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Resumo

Modelos numéricos de um grupo de estacas conectadas por estruturas flexíveis são compo-

nentes fundamentais para muitas análises de interação dinâmica solo-estrutura. Para a representação

do grupo de estacas instalado no solo, muitos trabalhos consideram soluções discretas com o intuito

de reduzir a complexidade do modelo. Já outros propõem formulações mais rigorosas que tratam a

matriz de rigidez da camada de solo de forma exata, como é o caso do método da matriz de rigi-

dez ou impedância (MMR). Embora este método resulte em um alto custo computacional, não há

um limite para a espessura das camadas e para o valor da frequência, diferentemente das soluções

discretas, nas quais certos critérios devem ser satisfeitos para garantir a convergência do resultado.

Neste trabalho, o MMR é empregado para a análise dinâmica de grupos de estaca de grande escala

instalados em um solo estratificado viscoelástico sujeito a cargas externas. Para modelar as estacas

as equações de viga são utilizadas, enquanto que funções de Green para um meio estratificado são

aplicadas para representar o campo de deslocamento devido às cargas associadas com as trações

na interface estaca-solo, as quais são utilizadas na definição da matriz de flexibilidade do solo. Os

termos desta matriz são integrais impróprias que requerem um esquema apropriado para avalia-

ção numérica e, tipicamente, resultam em um alto custo computacional. Dois tipos de condições

de acoplamento para grupos de estaca podem ser incorporados nesta matriz. Isto permite que as

análises considerem a condição de acoplamento com menor custo computacional, sem perda da

consistência física do modelo. Para a estrutura flexível suportada pelo grupo de estacas, um ele-

mento finito linear e viscoelástico de 8 nós é considerado. O acoplamento entre os dois sistemas é

obtido pelas equações de equilíbrio e de compatibilidade cinemática. Ferramentas computacionais

modernas empregadas na presente implementação permitem não apenas que um grupo grande de

estacas seja modelado, mas também um número quase arbitrário de camadas de solo e frequências

de excitação, que ampliam consideravelmente as capacidades de modelagem desta formulação.

Palavras-chave: Interação solo-estrutura; Estruturas estaqueadas; Dinâmica do solo.



Abstract

Numerical models of pile groups connected by flexible structures are fundamental compo-

nents of many dynamic soil-structure interaction analyses. For the representation of the pile group

embedded in a soil, most works consider discrete solutions for both systems in order to reduce

the complexity of the model. Others propose more rigorous formulations that treat the stiffness

matrix of the layer exactly, such as the Stiffness or Impedance Matrix Method (SMM). Although

this method resulting in a higher computational cost, there is no limitation to the thickness of the

layers and to the frequency value, differently from discrete solutions, in which certain criteria must

be satisfied in order to ensure the convergence of results. In this research, the SMM is used for

dynamic analysis of large-scale pile groups embedded in a viscoelastic layered soil under external

loading. Beam equations are used for modeling the piles, whereas Green’s functions for layered

media are applied to represent the displacement field due to the loads associated with pile-soil in-

terface tractions, which is used to define the flexibility matrix of the soil. The terms of this matrix

are improper integrals that require an appropriate scheme of numerical evaluation and, typically,

resulting in a high computational cost. Two kinds of coupling conditions for embedded pile groups

can be incorporated into this matrix, which enables analyses to consider the coupling condition

with the lowest computational cost, without loss of physical consistency of the model. For the

flexible structure supported by the pile group, a linear viscoelastic 8-noded hexahedral finite ele-

ment is considered. The coupling between the two systems is obtained by kinematic compatibility

and equilibrium equations. Modern computing tools incorporated into the present implementation

enable not only massively large pile groups to be modeled, but a nearly arbitrary number of soil

layers and excitation frequencies to be considered, which extend the modeling capabilities of the

formulation considerably.

Keywords: Soil-structure interaction; Piled structures; Soil dynamics.



List of Figures

1.1 Stage of the construction of the Sirius facilities - large group of piles. . . . . . . . 19

2.1 Pile group in a layered semi-infinite soil medium . . . . . . . . . . . . . . . . . . 25

2.2 Traction distribution on the jth pile of the group . . . . . . . . . . . . . . . . . . . 25

2.3 Forces on the single pile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Forces on the free field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Layered soil medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Type of loads in pile-soil interface . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.7 Pile group in a multilayered media . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.8 Scheme of assemble of flexibility matrix of soil . . . . . . . . . . . . . . . . . . . 53

2.9 Scheme of assemble of flexibility matrix of soil for a group of four piles . . . . . . 54

2.10 Integrand representation of Re[uu1,f1
r1 ] (Equation (2.106)). . . . . . . . . . . . . . . 55

2.11 Beam in steady-state lateral vibration. . . . . . . . . . . . . . . . . . . . . . . . . 56

2.12 Beam in steady-state axial vibration. . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.13 Fixed-end beam subjected to a lateral point load P . . . . . . . . . . . . . . . . . . 59

2.14 Fixed-end beam subjected to a axial point load P . . . . . . . . . . . . . . . . . . . 60

2.15 Nodal forces at a segment i of a pile j. . . . . . . . . . . . . . . . . . . . . . . . . 63

2.16 Validation using a 2× 2 pile grid. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.17 Impedance of a 2× 2 pile grid connected by a rigid cap. . . . . . . . . . . . . . . . 65

3.1 8-noded hexahedral finite element in the (a) physical and (b) natural domain . . . . 66

3.2 Physical problem and free-body diagram of a fixed-end bar . . . . . . . . . . . . . 67

3.3 Interface B of the fixed-end bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Scheme of discretization of a piled structure . . . . . . . . . . . . . . . . . . . . . 69

3.5 Interface and external loads and displacements . . . . . . . . . . . . . . . . . . . . 70

3.6 2× 2 pile group connected by an elastic surface block . . . . . . . . . . . . . . . . 71

3.7 Stiffness and damping of the structure-foundation system for different elasticity

moduli of the surface block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Pile grids used in this section, with (a) N = 25 and (b) N = 36 piles . . . . . . . . 72

4.2 Vertical displacement of pile (2) within a 5× 5 pile grid. . . . . . . . . . . . . . . 73

4.3 Vertical displacements of pile (2) and pile (3) within a 6× 6 pile grid. . . . . . . . 73

4.4 Soil with continuously varying shear modulus versus discrete heterogeneous layers. 74

4.5 Convergence of pile response with numbers of layers. . . . . . . . . . . . . . . . . 75

4.6 Impulse response of pile tip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



4.7 Pile group configurations for (a) one, (b) two, and (c) four piles under vertical and

horizontal loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8 Real and imaginary part of u*

z for a single pile. . . . . . . . . . . . . . . . . . . . 78

4.9 Real and imaginary part of u*

x and u*

z for a group of two piles. . . . . . . . . . . . 79

4.10 Real and imaginary part of u*

x and u*

z for a group of four piles. . . . . . . . . . . . 79

4.11 Real and imaginary part of u*

x for a single pile. . . . . . . . . . . . . . . . . . . . 80

4.12 Real and imaginary part of u*

x and u*

z for a group of two piles. . . . . . . . . . . . 80

4.13 Real and imaginary part of u*

x and u*

z for a group of four piles. . . . . . . . . . . . 81

4.14 Horizontal response of second pile for different elastic moduli. . . . . . . . . . . . 82

4.15 Vertical response of second pile for different elastic moduli. . . . . . . . . . . . . 83

4.16 Horizontal response from second pile for different mass densities. . . . . . . . . . 84

4.17 Vertical response from second pile for different mass densities. . . . . . . . . . . . 85

4.18 Horizontal response from second pile for different lenghts. . . . . . . . . . . . . . 86

4.19 Vertical response from second pile for different lenghts. . . . . . . . . . . . . . . 87

4.20 Total computational cost to solve a single pile with M elements and N piles with

l = 20 elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.21 Pile group configurations for (a) one, (b) four, and (c) nine piles . . . . . . . . . . 90

4.22 Frontal plane of a structure submitted to a vertical load . . . . . . . . . . . . . . . 91

4.23 Frontal plane of a supported structure submitted to a vertical load . . . . . . . . . . 92

4.24 Shear strain at the frontal face due to a vertical load for nondimensional frequency

a0 = 0.5 and a0 = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.25 Volumetric strain at the frontal face due to a vertical load for nondimensional fre-

quency a0 = 0.5 and a0 = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.26 Central plane of a structure submitted to a vertical load . . . . . . . . . . . . . . . 93

4.27 Shear strain at the central face due to a vertical load for nondimensional frequency

a0 = 0.5 and a0 = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.28 Volumetric strain at the central face due to a vertical load for nondimensional fre-

quency a0 = 0.5 and a0 = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.29 Central plane of a supported structure submitted to a vertical load . . . . . . . . . . 95

4.30 Frontal plane of a structure submitted by a horizontal load . . . . . . . . . . . . . . 95

4.31 Frontal plane of a supported structure submitted by a horizontal load . . . . . . . . 95

4.32 Shear strain at the frontal face due to a horizontal load for nondimensional fre-

quency a0 = 0.5 and a0 = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.33 Volumetric strain at the frontal face due to a horizontal load for nondimensional

frequency a0 = 0.5 and a0 = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



4.34 Central plane of a structure submitted by a horizontal load . . . . . . . . . . . . . 97

4.35 Shear strain at the central face due to a horizontal load for nondimensional fre-

quency a0 = 0.5 and a0 = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.36 Volumetric strain at the central face due to a horizontal load for nondimensional

frequency a0 = 0.5 and a0 = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.37 Central plane of a supported structure submitted by a horizontal load . . . . . . . . 98



List of Tables

4.1 Non-normalized vertical displacement of the pile head in single and double precision 88

4.2 Non-normalized vertical displacement of the pile tip in single and double precision 88

4.3 Computational cost of single pile with different numbers of elements M in seconds. 89

4.4 Computational cost of a pile group with N piles in seconds. . . . . . . . . . . . . . 89

4.5 Computational cost of a pile group in seconds. . . . . . . . . . . . . . . . . . . . . 91



List of symbols and abbreviations

Latin Letters

Ap - Area of a pile section

Aj - Cross-sectional area of a general element j

a0 - Nondimensional frequency

B - Vector of the shape functions derivatives

cxx, czz - Dampings of the pile foundation associated with horizontal and vertical modes

of vibration

Cp, Cs - Pressure and shear wave velocities of the soil

D - Constitutive matrix of the element

dp - Diameter of the pile

Ep, Es, Est - Moduli of elasticity of the piles, the soil, and the external structure

Ej - Modulus of elasticity of a general element j

EA - Axial rigidity of the beam

EI - Flexural rigidity of the beam

fr, fθ, fz - Body forces in the soil medium in the r, θ and z directions

frn, fθn, fzn - Amplitude of Fourier series of fr, fθ and fz

f1n, f2n, f3n - Transformed loads

Fp - Dynamic flexibility matrix of piles under fixed-end conditions

Fs - Flexibility matrix of the soil

h - Height of a layer

hb - Height of the external structure

H - Constant axial force in a pile

J - Jacobian of transformation

Jn(kr) - nth order Bessel function of the 1st kind

k - Parameter of a Hankel transform

kj - Stiffness of an element j

kxx, kzz - Stiffnesses of the pile foundation associated with horizontal and vertical modes

of vibration



Ke - Impedance stiffness matrix of the pile group

Ke - Stiffness matrix of the element

Kp - Dynamic stiffness matrix of the piles

KG - Global stiffness matrix

K̄G - Dynamic global stiffness matrix

l - Number of cylindrical segments along the pile depth

lb - Width of the external structure

lp - Length of the pile

Lj - Length of a general element j

L - Length of the beam

m - Mass per unit length of the piles

M - Moment at a pile section

Me - Element mass matrix

MG - Global mass matrix

N - Number of piles in a group

N - Vector of shape functions

P - Vector of forces of the pile-soil interface

Pe - Vector of forces for the ends of pile

r - Distance in the radial direction

R - Radius of the piles

s - Distance between adjacent piles

t - Time

u - Displacement vectors of the element

ux, uy, uz - Displacements of the pile-soil interface in the x, y and z directions

ur, uθ, uz - Displacements in the soil in the x, θ and z directions

urn, uθn, uzn - Amplitudes of Fourier series of ur, uθ and uz

u1n, u2n, u3n - Transformed displacements

U j - Vector of displacements of pile-soil interface

Ue - Vector of displacements for the ends of pile

V - Shear at a pile section

z - Distance in the vertical direction



Greek Letters

α - Parameter defined for the soil properties

βp, βs - Material damping of the pile and the soil

γ - Parameter defined for the soil properties (Eq. (2.38))

∆ - Dilatation (Eq. (2.18))

∆total - Total elapsed time to solve Eq.(2.11)

∆Fs - Time spent to fill matrix Fs

∆Eq.(2.11) - Time spent to solve the linear system in Eq.(2.11)

ζ - Parameter defined for the piles (Eq. (2.121))

η - Parameter defined for the piles (Eq. (2.114))

θ - Angle between a vertical plane and the x− z plane

λ, µ - Lamé’s constants

νp, νs - Poison ratios of the pile and the soil

ξ - Parameter defined for the piles (Eq. (2.114))

ρp, ρs, ρst - Mass density of the pile, the soil and the external structure

σrz, σθz, σzz - Components of stress on a horizontal plane in cylindrical coordinates

σrzn, σθzn, σzzn - Amplitudes of Fourier series of σrz, σθz and σzz

σ21n, σ22n, σ23n - Transformed stresses

Ψ - Dynamic flexibility matrix of clamped-end piles for harmonic end

displacements

ω - Frequency of vibration



Abbreviations

DSSI - Dynamic soil-structure interaction

FEM - Finite Element Method

LAPACK - Linear Algebra PACKage

MKL - Math Kernel Library

OpenMP - Open Multi-Processing

PARDISO - Parallel Direct Sparse Solver Interface

SMM - Stiffness Matrix Method

FFT - Fourier Fast Transform



Table of Contents

1 Introduction 19

1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Organization of the text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Impedance Matrix Method 25

2.1 Flexibility matrix of soil medium Fs . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1 Green’s functions for viscoelastic layered soil media . . . . . . . . . . . . 30

2.1.2 Layer and halfspace stiffness matrices . . . . . . . . . . . . . . . . . . . . 35

2.1.3 Displacements within a layer . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.4 Integral representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.1.5 Assembly of the flexibility matrix . . . . . . . . . . . . . . . . . . . . . . 50

2.1.6 Evaluation of influence functions . . . . . . . . . . . . . . . . . . . . . . . 54

2.2 Dynamic stiffness matrix of the piles Kp . . . . . . . . . . . . . . . . . . . . . . . 56

2.3 Dynamic flexibility matrix of clamped-end piles Fp . . . . . . . . . . . . . . . . . 59

2.4 Dynamic flexibility matrix of clamped-end piles for harmonic end displacements Ψ 61

2.5 Implementation of dynamic piles code . . . . . . . . . . . . . . . . . . . . . . . . 64

2.5.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3 Model of a surface structure 66

3.1 Modeling of structure by FEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Coupling scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Numerical results 72

4.1 Number of piles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Number of layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Reach in frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Bonding condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.1 Pile group configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.2 Pile parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Numerical precision and computational cost . . . . . . . . . . . . . . . . . . . . . 88

4.6 Strain simulation of the flexible structure . . . . . . . . . . . . . . . . . . . . . . . 91



4.6.1 Strain field due to vertical loads . . . . . . . . . . . . . . . . . . . . . . . 91

4.6.2 Strain field due to horizontal loads . . . . . . . . . . . . . . . . . . . . . . 95

5 Conclusions 99

References 100



19

1 Introduction

The new Brazilian Synchrotron Light Source, Sirius, recently become the largest and most

complex Physics research laboratory in the country and one of the first 4th-generation Synchrotron

Light Sources in the world. Sirius allows researchers to develop sophisticated analyses in many

areas such as in agriculture, energy sector, health and many others. The principle of this source

consists of accelerating particles to speeds approaching the speed of light and controlling their

trajectories through magnetic field to produce Synchrotron Light, and to directed it to workstations

for such analyses. In order for Sirius to operate properly, it is necessary that its foundation vibration

should not exceed very strict limits. A typical approach to solve this vibration problem is to design

the structure to be on top of a large group of piles. Figure 1.1 shows a stage in the construction of

the Sirius Project, in which only a small fraction of its foundation can be seen, but which contains

a large number of piles.

Figure 1.1: Stage of the construction of the Sirius facilities - large group of piles.

Piles are structures that are widely used in geotechnical projects for their ability to stiffen the

soil locally, imbuing it with additional static load bearing capacity, and to transfer the loads from the

superstructure to the ground. Usually, they are attached to a surface plate or a pile cap to increase

the stiffness of the group. The response of the pile foundation embedded in soils is encompassed by

the theory of dynamic soil-structure interaction (DSSI). This theory deals with two distinct issues
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(Kausel, 2017). The first issue involves problems in which a dynamic external load is applied

directly onto the structure, such as machines on elastic foundation, or buildings subjected to wind

loads. The second one investigates the internal loads, that is, the dynamic excitation and sources

applied within the soil mass.

These loads induce the propagation of waves into the media. For the case of an unbounded,

homogeneous, isotropic, elastic fulll-space, only body waves in the form of pressure (P ) and shear

(S) waves are present, which propagate along arbitrary directions. For a half-space, however, the

free boundary admits a nondispersive guided wave known as the Rayleigh wave, and may support

body waves, which are the SV − P and SH waves. The first one are vertically polarized S and

P waves, which show particle motions in the vertical plane perpendicular to the surface and the

direction of propagation. The second one are horizontally polarized shear waves involving particle

motions in horizontal planes parallel to the free surface and perpendicular to the plane of propaga-

tion. The addition of one or more layers to the half-space complicates the analysis, since a set of

interface waves will arise.

Many researchers have been investigating the interference of these waves in the response

of the structure-foundation-soil system. Section 1.1 provides a review of some solutions of DSSI

problems over the years.

1.1 Literature review

The theory of DSSI began in 1936 with a publication by Reissner (1936). In his work, the

effect of time-harmonic uniform vertical load on circular disks applied onto elastic half-spaces was

explored. A few years later in 1944, Reissner and Sagoci (1944) provided a rigorous solution for a

dynamically loaded plate and exact formulas for rigid spheres, constituting one of the few problems

that closed-form solutions are known.

Some decades later, Apsel and Luco (1976) used spheroidal coordinates to produce an exact

solution for the torsional response of both prolate and oblate ellipsoidal foundations embedded in

an elastic halfspace subjected to a harmonic torque about the vertical axis and to SH waves (hori-

zontally polarized shear waves) propagating along arbitrary directions. Chadwick and Trowbridge

(1967a) provided an exact solution of a rigid sphere in a full-space subjected to torsion and an
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exact solution for a sphere subjected to lateral or vertical loads in a infinite elastic solid (Chadwick

and Trowbridge, 1967b), both in the frequency and time domains. The solutions developed by

these authors are important tools for validation of the results obtained with approximate numerical

methods.

In decades of the 1950s and 1960s, a large quantity of publications dealing with dynamically

loaded circular plates resting on half-spaces as well as on multilayered medium was observed.

It is worth to highlight the papers developed by Quinlan (1954), Sung (1954), Bycroft (1956),

Warburton (1957), Kobori and Thompson (1963), Awojobi and Grootenhuis (1965), and Gladwell

(1968). All these works are based on some kind of approximation for the contact stress distributions

and for evaluation of the integral equations. For instance, Bycroft’s (1956) work evaluates the

impedance of a rigid circular plate resting on a free surface of a semi-infinite elastic space or an

elastic stratum for its four modes of vibration. In this work, he assumes that the stress distribution in

the dynamic case can be approximated by the static distribution and obtains the plate’s compliances

by taking the ’weighted average’ of the displacements over the loaded area, originally proposed by

Arnold et al. (1955).

The first studies of pile groups were focused on the understanding of the static pile behavior,

which resulted in many methods for pile foundation design, such as Poulos and Aust (1968), Pou-

los and Mattes (1971), Poulos (1971), Butterfiel and Banerjee (1971) and Banerjee (1978). These

authors related the displacements to the corresponding forces in both the soil medium, through Mi-

dlin’s fundamental solution, and in the piles, through pile differential equations, and coupled the

two systems by using the direct equilibrium and kinematic compatibility at the soil-pile interface.

Despite the fact that these solutions accounted for significant aspects of static pile group behavior,

they were not capable of dealing with the dynamic aspects of the problem.

Extensive works have been developed to investigate the dynamic pile behavior. Some re-

searches represented the soil as a Winkler foundation with distributed springs and dashpots that

are constant or frequency dependent (Penzien, 1970; Matlock, 1970; Prakash and Chandrasekaran,

1973; Desai and Kuppusamy, 1980). The principal advantage of this model is the ability to re-

present non-linearity, inhomogeneity and hysteretic degradation of the soil surrounding the pile by

changing the spring and dashpot constants. This approach, however, ignores the continuity between

individual piles through the surrounding medium and cannot adequately describe the behavior of

pile groups (Sen et al., 1985).
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Some works have been implemented to overcome the limitations of Winkler model. Lysmer

(1970) and Lysmer and Waas (1972) originally introduced the layer stiffness approach for the analy-

sis of generalized Rayleigh waves in layered elastic media. Novak (1974) proposed an alternative

approach to consider the soil-pile interaction in a relatively simple manner. In his model, the waves

propagate only in the horizontal direction and there is no strain in the vertical direction. Nogami

and Novák (1976) incorporated the vertical vibration in this model. Wolf and von Arx (1978) used

a finite element scheme to obtain Green’s functions for ring loads and then to investigate the hori-

zontal as well as vertical dynamic stiffnesses of pile groups in a multilayered medium supported by

a rigid bedrock. Waas and Hartmann (1981) used this methodology to analyse the behavior of pile

groups in lateral vibration. Kausel and Roësset (1981) proposed the stiffness or impedance matrix

method (SMM) which is based on a rigorous formulation for waves in layered media. This method

encompasses layers of arbitrary thickness and high frequencies, differently than the semi-discrete

Thin-Layer Method (Kausel and Peek, 1982). This semi-discrete method is based on a linearization

of the displacement field in the direction of layering, in such a way that the transcendental Green’s

functions in the wavenumber domain become algebraic functions. However, this linearization is

only possible when the wavelengths of plane shear waves are greater than approximately 4h (four

times the layer thickness). Kaynia and Kausel (1991) proposed solutions for dynamic buried ring

load (axial or lateral) and obtained the response of pile foundations to external and seismic exci-

tation. In their numerical model, the piles are represented as elastic beams, the surrounding soil is

represented by Green’s functions for layered elastic halfspace, the impedance matrix of which is

obtained by SMM, and the coupling between the two systems is obtained by direct equilibrium and

kinematic compatibility at the soil-pile interface. More details about the impedance matrix method

can be found in Kausel (2006, 2018).

Although Kaynia and Kausel’s solution provides enough accuracy in modeling the dynamic

response of pile groups with regards to their wave propagation response, their implementations are

meant for practical application problems in which the number of piles is below a few dozen piles,

the number of layers is up to thirty and the structure that connects the pile group is a rigid body.

Moreover, the results of their solution have a single precision floating point value which is not

sufficient for some applications. This last work is the basis for the development of the presented

dissertation.
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1.2 Motivation

This work is motivated by the investigation of pile group foundations connected to large fle-

xible structures such as particle accelerators, concert halls, and nuclear powerplants. Modelling and

understanding the dynamic response of such systems and their energy dissipation and absorption

through the soil is fundamental for their remarkably strict vibration requirements to be complied

with.

1.3 Objectives

The main objective of this dissertation is to propose a coupling scheme between a pile group

modeled by the Impedance Matrix Method (SMM) and a flexible structure obtained by the Finite

Element Method (FEM). The present implementation intends to extend Kaynia and Kausel’s pile

group model for an arbitrary number of soil layers, piles and excitation frequencies. The list below

contains the specific objectives of this research.

∘ Implementation of the Impedance Matrix Method using Fortran 90;

∘ Study and implementation of techniques for reduction of the computational cost of the code;

∘ Implementation of the flexible structure using Finite Element Method;

∘ Implementation of the coupling between a pile group and a flexible structure;

∘ Analysis of the response of structures supported by pile groups.

1.4 Organization of the text

This dissertation is organized as follows.

In Chapter 2, the SMM is detailed as reported by Kaynia and Kausel (1991). The dynamic

stiffness matrix of the pile group submitted to external loads is obtained. In this model, the loads
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at pile-soil interface are defined as lateral and vertical forces. Finally, details about the present

implementation are described. A literature example is used for its validation.

Chapter 3 presents the model for the structure supported by the pile group. The chapter begins

with a brief review of the FEM and a description of the element used to model such structure. The

coupling scheme for the case of piled structures is proposed. The present scheme is validated with

a literature example.

In Chapter 4, the numerical results for different pile groups obtained by the present implemen-

tation are compared with results from the literature. Original numerical results for various number

of layers, piles and frequencies are shown. Lastly, strain-deformation simulations of the flexible

structure are obtained in order to verify the physical consistency of the proposed coupling scheme.
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2 Impedance Matrix Method

The stiffness or impedance matrix method is a tool for analysis of wave propagation problems

in elastic media. In this chapter, the formulation proposed by Kaynia (1982) is described in detail.

Figure 2.1: Pile group in a layered semi-infinite soil medium

Consider the pile group shown in Fig. 2.1. The piles consist of linear elastic beams connected

to a rigid cap and embedded in a layered viscoelastic three-dimensional medium resting on a half-

space or a rigid bedrock. The group is submitted to harmonically-vibrating external loads, which

can be represented by vertical and horizontal forces, and rocking and torsional moments. It is

assumed that there is no loss of bondage between the piles and the soil. The traction distribution in

pile-soil interface can be resolved into frictional and lateral components (Fig. 2.2).

x

z

y

Figure 2.2: Traction distribution on the jth pile of the group

This interface is discretized into l arbitrary cylindrical segments along the pile corresponding

to the soil layers and one circular segment (l + 1) at pile-tip. The pile head and the center of
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each segment define then (l + 2) nodes. The actual traction distribution is replaced by a piecewise

constant distributions for each segment.

From the equilibrium of pile j under the pile-soil interface forces, the vector of resultant of

these forces P j can be defined as

P j =
[︁

pj1x pj1y pj1z · · · pj(l+1)x pj(l+1)y pj(l+1)z

]︁T

(2.1)

and the vector of displacements U j of nodes 1 through (l + 1)

U j =
[︁

uj
1x uj

1y uj
1z · · · uj

(l+1)x uj
(l+1)y uj

(l+1)z

]︁T

(2.2)

Kaynia defined the vector U j as the superposition of the displacements caused by the trans-

lation and rotation of both ends of a pile without loads, and the displacements caused by tractions

P j in a pile with both ends fixed. Then,

U j = ΨjU j
e − F j

pP
j (2.3)

in which U j
e is the vector of displacements for the ends of pile j, represented by

U j
e =

[︁

uj
0x φj

0x uj
0y φj

0y uj
0z uj

(l+1)x φj
(l+1)x uj

(l+1)y φj
(l+1)y uj

(l+1)z

]︁T

, (2.4)

Ψj is a 3(l + 1) × 10 shape matrix defining displacements of the center of segments due to end

displacements of the pile when P j are not present, and F j
p is the flexibility matrix of pile j under

fixed-end conditions, associated with nodes 1 through (l + 1).

Assuming that the dynamic stiffness matrix of pile j is denoted by Kj
p and the vector of

external loads (forces and moments) at the two ends of this pile by P j
e , such that

P j
e =

[︁

Rj
0x M j

0x Rj
0y M j

0y Rj
0z Rj

(l+1)x M j
(l+1)x Rj

(l+1)y M j
(l+1)y Rj

(l+1)z

]︁T

(2.5)

then the following expression can be written

P j
e = Kj

pU
j
e +ΨjTP j (2.6)
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in which the first term of Eq. (2.6) corresponds to pile-end forces due to pile-end displacements

when there are no loads on the pile, and the second term corresponds to pile-end forces due to

loads on the pile when the ends are fixed.

For the N piles in the group, the global load and displacement vectors are defined as

P =

⎡

⎢

⎢

⎢

⎢

⎣

P 1

P 2

...

PN

⎤

⎥

⎥

⎥

⎥

⎦

; U =

⎡

⎢

⎢

⎢

⎢

⎣

U1

U2

...

UN

⎤

⎥

⎥

⎥

⎥

⎦

; Pe =

⎡

⎢

⎢

⎢

⎢

⎣

P 1
e

P 2
e
...

PN
e

⎤

⎥

⎥

⎥

⎥

⎦

; Ue =

⎡

⎢

⎢

⎢

⎢

⎣

U1
e

U2
e
...

UN
e

⎤

⎥

⎥

⎥

⎥

⎦

; (2.7)

and the matrices

Kp =

⎡

⎢

⎢

⎢

⎢

⎣

K1
p

K2
p

. . .

KN
p

⎤

⎥

⎥

⎥

⎥

⎦

; Fp =

⎡

⎢

⎢

⎢

⎢

⎣

F 1
p

F 2
p

. . .

FN
p

⎤

⎥

⎥

⎥

⎥

⎦

; Ψ =

⎡

⎢

⎢

⎢

⎢

⎣

Ψ1

Ψ2

. . .

ΨN

⎤

⎥

⎥

⎥

⎥

⎦

;

(2.8)

Then for the ensemble of piles in the group, the Eqs. (2.3) and (2.6) can be written by

{︃

U = ΨUe − FpP

Pe = KpUe +ΨTP
(2.9)

From the equilibrium of the soil mass under forces P , the relation between the piecewise-

constant segmental loads and the average displacements along the segments is given by

U = FsP (2.10)

where Fs is the flexibility matrix of the soil medium. Substituting Eq. (2.10) into Eq. (2.9), the

following expression is obtained

Pe =
[︀

Kp +ΨT (Fs + Fp)
−1 Ψ

]︀

Ue = KeUe (2.11)

Matrix Ke is the impedance or dynamic stiffness matrix of the pile group (10N×10N ) which

relates the five components of forces at the piles ends to their corresponding displacements. This
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relation is only applicable in a group of unrestrained piles. In order to obtain the dynamic stiffness

matrix of a rigid foundation (pile group along with pile cap) to which the piles are connected, it is

necessary to enforce equilibrium and kinematic compatibility at the pile head-pile cap interface.

The matrix Fs corresponds to the flexibility of a soil mass with N cavities, which include

a significant computational effort into the evaluation of such matrix. In order to overcome this

effort, the cavities are filled with the soil and the appropriate modifications are imposed on the

formulation.

Consider a single pile embedded in a semi-infinite soil medium as shown in Fig. 2.3.

u(z)

p(z)
dz

dz

M

M + dM
dz

dz

V

V + dV
dz
dz

pdz

−ρpAω
2udz

Figure 2.3: Forces on the single pile

The lateral soil pressure and lateral pile displacement are defined as p(z) and u(z), respecti-

vely. The equilibrium equation for a pile element is given by

dV

dz
+ ρpAω

2u = p (2.12)

in which V and A are the shear and area of the pile section, respectively, and ρp is the mass density

of the pile.

In next analysis, consider the same soil medium, but without the pile, and the resulting cavity

is filled with soil such that the original uniform soil mass is obtained (free field). The dashed line

in Fig. 2.4 represents the column of soil added at the cavity. f(z) defines a force distribution along

the depth of the soil column, which supposes to cause approximately the same displacement u(z)

at its centerline.
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u(z)

f(z)
dz

dz

V ′

V ′ + dV ′

dz
dz

p′dz

−ρsAω
2udz

fdz

Figure 2.4: Forces on the free field

The equilibrium equation for a soil differential element is given by

dV ′

dz
+ ρsAω

2u+ f = p′ (2.13)

where p′ is the lateral force on this element.

If p′ is considered equal to p, Eq. (2.13) can be written as

dV ′

dz
+ ρsAω

2u+ f = p (2.14)

The displacement u(z) due to a distributed force p(z) in the soil with the cavity is obtained

when a distributed force f(z) is applied into the uniform soil medium. Thus, f(z) is given by

f = p− ρsAω
2u− dV ′

dz
(2.15)

The equilibrium of the differential pile element can be expressed in terms of f by introducing

Eq. (2.14) into Eq. (2.12), that is

d

dz
(V − V ′) + (ρp − ρs)Aω

2u = f (2.16)

The differential equation (2.16) can be interpreted as a beam with a mass density (ρp − ρs)

and a modulus of elasticity (Ep − Es) excited by a distributed force f(z).
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This approximate scheme suggests that if forces P in Eqs. (2.9) and (2.10) are replaced by

the vectorial equivalent of the distributed forces f , then the flexibility matrix of the soil Fs should

be taken as that corresponding to a free field soil and the matrices Kp, Fp and Ψ represent piles

with reduced mass density and elasticity modulus.

Sections 2.1 to 2.4 describe in detail each of the terms involved in Eq. (2.11).

2.1 Flexibility matrix of soil medium Fs

This section evaluates the dynamic flexibility matrix Fs for the soil medium. This matrix

relates piecewise uniform loads distributed over vertical cylindrical surfaces or horizontal circular

surfaces and a representative displacement of these regions. Green’s functions are used to define

the displacement fields due to these loads and are computed by solving the wave equations through

Fourier and Hankel transforms.

2.1.1 Green’s functions for viscoelastic layered soil media

Consider an elastic, three-dimensional, isotropic full-space, with cylindrical coordinate sys-

tems (r,θ,z) aligned in such a way that the z axis is orthogonal to plane of isotropy of the medium.

The displacements in the radial, tangential and vertical directions are ur, uθ and uz, and the associ-

ated external loads per unit volume are fr, fθ and fz. The equations of motion of this elastic body

in cylindrical coordinates are

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(λ+ 2µ)
∂∆

∂r
− 2µ

r

∂ωz

∂θ
+ 2µ

∂ωθ

∂z
+ ω2ρur + fr = 0

(λ+ 2µ)
1

r

∂∆

∂θ
− 2µ

∂ωr

∂z
+ 2µ

∂ωz

∂r
+ ω2ρuθ + fθ = 0

(λ+ 2µ)
∂∆

∂z
− 2µ

r
∂
∂r
(rωθ) +

2µ

r

∂ωr

∂θ
+ ω2ρuz + fz = 0

(2.17)
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where λ and µ are Lamé’s constant, ρ is the mass density and ω is the frequency of steady-state

vibration. The dilatation ∆ and the rotations ωr, ωθ and ωz are expressed by

∆ =
1

r

∂

∂r
(rur) +

1

r

∂uθ

∂θ
+

∂uz

∂z
(2.18)

ωr =
1

2

(︂

1

r

∂uz

∂θ
− ∂uθ

∂z

)︂

ωθ =
1

2

(︂

∂ur

∂z
− ∂uz

∂r

)︂

ωz =
1

2r

(︂

∂

∂r
(ruθ)−

∂ur

∂θ

)︂

(2.19)

In order to include the viscoelastic effect of hysteretic type into the soil, one can replace λ

and µ in Eq. (2.17) by the complex Lamé’s moduli

{︃

λc = λ(1 + 2βi)

µc = µ(1 + 2βi)
(2.20)

where β is the fraction of critical damping (Christensen, 2012).

For the solution of Eq. (2.17), a separation of variables is used by expanding displacements

and body forces which are symmetric with respect to θ = 0 in a Fourier series in tangential direction

(Muki, 1960), that is
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ur(r, θ, z) =
∑︀

∞

n=0 urn(r,z) cos(nθ)

uθ(r, θ, z) =
∑︀

∞

n=0 uθn(r,z) sin(nθ)

uz(r, θ, z) =
∑︀

∞

n=0 uzn(r,z) cos(nθ)

fr(r, θ, z) =
∑︀

∞

n=0 frn(r,z) cos(nθ)

fθ(r, θ, z) =
∑︀

∞

n=0 fθn(r,z) sin(nθ)

fz(r, θ, z) =
∑︀

∞

n=0 fzn(r,z) cos(nθ)

(2.21)
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Substituting these expansions and Eqs. (2.18) and (2.19) into Eq. (2.17) gives

∑︀

∞

n=0 { µ

[︂

∂2urn

∂r2
+

1

r
∂urn

∂r
− n2 + 1

r2
urn +

∂2urn

∂z2

]︂

+ (λ+ µ)
∂∆n

∂r

−2µ
n

r2
uθn + ω2ρurn + frn } cos(nθ) = 0

(2.22)

∑︀

∞

n=0 { µ

[︂

∂2uθn

∂r2
+

1

r

∂uθn

∂r
− n2 + 1

r2
uθn +

∂2uθn

∂z2

]︂

− (λ+ µ)
n

r
∆n

−2µ
n

r2
urn + ω2ρuθn + fθn } sin(nθ) = 0

(2.23)

∑︀

∞

n=0 { µ

[︂

∂2uzn

∂r2
+

1

r

∂uzn

∂r
− n2

r2
uzn +

∂2uzn

∂z2

]︂

+ (λ+ µ)
∂∆n

∂z

+ω2ρuzn + fzn } cos(nθ) = 0

(2.24)

where

∆n =
1

r

∂

∂r
(rurn) +

n

r
uθn +

∂uzn

∂z
(2.25)

Equations (2.22), (2.23) and (2.24) are satisfied when the terms in braces are identically zero.

If the two equations resulting from Eqs. (2.22) and (2.23) are combined, then the following three

conditions are obtained, to be satisfied for any value of n,

µ

[︂

∂2

∂r2
(urn + uθn) +

1

r

∂

∂r
(urn + uθn)−

(n+ 1)2

r2
(urn + uθn) +

∂2

∂z2
(urn + uθn)

]︂

+(λ+ µ)

(︂

∂∆n

∂r
− n

r
∆n

)︂

+ ω2ρ(urn + uθn) + (frn + fθn) = 0

(2.26)

µ

[︂

∂2

∂r2
(urn − uθn) +

1

r

∂

∂r
(urn − uθn)−

(n− 1)2

r2
(urn − uθn) +

∂2

∂z2
(urn − uθn)

]︂

+(λ+ µ)

[︂

∂∆n

∂r
+

n

r
∆n

]︂

+ ω2ρ(urn − uθn) + (frn − fθn) = 0

(2.27)

µ

[︂

∂2uzn

∂r2
+

1

r

∂uzn

∂r
− n2

r2
uzn +

∂2uzn

∂z2

]︂

+ (λ+ µ)
∂∆n

∂z
+ ω2ρuzn + fzn = 0 (2.28)
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Applying the following Hankel Transforms

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u1n(k,z) + u3n(k,z) =
∫︀

∞

0
(urn + uθn)Jn+1(kr) rdr

−u1n(k,z) + u3n(k,z) =
∫︀

∞

0
(urn − uθn)Jn−1(kr) rdr

u2n(k,z) =
∫︀

∞

0
uznJn(kr) rdr

f1n(k,z) + f3n(k,z) =
∫︀

∞

0
(frn + fθn)Jn+1(kr) rdr

−f1n(k,z) + f3n(k,z) =
∫︀

∞

0
(frn − fθn)Jn−1(kr) rdr

f2n(k,z) =
∫︀

∞

0
fznJn(kr) rdr

(2.29)

where Jn(kr) is the nth order Bessel function of the 1st kind, and the following identities

∫︁

∞

0

[︂

∂2

∂r2
+

1

r

∂

∂r
− m2

r2
+

∂2

∂z2

]︂

φJm(kr)rdr =

(︂

∂2

∂z2
− k2

)︂
∫︁

∞

0

φJm(kr)rdr (2.30)

∫︁

∞

0

(︂

∂

∂r
− m

r

)︂

φJm+1(kr)rdr = −k

∫︁

∞

0

φJm(kr)rdr (2.31)

∫︁

∞

0

(︂

∂

∂r
+

m

r

)︂

φJm−1(kr)rdr = k

∫︁

∞

0

φJm(kr)rdr (2.32)

into Eqs. (2.26), (2.27) and (2.28) leads to

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

µ

[︂

∂2

∂z2
− k2 + ω2 ρ

µ

]︂

(u1n + u3n) + (λ+ µ)(−k∆′

n) + f1n + f3n = 0

µ

[︂

∂2

∂z2
− k2 + ω2 ρ

µ

]︂

(−u1n + u3n) + (λ+ µ)(k∆′

n)− f1n + f3n = 0

µ

[︂

∂2

∂z2
− k2 + ω2 ρ

µ

]︂

u2n + (λ+ µ)
∂

∂z
∆′

n + f2n = 0

(2.33)

where ∆′

n =
∫︀

∞

0
∆nJn(kr)rdr is the nth order Hankel Transform of ∆n. Using the following

property of Bessel functions

n

r
Jn(kr) = ± ∂

∂r
Jn(kr) + kJn±1(kr) (2.34)



34

and the relations (2.31) and (2.32), this term also can be defined as

∆′

n = ku1n +
∂

∂z
u2n (2.35)

Substituting Equation (2.35) into Eqs. (2.33) and then combining the two first equations of

Eq. (2.33), the following ordinary differential equations are obtained

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[︂

µ
∂2

∂z2
− k2(λ+ 2µ) + ρω2

]︂

u1n − (λ+ µ)k
∂

∂z
u2n + f1n = 0

(λ+ µ)k
∂

∂z
u1n +

[︂

(λ+ 2µ)
∂2

∂z2
− µk2 + ρω2

]︂

u2n + f2n = 0

(µ
∂2

∂z2
− µk2 + ρω2)u3n + f3n = 0

(2.36a)

(2.36b)

(2.36c)

Equations (2.36a) and (2.36b) are coupled and define a system of two ordinary linear diffe-

rential equations for u1n and u2n, whereas Eq. (2.36c) is uncoupled from u1n and u2n. Then, u3n can

be obtained by solving Eq. (2.36c). In the next steps, the following parameters will be introduced:

α =

√︃

k2 − ρω2

λ+ 2µ
=

√︃

k2 −
(︂

ω

Cp

)︂2

(2.37)

γ =

√︃

k2 − ρω2

µ
=

√︃

k2 −
(︂

ω

Cs

)︂2

(2.38)

where Cs and Cp are the velocities of shear and pressure waves, respectively. Introducing these

parameters into Eq. (2.36) gives

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(λ+ 2µ)

[︂

µ

λ+ 2µ

∂2

∂z2
− α2

]︂

u1n − (λ+ µ)k
∂

∂z
u2n + f1n = 0

(λ+ µ)k
∂

∂z
u1n + µ

[︂

λ+ 2µ

µ

∂2

∂z
− γ2

]︂

u2n + f2n = 0

(2.39a)

(2.39b)

µ

(︂

∂2

∂z2
− γ2

)︂

u3n + f3n = 0 (2.40)

In order to obtain the homogeneous solution of Eq. (2.39), it is assumed that u1n = Aeηz and
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u2n = Beηz in Eq. (2.39). The resulting system of algebraic equations for η and A/B yields four

sets of solutions, which are used to define the following homogeneous solutions for u1n and u2n

⎧

⎨

⎩

uH
1n(k,z) = −k C1n e

−αz + γ C2n e
−γz − C3n e

αz + γ C4n e
γz

uH
2n(k,z) = −αC1n e

−αz + k C2n e
−γz + αC3n e

αz − k C4n e
γz

(2.41)

where C1n(k), C2n(k), C3n(k) and C4n(k) are unknown constants. In order to obtain a particular

solution, a method of variation of parameters can be used. However, the loadings involved in this

problem, f1n and f2n are independent of z. Therefore, particular solutions can be obtained by the

inspection method. A set of solutions for u1n and u2n are

⎧

⎪

⎨

⎪

⎩

uP
1n =

1

α2(λ+ 2µ)
f1n

uP
2n =

1

γ2µ
f2n

(2.42)

Then, the solutions of Eq. (2.39) are

{︃

u1n(k,z)

u2n(k,z)

}︃

=

[︃

−k γ −k γ

−α k α −k

]︃

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

C1n e
−αz

C2n e
−γz

C3n e
αz

C4n e
γz

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

+

{︃

f1n/α
2(γ + 2µ)

f2n/γ
2µ

}︃

(2.43)

Applying a similar scheme to Eq. (2.39) gives the solution of this equation

u3n(k,z) = [1 1]

{︃

C5n e
−γz

C6n e
γz

}︃

+
1

γ2µ
f3n (2.44)

2.1.2 Layer and halfspace stiffness matrices

Consider the layered soil medium shown in Fig. 2.5. The soil consists of l layers resting on

a halfspace. Fig. 2.5b shows the jth layer confined between two planes (A and B) and Fig. 2.5c

shows the halfspace bounded by the plane C.
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r
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Halfspace

(a)

Layer 1

Layer 2

Layer j
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Plane A

Plane B
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h/2

h/2

Layer j

r′

z′

(c) Halfspace

Plane C r′

z′

Figure 2.5: Layered soil medium

In order to obtain the stiffness matrices of the layer and halfspace, it is necessary to relate

the transformed displacements in Eqs. (2.43) and (2.44) with the associated transformed stresses.

Then, the next step in the solution procedure is to derive expressions for these stresses. The three

components of stress on a plane perpendicular to the z-axis in cylindrical coordinates are

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

σrz = µ

(︂

∂uz

∂r
+

∂ur

∂z

)︂

σθz = µ

(︂

∂uθ

∂z
+

1

r

∂uz

∂θ

)︂

σzz = 2µ
∂uz

∂z
+ λ∆

(2.45)

Using the Fourier expansion of ur, uθ and uz (Eq. (2.21)) in the above equations, it is obtained

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

σrz =
∑︀

∞

n=0 σrzn cos(nθ)

σθz =
∑︀

∞

n=0 σθzn sin(nθ)

σzz =
∑︀

∞

n=0 σzzn cos(nθ)

(2.46)
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where σrzn, σθzn and σzzn are given by

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

σrzn = µ

(︂

∂uzn

∂r
+

∂urn

∂z

)︂

σθzn = µ

(︂

∂uθn

∂z
− n

r
uzn

)︂

σzzn = 2µ
∂uzn

∂z
+ λ∆n

(2.47a)

(2.47b)

(2.47c)

If the following Hankel transforms are defined

± σ21n(k,z) + σ23n(k,z) =

∫︁

∞

0

(σrzn ± σθzn)Jn±1(kr)rdr (2.48)

σ22n(k,z) =

∫︁

∞

0

σzznJn(kr)rdr (2.49)

then combining Equations (2.47a) and (2.47b) and applying Hankel transforms, results in

± σ21n + σ23n = µ

[︂

∓ku2n +
∂

∂z
(±u1n + u3n)

]︂

(2.50)

σ22n = (λ+ 2µ)
∂u2n

∂z
+ λ(ku1n) (2.51)

Substituting the expressions obtained for u1n, u2n and u3n (Eqs. (2.43) and (2.44)) in Eqs.

(2.50) and (2.51), the transformed stresses σ21n, σ23n and σ22n can be expressed as

{︃

σ21n(k,z)

σ22n(k,z)

}︃

= µ

[︃

2αk −(k2 + γ2) −2αk (k2 + γ2)

(k2 + γ2) −2γk (k2 + γ2) −2γk

]︃

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

C1n e
−αz

C2n e
−γz

C3n e
αz

C4n e
−γz

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

+

{︃

−kf2n/γ
2

λkf1n/α
2(λ+ 2µ)

}︃

(2.52)

σ23n(k,z) = µ[−γ γ]

{︃

C5n e
−γz

C6n e
γz

}︃

(2.53)
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It is important to notice that the solution of u3n involves only γ. From this point, all quantities

associated with u3n will be identified as "SH-wave" quantities, whereas "SV-P waves" will be used

to refer to quantities associated with u1n and u2n.

Layer stiffness matrix and load vector for SV-P waves

Equation (2.43) can be used to obtain the expressions for the transformed displacements u1n

and u2n of the planes A and B (Fig. 2.5b) associated with local coordinates z′ = 0 and z′ = h. The

resulting matrix can be written as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

uA
1n − ū1n

uA
2n − ū2n

uB
1n − ū1n

uB
2n − ū2n

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

=

⎡

⎢

⎢

⎢

⎢

⎣

−k γ −k γ

−α k α −k

−k e−αh γ e−γh −k eαh γ eγh

−α e−αh k e−γh α eαh −k eγh

⎤

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

C1n

C2n

C3n

C4n

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(2.54)

where ū1n and ū2n are
{︃

ū1n = f1n/α
2(λ+ 2µ)

ū2n = f2n/γ
2µ

(2.55a)

(2.55b)

In a similar way, Eq. (2.52) can be used to express the transformed stresses σ21n and σ22n on

the exterior side of these planes as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

σA
21n + σ̄21n

σA
22n + σ̄22n

σB
21n + σ̄21n

σB
22n + σ̄22n

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

= µ

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−2αk (k2 + γ2) 2αk −(k2 + γ2)

−(k2 + γ2) 2γk −(k2 + γ2) 2γk

2αke−αh −(k2 + γ2) −2αkeαh (k2 + γ2)eγh

(k2 + γ2)e−αh −2γke−γh (k2 + γ2)eαh −2γkeγh

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

C1n

C2n

C3n

C4n

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(2.56)

where σ̄21n and σ̄22n are
{︃

σ̄21n = −kf2n/γ
2

σ̄22n = λkf1n/α
2(λ+ 2µ)

(2.57a)

(2.57b)

Isolating the unknown constants vector in Eqs. (2.54) and (2.56) and then combining the
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resulting expressions, the following equation can be written:

{︀

σAB
SV−P

}︀

=
[︀

KAB
SV−P

]︀ {︀

uAB
SV−P

}︀

+
{︀

σ̄AB
SV−P

}︀

(2.58)

where
{︀

σAB
SV−P

}︀

and
{︀

uAB
SV−P

}︀

are the transformed stress and displacements vectors given by

{︀

σAB
SV−P

}︀

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

σA
21n

σA
22n

σB
21n

σB
22n

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

;
{︀

uAB
SV−P

}︀

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

uA
1n

uA
2n

uB
1n

uB
2n

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

; (2.59)

and
{︀

σ̄AB
SV−P

}︀

is the vector of "fixed-end stresses" given by (Kaynia, 1982)

{︀

σ̄AB
SV−P

}︀

= −
[︀

KAB
SV−P

]︀

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ū1n

ū2n

ū1n

ū2n

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

+

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−σ̄21n

−σ̄22n

σ̄21n

σ̄22n

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(2.60)
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The elements of the symmetric 4× 4 layer stiffness matrix KAB
SV−P are given by

K11 =
1

D
µα(k2 − γ2) [αγSαCγ − k2SγCα]

K21 =
1

D
µk [αγ(3k2 + γ2)(CαCγ1)− (k4 + k2γ2 + 2α2γ2)SαSγ]

K31 =
1

D
µα(k2 − γ2) [k2Sγ − αγSα]

K41 =
1

D
µkαγ(k2 − γ2) [Cγ − Cα]

K22 =
1

D
µγ(k2 − γ2) [αγSγCα − k2SαCγ]

K32 = −K41

K42 =
1

D
µγ(k2 − γ2) [k2Sα − αγSγ]

K33 = K11

K43 = −K21

K44 = K22

(2.61)

where

D = αγ

[︂

−2k2 + 2k2CαCγ − α2γ2 + k4

αγ
SαSγ

]︂

(2.62)

and
Cα ≡ cosh(αh) ; Sα ≡ sinh(αh)

Cγ ≡ cosh(γh) ; Sγ ≡ sinh(γh)
(2.63)

For the case in which |ω/kCs| ≪ 1, Kaynia (1982) recommended to use the asymptotic
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values of these expressions to avoid errors in the operations. Therefore,

K11 ∼
2

D′
µk

[︀

kh(1− ε2)− (1 + ε2)SkCk
]︀

K21 ∼
2

D′
µk

[︀

k2h2(1− ε2)2 − ε2(1 + ε2)(Sk)2
]︀

K31 ∼
2

D′
µk

[︀

(1 + ε2)Sk − kh(1− ε2)Ck
]︀

K41 ∼ − 2

D′
µk

[︀

kh(1− ε2)Sk
]︀

K22 ∼ − 2

D′
µk

[︀

kh(1− ε2) + (1 + ε2)SkCk
]︀

K42 ∼
2

D′
µk

[︀

(1 + ε2)Sk + kh(1− ε2)Ck
]︀

(2.64)

where

D′ = k2h2(1− ε2)2 − (1 + ε2)2(Sk)2, (2.65)

ε = Cs/Cp, and Ck and Sk are

Ck ≡ cosh(kh) ; Sk ≡ sinh(kh) (2.66)

Halfspace stiffness matrix for SV-P waves

In order to evaluate transformed displacements (Eq. (2.43)) and stresses (Eq. (2.52)) in a

halfspace, it is required that the Sommerfeld’s radiation condition (Sommerfeld, 1949) be satis-

fied. That is, the value of stresses and displacements should tend to zero as z approaches infinity.

Therefore, the unknown constants C3n and C4n in Eqs. (2.43) and (2.52) are equal to zero. Thus,

{︃

uC
1n

uC
2n

}︃

=

[︃

−k γ

−α k

]︃{︃

C1n

C2n

}︃

(2.67)

{︃

σC
21n

σC
22n

}︃

= µ

[︃

−2αk k2 + γ2

−(k2 + γ2) 2γk

]︃{︃

C1n

C2n

}︃

(2.68)
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Combining Equations (2.67) and (2.68), gives

{︃

σC
21n

σC
22n

}︃

=
[︀

KC
SV−P

]︀

{︃

uC
1n

uC
2n

}︃

(2.69)

in which the symmetric 2× 2 halfspace stiffness matrix is

[︀

KC
SV−P

]︀

=
µ

k2 − αγ

[︃

α(k2 − γ2) k(k2 + γ2 − 2αγ)

k(k2 + γ2 − 2αγ) γ(k2 − γ2)

]︃

(2.70)

and when |ω/kCs| ≪ 1

[︀

KC
SV−P

]︀

∼ 2µk

1 + ε2

[︃

1 ε2

ε2 1

]︃

(2.71)

Layer stiffness matrix and load vector for SH waves

Equations (2.44) and (2.53) can be used to express transformed displacements and external

stresses associated with planes A and B (Fig. 2.5b), such that

{︃

uA
3n − ū3n

uB
3n − ū3n

}︃

=

[︃

1 1

e−γh eγh

]︃{︃

C5n

C6n

}︃

(2.72)

{︃

σA
23n

σB
23n

}︃

= µ

[︃

γ −γ

−γe−γh γeγh

]︃{︃

C5n

C6n

}︃

(2.73)

where ū3n = f3n/γ
2µ. Combining Eqs. (2.72) and (2.73), gives

{︀

σAB
SH

}︀

=
[︀

KAB
SH

]︀ {︀

uAB
SH

}︀

+
{︀

σ̄AB
SH

}︀

(2.74)

where
{︀

σAB
SH

}︀

and
{︀

uAB
SH

}︀

are the stress and displacement vectors expressed as

{︀

σAB
SH

}︀

=

{︃

σA
23n

σB
23n

}︃

;
{︀

uAB
SH

}︀

=

{︃

uA
3n

uB
3n

}︃

(2.75)



43

and
{︀

σ̄AB
SH

}︀

is the vector of "fixed-end stresses" given by (Kaynia, 1982)

{︀

σ̄AB
SH

}︀

= −
[︀

KAB
SH

]︀

{︃

ū3n

ū3n

}︃

(2.76)

and the 2× 2 layer stiffness matrix is

[︀

KAB
SH

]︀

=
γµ

sinh(γh)

[︃

cosh(γh) −1

−1 cosh(γh)

]︃

(2.77)

Halfspace stiffness matrix for SH waves

The expressions for the transformed stress and displacement of plane C (Fig. 2.5c), resulting

from imposition of the radiation condition into Eqs. (2.44) and (2.53) , are

uC
3n = C5n (2.78)

σC
23n = γµC5n (2.79)

Combining Eqs. (2.78) and (2.79), the following expression is obtained

σC
23n = γµuC

3n (2.80)

2.1.3 Displacements within a layer

Since the nodes of each layer are located at their centers, the displacements of the middle of

the layers need to be computed. The following expressions give the mid-layer transformed displa-

cements.
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Mid-layer transformed displacements for SV-P Waves

The transformed displacements of the center of the layer shown in Fig. 2.5 are related to those

of planes A and B by

{︃

uE
1n

uE
2n

}︃

=
[︀

TE
SV−P

]︀

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

uA
1n − ū1n

uA
2n − ū2n

uB
1n − ū1n

uB
2n − ū2n

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

+

{︃

ū1n

ū2n

}︃

(2.81)

in which the elements of [TE
SV−P ] are

T11 =
1

D

[︀

αγk2(CαCγ/2 + Cα/2Cγ)− α2γ2SαSγ/2 − k4Sα/2Sγ − αγk2(Cα/2 + Cγ/2)
]︀

T21 =
1

D
αk

[︀

αγ(CγSα/2 − Cγ/2Sα
) + k2(Sγ/2Cα − SγCα/2) + k2Sγ/2 + αγSα/2

]︀

T12 =
1

D
γk

[︁

αγ(CαSγ/2 − Cα/2Sγ) + k2(Sα/2Cγ − SαCγ/2) + k2Sα/2 + αγSγ/2
]︁

T22 =
1

D

[︀

αγk2(CγCα/2 + Cγ/2Cα)− α2γ2SγSα/2 − k4Sγ/2Sα − αγk2(Cγ/2 + Cα/2)
]︀

T13 = T11

T23 = −T21

T14 = −T12

T24 = T22

(2.82)

and the symbols Cα/2, Cγ/2, Sα/2 and Sγ are denoted by

{︃

Cα/2 ≡ cosh(αh/2) Sα/2 ≡ sinh(αh/2)

Cγ/2 ≡ cosh(γh/2) Sγ/2 ≡ sinh(γh/2)
(2.83)

For the case in which |ω/kCs| ≪ 1, Kaynia (1982) defined the asymptotic value of the terms
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of [TE
SV−P ] as

T11 ∼
1

2D′

[︀

khCk/2(ε2 − 1) + 2Sk/2(1 + ε2)
]︀ [︀

kh(ε2 − 1)− 2Ck/2Sk/2(1 + ε2)
]︀

T21 ∼
1

2D′
kh(1− ε2)Sk/2

[︀

2(1 + ε2)Sk/2Ck/2 − kh(1− ε2)
]︀

T12 ∼
1

2D′
kh(1− ε2)Sk/2

[︀

2(1 + ε2)Sk/2Ck/2 + kh(1− ε2)
]︀

T22 ∼
1

2D′

[︀

khCk/2(1− ε2) + 2Sk/2(1 + ε2)
]︀ [︀

kh(1− ε2)− 2Ck/2Sk/2(1 + ε2)
]︀

(2.84)

where Ck/2 and Sk/2 are

Ck/2 ≡ cosh(kh/2) ; Sk/2 ≡ sinh(kh/2) (2.85)

Mid-layer transformed displacements for SH Waves

The transformed displacement of plane E (Fig. 2.5) in terms of the transformed displacement

of planes A and B is

uE
3n =

1

2 cosh(γh/2)

(︀

uA
3n + uB

3n − 2ū3n

)︀

+ ū3n (2.86)

2.1.4 Integral representation

In this section, the derived transformed displacements uE
1n, uE

2n and uE
3n are used to obtain

the displacements in a layered soil media caused by uniform load distributions over cylindrical or

circular surfaces. In the model proposed by Kaynia, the soil is divided into a number of layers in

such a way that the traction distribution can be well represented. Each layer contains a cylindrical

uniform load distribution which can be treated as body forces along the pile shafts for which the

"fixed-end stresses" can be evaluated. At the pile tips, the circular loads can be considered as

external forces at the interface of two layers.

Consider the uniform horizontal an vertical loads on cylindrical and circular surfaces presen-

ted in Fig. 2.6. The radii of the cylinders and circular surfaces are denoted by R, and the height
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(a) (b)

(c) (d)

R

h

Figure 2.6: Type of loads in pile-soil interface

of the cylinders by h. These quantities also represent the radius of the piles and the thickness of a

layer, respectively. The lateral load on a cylindrical surface (Fig. 2.6a) can be expressed in cylin-

drical coordinates as
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

fr(r,θ,z) =
1

2πRh
δ(r −R) cos θ

fθ(r,θ,z) =
−1

2πRh
δ(r −R) sin θ

fz(r,θ,z) = 0

(2.87)

where δ represents the Dirac delta function. Comparing Eq. (2.87) with the expansion of loads in

Eq. (2.21), it is obtained
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

fr1 =
1

2πRh
δ(r −R)

fθ1 =
−1

2πRh
δ(r −R)

fz1 = 0

(2.88)

and

frn = fθn = fzn = 0; for n ̸= 1 (2.89)

Since the values of the Fourier expansion of loads in Eq. (2.89) are zero for n different than

one, the corresponding displacements are contributed only by the terms associated with n = 1.
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Therefore, the displacement expansions reduce to

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ur(r,θ,z) = ur1(r,z) cos θ

uθ(r,θ,z) = uθ1(r,z) sin θ

uz(r,θ,z) = uz1(r,z) cos θ

(2.90)

Applying Hankel transforms (Eq. (2.29)) into fr1, fθ1 and fz1 yields

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f11 = −J0(kR)

2πh

f21 = 0

f31 =
J0(kR)

2πh

(2.91)

The transformed displacements associated with these transformed loads can be obtained by

the procedure described in previous sections. If u11, u21 and u31 correspond to f11 = f31 = 1/2πh

and f21 = 0, then actual transformed displacements associated with Eq. (2.91) are given by

−J0(kR)u11, −J0(kR)u21 and J0(kR)u31. Therefore, the Hankel transform of displacements in

Eq. (2.29) can be written as (n = 1)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−J0(kR)u11 + J0(kR)u31 =
∫︀

∞

0
(ur1 + uθ1) J2(kR) rdr

J0(kR)u11 + J0(kR)u31 =
∫︀

∞

0
(ur1 − uθ1) J0(kR) rdr

−J0(kR)u21 =
∫︀

∞

0
uz1J1(kr) rdr

(2.92)

The application of inverse Hankel transform to these equations results

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ur1 + uθ1 =
∫︀

∞

0
(−u11 + u31)J0(kR) J2(kr) kdk

ur1 − uθ1 =
∫︀

∞

0
(u11 + u31)J0(kR) J0(kr) kdk

uz1 =
∫︀

∞

0
(−u21)J0(kR) J1(kr) kdk

(2.93)

Using the recurrence relations for the Bessel functions, the following integral representation for
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ur1, uθ1 and uz1 can be obtained

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ur1 =
1

2πh

∫︀

∞

0

[︂

u11J0(kr) J0(kR) + (u31 − u11)
J1(kr)

kr
J0(kR)

]︂

kdk

uθ1 = − 1

2πh

∫︀

∞

0

[︂

u31J0(kr) J0(kR) + (u11 − u31)
J1(kr)

kr
J0(kR)

]︂

kdk

uz1 = − 1

2πh

∫︀

∞

0
u21 J1(kr) J0(kR) kdk

(2.94)

For a frictional force on a cylindrical surface (Fig. 2.6b), the integral representation of cor-

responding displacements can be obtained in a similar scheme. Initially, the load distribution can

be written as
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

fr(r,θ,z) = 0

fθ(r,θ,z) = 0

fz(r,θ,z) =
1

2πRh
δ(r −R)

(2.95)

Comparing Eq. (2.95) with the expansion of loads in Eq. (2.21), it is obtained

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

fr0 = 0

fθ0 = 0

fz0 =
1

2πRh
δ(r −R)

(2.96)

and

frn = fθn = fzn = 0; for n ̸= 0 (2.97)

The load expansion is only a nonzero term when n = 0. In this case, the displacement

expansion also has a non-zero value, whereas all other terms will vanish when n ̸= 0. Therefore,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ur(r,θ,z) = ur0(r,z)

uθ(r,θ,z) = 0

uz(r,θ,z) = uz0(r,z)

(2.98)
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Applying the procedure described for horizontal loading, it is obtained that u10 and u20 are

transformed displacements due to transformed loads f10 = 0 and f20 = 1/2πh. Therefore, ur0 and

uz0 are written as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ur0 =
1

2πh

∫︀

∞

0
u10J1(kr) J0(kR) kdk

uz0 =
1

2πh

∫︀

∞

0
u20J0(kr) J0(kR) kdk

(2.99)

For the loads distributed over circular surfaces (Figs. 2.6c and 2.6d), it is necessary that

the corresponding transformed forces be evaluated directly. Consider first the frictional force on a

circular face (Fig. 2.6c). This load can be represented by

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

σ̄rz =
1

πR2
cos θ

σ̄θz =
−1

πR2
sin θ r ≤ R

σ̄zz = 0

(2.100)

σ̄rz = σ̄θz = σ̄zz = 0; r > R

Applying a Fourier expansion of these loads and comparing with Eq. (2.100), it can be con-

cluded that
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

σ̄rz1 =
1

πR2

σ̄θz1 =
−1

πR2

σ̄zz1 = 0

(2.101)

and

σ̄rzn = σ̄θzn = σ̄zzn = 0; for n ̸= 1 (2.102)

Therefore, only the terms associated with n = 1 in the expansion of displacements ur, uθ

and uz need to be considered (Eq. (2.90)). Applying the Hankel transforms into Eq. (2.101), the
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transformed loads associated with σ̄rz1, σ̄θz1 and σ̄zz1 are obtained, which are given by

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

σ̄211 = − 1

π

J1(kR)

kR

σ̄221 = 0

σ̄231 =
1

π

J1(kR)

kR

(2.103)

For this case, the integral representation of ur1, uθ1 and uz1, which is obtained by a similar

procedure described for the loads on cylindrical surfaces, is represented by Eq. (2.94), except that

the term J0(kR) is replaced by J1(kR)/kR and 1/2πh is replaced by 1/π. The transformed displa-

cements u11, u21 and u31 in these equations correspond to transformed applied stresses σ̄211 = 1/π,

σ̄221 = 0 and σ̄231 = 1/π.

For the vertical force on a circular surface (Fig. 2.6d), only the terms associated with n =

0 in the Fourier expansions are considered and the expressions for displacements are given by

Eq. (2.99), except that the term J0(kR) should be replaced by J1(kR)/kR and 1/2πh should be

replaced by 1/π. The transformed displacements u10 and u20 in these equations correspond to the

transformed applied stresses σ̄210 = 0 and σ̄220 = 1/π.

2.1.5 Assembly of the flexibility matrix

In order to understand how the flexibility matrix of the soil is assembled, consider the example

shown in Fig. 2.7.



51

Pile 1 Pile 2

Half-space

Layer 2
2

3

2

3

r

Figure 2.7: Pile group in a multilayered media

For this case, the integral representations presented in Equations (2.94 and 2.99) must be

obtained for r = 0 (Pile 1) and r = s (Pile 2). The transformed displacements at the central nodes

of the Pile 1 are

uE
11 =

⎡

⎢

⎣

uu1,f1
11 uu1,f2

11 uu1,f3
11

uu2,f1
11 uu2,f2

11 uu2,f3
11

uu3,f1
11 uu3,f2

11 uu3,f3
11

⎤

⎥

⎦
, uE

21 =

⎡

⎢

⎣

uu1,f1
21 uu1,f2

21 uu1,f3
21

uu2,f1
21 uu2,f2

21 uu2,f3
21

uu3,f1
21 uu3,f2

21 uu3,f3
21

⎤

⎥

⎦
, uE

31 =

⎡

⎢

⎣

uu1,f1
31 uu1,f2

31 uu1,f3
31

uu2,f1
31 uu2,f2

31 uu2,f3
31

uu3,f1
31 uu3,f2

31 uu3,f3
31

⎤

⎥

⎦
,

(2.104)

uE
10 =

⎡

⎢

⎣

uu1,f1
10 uu1,f2

10 uu1,f3
10

uu2,f1
10 uu2,f2

10 uu2,f3
10

uu3,f1
10 uu3,f2

10 uu3,f3
10

⎤

⎥

⎦
, uE

20 =

⎡

⎢

⎣

uu1,f1
20 uu1,f2

20 uu1,f3
20

uu2,f1
20 uu2,f2

20 uu2,f3
20

uu3,f1
20 uu3,f2

20 uu3,f3
20

⎤

⎥

⎦
(2.105)

where the terms uui,fj of each matrix represent the displacement of node i due to a load at node

j. Substituting the terms of these matrices into the expressions of the displacements in the spatial

domain (Eqs. (2.94) and (2.99)), the following matrices are obtained

ur1 =

⎡

⎢

⎣

uu1,f1
r1 uu1,f2

r1 uu1,f3
r1

uu2,f1
r1 uu2,f2

r1 uu2,f3
r1

uu3,f1
r1 uu3,f2

r1 uu3,f3
r1

⎤

⎥

⎦
, uθ1 =

⎡

⎢

⎣

uu1,f1
θ1 uu1,f2

θ1 uu1,f3
θ1

uu2,f1
θ1 uu2,f2

θ1 uu2,f3
θ1

uu3,f1
θ1 uu3,f2

θ1 uu3,f3
θ1

⎤

⎥

⎦
, uz1 =

⎡

⎢

⎣

uu1,f1
z1 uu1,f2

z1 uu1,f3
z1

uu2,f1
z1 uu2,f2

z1 uu2,f3
z1

uu3,f1
z1 uu3,f2

z1 uu3,f3
z1

⎤

⎥

⎦
,

(2.106)

ur0 =

⎡

⎢

⎣

uu1,f1
r0 uu1,f2

r0 uu1,f3
r0

uu2,f1
r0 uu2,f2

r0 uu2,f3
r0

uu3,f1
r0 uu3,f2

r0 uu3,f3
r0

⎤

⎥

⎦
, uz0 =

⎡

⎢

⎣

uu1,f1
z0 uu1,f2

z0 uu1,f3
z0

uu2,f1
z0 uu2,f2

z0 uu2,f3
z0

uu3,f1
z0 uu3,f2

z0 uu3,f3
z0

⎤

⎥

⎦
(2.107)

It is worth noting that the term 1/2πh should be replaced by 1/π for the integrals contained
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in the last column of each matrix, since this position represents the displacements due to the load

on pile tip. The same procedure is used to obtain the matrices of integral representations for Pile 2.

The terms in the diagonal of the flexibility matrix are represented by the displacements at

the nodes of one pile due to the loads at the nodes of the same pile, whereas the terms out of the

diagonal represent the displacements at the nodes of one pile due to the loads at the nodes of the

other pile. The flexibility matrix of the Pile 1 is given by

F 1
s =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u1
r1(1,1) 0 0 u1

r1(1,2) 0 0 u1
r1(1,3) 0 0

0 u1
r1(1,1) 0 0 u1

r1(1,2) 0 0 u1
r1(1,3) 0

0 0 u1
z0(1,1) 0 0 u1

z0(1,2) 0 0 u1
z0(1,3)

u1
r1(2,1) 0 0 u1

r1(2,2) 0 0 u1
r1(2,3) 0 0

0 u1
r1(2,1) 0 0 u1

r1(2,2) 0 0 u1
r1(2,3) 0

0 0 u1
z0(2,1) 0 0 u1

z0(2,2) 0 0 u1
z0(2,3)

u1
r1(3,1) 0 0 u1

r1(3,2) 0 0 u1
r1(3,3) 0 0

0 u1
r1(3,1) 0 0 u1

r1(3,2) 0 0 u1
r1(3,3) 0

0 0 u1
z0(3,1) 0 0 u1

z0(3,2) 0 0 u1
z0(3,3)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(2.108)

The same scheme of Equation (2.108) is used to obtain the flexibility matrix of Pile 2, that is, F 2
s .

The flexibility matrix of the interaction between Pile 1 and Pile 2, F 1−2
s , is given by

F 1−2
s =

⎡

⎢

⎣

F 1−2
s [u(1,1)] F 1−2

s [u(1,2)] F 1−2
s [u(1,3)]

F 1−2
s [u(2,1)] F 1−2

s [u(2,2)] F 1−2
s [u(2,3)]

F 1−2
s [u(3,1)] F 1−2

s [u(3,2)] F 1−2
s [u(3,3)]

⎤

⎥

⎦
(2.109)
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where F 1−2
s [u(i,j)] are 3× 3 sub-matrices, the terms of which are expressed as

F 1−2
s [u(i,j)](1,1) = (u1

r1(i,j) + u2
r1(i,j)) cos

2 θ − (u1
t1(i,j) + u2

t1(i,j)) sin
2 θ

F 1−2
s [u(i,j)](2,1) = (u1

r1(i,j) + u2
r1(i,j)) cos θ sin θ − (u1

t1(1,1) + u2
t1(i,j)) sin θ cos θ

F 1−2
s [u(i,j)](3,1) = (u1

z1(i,j) + u2
z1(i,j)) cos θ

F 1−2
s [u(i,j)](1,2) = (u1

r1(i,j) + u2
r1(i,j)) sin θ cos θ − (u1

t1(i,j) + u2
t1(i,j)) cos θ sin θ

F 1−2
s [u(i,j)](2,2) = (u1

r1(i,j) + u2
r1(i,j) sin

2 θ − (u1
t1(i,j) + u2

t1(i,j) cos
2 θ

F 1−2
s [u(i,j)](3,2) = (u1

z1(i,j) + u2
z1(i,j)) sin θ

F 1−2
s [u(i,j)](1,3) = (u1

r0(i,j) + u2
r0(i,j)) cos θ

F 1−2
s [u(i,j)](2,3) = (u1

r0(i,j) + u2
r0(i,j)) sin θ

F 1−2
s [u(i,j)](3,3) = (u1

z0(i,j) + u2
z0(i,j))

(2.110)

and θ is the angle between the piles. Figure 2.8 illustrates the profile of the flexibility matrix of soil.

Fs =

F
1−2

s

Figure 2.8: Scheme of assemble of flexibility matrix of soil
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Figure 2.9 shows the final profile of this matrix if two more piles are added into the system.

Fs =
F

1−2

s

F
1−3

s

F
1−4

s

F
2−3

s

F
2−4

s
F

3−4

s

Sym

Figure 2.9: Scheme of assemble of flexibility matrix of soil for a group of four piles

2.1.6 Evaluation of influence functions

It can be observed in Equations (2.94) and (2.99) that the expressions for displacements

involve integrals of the form

I =

∫︁

∞

0

f(k)Jn(kr) Jm(kR) dk (2.111)

in which the integrand is composed by a function f(k) and a product of Bessel functions. Figure

2.10 shows the real part of the integrand of uu1,f1
r1 (Eq. (2.106)) represented by u*

r1. Notice that

there are two well-defined regions. The first region is characterized by the presence of singularities,

which are associated with surface wave modes. As the number of layers increases more singularities

appear in the integrand. The second region is characterized by a smooth and decaying oscillation,

which is defined from the argument of Bessel functions.
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Figure 2.10: Integrand representation of Re[uu1,f1
r1 ] (Equation (2.106)).

This peculiar behavior of the integrand requires an appropriate numerical evaluation to ensure

consistent results. The works of Vasconcelos et al. (2017) and Cavalcante et al. (2017) investigated

a set of numerical methods for evaluation of each region of such integrand. For the first region,

the adaptive quadrature showed a good approximation. This technique uses the idea of a standard

quadrature, which is to divide the domain integration into a number of discrete intervals, and add

more intervals at the sections that contain a singularity. For the second region, Cavalcante et al.

(2017) showed that an extrapolation method performs an accurate evaluation of improper integrals.

A considerable quantity of numerical packages encompassing these methods are available. In this

research, the QUADPACK package was used (for more details about the numerical integration of

such functions, see Section 2.5).

In the next sections, the stiffness and flexibility matrices of the piles are obtained. The piles

are modeled with a beam element, which has three degrees of freedom per node (two lateral vi-

bration, corresponding to translation and rotation, and one axial vibration, corresponding to axial

displacement).
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2.2 Dynamic stiffness matrix of the piles Kp

The differential equation of a beam in steady-state lateral vibration, including the axial force

effect (Fig. 2.11) is given by

d4u

dz4
+

(︂

H

EI

)︂

d2u

dz2
−
(︂

mω2

EI

)︂

u = 0 (2.112)

where m is the mass per unit length of the beam, H is the constant axial force in the beam and EI

is the flexural rigidity of the beam.
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H
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M

H

V

V + dV

dz
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M + dM

dz
dz

H

−ρAω2u

dz

Figure 2.11: Beam in steady-state lateral vibration.

The solution of Eq. (2.112) can be written as

u = C1 cos (ηz) + C2 sin (ηz) + C3 cosh (ξz) + C4 sinh (ξz) (2.113)

where
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

η =

⎧

⎨

⎩

[︃

(︂

H

2EI

)︂2

+
mω2

EI

]︃2

+
H

2EI

⎫

⎬

⎭

1/2

ξ =

⎧

⎨

⎩

[︃

(︂

H

2EI

)︂2

+
mω2

EI

]︃2

− H

2EI

⎫

⎬

⎭

1/2
(2.114)

The dynamic stiffness matrix of the beam is obtained by relating the forces at the two ends
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with their corresponding displacements. Therefore,
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⎪

⎨
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⎪

⎪

⎪

⎩

VA

MA

VB

MB

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

=
[︀

K
l
]︀

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

uA

φA

uB

φB

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(2.115)

where the terms of the symmetric 4× 4 dynamic stiffness matrix K
l are given by

K l
11 =

EI

T0

(η2 + ξ2)(η Sη Cξ + ξ Cη Sξ)

K l
21 =

EI

T0

[(η2 − ξ2)(1− Cη Cξ) + 2 ηξ Sη Sξ]

K l
31 = −EI

T0

(η2 + ξ2)(η Sη + ξ Sξ)

K l
41 =

EI

T0

(η2 + ξ2)(Cξ − Cη)

K l
22 =

EI

T0

(︂

η

ξ
+

ξ

η

)︂

(ξ Sη Cξ − η Cη Sξ)

K l
32 = −EI

T0

(η2 + ξ2)(Cξ − Cη)

K l
42 =

EI

T0

(︂

η

ξ
+

ξ

η

)︂

(η Sξ − ξ Sη)

K l
33 = K11

K l
43 = −K21

K l
44 = K22

(2.116)

where

T0 = 2− 2Cη Cξ −
(︂

η

ξ
− ξ

η

)︂

Sη Sξ (2.117)

and
Cη ≡ cos (ηL) ; Sη ≡ sin (ηL)

Cξ ≡ cosh (ξL) ; Sη ≡ sinh (ξL)
(2.118)

in which L is the length of the beam.
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Figure 2.12: Beam in steady-state axial vibration.

Now, considering the case of the steady-state axial vibration of a beam (Fig. 2.12). The dif-

ferential equation is
d2v

dz2
+

m

EA
ω2v = 0 (2.119)

The solution of this equation can be written as

v = C1 cos (ζz) + C2 sin (ζz) (2.120)

where

ζ =

(︂

mω2

EA

)︂1/2

(2.121)

The dynamic stiffness matrix can be obtained by the same procedure done in the lateral

vibration. Therefore,

{︃

FA

FB

}︃

=
EAζ

sin(ζL)

[︃

cos(ζL) −1

−1 cos(ζL)

]︃{︃

vA

vB

}︃

(2.122)

or
{︃

FA

FB

}︃

= [Ka]

{︃

vA

vB

}︃

(2.123)

The complete dynamic stiffness matrix of a pile element is given by the combination of Eqs.

2.115 and 2.123, that is

{F} = [Kp] {u} (2.124)



59

where

{F} = {VxA MxA VyA MyA FA VxB MxB VyB MyB FB}

{u} = {uxA φxA uyA φyA vA uxB φxB uyB φyB vB}
(2.125)

2.3 Dynamic flexibility matrix of clamped-end piles Fp

In order to obtain the terms of Fp associated with the lateral degrees of freedom (u and φ), it

is necessary to derive the expressions for the lateral displacements caused by a lateral point load in

a fixed-end beam.

A BC

a

L

P

H H

u

z

Figure 2.13: Fixed-end beam subjected to a lateral point load P .

For the beam shown in Figure 2.13 subjected to a point force P at z = a, Eq. (2.112) can be

used to express the displacement of the beam as

⎧

⎨

⎩

u = A1 cos (ηz) + A2 sin (ηz) + A3 cosh (ξz) + A4 sinh (ξz) 0 ≤ z ≤ a

u = B1 cos (ηz) + B2 sin (ηz) + B3 cosh (ξz) + B4 sinh (ξz) a ≤ z ≤ L
(2.126)

where η and ξ were defined in Eq. (2.114), and the unknown constants A1, A2, ..., B3, B4 are de-

termined by the essential boundary conditions (zero translation and rotation) along with the com-
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patibility and equilibrium equations at the point of application of the load. Then,

A1 =
P

EI(η2 + ξ2)T0

[︂

T3 (cosh(ξa)− cos(ηa)) + (T1 − 1) sin (ηa)−
(︂

T4 +
η

ξ

)︂

sinh (ξa)

]︂

A2 = − P

EI(η2 + ξ2)T0

[︂

(T1 − 1) cosh (ξa)−
(︂

1 +
ξ

η
T4

)︂

cosh(ηa) + T2

(︂

ξ

η
sin (ηa)− sinh (ξa)

)︂]︂

A3 = −A1

A4 = −η

ξ
A2

B1 =
P

EI(η2 + ξ2)T0

[︂

T3 (cosh(ξa)− cos(ηa))

(︂

T4 +
η

ξ

)︂(︂

ξ

η
sin (ηa)− sinh (ξa)

)︂]︂

B2 = − P

EI(η2 + ξ2)T0

[︂

(T1 − 1) (cosh (ξa)− cos (ηa)) + T2

(︂

ξ

η
sin (ηa)− sinh (ξa)

)︂]︂

B3 = −T1 B1 − T3 B2

B4 = T2 B1 + T4 B2

(2.127)

where
T1 = Cη Cξ +

η

ξ
Sη Sξ

T2 = Cη Sξ +
η

ξ
Sη Cξ

T3 = Sη Cξ − η

ξ
Cη Sξ

T4 = Sη Sξ − η

ξ
Cη Cξ

(2.128)

PA C B z
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L

Figure 2.14: Fixed-end beam subjected to a axial point load P .

For a beam in axial vibration (Figure 2.14), the axial displacement in a fixed-end beam sub-
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mitted to an axial point load P is given by

⎧

⎨

⎩

v = A1 cos (ζz) + A2 sin (ζz) 0 ≤ z ≤ a

v = B1 cos (ζz) + B2 sin (ζz) a ≤ z ≤ L
(2.129)

where A1, A2, B1 and B2 can be determined by the boundary conditions along with the compatibi-

lity and equilibrium equations at the point of application of the load. Therefore,

A1 = 0

A2 =
P

EAζ
[cos (ζa)− cot (ζL) sin (ζa)]

B1 =
P

EAζ
sin (ζa)

B2 =
−P

EAζ
cot (ζL) sin (ζa)

(2.130)

2.4 Dynamic flexibility matrix of clamped-end piles for harmonic end displace-

ments Ψ

Finally, in order to evaluate the terms of Ψ associated with the lateral degrees of freedom,

it is necessary to derive the expression for the lateral displacement of the beam caused by the

displacements at the two ends, uA, uB, φA and φB. This expression can be determined by using

Eq. (2.113) along with its derivative to define the end displacements in terms of C1, C2, C3 and C4.

Thus,

C1 =
1

T0

[︂(︂

1 +
ξ

η
T4

)︂

uA +
1

η
T3 φA + (Cη − Cξ) uB −

(︂

1

η
Sη − 1

ξ
Sξ

)︂

φB

]︂

C2 =
1

T0

[︂

−ξ

η
T2 uA +

1

η
(1− T1)φA + (Sη +

ξ

η
Sξ) uB +

1

η
(Cη − Cξ)φB

]︂

C3 =
1

T0

[︂

(1− T1) uA − 1

η
T3 φA − (Cη − Cξ) uB +

(︂

1

η
Sη − 1

ξ
Sξ

)︂

φB

]︂

C4 =
1

T0

[︂

T2 uA +

(︂

1

η
T4 +

1

ξ

)︂

φA −
(︂

η

ξ
Sη + Sξ

)︂

uB − 1

ξ
(Cη − Cξ)φB

]︂

(2.131)
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Substituting these constants into Equation (2.113), it is obtained

u = C ′

1uA + C ′

2φA + C ′

3uB + C ′

4φB (2.132)

where

C ′

1 =
1

T0

[︂(︂

1 +
ξ

η
T4

)︂

cos(ηz)− ξ

η
T2 sin(ηz) + (1− T1) cosh(ξz) + T2 sinh(ξz)

]︂

C ′

2 =
1

T0

[︂

1

η
T3 cos(ηz) +

1

η
(1− T1) sin(ηz)−

1

η
T3 cosh(ξz) +

(︂

1

η
T4 +

1

ξ
sinh(ξz)

)︂]︂

C ′

3 =
1

T0

[︂

(Cη − Cξ) cos(ηz) +

(︂

Sη +
ξ

η
Sξ

)︂

sin(ηz)− (Cη − Cξ) cosh(ξz)−
(︂

η

ξ
Sη + Sξ

)︂

sinh(ξz)

]︂

C ′

4 =

[︂

−
(︂

1

η
Sη − 1

ξ
Sξ

)︂

cos(ηz) +
1

η
(Cη − Cξ) sin(ηz) +

(︂

1

η
Sη − 1

ξ
Sξ

)︂

cosh(ξz)−

1

ξ

(︀

Cη − Cξ
)︀

sinh(ξz)

]︂

(2.133)

For lateral vibration, the expressions for C1 and C2 of Eq. (2.121) in terms of the end displa-

cements of the beam are

⎧

⎨

⎩

C1 = vA

C2 =
1

sin (ζL)
[− cos (ζL) vA + vB]

(2.134)

Substituting these constants in Equation 2.120, it is obtained

v = C*

1vA + C*

2vB (2.135)

where

C*

1 =

[︂

cos(ζz)− 1

tan(ζL)
sin(ζz)

]︂

C*

2 =
sin(ζz)

sin(ζL)

(2.136)
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In order to understand the assemble of the dynamic flexibility matrix Ψj , consider the pile j

shown in Fig. 2.15.
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Figure 2.15: Nodal forces at a segment i of a pile j.

This pile contains only one segment, that is, l = 1. Therefore, the dimension of the dynamic

flexibility matrix Ψj is (6× 10). The first three rows are related to the node i, whereas the last three

ones correspond to the node B.
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(2.137)
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2.5 Implementation of dynamic piles code

The presented implementation is based on the model proposed by Kaynia and Kausel (1991)

and is written in modern Fortran 90 language. LAPACK linear algebra routines provided by Intel

Math Kernel Library (Intel MKL) are used whenever available.

As discussed before, the terms of the flexibility matrix of the soil Fs require an appropriated

scheme of integration. For this reason, two numerical routines from QUADPACK library, based on

adaptive gaussian quadrature, were chosen for evaluation of each region: DQAGE and DQAGIE

(Piessens et al., 2012). The first routine calculates an approximation to a given definite integral and

is applied for integration of the first region. A small damping is inserted in the constitutive proper-

ties of the soil (Christensen, 2012) in order to make the singularities more easily integrable. The

second estimates an integral over a semi-infinite or infinite interval and is applied into the second

region. Both routines give double precision results. Since each term of the influence matrix Fs is

independent of each other, they can be computed simultaneously. OpenMP routines for parallel

CPU execution were incorporated in the implementation for this purpose. Also, the present imple-

mentation can model the pile-soil interface by two kinds of contact conditions: the relaxed and the

fully-bonded contact condition. For more details about these conditions, please refer to section 4.4.

In order to obtain consistent results in the solution of the final algebraic system of Eq. (2.11), the

Intel MKL PARDISO package was used (Schenk and Gartner, 2004).

2.5.1 Validation

In order to verify the presented implementation, the results of the vertical impedance of a

2× 2 pile group connected by a rigid base (Fig. 2.16) are compared with those reported by Kaynia

and Kausel (1991). The model consists of a homogeneous viscoelastic layer of soil, with depth

H = 75dp, resting on a rigid bedrock, with Poisson’s ratio νs = 0.25 and material damping ηs =

0.03, in which dp is the diameter of the piles and the subindices s and p stand for the soil and the

pile, respectively. The distance between adjacent piles is denoted by s, and a0 = ωdp/Cs is the

nondimensional frequency, in which Cs is the largest shear wave velocity of the soil profile. The

piles are characterized by length (lp/dp) = 37.5, Poisson’s ratio νp = 0.25, and elastic modulus Ep

such that (πµsl
2
p/EpA) = 1, where A is the cross-sectional area of the pile, and s/dp = 5.
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Figure 2.16: Validation using a 2× 2 pile grid.

The impedance is a complex quantity, which can be defined as

Kii = kii + ia0cii (2.138)

where kii and cii are the stiffness and damping of the pile foundation, respectively, in the horizontal

or vertical directions (i = x,z).

Figure 2.17 compares the vertical impedances Kzz obtained by present and Kaynia and Kau-

sel (1991) (Reference) implementations. The superscripts G and S represent values associated with

pile groups and single piles, and N is the number of piles in the group. The stiffness and damping

values are normalized with respect to the static stiffness. The results show good agreement between

the two implementations.
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Figure 2.17: Impedance of a 2× 2 pile grid connected by a rigid cap.
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3 Model of a surface structure

This chapter presents a model for an arbitrarily-shaped structure supported by a pile group.

Initially, the dynamic stiffness matrix of the structure is derived by the Finite Element Method.

Then, the coupling between this matrix and the impedance matrix of the pile group is presented.

3.1 Modeling of structure by FEM

The structure is modeled by a linear elastic 8-noded hexahedral finite element consisting of

three degrees of freedom per node (Fig. 3.1).
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Figure 3.1: 8-noded hexahedral finite element in the (a) physical and (b) natural domain

The stiffness and mass matrices of this element are given by

Ke =
∫︀

Ve
B

T
DB dV =

∫︀ 1

−1

∫︀ 1

−1

∫︀ 1

−1
B

T
DB det(J) dξ dη dζ

Me =
∫︀

Ve
ρNT

N det(J) dξ dη dζ
(3.1)

in which Ve is the volume of the element, D is the constitutive matrix of the element, N

and B are the vector of shape functions and the matrix of its derivatives, respectively, and J is the

Jacobian of transformation. For more details about these terms, please refer to Cook (2007). The
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inertial stiffness matrix of the structure for a given circular frequency ω is

KI = KG − ω2
MG (3.2)

where KG and MG are the global stiffness and mass matrices assembled from Ke and Me.

3.2 Coupling scheme

In order to derive a scheme for coupling the structure and the pile group, consider a fixed-end

bar composed by three homogeneous segments and two loads applied at B and D (Figure 3.2a).

A free-body diagram of a general element j with elastic modulus Ej , cross-sectional area Aj and

length Lj is represented in Fig. 3.2b.

A B C D
PB PD

L1 L2 L3

A1, I1
A2, I2

A3, I3

x

y

Ej, Aj, LjF
j
1 F

j
2

u
j
1 u

j
2

(a) (b)

j

1 2 3 4 1 2

Figure 3.2: Physical problem and free-body diagram of a fixed-end bar

The forces resulting from imposing a displacement at each end of this element are given by

F11 = F21 =
AjEj

Lj

u1 and F12 = F22 =
AjEj

Lj

u2 (3.3)

where Fik is the force at node i (i = 1,2) associated with displacement at node k (k = 1,2). A

superposition of these forces allows writing Eq. (3.3) in matrix form. It is considered that forces

and displacements are positive in the same direction. Thus,

[︃

F11 −F12

−F21 F22

]︃{︃

1

1

}︃

=

{︃

F1

F2

}︃

or
AjEj

Lj

[︃

1 −1

−1 1

]︃{︃

u1

u2

}︃

=

{︃

F1

F2

}︃

(3.4)

in which F1 and F2 are the resultant forces at nodes 1 and 2, respectively. Expressing Eq. (3.4) in
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terms of a general element j results in

[︃

kj −kj

−kj kj

]︃{︃

uj
1

uj
2

}︃

=

{︃

F j
1

F j
2

}︃

or [Ke]{u} = {F} (3.5)

where Ke is the stiffness matrix of the element, and {u} and {F} are the displacement and load

vectors of the element. Now, consider the interface containing node 2 as shown in Fig. 3.3.

P2

F
2

1

2
B

F
1

2

Figure 3.3: Interface B of the fixed-end bar

The equilibrium equation in this interface is given by

− (F 1
2 + F 2

1 ) + P2 = 0 (3.6)

Substituting Eq. (3.5) into Eq. (3.6) gives

P2 = (−k1u
1
1 + k1u

1
2 + k2u

2
1 − k2u

2
2) (3.7)

From kinematic compatibility at this interface, it is known that u2 = u1
2 = u2

1. Then,

P2 = (−k1u
1
1 + (k1 + k2)u2 − k2u

2
2) (3.8)

The same procedure can be applied to other interfaces. The resulting expressions can be written in

matrix form, that is

⎧

⎪

⎪

⎪

⎪

⎨

⎪
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⎩
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⎫
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⎪
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⎬
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⎪

⎪

⎪

⎭

=

⎡

⎢
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⎢

⎢

⎣

k1 −k1 0 0

−k1 k1 + k2 −k2 0

0 −k2 k2 + k3 −k3

0 0 −k3 k3

⎤

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

u1

u2

u3

u4

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

or [KG] {uG} = {PG} (3.9)

where KG is the global stiffness matrix and {uG} and {PG} are the global displacement and load

vectors.

For a dynamic analysis, the mass and inertia properties of the system are considered and

included into the mass matrix MG. The global mass matrix MG is obtained by the assembly of
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element mass matrices Me, in the same way that the global stiffness matrix is formed. Thus, the

stiffness matrix for such analysis is given by

K̄G = KG − ω2
MG (3.10)

Extending the coupling scheme for the case of piled structures, the discretization of the struc-

ture must ensure that there is a node localized at each pile head of the pile group, as shown in Fig.

3.4. The coupling between the pile group and the structure is obtained by establishing kinematic

compatibility and equilibrium at the node-pile head interfaces.

1 2 3

i j k x

z

structure

Figure 3.4: Scheme of discretization of a piled structure

In order to illustrate the coupling scheme, consider an arbitrary pile shown in Figure 3.5. P s
x ,

P s
z , P p

x and P p
z are the loads in x and z directions at the nodes corresponding to the structure and

the pile head, respectively. us
x, us

z, up
x and up

z are the displacements due to these loads. Fx and Fz

are the external loads that may be applied at the interface.

In a similar procedure developed for the bar, the relation between the nodal displacements

and forces in the piled structure is [K̄G] {uG} = {PG}, in which

{PG} =
{︀

P 1
x P 1

y P 1
z P 2

x P 2
y P 2

z . . . PN
x PN

y PN
z

}︀

{uG} =
{︀

u1
x u1

y u1
z u2

x u2
y u2

z . . . uN
x uN

y uN
z

}︀

(3.11)
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Figure 3.5: Interface and external loads and displacements

where P n
i and un

i are the loads and displacements of node n of the piled structure (n = 1,N ) in the

i-direction (i = x,y,z). [K̄G] is given by

[K̄G] =

⎡

⎢

⎢
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⎢

⎢
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NN
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⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.12)

Each term K is a 3 × 3 matrix that contains the stiffness terms in the x-, y- and z- direction.

Sub-indices n and m indicate the nodes that the pile heads i and j are connected to the structure,

respectively. For instance, Kp
ij is a 3× 3 stiffness matrix that relates the displacements of pile head

j (uj
x, u

j
y, u

j
z) due to loads applied on the pile head i (P i

x, P
i
y, P

i
z). In the same manner, Ks

nm is a

3 × 3 stiffness matrix that relates the displacements of node m of the structure (um
x , u

m
y , u

m
z ) due

to loads applied on the node n (P n
x , P

n
y , P

n
z ).

In order to validate the coupling scheme, consider a 2× 2 pile group connected to an elastic

surface block (Fig. 3.6).

The results are compared to the reference presented in Fig. 2.17. The block is modeled with
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elastic base

Figure 3.6: 2× 2 pile group connected by an elastic surface block

8464 elements. Since this scheme allows for an elastic block to be considered, the effect of varia-

tions of the elasticity modulus of the block in the response of the system can be analysed. Figure

3.7 shows the convergence to the rigid plate case obtained by increasing the structure’s elasticity

modulus.
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Figure 3.7: Stiffness and damping of the structure-foundation system for different elasticity moduli
of the surface block
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4 Numerical results

This chapter shows original numerical results of the response of pile groups obtained with

the present implementation for various numbers of piles, layers and frequencies of excitation. The

precision and the computational cost of the results are analysed. Techniques to reduce of computa-

tional cost are investigated. Lastly, strain simulations of the flexible structure are analysed.

4.1 Number of piles

The limiting number of piles is not defined explicitly in both the reference Kaynia and Kausel

(1991) implementation and the present implementation. For the reference, it depends on the number

of different pile-to-pile distances ( the maximum distances allowed is 50), whereas for the present

one, it depends on the physical memory of the hardware. In a square grid of c× c piles containing

N = c2 piles, the reference implementation is limited to 5× 5, N = 25 piles (Fig. 4.1).

y

x(1)

(2)

y

x(1)

(2)

(3)

(a) (b)

s

s

Figure 4.1: Pile grids used in this section, with (a) N = 25 and (b) N = 36 piles

Figure 4.2 shows a comparison of this case with the present implementation. These results

consider piles of length lp/dp = 1, Ep/Es = 100, ρp/ρs = 2, νp = νs, and pile-to-pile distance

s/dp = 5, within a homogeneous, isotropic soil. Pile (1) is under vertical excitation with frequency

a0, and the figures show the resulting normalized vertical displacement u*

z = uz/uz(a0 = 0) of pile
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(2). The results show that the present and reference implementations agree for this case.
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Figure 4.2: Vertical displacement of pile (2) within a 5× 5 pile grid.

Figure 4.3 extends the previous analysis for a 6 × 6 grid of N = 36 piles (Fig. 4.1b). The

reference implementation is unable to model this problem.
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Figure 4.3: Vertical displacements of pile (2) and pile (3) within a 6× 6 pile grid.
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4.2 Number of layers

The number of layers and layer thickness depend on the geological features of soil. Although

the reference implementation provides a limit of thirty layers for the soil medium, this is a good

approximation for the pile-soil interaction effects for most practical applications (Barros et al.,

2018), as well as cases of heterogeneous layered soils with up to thirty different layers. However,

for cases in which the material properties of the soil vary continuously with depth, this quantity

could not be enough to represent very well such effects.

In order to analyze such case, Figure 4.4 illustrates the Gibson’s soil (Jin, 2014), in which

the shear modulus µs of the soil varies linearly with depth. Figure 4.4b shows that a small number

of layers may not be able to represent the continuous variation of µs. It has been shown that an

accurate representation of Gibson’s soils may require each soil layer to have depth hp/dp ≤ 0.25

(Labaki et al., 2018).

x
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x

z

µs = µs(z)

µ0

µf

µ0

µ1

µ2

µ3

µ4

µ5

µ6

µf

(a) (b)

Figure 4.4: Soil with continuously varying shear modulus versus discrete heterogeneous layers.

For further investigation, the problem of a pile of length lp embedded in Gibson’s soil with

µs = µ0(1 + mz) is considered. The soil is represented by M homogeneous layers with shear

modulus µi = µ0(1 + m · i/Mlp), i = 1,M . In this study, lp/dp = 20, µp/µ0 = 100, ρp/ρs = 2,

νp = νs, and m = 2.

Figure 4.5 compares the normalized displacement u*

z = uz/uz(M = 10) of the pile head for

different numbers of layers and a0 = 0.5. The results show that the response tends monotonically to
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Figure 4.5: Convergence of pile response with numbers of layers.

the value that corresponds to the perfectly continuous variation of shear modulus of the soil, which

is significantly different from one obtained by the reference implementation. This conclusion may

differ for different values of lp and m.

The present implementation can be used to model weathered crusts as well, in which the

shear modulus of the soil first decreases up to a certain shallow depth, after which it increases, as

well as any other soil model in which shear modulus and mass density vary with depth.

4.3 Reach in frequency

The frequency of excitation applied in dynamic SSI problems is usually within the seismic

range (a0 ≤ 1). However, if a transient impulse response of a system through an Fast-Fourier

Transform (FFT) scheme is required, the implementation must be robust enough to obtain the

response of this system for high frequencies (Adolph et al., 2001).

Figure 4.6 shows the transient vertical displacement and velocity of the pile tip under a ver-

tical impulse load applied at the pile head, for the case that lp/dp = 20. Pressure (P ) and shear

(S) wave fronts travel through the pile from the pile head and reach the pile tip at times ti = lp/ci,

i = P,S, in which C2
p = (λp + 2µp)/ρp and C2

s = µp/ρp, λp is the Lamé constant of the pile. In

Figure 4.6, the dashed red lines represent the time that the pressure and shear waves are expected

to reach the pile tip. The results show accurate predictions.
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Figure 4.6: Impulse response of pile tip.

The transient response of pile groups not only enables additional information about the sys-

tem, such as a visualization of wavefronts, but can be used together with convolution schemes to

yield the response of the system to any other type of excitation (Labaki et al., 2013).

The discretization in the time domain of the impulse response is directly proportional to the

number of values of frequency for which the original time-harmonic signal is computed. The refe-

rence implementation is limited to one hundred frequencies, whereas the present one can compute

responses for an unlimited number of frequencies. However, this limitation can be overcome by

merely executing the reference implementation multiple times. A more significant improvement in

this aspect concerns the quality of the numerical integration of the influence terms of Fs. The focus

of the present implementation is in the efficiency of the code, but modern integration schemes that

are being implemented into it are already producing more accurate integrations than the reference

implementation.

4.4 Bonding condition

The contact between the pile and the soil can be described by two kinds of boundary con-

ditions. In the relaxed bonding condition, kinematic compatibility and equilibrium at the pile-soil

interface are enforced in the loading direction only. In the fully-bonded contact condition, kinematic

compatibility and equilibrium are prescribed in all directions. The fully-bonded contact condition

demands a significantly larger amount of influence functions to be computed, which is expected to
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increase the computational cost of the solution considerably. Computing the influence functions is

typically the most computationally expensive task in a boundary element model such as the present

one (Labaki et al., 2011). It has been shown that the difference between the two bonding conditions

is negligible for the cases of surface plates (Labaki et al., 2014, 2018) and single piles (Barros,

2006; Barros et al., 2018). In this section, both boundary conditions are investigated for the case of

a pile group.

For such investigation, the dynamic response of pile groups under time-harmonic exter-

nal excitations of circular frequency ω are computed considering both relaxed and fully-coupled

contact conditions. The results are presented in terms of the normalized displacement u*

i (a0) =

ui(a0)/ui(a0 = 0), i = x,z and normalized frequency a20 = ω2ρs/µs. The soil medium is a visco-

elastic, homogeneous, isotropic half-space. Throughout the study, the head of a pile i is subjected

to vertical or horizontal loads pz or px, and the effect of this load is measured at the head of pile

j in terms of its vertical and horizontal displacements uz and ux. In Figures 4.8 to 4.13, conti-

nuous and dashed lines represent respectively the real and imaginary displacement for a coupled

contact condition whereas discrete markers represent the same quantities for an uncoupled contact

condition.

4.4.1 Pile group configurations

Consider three different pile group configurations and the effect of coupling conditions in

each case as shown in Fig. 4.7. The first case considers a single pile, the second considers two piles

along the x−axis, and the third considers four piles in a square grid centered at the origin of the

coordinate system. In all cases, lp/dp = 10, Ep/Es = 100, ρp/ρs = 2, and s/dp = 5.
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Figure 4.7: Pile group configurations for (a) one, (b) two, and (c) four piles under vertical and
horizontal loads

Figures 4.8 to 4.10 show the vertical and horizontal displacements of pile j due to vertical

loads applied to pile i in each of the three configurations shown in Fig. 4.7. Note that the figures

without markers indicate that the uncoupled contact condition is not applicable for the case. Mo-

reover, due to the symmetry of the single pile case, no horizontal displacements result from the

vertical loading case and vice-versa.
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Figure 4.8: Real and imaginary part of u*

z for a single pile.
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Analogously, Figs. 4.11 to 4.13 show the corresponding results for the case of horizontal

loads applied to pile i in the three configurations.
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Figure 4.11: Real and imaginary part of u*

x for a single pile.
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These results indicate that there is no difference between the response of the piles in different

group configurations when either relaxed or fully-bonded coupling conditions are used.

4.4.2 Pile parameters

This section presents a study on the influence of bonding conditions for different pile para-

meters. The parameters considered are the most relevant in pile group problems, such as pile length

lp, stiffness Ep, and mass density ρp, as well as distance s between piles. For the next results, a

system of two piles is considered (Fig. 4.7b).
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Figures 4.14 and 4.15 show the effect of bonding conditions (continuous lines versus discrete

markers) for three different pile stiffnesses and for nondimensional frequencies of a0 = 0.5 and

a0 = 1. In these results, lp/dp = 10 and ρp/ρs = 2. Figure 4.14 presents the horizontal normalized

displacements u*

xz = uxz(s)/uxz(s = 2) due to vertical loads resulting from the coupled condition

(C) for a stiffness rate (E ′ = Ep/Es) of E ′ = 1, E ′ = 10 and E ′ = 100.
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Figure 4.14: Horizontal response of second pile for different elastic moduli.
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Figure 4.15 shows vertical normalized displacements u*

zz = uzz(s)/uzz(s = 2) due to vertical

loads resulting from the coupled (C) and uncoupled (U) conditions for the same stiffness rates.
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Figure 4.15: Vertical response of second pile for different elastic moduli.
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Analogously, Figs. 4.16 and 4.17 consider three different pile mass densities for the same

nondimensional frequencies. In these results, lp/dp = 10 and Ep/Es = 100. Figure 4.16 presents

the horizontal normalized displacements u*

xz = uxz(s)/uxz(s = 2) due to vertical loads resulting

from the coupled condition (C) for a mass density rate (ρ′ = ρp/ρs) of ρ′ = 1, ρ′ = 10 and ρ′ = 100.

2 4 6 8 10

Distance s

-15

-10

-5

0

5

R
e
[u

x
z

*
],

 a
0
 =

 0
.5

2 4 6 8 10

Distance s

-10

-5

0

5

10

R
e
[u

x
z

*
],

 a
0
 =

 1
.0

2 4 6 8 10

Distance s

-1

-0.5

0

0.5

1

1.5

Im
[u

x
z

*
],

 a
0
 =

 0
.5

' = 1 (C)

' = 10 (C)

' = 100 (C)

2 4 6 8 10

Distance s

-4

-2

0

2

4

Im
[u

x
z

*
],

 a
0
 =

 1
.0

Figure 4.16: Horizontal response from second pile for different mass densities.
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Figure 4.17 shows vertical normalized displacements u*

zz = uzz(s)/uzz(s = 2) due to vertical

loads resulting from the coupled (C) and uncoupled (U) conditions for the same mass density rates.
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Figure 4.17: Vertical response from second pile for different mass densities.
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Finally, Figs. 4.18 and 4.19 consider three different pile lengths. In these results, ρp/ρs =

2 and Ep/Es = 100. Figure 4.18 presents the horizontal normalized displacements u*

xz =

uxz(s)/uxz(s = 2) due to vertical loads resulting from the coupled condition (C) for a length-

diameter relation (l′ = lp/dp) of l′ = 5, l′ = 10 and l′ = 20.
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Figure 4.18: Horizontal response from second pile for different lenghts.
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Figure 4.19 shows vertical normalized displacements u*

zz = uzz(s)/uzz(s = 2) due to vertical

loads resulting from the coupled (C) and uncoupled (U) conditions for the same relations.
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Figure 4.19: Vertical response from second pile for different lenghts.

Once again, the results in this section indicate that the response of the pile group is similar

for both coupling conditions. This indicates that one may choose to model a pile group with the

coupling condition with the lowest computational cost, without loss of physical consistency of the

model.
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4.5 Numerical precision and computational cost

All the variables used in the present implementation are declared as double precision value,

as well as all routines compute the variables with this data type. This is an improvement over the

reference implementation’s single precision computations. Tables 4.1 and 4.2 show an example of

results obtained with the two implementations. Table 4.1 represents the vertical displacement of pile

head for the Gibson’s soil problem considered in Fig. 4.5, whereas Tab. 4.2 shows the same quantity

of pile tip. Double-precision computing is particularly important for highly detailed analyses such

as that in Fig. 4.6.

Table 4.1: Non-normalized vertical displacement of the pile head in single and double precision

l uref
z (z = 0) upresent

z (z = 0)
10 2.51E-02 - 2.68E-03i 2.533091964329770E-002 - 2.708101515209209E-003i
20 1.98E-02 - 1.50E-03i 1.990730241373737E-002 - 1.479873021093602E-003i
30 1.57E-02 - 1.30E-03i 1.559579569852306E-002 -1.213291072226059E-003i

Table 4.2: Non-normalized vertical displacement of the pile tip in single and double precision

l uref
z (z = lp) upresent

z (z = lp)
10 -1.27E-04 - 3.94E-05i -1.185645004647512E-004 - 4.581495383222291E-005i
20 -9.82E-05 - 8.56E-05i -1.072022351902839E-004 - 8.123614967273680E-005i
30 - 9.45E-05 - 9.86E-05i -1.018054846131397E-004 - 8.813936429117812E-005i

The number of integrals of the flexibility matrix of the soil Fs to be evaluated in a given

execution of the present code varies with the number of elements l used in the pile discretization

(equal to the number of layers in the system) and the number of piles in the group. Even considering

a case of a single pile, the computational cost due to the integration of the terms of such matrix

does not vary linearly with
√
l. This is due to the fact that integrals may be more or less difficult

to evaluate depending on the parameters of the problem. Table 4.3 shows the computational cost

to solve the case of a single pile discretized by l = 1,...,20 elements. The table breaks down the

total elapsed time ∆ttotal into the time spent to fill matrix Fs, ∆tFs , and the time spent to solve the

final linear system in Eq. (2.11), ∆tEq.(2.11). Table 4.3 shows that the time spent to solve the linear

system in Eq. (2.11) is negligible.



89

Table 4.3: Computational cost of single pile with different numbers of elements M in seconds.

l ∆ttotal ∆tFs ∆tEq.(2.11) l ∆ttotal ∆tFs ∆tEq.(2.11)

1 1.377 1.277 0.100 11 78.523 78.423 0.100
2 2.677 2.576 0.101 12 100.698 100.589 0.109
3 5.099 4.998 0.101 13 121.613 121.504 0.109
4 7.941 7.841 0.100 14 148.737 148.627 0.110
5 14.183 14.081 0.100 15 169.977 169.852 0.109
6 18.187 18.087 0.100 16 212.661 212.558 0.101
7 26.879 26.778 0.101 17 251.851 251.749 0.101
8 37.606 37.504 0.100 18 307.368 307.265 0.101
9 47.754 47.652 0.100 19 333.696 333.585 0.111
10 61.757 61.648 0.100 20 412.041 411.939 0.100

Additionally, Table 4.4 shows the time spent to solve the cases of N = 1,...,6 piles of l = 20

elements each. Again, the time spent to fill matrix Fs has a significant contribution in computational

cost.

Table 4.4: Computational cost of a pile group with N piles in seconds.

N ∆t ∆tEq.(2)

1 412.041 0.100
2 1185.538 0.109
3 1942.404 0.102
4 2950.984 0.105
5 3045.961 0.140
6 3990.635 0.125

Figure 4.20 presents the contribution of the increase in the number of layers and piles in the

computational cost. The first graph of Fig. 4.20 shows that the cost to solve this problem increases

slightly more than linearly with the number of integrals to be solved, whereas the second one shows

that the addition of new piles with the same geometry and properties increases the computational

cost of the solution in an irregular manner.
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Figure 4.20: Total computational cost to solve a single pile with M elements and N piles with
l = 20 elements.

This section also compares the computational cost of fully-coupled and relaxed bonding con-

ditions for pile groups. For the analysis of computational cost, the three pile group configurations

shown in Fig. 4.21 are considered. In all cases, all piles have length lp/dp = 10, Ep/Es = 100,

ρp/ρs = 2, and are discretized by l = 20 elements.

y y

x x x
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s

s

(c)(b)(a)

y

Figure 4.21: Pile group configurations for (a) one, (b) four, and (c) nine piles

Table 4.5 shows the time spent to execute both bonding condition models in these configura-

tions. In summary, for the one-, four-, and nine-pile grid problems, the fully-bonded condition has

shown to be from 16 to 18 per cent more expensive than its relaxed condition counterpart.
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Table 4.5: Computational cost of a pile group in seconds.

Pile group Relaxed bonding Full bonding
1 24 28
2 87 101
9 212 252

4.6 Strain simulation of the flexible structure

The physical consistency of the proposed coupling scheme can be evaluated by a strain si-

mulation. In this section, the shear and volumetric strains of the flexible structure supported by the

2 × 2 pile group presented in Fig. 3.6 are investigated. In both analyses, the results are obtained

for uniformly distributed vertical and horizontal loads of nondimensional frequencies a0 = 0.5 and

a0 = 1.0.

4.6.1 Strain field due to vertical loads

For the pile groups shown in Figures 4.22 and 4.26, the structure is a block with sides lb = 5dp

and height hb = 0.5dp composed by 1024 finite elements. The subscripts st and p represent the

quantities associated with the structure and the piles, respectively. In these results, νst/νp = 1,

ρst/ρp = 1 and Est/Ep = 1.78. The nodes corresponding to pile heads are located at each inferior

vertex of the structure. A distributed vertical load is applied at the superior face of this structure.

z

x
y

lb
l

hb

Figure 4.22: Frontal plane of a structure submitted to a vertical load
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In order to verify the consistency of the deformation, the results of the piled structure are

compared with the ones of the case shown in Fig. 4.23, which consists of a structure supported at

the same nodes of pile heads in Fig. 4.22.

z

x
y

lb
l

hb

Figure 4.23: Frontal plane of a supported structure submitted to a vertical load

Figures 4.24 and 4.25 show the harmonic deformation of the structure. In Fig. 4.24, the color

map represents the shear strain field over time, whereas in Fig. 4.25, one represents the volumetric

strain field over time. The dashed grid represents the deformation of the frontal face of the supported

structure. Notice the good agreement between the two models.

Figure 4.24: Shear strain at the frontal face due to a vertical load for nondimensional frequency
a0 = 0.5 and a0 = 1.0
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Figure 4.25: Volumetric strain at the frontal face due to a vertical load for nondimensional frequency
a0 = 0.5 and a0 = 1.0

For the central face as shown in Figure 4.26, Fig. 4.27 and 4.28 present the color map of the

shear and volumetric strains, respectively.
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Figure 4.26: Central plane of a structure submitted to a vertical load
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Figure 4.27: Shear strain at the central face due to a vertical load for nondimensional frequency
a0 = 0.5 and a0 = 1.0

Figure 4.28: Volumetric strain at the central face due to a vertical load for nondimensional fre-
quency a0 = 0.5 and a0 = 1.0

In these figures, the deformations at the central face of the piled structure (Fig. 4.26) and of

the supported structure (Fig. 4.29) are also highlighted.
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Figure 4.29: Central plane of a supported structure submitted to a vertical load

4.6.2 Strain field due to horizontal loads

For the pile groups shown in Figures 4.30 and 4.34, the features of the system are the same

of previous analysis, except that the elastic modulus relation is Est/Ep = 0.178. A distributed

horizontal load is applied at the superior face of this structure.
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Figure 4.30: Frontal plane of a structure submitted by a horizontal load

Again, the deformation of the frontal face of such system is compared with the one of a

supported structure (Fig. 4.31)
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Figure 4.31: Frontal plane of a supported structure submitted by a horizontal load



96

Figures 4.32 and 4.33 show the harmonic deformation of the structure. In Fig. 4.32, the color

map represents the shear strain field over time and in Fig. 4.33, one represents volumetric strains at

the frontal face of the piled structure (Fig. 4.30).

Figure 4.32: Shear strain at the frontal face due to a horizontal load for nondimensional frequency
a0 = 0.5 and a0 = 1.0

Figure 4.33: Volumetric strain at the frontal face due to a horizontal load for nondimensional fre-
quency a0 = 0.5 and a0 = 1.0



97

z
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Figure 4.34: Central plane of a structure submitted by a horizontal load

For the central face, as shown in Figure 4.34, Fig. 4.35 and 4.36 present the color map of the

shear and volumetric strains field, respectively.

Figure 4.35: Shear strain at the central face due to a horizontal load for nondimensional frequency
a0 = 0.5 and a0 = 1.0
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Figure 4.36: Volumetric strain at the central face due to a horizontal load for nondimensional fre-
quency a0 = 0.5 and a0 = 1.0

In these figures, the deformations at the central face of the piled structure (Fig. 4.34) and of

the supported structure (Fig. 4.37) are also highlighted.
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Figure 4.37: Central plane of a supported structure submitted by a horizontal load
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5 Conclusions

This dissertation proposed a coupling scheme between a pile group and a flexible structure.

For the representation of the pile group, a generalized and modern implementation of the impedance

matrix model was presented. This implementation is capable of dealing with as many piles as the

physical computing capacity of the computer hardware, which can be easily extended for large CPU

clusters. In addition to arbitrary number of piles, the proposed implementation is capable of consi-

dering an arbitrary number of soil layers, which enables Gibson’s soils and weathered crusts to be

modeled. An arbitrary number of excitation frequencies can be considered as well, with which one

may obtain accurate impulse responses of the embedded pile group directly through Fourier trans-

forms of the frequency response of the model. The flexible structure was modeled by an 8-noded

linear elastic finite element.The discretization of such structure is done in such a way that there is

a node at the pile heads location. The coupling is obtained by kinematic compatibility and equili-

brium equations at the nodes shared by both systems. In order to verify the physical consistency

of the coupling scheme, two analyses are proposed: a validation of such scheme by increasing the

stiffness of the structure and comparing with the literature results, and a strain-deformation field

investigation. Both analyses showed that the present scheme is able to represent well the dyna-

mic pile-soil-structure interaction. This scheme encompasses arbitrarily shaped structures, which

allows a wide applicability in several branches of Engineering.
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