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Abstract

Melanoma is the skin cancer that most leads to death, even while being the most curable when

detected early. Melanoma diagnosis, however, is a difficult task, requiring special training.

This poses a challenge for poor and isolated communities, where the full-time presence of

a specialist is unfeasible. Therefore, automated screening appears as an attractive solution,

allowing to refer to the doctor only the patients at higher risk. Much of the existing art

on automated melanoma screening is based on the Bag-of-Visual-Words (BoVW) model,

combining color and texture descriptors. However, the BoVW model has been improving and

nowadays there are several extensions that deliver better classiĄcation rates. Those enhanced

models have not yet been explored for melanoma screening, thus motivating our work. Here we

present a new approach for melanoma screening, based upon the state-of-the-art BossaNova

descriptors, showing very promising results, reaching an AUC of up to 93.7%. This work also

proposes a new spatial pooling strategy specially designed for melanoma screening.

Keywords: Melanoma, Dermoscopy, Automated Screening, Image ClassiĄcation, Mid-level

Features.
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Resumo

Melanoma é o câncer de pele que mais leva à morte, mesmo sendo o mais curável quando

detectado precocemente. O diagnóstico do melanoma, no entanto, é uma tarefa difícil, exi-

gindo treinamento especial. Isto representa um desaĄo para comunidades pobres e isoladas

nas quais a presença em tempo integral de um especialista é inviável. Assim, o rastreio au-

tomático aparece como uma solução atrativa, permitindo encaminhamento médico apenas

para os pacientes com alto risco. Muitos trabalhos existentes sobre rastreio automático de

melanoma são baseados no modelo de Bag-of-Visual-Words (BoVW), combinando descrito-

res de cor e textura. No entanto, o modelo BoVW tem se aprimorado e hoje em dia existem

várias extensões que oferecem melhores taxas de classiĄcação. Estes modelos avançados ainda

não foram explorados para a triagem do melanoma, motivando assim nosso trabalho. Aqui

nós apresentamos uma nova abordagem para rastreio do melanoma, baseado nos descritores

BossaNova, que são estado-da-arte, mostrando resultados muitos promissores, atingindo uma

AUC de até 93,7%. Este trabalho também propõe uma nova estratégia de pooling espacial

especialmente projetada para o rastreio do melanoma.

Palavras-chaves: Melanoma, Dermoscopia, Triagem Automática, ClassiĄcação de Imagens,

Descritores de Nível Médio.
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1 Introduction

Computer-aided diagnosis has growing importance in medicine, empowering doctors with

tools for decision making. Among the different medical data that can be analyzed by com-

puters, medical images deserves especial mention, due to the recent impressive advances of

Computer Vision.

In this work, we are particularly interested in automated screening. Screening, in

medicine, is a strategy for identifying a latent disease in individuals, who may not necessarily

present obvious signs or symptoms. Screening allows Ąnding illness as early as possible,

facilitating the treatment, improving the prognosis, and, in case of severe diseases, reducing

the risk of serious lesions, and even death. The World Health Organization published in

1968 the WilsonŠs criteria, a set of rules that must be obeyed for a screening program to be

successful. Among them, we highlight that facilities for diagnosis and treatment should be

available and case-finding should be a continued process (instead of a one-shot procedure).

By reducing costs and increasing availability, automated screening improves the odds that

a screening program will succeed, especially where the permanent presence of a medical

specialist is not economically feasible (e.g., in rural, isolated, or poor communities).

Different branches of medicine can beneĄt from automated screening through images:

cardiology (echocardiography), neurology (Alzheimer), oncology (mammography), ophthal-

mology (diabetic retinopathy) and so on [Abedini et al., 2015; Neltner et al., 2012; Skaane

et al., 2013; Faust et al., 2012]. In this work, however, our focus is on Dermatology, speciĄ-

cally the screening of melanoma, being the type of skin cancer that most leads to death, but

curable if detected early [SCF, 2013; ACS, 2013].

1.1 Motivation

Melanoma is the type of skin cancer that most leads to death if treatment is delayed, because

of its malignancy (frequent occurrence of metastases) [SCF, 2013; ACS, 2013]. Nevertheless,

it is a curable cancer if detected early. This reinforces the need of effective screening strate-

gies for melanoma, particularly, again, in communities where the continuous presence of a

dermatologist is not feasible.

Melanoma is also the type of cancer whose incidence most increased: according to

Rigel [2010], the risk of an American developing invasive malignant melanoma was 1 in 1,500

in the 1930s. In the 2010s, this number jumped to 1 in 59.
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This research also has high potential to be exploited in other scenarios. As smart-

phones get improved camera quality, and increased computing power, they become attrac-

tive for automated screening tasks as well [Bastawrous, 2012]. Thus, the choice of this theme

opens opportunity for future investigations of mobile ŞsmartŤ devices able to provide the

automated screening.

1.2 Problem Statement

In the point of view of Computer Vision, screening by images is clearly an image classiĄcation

task. Image classiĄcation consists in using the visual content of an image to determine the

category to which it belongs. It is a Machine Learning task, in which Ąrst a model is estimated

from a set of annotated images (training set), and then the model is used to predict the class

of other images. That process is represented on Figure 1.

Figure 1 Ű Classical representation of an image classification system.

While we have studied and reviewed the broader topic of image classiĄcation for many

types of datasets, we have chosen to focus our original contributions on medical images,

and more speciĄcally, in the screening of melanoma from dermoscopic or clinical images.

Therefore, the problem to be addressed by this research can be formulated as:

Given an image of a skin lesion, how to automatically classify it into melanoma

or not?

Medical-imaging classiĄcation is a type of special-purpose image classiĄcation, that

is, the classiĄcation of images belonging to datasets with few types of classes. The so called
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ŞspeciĄc datasetsŤ have limited semantical scope, for example, images of Ćowers, birds, or

cats. The limited scope of special-purpose image classiĄcation is, on one hand, an advantage,

since the researcher can optimize the processing for a speciĄc task. On the other hand, in

general-purpose classiĄcation Ů that aims at a large number of classes, with great semantic

variability Ů we usually are interested in broad categories (e.g., Ćower or bird) that are

easier to identify than the Ąne-grained and often subtle categorization of special-purpose

classiĄcation (e.g., identifying speciĄc species of Ćowers or birds).

1.3 Challenges

Research in automated screening and computer-aided diagnosis face several challenges. The

most serious is perhaps the scarcity of large-enough, publicly-available datasets of annotated

images, which are essential for both training and validating the classiĄcation models. Often

each research group has its own private dataset, which is not available, not even by request.

This makes the direct comparison of techniques proposed by different groups very challenging,

hurting the possibility of effective meta-analysis. Moreover, high accuracy is needed for those

applications, lest they are not really useful for improving the screening process. Existing end-

user apps for melanoma screening are too inaccurate, as was pointed by Wolf et al. [2013], and

might mislead patients to a false sense of security, making them forgo a medical appointment.

Those low-accurate solutions often lead doctors to distrust automatic methods altogether.

Although the objectives of a research like ours are shared by both medical and com-

puting researchers, those communities often work alone with little mutual cooperation. This

is another factor that explains the challenge in obtaining good quality data for training pro-

cesses; but it also explains the difficulty in analyzing and interpreting the empirical results.

1.4 Objectives

Our main goal is to validate a modern approach for automated melanoma screening. As a

second objective, we aim to investigate image classiĄcation techniques that can beneĄt other

problems related to ŞspeciĄc datasetsŤ.

SpeciĄc objectives of this research are:

∙ Improving the accuracy of automated melanoma screening.

∙ Advancing the global understanding of the problem by providing a critical review of

works already present in literature.
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∙ Opening the opportunity for investigations of melanoma screening in mobile environ-

ment using new approaches.

∙ Opening the opportunity for extending our screening techniques for other diseases.

∙ Opening the opportunity to advance the understanding of models for special-purpose

image classiĄcation.

1.5 Contributions

In turn, our main contributions are:

∙ Novel techniques for melanoma screening.

∙ A comparative survey of melanoma screening techniques.

∙ A protocol for experimentation on melanoma screening that help to make studies re-

producible and comparable.

1.6 Outline

The reminder of the text is organized as follows.

Chapter 2 – Literature Review We establish the foundations of this work by describing

the related works available in literature about image classiĄcation in the last sixteen

years. This chapter also shows the main studies about melanoma screening and discuss

its major aspects.

Chapter 3 – Proposed Solution We present our approach to melanoma screening con-

trasting it with methods present in literature. We also discuss the main open issues in

literature that are addressed by this work.

Chapter 4 – Experimental Results We validate our hypotheses through empirical data

collected in several experiments. Each experiment is described in terms of its central

hypothesis, experimental design, results and analysis.

Chapter 5 – Conclusions We discuss the impact of our research in the literature of

melanoma screening, present our concluding remarks, propose future work directions,

and also explore possible extensions for this research.



5

2 Literature Review

The growing power of Image Processing and Computer Vision explains their increasing adop-

tion in Medicine. Several types of images, ranging from 2D to 4D, from conventional X-rays

to real-time tomography, can now be analyzed automatically or semi-automatically, with

increasing accuracies.

Computing power can be exploited to extract information not easily perceived by

humans, expanding the power of doctors and facilitating the diagnosis and treatment of

serious diseases. Just to illustrate a few examples, we can cite the work of Rondina et al.

[2002] for segmenting cardiac magnetic resonance images, as well as the works of Pires et al.

[2014b,a], for screening diabetic retinopathy. We also highlight the use of magnetic resonance

imaging in neurology [Castellano et al., 2003], for segmenting brain structures [Rittner et al.,

2009], and also classifying regions of interest, and types of brain lesions [Bento et al., 2013].

Furthermore, computational power may allow large-scale screening programs, decreas-

ing distances between patients and doctors, accelerating the diagnosis, and lowering costs.

Such topic has worldwide relevance, especially for its applications to underserved communi-

ties.

This work deals with the screening of diseases by images, speciĄcally the case of

melanoma. Successfully screening any disease means distinguishing the healthy patient from

the sick one. In this particular case, we aim to determine whether or not a skin lesion, given

its image, is a melanoma. Our tools will be Computer Vision, Pattern Recognition, and Image

ClassiĄcation.

To facilitate reading, we divided this chapter in three sections. First, we start dis-

cussing about general-purpose image classiĄcation, and how it is currently addressed (Sec-

tion 2.1). After that, we present the traditional BoVW for image classiĄcation (Section 2.2).

In the following section, we narrow our focus to our key application, reviewing the exist-

ing art on automated melanoma screening (Section 2.3). Concluding this chapter, Section 4.4

summarizes the main information showed here and also opens the discussions of our proposed

solution.

2.1 Image Classification

The internet, together with the availability of cheap image-capturing devices, have created an

explosion of visual content. This, by itself, has motivated a pressing interest on the automatic
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classiĄcation of videos and images.

When compared to text retrieval/classiĄcation, image classiĄcation is even more chal-

lenging, because the content, in the form of pixels has very little direct meaning, in opposition

to the words and sentences of text. This very large Şsemantic gapŤ of visual information is

a recurrent theme of research in Information Retrieval, Image Processing, and Computer

Vision [Smeulders et al., 2000; Lowe, 2004; Perronnin et al., 2010; Avila et al., 2013].

Nowadays there are several approaches to image classiĄcation. Although they are

algorithmically distinct, all of them rely on the same typical concepts: (i) feature extraction

from the pixels, (ii) a robust description of the previous features, and (iii) a supervised

classiĄcation. The main current techniques for image classiĄcation are the traditional BoVW

and the ANN models.

The BoVW model was proposed by Sivic and Zisserman [2003] and also exploited

by Csurka et al. [2004]. The metaphor was inspired from the BoW model from Textual

Information Retrieval [Baeza-Yates and Ribeiro-Neto, 1999], where a document is represented

by the frequency of words, without regard to higher-level structures (e.g., phrases). The

classical BoVW model describes an image as a histogram of the occurrence rate of Şvisual

wordsŤ in a Şvisual vocabularyŤ (or codebook) induced by quantifying the space of local

image features, without attention to higher-level image organization (e.g., position of the

features in the image).

In turn, ANN is older than BoVW. They were Ąrst proposed in 1943 by McCulloch

and Pitts [1943]. ANN are inspired in biological models that try to simulate the existing

neurons connections in our brain and how they interchange information, that is, ANN tries to

recreate in computers how we, humans, learn. Mathematically, ANN are based in statistical

learning algorithms that involves huge numbers of neurons organized in a net as inputs,

hidden points and outputs. Each connection is weighted and its numeric value can change

based in experience, enabling neural networks to adapt itself to different kinds of inputs and,

therefore, being able to learn.

The BoVW model and its recent extensions are among the most used techniques for

image classiĄcation. Nevertheless, DLA, as Deep Neural Networks [Krizhevsky et al., 2012]

and Deep Belief Networks [Hinton, 2009] have recently appeared as the most competitive

alternative for pattern recognition in images. DLA are an extension of ANN. They employ

multiple layers of nonlinear processing units (making them ŞdeepŤ) and also different su-

pervised or unsupervised learning mechanisms in each of these layers (making them very

powerful to learn information from rough data).

Although a complete analytical understand of both BoVW and DLA for image clas-
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siĄcation is still lacking, it is known that both solutions have complementary advantages

and issues. BoVW models are less Ćexible than DLA, but also much less greedy in terms of

computing resources and annotated data. On the other hand, DLA suffer from the need to

estimate huge numbers of parameters, implying the need of large training sets and a lot of

computational resources.

Our current focus is on BoVW models, since they offer good accuracy without the

need of extensive amounts of annotated data. This is critical for speciĄc datasets especially

for medical applications. This model will be fully explained in the next section since it is the

basis of our solution.

2.2 Image Classification Through the BoVW Model

Among the current techniques for image classiĄcation, the BoVW model is one of the most

studied approaches in literature. There are several implementations of it, each one with its

own particularities, but in general the methods are based on the process detailed in Figure 2.

Figure 2 Ű Main pipeline of the BoVW model. The feature extraction is the low-level stage. The mid-level
is decomposed in coding and pooling and the classification is generally done by a supervised
method. Figure adapted from Chatfield et al. [2011]

The pipeline can be decomposed into three stages: low-level feature extraction

(which extracts information directly from the image pixels), mid-level feature extraction

(which makes the representation more general, aggregating abstraction to the model), and

classification (a machine learning technique allowing the extraction of a general model

from the individual data presented). The mid-level representation is the core of the BoVW

proposition, and will be discussed more in-depth in the next sections.

The Ąrst stage, low-level feature extraction, consists of detecting and extracting

local descriptors of the image. Local descriptors are visual features that represent small
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patches of the image (in contrast to global features, which represent the entire image at

once). The most cited descriptors are SIFT [Lowe, 2004] and SURF [Bay et al., 2006]. SIFT

was created by Lowe in 2004, and is composed of a DoG interest region detector, followed

by a HoG feature descriptor. The Ąnal vector has 128 dimensions and is invariant to uniform

scaling, orientation, and partially invariant to affine distortion and illumination changes.

SURF was introduced by Bay et al. [2006]. Inspired by the SIFT descriptor, SURF is several

times faster than SIFT, since is based on sums of 2D Haar wavelet transforms and makes

an efficient use of integral images. If the reader needs a complete comparison of invariant

interest point detectors, we recommend the survey by Mikolajczyk and Schmid [2005] in

which they compare the performance of descriptors computed for local interest regions. We

also recommend the survey from Tuytelaars and Mikolajczyk [2008]. In that survey they deĄne

the properties of the ideal local feature detector and give a literature review over the past

four decades. Other recommendation is the survey by Li and Allinson [2008], in which they

provide a brief introduction for new researchers to the local feature research Ąeld, in order

to facilitate the choice of an appropriate methodology according to speciĄc requirements.

The last stage of the pipeline is the classification itself. As a machine learning task, it

can be done ad-hoc with any technique desired. The main types of classiĄcation are supervised

and unsupervised algorithms.

In supervised learning, the predictive model is constructed based on a set of examples

called training set, that is a amount of data composed by the image and its label. The machine

learning algorithm should be able to abstract the training set and construct a generalization

based on it, being capable to determine the label of a new image presented to the predictive

model. Meanwhile, in unsupervised learning, the training set is not labeled, and the algorithm

itself is responsible to detect similarities within the data.

ClassiĄcation in BoVW models is usually done with supervised methods, especially

Support Vector Machines [Vapnik, 1995].

2.2.1 Mid-level Features: the Key Point of the BoVW

The low-level features are excessively discriminant, that is, very powerful to match the exactly

same object or scene, but weak to identify categories or classes. For classiĄcation it is essential

to improve the abstracting power of the model. That motivates the second stage of image

classiĄcation through BoVW: the mid-level feature extraction. Essentially, the mid-level

feature extraction is a powerful abstraction to the low-level features, that is, the low-level

features are rewritten into a new space quantiĄed by a codebook.

So, in the training phase, mid-level feature extraction must be preceded by visual
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codebook learning, often accomplished with unsupervised learning, e.g., using k-means

clustering to Ąnd a set of representative centroids, or an Expectation-Maximization procedure

to estimate a GMM. Often, however, it is sufficient to just select at random a number of

features from the training set to use as codewords.

Mid-level was formalized by Boureau et al. [2010] as the application of two successive

steps: coding and pooling. The coding step transform the low-level features into a new repre-

sentation based upon the codebook, and the pooling takes the average of the encoded features

over the entire image. Since the pooling operation compacts all the information contained in

the individually encoded local descriptors into a single feature vector, that step is critical for

BoVW-based representations. In general terms, the objective of pooling is to summarize the

information contained in the individually encoded descriptors into a single feature vector,

preserving important information while discarding irrelevant detail [Avila et al., 2013].

The classical BoVW model employs hard assignment for the coding, and averaging

for the pooling. Hard assignment associates each feature vector to the closest codeword. The

Ąnal feature vector is obtained by averaging the encoded features. For a deeper comparison

of mid-level feature coding and pooling approaches, we recommend the survey produced by

Koniusz et al. [2013]. This traditional BoVW approach has important limitations, and several

alternatives to that standard scheme have been recently developed. For instance, to attenuate

the effect of coding errors induced by the descriptor-space quantization, hard quantization can

be replaced by a soft assignment [van Gemert et al., 2010] or by other coding strategies such

as sparse coding [Boureau et al., 2010]. Pooling by taking the maximum value (max-pooling)

often performs better than average-pooling.

2.2.2 BoVW Formalism

After a practical description of the BoVW model, we discuss a more a formal deĄnition of

this technique. Although the formalism described here refers to the early BoVW approaches,

with coding and pooling operations proposed by Boureau et al. [2010], the matrix notation

is newer and was proposed by Benois-Pineau et al. [2012, chap. 3, section 3.1.1].

As mentioned before, the key aspect of the BoVW model is to describe each image in

a notation that can be directly compared, instead of pixel values that are meaningless. This

notation is done based in a codebook and occurs in the mid-level feature extraction.

First of all, in the low-level feature extraction stage the image is described as a numer-

ical representation of its areas of interest (the so called patches). This is done, for example,

with SIFT or SURF descriptors. The result of this stage are feature vectors with N dimen-

sions. For SIFT, 𝑁 is equal to 128. This process is brieĆy described in Figure 3.
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2.2.3 Enhanced Mid-level Representations

From the last section, it is easy to note that the traditional BoVW can ignore important

details of the images decreasing the representation power of the model. Nowadays there are

many BoVW extensions that enrich the standard model, by preserving more information

about the image. Among the cutting-edge BoVW representations, the most relevant are

SPM [Lazebnik et al., 2006], Fisher Vector [Perronnin and Dance, 2007], [Perronnin et al.,

2010], SVC [Zhou et al., 2010], VLAD [Jégou et al., 2010], VLAT [Picard and Gosselin, 2011],

BossaNova [Avila et al., 2013] and LASC [Li et al., 2015]. Except for SPM and BossaNova,

which keeps the representation compact, all of these approaches result in very large feature

vectors, up to hundreds of thousands of dimensions.

The coding-pooling strategy enables image description abstracting the details of the

level of the pixels. Nevertheless it doesnŠt take into account the spatial distribution of the

elements along the image, that is, it is not possible to determine if a speciĄc color or texture

is close to another. The spatial information is very important for us, humans, understand and

interpret images. To overcome the loss of spatial pooling information, Lazebnik et al. [2006]

inaugurated the modern trend on BoVW approaches by proposing the SPM. Although this

technique was Ąrst designed for recognizing scene categories, now it is used for improving

several image classiĄcation problems and also explored in Neural Networks systems [He et al.,

2014; Akata et al., 2014]. SPM splits an image into hierarchical regions, generating indepen-

dent feature vectors that are concatenated to create the Ąnal representation. The feature

vector of each region corresponds to the pooling of the encoded features vectors contained

that region. Figure 7 illustrates how feature descriptors are quantiĄed by the SPM technique.
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Figure 7 Ű An illustration of a three-level pyramid constructed by Spatial Pyramid Matching. Supposing
that the image has three feature types (circles, diamonds and crosses), the image is subdivided
in three different levels of resolution. For each level, the features are counted accordingly to the
spatial bin they fell. Figure reproduced from Lazebnik et al. [2006]

.

Another BoVW extension is the Fisher Vector framework proposed bye Perronnin

and Dance [2007]. The framework combines the strengths of generative and discriminative

approaches. The idea is to characterize a signal with a gradient vector derived from a gener-

ative model and then pass this vector to a discriminative classiĄer. For image classiĄcation,

the images are the input signals and the generative model is the codebook constructed by

a GMM. The framework was also improved for large-scale image classiĄcation, applying a

two-step normalization and spatial pyramids [Perronnin et al., 2010].

Still in 2010, we had two more extensions to the BoVW model: SVC [Zhou et al., 2010]

and VLAD [Jégou et al., 2010]. SVC follows the same coding-pooling-classification schema, but

they made contributions in the three steps. The coding phase is a simple extension of vector

quantization coding that achieves a lower function approximation error. The pooling step is

based on a novel probability kernel incorporating the similarity metric of local descriptors.

On the other hand, VLAD can be seen as a simpliĄcation of the Fisher kernel. The idea is

to accumulate for each codeword from the codebook, the differences of each local descriptor

assigned to it. This characterizes the distribution of the vectors with respect to the center.

VLAD was also improved by Arandjelovic and Zisserman [2013], generating MultiVLAD, a

multiple spatial VLAD representation enabling retrieval and localization of objects that only

extend over a small part of an image.

In 2011, VLAD was extended by Picard and Gosselin [2011] generating the VLAT

model. Their Ąnal descriptor is composed by two types of elements: the Ąrst is the same of
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VLAD (the sum of differences between the vectors Şlocal descriptorŤ and Şcluster centerŤ

associated with it); the second type is the sum of outer product of the same vectors.

Among the BoVW new approaches, we also highlight BossaNova [Avila et al., 2013].

BossaNova is a mid-level image representation which offers a better information-preserving

pooling operation based on a distance-to-codeword distribution. It will be discussed in more

details in Chapter 3 Ű Proposed Solution.

Although the DLA are gaining huge attention in recent researches for image classiĄ-

cation, the mid-level representations also continue to evolve. Most of the recent art are new

coding and/or pooling schemes. Since the coding is the critical step of the mid-level feature

extraction, a comparative comprehensive study of the current literature is desired. A survey

in this sense was recently proposed by Huang et al. [2014]. They discuss the feature coding

methods in terms of motivations and mathematical representations.

Many of those new approaches, as well as Lazebnik et al. [2006], try to take advan-

tages of the spatial distribution of the features along the image. Regardless the successful

of the SPM, the technique requires nonlinear classiĄers to achieve good image classiĄcation

performance. One approach to overcome this issue is the LLC proposed by Wang et al. [2010].

Unlike SPM, LLC uses locality constraints to project each descriptor into its local-coordinate

system, and them applies max pooling to produce the Ąnal representation. The Ąnal mid-level

representation works well with linear classiĄers, even with very large codebooks, enabling fast

processing.

Thanks to its efficiency, the LLC method is suitable for many scenarios of image

classiĄcation. Nevertheless, it discards the geometry of the feature space since each feature

is projected in a simpler local space. One extension to attenuate this problem is the LASC

proposed by Li et al. [2015]. In this approach, the feature vector is a composition of the top-k

neighboring subspaces in which the descriptor is linearly decomposed, preserving, thus, more

information about the geometry around it.

Therefore, we conclude that the image classiĄcation methods will continue to develop,

mainly thanks to technological advances that allow complex processing in less time. Moreover,

the mixture of BoVW and DLA models is a tendency, since they present complementary

advantages [Li et al., 2014; Klein et al., 2015].

2.3 Melanoma Screening

Melanoma screening is an important matter on medical community, and it justiĄes the

amount of researches on this Ąeld, explained by the increase of incidence cases among the
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population [Rigel, 2010]. This section describes the most relevant researches of automated

melanoma screening on the last seven years, based upon computer vision techniques. Table 1

summarizes the main information described here. Because there is no standard dataset nei-

ther protocol to allow direct comparison, the results reported by literature are not directly

comparable. Note as well, that some authors employ AUC while others employ the accuracy

(ACC) as metric.

Computer vision researchers tend to use dermoscopic images (those captured by spe-

ciĄc medical devices Ů a dermatoscope, Figure 8 Ů in controlled conditions of acquisition,

enabling better visualization of the lesion), instead of clinical images (captured by a common

camera under non-controlled conditions) to classify skin lesions automatically due to the

better quality, generally highlighting the lesion and its color and texture structures. Figure 9

illustrates the differences between dermoscopic and clinical images.

Figure 8 Ű A dermoscopy kit highlighting a dermatoscope: the instrument used by a physician to analyse
skin lesions. Figure reproduced from the Internet.

Most of these studies tries to reproduce in computer machines the steps that derma-

tologists use to diagnose a melanoma. To accomplish it, some researches [Iyatomi et al., 2008;

Mete and Sirakov, 2012; Abbas et al., 2012; Capdehourat et al., 2011] implement the ABCD

Rule of Dermoscopy [Nachbar et al., 1994]. Others, for example Wadhawan et al. [2011b],

employ the 7-Points Checklist [Argenziano et al., 1998] to classify a skin lesion.

The ABCD rule, also known as ABCDE rule, is a simple checklist for clinical diagnosis

of melanoma. This rule looks for asymmetry, border shape, color aspects, diameter of the

lesion and if it is evolving. Figure 10 illustrates how these aspects are analyzed by a physician.

According to the ABCDE rule, the malignant lesion is asymmetrical. If you draw a line

through its middle, the two halves will not match, indicating a sign of melanoma (Figure 10-

(a)). Unlike melanomas, benign lesions have smooth borders. The borders of a melanoma
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Figure 9 Ű A comparison between clinical (left) and dermoscopic (right) images. Example images from
[Argenziano et al., 2002].

lesion tend to be uneven (Figure 10-(b)). Another relevant aspect is the color of the lesion:

benign ones present usually a single color. Having different colors in the same lesion is a

warning signal of melanoma, which may present shades of red, white or blue (Figure 10-(c)).

Melanomas usually have a bigger diameter than benign lesions, but sometimes are smaller

when they are detected (Figure 10-(d)). Finally, the last aspect is the lesionŠs evolution:

in adults, benign lesions have the same size over time. If a lesion starts to change its size,

shape, color or any other morphological aspect, it may be a serious warning of melanoma

(Figure 10-(e)).

The 7-points checklist was proposed by Argenziano et al. [1998]. According to its

authors, the checklist is an additional diagnostic algorithm developed for simplifying the

classic pattern analysis of a skin lesion proposed in the Consensus Meeting of 1990. The

main beneĄts of the new approach are the low number of features to identify and a scoring

system to support reliable diagnostics. The 7-points are organized in two groups according

to their probability to indicate a melanoma occurrence. The major criteria are (i) typical

pigment network, (ii) blue-whitish veil and (iii) atypical vascular pattern. The minor criteria

are (iv) irregular streaks, (v) irregular pigmentation, (vi) irregular dots/globules and (vii)

regression structures. Each major criteria has score of two. The minor ones have score of one.

The Ąnal score of a lesion is just the sum of scores for each criteria presented. If the Ąnal

score is equal or greater than three, the lesion is a melanoma. Otherwise, it is a benign lesion.

To exemplify how the Ş7-Points ChecklistŤ is applied, Figure 11 shows the analysis of two

lesions. The Ąrst, (a), has a Ąnal score of seven, which indicates that it is a melanoma. The

second, (b), has a Ąnal score of one, which indicates that is is a benign lesion.

Any case have challenges that must be overcome, such as soft borders, which turn
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Figure 10 Ű Examples of skin lesion classification according to the ABCDE rule. For each pair, the image
on right is malignant and the one on left is benign (unless for (e), which both are two pictures
of the same benign lesion). (a) is related to asymmetry, (b) to border, (c) to color, (d) for
diameter and (e) for how the lesion is evolving. Figure adapted from SCF [2013].

border detection into a hard problem, and the presence of veins or hair, which can impact

the quality of the classiĄcation. For example, Abbas et al. [2012] deals with hair removal

using derivative of Gaussian, morphological function, and fast marching techniques.

The ABCD Rule and the 7-Points Checklist evolved to modern approaches like the 3-

Points Checklist [Soyer et al., 2004] and the 7-Points Checklist Revisited [Argenziano et al.,

2011]. The 3-Points Checklist was designed as a simpliĄcation of the 7-Points in order to

improve the reproducibility and the validity of the dermoscopy done be non-experts, which

was proved through practical evaluations. The 7-Points Revisited is an evaluation of the

diagnostic performance of pattern analysis with a lower threshold for excision.

2.3.1 Current Methods

According to the literature, the process of analyzing an image of a skin lesion has three main

steps: (i) identify the lesion borders (border detection), (ii) extract image features only inside

the lesion (feature extraction), and (iii) compare these features with pre-calculated features

of both melanoma and non-melanoma examples to decide if the skin lesion is a melanoma or

not (classification).
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is justiĄed by the use of the same dataset and also because it is one of the most complete

works in terms of method description.

Traditionally, classiĄcation process have been made with Suport Vector Machines

(SVM) [Vapnik, 1995], a very popular and powerful learning technique for data. Many authors

applied the SVM classiĄer [Wadhawan et al., 2011b,a; Situ et al., 2008; Doukas et al., 2012;

Mete and Sirakov, 2012; Abbas et al., 2012]. In short, what differs one work from others is

the kernel function used on the SVM and its parameters. Also, some authors employed other

classiĄcation methods, such as neural networks [Iyatomi et al., 2008; Mikos et al., 2012] or

decision-trees [Di Leo et al., 2010; Capdehourat et al., 2011]. The experimental validation

protocol depends on the dataset size: usually it is done with 10-fold cross-validation, but some

studies like Iyatomi et al. [2008]; Mikos et al. [2012]; Marques et al. [2012] use a leave-one-out

schema.

Scharcanski and Celebi [2014] also compares the main works cited in this section. This

book is a compilation of the last papers published so far about automated melanoma screen-

ing. Although the most part of the book is related to dermoscopic image processing, some

works deal with clinical images, usually addressing illumination and reĆectance problems.

Most part of the literature is focused in border detection, lesion segmentation and

meta analysis of the already proposed methods. In the last years, the literature continued to

present new melanoma classiĄcation works, but always employing the color and/or texture

descriptors as image features [Fidalgo Barata et al., 2014; Abuzaghleh et al., 2014; Barata

et al., 2014; Abedini et al., 2015]. Barata et al. [2014]; Fidalgo Barata et al. [2014], specially,

reinforces the need of lesion segmentation before extracting the image features.

Despite the existence of several works for melanoma classiĄcation, they are not directly

compared due to the use of distinct datasets and different validation protocols among the

methods. Also, there is no official public melanoma dataset to promote different methods

experimentation on same conditions.
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Table 1 Ű Results reported in the literature. Table extended from Fornaciali et al. [2014].

Reference. Method
Dataset

AUC (%) ACC (%)
#pos/#neg

[Iyatomi et al., 2008] Color and texture descriptors; Neural network 198/1060 92.8 *

[Situ et al., 2008] Color histogram; Gabor filter; BoVW; SVM 30/70 82.2 *

[Wadhawan et al., 2011b] Color histogram; Haar wavelet; SVM 110/237 * 76.4

[Wadhawan et al., 2011a] Haar wavelet; SVM 388/912 91.1 *

[Abbas et al., 2012] ABCD rule-based features; SVM 60/60 88.0 *

[Doukas et al., 2012] ASM; SVM 800/2200 * 85-90

[Marques et al., 2012] Color and texture descriptors; * 17/146 * 79.1

[Mikos et al., 2012] GLCM; Neural network 42/88 * 69.5

[Barata et al., 2013] Color histogram; Gabor filter; BoVW; k-NN 25/151 ** **

[Abuzaghleh et al., 2014] Color and texture descriptors; SVM 40/160 * 90.6

[Barata et al., 2014] Color and texture descriptors; SVM/KNN/AdaBoost 25/151 ** **

[Fidalgo Barata et al., 2014] Color constancy algorithms; BoVW; SVM 241/241 * 84.3

[Abedini et al., 2015] Color and texture descriptors; BoVW; SVM 40/160 ** **

AUC: area under the ROC curve | ACC: accuracy | *This information was not reported by the authors in the original paper | **Uses Sensitivity and
Specificity, as evaluation measure. The values reported are, respectively: 93%/85% [Barata et al., 2013]; 96%/80% [Barata et al., 2014]; 90%/90%

[Abedini et al., 2015]
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2.3.2 Melanoma Screening on Handheld Devices

Using smartphones for melanoma screening has several advantages, since those devices are

simple to use, the examination does not require complex equipment and acquisition proce-

dures. Besides that, they are also more convenience and low-cost when compared to more

conventional computers (e.g., desktop or laptop). Therefore, by offering portability and ubiq-

uitous connectivity, those devices are a powerful help to save lives as noted by Allen [2015].

Wadhawan et al. [2011a] proposed a framework for melanoma screening on handheld

devices called SkinScan. The library was made on 2011 but is not available for public use. The

authors reported an area under the curve (AUC) of 91%, based on a 10-fold cross-validation

on a dataset of 1300 images, being 388 melanomas, that were upload to the phone. They

also published other paper [Wadhawan et al., 2011b] implementing the 7-points checklist,

and reinforcing the use of color and texture descriptor to extract features. The Ąndings of

these authors led to a system improvement able to detect melanoma and other skin lesions

using handheld devices. The new results were published in Zouridakis et al. [2015] that can

be considered an extension of SkinScan, which is now commercially called SkinVision.

Other similar studies [Doukas et al., 2012; Mikos et al., 2012] analysing skin lesions on

smartphones. Both have similar main user case: the user photographs the abnormal skin and

annotates the lesion. The application extracts features, analyses them and returns a diagnoses

if it is a melanoma or not. Doukas et al. use the WEKA SVM to classify the features, as

Mikos et al. prefer neural networks. Another difference between these works is the dataset

size: Mikos has 130 images, being 42 melanomas while Doukas made the experiments on 3,000

images being 800 melanomas. This difference reĆects on the results, since Doukas achieved

an accuracy of about 87% while Mikos had just 70%. To Ąnish this comparison, another

contribution of Doukas is the use of cloud computing to process the images, allowing the

pipeline to be used for different Operating Systems, like Android, iOS and Windows Phone

regarding the differences between them.

There are other products for automated melanoma screening directed to community,

patient and generalist clinician users. A good review of these applications can be found in

Kassianos et al. [2015]. Although these new technologies offer the promise of improving early

melanoma detection, they often present low accuracy on their results [ISI, 2015; Wolf et al.,

2013].

Recently, the survey proposed by March et al. [2015] reassesses the past works, intro-

duces other commercial applications and also discuss the regulation of mobile technologies

for medical purposes. Nevertheless, this study also concluded that, at this time, there is no

mobile system completely accurate to be used in melanoma screening. However, the authors
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highlight that no experiment was done in a true clinical setting in order to compare the

performance of dermatologists using or not any of these new automated techniques.

2.3.3 Quality Analysis of Current Methods

When we talk about the quality of current works in the literature of melanoma screening,

there are two points of view: the physiciansŠ and the computer scientistsŠ. Physicians are

usually worried in analysing new systems as complete tools to be used in screening programs

as a decision support mechanism, so they search for sensitive methods with high accuracy.

Those, however, are not commonly found in academic literature, since most of works are

still small studies, works in progress. When the system is implemented on mobile devices

and reach Ąnal users directly, physicians are, rightfully, very critical about the quality of the

methods, since inaccurate systems can mislead patients to a false sense of security with a

false negative outcomes [Tyagi et al., 2012; Wolf et al., 2013].

On the other hand, computer scientists understand that systems must have high accu-

racy rates to be used in screening programs, but they are also excited about the improvements

of their methods along time, which justify publications with AUC between 80Ű90%. Neverthe-

less, the works in literature are not directly comparable among themselves, since they employ

different datasets that are not public, and are very hard to obtain even under request.

Another important matter about the quality of current works is the question of re-

producibility. Since works are not directly comparable, new researchers need to reimplement

previous literature from scratch in order to compare new approaches to existing ones. As if

this inversion on the Şonus of reproducibilityŤ were not bad enough, existing methods and

protocols are often described so cursorily as to prevent any attempt at all of reproducibility.

2.4 Conclusion

In this chapter we introduced the automated melanoma screening problem by the optics of

Computer Vision. For this, we visited the main techniques of image classiĄcation found in

the literature, addressing its characteristics, advantages and disadvantages. Our attention

was driven to models based on BoVW, since they have some advantages that are suitable for

the melanoma screening problem: (i) they donŠt require huge amounts of images to construct

the predictive model, (ii) the approaches can be extended by other techniques, improving

the results, and (iii) there are several works in literature that can beneĄt from the use or

modernization of this technique.

Our literature review covers the main works of automated melanoma screening by im-
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ages, pointing out their similarities, differences and main results. We also described melanoma

screening in handheld devices, reinforcing the importance and the potential for exploitation

of this issue.

Chapter 3 describes our solution. It is based in the cutting-edge representation BossaNova

[Avila et al., 2013], one of the most recent extension of the BoVW model. Its conceptual and

practical details will also be explored in the following chapter.
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3 Proposed Solution

In Chapter 2, we have introduced the state-of-the-art on automated melanoma screening.

Under the point-of-view of Computer Vision, it is an image classiĄcation problem, so our

literature review also included the most relevant works about this theme. We have seen that

the BoVW model is one of the most successful models for image classiĄcation, especially

when the amount of annotated images is scarce, which is the case for medical images. This

model has been improving in the last twelve years and now we can Ąnd advanced approaches

that improve the classiĄcation rates by the cost of generating huge descriptors that consume

more computational resources.

The melanoma classiĄcation literature has a typical protocol composed by three steps:

(i) lesion segmentation, (ii) feature extraction inside the lesion and (iii) classiĄcation itself.

What differentiates one work to others is the feature descriptors used in the experiments:

while one author will opt to use certain texture or color descriptors, another will prefer a

different choice. The classiĄer is generally chosen among a small handful of choices, SVM

being very common. Nevertheless, these techniques are often reductive, since they explore

poor feature descriptors, simple schemes of coding and/or poling, small sizes of the codebook

and a mid-level representation that do not incorporate relevant aspects of the visual content.

In such a way, a critical review of the current literature is lacking. In this sense,

this work opens the opportunity to advance the state-of-the-art by probing cutting-edge

BoVW extensions. Section 3.1 presents our solution for automated melanoma screening and

Section 3.2 describes our spatial pooling strategy specially designed for this problem. Besides

that, there are open problems yet not explored in the literature, which are described in

Section 3.3. Finishing this chapter, Section 3.4 summarizes the information presented here.

3.1 A Modern Approach for Melanoma Screening

A preliminary analysis of related work of melanoma classiĄcation indicates that the most

serious problem of literature is the use of simplistic techniques, like outdated BoVW models

or worse, which possibly do not exploit the full potential of the images in the composition

of low and mid-level descriptors. It is known, however, that the model was enhanced and

today achieves good results on diversiĄed image classiĄcation tasks. Thus, the main contri-

bution proposed by this work is the use of modern BoVW based techniques in the automatic

screening of melanoma. It is clear that enhanced mid-level descriptors were not explored yet,
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opening the opportunity for further investigations and improvements.

Among the advanced approaches of the BoVW model, we opt to employ BossaNova

as the basis of our framework since it has been showing competitive results that overcome the

state-of-the-art for image classiĄcation tasks. The original contribution of this work is a novel

application for BossaNova: this is the Ąrst time that it is applied to melanoma classiĄcation.

BossaNova is an enhanced mid-level representation that brings several novelties for

the melanoma screening problem using BoVW model. Proposed by Avila et al. [2013], the

contributions are present in both low- and mid-level stages. Among the low-level advantages,

we highlight robust descriptors with dense schemes for sampling and reductions of dimen-

sionality to speed up the process. The innovations in the mid-level feature extraction are

new sizes for the codebook, a soft coding schema, a density function-based pooling strategy,

normalizations of the Ąnal feature vector and also incorporation of spatial information. All of

these contributions will be detailed next. The main pipeline of melanoma classiĄcation using

BossaNova is shown in Figure 12.
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soft-assignment strategy. It was chosen due to better results without prohibitive com-

putational costs [Yang et al., 2009; Boureau et al., 2010]. The soft-assignment associates

each feature vector to the K-nearest codewords and the values of the attributions are re-

lated to the Euclidean distance of the feature to the codeword subjected to the standard

deviation of the cluster in question.

∙ Pooling: instead of using the classical sum- or max-pooling strategies, BossaNova intro-

duces a density function-based pooling schema, aggregating local spatial information

about the descriptors around each codeword, preserving thus statistical information

about the distribution of the features. It is done by computing a local histogram 𝑧 of

distances between the descriptors found in the image and those in the codebook. The

intuition is shown in Figure 14.

Figure 14 Ű BossaNova’s intuition. Reproduced from [Avila et al., 2013].

While in the standard BoVW pooling all descriptors close to a codeword are quantized

by the same histogram bin, in BossaNova the descriptors are quantized in different

histogram bins accordingly to its distance around the codeword. The main advantage of

this new scheme is that it preserves the information about the descriptorsŠ distribution

around each codeword. Another advantage is that the degree of information preserved

can be adjusted by the number of bins of the 𝑧 histogram. From Figure 14 it is easy to

see that when the number of histogram bins in BossaNova is equal to 1, we have the

BoVW pooling approach. This illustrates that BossaNova is, in fact, an extension of

the BoVW model.

To construct the local histograms, BossaNova uses the parameters shown in Figure 15.

BossaNova vector is deĄned by three parameters: the number of codewords 𝑀 , the
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it has information about the lesion segmentation. We performed the following experiment

divided in two approaches: (1) extract features from the whole image, (2) extract features

only inside the lesion. For both approaches, we used BossaNova to construct the mid-level

representation and compare them in order to identify which one leads to a better melanoma

classiĄer. Using a 5-fold cross-validation schema, we have found that approach (1) leads to a

classiĄer with an accuracy of 87%, while approach (2) leads to a classiĄer with an accuracy

of 88.5%. This motivated us to further explore the spatial information of the lesion without

need to segment it, leading to improved results without incurring the computational costs

and possible errors of automated segmentation.

Therefore, we implemented a brand new pooling strategy named SCP. SCP is a type

of spatial pooling addressed specially for the skin lesion classiĄcation problem. It enriches

the BossaNova representation by adding spatial information about the image descriptors

distribution around the skin lesion. Also, the SCP can be extended to other BoVW based

techniques in a straightforward manner.

SCP is a new, fast and easy way to extract the lesion without need to segment the

image. It was designed observing that, typically, dermoscopic images are concentric, that is,

the lesion is centered on the image and it occupies about 50% of the image area. The method

is explained in Figure 17 (top row): we draw a circular region with radius 𝑅 to capture 50%

of the image area (see Equation 3.1), we consider 5 sampling vectors composed by (a) the

whole image, (b) the outer and (c) the inner regions and (d) the left and (e) the right sides

of the lesion. The schemes (a)-(c) try to evaluate the impact of lesion segmentation over

the classiĄcation, and the schemes (d)-(e) try to identify asymmetrical borders, which is a

relevant criteria according to the ABCD rule of dermoscopy [Nachbar et al., 1994].

𝑅 = 𝐿/
√

2Þ, (3.1)

where 𝑅 is the radius of the circle used on the SCP approach and 𝐿 is the size of the

square skin lesion image. From Figure 17 is easy to see that while SCP tends to emphasize

the contrast between the center and the border of the image, SPM tends to emphasize the

contrast between its quadrants. While we expected the centerŰborder contrast to be very

important (because it corresponds to the rules of dermoscopy image analysis), our results

show that SPM and SCP perform equally.

SCP is, therefore, an attempt to incorporate medical rules for dermoscopic melanoma

images with 768×560 pixels of resolution, being 80 common nevi, 80 atypical nevi, and 40 melanomas.
The dataset includes annotations and segmentation of each lesion, that were all obtained at the Der-
matology Service of Hospital Pedro Hispano (Matosinhos, Portugal). This dataset can be found at:
http://www.fc.up.pt/addi/ph2%20database.html.
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Spatial Circular Pooling (SCP) approach

(a) (b) (c) (d) (e)

Spatial Pyramid Matching (SPM) approach

(a) (b) (c) (d) (e)

Figure 17 Ű Comparison between the SCP (top row) and the SPM approaches [Lazebnik et al., 2006]
(bottom row), contrasted in our evaluation of the factors affecting the model accuracy.

classiĄcation (like ABCDE rule and 7-Points Checklist) in advanced BoVW-based systems

for automated melanoma screening.

3.3 Other Questions Investigated by This Work

As mentioned in the beginning of this chapter, we have other questions to evaluate besides

how modern approaches for the BoVW model perform in the melanoma screening problem.

Since the BoVW model is divided in three main steps (low- and mid-level feature

extraction and classiĄcation), it is important to determine how much each of the feature

extraction steps inĆuences the accuracy of the classiĄer. This is particularly import to guide

future researches in this Ąeld.

Other relevant aspect to be exploited is how the size and the quality of the training

set impact the accuracy rates. It is important to investigate it because since each author

reports his/her results in different datasets, maybe the methods found in literature are not

so different in terms of performance, but the differences came from bigger amounts of samples

being imputed into the classiĄer.

Finally, this work presents a set of methodological contributions that can beneĄt

the melanoma screening community in order to make researches reproducible and easily

comparable. These questions will be fully explained in Chapter 4 - Experimental Results.
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3.4 Conclusion

This chapter introduced our solution for automated melanoma screening. It was seen that

the literature counts with other BoVW-based approaches for this problem, but they are not

applying modern improvements of such model.

This opens the opportunity to investigate how enhanced mid-level features perform

in this particular case of medical imaging. It is also the Ąrst use of BossaNova descriptors in

this context.

In addition, we introduce, the SCP as a special schema to incorporate spatial infor-

mation of the image features, in a fashion inspired the ABCD Rule, but without the rigidity

imposed by segmentation. As it was presented, there are several justiĄcations about the

problem and medical knowledgement that led to believe that the SCP would have a positive

impact in the accuracy of the classiĄer but, as will be seen in the next chapter, the exper-

imental data didnŠt conĄrm this hypothesis. Chapter 4 details the experimental design and

also analyzes the possible causes of this phenomenon.
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4 Experimental Results

This chapter shows our empirical results. It is organized as follows: Section 4.1 introduces

the datasets used in the experiments. Section 4.2 describes the evaluation metric, justifying

our choice. In sequence, the set of experiments are detailed in Section 4.3 in terms of its

objectives, experimental design, results and analysis. By its time, Section 4.4 concludes this

chapter and summarizes the main Ąndings.

4.1 Datasets

All experiments described in this study are related to one of the datasets listed below.

1. IRMA Dataset1: created by the Department of Medical Informatics of the RWTH

Aachen University, this dataset is composed of 747 dermoscopic images of skin lesion

with resolution of 512×512 pixels, being 187 melanomas and 560 benign skin lesions.

2. Interactive Atlas of Dermoscopy2: created by several researchers from Italy and

Austria, the interactive Atlas of Dermoscopy is a multimedia project for medical educa-

tion. It contains a CD-ROM with over 2,000 images of pigmented skin lesions, divided

into dermoscopic or clinical ones, including its diagnosis and histopathologic data.

From the Computer Vision point-of-view, the main challenge of this research are the

similarities between the classes of the images being classiĄed. Although they were extracted

from IRMA Dataset, Figure 18 represents the dermoscopic images of any melanoma dataset.

Note that melanomas (top row) and benign skin lesions (bottom row) are very similar. Other

challenges are smooth transitions between the lesion and normal skin, making difficult lesion

segmentation, and the occlusions caused by hair.

4.2 Evaluation Metrics

For all experiments, we used the Area Under the Curve (AUC) as evaluation metric. The

AUC is the area under the Receiver Operating Characteristic (ROC) Curve. This curve is a

1 IRMA Datasets - http://ganymed.imib.rwth-aachen.de/irma/datasets
2 Interactive Atlas of Dermoscopy - http://www.dermoscopy.org/
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Figure 18 Ű Melanoma images (top row) and benign skin lesions (bottom row).

graphical representation of the performance of a binary classiĄer, tracing the True Positive

Rate (Senstivity) in function of the False Positive Rate (1⊗Sensitivity).

We chose the AUC as evaluation metric because it provides a global measure of the

method being evaluated, without taking into account the precise choice of operating points,

i.e., the exact compromise between sensitivity and speciĄcity preferred by the user. While

sensitivity and speciĄcity can be balanced according to the cost of the problem, the AUC gives

a more global evaluation of the method. This also explains its popularity in the literature of

automated melanoma screening.

4.3 Experiments

Before performing the experiments of melanoma screening described in the following, we

started with a simple experiment trying to reproduce the same results reported by the authors

of BossaNova for the Oxford Flowers-17 dataset3. This experiment aims to check if we are

using BossaNova framework in the right way. We achieved the same results in this dataset

that the authors, so it suggested that our pipeline was correct. The Flowers dataset was

chosen because it shares some characteristics with the melanoma screening: itŠs an special

purpose dataset, trying to differentiate between similar classes.

For all experiments the classiĄcation was performed by Support Vector Machines .

We always used the popular LIBSVM library [Chang and Lin, 2011].

4.3.1 BoVW × BossaNova

One of our main contributions is the use of an enhanced BoVW-based technique in the

melanoma screening problem. Advances in the last Ąve years indicate that recently exten-

3 Oxford Flowers-17: http://www.robots.ox.ac.uk/ṽgg/data/flowers/17/



4.3. Experiments 37

sions of the BoVW model are highly supposed to deliver better results in any classiĄcation

problem. So we are also interested in investigating how these extensions perform for melanoma

classiĄcation. The Ąrst experiment of this research is, therefore, a comparison between tra-

ditional BoVW and BossaNova4 in the same classiĄcation task. We opt to use BossaNova as

the starting point of our framework due to its performance, comparing well with the state-

of-the-art for several challenging datasets of image classiĄcation [Avila et al., 2012, 2013].

Goal: to investigate if the elected advanced BoVW-based framework for general image clas-

siĄcation is also suitable for speciĄc datasets, especially for melanoma ones.

Experimental design: we used the IRMA Dataset in a 5-fold cross-validation schema in

order to eliminate deviations introduced by random choices of the images for training or

testing. To be fair, we adopted the default parameters of each method, without tuning

them. When a parameter is common for both approaches, we used the same value in

both experiments. The parameters are: codebook size (𝑀 = 1024), alphas (ÐMIN = 0.4

and ÐMAX = 2.0), number of bins (𝐵 = 2), number of neighbors (𝐾 = 10).

Results: as expected, that BossaNova leads to better results than traditional BoVW ap-

proaches in the melanoma screening problem. While BoVW reported an AUC of 89.45%,

BossaNova achieved 91.51%. A Student 𝑡-test [Jain, 1991] indicates that BossaNova is

better than traditional BoVW with a conĄdence of 90%.

Analysis: the experiment proved that enhanced mid-level features achieved better results

than the traditional BoVW model. Although the difference seems to be small, in practice

BossaNova outperforms BoVW with over 2% of absolute improvement.

Once the experiments were performed without sophisticated parametrizations, we can

accept the hypothesis that modern extensions of the BoVW model are more adequate for

melanoma screening.

4.3.2 Low-level × Mid-level: Which Influences More the Classification Perfor-

mance?

Image classiĄcation with BoVW-based models can be decomposed in two sequential steps: the

low-level and the mid-level feature extractions. Each BoVW approach has its singularities,

especially for the parametrization of theses steps. So, a good clue to improve the classiĄcation

rates is to investigate which combination of the parameters values leads to better results. Since

4 In our experiments, we used the BossaNova code available at
https://sites.google.com/site/bossanovasite/.
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the number of combinations can be exponential and the experiments are usually slow, this

kind of analysis is not common in literature. On the other hand, a hint on which step should

be better exploited is highly desired. This is still lacking and could guide future researches

in this problem.

We studied the impact of the low-level and the mid-level over the Ąnal classiĄer.

The study was performed via a fractional factorial design5 in order to evaluate both the

signiĄcance and the relative importance of each evaluated factor in the results. No previous

BoVW-based work in the literature performed an evaluation as broad in scope as ours, neither

as rigorous in terms of statistical design.

Goal: to identify which feature extraction step is more important and signiĄcant for the clas-

siĄer accuracy. Besides that, identify which BossaNovaŠs parameters are more relevant

for melanoma screening problem.

Experimental design: we have chosen six attributes of the framework, analyzing their con-

tribution for the Ąnal result. The low-level attributes are step and size values of the

RootSIFT extraction [Arandjelovic and Zisserman, 2012]. The mid-level attributes are

the codebook size, the number of bins, the maximum and minimum values for α param-

eter and the pooling schema (see next experiment). Each combination was validated in

a 5-fold cross validation schema using the IRMA Dataset, whose images were re-sized

to 316 × 316 pixels due to minimize time and computational resources consuming.

The setup values are detailed on Table 2. The Analysis of Variance (ANOVA)6 was

employed to analyze the differences between the averages of each group.

Results: the fractional factorial statistical results are shown on Table 3. We omitted the

second-order interactions since none of them were signiĄcant. On the other hand, all

main effects were signiĄcant. The choices of step and scale for the low-level and the

choice of number of bins and codebook size for the mid-level explain most of the non-

random variation, as seen in the Sum of Squares column. Besides that, the residuals

contain most of the information about variability in the classiĄcation. This indicates

that no parameter combination has systematic large advantage throughout all 5 folds.

5 A full factorial experiment is an experiment with two or more parameters, in which each one has a finite
set of values to be evaluated. All parameters’ combination are exploited leading to an exponential number
of validations. A fractional factorial design is an experimental setup on which a subset of experimental
runs of a full factorial design are carefully chosen, trying to expose information about the most important
features of the problem (see [Jain, 1991, chap. 17] for more details).

6 Analysis of Variance (ANOVA) is a statistical model used to analyze group averages and their variations
in order to identify significative differences between them and if the parameters influence any dependent
variable (see [Jain, 1991, chap. 15] for more details).
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Therefore, the random Ćuctuation across the folds appears to be very important, sug-

gesting that the choice of the training set affects very much the results. In order to

stabilize this Ćuctuation, each fold should be reasonably balanced, not only on the

number melanoma and non-melanoma images, but also in other factors like image

quality (hair presence or not, good and bad illumination, and lesion size) and types

of lesions in the negative class. Despite the large residuals, the main effects that came

signiĄcative were for step and min scale (p-value < 0.001), as well as the number of

bins and the codebook size. We conclude, then, that these parameters are good clues

to be explored when constructing a BoVW-based method for melanoma classiĄcation.

Analysis: the statistical analysis still shows that the low-level has bigger impact over the

classiĄcation than the mid-level. It can be proved by the column ŚSum of squaresŠ: note

that the low-level concentrates higher values for this parameter. This shows that in

order to construct a good melanoma classiĄer, we should pay attention on the feature

extraction step. Although less informative than the low-level, the mid-level also plays

an important role on the classiĄcation. Remarking that the effect of the codebook size

was very signiĄcative (p-value = 6.6×10−4), this shows that the choice of the codebook

size signiĄcantly improves the predictive power of the model. In addition, an analysis of

the ANOVA table shows that the step choice was, arguably, the most inĆuential factor

(largest partition of the mean square variation), reinforcing the relevance of that factor

on improving the classiĄcation model.

This experiment revealed that the low-level feature extraction is the most relevant

step for image classiĄcation with BoVW-based methods. This is expected since the low-level

features feed the subsequent steps of the pipeline. This result indicates that researchers should

pay attention to the image descriptors employed in their solutions. We also highlight that

the BossaNova parametrization can impact the classiĄcation rates as pointed by its authors.

In the particular case of melanoma screening, the codebook size and the number of bins in

the histogram are the most important parameters. These Ąndings are essential for driving

future investigations.

4.3.3 Spatial Circular Pooling

Our second main contribution is the proposal of a new spatial pooling strategy especially

designed for melanoma screening. The intuition comes from previous works in image classiĄ-

cation literature that indicates that the accuracy of BoVW models tend to improve just by

incorporating spatial information of the images into the bags. The main traditional spatial

pooling operation is the pyramids proposed by Lazebnik et al. [2006]. It works very well for
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Table 2 Ű Parameters of the Fractional Factorial experiment. Each line shows a parameter of the experi-
mental setup, tested with high and low values, in order to identify its impacts on the classification
result. Table reproduced from Fornaciali et al. [2014].

Parameter Value

Low-level

step
small 8

big 24

scale min
min 12
max 24

scale max
min 64
max 128

#scale
few 2

many 4

Mid-level

#bins
few 2

many 4

Ð
tight [0.6, 1.6]
loose [0.2, 2.0]

codebook
small 1024

big 2048

pooling
SPM [Lazebnik et al., 2006] 1×1+2×2

SCP (ours) (see Fig.17)

Table 3 Ű Partial view of the ANOVA Table. Table reproduced from Fornaciali et al. [2014].

Level Parameter
Degrees of Sum of Mean

F value p-value
freedom squares square

Low-level
step 1 40.66 40.66 110.76 < 2.00 × 10−16 ***

scale_min 1 9.64 9.64 26.26 5.45 × 10−7 ***
scale_max 1 1.60 1.60 4.35 3.79 × 10−2 *

Mid-level
#bins 1 4.85 4.85 13.21 3.29 × 10−4 ***

codebook 1 4.35 4.35 11.85 6.60 × 10−4 ***

- Residuals 291 106.84 0.37 - -

Significance codes: *** p-value < 0.001; ** p-value < 0.01; * p-value < 0.05

general purpose classiĄcation. Our motivation was to develop a spatial pooling operation

that considers important aspects of medical knowledge, for example, by aggregating infor-

mation inspired in the ABCD rule. Other authors of melanoma screening techniques tend

to reproduce the ABCD rule just by using color and/or textual descriptors for the low-level

feature extraction. Since we adopted advanced descriptors (like RootSIFT) that donŠt deal

with color and/or textual aspects of the images, the ABCD characteristics were incorporated

in other way.

Goal: to investigate if the SCP is more suitable for melanoma screening than other spatial
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pooling strategies.

Experimental design: this experiment is a subset of the ŞLow-level × Mid-levelŤ examina-

tion. The key parameter here is the spatial pooling schema. SCP was validated against

SPM proposed by Lazebnik et al. [2006]. For a graphical comparison between these two

types of spatial pooling, see Figure 17. Since the images were re-sized to 316 × 316

pixels each one, the radius 𝑅 of Equation 3.1 is 126.1 pixels, starting at the center of

the image.

Results: the results of this experiment are also related to the ANOVA shown in Table 3.

Contrary to what we expected, the choice of the spatial pooling strategy was not signiĄ-

cant enough to cause major impacts on the classiĄer, which justiĄes why this parameter

is not listed in the ANOVA Table. Our analysis showed that the average AUC for both

SPM and SCP approaches is 93.7%, and the ANOVA did not show statistical differences

between each approach. In order to better visualize the similarities of both approaches,

Figure 19 presents the ROC curves for SPM and SCP.

Figure 19 Ű Best ROC curves for SCP and SPM pooling approaches.

Analysis: the fractional factorial experiment and ANOVA demonstrate that the spatial

pooling strategies are equivalent. This suggests that, for melanoma classiĄcation prob-

lem, both approaches offer the same results and the proposed SCP schema is as good as

that one introduced by Lazebnik et al. [2006] (SPM). It is important to note, and it is

possible to see in Figure 17, bottom row, that the SPM pooling schema captures infor-

mation about the asymmetry of the lesion by grouping the descriptors in four regions.

The SCP schema, on the other hand, just captures information about the borders and
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the center of the lesion, clustering descriptors in two groups: one with descriptor be-

longing to the lesion and other with descriptors that do not belong to the lesion. We can

also conclude that the segmentation proposed in Figure 17, top row, frames (d) and (e)

are not sufficient to capture the whole asymmetry of the lesion on the SCP approach.

These evidences suggest that in the melanoma classiĄcation problem the investigation

of the lesion asymmetry is as important as its segmentation.

In order to compare our result with the state-of-the-art, we have constructed the Table 1

that resumes the information presented in Chapter 2. It also shows important aspects

about each study, like the dataset size, the proportion between positive (melanoma) and

negative (non-melanoma) images and the evaluation criteria: the AUC or the accuracy.

We will compare our results only with studies that use AUC as evaluation measure,

since we consider it more informative than the accuracy. Our method presents an AUC

up to 93.7%. This is directly better than Wadhawan et al. [2011a]; Situ et al. [2008];

Iyatomi et al. [2008]; Abbas et al. [2012]. Also, it should be mentioned that Iyatomi et al.

[2008] has border detection and feature selection, forcing a non-natural improvement of

the method. In our experiments, we used the whole dataset, without removing difficult

cases for a machine classiĄer, like images with poor quality, excessive presence of hair

or if the lesion is not whole Ątted on the image. We also do not detect lesion borders,

remove hair, improve the contrast between melanoma and non-melanoma skin nor do

any other ad-hoc pre-processing to beneĄt the classiĄer.

Concluding this section, this experiment was designed in order to evaluate our new

spatial pooling strategy (SCP) compared it with the most popular spatial pooling approach

(SPM). The images were divided on regular grids creating a pyramid of pooled features with

the same dimensionality for both SPM and SCP, that is, the feature vectors will both have

the same size (Ąve regions). This comparison aims to identify the informative power of each

spatial pooling strategy, i.e., given a feature vector of the same size, we aimed to detect which

approach preserves more information about the image. It is straightforward to note that the

more information the feature vector has, the better is the classiĄcation. Our results showed

that there is no statistical difference between the spatial pooling schemes and the SCP, as

was designed, was not able to capture important aspects of the lesions. This is a good clue

to be investigated in further examinations.

4.3.4 The Impact of the Training Set Size Over the Classifier

Early studies of the literature report experiments being done in different setups in terms

of number of images used in the training set and proportion between melanoma and non-
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Table 4 Ű Results for the impact of the training set size.

Size (%) 1st Run (%) 2nd Run (%) 3th Run (%) Average (%)

10 92.19 86.92 88.08 89.06
20 92.01 88.28 90.04 90.11
30 92.72 87.85 90.62 90.40
50 93.99 89.93 91.26 91.73
80 93.84 91.39 90.92 92.05

This experiment validates our hypothesis that when the classiĄer is fed with more

samples, the classiĄcation rates get better. Thus, new approaches to melanoma screening

should be validated whenever possible with bulky datasets. It is interesting to note however,

that the improvement tends to saturate after some point, suggesting that the sensitiveness

to training set size is not as big as for other models (like Deep Neural Networks).

4.3.5 Robustness Analysis

Previous experiments indicated that our method is able to generate a melanoma image clas-

siĄer with an AUC of 93.7%. The last experiment also revealed that the training set size is a

signiĄcant factor in the evaluation of methods. In particular, studies that use small datasets

(less than 200 images) are subject to overĄt, leading to misinterpretation of the learning

power of such approaches. The ŚLow-Level × Mid-LevelŠ experiment pointed out that despite

the importance of the use of enhanced mid-level descriptors, the image variability among the

folds is still what most impacts the classiĄer. So balance the folds in terms of melanoma and

non-melanoma images and morphological aspects such as lesion size, lesion centralization, the

presence of hair, among others is of paramount importance for the evaluation of automatic

melanoma classiĄcation systems.

Nevertheless, the last experiments were performed using the IRMA dataset that only

contains information about the Ąnal diagnosis (melanoma or not). In order to provide a

fair balance of images among the folds, deeper details of the images are required. So, the

evaluations done in this section employed the Atlas dataset since it provides clinical details

of each image, like the type of skin lesion (basal cell carcinoma, blue nevus, melanoma, and

others) and the difficulty for a physician correctly classify it. This dataset is also bigger than

IRMA and was used in other works of melanoma screening, allowing a less subjective analysis

of the proposed method against the literature.

Goal: the main goal of this section is to investigate the robustness of the proposed method

in relation to the disturbances that images may present and their degree of difficulty in
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a medical analysis. For this, the investigation will be divided into three sub-experiments

always doing the best effort to guarantee that the folds are balanced for lesion type

and difficulty of classiĄcation:

1. Using the complete dataset removing difficult lesions;

2. Using only images without artifacts and hair, being easy or medium to classify;

3. Using only images without artifacts but with hair, being easy or medium to classify.

Experimental design: the Atlas dataset was randomly divided in 10 folds balanced in

terms of melanoma/non-melanoma images, types of skin lesion and difficulty. Several

images had a black frame that were previously removed. The images were all scaled to

100,000 pixels each one, since they had different sizes. The dataset contains clinical and

dermoscopic images of each lesion: they were both used in the experiments but the fold

division was done in terms of cases, not images, to eliminate risk of contamination. The

BossaNova parametrization was the one that led to better results for Spatial Pyramids

Match (SPM), since it was the spatial pooling strategy employed in this experiment

(scales: 1×1 and 2×2). The parameter values are: codebook size (𝑀 = 2048), number

of bins (𝐵 = 4), and alphas values limited between ÐMIN = 0.6 and ÐMAX = 1.6.

Results: the average AUC for each sub-experiment was:

1. Complete dataset removing difficult lesions: 80.0%

2. Without artifacts and hair (easy/medium lesions): 85.0%

3. Without artifacts but with hair (easy/medium lesions): 85.0%

We also performed an extra sub-experiment to identify if the clinical images were im-

pacting the results. We used the same folds of experiment (1), just removing the clinical

images. The AUC of this setup achieved 88.0%.

Analysis: the results achieved indicate that the Atlas is a very challenging dataset, because

our previous result of 93.7% decreased to 80.0%. It can be explained by the fact that here

we are using both clinical and dermoscopic images in the experiments. This hypothesis is

proven by the extra validation using the same folds but eliminating the clinical images,

which leads to an AUC of 88.0%. This observation may suggest that even advanced

approaches for automated melanoma screening are not prepared to deal with clinical

images captured by common cameras, since clinical and dermoscopic images deal with

different aspects of the problem and may not be mixed in the experiments. Another

factor that could have mislead the classiĄer is the presence of artifacts in the images

(like rules, dots, hair and arrows). This is conĄrmed by the second experiment in which



46 Chapter 4. Experimental Results

we didnŠt use images with artifacts, improving the AUC to 85.0% even with clinical

images in the folds. Although we were expecting a higher improvement, we concluded

that Ąltering the datasets is essential for the classiĄcation methods and our approach

is not fully robust to noise in images. However, the third experiment (images without

artifacts but with hair) also achieved an AUC of 85.0%, suggesting that our method is,

indeed, robust to hair. Since in a medical examination the lesion images can be easily

obtained without artifacts but the hair removal is not straightforward, we conclude

that our approach can be a powerful tool for automated melanoma screening.

These experiments show that our approach is robust to hair in skin lesion images. It

was shown that clinical images are, for the moment, very challenging for automated melanoma

screening since they introduce some difficulties, like brightness and lack of details, that can

mislead the classiĄer. Despite difficulties, this kind of image must be used for screening

purposes since it is easier and cheaper to obtain. When the experiment is done without

clinical images, even keeping the artifacts (e.g. hair), the AUC is almost the same than the

previous ones. But, surprising, the training set size of this experiment is bigger than the ones

done with IRMA dataset. This indicates that in the Atlas dataset our solution didnŠt perform

as well as before, reinforcing two aspects: (1) this dataset is really challenging and, (2) there

is space for more improvements in our method. This will be discussed next.

4.3.6 A Critical Review of Our Benchmark

A comparison with other methods which use the same dataset was required to investigate

whether the results not so satisfactory of the previous experiment were caused by problems

in our method or intrinsic difficulties of the images. We choose the work of Wadhawan et al.

[2011a] as benchmark since it is one of the most detailed methods in literature that employs

a BoVW model for melanoma classiĄcation. The choice was particularly interesting because

while our result was 85.0%, the authors reported an AUC of 91.1% even using poor image

feature descriptors and a simple BoVW pipeline. This section describes how [Wadhawan

et al., 2011a] was reproduced and how we compare to it. For a positioning of the selected job

front of the literature, see Chapter 2.

Goal: to make a direct comparison between our approach with other method of the literature

using the same dataset in order to have a better idea of the classiĄcation power of our

solution to automated melanoma screening.

Experimental design: the benchmark was implemented accordingly to the directions pre-

sented in the original paper. Some parameters were not fully described, so we have
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contacted the authors: we had no answer. When we contacted the authors again, they

refused to share detailed information claiming intellectual property restrictions since the

method was in a patenting process. So, for these cases we applied typical values found

in literature. We Ąrst used the images without artifact and hair from Atlas dataset, but

we included the images regardless their difficulty (using the easy, medium and difficult

ones). The selected images were divided in a 10-fold cross-validation schema.

Results: the result registered an AUC of just 75.9%, very far from the 91.1% reported in

the original paper.

Analysis: despite of the best effort to reproduce the original results of [Wadhawan et al.,

2011a], our attempts didnŠt achieve what was published. Remembering that this is one

of the most well detailed papers about automated melanoma screening, this indicates a

serious problem of the literature: the results are not reproducible. After removing the

difficult images of the original selection and running the experiment again, the AUC

achieved the same value as we did previously (85.0%). But, it is very important to

highlight that the parametrization for this experiment was reĄned. So we believe that

we achieved the best result that this method could generate. However, our approach

was validated in the Atlas dataset using the parametrization especially designed for the

IRMA dataset. It is also important to note that in this experiment the images were

used in their original size, but we have re-sized them to validate our approach. This

could has limited our feature extraction step. All of these observations are relevant to

argue that our approach results for the Atlas dataset can still be improved.

The strongest conclusion of this experiment is that the literature of automated mela-

noma screening has critical problems that must be resolved. The lack of details in the papers

is the biggest obstacle for reproducibility. Since there is no public dataset of skin lesion,

reproducibility is essential for fair comparison between new approaches and existing ones.

This experiment reveals, yet, that our results are very promising and there is space for

further improvements in our approach. The enhanced mid-level representations, as expected,

perform better results than traditional BoVW implementations.

4.4 Conclusion

This chapter described our experiments. First and foremost, we proved that BossaNova,

an enhanced mid-level representation, performs better than the traditional BoVW imple-

mentation over skin lesion classiĄcation. Then, we analyzed which step of the classiĄcation
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pipeline is more relevant for the improvement of the classiĄer, and also explored a BossaNova

parametrization for the IRMA dataset.

Other important experiment was the validation of the proposed SCP, a novel spa-

tial pooling strategy especially designed for automated melanoma screening. Despite of the

expectations and medical support for the model, the approach was not so effective for the

problem but gave us some insights for further inspections.

The third great contribution of this work was an analysis of the literature repro-

ducibility. It was shown that it is not possible to reproduce the current state-of-the-art due

to the lack of information in the published papers. It is also important to note that none of

the state-of-the-art works reported standard deviation of their results, preventing a deeper

analysis of the actual behavior of the literature. We, however, presented our deviations by

showing the residuals of the ANOVA analysis. We hope that this work can motivate other

researchers to make their methods easy to be compared and reproduced.
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5 Conclusions

This chapter summarizes the main Ąndings and points out future guidelines of this work.

Although the main objectives were satisĄed, we left some areas of interest to be explored in

the future due to time and scope limitations.

5.1 Main Findings

Our experiments were very important to elucidate open questions of automated melanoma

screening. The experiments were detailed in Chapter 4, in which we also provided an analysis

of the results. Here we recapitulate the main Ąndings and contributions organized on four

aspects:

∙ Problem comprehension: this work provided an analytical and critical revision of

the automated melanoma classiĄcation literature. We focused in solutions based in the

BoVW model since it is the image classiĄcation approach more indicated for this kind

of problem, that is, classiĄcation of speciĄc small datasets. We discovered that the

low-level feature extraction is the most important step for the classiĄcation, so authors

should pay attention to the feature descriptors employed in their systems. We also

proved that the classiĄers tend to improve when the number of samples in the training

phase is bigger, indicating that melanoma datasets should be made available in order to

enable deeper investigations and methods enhancement. Finally, we also showed that

clinical images are very difficult to be applied for automated melanoma screening, since

they do not present skin lesion details and may mislead the classiĄer. Nevertheless this

kind of data is very important to enable melanoma screening with mobile devices when

the image acquisition may not be perfectly controlled.

∙ Introduction of new techniques: this work is particularly important for the mela-

noma screening community that uses BoVW-based approaches in their solutions. We

claim this because we proved that modern extensions of the BoVW model, that intro-

duce enhanced mid-level representations, are more adequate for image classiĄcation,

leading to better results. Our experiments were based using the BossaNova mid-level

descriptors that overcome the classiĄcation rates of the traditional BoVW implemen-

tation in several scenarios, including the melanoma one. Our approach was able to

generate a melanoma classiĄer with AUC up to 93.7% in a controlled dataset (IRMA
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dataset) and up to 88.0% in a more challenging one using only dermoscopic images

(Atlas dataset). Other experiments demonstrated that our solution is partially robust

to noise in the images (like dots, rulers and pointers) but fully robust to the presence

of hair, which is desired by physicians. This work also introduced a spatial pooling

strategy (SCP) especially designed for melanoma image classiĄcation. Despite of its

medical theoretical basis, the experiments showed that the proposed pooling is not so

effective to the problem, but indicates that asymmetry is one of the major criteria to

be investigated in the lesions to identify melanomas although can not be interpreted

as a ground truth since some melanomas are symmetric. Nevertheless, we hope that

future improvements in the SCP can lead to better results.

∙ Reproducibility: other relevant aspect of this research is that we demonstrate that

the automated melanoma screening literature faces critical problems of reproducibility.

When we tried to reproduce one of the most detailed works, we were not able to achieve

the reported results. In this sense, our contributions are to draw attention to this fact,

to employ rigorous evaluation protocols to the methods proposed and to make our code

freely available in order to stimulate other authors to do the same.

∙ Portability to mobile environment: Ąnally, although melanoma screening using

mobile devices is not our main goal, this work opens the opportunity for future in-

vestigations in this area. Since mobile devices will generate clinical images of the skin

lesions, the previous Ąndings of this work give an intuition for the difficulty of the

problem. Also, compact feature descriptors must be explored to enable data processing

in limited resources environments.

We also would like to highlight that the results achieved in this work are very promis-

ing and suggest an advance in the state-of-the-art of the automated melanoma screening

problem. Our efforts so far have culminated in the publication of the conference paper1:

Fornaciali, M., Avila, S., Carvalho, M., & Valle, E. (2014). Statistical Learning

Approach for Robust Melanoma Screening. In Proceedings of the 2014 27th SIBGRAPI Con-

ference on Graphics, Patterns and Images (pp. 319-326). IEEE Computer Society.

5.2 Future Work

The experiments done so far gave us some insights to go further into the research. We

found that other challenges on melanoma screening problem, such as the incorporation of

1 The code and result details of this paper are publicly available -
https://sites.google.com/site/robustmelanomascreening/
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histopathologic data and cross-dataset experiments are unpublished in literature.

We are also interested in investigating the human ability to classify a skin lesion,

particularly, the percentage of agreement among physicians to annotate an lesion as malignant

or not. This kind of result is important because if it is lower than our results, this would

prove that our melanoma classiĄer could support a physician in classifying a skin lesion but,

of course, not being able to replace him/her.

We can improve the framework to increase the melanoma screening rate, since we

have not exhausted the experiments with the proposed SCP. Improvements in SCP include,

but are not limited to, new image divisions in order to better and easily identify asymmetry

of the lesion without the need of segmenting it.

Extensions of this research focuses on improving the overall framework. This can be

done working on improvements in both basic steps of the BoVW model: the low-level and

the mid-level feature extraction.

Regarding the low-level feature extraction, we can enrich it by incorporating learning

steps based on Deep Learning Architectures. This can improve the informative power of

the data that feed the mid-level. Compact descriptors that keep valuable information would

be also appreciated to accelerate the classiĄcation without loss of accuracy. We can also

explore normalization methods that transform low-level features (like SIFT) into powerful

informative data, for example, employing the method proposed by Kobayashi [2013], a new

alternative for PCA.

For the mid-level, we aim to experiment new pooling schemes that add more infor-

mation to the classiĄer. Alternatives include, but are not limited to, the Şgeneralized max

poolingŤ proposed by Murray and Perronnin [2014], that improves the pooling schema spe-

cially for Fisher Vector [Perronnin et al., 2010]. Our interest in Fisher Vector relies on its good

complementarity with BossaNova, the base of our framework. Other new pooling approach

to be investigated is one proposed by Fanello et al. [2013]. They provided an extension of the

standard SPM representation that can also favor our SCP strategy.

On the other hand, CVPR2 2015 shows that advances in DLA have demonstrated

competitive results with the traditional BoVW extensions. Researches in both Ąelds suggest

that the techniques could be combined since they present complementary advantages, as

pointed by Perronnin and Larlus [2015], that combined Fisher Vector with Deep Learning.

Also related with DLA, other approach to be considered is the transfer learning methods,

which surprisingly uses information trained in a dataset to classify images of other scope,

2 CVPR: Conference on Computer Vision and Pattern Recognition. This is the most important computer
vision conference.
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showing interesting results.

As pointed in Chapter 2, melanoma screening can also be done in mobile environment

through handheld devices. Since we achieved state-of-the-art results, it would be an important

contribution to carry our framework to mobile devices, paying attention to the fact that our

solution should be redesigned to better deal with clinical images. This leads to a number

of space and memory limitations that can negatively affect the classiĄcation. In order to

overcome these issues, the extension of this work can investigate compact representations

for image classiĄcation, already proposed by Zhang et al. [2014]. We aim to analyze if these

representation for general-purpose image classiĄcation is also suitable for special-purpose

image classiĄcation.

5.3 Final Remarks

Concluding this work, we would like to reinforce that, despite of the interests and importance

of automated screening, no system, with the current techniques and knowledge, can replace

the opinion of a physician. Nevertheless, automated screening is a powerful tool to optimize

time and cost.

Due to the promising results of this research, it can be extended in order to provide

screening methods for other diseases, besides of melanoma. Other Ąelds of Medicine that can

beneĄt from this work, just to cite a few examples, are cardiology (studying echocardiography

images in order to identify heart diseases), neurology (classiĄcation of regions of interest and

types of brain lesions), ophthalmology (diabetic retinopathy detection), oncology (processing

mammography images in order to classify breast cancer) and others.
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