsequently, the equation { f}− [K]{u(0)} is

computed.
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The main parallel regions implemented before the iteration loop of the transient

solver are in constructing element matrices and calculating the initial acceleration and displace-

ment.

When building the tables for the element matrices, parallel regions are defined so

that each thread is responsible for calculating the stiffness and mass matrix coefficients for each

element. The parallel region was implemented in the class FEGroups described in Chapter 4.

Methods of the FiniteElement class, called by FEGroups, have been rewritten because the

class attributes used in parallel regions could not be shared between threads. In general, com-

pilers do not allow private members or class attributes used within parallel OpenMP regions,

except for static members and attributes (OPENMP, 2018). In this way, some class attributes

have been replaced by local variables in methods of the FiniteElement class used to calculate

the coefficients of element matrices.

For the calculation of the initial acceleration, a parallel region was implemented for

the matrix-vector product in each element, as we will see below. These operations can also be

found in the element-by-element conjugated gradient method (CGD) implemented in (SUZUKI,

2017).

It is important to highlight that parallel regions are defined with explicit rules,

that is, all variables used in a parallel region were explicitly defined as shared or private. The

Code 5.1 illustrates the explicit case and how the parallel regions were defined for the solvers

in (hp)2FEM to calculate element solutions. On the other hand, the implicit way of declaring

variables in the parallel regions is implemented when variables are not evidenced within the

scope of shared() or private, as seen in Code 5.2.

Code 5.1 – Example of OpenMP - parallel region with explicit rules.

1 . . .

2 # pragma omp parallel default (none) \

3 shared ( NumberElements , ElementMassMatrices , ElementStiffMatrices ) \

4 private (ElemNum , Ke_P, Me_P, NumberLocalDOFs )

5 {

6 . . .

7 # pragma omp for

8 for ( ElemNum = 0; ElemNum < NumberElements ; ElemNum ++) {

9 // Access the mass and stiffness matrix for all elements

10 Ke_P = ElementStiffMatrices -> GetRowData (ElemNum , NumberLocalDOFs );

11 Me_P = ElementMassMatrices -> GetRowData (ElemNum , NumberLocalDOFs );

12 . . .

13 }

14 . . .

15 } // End of parallel region

16 . . .

Code 5.2 – Example of OpenMP - parallel region with implicit rules.
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1 unsigned long NumberElements = GetNumberElements ();

2 OneIndexTable <double > * ElementMassMatrices = GetElementMatrices (MASS

);

3 OneIndexTable <double > * ElementStiffMatrices = GetElementMatrices (

STIFFNESS );

4 . . .

5 # pragma omp parallel for

6 for (int ElemNum = 0; ElemNum < NumberElements ; ElemNum ++) {

7 int NumberLocalDOFs ;

8 double *Ke_P = ElementStiffMatrices -> GetRowData (ElemNum ,

NumberLocalDOFs );

9 double *Me_P = ElementMassMatrices -> GetRowData (ElemNum ,

NumberLocalDOFs );

10 . . .

11 }

12 . . .

Before the solver iteration, synchronization among processes is also used to update

the initial displacement. In this way, the displacement solutions {u(−1)} (see Equation (2.46))

for the degrees of freedom on the partition boundary will be exchanged via MPI point-to-point

communication using Algorithm 5.4. In addition, the vector of element measurements (length,

area, and volume) are also updated in the neighboring partitions. Then, the displacement solu-

tion’s weighting in the partition boundary will be computed according to Equation (2.36).

Since the solver is iterative, it was not possible to implement OpenMP directives

in such a way that each thread takes care of each time step. In this way, the application of

multithreading parallelism was carried out by dividing the main iteration loop into stages, where

each one starts and ends a parallel region through OpenMP directives.

These parallel regions are defined in each of the following solver stages: calcu-

lation of displacement and local acceleration (Equations (2.50) and (2.51)); exchange the

boundary solutions among partitions; displacement weighting and global acceleration calcu-

lation (Equations (2.52) and (2.54)); global-local mapping; computation of internal loading

(Equation (2.59)); loading interpolation and residue calculation (Equation (2.61)); solution of

system equations (2.47) for the residue using the conjugated gradient method with diagonal pre-

conditioner (CGD); update of local loading array to the next time step; and finally, calculation

of the energy norm of the approximated solution.

In the first step, each OpenMP thread is responsible for matrix-vector and vector-

vector multiplication of Equation (2.49). The implementation of the parallel section consists of

executing one thread per element. Thus, the variables related to finite elements are defined as

private; for example, the number of equations (NumberLocalDOFs) used in Code 5.1. On the

other hand, the variables with a single memory address in the partition are considered shared;
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for example, the element mass matrix table (ElementMassMatrices), used in Code 5.1.

The LAPACK and BLAS optimized linear algebra libraries are used in this parallel

region. The LAPACK functions dpptrf and dpptrs solve the system of equation (2.47) by the

Cholesky method. BLAS is used in the expressions [Ke]{u
(n)
e } and [Me]({u

(n)
e }− {u

(n−1)
e }).

Finally, the local values for displacement and acceleration are mapped to the global solution

vectors of the partition.

In this mapping, a concurrency problem was observed when assigning local solu-

tions to the partition’s global displacement and acceleration vectors since the global vectors

are shared among threads. The #pragma omp atomic directive was used in the mapping oper-

ation from element to the global DOF vector. In this way, the global DOF vectors are updated

atomically, avoiding the possibility of simultaneous writing by threads (OPENMP, 2018).

Exchanging of boundary solutions among neighboring partitions is performed only

by the master thread. Synchronization is performed to send and receive data among neighboring

partitions using the Algorithm 5.4.

Some parallel regions have been created so that each thread operates on degrees of

freedom and not on elements. For example, in the step for weighting displacement and accel-

eration vectors by element measures, each thread calculates and stores each DOF’s weighted

value in the partition solution vectors.

The next parallel region is to map from the global solution to update the local solu-

tion vectors. At this stage, each thread operates by the element, as shown in Code 5.3. Analo-

gously, each thread runs in parallel by element in the calculation of the internal load of Equation

(2.59) using the BLAS library to perform matrix-vector multiplication according to Equation

(2.59). At the end of the parallel region, the use of the # pragma omp atomic directive is nec-

essary since the expression will be mapped again to the global internal load vector, which is

shared among threads.

Code 5.3 – Mapping global to local after update solution among partitions.

1 . . .

2 // For each degree of freedom of the partition ID

3 for (local_dof = 0; local_dof < NumberEquations ; local_dof ++) {

4 // Gets the global dof.

5 global _dof = EquationsArray [local_dof ];

6 // Than the total number of free DOFs.

7 if ( global _dof < NumberFreeDOFs ) {

8 U t−∆t
e, local_do f =U t

global_do f

9 U t
e, local_do f =U t+∆t

global_do f

10 U̇ t
e, local_do f = U̇ t+∆t

global_do f

11 Ü t
e, local_do f = Ü t+∆t

global_do f

12 } // End if

13 }
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14 . . .

In the next step, each thread is responsible for operations for each degree of free-

dom, calculating the residue vector given by the difference of the external and internal loads,

see Equation (2.61). In the same operation, there is a linear interpolation between two external

loading steps.

The CGD method is called by the master thread to solve Equation (2.47). In this

method, parallel regions were added, associating each thread to a degree of freedom in the par-

tition to compute matrix-vector and vector-vector products. In addition, another parallel region

was created associating the threads for each element in the method MultiplicateElemByElem (...)

of the Solver class. This method calculates the matrix-vector multiplication for each element

in the CGD iterations. The threads for this method are also used in three steps: mapping be-

tween global to local DOFs of the partition; matrix-vector product executed with BLAS func-

tion cblas_dspmv (...); and the sum in the global partition vector from the element product. In

the latter, the directive #pragma omp atomic, because the elements associated with the threads

may share the same degree of freedom of the global result vector. Although the master thread

invokes the CGD method, good scalability results were obtained as presented in Section 6.7.2.

In the next parallel region, the element external load vector is updated for the next

time step. First, each thread maps the residue computed by the CGD to an element vector of

the partition. Then, the thread calculates the product between the element mass matrix and

the residue mapped to the element with the BLAS cblas_dspmv (...) function. At the end of

the parallel region, the resulting value per thread will be added to the element external load

updating the load for the next time step. For this update, we use the directive "#pragma omp

atomic" in each degree of freedom of the element.

In the step of calculating the energy norm for each loading step, parallelism is used

with OpenMP and communication with MPI. The energy norm is calculated as

||u||E =
√

{uT}[K]{u}. (5.1)

The parallelism with OpenMP is used to calculate the multiplication [K]{u} using the method

MultiplicateElemByElem(...). The MPI_AllReduce() function sums the results from each parti-

tion.
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6 RESULTS AND DISCUSSION

This chapter presents the validation of the (hp)2FEM parallel architecture and anal-

ysis of its performance for different cases. First, the computational environments used and their

main features are described. Next, the validation of the projection element wise solver for uni-

form and non-uniform p distributions are considered. The main optimization aspects of the

serial version are then stated. The results of the overlapping and other interface renumbering

algorithms are presented considering weak and strong scalability for the projection solver. The

last two sections consider the performance of the explicit element wise solver for beam and

crankshaft meshes with the hybrid parallel implementation.

6.1 COMPUTATIONAL ENVIRONMENTS

This section presents the computational resources of the IBM Blue Gene/P and Q

supercomputer architectures used in this work, as well as a comparison of the two environ-

ments. The computer systems are located at the Argonne National Laboratory (ANL), of the

Department of Energy of the United States (ALCF.ANL.GOV, 2014). The IBM Blue Gene/Q

is an evolution of the Blue Gene/P. This section also describes the tools used to optimize the

(hp)2FEM serial architecture described in Chapter 4 and evaluate the scalability of the parallel

version presented in Chapter 5.

Another environment used was the Kahuna cluster located at the Center for Com-

putational Engineering & Sciences (CCES) of the Institute of Chemistry at UNICAMP (CCES,

2020). CCES is one of the Research, Innovation, and Diffusion centers funded by the São Paulo

Research Foundation (FAPESP).

6.1.1 Surveyor - IBM Blue Gene/P Solution

IBM Blue Gene/P Solution system (2007) has a total of 163840 cores with a the-

oretical peak performance of 551 TFlops. In 2008, this supercomputer was the 4-th ranked in

the Top 500 list with the 500 fastest computers in the world (MEUER et al., ). The IBM Blue

Gene/P was split into 3 computational systems: Intrepid, Challenger, and Surveyor, each one

with different purposes according to applications.

In the default configuration, the hardware architecture of the computational system

has the following hierarchy:

• 1 Chip with 4 processors - 13.6 GF/s.

• 1 Computer card with 1 chip - 13.6 GF/s and 2.0 GB DDR memory.
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• 1 Node card with 32 chips - 435 GF/s and 64.0 GB DDR memory.

• 1 Rack with 32 node cards adding up to 4096 processors - 14 TF/s.

The Blue Gene/P has 72 racks. During the first phase of the (hp)2FEM system pro-

filing, the Surveyor computational system with 1 rack was used with just one node or computer

card. The initial objective was to know the (hp)2FEM performance and do some optimization.

The GNU and IBM compilers are available in the Blue Gene/P computer (STALL-

MAN, 2003). We employed the XL C/C++ Advanced Edition compiler for Blue Gene/P, V9.0

(WALKUP, 2011) with mpixlcxx for MPI. Other libraries used were METIS 5.0 for mesh par-

titioning, Lex 2.5.35 and Yacc 1.9 for the symbolic analyzer, Valgrind 3.8.1 for debugging,

PAPI 3.9.0 and Gprof 2.20.51 for profiling, BLAS 3.0 and LAPACK 3.0 for linear algebra and

solution of systems of equations.

6.1.2 Mira - IBM Blue Gene/Q, Power BQC Systems

Blue Gene/Q is part of the third generation of the IBM Blue Gene supercomputer

family with a configuration of 786432 cores, 768 memory terabytes, and a performance peak

of 10 petaflops. The BG/Q was the 3-rd top-ranked in the Top 500 list (MEUER et al., ) and is

currently the 22-th.

The BG/Q is also split in 3 computational systems: Mira, Cetus and Vesta, being

Mira the system with greater performance. The main features of these systems are as follows:

• Mira (Production)

– 49152 computational nodes / 786432 cores

– 768 TB of memory

– Peak performance of 10 petaFLOPS

• Cetus (Tests and Development)

– 4096 computational nodes with 65536 cores

– Peak performance of 838 teraFLOPS

• Vesta (Tests and Development)

– 2048 computational nodes with 32768 cores

– 32 TB of memory

– Peak performance of 419 teraFLOPS.
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Table 6.1 – Comparison of the nodes of the IBM Blue Gene/P and Q systems.

Hardware Blue Gene/Q Blue Gene/P

Processor 64 Bits Power A2 32 Bits PowerPC 450d
Floating point operations 4-way SIMD (QPX) 2-way SIMD
Interconnection topology 5D Torus 3D Torus + Tree
Clock speed 1600 MHz 850 MHz
Cores per node 16 4
Memory per node 16 GB 2 GB

Vesta was initially used and had the same architecture as Mira, but with two com-

putational racks. Each rack is composed of 1024 computational nodes; each node has a 1600

MHz PowerPC A2 processor with 16 cores and 16 GB of RAM, 1 GB of RAM for each core.

The total number of cores in Vesta is 32768. The communication between nodes is based on

IBM 5D Torus interconnections with traffic capacity of up to 40 gigabits (ARGONNE, 2015).

The main tools utilized in the Blue Gene/Q were the IBM XL C/C++ Blue Gene/Q

compiler V12.0 (IBM, 2012), Allinea DDT, and Coprocessor for debugging. Allinea DDT is

a tool for large-scale parallel multi-thread applications used to enable debugging in clusters

(ALLINEA, 2014). The Coprocessor is also useful when working with many cores since it

indicates the cores dumped. It offers the opportunity of code debugging in all levels of hardware,

kernel, and application.

Table 6.1 compares the computational nodes of the Blue Gene/P used in the op-

timization described in Section 6.3 and the Blue Gene/Q utilized to implement the parallel

(hp)2FEM .

The hardware architecture of a computational node in the IBM Blue Gene/Q is il-

lustrated in Figure 6.1. As described previously, each computational node has 16 cores, with one

program counter, Previous Program Counter (PPC), and one for redundant use. All processors

are symmetric, and each one can simulate up to 4 threads using simultaneous multithreading

(MARR, 2002).

Each core has one L1 cache for instructions and data, with 16 kB for instructions

and 16 kB for data. From another cache, known as the L1 prefetch engine, comes an interface

with another A2 Core processing unit (see (GILGE, 2014b)). There is also one L2 cache with 32

MB of memory. Besides 16GB of RAM, each computational node has a dual memory controller.
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Figure 6.1. Compute node of the Blue Gene/Q architecture (Haring et al.,
2012).

6.1.3 CCES - Unicamp Kahuna computer cluster

The last performance tests of the (hp)2FEM software were executed in the Kahuna

cluster with Intel Xeon processors. The most important systems here utilized were

• 32 Graphic nodes with 20 cores HT Intel Xeon E5-2670 v2 - 2.50GHz, 64G of memory,

• 28 Graphic nodes with 24 cores HT Intel Xeon E5-2670 v3 - 2.30GHz, 64G of memory,

• 20 Compute nodes with 24 cores HT Intel Xeon E5-2670 v3 - 2.30GHz, 64G of memory.

All nodes have 2 threads per core. The first two sets have compute nodes with NVidia Tesla

K20M and K40M boards, respectively. (hp)2FEM software was compiled with the Intel icpc

19.0.4 compiler. In addition, the libraries PAPI 5.5.1 and Intel(R) VTune(TM) Amplifier XE

2015 were used to profile the serial and parallel code, METIS 5.1.0 for partitioning the finite

element mesh, OPENMPI-1.8.3 as MPI version, MKL 11.2.0, BLAS and LAPACK to optimize

the linear algebra operations.

6.2 VALIDATION OF THE ELEMENT WISE PROJECTION SOLVER

The local projection solver described in Chapter 2 was considered to validate the

p-non-uniform architecture of the (hp)2FEM software. The L2-error norm of the approximated

solution was calculated for different polynomial orders p for square and hexahedron meshes.

The analytical solutions used for square and hexahedron meshes are plotted in Fig-

ures 6.2(a) and 6.2(b), respectively, and given by

u(x,y) = exp(πx)sin
(πy

4

)

(x−1)2 y2, (6.1)
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u(x,y,z) = exp(πx)sin
(πy

4

)

(x−1)2 y2 (z− xy) . (6.2)

The domains of these functions are 0 6 x,y 6 2 and 0 6 z 6 1.

The meshes are illustrated in Figures 6.3 and 6.4. The p-non-uniform strategy de-

scribed in Section 2.4 was applied using Lagrange polynomial basis, Gauss–Lobatto collocation

points, and Gauss–Legendre integration points (KARNIADAKIS; SHERWIN, 2005; BITTEN-

COURT, 2014).

(a) 2D function. (b) 3D function for z = 0.

Figure 6.2. Functions to be approximated by the element wise projection solver.

(a) Non-distorted mesh. (b) Distorted mesh.

Figure 6.3. Square meshes for the validation of the element wise projection
solver.

(a) Non-distorted mesh (b) Distorted mesh.

Figure 6.4. Hexahedron meshes for the validation of the element wise projection
solver.

Figure 6.5a shows the convergence of the L2-error norm for the square mesh accord-

ing to the number of degrees of freedom for polynomial orders from 1–12. The convergence rate
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improves exponentially concerning the polynomial order, as expected for the HO-FEM (KAR-

NIADAKIS; SHERWIN, 2005; BITTENCOURT, 2014). Note that the errors are larger for dis-

torted meshes. The hexahedron meshes gave an error norm similar to that of square meshes for

polynomial orders from 1 to 11, as shown in Figure 6.5b.
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(a) L2-error norm for square meshes.
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(b) L2-error norm for hexahedron meshes.

Figure 6.5. L2-error norm for the square and hexahedron meshes to validate the
element-wise projection solvers. STANDARD uses the two- or three-
dimensional mass matrices and D1−MAT RICES is a tensor product
of one-dimensional mass matrices, as described in Section 2.2.

The p-non-uniform distribution allows us to use different polynomial orders for the

element shape functions. The behavior of the p-non-uniform approximation was analyzed with

the functions given in Equations (6.1) and (6.2). In the first case, the polynomial order that

obtains the best convergence of the p-uniform solution was used as the reference result for the

p-non-uniform analyses. The error norms obtained for the p-uniform cases were 1.8846×10−8

and 3.7999×10−7 for the 2D and 3D meshes, respectively.

Tables 6.2 and 6.3 present the calculated errors for eight p-non-uniform distribu-

tions on non-distorted square and hexahedron meshes, (Figures 6.3(a) and 6.4(a), respectively)

and the polynomial orders used for each element. The error results are similar for these com-

binations, which indicates the possibility of decreasing the polynomial order for certain mesh

elements.

The polynomial order combinations of Tables 6.2 and 6.3 were selected according to

the function behavior shown in Figures 6.2(a) and 6.2(b), respectively. These functions exhibit

high gradient variation near the domain boundary. These boundaries, as shown in Figures 6.2(a)

and 6.2(b), are in the intervals 1 6 x,y 6 2. Thus, the largest polynomial order is used on the

boundary with the highest gradient (in this case, on element 4). Consequently, lower polynomial

orders were considered for the other elements. The convergence results are close to those from

the p-uniform solution.
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Table 6.2 – Square mesh with p-non-uniform polynomial distribution.

Elem. 1 Elem. 2 Elem. 3 Elem. 4 ‖e‖L2

1 13 13 13 13 1.8846e-08
2 12 12 13 13 1.9661e-08
3 11 11 13 13 8.2871e-08
4 12 12 12 13 1.9693e-08
5 11 11 11 13 8.4874e-08
6 11 11 12 13 8.2876e-08
7 11 12 12 13 1.9863e-08
8 10 11 12 13 8.4268e-08

Table 6.3 – Hexahedron mesh with p-non-uniform polynomial distribution.

Elem. 1 Elem. 2 Elem. 3 Elem. 4 ‖e‖L2

1 11 11 11 11 3.7999e-07
2 10 10 11 11 6.3310e-07
3 9 9 11 11 6.0686e-06
4 10 10 10 11 6.4565e-07
5 9 9 9 11 6.6834e-06
6 9 9 10 11 6.0697e-06
7 9 10 10 11 6.7297e-07
8 8 9 10 11 6.1115e-06

The L2-error norms for the uniform and non-uniform distributions are shown in

Figures 6.6(a) and 6.6(b). The plots exhibit the errors calculated for the p-uniform case and eight

combinations of polynomial orders for the p-non-uniform approach. The polynomial orders

were decreased from 11 to 8 for the first element. A comparison between the p-uniform and

p-non-uniform cases shows that, even with a lower polynomial order in certain elements, the

error norm’s magnitude remains the same as the best case with the p-uniform distribution.

An error estimator should be used to obtain an optimal distribution of element or-

ders. The example here presented had the objective only to validate the architecture of (hp)2FEM

for non-uniform order distribution.

6.3 SERIAL CODE OPTIMIZATION

This section describes the performance and memory consumption improvements

obtained by optimizing the (hp)2FEM serial code. We performed experiments using a mesh

of 16 hexahedrons and polynomial order 10, with 18801 degrees of freedom. The software

was executed on the IBM Blue Gene/P System, which runs the CNK/SLES 9 Linux operating
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Figure 6.6. Comparison between p-non-uniform and p-uniform strategies.

system on 860 MHz 4-core PowerPC 450d processors. Each node has 2.0 GB of memory. We

used the open-source version of BLAS and LAPACK (version 3.0) from NetLib (DONGARRA,

2003). We compiled the code with XL C/C++ Advanced Edition for Blue Gene/P, V9.0, using

the following flags:

• -qtmplparse=warn: to check warnings for semantic errors.

• -qlanglvl=stdc89: used for compilation, conforming the ANSI C89 standard, also known

as ISO C90.

• -O3: applied to compiler optimization level 3.

(hp)2FEM was executed three times, and the average runtime was used to determine perfor-

mance improvement.

Figure 6.7 shows the execution times and speedup for each optimization step. The

first one considered the BLAS library and reduced the runtime by 39%. The next optimization

forced the IBM XLC compiler to perform more aggressive loop unrolling using the flag "-qhot"

(GILGE, 2014a). This option reduced the execution time by 36% compared to the previous ver-

sion optimized with BLAS. We also did modifications in the Mapping class of the FEGroups

package, which is responsible for generating the Jacobian matrices. We moved loop-invariant

computations out of loops and enabled loop unrolling, which accelerated the code 1.82 times.

LAPACK library was used to solve a linear system of equations using Gaussian elimination, re-

ducing the runtime by 5% only. Finally, the D1-Matrices procedure improved the performance

twice over the previous optimization. In the end, the total runtime was reduced to 4.52 times.

In addition to improving the execution time, the D1-Matrices procedure reduced the

memory consumption required by shape functions. For a mesh with 16 hexahedrons and poly-

nomial order 13, the total memory consumed by ShapeFunctions objects were approximately
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Figure 6.7. Evaluation for the (hp)2FEM serial code.

four times less with the D1-Matrices procedure. The overall reduction in memory consumption

was from 1.63 GB to 0.41 MB.

6.4 EVALUATION OF THE OVERLAPPING ALGORITHM

This section analyzes the strong scalability of the overlapping algorithm described

in Section 5.4.1 with the element wise projection solver of Section 2.3. We conducted speedup

and efficiency tests using the IBM Blue Gene/Q architecture on the Mira platform.

A mesh of 10000 hexahedron was used for polynomial orders 1, 3, 6 and 9, reaching

up to 7403986 degrees of freedom for the approximation of function (6.1) . The solver was

executed using MPI communication only for the mesh partitioning.

It is important to mention that the solver is executed in two phases: one for solving

the finite element systems of equations for the duplicate region and the other for the internal

elements of each partition. Thus, the overlapping algorithm avoided solver communication by

duplicating information about interface elements of neighboring partitions.

The overlapping algorithm proved non-scalable due to the computation growth

when increasing the number of partitions or neighbors of each partition. Figure 6.8(a) shows

the optimal speedup and the speedups for polynomial orders 1, 3, 6 and 9. The speedup remains

the same when increasing the polynomial order from 1 to 9.

In summary, the overlapping algorithm has a near-optimal speedup for up to 8

processors out of the 1024 MPI processes evaluated. The same observation is valid for Fig-

ure 6.8(b), where the efficiency up to 8 MPI processes was 75% and 74% for polynomial orders

1 and 9, respectively. Moreover, efficiency drops linearly by doubling the number of processors.

Comparing with the versions used in Section 6.6, the scalability of the overlapping
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algorithm is much lower varying the polynomial order, even though there is no communication

of MPI processes. Thus, the increase in computation within the partition due to the number of

neighbors makes it a non-efficient parallel version.
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Figure 6.8. Performance of the element wise projection solver with the overlap-
ping algorithm and a mesh of 10000 hexahedrons.

6.5 COMPARISON OF NUMBERING ALGORITHMS OF INTERFACE NODES

The ClockWiseCounter and NonSequential renumbering algorithms presented in

Sections 5.4.2 and 5.4.3, respectively, were compared. Their performance were evaluated for

the element wise projection solver with a 10000 square mesh and polynomial orders 1, 4, 6 and

9. The considered function for the projection solver approximation is given in Equation (6.1).

The Blue Gene/Q computer was used for all results presented in this section.

We used the same serial code to evaluate scalability for both algorithms with one

MPI process by compute node. The main differences of the algorithms are the message size

exchanged by MPI point-to-point communication and the update of interface solutions. The

ClockCounterWise algorithm uses the first index and size of the neighbor boundary solution

array to update the interface solutions. The NonSequential algorithm exchanges all partition

boundary solution array.

Figures 6.9(a) and 6.9(b) show the speedup of the ClockWiseCounter and NonSe-

quential algorithms for polynomial orders 1, 4, 6 and 9. The speedup of the ClockWiseCounter

algorithm for polynomial orders 1 and 4 is closer to ideal. The overall scalability for the con-

sidered polynomial orders is similar for both algorithms.

Figure 6.9(c) presents the efficiency measures for both algorithms and the consid-

ered polynomial orders. They remained almost constant up to 256 processors and polynomial
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orders 1, 4 and 6. The worst value was 63% for polynomial order 9. The ClockWiseCounter

algorithm exchanges less messages than the NonSequential algorithm. The overhead is higher

for more than 256 partitions.
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Figure 6.9. Comparison of the Non-Sequential and ClockWiseCounter renum-
bering algorithms for square mesh of 10000 elements.

6.6 NON SEQUENTIAL NUMBERING ALGORITHM WITH HIGH-ORDER DATA

GENERATION

This section considers the element wise projection solver with a mesh of 10000

hexahedrons and polynomial orders 1, 3, 6, and 9, reaching 7,403,986 degrees of freedom

for P = 9. We compared its performance using IBM BLAS library and open source Netlib

BLAS (IBM - INTERNATIONAL BUSINESS MACHINES CORPORATION, 2012; DON-

GARRA, 2003). The non sequential numbering algorithm for the partition boundary nodes
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with high-order data generated in the PartitionModel class of Section 5.4.4 is considered for

all results presented here.

6.6.1 Strong scalability

Figures 6.10(a) and 6.10(b) illustrate the strong scalability with up to 1024 proces-

sors using IBM and Netlib BLAS libraries. Similar speedups were obtained for both libraries

with polynomial order 1 as shown in Figure 6.10(a). However, as the polynomial order in-

creased, the scalability decreased, as illustrated in Figure 6.10(b). The code version with IBM

BLAS achieved better scalability when compared with the Netlib version.
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Figure 6.10. Speedup of the element wise projection solver with a mesh of
10000 hexahedrons using the IBM and Netlib BLAS libraries.

Figure 6.11 shows the efficiency measure with respect to the number of processes.

Similarly to the speedup test, IBM BLAS achieved better efficiency than Netlib BLAS. The

worst efficiency of 65% was obtained with polynomial order 9 and 1024 MPI processors as

shown in Figure 6.11(b). Netlib obtained an efficiency of 34% for the same case. Netlib BLAS

code version took 1209.59 s for one processor and 3.51 s with 1024 processors. In contrast, the

IBM BLAS code version spent 1210.57 s with one processor and 1.85 s for 1024 processors.

IBM version obtained better efficiency because it is optimized for the Blue Gene/Q architecture.

Figure 6.12 shows the CPU time percentage spent by MPI communication rou-

tines concerning the number of processes for polynomial orders 3, 6, and 9. It may be noted

that the decrease in speedup and efficiency observed in the previous tests is directly related to

point-to-point communication cost as the number of neighboring partitions and problem size

increases. For P = 9 and 7403986 degrees of freedom, MPI communication took 8% of the

total (hp)2FEM runtime.
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(a) Polynomial order 1 (11466 DOFs).
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(b) Polynomial order 9 (7403986 DOFs).

Figure 6.11. Parallel efficiency of the element wise projection solver with a mesh
of 10000 hexahedrons using IBM and Netlib BLAS libraries.
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Figure 6.12. Percentage of execution time spent on MPI communication for the
element wise projection solver with a mesh of 10000 hexahedrons.

6.6.2 Weak Scalibility

We used eleven meshes ranging from 1000 to 1024000 elements to evaluate the

weak scalability of (hp)2FEM . The number of processors was increased proportionally from 1

to 1024 nodes. The results obtained are illustrated in Figure 6.13 for polynomial orders 1, 3, 6

and 9.

As expected, the runtime increased with higher polynomial orders. However, the

elapsed time measured for each polynomial order exhibited similar behavior as the number

of processors and elements increased. Figure 6.14 displays the efficiency calculated based on

the ideal sizeup given in Equation (3.5). The efficiency decreases as the number of processors

increases. Profiling results indicate that this fact comes again from the increasing of commu-

nication time. Even though the efficiency decreases to 80% after 64 processors, it remained

constant when running with more processors for all experiments. Hence, the parallel version of



94

Number of Processors and 

Number of Hexahedra (x1000)

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

E
la

p
se

d
 T

im
e 

(s
)

0.1

0.5
1

5
10

30

100
150

P1 P3 P6 P9

Figure 6.13. Weak scalability of the element wise projection solver.

(hp)2FEM shows excellent weak scalability for the considered example.
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Figure 6.14. Efficiency of weak scaling analysis of the element wise projection
solver.

6.6.3 Use Case with 32768 nodes on IBM Blue Gene / Q

We also evaluated the strong scalability on the production environment using 2/3

of compute nodes available in the IBM Blue Gene/Q Mira. The projection problem was solved

using 1024000 hexahedrons and polynomial order 9, which corresponds to 840 millions of un-

knowns. Figure 6.15 illustrates the speedup and efficiency when running up to 32768 compute

nodes.

We can see that the speedup was close to ideal, reaching 26436 in the worst case

for 32768 processors, and an efficiency of more than 80%. The total computation time was 4.6

s. For comparison purposes, the estimated time using a single processor is approximately 35 h.
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Figure 6.15. Speedup and efficiency with 32768 computing nodes of the IBM
Blue Gene/Q Mira processors.

6.7 PARALLEL PERFORMANCE FOR THE ELEMENT WISE CENTRAL DIFFER-

ENCE METHOD FOR STRUCTURED MESHES

This section presents the parallel performance for a structured mesh of a beam prob-

lem. First, we consider only OpenMP applied to the conjugate gradient method with diagonal

preconditioner (CGD) of the element wise linear transient solver. Second, we consider MPI and

OpenMP applied to the linear problem and show the parallel performance of the solver and

the matrix-vector operations implemented in CGD. At last, we repeat the previous analysis for

the non-linear large displacement problem. OpenMP is implemented only in the matrix-vector

operations for each element into the CGD.

6.7.1 Evaluation of multi-threading procedures

The element wise central difference method described in Sections 2.6 and 5.6 was

used to implement the multithreaded parallelism procedures of (hp)2FEM software. The main

OpenMP procedures are related to linear algebra operations, such as matrix-vector multiplica-

tion.

We use a beam of length 10 m in the longitudinal direction x (0 ≤ x ≤ 10) and

square cross-section of 1 m (0 ≤ y,z ≤ 1). All nodes are clamped at the left end (x = 0) and a

face load of intensity −1 in the y direction applied to elements located at the right end (x = 10).

We considered Hookean material for the linear problem. The material properties considered are

Young’s modulus E = 1000 Pa, Poisson ratio ν = 0.3 and density ρ = 1.0 Kg/m3. The finite

element mesh with 8192 hexahedrons illustrated in Figure 6.16 is used for the results presented

in this section.
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Table 6.4 – Runtime for the solution of the linear equation system with
OpenMP version of the element by element CGD method used
in the explicit transient analyses of the beam example.

Number of threads
Elapsed Time (s)

31104 DOFs 221952 DOFs 1672704 DOFs

1 3.4375 24.3476 505.9082
2 1.7608 12.2524 250.5481
4 0.8818 6.1521 125.0179
8 0.6472 3.2422 63.2576

16 0.4073 2.3280 36.4629
32 0.2498 1.1931 21.8032

Figure 6.16. Beam mesh with 8192 hexahedrons.

Table 6.4 presents the elapsed time in seconds for the solution of the linear equa-

tion system using the iterative conjugate gradient method with diagonal preconditioner (CGD),

implemented in an element by element fashion, to solve for the residue in Equation (2.61). This

method takes about 52% of execution time for all transient analyses here considered. Table 6.4

considers polynomial orders 1, 2 and 4 with 31104, 221952 and 1672704 degrees of freedom,

respectively. Tolerance of 10−10 and maximum number of 10000 iterations were considered for

the CGD method and 10 time steps for the explicit transient analysis.

The analyses were performed in the Kahuna cluster with the mpiicpc 19.0.4 com-

piler and the optimization flags ’-O3’, ’-ffastmath’, and ’-mavx2’. Other optimizations were

applied to BLAS, MKL, LAPACK, inline methods, and loop-invariant computations not ap-

plied by the compiler similarly to Section 6.3. We also used the parallel procedure for non

sequential numbering of interface nodes presented in Section 5.4.4.

Figures 6.17(a) and 6.17(b) show the speedup and efficiency for the results of Ta-

ble 6.4. When the number of DOFs increased, the speedup improved due to the increasing

amount of matrix-vector computation in each finite element, which is computed in a thread.

The speedup with 1672704 DOFs was 13.9, using a maximum of 16 threads. Although each

compute node has 20 cores, we use up to 32 threads to evaluate the hyper-threading perfor-

mance. In this case, the hyper-threading had a gain of 30.9% for 20 cores. The result closest
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to the ideal speedup occurred with 8 threads. The minimum efficiency was 72% and decreased

with 8 threads because of synchronization overhead.
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Figure 6.17. Speedup and efficiency of the multiplication methods used in the
CGD method for the linear explicit transient analyses of the beam
example.

6.7.2 Scalability of the hybrid element wise transient solvers applied to beam analyses

The scalability results for the MPI+OpenMP hybrid parallelism are here presented

for the non-linear and linear transient analyses of the previous beam using shared and distributed

memory. We considered Hookean and Neo-Hookean materials for the linear and non-linear

analyses, respectively. The material properties considered are Young’s modulus E = 1000 Pa,

Poisson ratio ν = 0.3 and density ρ = 1.0 Kg/m3. The results were run in the HT Intel Xeon

E5-2670 v2 - 2.50GHz machine of the Kahuna cluster described in Section 6.1.3. We used

up to 16 compute nodes and 1 to 20 cores for each node; 1 MPI process per node and 1 or 2

OpenMP threads for each core. As stated in the previous section, the OpenMP implementation

was applied for 52% of the running time of the profiled serial solver. There are other loops in

the code where iterations cannot be executed independently.

We use all optimization options applied to the serial (hp)2FEM version as discussed

in Section 6.3 with the Intel compiler and optimization flags ‘-O3’, ‘-ffastmath’ and ‘-mavx2’.

Figure 6.18 shows the scalability of the linear central difference element wise method for the

beam analysis. The results for MPI-only are given in Figures 6.18(a) and 6.18(b) with 1 process

per node. The results for MPI + OpenMP are illustrated in Figures 6.19(a) and 6.19(b) for

polynomial orders 1, 2 and 4. We considered 1 MPI process for each compute node and many

OpenMP processes to make better use of shared memory for the HO-FEM.
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6.8 SCALABILITY OF THE ELEMENT WISE LINEAR TRANSIENT SOLVER AP-

PLIED TO CRANKSHAFT ANALYSES

This section presents high-performance results for linear explicit transient analyses

using the element wise method for the crankshaft of a 4 cylinder and 4 strokes internal combus-

tion engine illustrated in Figure 6.26. We considered Hookean material with Young’s modulus

E = 210000 N/mm2, Poisson ratio ν = 0.3 and density ρ = 7.85×10−6 Kg/mm3.

The dynamic loads applied to the crankpins were obtained from the engine pressure

curve at 2500 rpm for one engine cycle, that is, 180◦ of crankshaft rotation, considering 45 time

instants (RODRIGUES, 2013). Figures 6.27(a) and 6.27(b) illustrate the forces in the x and y

directions which define 45 load sets. They are applied to the external surfaces of each crankpin

as distributed loads of intensities obtained dividing the forces by the respective surface areas for

an angle of 60◦. Speed of 2500 rpm corresponds to 12 milliseconds for one engine cycle. The

crankpins are numbered 1 to 4 from left to right along the longitudinal axis z.

x

y
z

60o

Figure 6.26. Crankshaft with the boundary conditions and loads. The crankpins
are numbered 1 to 4 from the left to right of the longitudinal z-axis.

(a) Force in x-axis. (b) Force in y-axis.

Figure 6.27. Forces in x and y axes applied on the crank pins.
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Five meshes were generated with 17810, 73800, 327181, 580781 and 1789811

hexahedrons and 22423, 85607, 358877, 627180 and 1891069 DOFs, respectively, for poly-

nomial order 1. We also used polynomial orders 2 and 4 for all meshes and 6 for the coarsest

mesh with 17810 elements.

The transient analyses used lumped and consistent mass matrices calculated before

the main timestep loop. The final time of the transient analyses was reduced as well as the

number of load steps just to obtain the necessary scalability results. The tests were performed

on the Kahuna cluster with 32 nodes.

6.8.1 Load balance

The multilevel k-way algorithm of the METIS library was used for partitioning

of the crankshaft meshes. This algorithm has more parameters than the multilevel recursive

bisection algorithm described in Section 5.3. After evaluation, the k-way procedure had better

results for the load-balancing of the crankshaft meshes.

The most important parameters of the k-way algorithm were “-contig” and “-minconn”.

The first one avoids the discontinuity of elements in partitions. The second one reduces the size

of communication messages between neighboring partitions. To reduce the edgecut parameter

discussed in Section 5.3, we set the edge weights with larger values for neighbors sharing fewer

nodes. We used the weight array [0,4,3,2,1], where the index represents the number of shared

nodes between elements. For example, index 1 means that elements share 1 node and the re-

spective weight is 4; analogously, index 4 means that elements share 4 nodes as in square faces

and the respective weight is 1. These options allowed to reduce the size of the communication

messages between neighboring partitions.

Table 6.5 presents results of partitioning for the mesh of 17810 hexahedrons. The

numbers of elements and the maximum and minimum numbers of elements of each partition are

listed. The largest difference in the number of elements is for 4 partitions, where the difference

between partitions 2 and 0 is 264 or 1.45% of the total number of hexahedrons. As the number

of partitions increases, this difference reduces.

Figures 6.28(a) to 6.28(d) show the distribution of elements and confirm that the

k-way algorithm with parameter “-contig” obtained contiguous partitions. Conversely, the mul-

tilevel recursive bisection algorithm obtained discontinuous partitions for the same meshes of

Figure 6.28.

The next sections present performance analyses in terms of speedup, efficiency and

execution time (runtime) for the element wise linear explicit transient method using the 5 gen-

erated meshes of the crankshaft and varying the polynomial orders, considering consistent and

lumped element mass matrices. In addition, we compare the parallel performance of the algo-

rithm for different mass matrix types and mesh sizes. Finally, we consider the analysis of taking



108

Table 6.5 – Partitioning of the crankshaft mesh with 17810 hexahedrons.

# Partitions Number of elements by partition Max Min

4
(0) (1) (2) (3)

4586 4322
4322 4323 4586 4579

8
(0) (1) (2) (3) (4) (5) (6) (7)

2293 2165
2293 2178 2165 2293 2226 2194 2293 2168

16

(0) (1) (2) (3) (4) (5) (6) (7)

1146 1080
1146 1146 1080 1111 1080 1080 1080 1080

(8) (9) (10) (11) (12) (13) (14) (15)

1146 1146 1146 1117 1080 1080 1146 1146

20

(0) (1) (2) (3) (4) (5) (6) (7)

917 864

917 902 876 917 906 874 864 917
(8) (9) (10) (11) (12) (13) (14) (15)

917 917 873 864 864 917 917 885
(16) (17) (18) (19)

868 864 876 875

(a) 4 partitions. (b) 8 partitions.

(c) 16 partitions. (d) 20 partitions.

Figure 6.28. Partitions for the crankshaft mesh with 17810 hexahedrons.
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into account mesh size, polynomial order, and runtime for up to 20 computational nodes, 20

cores per node, and 2 threads per core of the Kahuna cluster.

6.8.2 Scalability analysis with consistent mass matrices

Initially, the algorithm of Section 2.6 with consistent mass matrices are considered

using the Kahuna cluster with 1, 2, 4, and 8 nodes and 1 MPI rank per node, varying the number

of cores from 1, 2, 4, 8, 16, and 20 and 1 and 2 threads per core, totalizing up to 8 MPI ranks and

40 OpenMP threads. The results are for the mesh of 17810 elements, and polynomial orders 1,

2, and 4.

Figures 6.29(a) and 6.29(b) show the speedup and efficiency considering 1 comput-

ing node and varying the number of threads in order to evaluate the OpenMP behavior only. As

each compute node has 20 cores, the ideal speedup should be 20 for each thread. Using hyper-

threading for the Intel Xeon Processor family E5− 2670 v2, there may be a performance gain

of up to 30% for threads in the same core.

The speedup of Figure 6.29(a) shows that scalability is best for p refinement with

maximum of 9.0, 13.6 and 15.4 for orders 1, 2 and 4, respectively. Using hyperthread, the per-

formance gain was, respectively, 27.9%, 8.8% and 11.8% for the same polynomial orders. The

efficiency in Figure 6.29(b) considers the average time for each OpenMP thread. Scalability for

order 1 is better up to 8 threads with 58% efficiency. For polynomial orders 2 and 4, efficiency

is larger than 60% with 68% for polynomial order 4 and 13.8 speedup with 20 cores.
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1 2 4 8 16 20 40 50
Number Threads

0.1

0.2

0.3

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ef
fic
ie
nc
y

     65442 Dofs
   474670 Dofs
3606690 Dofs

(b) Efficiency.

Figure 6.29. OpenMP scalability of the element wise linear central difference
algorithm using consistent mass matrices for the crankshaft mesh
with 17810 hexahedrons and polynomial orders 1 (65442 DOFs), 2
(474670 DOFs) and 4 (3606690 DOFs). (a) and (b) are speedup
and efficiency results for 1 compute node with 20 cores and 2
threads per core, totalizing 40 OpenMP threads.
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In addition, we present the cost of parallel OpenMP regions for all time steps. Figure

6.30 shows the runtime percentage of OpenMP regions over the total execution time of the

algorithm. By increasing the polynomial order, the runtime is longer within the parallel regions,

decreasing the percentage of thread synchronization time. The largest percentage was 93.5%

for P = 4 and 3606690 DOFs. High-orders made better use of parallel regions and improved

the OpenMP scalability.
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(a) Parallel region (%) on total elapse time.

Figure 6.30. OpenMP parallel region percentage for the element wise linear
central difference method using consistent mass matrices for the
crankshaft mesh with 17810 hexahedrons and polynomial orders 1
(65442 DOFs), 2 (474670 DOFs) and 4 (3606690 DOFs). We use
1 compute node with 20 cores and 2 threads per core, totalizing
40 OpenMP threads.

The speedup and efficiency with MPI is presented in Figures 6.31(a) and 6.31(b)

for up to 8 nodes. For all polynomial orders, the speedup was close to the ideal and efficiency

greater than 90%.
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(a) Speedup.
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Figure 6.31. MPI scalability of the element wise linear central difference al-
gorithm using consistent mass matrices for the crankshaft mesh
with 17810 hexahedrons and polynomial orders 1 (65442 DOFs),
2 (474670 DOFs) and 4 (3606690 DOFs). (a) and (b) are speedup
and efficiency results for [1,8] compute nodes and 1 MPI process
per node.

Table 6.6 shows the runtime for each node and OpenMP thread, considering the

polynomial orders 1, 2 and 4. The execution time of the serial code is highlighted in yellow and

the best time with hybrid parallelism for each node in green. In summary, the execution time

was reduced for the best MPI + OpenMP combination from 91.27, 551.22 and 8887.52 to 3.20,

9.07 and 139.78 seconds for polynomial orders 1, 2 and 4, respectively. The results were 28.52,

60.77 and 63.58 times faster, respectively, for MPI processes + OpenMP threads with 8+ 20,

8+40 and 8+16.

6.8.3 Scalability analysis with lumped mass matrices

This section presents the performance analysis of the element wise linear explicit

transient method using lumped mass element matrices. These matrices allowed the algorithm’s

execution with the more refined crankshaft meshes and higher polynomial orders in the Kahuna

cluster. Table 6.7 displays the memory in GB necessary to store the mass and stiffness element

matrices of the system of equation (2.49), for consistent and lumped mass matrices and h and

p refinements, The memory consumption reduced up to 3 times. As described in Section 6.1.3,

each node of the Kahuna cluster has 64 GB of memory RAM, requiring more than 1 computing

node for running the meshes with higher polynomial orders.
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Table 6.6 – Running time in seconds of the hybrid parallelism for consistent
mass matrices.

MPI+OpenMP P1-Runtime P2-Runtime P4-Runtime

1+1 91.27 551.22 8887.52
1+2 63.63 312.47 4853.71
1+4 33.61 156.46 2514.37
1+8 19.62 83.57 1316.58

1+16 14.77 48.27 729.14
1+20 12.99 44.02 646.08
1+40 10.15 40.47 577.93
2+1 50.37 301.01 4439.36
2+2 36.17 172.93 2754.32
2+4 19.88 94.00 1492.27
2+8 13.41 57.75 786.72

2+16 10.83 44.59 493.26
2+20 10.28 45.13 460.64
2+40 8.04 45.00 419.91
4+1 24.81 145.68 2181.40
4+2 18.51 82.88 1396.55
4+4 10.47 44.93 736.15
4+8 7.05 26.56 404.96

4+16 5.75 19.73 248.66
4+20 5.57 20.04 229.78
4+40 4.72 21.35 209.29
8+1 12.50 73.47 1079.03
8+2 9.60 41.31 682.41
8+4 5.64 22.65 354.78
8+8 3.86 13.40 199.36

8+16 3.32 9.34 139.78
8+20 3.20 9.14 146.26
8+40 3.77 9.07 155.18

Runtimes of the element wise algorithm using consistent mass matrices for
many combinations of MPI processes and OpenMP threads. The serial code
runtime is highlighted in yellow and the best time for each node is high-
lighted in green color.

Table 6.7 – Total memory in GigaBytes (GB) required for element matrices
when using consistent and diagonal mass matrices.

Memory (GB)

p-refinement
h-refinement Mass matrix

1 2 4 6 8

CONSIST 0.1194 1.3221 28.0650 210.9589 952.4483
17810

LUMPED 0.0430 0.4514 9.4048 70.4561 317.7730
CONSIST 0.4949 5.4782 116.2939 874.1588 3946.6975

73800
LUMPED 0.1782 1.8706 38.9708 291.9521 1316.7683
CONSIST 2.1939 24.2867 515.5711 3875.4492 17497.0790

327181
LUMPED 0.7898 8.2931 172.7711 1294.3248 5837.6909
CONSIST 3.8944 43.1115 915.1934 6879.3337 31059.1722

580781
LUMPED 1.4020 14.7210 306.6872 2297.5638 10362.5209
CONSIST 12.0016 132.8579 2820.3802 21200.2581 95716.0239

1789811
LUMPED 4.3205 45.3661 945.1274 7080.4745 31934.5052

The numbers of compute nodes were 1, 2, 4, 8, 16, 20, 25 and 30 with 1 MPI process

per node. In addition, 1, 2, 4, 8, 16 and 20 cores were used with 1 or 2 threads per core and a
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total of 40 OpenMP threads. The coarsest crankshaft mesh of 17810 elements was considered

with polynomial orders 1, 2 and 4.

Figures 6.32(a) and 6.32(b) show the speedup and efficiency, respectively. As with

the consistent mass matrix, better speedups were obtained for higher polynomial orders using

lumped matrices. However, a nonlinear speedup behavior was obtained between 16 and 20 cores

for P = 1. In this case, as the memory demand is minimal, according to Table 6.7, there was

a slight time variation using 16 and 20 OpenMP threads, not enough to impact the scalability.

Figure 6.33 shows the time percentage of OpenMP parallel regions. The mentioned behavior

with 16 and 20 cores and P = 1 may also be observed. The percentage of computing time in

parallel regions increases with 20 and 40 OpenMP threads.

The largest speedups for polynomial orders 1, 2 and 4 were 6.3, 11.9 and 12.3 for

16, 20 and 20 nodes, respectively, using 1 thread per core. Using hyperthread, the performance

gains with 40 threads were 45.0%, 7.9% and 13.8% for orders 1, 2 and 4, respectively.
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(a) Speedup.
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Figure 6.32. OpenMP scalability for the linear central difference element wise
method using lumped mass matrices for the crankshaft mesh with
17810 hexahedrons and polynomial orders 1 (65442 DOFs), 2
(474670 DOFs) and 4 (3606690 DOFs). (a) and (b) are results for
1 compute node with 20 cores and 2 threads per core, totalizing
40 OpenMP threads.

Similarly to Figure 6.30, the better percentage use of OpenMP parallel regions are

related to higher polynomial orders as illustrated in Figure 6.33 for P = 4. Each thread in the

parallel regions computes one finite element of each partition. For 20 cores and 2 OpenMP

threads per core, we obtained 97.83% of runtime for all times steps and P = 4. This result

indicates an optimal OpenMP multi-thread parallelism.
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Figure 6.33. OpenMP parallel region percentage for the element wise linear
central difference method using lumped mass matrices for the
crankshaft mesh with 17810 hexahedrons and polynomial orders 1
(65442 DOFs), 2 (474670 DOFs) and 4 (3606690 DOFs). We use
1 compute node with 20 cores and 2 threads per core, totalizing
40 OpenMP threads.

When using 1 MPI process per node, the speedup obtained was close to ideal for

all polynomial orders, as shown in Figure 6.34(a). The efficiency was greater than 90% for all

cases. Using up to 30 compute nodes, the maximum speedups obtained were 27.3, 30.8, and

28.9 for polynomial orders 1, 2 and 4, respectively. For P = 2, there was a superlinear speedup,

which may be due to the decreasing of data distribution for each process and stored in cache

memory.



115

1 2 4 8 16 20 2530
Number Nodes (MPI)

1

2

4

8

16
20
25
30

Sp
ee

du
p

     65442 Dofs
   474670 Dofs
3606690 Dofs

(a) Speedup.
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Figure 6.34. MPI scalability of the element wise linear central difference algo-
rithm using lumped mass matrices for the crankshaft mesh with
17810 hexahedrons and polynomial orders 1 (65442 DOFs), 2
(474670 DOFs) and 4 (3606690 DOFs). (a) and (b) are speedup
and efficiency results for [1,30] compute nodes and 1 MPI rank
per node.

Performance of the MPI + OpenMP hybrid version is shown in Figures 6.35 and

6.36. The speedup for polynomial orders 1, 2 and 4 are presented separately in Figures 6.35(a),

6.35(b) and 6.35(c), respectively, with the number of MPI nodes, the number of OpenMP

threads and the obtained speedups along the x, y and z axes. Speedup increases for higher

polynomial orders.
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(a) P = 1.
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(b) P = 2.
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(c) P = 4.

Figure 6.35. MPI+OpenMP scalability for the element wise linear central difference
method using lumped matrices, crankshaft mesh with 17810 hexahedrons
and polynomial orders=1, 2 e 4. Results are for [1,30] compute nodes
with 1 rank MPI per node, 20 cores per node and [1,2] threads per core.
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Figure 6.36 also shows MPI + OpenMP hybrid scalability for all polynomial or-

ders considered. In addition, the maximum speedups are indicated by lines for all polynomial

orders with the maximum speedup points highlighted for each number of nodes. In order to take

advantage of using shared memory, we considered 1 MPI process per node and many OpenMP

threads per core. Therefore, the maximum speedups for the MPI + OpenMP combinations and

polynomial orders 1, 2 and 4 were 68.5 with 30 MPI ranks and 16 OpenMP threads (30+16),

188.5 with 30+16 and 207.8 with 30+20, respectively.
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Figure 6.36. MPI+OpenMP scalability for the element wise linear central differ-
ence method using lumped mass matrices for the crankshaft mesh
with 17810 hexahedrons and polynomial orders 1, 2 and 4. The
results are run for [1,30] compute nodes with 1 ranks MPI per
node, 20 cores per node, and [1,2] threads per core.

Runtime with lumped mass matrices is given in Table 6.8, including the serial and

parallel runtimes using MPI processes + OpenMP threads. The best cases of runtime reduc-

tion are highlighted in green for each MPI process. These same cases can be observed by the

maximum speedups shown in Figure 6.36. The runtime reduced to P = 1 from 9.70 seconds

with 1 process to 0.14 seconds with 30 MPI processes and 16 OpenMP threads. For P = 2,

runtime reduced from 61.56 seconds with 1 process to 0.33 seconds with 30 MPI processes

and 16 OpenMP threads. Finally, for P = 4, runtime reduced from 890 seconds to 1 process for

4.28 seconds with 30 MPI processes and 20 OpenMP threads. In summary, the code was 69.29,

186.58 and 207.94 times faster for polynomial orders 1, 2 and 4, respectively.
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Table 6.8 – Running time of the hybrid parallelism for lumped matrices.

MPI+OpenMP P1_ElapsedTime P2_ElapsedTime P4_ElapsedTime

1+1 9.70 61.57 890.00
1+2 6.20 33.35 548.19
1+4 3.39 17.75 279.35
1+8 1.97 9.44 160.20

1+16 1.53 6.00 81.60
1+20 1.77 5.18 72.44
1+40 1.21 4.80 63.70

2+1 5.17 34.17 475.07
2+2 3.54 19.94 323.51
2+4 2.14 11.79 178.05
2+8 1.49 7.58 98.37

2+16 1.08 5.97 69.28
2+20 1.17 6.06 62.56
2+40 0.89 5.83 56.29

4+1 2.48 16.29 235.81
4+2 1.86 9.65 166.77
4+4 1.12 5.30 86.57
4+8 0.77 3.05 48.13

4+16 0.61 2.34 35.50
4+20 0.65 2.26 33.59
4+40 0.50 2.31 32.07

8+1 1.30 8.15 117.51
8+2 0.98 4.68 68.07
8+4 0.63 2.71 37.21
8+8 0.44 1.69 24.19

8+16 0.38 1.18 18.11
8+20 0.40 1.24 18.68
8+40 0.37 1.65 19.68
16+1 0.64 3.89 59.29
16+2 0.52 2.21 35.38
16+4 0.34 1.31 19.81
16+8 0.25 0.79 13.76

16+16 0.22 0.59 10.04
16+20 0.22 0.62 10.11
16+40 0.28 0.62 10.74

20+1 0.52 3.11 46.10
20+2 0.42 1.78 26.56
20+4 0.27 1.02 14.68
20+8 0.21 0.62 9.13

20+16 0.19 0.44 6.73
20+20 0.19 0.47 7.18
20+40 0.24 0.72 8.34

25+1 0.42 2.46 38.30
25+2 0.36 1.46 22.75
25+4 0.24 0.84 12.68
25+8 0.18 0.58 7.76

25+16 0.16 0.38 5.99
25+20 0.17 0.43 6.07
25+40 0.25 0.44 7.29

30+1 0.36 2.00 30.84
30+2 0.29 1.19 18.15
30+4 0.20 0.75 9.60
30+8 0.16 0.51 5.75

30+16 0.14 0.33 4.45
30+20 0.15 0.36 4.28
30+40 0.31 0.39 4.55

Runtime of the element wise algorithm using lumped matrices for each
compute node and each OpenMP thread. The serial runtime is highlighted
in yellow, and the best time for each node is highlighted in green color.
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6.8.4 Analysis of MPI processes per core

Memory reduction using lumped mass element matrices allows the partitioning of

meshes into subdomains in the same compute node. We present here the performance results for

the MPI process in each core, disabling OpenMP. Figure 6.37 shows the speedup and efficiency

of comparing MPI and OpenMP for one compute node and assigning one MPI process or one

OpenMP thread to each core. The results are for up to 20 cores and the coarsest mesh of 17810

hexahedrons with polynomial orders 1, 2, and 4.
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(a) Speedup.
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(b) Efficiency.

Figure 6.37. Scalability using one MPI process and one OpenMP thread per
core.

Figure 6.37(a) shows that the best speedups occurred with MPI per core compared

to OpenMP per core. The speedups are calculated using the runtimes given in Table 6.9. It can

be observed that they decay according to the number of cores. When running 1 compute node

with the maximum capacity of 20 cores, the speedups for polynomial orders 1, 2, and 4 were

16.8, 14.9, and 15.9, respectively. On the other hand, the speedups with OpenMP were lower at

5.5, 11.9, and 12.3. As mentioned previously, the use of OpenMP shared-memory parallelism

had better gains with an increasing number of DOFs. However, for this case, MPI results had

better scalability than OpenMP even for polynomial order 4.

Similarly, the efficiency of Figure 6.37(b) shows that the core processing using MPI

performed better than OpenMP per core. For lower order P = 1, the difference in performance

between the two parallel strategies is even larger with an efficiency of 84% for MPI and 27%

for OpenMP using 20 cores. The results also show that the updating of solutions by OpenMP

threads was slower than the communication time of MPI processes.
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Table 6.9 – Runtime (s) of the element wise explicit transient algorithm com-
paring MPI and OpenMP by core for 1 compute node.

Number Cores
Poly Order 1 Poly Order 2 Poly Order 4

OpenMP MPI OpenMP MPI OpenMP MPI

1 9.70 7.00 61.57 51.19 890.00 823.66
2 6.20 3.69 33.35 27.92 548.19 439.78
4 3.38 1.82 17.75 13.59 279.35 224.27
8 1.97 0.96 9.44 7.37 160.20 115.73

16 1.53 0.55 6.00 4.23 81.60 65.90
20 1.77 0.42 5.18 3.44 72.44 51.75

6.8.5 Comparison of hybrid scalability for consistent and lumped mass matrices

This section presents a performance comparison of the runtime of the element wise

explicit algorithm with consistent and lumped element mass matrices using the mesh of 17810

hexahedrons. Runtime and speedups with OpenMP parallelism are shown in Figures 6.38(a),

6.38(b) and 6.38(c); runtime is displayed by bars and speedup by lines. The results were ob-

tained for 1, 2, 4 and 8 compute nodes with 1 MPI rank per node. In addition, 1, 2, 4, 8, 16 and

20 cores were considered with 1 or 2 threads per core, using up to 40 OpenMP threads.

Runtime with diagonal matrices (LUMPED) was almost 10 times less than using

consistent matrices (CONSIST). This proportion of runtime reduction was maintained as the

number of OpenMP threads increased. Scalability with both types of matrices was similar in

all cases. However, for P = 4, the algorithm with consistent matrices showed slightly better

scalability, mainly from 8 threads. In this case, for 8, 16 and 20 OpenMP threads (1 thread per

core), speedups were 6.75, 12.19 and 15.38 for consistent matrices and 5.56, 10.91 and 12.29

for diagonal matrices. This speedup behavior occurred because the amount of computation with

consistent matrices was greater within the parallel regions, as observed from the runtimes.
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Figure 6.38. Results of runtime (in seconds) and speedup for consistent and
lumped mass matrices using the crankshaft mesh with 17810 hex-
ahedrons and polynomial orders 1, 2 and 4. Results for 1 compute
node with 20 cores using 1 or 2 threads per core, totalizing 40
OpenMP threads.

The results of scalability and performance with MPI processes only are presented

in Figures 6.39(a) and 6.39(b). Although the speedup results with the consistent mass matrix

are slightly better for P = 4, the lumped matrix algorithm has reduced execution time, as shown

in Figure 6.39(a), close to 10 times faster. In addition, speedups of Figure 6.39(b) shows that
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both cases are scalable. In summary, lumped element mass matrices are more advantageous for

reducing runtime and memory demand using both MPI and OpenMP processes.

1 2 4 8

CONSIST_P1_Time 91.27 50.37 24.81 12.50

LUMPED_P1_Time 9.70 5.17 2.48 1.30

CONSIST_P2_Time 551.22 301.01 145.68 73.47

LUMPED_P2_Time 61.57 34.17 16.29 8.15

CONSIST_P4_Time 8887.52 4439.36 2181.40 1079.03

LUMPED_P4_Time 890.00 475.07 235.81 117.51
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Figure 6.39. Results of the MPI version comparing consistent and lumped
mass matrices for the crankshaft mesh of 17810 hexahedrons and
polynomial orders 1, 2 e 4 for up to 8 compute nodes and 1 MPI
process per node.

MPI + OpenMP hybrid parallel speedup for consistent and lumped mass matrices

and polynomial orders 1, 2 and 4 is presented in Figures 6.40(a), 6.40(b) and 6.40(c). Figure

6.40(d), shows the maximum speedup achieved for each compute node in both cases.

As observed for the OpenMP case, larger polynomial orders, and consistent matrix

also achieved greater scalability for hybrid parallelism. The OpenMP threads compute the equa-

tions by the element, and consequently, the increase in polynomial order impacts the amount

of computation within the parallel region for consistent matrices. Consequently, the computa-

tion time is longer than the synchronization time for the consistent mass matrices compared to

lumped ones.
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Table 6.10 – Best reduced time for lumped and consistent element mass ma-
trices with parallel solver using MPI + OpenMP.

Runtime (secs) /
Number of Processes

P1 P2 P4

LUMPED CONSIST LUMPED CONSIST LUMPED CONSIST

Serial Runtime 9.7037 91.2671 61.5670 551.2162 889.9984 8887.5238
Best Runtime reduced 0.3735 3.1979 1.1788 9.0691 18.1117 139.7773

Combination MPI + OpenMP 8+16 8+16 8+16 8+40 8+16 8+16

However, the diagonal matrix algorithm is faster as illustrated in Figure 6.39 and

Tables 6.6 and 6.8. Table 6.10 also shows the runtime with OpenMP parallelism. Table 6.10

shows the best time reduction achieved and the number of MPI and OpenMP processes for

1, 2 and 4 polynomial orders using the 17810 element mesh. The reduced time with hybrid

parallelism using MPI + OpenMP remained advantageous with the use of lumped matrices

compared to consistent ones.
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(d) Maximum speedup - polynomials orders 1, 2 and 4.

Figure 6.40. Speedup for MPI+OpenMP with consistent and lumped mass
matrices for the crankshaft mesh with 17810 hexahedrons. The
results in (a), (b), (c) and (d) are for [1,8] compute nodes with 1
MPI process per node, [1,20] cores per node and 1 or 2 threads
per core. The total of OpenMP threads is up to 40. (a), (b) and
(c) show hybrid speedup for polynomial orders 1, 2 and 4, respec-
tively. (d) shows the maximum speedup for each compute node
and polynomial order.
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6.8.6 Hybrid scalability analysis using h and p refinements with lumped mass matrices

Figure 6.41 presents the comparison of the OpenMP version for the crankshaft

meshes with 17810 and 73800 elements, using 1 compute node with 20 cores and 1 or 2 threads

per node, running up to 40 OpenMP threads. The mesh of 17810 had speedup closer to the ideal

for P = 1 and P = 2, while the mesh with 73800 elements had better scalability for P = 4.

Figure 6.41. Speedup of OpenMP parallelism with meshes of 17810 and 73800
elements for polynomial orders 1, 2 and 4 for 1 compute node
with 20 cores and 1 or 2 threads per core, totalizing 40 OpenMP
threads.

Despite memory reduction with lumped mass matrices, it is important to evaluate

the use of 1 MPI process per compute node to verify the distribution of elements and scalability.

Figure 6.42 presents speedups with MPI processes for meshes of 17810 and 73800 elements

and all polynomial orders. The number of compute nodes was varied in the [1,30] range with 1

MPI process per node. The speedup is higher for the mesh of 73800 elements, and P = 4.
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Figure 6.42. Speedup using MPI only comparing meshes of 17810, and 73800
elements for polynomial orders 1, 2 and 4 and [1,30] compute
nodes with 1 MPI process per node.

Figures 6.43(a), 6.43(b), 6.43(c) and 6.44 present the speedup of the MPI +

OpenMP hybrid version for polynomial orders 1, 2 and 4 and the same meshes. Analyzing

Figure 6.43, the algorithm had better speedup varying only the mesh size for P = 1, corre-

sponding to the h-version of the FEM. On the other hand, by increasing the polynomial order

for both meshes, similar speedups were obtained. Figure 6.44 shows the maximum speedups

on each compute node (MPI process). The coarsest mesh reached the largest speedup when the

polynomial order is greater than or equal to 2.
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Figure 6.44. Maximum speedup using the MPI+OpenMP hybrid version com-
paring meshes with 17810, and 73800 elements for polynomial
orders 1, 2 and 4. The results are run with [1,30] computes nodes
with 1 MPI process per node, [1,20] cores per node, and 1 or 2
threads per core. The total of threads OpenMP is up to 40.

Table 6.11 complements Table 6.8 comparing the runtimes of the hybrid paral-

lelism for the mesh of 73800 hexahedrons. The runtimes are for each compute node number

and for the different number of OpenMP threads, highlighting in green the best result for each

compute node (MPI processes). The runtime decay remained for the more refined mesh. For h

refinement, scalability was greater using the 73800 mesh with a reduction of 96.2 times com-

pared to 69.4 obtained with the 17810 for 30 MPI processes and 16 OpenMP threads.
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Table 6.11 – Runtime of the hybrid parallelism for lumped matrices using the
mesh with 73800 hexahedrons.

MPI+OpenMP P1_ElapsedTime P2_ElapsedTime P4_ElapsedTime

1 + 1 41.50 256.26 4122.30
1 + 2 26.94 152.46 2338.66
1 + 4 15.55 75.61 1138.88
1 + 8 7.95 40.53 675.52

1 + 16 8.20 27.41 343.74
1 + 20 7.83 23.37 289.73
1 + 40 5.47 23.83 293.50

2 + 1 21.97 144.14 2092.21
2 + 2 16.07 89.32 1584.10
2 + 4 9.18 50.76 878.21
2 + 8 6.27 34.28 521.66

2 + 16 4.79 25.65 350.77
2 + 20 4.70 26.25 321.57
2 + 40 3.65 23.10 267.09

4 + 1 10.88 68.00 971.79
4 + 2 8.22 40.22 711.89
4 + 4 4.71 22.47 383.84
4 + 8 3.16 14.16 215.63

4 + 16 2.61 10.79 148.57
4 + 20 2.37 11.47 128.60
4 + 40 1.91 10.52 127.22

8 + 1 5.46 34.36 487.31
8 + 2 3.89 20.81 358.30
8 + 4 2.29 11.91 197.06
8 + 8 1.62 7.34 115.83

8 + 16 1.37 5.49 75.75
8 + 20 1.27 5.72 71.63
8 + 40 1.03 5.36 71.23
16 + 1 2.66 17.43 242.59
16 + 2 2.01 10.36 185.99
16 + 4 1.31 6.01 103.85
16 + 8 0.86 3.88 58.97

16 + 16 0.69 2.75 37.85
16 + 20 0.72 2.71 38.92
16 + 40 0.61 2.75 39.03

20 + 1 2.13 13.96 198.03
20 + 2 1.60 8.85 151.65
20 + 4 1.03 5.22 80.49
20 + 8 0.70 3.17 46.37

20 + 16 0.59 2.27 36.13
20 + 20 0.60 2.22 34.91
20 + 40 0.50 2.35 35.67

25 + 1 1.70 11.46 157.68
25 + 2 1.35 6.85 118.15
25 + 4 0.83 3.90 59.66
25 + 8 0.60 2.42 38.18

25 + 16 0.51 1.83 27.93
25 + 20 0.50 1.93 28.17
25 + 40 0.61 1.90 29.39
30 + 1 1.42 9.23 129.95
30 + 2 1.09 5.70 82.26
30 + 4 0.69 3.26 46.02
30 + 8 0.49 1.97 27.56

30 + 16 0.43 1.40 21.02
30 + 20 0.43 1.42 20.53
30 + 40 0.60 1.41 23.16

The runtime of the element wise explicit algorithm using lumped matrices with
the mesh of 73800 hexahedrons. The runtime is showed for each compute node
(MPI processes) and each OpenMP thread. The serial code runtime is highlighted
in yellow, and the best time for each node is highlighted in green color.
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6.8.7 Sizeup analyzes for crankshaft meshes

This section presents an analysis taking into consideration the mesh sizes, polyno-

mial orders, and runtimes. The element wise algorithm is run with 20 computational nodes, 20

cores, and 2 threads per core, with 1 MPI rank per node and 2 OpenMP threads per core or

40 OpenMP threads per compute node. The tests were performed with the meshes of 17810,

73800, 327181, 580781 and 1789811 elements with polynomial orders 1, 2, 4 and 6; order 6

was used only with the meshes of 17810 and 73800 elements.

Table 6.12 shows the relationship between the number of DOFs and runtime for

different polynomial orders (p-refinement) and mesh sizes (h-refinement). The relationship is

based on the Sizeup metric defined in Equation (3.5) and presented in the last column of the

table. For this analysis, Sizeup is defined as the ratio of DOF growth and runtime rates, that is,

Sizeup =

NDOFs(M)
NDOFs(1)

Tp(NDOFs(M))
Tp(NDOFs(1))

, (6.3)

where NDOFs(1) is the number of DOFs for the coarsest mesh with P = 1, NDOFs(M) is the

number of DOFs for the next M cases with mesh size and polynomial orders larger than or equal

to NDOFs(1); Tp(NDOFs(M)) and Tp(NDOFs(1)) are the parallel runtime for NDOFs(M)

and NDOFs(1), respectively. Table 6.12 presents also the ratios

NDOFs(M)

NDOFs(1)
(6.4)

and
Tp(NDOFs(M))

Tp(NDOFs(1))
(6.5)

in columns "DOFs Rate" e "Runtime Rate", respectively.

From Equation (6.3), it can be assumed that if Tp(NDOFs(M))> Tp(NDOFs(1)),

Sizeup will be on the interval
[

0, NDOFs(M)
NDOFs(1)

]

. In addition, as Sizeup goes to 1, the growth rate

of the number of DOFs and runtime will be the same.

Figure 6.45 shows the Sizeup values in terms of the number of DOFs with bars.

For all P = 2 cases, Sizeup ≥ 2. For these cases, the DOF growth rate was greater, [2.0,2.63]

larger than the runtime growth rate. There was the opposite behavior for P = 6, and the runtime

growth rate was larger than the DOF growth rate. For P = 4, these rates are similar, with Sizeup

approaching 1. However, the closest case between the rates was with the mesh of 1789811, and

P = 1. The case with the largest number of DOFs, over 350 million, had a Sizeup of 1.4.
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Table 6.12 – Sizeup analyses for the crankshaft meshes.

N. Elements Order N. DOFs Runtime (s) DOFs Rate Runtime Rate Sizeup

17810 P1 75559 0.2359 1.0000 1.0000 1.0000
73800 P1 276097 0.4996 3.6541 2.1178 1.7254
17810 P2 512328 0.7202 6.7805 3.0530 2.2209

327181 P1 1126440 2.0492 14.9081 8.6867 1.7162
580781 P1 1957140 3.3599 25.9021 14.2429 1.8186

73800 P2 1984444 2.3499 26.2635 9.9614 2.6365
17810 P4 3751846 8.3392 49.6545 35.3506 1.4046

1789811 P1 5860099 17.7185 77.5566 75.1102 1.0326
327181 P2 8423351 10.9673 111.4804 46.4913 2.3979

17810 P6 12283204 45.9810 162.5644 194.9173 0.8340
580781 P2 14786716 19.8754 195.6976 84.2535 2.3227

73800 P4 15010750 35.6711 198.6626 151.2128 1.3138
1789811 P2 44903317 67.4981 594.2815 286.1301 2.0770

73800 P6 49705872 254.3951 657.8418 1078.4023 0.6100
327181 P4 65083533 148.4559 861.3604 629.3171 1.3687
580781 P4 114878382 314.5824 1520.3799 1333.5413 1.1401

1789811 P4 351394243 773.4529 4650.5941 3278.7321 1.4184

Results are run with 20 compute nodes using 1 rank MPI per node, 20 cores with 2 threads per
core, totalizing 40 threads OpenMP.

Figure 6.45. Sizeup by DOFs using the crankshaft meshes with 17810, 73800,
327181, 580781 and 1789811 elements with polynomial orders 1,
2, 4 and 6; 20 compute nodes with 1 rank MPI per node, 20 cores
per node and 2 threads per core, totalizing 40 OpenMP threads.

Figure 6.46 shows the Sizeup metric where problem size of Equation (3.5) is the

number of elements and not the number DOFs. Based on that the size growth rate will always

be the same for polynomial orders 1, 2 and 4 and equal to 1.0, 4.1, 18.4, 32.6 and 100.5 for
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meshes with 17810, 73800, 327181, 580781 and 1789811 elements, respectively. The runtime

rate (Runtime Rate column) will be different, taking into consideration the column "Runtime

(s)" in Table 6.12. As in the previous analysis, the growth rate of elements and execution time

will be equal if Sizeup is 1. Figure 6.46 shows that increasing polynomial orders, the runtime

rate also increases and consequently, Sizeup approaches 1 for P≥ 2.
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7 CONCLUSIONS

We designed the architecture of (hp)2FEM to be flexible and easy to extend be-

cause of its generic and modular classes. The concepts of encapsulation, virtual methods, and

generalization are used in some components of the (hp)2FEM software. Encapsulation and gen-

eralization are used in the basic modules, which implement different classes for data structures,

polynomial interpolation, numerical integration and solving linear systems of equations. In the

implementation of parallelism, methods and modules were added to the (hp)2FEM serial ar-

chitecture without requiring modifications of the architecture. The parallel version works as a

conditional path to be selected according to the options indicated in the input files.

Profiling, programming techniques, and optimized linear algebra libraries such as

BLAS and LAPACK were used to improve the performance of the code. In particular, the D1-

Matrices procedure reduced the amount of memory required by the shape functions by a factor

of 4000, as presented in Section 6.3.

In addition, optimization of memory usage was also performed through the imple-

mentation of lumped element mass matrices in the explicit transient solver. Consequently, it was

possible to process meshes with a greater number of elements and higher polynomial orders.

The use of these matrices also allowed better use of compute node resources. For example, it

was possible to execute more than one MPI process by distributing the mesh in the same node,

associating one MPI process per core.

The p-non-uniform architecture allows polynomial orders to be varied for elements.

A simple projection problem was solved to illustrate the validation of data structures. It is ex-

pected that the better quality solutions be obtained for applications with larger numbers of

elements and using error estimators to determine the optimal distribution of element orders.

The work presented different parallel approaches to decomposition, storage and

treatment of mesh topology data and communication in neighboring partitions. The class Par-

titionData was created to manage storage and local data communication between mesh sub-

domains. The class contains pre-processing data structures that helped in the communication

between partitions for the solution methods. Such pre-processing structures can be used for

new parallel solvers. The parallel version encapsulates the communication structure between

partitions, so a new solver only needs to pass as parameter the solution vectors at the interfaces

of subdomains.

Deadlock communication problems in MPI processes using more refined meshes

and compute nodes were detected on the IBM Blue Gene computer when running the element-

wise projection solver with more than 1024 compute nodes. This work used the blocking com-

munication algorithm between MPI processes, which includes constructing a color map to de-
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fine the communication topology of mesh subdomains.

Scalability comparisons of (hp)2FEM parallel algorithms were performed on IBM

PowerPC and Intel architectures, using, respectively, the IBM Blue Gene/P and Q computers

and the Kahuna cluster. Direct and iterative element wise solver were used to evaluate the dif-

ferent parallel structures for data storage, distribution and communication. In summary, the best

results were obtained with the use of the multilevel k-way partitioning algorithm for the input

mesh of degree 1 and the generation of high-order information in each subdomain. In addition,

the use of pre-processed data structures in the class PartitionData and the mapping algorithm

of subdomain topology favoured and reduced the runtime in the message exchange between

partitions. Only solution vectors are exchanged without the need of index vectors to update the

solutions at the interfaces between subdomains.

We also showed that the element wise parallel projection solver has weak scalability

in the IBM Blue Gene/Q computer. In this case, the efficiency was approximately 80% with

respect to the number of processors and mesh size. We also obtained the same efficiency when

solving a problem with 840 million of DOFs using 2/3 of the compute nodes in the IBM Blue

Gene/Q Mira computer.

We also evaluated the MPI + OpenMP hybrid parallelism with Intel architecture

using the element wise explicit solvers for linear and non-linear problems. The scalability using

these explicit solvers was close to the ideal speedup combining MPI processes and OpenMP

threads, reaching a minimum efficiency of 72% for structured meshes.

Finally, the thesis also presentsd good results for distribution and partitioning of

more complex and unstructured meshes of a crankshaft. Scalability is presented for the ele-

ment wise linear transient solver using MPI + OpenMP hybrid parallelism. When combining

MPI and OpenMP for more than one compute node, the shared memory feature reduced sig-

nificantly the runtime by 200 times with 30 MPI processes and 20 OpenMP threads. However,

the scalability is not close to ideal due to the solver’s iterative feature and increased thread syn-

chronization time when updating solutions. The use of only MPI processes with distribution

by cores in the same compute node presented scalability close to ideal. In summary, cases of

higher polynomial orders presented better scalability, including hybrid parallelism. The largest

case evaluated was for the mesh of 1789811 elements, P = 4 and 351394243 DOFs. The serial

runtime estimate is 23 hours. Using the parallel version, runtime was reduced to 12.22 minutes

using 20 compute nodes and 20 cores of Kahuna cluster.

The next steps in the development of (hp)2FEM focus on obtaining good perfor-

mance on hybrid CPU/GPU platforms. In this case, the use of high throughput and storage

density architectures such as IBM Power10+ becomes essential. Furthermore, OpenMP 5.0 or

OpenCL may be used to allow for implementation on graphics cards and vectorized processing

using single instruction multiple data (SIMD) parallelism.
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The implementation of parallel versions of the element wise solvers with error es-

timators and h and p refinements is also important. In this this case, a new partitioning and

redistribution of elements can be made using METIS by weighting elements that have higher

polynomial order in the mesh. Other element wise implicit time integration methods have been

also implemented.
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