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Abstract

Melanoma outranks all skin cancers in fatalities, despite representing a minority of

cases. MelanomaŠs prognosis, excellent when detected early, deteriorates fast if treatment

is delayed, due to its tendency to metastasize. Early diagnosis is critical for a good out-

come. MelanomaŠs screening must be a cheap, simple, and continuous process. Automated

screening through image analysis may play an important role, especially in poor or iso-

lated areas where the full-time presence of dermatologist is not feasible. Despite the recent

advances in modern art of automated melanoma screening, much work is needed in order

for automated solutions to be deployed in actual clinical settings. This work introduces an

interdisciplinary view of automated melanoma detection. Besides advancing the machine-

learning models, we aim at broader considerations that arise for using those models in the

real world. We seek to address barriers Ů like lack of reproducibility, poor experimental

designs, and lack of cooperation between disciplines Ů that prevent the development of

reliable systems. From a computational viewpoint, we proposed an agenda for improv-

ing the reproducibility of existing art. Then, we delivered robust experimental designs

to identify how deep learning-based approaches must be parametrized to recognize the

disease better. We also investigated quality and bias issues regarding the datasets often

used in this research area, raising questions about the reliability of automated tools. From

a more legal viewpoint, we analyzed and criticized the current processes of regulating Ar-

tiĄcial Intelligence-based medical devices. We showed the relationships between academic

research and regulatory processes, highlighting the challenges and opportunities from the

intersection of those topics. By cooperating with physicians, we studied the main charac-

teristics of the disease, trying to incorporate them into the models, guiding the automated

learning methods. We also brieĆy assessed physiciansŠ perceptions of automated models

over the years, identifying changes in relationships and typical concerns from specialists

that should be taken into account when designing an automated system. Our main results

relay in the computational view, promoting relevant methodological contributions for the

community. We showed the importance of large, well-annotated datasets and powerful

deep models to better extract the visual information from the images. We clariĄed the

positive impact of transfer learning, and reinforced the need of data augmentation on test-

ing (which although commonplace on other disciplines, was still not a norm on melanoma

detection). Also, we proved that a lean deep-learning pipeline, with no pre-processing, no

combination with classical feature extraction, and no post-processing or further decision

layers is able to provide state-of-the-art performance. We showed that ensembles of those

lean models are the best current alternative for obtaining top performance. Finally, we

investigated the impact of dataset quality on the results, showing that the datasets typ-

ically employed have biases that can inĆate the predictive power of the models, without



guaranteeing the generality of the method for other scenarios. Our Ąndings and contribu-

tions enabled interesting foundations for future work, by promoting rigorous experimental

protocols and analyses, by providing future researchers with valuable guidelines on how

to design their models, and by bringing an interdisciplinary view for the problem. We

hope those contributions will enable future advances to be more aligned with the needs

of patients and medical workers, fostering the creation of automated screening methods

for the real world.

Keywords: melanona; screening; real-world; deep learning.



Resumo

O melanoma supera todos os cânceres de pele em mortes, apesar de representar

uma minoria de casos. O prognóstico do melanoma, excelente quando detectado preco-

cemente, deteriora-se rapidamente se o tratamento for atrasado, devido à sua tendência

a metástases. O diagnóstico precoce é fundamental para um bom resultado. A triagem

do melanoma deve ser um processo barato, simples e contínuo. A triagem automatizada

por meio da análise de imagens pode desempenhar um papel importante, especialmente

em áreas pobres ou isoladas, onde a presença de dermatologista em tempo integral não é

viável. Apesar dos recentes avanços na arte moderna da triagem automatizada de mela-

noma, é necessário muito trabalho para que soluções automatizadas sejam implantadas em

ambientes clínicos reais. Este trabalho apresenta uma visão interdisciplinar da detecção

automatizada de melanoma. Além de avançar nos modelos de aprendizado de máquina,

buscamos considerações mais amplas que surgem para o uso desses modelos no mundo

real. Procuramos abordar barreiras Ů como falta de reprodutibilidade, projetos experi-

mentais ruins e falta de cooperação entre disciplinas Ů que impedem o desenvolvimento

de sistemas conĄáveis. Do ponto de vista computacional, propusemos uma agenda para

melhorar a reprodutibilidade da arte existente. Em seguida, entregamos projetos experi-

mentais robustos para identiĄcar como as abordagens baseadas em aprendizado profundo

devem ser parametrizadas para reconhecer melhor a doença. Também investigamos ques-

tões de qualidade e viés em relação aos conjuntos de dados frequentemente usados nesta

área de pesquisa, levantando questões sobre a conĄabilidade das ferramentas automati-

zadas. De um ponto de vista mais jurídico, analisamos e criticamos os processos atuais

de regulação de dispositivos médicos baseados em Inteligência ArtiĄcial. Mostramos as

relações entre pesquisa acadêmica e processos regulatórios, destacando os desaĄos e opor-

tunidades a partir da interseção desses tópicos. Ao colaborar com os médicos, estudamos

as principais características da doença, tentando incorporá-las aos modelos, orientando os

métodos automatizados de aprendizagem. Também avaliamos brevemente as percepções

dos médicos sobre modelos automatizados ao longo dos anos, identiĄcando mudanças nos

relacionamentos e preocupações típicas de especialistas que devem ser levados em consi-

deração ao projetar um sistema automatizado. Nossos principais resultados residem no

aspecto computacional, promovendo contribuições metodológicas relevantes para a comu-

nidade. Mostramos a importância de conjuntos de dados grandes e bem anotados e de

modelos profundos poderosos para extrair melhor as informações visuais das imagens. Es-

clarecemos o impacto positivo da transferência de aprendizado e reforçamos a necessidade

de aumento de dados nos testes (que, embora comuns em outras disciplinas, ainda não

eram uma norma na detecção de melanoma). Além disso, provamos que um pipeline en-

xuto de aprendizado profundo, sem pré-processamento, sem combinação com extração de



características clássica e sem pós-processamento ou camadas de decisão adicionais é capaz

de fornecer desempenho de ponta. Mostramos que a combinação desses modelos enxutos

é a melhor alternativa atual para obter o melhor desempenho. Finalmente, investigamos

o impacto da qualidade do conjunto de dados nos resultados, mostrando que os conjuntos

de dados normalmente empregados têm vieses que podem inĆar o poder preditivo dos mo-

delos, sem garantir a generalidade do método para outros cenários. Nossas descobertas e

contribuições permitiram fundamentos interessantes para trabalhos futuros, promovendo

protocolos e análises experimentais rigorosas, fornecendo aos futuros pesquisadores dire-

trizes valiosas sobre como projetar seus modelos e trazendo uma visão interdisciplinar para

o problema. Esperamos que essas contribuições permitam que os avanços futuros sejam

mais alinhados às necessidades de pacientes e proĄssionais da área médica, promovendo

a criação de métodos de triagem automatizados para o mundo real.

Palavras-chaves: melanoma; rastreio; cenário real; aprendizagem profunda.
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1 Introduction

Melanoma outranks all skin cancers in fatalities, despite representing a minority

of cases. The prognosis deteriorates as the disease progresses due to metastases [Tuong

et al., 2012]. The number of new cases grows continuously: in the 1930s, 1 in 1 500 USA

residents developed the disease; in the 2010s that incidence jumped to 1 in 59 [Rigel,

2010]. Melanoma is difficult to diagnose reliably (Figure 1), requiring extensively trained

specialists. Unfortunately, the number of physicians trained to detect it does not grow

proportionality [Voss et al., 2015]. Improving melanoma diagnosis is an urgent need.

Figure 1 – Extracts of skin lesions from the Interactive Atlas of Dermoscopy dataset [Argenziano et al.,
2002]. Melanomas (top row) looks similar to other skin lesions (bottom row), hindering diag-
nosis both for humans and machines. Image reproduced from Fornaciali [2015].

Medical training for melanoma detection relies on identifying typical patterns in

skin lesions evidencing malignant cases. Searching for new cases must be a continuous

process, especially in risk populations (Caucasian people in areas of intense sun exposure,

or people with a personal or family history of the disease).

Although developed countries have the highest rates of melanoma, the incidence

of new cases in developing countries, like Brazil, is a pressing issue to public or private

health systems. Improving diagnosis and educating the population are critical actions to

reduce fatalities.

Due to the visual appeal of the procedure to detect new cases, analysis of skin lesion

images is an alternative to automated screening. Although automated screening does

not replace doctorsŠ examination, it brings several contributions: speeding up screening

time, facilitating telemedicine programs, promoting triage of cases that requires specialist

attention and enabling screening on poor or isolated areas where the presence of a full-time

dermatologist is not feasible.

However, automated melanoma screening poses some challenges. The lack of an-

notated, high-quality data is by far the most severe. The difficulty in training machine
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learning models to classify skin lesion images also deserves attention.

In the past thirty years, researchers proposed several approaches for automated

melanoma screening (see Chapter 2). Companies also launched commercial products, be-

ing successfully used by dermatologists worldwide [Hand et al., 2015; Korotkov and Garcia,

2012]. Nevertheless, existing commercial solutions are expensive and do not provide com-

pletely automated diagnoses, but the freely available, fully automated academic solutions

are not ready for real case usage.

Recent works claimed to achieve dermatologist-level performance for melanoma

detection with ArtiĄcial Intelligence (AI) [Esteva et al., 2017; Haenssle et al., 2018;

Tschandl et al., 2019]. In 2018, the United States Food and Drug Administration (U.S.

FDA) approved the Ąrst fully AI-based device for healthcare: a system that detects di-

abetic retinopathy by eye images analyses [Food and Administration, 2018]. Brazilian

efforts on the same subject also deserve attention [Pires et al., 2019].

Given the approval of regulatory agencies for full adoption of AI in medicine,

and the existence of apparently technically sophisticated solutions, why fully automated

solutions for melanoma detection have not been launched yet? It suggests the existence

of gaps that we must overcome.

This research aims to reduce the barriers that prevent the adoption of automated

solutions for melanoma screening. Our goal is to deliver technology and a process that

could make beneĄts for the world.

1.1 Motivation

From the viewpoint of Computer Science, automated melanoma screening is a

classical problem of image classiĄcation, a hot topic in the Computer Vision community.

The related literature has evolved drastically since 2012, with the advance of Deep Learn-

ing techniques, increasing hit rates to levels never achieved [LeCun et al., 2015]. Deep

learning has been bringing new perspectives to several research Ąelds of medical imaging,

like segmentation and disease identiĄcation [Litjens et al., 2017]. Those approaches also

beneĄted automated melanoma screening.

Although the literature is improving the methods to classify skin lesion images,

the existing solutions are still not robust enough for real-world scenarios.

Three main issues explain such fact: Ąrstly, the lack of standardization that

enables comparison and evaluation between different techniques; secondly, the lack of

annotated high-quality data for the machine learning research; thirdly, the scarcity

of interactions between medical and computer science researchers in this Ąeld.

The last problem is the most severe because the interdisciplinary aspect of the research
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requires the engagement and experience exchanging between the areas involved.

Here, we aim to address the three challenges, promoting an agenda to push forward

the modern art of automated melanoma screening. We expect to initiate the development

of a technology with the potential to transform the real world. Our team has worked on

melanoma classiĄcation since early 2014 [Fornaciali et al., 2014], and has employed deep

learning for that task since 2015 [Carvalho, 2015]. In this work, we expanded the scope to

a multidisciplinary view of the problem. Although we will continue to contribute to the

machine-learning view of melanoma screening, we will also address other aspects, such

as studying ways of validating new technologies for health and investigating the issues of

technology deployment for real usage.

The literature of automated melanoma screening evolved a lot during its thirty

years old. In the late 1980s, it started with the fundamental question: is it possible to

analyze skin lesions automatically? In the 1990s, some solutions emerged, not showing

competitive results, but proving the concept.

In the 2000s, several solutions with different approaches populated the literature,

advocating for advances in performance and adherence to medical protocols. The idea

that seemed distant began to become closer to reality, raising the concern of physicians

about the effectiveness of such methods. Literature, then, came to deal with another side

of the problem: are the existing products useful and safe?

Nowadays, in the late 2010s, the promising results of automated skin lesion analysis

leave no doubt about its value and potential. However, the problem is not resolved yet,

and there is room for improvements. There are gaps in current solutions that prevent their

full adoption by physicians and/or health professionals, like potentially inĆated results,

dubious validation protocols, and the existence of few solutions with recognition rates

similar to the specialists [Esteva et al., 2017; Haenssle et al., 2018; Tschandl et al., 2019].

1.2 Objectives and Contributions

In this work, we aim to study which are the design and evaluation aspects of

automated skin lesion classiĄers that must be improved to enable real-world usage.

Our main contribution is an interdisciplinary approach, incorporating computa-

tional, medical, and legal aspects of the problem to deliver a skin lesion classiĄer to real-life

usage. Moreover, other contributions are:

• we provide a broad survey of automated melanoma screening recent art based on

deep learning techniques;
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• we discuss the main pitfalls of current art, and we analyze the primary efforts for

advancing these research Ąeld;

• we suggest legal aspects that should be followed by future works to promote auto-

mated melanoma screening for real-world scenarios;

• we contributed for the evolution of machine learning models for automated

melanoma screening;

• we propose new methodological questions regarding automated melanoma screening

that may guide future research.

1.3 Outline

We organized the remaining of the text as follows:

• Chapter 2 — Literature Review: this Chapter presents the existing solutions,

analyzing past works and current art. We start describing techniques of image clas-

siĄcation: although we focus on deep learning models, we brieĆy introduce other

techniques such Bag-of-Visual-Words (BoVW) and Content-based image retrieval

(CBIR). We also introduce the history of automated melanoma screening, resum-

ing the main facts and Ąndings of a thirty years timeline. Then, we summarize the

current art based on deep learning models.

• Chapter 3 — Critical Appraisal of Existing Art: here we provide an interdisci-

plinary view of the current art, bringing the medical and legal aspects of designing

an automated melanoma classiĄer. We also describe the main challenges Ů and

on-going efforts Ů to promote automated melanoma screening for the real-world.

• Chapter 4 — Advancing Machine Learning Models: in this Chapter we

describe our contributions towards reliable automated melanoma screening. We start

introducing the materials (datasets) and methods (experimental approach) adopted

in all activities developed during the Ph.D. Following, we list our main efforts, each

one related with a major goal: improve machine learning models, propose robust

experiment designs, create awareness of the main pitfalls inherent in the central

problem. Such goals resume our methodological and experimental contributions.

Each experiment synthesizes our hypotheses, objectives, the experimental proposals

themselves, and the analysis of the results.

• Chapter 5 — Conclusion: we conclude the thesis putting our contributions into

the perspective of the related art and future works. We discuss open questions,

future directions, and new challenges that upcoming art will probably address. We

end listing our publications and prizes.
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2 Literature Review

Although automated skin lesion analysis seems to be a narrow topic, it is a vast

research Ąeld. In this chapter, we survey the most relevant works and their contributions

to the community.

We start our journey in Section 2.1 categorizing the study areas and their relation-

ships. Then, we follow to Section 2.2 where we go through the most important existing

past surveys, and existing gaps that motivated our survey. We also establish our focus:

classiĄcation of skin lesion images. After that, we describe the technical aspects of image

classiĄcation (Section 2.3).

We divide the central part of our survey into two sections: Ąrst, we present the

history of automated melanoma screening, highlighting the main facts that contributed to

shaping this research Ąeld as it is today (Section 2.4). Then, we dive into the modern ap-

proaches analyzing their construction from the computational point of view (Section 2.5).

We end our analyses in Section 2.6, recapitulating the main points and opening

the discussions to the next Chapter, in which we provide an in-depth critique of existing

literature. The technical interventions we made to answer some of the shortcomings we

found in existing literature are presented in Chapter 4.

2.1 Study Areas

Korotkov and Garcia [2012] proposed a literature categorization, which we extend

on Figure 2. In this work, we are not going to exhaust every single topic, but we are going

to concentrate on the highlighted ones (and sub-topics, if any). Our main contribution is

to analyze automated skin lesion analysis using the multiple views Ů medical, legal, and

computing Ů necessary to promote automated tools in real-world scenarios.

The literature consists of disjoint publication areas/Ąelds, with limited interaction:

Computer Science, Medicine, and Market (or commercial products).

Medicine brings different types of publications, most of them being studies of

relevant skin lesion cases (due to severity, rarity, or differentiated referral practices). That

area is also responsible for publishing medical algorithms to facilitate skin lesion analyses,

trying to identify malignant cases regarding determined criteria. The medical community

also publishes works comparing/evaluating such algorithms in terms of efficiency. Those

algorithms are relevant for our study because much of the existing automated art tries

to reproduce, in software, the steps suggested by the medical rules. That brings to other

important sub-topic of medical publications, that is the evaluation of Computer-Aided



Chapter 2. Literature Review 21

Figure 2 – Literature categorization tree. Image extended from Korotkov and Garcia [2012].

Diagnosis (CAD) systems: such works usually compare the effectiveness of the system

with dermatologists or expose expert opinions on the use of such tools.

Computer Science brings several sub-topics related to skin lesion analysis, since

image acquisition forms (like 3D, for example), until high-level image interpretation works

(lesions change detection over time or lesion mapping across multiple images of the same

patient). One of the most prominent sub-topics is the designing of CAD systems, which

traditionally aims to reproduce, in software, the mentioned medical algorithms. As we will

see later, that type of reproduction justiĄes the related topics linked to CAD systems:

image pre-processing, lesion segmentation, feature extraction, and lesion classiĄcation.

Recently, the advance of Deep Learning techniques promoted a race for medical data to

enable the training of such complex computational models. As we know, new medical

data is not easy to Ąnd/produce, so techniques for virtually generate such data became

an essential topic in Computer Science research for skin lesion analysis [Bissoto et al.,

2018b].

Finally, Market includes all publications related to commercial products. Here we

have technical documents like patents and descriptions of the product legalization process

together with the regulatory agencies. Depending on the potential risk offered by a medical

device, it must be regularized before commercialization. CAD systems are typically one

of them. The Legal literature relates to the standards, ISOs, and other official documents

that guide medical devices regulation.
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2.2 Analysis of the Literature

Automated skin lesion analysis is a vast, over thirty-year old, research Ąeld. Past

surveys synthesize the advances of speciĄc periods. However, such surveys often focus on

only one Ů more rarely on two Ů of the contributing Ąelds we identiĄed above (Medicine,

Computer Science, Market). The interdisciplinary aspect of skin lesion analysis is often

overlooked.

Day and Barbour [2000] proposed the Ąrst survey of the related literature, summa-

rizing the main Ąndings. At that time, automated skin lesion analysis was far away to be

used as a CAD system, but preliminary results indicated a promising bet for next years.

Central issues delayed such promise. The authors argued that although the literature had

more than ten years at the date, the research reporting limited the advances. Difficulties

remained on three main factors: (a) lack of standardization on the testing sets, (b) lack of

details describing proposed methods and (c) usage of small datasets to validate the mod-

els. As we are going to see, those issues are still open today, but new efforts are improving

how the literature deal with them.

Twelve years later, Korotkov and Garcia [2012] revisited the literature describing

the overall pipeline of skin lesion analysis in 4 steps: (a) image preprocessing, (b) lesion

segmentation, (c) feature extraction, and (d) classiĄcation. They organized the informa-

tion and trends of each step in several tables summarizing the current art, facilitating

future research.

From 2012 till now, other surveys on automated skin lesion analysis were pub-

lished. Masood and Ali Al-Jumaily [2013] provided a broad review for automated skin

lesion analysis, including 31 works from 1993 to 2012. They proposed a general framework

for assessing diagnostic models, with quality criteria for the following steps: calibration,

preprocessing, segmentation, feature extraction, feature selection, training/testing sepa-

ration, balancing of positive/negative classes, comparison of results, and cross-validation.

In their conclusions, they highlighted the challenge of understanding and comparing ex-

isting art, promoting an agenda of standard benchmarks and validations, overlooked in

previous studies.

Sathiya et al. [2014] presented several works on lesion classiĄcation, but since was

published in 2014 does not cite any paper exploring modern techniques employed today.

The summary of the literature was shallow and did not discuss problems or future direc-

tions for the current art. Fernandes et al. [2016] also suffer from the same problem, even

being published two years later. Their comparison lies between poor techniques of color

constancy and skin lesion analysis, not exploring the potential of works employing ad-

vanced BoVWs and DL models. Their conclusions were directed towards a single dataset,

not analyzing whether the conclusions generalized for other data. Finally, Oliveira et al.
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[2016] also reviewed the literature of skin lesion classiĄcation, but limited their analysis

in local and global patterns (color and texture descriptors) and traditional classiĄcation

techniques (ArtiĄcial Neural Networks (ANNs), Support Vector Machine (SVM), Bayesian

Networks, Decision Trees, etc.). They did not even mention modern works based on Deep

Learning.

Considering the shortcomings of the last surveys, we also did a review of the art in

2016 [Fornaciali et al., 2016]. We analyzed the literature under the same pipeline proposed

by Korotkov and Garcia [2012], and contrast the problems listed by Day and Barbour

[2000] in light of the current literature. In our work, we also explored the computational

aspects of Deep Learning, describing the early works of the time and comparing their

performance in practice with those of classical solutions. We concluded that Deep Learning

would deĄnitely be the new bet in terms of computational models for the analysis of skin

lesions and that the typical problems of the literature, such as lack of data and difficulty

in reproducing work, were still present, although the Ąrst initiatives to mitigate them.

As literature was heavily based on classical techniques, its review took time to

be entirely focused on modern techniques. Pathan et al. [2018] provided a broad review

of each step of the pipeline for automated skin lesion analysis, as also included modern

approaches based upon deep learning techniques. Nevertheless, their coverage on that

matter was shallow, not including recent papers and not analyzing technical aspects of

deep learning approaches.

As far as we know, Brinker et al. [2018] proposed the Ąrst review of contempo-

rary art focused on deep learning approaches. They provided a systematic review, only

including works dealing with skin lesion classiĄcation that presents their solution under-

standably, discussing the results sufficiently. Their Ąndings point out that current deep

learning approaches for automated melanoma screening usually train their methods from

scratch, or use deep learning only for feature extraction or employ transferring learning

methods. We will discuss such terms and approaches in Sections 2.3 and 2.5. They also

corroborate with our previous Ąndings ([Fornaciali et al., 2016]) on the effectiveness of

deep learning and the ongoing challenges to improve the accuracy rates of automatic

methods.

A shortcoming of the surveys cited above is an exclusive focus on the computing

aspects Ů with medical issues mentioned in passing, if at all. Lisboa and Taktak [2006] was

the Ąrst paper to discuss ethical and legal issues on a computer system for medicine. They

surveyed the literature showing how AI has gained more space in the medical area, relating

the most employed algorithms, methodologies for model selection, and exploring the need

for rigorous result evaluation. That survey was a pioneer in bringing a multidisciplinary

view to AI in Medical Science, with a broad viewpoint. Here, we will focus on automated

skin lesion analysis.
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We focus on deep learning solutions for automated melanoma screening. We take

the relay of recent surveys, with some overlap, focusing on papers from 2015 onwards,

when the literature started to adopt deep learning techniques. For a broad perspective of

the prior art, we refer the reader to our Ąrst survey [Fornaciali et al., 2016]. This work

includes medical perspectives of the problem and, as Lisboa and Taktak [2006], we also

discuss legal aspects of using a CAD system. We aim to understand how such three aspects

are related and should be addressed together to enable automated skin lesion analysis for

the real-world.

Such interdisciplinary initiative is pioneer, and we expect the beneĄts of this work

to have long-ranging impacts, both scientiĄcally and socially.

2.3 Image Classification

From the viewpoint of computer science, automated melanoma screening with

images is a problem of image classiĄcation (see Figure 3). Here we brieĆy describe the

most popular approaches for image classiĄcation. For further information, we refer the

reader to our survey [Fornaciali et al., 2016], from which we reproduce part of the text to

compose this Section.

To solve image classiĄcation problems, we use two sets of data, one to train the

model and the other to test it. The training set goes through a feature extraction routine

that describes the images mathematically. Those features and image labels are used to

train a classiĄer that generates a predictive model. When the predictive model is presented

to other images (the testing set) Ů of which we do not know the labels Ů we extract

features in the same way as in training step. Then, the model infers to which classes the

new images belong. Here we use the concept of supervised learning, in which we know

from which class each image of the training set belongs. In unsupervised learning, we do

not know the classes of the training images, and the data are grouped according to the

similarity of their characteristics.

Figure 3 – Classical representation of an image classification system. Image reproduced from Fornaciali
[2015].
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In the past decade, literature of image classiĄcation focused on two models: BoVWs

and DNNs. BoVWs and DNNs follow the same information-processing pattern: they ex-

tract from the pixels progressively higher-level features until they can establish the image

label. However, they make entirely different choices to implement that pattern: BoVWs are

shallow architectures, with three layers of feature representations (low-level local features,

mid-level global features, high-level classiĄer); DNNs have many layers: from a dozen up

to hundreds. BoVWs estimate/learn parameters conservatively: no learning at low level,

none to a little unsupervised learning at mid-level, and supervised learning only at the

high-level classiĄer. DNNs aggressively learn millions of parameters throughout the entire

model.

Another crucial difference is that the BoVW approaches have a clear separation

between the stages of image processing, while in DNN approaches such separation is ab-

stracted, often suppressed. In BoVW-based CAD systems for melanoma, the images pass

through 4 steps (Figure 4): (a) image preprocessing, (b) lesion segmentation, (c) feature

extraction, and (d) classiĄcation. Each of these steps has its particularities, challenges,

and solutions.

Figure 4 – Comparison of the Classical Computer Vision Approach versus The Deep Neural Networks
model. The objective in using DNNs is to substitute a whole lot of complex Computer Vision
techniques for a unified, self-learning image processing and feature extractor. Image adapted
from Menegola et al. [2018].

Here we are interested in the classiĄcation step with DNNs, which usually suppress

previous steps. For the readers interested in the other steps, we recommend the following

papers: Celebi et al. [2015] summarize the main advances for lesion border detection;

feature extraction generally lies on asymmetry and color information of the lesions, which

are respectively discussed by Premaladha and Ravichandran [2014] and Madooei and
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Drew [2016]. Preprocessing approaches are discussed in all the cited papers. For a complete

tabulation of materials and methods employed in the four steps, we also recommend the

works of Korotkov and Garcia [2012]; Pathan et al. [2018], but they focus on traditional

approaches for image classiĄcation. For a broad review of such tasks and medical Ąelds

besides skin lesions, the survey of Litjens et al. [2017] is a good starting point.

Deep architectures have a long history compared to BoVW approaches, if we accept

as deep the model presented by Fukushima [1980]. However, the term Deep Learning

only caught on after the work of Hinton et al. [2006]. They published their work at a

moment ripe for the aggressive Deep Neural Network (DNN) models to thrive, with the

availability of large training datasets, and powerful many-core GPU processors. In DNNs,

feature extraction and label classiĄcation are seamless: deep networks learn to extract the

features.

The deĄnitive victory of DNNs in Computer Vision came in 2012, when Krizhevsky

et al. [2012] won the classiĄcation challenge of the ImageNet Large Scale Visual Recog-

nition Challenge (ILSVRC) 2012. They employed a large, deep Convolutional Neural

Networks (CNN) , considerably improving the art at the time.

Although DNNs have now almost completely supplanted BoVWs, medical applica-

tions, where the training datasets are comparatively tiny, are very challenging for DNNs.

For example, consider the ImageNet/ILSVRC competition, which launched DNNs: it has

1.2 million images in the training set; meanwhile, most reported melanoma datasets have

less than ten thousand images. Nevertheless, with the technique of transfer learning,

DNNs become competitive even in the scenarios of few data. We will discuss that on next

Section.

2.3.1 Deep Learning

Deep Learning for visual tasks usually involves seamlessly learning every step of the

classiĄcation process, from feature extraction to label assignment. That pervasive learning

improves generalization, but brings its own challenges: DNNs estimate a huge number of

parameters, requiring large amounts of annotated data and computational resources.

DNNs are based on ArtiĄcial Neural Networks, which have a long history, the Ąrst

ideas dating back to 1943, when McCulloch and Pitts [1943] proposed a mathematical

model for the biological neuron. However Ů as we did with the ŞwordsŤ in Şvisual wordsŤ,

we caution the reader against the ŞneuralŤ in Şneural networksŤ. The similarity of modern

DNNs to biologically plausible neural models is questionable, to say the least. Today,

the justiĄcation for DNNs rests not on biological metaphors, but on their Ů empirically

validated Ů amazing performance in a broad variety of tasks.

DNNs may also be approached as multi-layered generalized linear models learned
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hundreds of thousands, up to several millions learning samples, while a medical dataset of

a thousand samples is considered large! That difficulty is, however, addressed by transfer

learning, a technique that allows recycling knowledge from one task to others. In visual

tasks, the low-level layers of a DNN tend to be fairly general; specialization increases as

we move up in the networks Yosinski et al. [2014]. That suggests we may learn the general

layers on any large dataset, and then learn only the specialized upper layers on the small

medical dataset. A straightforward strategy for transfer learning is freezing the weights

of a pretrained deep neural network up to a chosen layer, replacing and retraining the

other layers for the new task. The new ŞlayersŤ do not have to be themselves neural: other

classiĄers are perfectly acceptable.

More sophisticated techniques, which Ąne-tune the lower layers instead of freezing

them, are available [Yosinski et al., 2014]. That means allowing those layers to evolve,

expecting them to slightly adapt to the new task. That tends to correct any biases learned

from the original task. When Ąne-tuning, it is easier to keep the entire network neural, to

simplify the computation of the error gradients. Fine-tuning a DNN often leads to better

results, which is also true for automated melanoma screening [Menegola et al., 2017a].

Besides Ąne-tune and transfer learning, other approaches enhanced the deep learn-

ing pipeline. One of the most relevant is data augmentation. Data augmentation are sim-

ple procedures Ů like translations, rotations, mirroring, and others Ů that generate new

images from an input image. This technique allows the growth of databases without the

difficulties inherent in new data acquisition. When using data augmentation in deep learn-

ing, the model learns to become invariant to image nuisances, replacing the traditional

BoVW pre-processing steps, which remove the image nuisances.

2.3.2 Other Approaches

Before DNNs, other approaches dominated the literature of image classiĄcation.

The most common are CBIR and the already introduced BoVW. Automated melanoma

screening works employed those approaches for many years, CBIR being explored pri-

marily in commercial applications. Their usages shape the related art as it currently is.

Although classic, they are still being explored until now for melanoma screening (we refer

the reader to the survey of Barata et al. [2018] for further information).

Sivic and Zisserman [2003] and Csurka et al. [2004] Ąrst proposed the BoVW

model, appealing to an intuitive notion borrowed from textual information retrieval: the

same way a text document can be usefully described as an unordered bag of words,

an image could be described as a bag of visual words, without concern to geometric

structure. That suggestive metaphor helped to popularize the model, although ultimately

the parallels between words and visual words were weak. While words are intrinsically

tied to semantics, visual words are the result of quantizing feature spaces based upon the
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appearance of images, not their meaning [Avila et al., 2013].

Still, the model was very successful. The classical BoVW uses local detectors/de-

scriptor to extract a large amount of discriminating features from small patches all around

each image, and then applies an aggressive quantization on the space of those features to

establish a visual vocabulary. The vocabulary allows Ąnding visual words (coding), that

are then aggregated into a frequency histogram (pooling). In a less colorful, but more

rigorous view, the visual vocabulary is a codebook over the vector space where the low-

level features reside, which allows establishing discrete codewords that can be counted.

Figure 6 illustrates the pipeline.

Figure 6 – Classical representation of a BoVW-based model. The feature extraction is the low-level stage.
The mid-level is decomposed in the coding and pooling steps and the classification is generally
done by a supervised method (e.g. SVM). Image reproduced from Fornaciali [2015].

Traditional BoVW ignores all large-scale geometric structure, gaining in generality

and robustness but losing in discriminating power. Many extensions appeared, seeking to

regain discriminating power without losing generality [Avila et al., 2013; Lazebnik et al.,

2006; Perronnin et al., 2010; Jégou et al., 2010; Picard and Gosselin, 2011; Li et al., 2015].

Regarding CBIR techniques, the term Şcontent-based image retrievalŤ seems to

have originated in 1992 to describe experiments into automatic retrieval of images from

a database [Eakins and Graham, 1999]. ŞContent-basedŤ means that the search analyzes

the contents of the image rather than the metadata such as keywords, tags, or textual

descriptions associated with the image.

The general procedure (see Figure 7) is similar to the offline (training) / online

(testing) steps of the typical image classiĄcation pipeline. CBIR also relies on feature

extraction to describe the content of the images mathematically. Nevertheless, the aim is

not to process such features to construct a predictive model, but to store the raw features

in a pre-processed dataset. When new images are presented to the system, it extracts

their features in the same way of the training phase and compares the similarity of the

new features to those previously stored. Then, the system answers: instead of predicting a

class for the querying image, the system returns other images most similar to the queried
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one.

Figure 7 – Classical representation of a CBIR system. Image adapted from Kumar and Singh [2016].

The most common method for comparing two images is using an image distance

measure. An image distance measure compares the similarity of two images in various

dimensions such as color, texture, shape, and others. For example, a distance of 0 signiĄes

an exact match with the query, concerning the considered dimensions; a value greater

than 0 indicates various degrees of (minor) similarities between the images.

Most commercial solutions for automatic melanoma screening are based on CBIR.

CBIR may be easier for doctors to accept, as its mechanism of operation is more natural

to explain. Even the rational response is similar to the subjective process of physicians

looking at a new lesion: they recall similar lesions/cases to provide a diagnosis of the

lesion in question.

However, we must remember that the techniques of Deep Learning surpass the

performance of CBIR; also, there are types of skin lesions that simulate other types,

generating false positives. Still, we can not deny the success of commercial solutions Ů

maybe exactly because they did not commit to the diagnosis, instead just counting on

the human to make the Ąnal decision, they preserve the doctorŠs sense of agency.

2.4 History of Automated Melanoma Screening

This section describes the main facts, along with the history of automated

melanoma screening. Here we describe the most relevant events, relating them, and show-

ing how such facts contributed to shape and to understand the literature of automated

melanoma screening as it is today. Figure 8 highlights the most relevant years.

The Ąrst literature description of using a computer to assist in the diagnosis of skin

lesions was around 1985 [Day and Barbour, 2000; Korotkov and Garcia, 2012]. The idea
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Figure 8 – The automated melanoma screening timeline, highlighting the years with the main facts.

was to feed a machine with skin lesion images. The computer captured features thought to

be characteristic of malignancy, classifying the lesions and reporting the diagnosis. Those

concepts matured over the years, especially around 1990, maybe due to more ŞavailabilityŤ

of skin lesion images. Several works emerged at the beginning of the Š90s, mostly based

on the ABCD Clinical Rule [Friedman et al., 1985] and ArtiĄcial Neural Networks. They

all used small datasets of clinical images.

1995 was a remarkable year for melanoma screening, due to the emergence of

dermoscopy, which enabled better visualization of the skin lesions [Day and Barbour,

2000]. From that point, the Ąrst dermoscopic images appeared, and started being adopted

by automated models. Dermoscopy enhanced the accuracy of both human doctors and

automated models [Sinz et al., 2017].

In 2000, the Ąrst survey of automated melanoma screening was published by Day

and Barbour [2000]. That review summarizes the literature from the Š90s, alleging that

although an automated tool to be used on the real-world seemed close to being delivered,

the difficulties faced by the researchers would postpone that aim for more time. The

authors argue that much of the work reported in the literature could have been spared

if previous works had not taken shortcuts in describing their methods. With this, the

literature seemed to advance slowly, since each work is reinventing the wheel. The main

issues were: (a) lack of standardization on the testing sets, (b) lack of details describing

proposed methods and (c) usage of small datasets to validate the models. As we are going

to see, those issues are still open today, but new efforts are improving how the literature

deal with them. That survey also reported an interesting phenomenon: until 1995 works

used primarily clinical images; after 1995 works used dermoscopic images. That transition

reĆects a change of attitude in medical practice by doctors, as dermoscopy came to be

accepted as the gold standard for diagnosis.

Jumping to 2012, there was an important milestone for Computer Vision commu-

nity: Krizhevsky et al. [2012] won the classiĄcation task of the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC), employing a large, deep convolutional neural network,

considerably improving the art at the time. Since then, this technique has been adopted

in several Computer Vision tasks, but its usage on automated melanoma screening would

be delayed for a couple of years.

After twelve years from the Ąrst survey, the literature of automated melanoma

screening was revisited and summarized again by Korotkov and Garcia [2012]. Their work



Chapter 2. Literature Review 32

surveyed the recent art, now based upon several hand-crafted feature descriptors designed

to capture color, texture, symmetry, and other aspects that could mean malignancy of a

lesion according to the medical literature. In the previous years, the Bag-of-Visual-Words

models [Sivic and Zisserman, 2003; Csurka et al., 2004] emerged as the state-of-the-art

approach to image classiĄcation, as well as melanoma screening. The authors conclude

that the main obstacle to the more dynamic development of such Ąeld is the lack of a

dataset for standardized evaluation of the proposed methods. Those datasets should be

constructed based on the criteria of Malvehy et al. [2007], which include segmentation

ground-truth, the Ąnal diagnostic and description of dermatoscopic features.

The lack of standardized data is, in fact, a severe problem for benchmarking.

Fortunately, that issue is starting to disappear, since public datasets of skin cancer images,

with structured and reliable information, are being constructed. The Ąrst public dataset

to meet the criteria described earlier was released on 2013: the PH2 Dataset [Mendonca

et al., 2013]. Although it is a small dataset (200 dermoscopic images), it was enough to

train and evaluate the models being developed until then. That justiĄes the number of

published papers that reported their results on that dataset.

If the emergence of the PH2 database helped to converge the efforts of the litera-

ture, standardizing the results report, the year 2015 was deeply marked by the publication

of the Ąrst articles using deep learning techniques for automatic melanoma screening [Ma-

sood et al., 2015; Codella et al., 2015]. The enthusiasm for deep learning has begun to

bypass the approaches based on Bags-of-Visual-Words and to redeem the methods of

Neural Networks, now in the version of Deep Neural Networks.

However, the new technique required many data to evaluate the approach. The

old datasets were too small for the problem, causing difficulties to train the models or

causing overĄtting. Authors used non-standardized methods to artiĄcially increase the

datasets (data augmentation) or employed private datasets that were not shared (and

which could not be quality assessed). Those facts unbalanced the literature efforts towards

papersŠ comparability. Fortunately, the literature was graced in 2016 with the publication

of the International Skin Imaging Collaboration Program (ISIC Archive) [isi]. The ISIC

Archive is one of the biggest public datasets of skin lesions, containing more than 15,000

images. The institution was responsible for organizing the 1st edition of the ISIC Challenge

on Skin Lesion Analysis Towards Melanoma Detection [Gutman et al., 2016], an open

challenge of automatic classiĄcation of skin lesions, standardizing the conditions for the

evaluation of competing methods. That was undoubtedly a unique achievement since

such condition was needed for years to facilitate the evaluation of methods and allow the

consistent advancement of literature. The ISIC Challenge editions have been repeated

annually since then [Codella et al., 2018, 2019].

Since the Ąrst uses of deep learning for automated screening, much discussion
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about the validity of such methods was raised, mainly due to the difficulty of explaining

the techniqueŠs operation and justifying its way of working. In that approach, although

the learned features mean to a machine, they may not make sense to humans. However,

we could not ignore the signiĄcant performance gains. The improvements concerning the

accuracy, AUCs, and other metrics reawakened the possibility of the machine being as

good as or superior to humans trained to identify melanomas. Even with open public

challenges to evaluate new works under the same conditions, the actual power of such

approach was not clear yet. In 2017, Esteva et at. Esteva et al. [2017] trained a deep neural

network with more than 130,000 skin lesion images (mixing clinical and dermatoscopic

ones), achieving an AUC>91%. They evaluated their method against 21 dermatologists,

outperforming them. That impressive result was published in Nature, generating a series

of medical publications discussing the beneĄts and implications of such statement.

Motivated by the work of Esteva et al. and the growing popularization of deep

learning approaches, we proposed at the end of 2017 a robust design analysis of deep

learning based solutions for automated melanoma screening [Valle et al., 2017]. We in-

vestigated the most relevant characteristics to boost the results of such techniques. We

found that the depth of the deep architectures, coupled with the greater abundance of

data, is crucial to the performance of the methods.

From 2017 onwards, deep learning solutions have deĄnitively become a standard for

the melanoma screening community. Other studies reporting higher machine performances

than dermatologists also appeared in the literature in both 2018 [Haenssle et al., 2018]

and 2019 [Tschandl et al., 2019]. Due to the difficulties of such a comparative study

Ů and the amount of data required to achieve such performance Ů these were the only

published works in this regard. It reveals that, despite the initiatives for data distribution,

access to this type of material is still limited today. However, it is proven the viability of

the automatic solution to the problem.

2.5 Recent Advances

In 2015, DNNs and other Deep Learning architectures started to appear as novel

methods for automated melanoma screening [Masood et al., 2015; Codella et al., 2015;

Premaladha and Ravichandran, 2016]. Two works ([Masood et al., 2015; Premaladha and

Ravichandran, 2016]) employ DNNs still in the context of complex, traditional pipelines,

based upon segmentation, preprocessing, etc. The work of Codella et al. [2015] marks,

in that sense, a more deĄnitive depart towards modern Computer Vision: a streamlined

pipeline, with a modern BoVW on one hand, and a DNN+transfer learning on the other

hand.

Existing works based on DNNs either train deep networks from scratch [Sabbaghi
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et al., 2016; Nasr-Esfahani et al., 2016; Jia and Shen, 2017]; or reuse the weights from

pre-trained networks [Codella et al., 2015; Yu et al., 2017; Esteva et al., 2017; Menegola

et al., 2017a; Lopez et al., 2017; Harangi, 2017; Codella et al., 2017], in a scheme called

transfer learning.

Transfer learning is usually preferred, as it alleviates the main issue of deep learning

for melanoma screening: way too small datasets Ů most often comprising a few thousand

samples. (Contrast that with the ImageNet dataset, employed to evaluate deep networks,

with more than a million samples.) Training from scratch is preferable only when at-

tempting new architectures, or when avoiding external data due to legal/scientiĄc issues.

Menegola et al. [2017a] explain and evaluate transfer learning for automated screening in

more detail.

Whether using transfer or not, works vary widely in their choice of deep-learning

architecture, from the relatively shallow (for todayŠs standards) VGG [Yu et al., 2017;

Menegola et al., 2017a; Ge et al., 2017a; Lopez et al., 2017], mid-range GoogLeNet [Yu

et al., 2017; Esteva et al., 2017; Harangi, 2017; Yang et al., 2017; Vasconcelos and Vascon-

celos, 2017], until the deeper ResNet [Harangi, 2017; Matsunaga et al., 2017; Menegola

et al., 2017b; Bi et al., 2017; Codella et al., 2017] or Inception [Esteva et al., 2017; Mene-

gola et al., 2017b; DeVries and Ramachandram, 2017]. On the one hand, more recent

architectures tend to be deeper, and to yield better accuracies; on the other hand, they

require more data and are more difficult to parameterize and train. Although high-level

frameworks for deep learning have simpliĄed training those networks, a good deal of

craftsmanship is still involved. With the increasing availability of pre-trained networks,

the choice of architecture becomes a complex and meticulous task. Networks with high

performance in their origin task do not necessarily generate the most robust melanoma

classiĄers. [Perez et al., 2019] proposed a recent work evaluating that phenomenon.

Data augmentation is another technique used to bypass the need for data, while

also enhancing networksŠ invariance properties. Augmentation creates a myriad of new

samples by applying random distortions (e.g., rotations, crops, resizes, color changes) to

the existing samples. Augmentation provides best performance when applied to both train

and test samples, being more common on most recent melanoma screening works [Kawa-

hara et al., 2016; Nasr-Esfahani et al., 2016; Menegola et al., 2017a,b; Bi et al., 2017;

DeVries and Ramachandram, 2017]. Train-only augmentation is still very common [Yu

et al., 2017; Esteva et al., 2017; Ge et al., 2017a; Lopez et al., 2017; Díaz, 2017; Yang

et al., 2017; Vasconcelos and Vasconcelos, 2017]. Data augmentation is, indeed, a sim-

ple but effective approach to boost classiĄersŠ performance. Some works propose new

augmentations for automated melanoma screening [Perez et al., 2018; Vasconcelos and

Vasconcelos, 2017].

As we have seen, Works based on global features or bags of visual words often pre-
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process the images (some recent works using deep learning do it as well) to reduce noise,

remove artifacts (e.g., hair), enhance brightness and color, or highlight structures [Ab-

bas et al., 2013; Wighton et al., 2011; Sabbaghi et al., 2016; Matsunaga et al., 2017;

Jia and Shen, 2017; Yoshida et al., 2016]. The deep-learning ethos usually forgoes that

kind of Şhand-madeŤ preprocessing, relying instead on networksŠ abilities to learn those

invariances Ů with the help of data augmentation if needed.

On the other hand, segmentation as preprocessing is common on deep-learning for

automated screening [Nasr-Esfahani et al., 2016; Yang et al., 2017], sometimes employ-

ing a dedicated network to segment the lesion before forwarding it to the classiĄcation

network [Yu et al., 2017; Díaz, 2017; Codella et al., 2017]. Those works usually report

improved accuracies. We also evaluate the impact of using segmentation to help clas-

siĄcation [Valle et al., 2017].

If ad-hoc preprocessing (e.g., hair removal) is atypical in deep-learning, statistical

preprocessing is very common. Many networks fail to converge if the expected value of

input data is too far from zero. Learning an average input vector during training set and

subtracting it from each input is standard, and performing a comparable procedure for

standard deviations is usual. The procedure is so routine, that with rare exceptions [Kawa-

hara et al., 2016; Menegola et al., 2017b], authors do not even mention it.

Deep network architectures can directly provide the classiĄcation decisions, or can

provide features for the Ąnal classiĄer Ů often SVM. Both the former [Esteva et al., 2017;

Lopez et al., 2017; Harangi, 2017], and the latter [Sabbaghi et al., 2016; Ge et al., 2017a;

Menegola et al., 2017a; Codella et al., 2017] procedures are readily found for melanoma

screening. Also common, are ensemble techniques, which fuse the results from several

classiĄers into a Ąnal decision [Codella et al., 2015; Matsunaga et al., 2017; Menegola

et al., 2017b; Bi et al., 2017; DeVries and Ramachandram, 2017; Harangi, 2017].

The evaluation of automated melanoma screening methods evolved a lot since the

emergence of modern techniques. The datasets employed started to be Ů for the Ąrst

time Ů somewhat standardized. Literature employing moder techniques uses mainly 3

datasets on the experiments: ISIC Challenge 2016 [Gutman et al., 2016], ISIC Challenge

2017 [Codella et al., 2018] or a subset of the ISIC Archive [isi]. Clearly, other datasets can

be found, like some particular datasets of Hospitals. Three cases worth to be mentioned:

on one hand Esteva et al. [2017] and Ge et al. [2017b], with datasets of more than 130,000

and 30,000 images respectively, unfortunately, both sets are private. On the other hand,

Nass et al. used a small dataset of only 170 images (freely available), but that dataset

size raise questions of overĄtting due to small amount of data to enable effective learning

with data greedy models.

Since the variation of datasets on literature is markedly lower, benchmarking for

new works turned feasible, specially after the ISIC Challenge 2016, when authors started
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to report the method performance on pre-stablished training and testing sets, enabling

comparisons on regular basis. Such challenges also standardized the evaluation metrics:

literature continued to report results regarding SE and SP, but AUC started to be sys-

tematically reported.

If reproducibility was an issue, a more mature literature is giving signals that this

wonŠt be a problem anymore: evaluation is being performed on same datasets and metrics,

ISIC Challenge 2017 forced the competitors to publish reports detailing their methods

and the usage of pre-trained networks enables a facilitated dialogue between researchers.

However, since the models became more complex, the level of detailing must be higher in

order to promote reproducibility. Fortunately, code sharing is being disseminated. Still,

no work indicated concerns about developing reliable and less error prone code.

Although reproducibility issues have decreased, other problems emerged or became

more evident, such as the lack of collaboration with poorly constructed medical teams

and experimental designs. We also discuss such questions on Section 3.6.

Modern approaches should investigate new ways to incorporate medical knowledge

in computerized tools. We know from experience that to base the feature extraction in

medical rules is not relevant for deep learning, but the usage of medical information

in other format can be useful. For example, Yoshida et al. [2016] proposed a simple

preprocessing method especially designed for automated melanoma screening through

deep learning: the alignment of the image with the major axis of the skin lesions. They

argue that the proposed method improved the skin lesion classiĄcation AUC up to 5.8%,

because that enables neural networks to easily extract symmetry data of the lesions, and

melanomas tend to be asymmetrical.

Concluding, if the literature of melanoma screening became less skeptical about

the power of an automated tool, they also became more demanding in terms of rigor in

evaluation. Still, more work should be done in order to deliver an automated melanoma

screening for the real-world. Other applications of such tools Ů as following-up the patient

and evolution of lesions Ů should be explored as well.

2.6 Conclusion

The literature of automated melanoma screening is vast, with many hundreds of

papers along almost thirty years. Several subtopics compose the literature, like medi-

cal algorithms, image pre-processing, lesion segmentation, change detection, and lesion

classiĄcation. Regarding lesion classiĄcation, there are several advances in terms of new

technical approaches, datasets for benchmarking, and expectations about the effectiveness

of automated systems.
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It is particularly interesting to note the medical view of automated systems during

the time: in the early 1990s, the idea of a system capable of detecting melanomas by image

analysis seemed unfeasible. With the advancing of the years and the popularization of the

automatic tools, there was an increase in the concern about the quality of such systems.

From the advent of deep learning, automatic classiĄers had an unprecedented leap of

accuracy. When melanoma screening works used such techniques Ů together with the

greater abundance of data Ů we could observe the proposition of systems as effective as

dermatologists trained to recognize the disease. This moment was a watershed, and the

medical community started to see the automatic systems not as a promise, but a reality.

We, on the other way, plead that the automated tools surely can help physicians to

derive better decisions, and also help people without easy access to specialists. However,

there is plenty to be done to enable automated melanoma screening in real scenarios.

In this work, we aim to address technical and methodological gaps that prevent the

advance of existing art towards robust melanoma screening for real-world. We also bring

other practical contributions, sharing our codes to promote and increase reproducibility

in the related community.

We list in Chapter 3 the main challenges and the main existing efforts to alle-

viate them, especially those related to data availability. In Chapter 4 we describe our

experiments and analyze our results.
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3 Critical Appraisal of Existing Art

In the previous Chapter, we introduced the foundations of automated melanoma

screening: the technical, medical, and legal aspects. We also went through the literature,

analyzing the main works from the computational point of view. In this chapter, we will

complement that survey, by understanding how medical and legal aspects affect current

art in the quest towards real-world deployment.

If in many areas Academia and Industry often operate apart, in ArtiĄcial Intelli-

gence, they cooperate closely. In the case of healthcare, however, this cooperation involves

a third party: Regulatory Agencies, which are responsible for enforcing laws and rules to

minimize risks to the public. In this chapter we will explore the roles and relationships

of those partners, as well as understand how they accelerate or delay the release of new

solutions for actual use.

We start our appraisal in Section 3.1 relating the Ąrst interdisciplinary approaches

of the literature. Then we move to the legal aspects, describing the regulation process

of medical devices (Section 3.2), and speciĄc topics of clinical evaluations (Section 3.3).

We introduce a brief history of AI for healthcare in Section 3.4 and future directions for

interdisciplinarity in Section 3.5. The central part of this Chapter is in Section 3.6, which

discuss the open questions of the literature and the main initiatives to address them. We

end this Chapter in Section 3.7, summarizing our analysis and Ąndings.

3.1 First Steps Towards Interdisciplinarity

Although an appraisal that denied existing interdisciplinarity between Computing

and Medical Sciences would be over-pessimistic, we are still far away from the ideal lev-

els of cooperation between those two disciplines. Conducting interdisciplinary research is

not necessarily trivial. When we started working with melanoma screening in 2013, we

felt that, at the time, establishing an interdisciplinary cooperation was an uphill strug-

gle. Once, however, we were able to secure that cooperation, our understanding of the

medical/biological aspects of melanoma sharply improved, leading to a greatly enriched

research. Today, we feel that there is an increased interest in interdisciplinary coopera-

tion from all parties, although challenges still exist in establishing a common language,

common research practices, and a common research agenda.

From the computing view-point, the Ąrst collaborations were based on computer

methods mimicking medical rules to identify melanomas (notoriously the ABCD Rule and

the 7-Points Checklist). As we saw, that procedure was not necessarily optimal, because
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reported results were not robust and/or accurate enough to clinical usage [Rosado et al.,

2003; Menzies, 1999; Rajpara et al., 2009].

When automated systems abandoned that approach and started to move out to

more sophisticated techniques, attempting to exactly reproduce medical procedures in

machine algorithms became a hindrance. Literature achieved results never seen before,

equaling to trained dermatologists [Esteva et al., 2017; Mar et al., 2017; Safran et al.,

2017; Marchetti et al., 2018].

The case is: humans and machines learn in different ways. So, should we leave

ArtiĄcial Intelligence systems to learn predictive models on their own? The problem is

that deep learning techniques learn from features that do not leave a track of how the

decision was taken 1. That raises serious questions if the machine is identifying skin cancers

for the right biological reasons.

We know from experience that forcing the machines to act like a human being is

not a good idea concerning the predictive power of the method. Nevertheless, we should

incorporate medical knowledge in speciĄc ways to boost automated results. Such approach

could improve machine learning models [Yoshida et al., 2016]. A good hint would be teach-

ing the machine the identify speciĄc patterns that indicate when a lesion is a melanoma

or not [Kharazmi et al., 2018], since machine learning models are suitable for that kind of

task and Pattern Recognition is the most reliable technique to teach dermoscopy [Carli

et al., 2003].

We should investigate the medical knowledge in a way not to reproduce it with

machines, but to understand and use it wisely on automated approaches. Dermatologists

and computer scientists should work together toward that goal. For example, in a context

of referrability, epidemiological data must be incorporated even if out of the predictive

model, in the way of a form that translates an implicit heuristic to calibrate the predictive

model to better suit the patient or the case. Physicians already do that implicitly during

anamnesis, trying to identify if a patient is more susceptible for developing the disease

or not. Including such data into automated models is an important avenue for future

works [Mar et al., 2017].

From the medical viewpoint, all recent surveys agree that modern techniques lead

to powerful automated melanoma screening tools, usually being as accurate as or even bet-

ter than dermatologists [Mar et al., 2017; Safran et al., 2017; Marchetti et al., 2018]. That

acceptance has become even more common after the highly publicized paper of Esteva

et al. [2017] on Nature. Nevertheless, automated melanoma screening for the real-world

must be strictly evaluated, given the risks of misclassiĄcation and the lack of explicability

of the current approaches. Those evaluations could be a fruitful research line [Safran et al.,

1 https://www.technologyreview.com/s/604271/deep-learning-is-a-black-box-but-health-care-wont-
mind/
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2017].

3.2 Medical Device Regulation Process

For regulation purposes, a medical device is any instrument, apparatus, software,

material or article used alone or in combination, including the software intended by its

manufacturer to diagnose, prevent, monitoring, treatment or disease relieve among oth-

ers [ISO 13485:2003]. The development and launching of medical devices rely on norms

established by international standards and national regulatory agencies.

The international standards apply to the whole world. Consequently, any given

region or country could adopt them, perhaps with modiĄcations or limitations. The most

famous standards are the The International Organization for Standardization (ISO) and

the International Electrotechnical Commission (IEC).

Regarding market share in the Western Hemisphere, the most relevant regula-

tory agencies are in Europe, USA, and Brazil2. They are different but retain several

similarities, allowing their analysis under the same 4 steps-framework: (a) deĄnition of

the medical device intention of use and its characteristics, (b) classiĄcation based on its

risks to the health professionals or the patients, (c) regulatory requirements, and (d) the

regulatory process itself.

Here we do not aim to detail each process. We are going to illustrate the process

by picking the American case3, as it is the most straightforward one. Devesa [2014] lists

the similarities and peculiarities of each process.

For melanoma screening, the medical device would be software, intended to be

used as the diagnostic aid of skin cancer, through the analysis of skin lesion images. Since

a misclassiĄcation would be dangerous to the patient, the risk offered by the system is

high, indicating that it would be classiĄed into a high-level class, regardless of the country

regulating it.

Due to the risk to life potently offered by the system, the USA regulatory process

must be fully followed. That includes a 510(k) Premarket NotiĄcation and a Premarket

Approval (PMA). Each step aims to ensure that the proposed system is highly evaluated

and has acceptable levels of quality. Nevertheless, the processes do not indicate the desired

steps to assess the system. There are two types of evaluation: laboratory testing and

human data evaluation. The Ąrst is something similar to what is done now: researchers

evaluating their methods in controlled ways (experiments). The last relates to clinical

trials, evaluating proposed methods on real life.

2 To keep our scope feasible, we will not analyze Asian markets in this text.
3 Regularized by FDA: https://www.fda.gov/
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For the 510(k) clearance 4, human data is optional, but PMA requires it. So, litera-

ture is typically prepared for a 510(k) clearance, evaluating new methods under controlled

approaches: using provided datasets, constructing their experimental design, comparing

results. More sophisticated evaluations include comparisons of systems to dermatologists.

Nevertheless, the Şgold standardŤ clinical trials of automated melanoma screening were

never seen, so no system proposed until now is ready for a PMA.

The USA process is rigorous and liberal at the same time: it is rigorous in the

sense that requires clear quality and effectiveness evidence, but is liberal in the sense of

not describing how to deliver it (that is, how should we evaluate CAD systems) [Devesa,

2014].

In practical terms, the manufacturer must prove to the government that the system

was validated and the results are reliable enough to demonstrate its effectiveness. In that

sense, works that report their Ąndings on rational experimental design and count with

expert validation (dermatologist comparisons) [Esteva et al., 2017; Marchetti et al., 2018],

would have their quality and effectiveness more easily proven.

Regarding medical software development, some global standards must be followed.

The most famous are ISO 9001:2008; ISO 13485:2003; IEC 62304:2006. Such standards

indicate maintenance requirements, risk management, problem tracking, and problem-

solving that are not even followed by academic studies of melanoma screening (at least,

no evidence was found supporting that concerns on academia).

What do we learn from this context? From legal regulation, there is a concern to

prove that the automatic screening system works appropriately, but there is no guideline

to follow. Given such freedom, comparison with previous works may be an alternative.

The market cares about the quality of system development (aspects of the code itself),

which is generally not addressed in academia.

3.3 Clinical Trials

Clinical evaluation is the most advanced approach to validate a medical device

regarding its effectiveness and reliability. It is recommended, according to the medical

devicesŠ usage critically, so higher the critically, the more compulsory is the necessity for

a clinical evaluation. Clinical validation is necessary for any SaMD.

The process follows three steps, as illustrated in Figure 9. Those steps are not

performed during regulation time. At the regulation time, all the procedures to develop

and evaluate the system are investigated according to the documentation provided by the

4 A 510(k) clearance is a simple process of premarketing a medical device that does not need premarket
approval. The 510(k) process aims to demonstrate that the device to be marketed is at least as safe
and effective, that is, substantially equivalent, to a legally marketed device.
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manufacturer, which describes the whole process in a textual and/or illustrated way.

Figure 9 – The clinical evaluation process.

First, the manufacturer needs to demonstrate a valid clinical association of the

new systemŠs output to the target condition. The analytical validation aims to access the

development process. Finally, clinical validation shows how the system was validated in

real-case scenarios.

In other words, the Ąrst step is to show that the Ąnal system makes sense. That is,

to access if the intended usage of the system aligns to the context of the health condition

to which the system is directed. The second step is a typical validation and veriĄcation

process of software development: the assessment aims to determine if the software was

correctly constructed, that is, if the development followed a reasonable process demon-

strating that the software meets its speciĄcations and that speciĄcations conform to user

needs and intended uses.

The third and last step is clinical validation. It measures the ability of a SaMD

to yield a clinically meaningful output regarding the target condition and the software

intended usages. Either can demonstrate clinical validation:

• Referencing existing data from studies conducted for the same intended use;

• Referencing existing data from studies conducted for a different intended use, where

extrapolation of such data can be justiĄed;

• Generating new clinical data for a speciĄc intended use.

Although the typical process has the above three steps, sometimes the clinical

evaluation has a fourth step: the independent review. According to the FDA Guidance

for Clinical Evaluation of SaMD, the recommendation for independent review highlights

where the evidence generated from the clinical evaluation of the SaMD should be reviewed

by someone who has not been signiĄcantly involved in the development of the SaMD, and

who does not have anything to gain from the SaMD, and who can objectively assess the

SaMDŠs intended purpose and the conformity with the overall clinical evaluation evidence.

Also, the independent review is more important for SaMD that ŞTreats/Diagnoses Serious
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and CriticalŤ health care situations and conditions and SaMD that ŞDrives CriticalŤ health

care situations and conditions.

Figure 9 summarizes the situations when an independent review of the clinical

evaluation is more recommended. Undoubtedly, automated skin lesion analysis for skin

cancer triage is a situation that requires a clinical evaluation and its independent review.

Figure 10 – Risk Based Approach to Importance of Independent Review.

3.4 History of AI for Healthcare

At the beginning of the technological introduction in medicine, electronic hard-

ware responded for most of the innovation in medical devices. As technology progressed,

software became progressively more important, and its role in control/management/Ąnal

application became more evident, thus requiring speciĄc regulations. The year of 2006

was a turning point, with the creation of IEC 62.304/2006 [IEC 62304:2006], regulating

the process of development of medical software Ů either intended for standalone use, or

in conjunction with hardware.

The following years saw a burst in the number of software-only medical devices,

mainly due to the proliferation of mobile apps. In response, in 2011, the new category

Software as a Medical Device (SaMD) was created [of Health and Services], contemplat-

ing aids to diagnosis, screening, monitoring, determination of predisposition, prognosis,

prediction and determination of physiological status.

The concept of SaMD was consolidated in 2013 with the creation of International

Medical Device Regulators Forum (IMDRF) 5, led by the FDA. The IMDRF establishes

the key deĄnition points of a SaMD, the risk classiĄcations, the development quality

management system, and clinical evaluations.

5 International Medical Device Regulators Forum: http://www.imdrf.org/
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Until then, a SaMD should follow the same process of regulation of an ordinary

medical device, that is, it is expected to be fully Ąnalized and extensively tested before

initiating the regulation request.

In 2018 the FDA launched the Breakthrough Device Designation6: an iterative

process that the producer can gain access to the FDA before official marketing approval

submissions, to accelerate the development by removing doubts and enhancing the cre-

ation of new technologies.

Medical devices are eligible for Breakthrough Device Designation if both of the

following criteria are met7:

1. Firstly, the device provides for more effective treatment or diagnosis of life-

threatening or irreversibly debilitating human disease or conditions;

2. Secondly, the device also meets at least one of the following: (a) represents break-

through technology; (b) no approved or cleared alternatives exist; (c) offers signiĄ-

cant advantages over existing approved or cleared alternatives; (d) device availability

is in the best interest of patients.

The shortcut is particularly relevant to SaMD, as the regulatory process ap-

proaches the incremental/agile process of software development.

Also in 2018, the FDA approved the Ąrst fully AI-based device for healthcare: a

system that detects diabetic retinopathy by eye images analyses and decides whether a

patient should promptly visit an ophthalmologist or if they must repeat the exam in 12

months [Food and Administration, 2018]. This fact was a milestone in history and paved

the way for the legalization of other systems.

3.5 Future Directions for Interdisciplinarity

Here we reach the core of the discussion: scientiĄc literature in melanoma screen-

ing does not follow the robustness required by regulatory standards for medical devices.

Although some works count with medical cooperation, the testing procedures are still

limited to lab examination and stand-alone evaluation.

We need to highlight, however, that not all published work necessarily aims to

develop a screening system for commercial use. However, since the commercial evaluation

is an open process, why not to base it on state-of-the-art approaches found in literature?

6 Breakthrough Device Designation: https://www.fda.gov/medical-devices/how-study-and-market-
your-device/breakthrough-devices-program

7 Breakthrough Devices Program: Is my device eligible? — https://www.fda.gov/medical-devices/how-
study-and-market-your-device/breakthrough-devices-program#s3



Chapter 3. Critical Appraisal of Existing Art 45

So, if the literature is populated with non-standardized evaluation and/or with critical

shortcuts, a new product quality evaluation is impaired in a vicious cycle, preventing the

development of automated tools for real-world.

On the other hand, the evaluation of market solutions comprises bench tests and

clinical trials. Bench tests, if not conducted properly, may carry the same problems of the

academia, which we list on the next Section.

Clinical trials are the best approach to avoid hidden issues with experimental

design and data usage. However, clinical trials must rely on statistical data and previous

experiments, generally collected in the literature. Such reference may introduce noise in

the perception of the real quality of the Ąnal systems, besides perpetuating vices of the

literature that do not contribute to the real advance of the problem.

Although such relationship may seem obscure, the FDA process for regulation of

software as a medical device subtly reveals it (Figure 11).

Figure 11 – The Software as a Medical Device regulation process.

At this point, the interaction and dependency between market and academia are

clear: new clinical trials are new benchmarks that compose the literature, and the litera-

ture provides baseline results for comparing new clinical evaluation outcomes. The main

issue with that interaction is the problems that the literature presents. Consulting, basing,

or comparing with literature can perpetuate the vices and problems of existing art.
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We should pay particular attention to the evaluation metric choices. There is not

a consensus on literature about which are the best choices to evaluate automated skin

lesion analyzers. While the medical opinion is extremely relevant, some metrics are not

correctly used on tuning computer vision models, like the pair sensitivity and speciĄcity.

We believe that such relationships will continue in the following years. The goal

is, therefore, to eliminate the underlying problems.

In the next Section, we introduce the main gaps of the literature and the ongoing

efforts to eliminate them (if any). Future work should address such gaps to push further

the development of new solutions for automated melanoma screening.

3.6 Open Questions

In this Section, we list and discuss the open questions of current art. We divided

them into two sets: the traditional challenges and the new challenges that emerged with

the technology development. For each issue, we describe why it is a problem and what are

the recent efforts to overcome it (if any).

3.6.1 Traditional Challenges

We start with classical issues, which have been present in the Ąeld since its in-

ception. For most of those challenges, important initiatives have appeared to solve, or at

least alleviate the problem.

1. Experimental validity: This is a severe issue because it is less evident than

the others. Despite the existence of dozens of published papers about automated

melanoma screening, the accumulated knowledge is not reliable enough to make de-

cisions in the level of rigor needed for actual clinical practice, e.g., the level of rigor

expected by regulatory agencies . Authors choose different metrics: most only report

global accuracy Ů which is misleading when the positive and negative classes are

highly unbalanced. If a dataset has 20 images of melanoma and 80 images of non-

melanoma Ů a disproportion quite typical of melanoma datasets Ů one can classify

all images as non-melanoma and still get 80% accuracy. Therefore, some authors

prefer the pair SensitivityŰSpeciĄcity, which together, reveals such problems (in the

example above, one would get 100% speciĄcity, but 0% sensitivity). Some authors

Ů us included Ů prefer to report the area under the ROC curve (AUC), which

averages all possible SensitivityŰSpeciĄcity pairs given by the classiĄer, and mea-

sures, so to speak, the amount of ŞknowledgeŤ the classiĄer has about the problem,

without regard to its preference for sensitivity or speciĄcity. More exotic metrics,
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like the F-measure of information retrieval, also appear. Agreeing on metrics is a

necessary, not sufficient, condition to render the works comparable.

Works exist which are still validated in datasets too small to provide reliable ev-

idence. Further datasets (of any size) are often proprietary and not available for

cross-examination. Comparisons would still be possible, in principle, if each research

group ran previous techniques in their data, but authors will seldom share code (as

will be discussed on the following topics).

2. Lack of interaction between researchers and physicians: This is by far the

most severe issue that prevents the development of an automated tool for real-

world usage. An automated melanoma classiĄer is not just an accurate, specialized

image classiĄcation system: it is a software that handles with sensitive informa-

tion; an implementation of procedures and methods; a new working tool for health

professionals. How can it be successfully designed without the cooperation of all

stakeholders?

Technical personal must understand screening procedures; health professionals

should be acquainted with the system usage; dermatologists should collaborate to

train the system with relevant information in order to be accurate; the system itself

should be carefully audited before actual use.

Today, more interaction exists between those worlds, but it is not enough to deliver

usable approaches. Current works usually compare their results with the perfor-

mance of trained dermatologists to identify malignant lesions. The interaction is

restricted to the Ąnal stages of the development process when it should occur since

the beginning.

Against the lack of interdisciplinary collaborations, an international effort deserves

our attention: The International Skin Imaging Collaboration Ů ISIC Melanoma

Project. They are an AcademiaŰIndustry partnership, involving both Medical and

Computer Science, designed to facilitate the application of digital skin imaging

to help reduce melanoma mortality. ISIC is developing standards to address the

technologies, techniques, and terminology used in skin imaging with special attention

to the issues of privacy and interoperability.

ISIC also organize annual workshops in conferences focused in computer vision,

aiming to promote cutting-edge researches in skin lesion analysis, including sev-

eral toppics like dataset issues, modern image types and new algorithms. Those

workshops also feature several prominent names in this research Ąeld, showcasing

research trends and encouraging colaborations.

3. Reproducibility: Since most authors do not share code and/or data, attempts

at comparison must incur in the expensive effort of reimplementing previous works.
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That is not exclusive to melanoma screening but happens on all computing literature

[Peng, 2011; Sandve et al., 2013], and even scientiĄc literature in general [Allison

et al., 2016]. However, even that is often impossible. The vast majority of works do

not describe the details that allow reimplementation. That fact was already observed

by Masood and Ali Al-Jumaily [2013], in works that spanned from 1993 to 2012;

our exam of works from 2008 to 2016 found a situation just as dire [Fornaciali et al.,

2016].

Due to the current complexity of the computer systems employed in scientiĄc ex-

periments, the reproducible paper without original code is a unicorn, a mythical

creature. Even the most detailed description leaves out essential information, to

respect page limits, or to avoid tedious/confusing the reader with a myriad of minu-

tiae. Still, a single wrong parameter can collapse an entire experimental cathedral.

Examples of attitudes that disturb reproducibility are: missing details, results much

below the ones reported originally, and failure to earn the cooperation of the author.

Reproducibility is an open issue until now, but it tends to soften due to initiatives

such the ISIC Challenge, that forces the competitors to use the same dataset, the

same metrics, the same testing set and also, started to require in 2017 a technical

report about each submitted solution. The reports are not peer-reviewed, and there

is not a guarantee that the methods are fully described, but the initiative is already

a signiĄcant step towards reproducibility. Also, in the last years, the number of

papers sharing code in public repositories increased.

4. Lack of standardized public databases: Data is the main issue towards a fair

comparison between different approaches. If two works use different datasets to eval-

uate their proposals, benchmarking is unfeasible, and conclusions are limited. Even

when the same dataset is employed, comparability can be severely hindered due

to each work selecting unspeciĄed subsets of the dataset. Some diagnostic classes

(melanosis, recurrent nevus), or lesions with speciĄc clinical characteristics (e.g.,

lesions on the palm of the hands, sole of the feet, or the genital mucosa) are noto-

riously problematic, even for humans. Hair, rulers, bandages or other artifacts may

hinder the analysis Ů thus images containing those artifacts are often excluded.

The issue is not the selection itself, but the uncontrolled variability brought by an

unknown selection.

Fortunately, this issue is the one closer to be eliminated. Since the emergence of

public datasets, works tend to evaluate their approaches on a more regularized

basis. In this sense, global initiatives (like the ISIC Archive), are precious, since

they also provide standardization of testing sets and metrics.

5. Mimicry of medical rules: Most of the existing art often attempts to directly
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mimic medical diagnostic rules, especially the ABCD Rule of Dermoscopy [Friedman

et al., 1985], and the 7-Points Checklist [Argenziano et al., 1998]. Attempting to

mimic human procedures leads to rigid processing pipelines based on segmentation

→ feature extraction → classiĄcation, which no longer reĆects the state-of-the-art

in Computer Vision. That is compounded by the use of features imitating medical

reasoning (color, texture), which are known to underperform when compared to new

options. Such approach was the Ąrst attempt to solve the problem since it is highly

intuitive: we take a medical algorithm and try to implement it in a system that aims

to reproduce step by step all actions needed to identify if a lesion is malignant or

not.

Even if literature were successful in imitating the ABCD Rule, or the 7-Points

Checklist, one could still argue that those rules were supplanted by the newer 3-

Point Checklist [Soyer et al., 2004], and the Revisited 7-Point Checklist [Argenziano

et al., 2011]. More telling is the fact that none of those rules Şcaught onŤ among

doctors: traditional pattern analysis [Pehamberger et al., 1987] is still considered

the most reliable technique to teach dermoscopy Carli et al. [2003].

Implementing medical rules as computer algorithms has the advantage of being

explainable for a broad audience. If it is a question of explainability, new works

of explainable deep learning can be an alternative path for future research. The

incorporation of medical knowledge, however, should not be done only in terms of

image processing, but heuristics that assist dermatologists in decision making. For

example, what clinical data are relevant, and how the relationship between them

may indicate the malignancy of a lesion? Again, such integration would only occur

in a more cooperative scenario of researchers and physicians.

3.6.2 New Challenges

With the advancement of AI solutions for healthcare, new issues arise for the

literature. The main points of attention are:

1. Typical AI problems: machine learning relies on data, and data carries inherent

problems. Among them, the main thing is the quality of the data: how were they

collected? How were they cataloged? Can we rely on the annotated diagnoses? Also,

we know that every dataset has biases. What are the biases of medical data, and in

particular, images of skin lesions?

We can not fail to mention the concerns about the design of the Ąnal systems:

how will they inĆuence the doctorŠs decision? How will they inĆuence the patientŠs

treatment? Will that systems really improve the long-term health of a population?
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2. Healthcare providers resistance to AI adoption: the opinion of physicians

about automated systems is essential for the development of melanoma literature.

Their concerns about the impacts of technology introduction are valid. While some

authors, or especially the media, tend to disclose the advances of technology as

Şsteps to replace doctorsŤ, we believe that this is not feasible. On the contrary, we

believe that computational methods will be increasingly perfected to aid the routine

of doctors and patients.

Massive access to screening technology, however, deserves attention. The risk of the

public using this technology in place of seeing a dermatologist exists. It can be

combated by intensifying education actions for the population about the problem

and importance of the visit to the doctor whenever a lesion raises suspicion. After

all, the machine may even detect a malignant lesion, but will not treat it.

3. Problems in validation protocols: as technology becomes more mature, its use in

real environments becomes more feasible. We have seen in this Chapter the process

of regulation of medical devices and medical software. There is a veiled relationship

between literature and regulation processes. If literature carries problems (and it

does), the legal evaluation of new solutions can be hampered.

To mitigate possible negative impacts of using technology, it is recommended to work

on validations in two moments: 1) understand what AI recommended (evaluation

metrics; compare with experts to see if it makes sense); 2) understand why AI

recommended (explanations of how models work; combine AI and humans to get

better decisions than either alone).

3.7 Conclusion

In this Chapter, we introduced the interdisciplinary aspects of the research for

automated melanoma screening. We saw that literature deals timidly with this subject,

with occasional interactions, which, while important, do not meet the needs for the de-

velopment of robust solutions.

We also evaluated the relationship between the development of academic solu-

tions and commercial products for melanoma screening. At Ąrst sight, these relations

seem subtle, but the regulatory process, required for validation and commercialization of

professional solutions, forces the interaction between the two worlds.

If we do not worry about the quality of the solutions developed, both professionally

and academically, we will be contaminating the literature with failures that increasingly

delay the adoption of solutions based entirely on ArtiĄcial Intelligence.
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The current literature already presents problems that need to be overcome. Not

surprisingly, the existing problems are also interdisciplinary.

In the next Chapter, we will describe our contributions to alleviate some of the

problems identiĄed above. Due to the nature of our research group, we focused mainly on

the computational issues.
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4 Advancing Machine Learning Models

In the early 2010s, the limited predictive power of computational models imposed

the main barrier to the success of automated melanoma screening. Recent advances of the

machine learning models removed such barriers, but we still face the challenge of scarcity

of training data, in addition to methodological shortcomings in existing literature, such

as lack of reproducibility.

From 2015 onwards, melanoma detection moved onto deep learning models, asso-

ciated with transfer learning. Besides demanding vast amounts of data and computation,

deep learning poses some challenges per se, like the regularization of thousands, or mil-

lions of parameters, and also the choice of several aspects of the architecture design. On

the other hand, transfer learning also brings its challenges, like the choice of the source

database, the layers to be transferred, and the Ąne adjustments to the target task.

This Chapter describes our efforts towards further improving machine learning

models. Our main contribution is on the methodological analysis of current deep learning

approaches. We identify the main gaps, proposing interventions that systematically im-

proves classiĄcation results, even without profound changes in existing architectures. We

argue that our contributions reduce the distances that prevent the use of current solutions

in real environments. We also deliver new methodological questions that must be taken

into account in the design of automatic medical screening systems.

We started working with automated melanoma screening in 2013. We concentrate

our results from the Ąrst three years of research in Section 4.1, and we provide an overview

of our recent works (2017 onwards) in Section 4.2.

To facilitate the reading of recent works, we concentrate the description of the

datasets, computational resources, and basic experimental framework in Section 4.3. The

following sections describe each hypothesis and how we address them. We end this chapter

summarizing our contributions on Section 4.9.

4.1 Previous Works

Our research group has worked with automated melanoma screening since 2013. At

the time, image classiĄcation was taking the Ąrst steps towards deep learning approaches.

However, for speciĄc domains Ů like medical tasks Ů BoVW-based models still emerged

as the most promising solutions.

BoVW models, as we saw in Section 2.3, have limitations in learning the spa-

tial distribution of visual information, and often require additional processing steps to
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eliminate the images nuisances, such as hair and medical artifacts.

In this context, we explored modern extensions of BoVW models, proposing a

simpler and more straightforward image analysis process, eliminating the need for complex

preprocessing. We have achieved competitive results with current literature, marking our

Ąrst publication in the community ([Fornaciali et al., 2014]). The maturation of the work

culminated in the masterŠs thesis of the present author ([Fornaciali, 2015]).

Still in 2015, we also released our Ąrst results using deep learning with transfer

learning for automated melanoma screening [Carvalho, 2015].

From 2016 onwards, the automated melanoma community moved from traditional

techniques towards deep learning, following the general trend of computer vision. Even

with the profound change in the use of computational techniques, the literature of the

time carried the vices of many years of research, accumulating difficulties of access to

data and reproducibility. We analyze the literature of the time, discuss such problems,

and propose directions to mitigate them [Fornaciali et al., 2016].

4.2 Recent Works: An Overview

From 2016 onwards, we completely adopted deep learning in our group. We started

our journey investigating the impact of transfer learning on Ąnal results. Although much

of the best art on automated melanoma screening employs some form of transfer learn-

ing, a systematic evaluation was missing. We detail our approach and main Ąndings on

Section 4.4.

In 2017 we participated in the 2nd Edition of the ŞISIC Challenge on Skin Lesion

Analysis Towards Melanoma DetectionŤ. Based on previous results, our proposal lies in

a deep learning model with transferring learning from ImageNet. It relies on four pillars:

data, models, tricks for improving the modelsŠ accuracy, and ensembling of partial results.

Our approach took us to the Ąrst place on the Şmelanoma Vs. allŤ subtask, which is the

most relevant one, regarding screening purposes. We detail our participation and main

results on Section 4.5.

Our participation in the 2017 ISBI Challenge raised some questions of what are

the main aspects that contribute to improving classiĄcation rates of methods based on

deep learning. We investigate the methodological issues for designing and evaluating deep

learning models for melanoma screening, by exploring nine choices often faced to design

deep networks: model architecture, training dataset, image resolution, type of data aug-

mentation, input normalization, use of segmentation, duration of training, additional use

of SVM, and test data augmentation. Such analysis is the main methodological contribu-

tion of this work to the related art since we demonstrated with reliable experiments how
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a successful melanoma classiĄer should be designed to increase robustness for real usage

scenario. We detail our protocols and main Ąndings on Section 4.6.

With the popularization of public databases of skin lesions and the results of

the 2017 Challenge as an increasingly publicized baseline, new approaches emerged. In

2018, the ISIC Challenge launched a re-reading of the main problem: instead of detecting

melanomas, the task became the identiĄcation of multiple skin lesions, malignant or be-

nign. We argue that the existing methods are not ready yet for such a task since it is even

harder than the original one. Nevertheless, we embraced the task and also participated in

the Challenge, which we discuss in Section 4.7.

As expected, the performance of the competitors was not robust enough to prove

the viability of the new task, even in controlled environments. One of the critical issues

was, again, the availability of annotated data. Considering that the public datasets are

limited, we questioned their overall quality, their representativeness of actual conditions

of occurrence of skin diseases in the population, and what characteristics of such images

the computational models are learning to recognize. It motivated experiments to illus-

trate such phenomena, which we have listed in section 4.8. The main results indicate

that the data used in current researches have biases that drive computational models to

recognize unintended patterns, making it challenging to generalize learning for use in real

environments. We present such questions to the literature and hope they will guide future

research.

4.3 Materials & Methods

Along this work, we collected several data sources to compose our own dataset.

We employed 10 different data sources, which we detailed below. Altogether, we end up

with approximately 30 thousand images, comprising almost 3 thousand melanomas.

• EDRA Interactive Atlas of Dermoscopy (Atlas): The Interactive Atlas of Der-

moscopy [Argenziano et al., 2002] 1 is a multimedia guide (Booklet + CD-ROM)

intended for training medical personnel to diagnose skin lesions. It has 1000+ clin-

ical cases, each with at least two images of the lesion: close-up clinical image (ac-

quired with a Nikon F3 camera mounted on a Wild M650 stereomicroscope), and

dermoscopic image (acquired with a Dermaphot/Optotechnik dermoscope). Most

images are 768 pixels wide × 512 high. Each case has clinical data, histopatho-

logical results, diagnosis, and level of difficulty. The latter measures how difficult

(low, medium and high) the case is considered to diagnose by a trained human. The

diagnoses include, besides melanoma (several subtypes), basal cell carcinoma, blue

1 EDRA Interactive Atlas of Dermoscopy: http://derm.cs.sfu.ca/Welcome.html
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nevus, ClarkŠs nevus, combined nevus, congenital nevus, dermal nevus, dermatoĄ-

broma, lentigo, melanosis, recurrent nevus, Reed nevus, seborrheic keratosis, and

vascular lesion.

• PH2 Dataset: The PH2 Dataset [Mendonca et al., 2013] 2 has 200 dermoscopic

images (80 common nevi, 80 atypical nevi, and 40 melanomas), acquired at the

Dermatology Service of Hospital Pedro Hispano/Portugal. The dataset also provides

ground truths for segmenting the lesions.

• Dermofit Image Library (DermoĄt): The DermoĄt Image Library [Ballerini et al.,

2013] 3 is a collection of 1,300 skin lesion images and their segmentation masks di-

vided among 10 classes (Actinic Keratosis, Basal Cell Carcinoma, Melanocytic Ne-

vus, Seborrhoeic Keratosis, Squamous Cell Carcinoma, Intraepithelial Carcinoma,

Pyogenic Granuloma, Haemangioma, DermatoĄbroma and Malignant Melanoma).

The diagnoses were provided by expert dermatologists and dermatopathologists,

generating a gold standard groundtruth.

• IRMA Skin Lesion Dataset (IRMA): this dataset was created by the Department

of Medical Informatics, RWTH Aachen University. It has 747 dermoscopic images

(being 187 melanomas). We employed this dataset in our preliminary experiments.

Today it is not available. So, in order to promote reproducibility, we exclude this

dataset in our recent works. Nevertheless, due to its usefulness, especially in times

of low availability of data, we list its contribution in this work.

• Kaggle Challenge for Diabetic Retinopathy Detection (Retinopathy)

dataset 4: this Retinopathy dataset has a training set of 35,000+ high-resolution

retina images taken under varying conditions. It is a benchmark for validation of

new retinopathy detection systems. We only used this dataset to compare different

image sources in transfer learning approaches for melanoma screening.

• ISIC Project: The ŞInternational Skin Imaging Collaboration: Melanoma Project

(ISIC)Ť 5 is an academia/industry partnership, coordinated by the International

Society for Digital Imaging of the Skin, to acquire and annotate skin lesion images.

As of March 2016, ∼ 3000 images were available; today, more than 23, 000 images

compose the dataset, collected from different leading clinical centers internationally,

using a variety of devices for acquisition. Since 2016, this dataset is also increasing

in the amount of information available for each lesion: segmentation masks and

2 PH2 Dataset: www.fc.up.pt/addi/ph2%20database.html
3 Dermofit Image Library: https://licensing.eri.ed.ac.uk/i/software/

dermofit-image-library.html
4 https://www.kaggle.com/c/diabetic-retinopathy-detection/data
5 ISIC Project: www.isdis.net/isic-project
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maps over Ąve dermoscopic attributes (pigment network, negative network, streaks,

milia-like cysts, and globules) are available for smaller subsets of the dataset.

• ISBI Challenge 2016 Part 3: Disease Classification [Gutman et al., 2016]:

it is a subset of 1,279 dermoscopy images from the ISIC Project. The Challenge

Dataset contains 900 images for training (273 being melanomas) and 379 for testing

(115 being melanomas).

• ISIC 2017 Challenge Codella et al. [2018]: the official 2017 challenge dataset,

with 2,000 dermoscopic images (374 melanomas, 254 seborrheic keratoses, and 1,372

benign nevi).

• ISIC 2018 Challenge [Codella et al., 2019; Tschandl et al., 2018]: the official 2018

challenge dataset, with 10,015 dermoscopic images with 7 ground truth classiĄca-

tion labels (1,113 melanomas, 1,099 benign keratosis, 6,705 benign nevi, 327 actinic

keratosis, 514 basal cell carcinomas, 115 dermatoĄbromas and 142 vascular lesions).

• Other Sources: the ISIC 2018 Challenge dataset is extreme imbalanced, so we de-

cided to gather extra images for the severely underrepresented classes (the last four

of them). We found images browsing sources on the web, and asking for contributions

from partner researchers in Medical Science. The web sources were Dermatology

Atlas (www.atlasdermatologico.com.br), Derm101 (www.derm101.com), DermIS

(www.dermis.net/dermisroot). With that extra effort, we acquired additional 631

images, being 414 basal cell carcinomas, 26 actinic keratosis, 132 dermatoĄbromas

and 59 vascular lesions. Although the Ąnal dataset continued seriously unbalanced,

the proportion of underrepresented classes grew considerably.

Regarding the computational resources, the employed infrastructure varied

along with the research, depending on resources available and external grants. Altogether,

we used NVIDIA GPUs available at RECOD Lab: two Titan X Pascal, six Titan Xp, one

Tesla K40, and for Tesla P100. We also used the NC6 (Tesla K80) and ND6 (Tesla P40)

virtual machines provided by the Microsoft Azure Cloud platform. Part of the exper-

iments related to our participation in the ISIC Challenge 2017 was performed at the

LIP6/UPMC/Paris, which hosted Prof. Valle during most of the competition, and gener-

ously offered part of the needed resources.

Finally, our methods obeyed the traditional framework of machine learning exper-

imental design: we have gathered the data currently available, separated into independent

training, validation, and test sets. We train the models in the training set and follow their

maturation in the validation set. In the end, we report the official results in the test set.

We describe the particularities of each protocol in the following sections, experiment by

experiment. We present the same structure in every Section: we introduce the motivation
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and main objectives of the experiments, following the experimental proposal, concluding

with the main Ąndings and its analysis regarding the current art.

4.4 If knowledge is needed, which knowledge should be trans-

ferred?

The Ąrst works employing deep learning for automated melanoma screening were

generally based on transfer learning, since the available datasets were small to train com-

plex architectures from scratch. Moving from classical techniques to deep learning ap-

proaches introduced new baselines for modern art of melanoma screening, similar to what

had been happening to other classiĄcation tasks since 2012.

What was unclear, however, was whether the improvement of the skin lesion clas-

siĄcation results was due solely to the better features produced by the deep models or

whether the transfer of knowledge from large databases carried the more signiĄcant part

of the predictive power of the new approaches.

In that scenario, we investigated the impact of transfer learning on the Ąnal results.

We investigated the presence of transfer, from which task the transfer is sourced, and the

application of Ąne-tuning (i.e., retraining of the deep learning model after transfer). We

also tested the impact of picking deeper (and more expensive) models.

We published our main Ąndings in our paper ŞKnowledge transfer for melanoma

screening with deep learningŤ [Menegola et al., 2017a], from which we reproduced some

parts to compose this thesis. The present author contributed to discussions, result evalu-

ation, and writing of the published paper.

4.4.1 Experimental Proposal

In all experiments we adopted a deep learning framework for feature extraction of

the skin lesion dataset, which fed a SVM classiĄer. We refer the reader to the published

paper for further details regarding implementation.

The datasets employed to train and test the target models (melanoma screening)

were the Interactive Atlas of Dermoscopy (Atlas), and the ISBI Challenge 2016.

The sources datasets employed for the transfer (pre-training of the DNNs) were the

Retinopathy dataset and the ImageNet Large Scale Visual Recognition Challenge 2012

dataset (ImageNet), containing 1M training images labeled into 1,000 categories [Deng

et al., 2009]. Our use of ImageNet dataset was indirect Ů because training over it is so

time consuming, we opted for employing pre-trained source DNNs.

Our design aimed to address two questions: 1) the impact of transfer learning, and
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AUC mAP ACC SE SP
1st place 80.4 63.7 85.5 50.7 94.1
2nd place 80.2 61.9 83.1 57.3 87.2
3rd place 82.6 59.8 83.4 32.0 96.1
This work 80.7 54.9 79.2 47.6 88.1

Table 1 – Results on ISIC, with VGG-16, with transfer learning from ImageNet, with fine tuning. Base-
lines quoted from the ISIC 2016 competition website (competitors were originally ranked by
mAP). The results are provided to show that the models evaluated here are realistic — in the
sense that they are in the same ballpark of performance as current art. All numbers in %. Table
reproduced from Menegola et al. [2017a].

We evaluated three experimental designs, varying the labeling of the classes:

• Malignant vs. Benign lesions: melanomas and basal cell carcinomas were considered

positive cases and all other diagnoses were negative cases;

• Melanoma vs. Benign lesions: melanomas were positive cases while all other diag-

noses were negative ones, removing basal cell carcinomas;

• Basal cell carcinoma vs. Melanoma vs. Benign lesions: here we have three classes,

with all other diagnoses under a single Benign label.

For all designs we employed 5×2-fold cross-validation. Our splits were semi-

random, making an effort to balance as much as possible diagnose distributions, to avoid

unnecessary variability.

Our main metric was the Area Under the ROC Curve (AUC); for the design with

three classes, we computed three one-vs-one AUCs and reported their average. For the

experiment with the ISIC dataset we also report the other measures employed in the

competition. We show the results on ISIC for reference purposes, to demonstrate that the

models being discussed here are in the same ballpark of performance as the current state

of the art (Table 1).

4.4.2 Results and Analyses

The main results are in Table 2. Fine-tuning improves classiĄcation, both when

transferring from the small-but-related dataset (Retinopathy), and when transferring from

the large-but-unrelated task (ImageNet): that agrees with current literature in DNNs,

which almost always endorses Ąne-tuning. Surprisingly, transfer learning from Retinopathy

(also a medical-image classiĄcation task) leads to worse results than transferring from

the general task of ImageNet, even in combination with the latter. That might indicate

that transferring from very speciĄc tasks poses special challenges for overcoming the

specialization Ů even if the source and target tasks are somewhat related. The best

protocol we found was to simply transfer from ImageNet, with Ąne-tuning. The comparison
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Experimental Design
No Transfer

From Retinopathy From ImageNet Double Transfer
no FT with FT no FT with FT with FT

Malignant vs. Benign 76.0 72.8 76.0 79.1 82.5 78.8
Melanoma vs. Benign 75.7 73.5 75.3 77.9 80.9 80.9

Melanoma vs. Carcinoma vs. Benign 73.0 71.4 72.8 79.4 83.6 81.8

Table 2 – Main results (AUC in %; FT: fine tuning). Surprisingly, transfer from another specific medical
task (Retinopathy) is not effective, even if preceded by transfer from a general task (ImageNet).
Fine-tuning has major impact and should be considered a necessity. The choice of labeling has
a small and somewhat inconsistent impact, that might be due to chance. Table reproduced
from Menegola et al. [2017a].

AUC (%)
Architecture Mal×Ben Mela×Ben Mela×Carc×Ben
VGG-M 82.5 80.9 83.6
VGG-16 83.8 83.5 84.5

Table 3 – Impact of the DNN architecture choice. A deeper model (VGG-16) leads to best results, regard-
less of the experimental design. All experiments with transfer from ImageNet and fine tuning.
Table reproduced from Menegola et al. [2017a].

AUC (%)
Experimental Design Low Medium High All
Malignant vs. Benign 93.7 82.5 58.8 82.5
Melanoma vs. Benign 93.0 79.6 56.6 80.9

Table 4 – Results stratified by diagnosis difficulty of test images (Low, Medium or High), for VGG-M,
transferring from ImageNet, with fine tuning. All: performance over the whole dataset. Low-,
medium-, and high- difficulty cases represent respectively 38.1, 36.3, and 25.6% of the whole
dataset. Table reproduced from Menegola et al. [2017a].

between DNN architectures shows that Ů as usually observed for image classiĄcation Ů

a deeper DNN performs better (Table 3).

The experimental designs also showed differences in performance: in general it was

easier to either group Basal cell carcinomas with Melanomas (Malignant vs. Benign), or to

consider them as a separate class (Melanoma vs. Carcinomas vs. Benign), than to ignore

them altogether (Melanoma vs. Benign). Those results suggest that organizing the labels

affects the difficulty of the task, but the explanation for those aggregate numbers might

be simply that Basal cell carcinomas are easier to diagnose than Melanomas.

We show the results stratiĄed by diagnose difficulty (as indicated by the Atlas

itself) in Table 4. Those results show that low-difficult lesions can essentially be solved by

current art with relatively high conĄdence, while for difficult lesions performance is still

little better than chance.

Our results are consistent with current art on DNNs: transfer learning is a good

idea, as is Ąne tuning. Our results also suggest, in line with literature in DNNs, that

deeper models lead to better results. We expected that transfer learning from a related

task (in our case, from Retinopathy, another medical classiĄcation task) would lead to

better results, especially in the double transfer scheme, that had access to all information

from ImageNet as well. The results showed the opposite, suggesting that adaptation from
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very speciĄc Ů even if related Ů tasks poses speciĄc challenges. Still, we believe that

further investigation is needed (e.g., can another medical task show better results? Can

another transfer scheme work?).

The results suggest that the experimental design is sensitive to the choice of lesions

to compose the positive and negative classes, maybe due to the relative difficulty of

identifying each of the types of cancer evaluated (Melanomas and Carcinomas).

The results stratiĄed by diagnose difficulty suggest that current art can already

deal with the lower and middle spectrum of difficulty, especially considering that human

doctorsŠ accuracies might be between 75-84% [Ali and Deserno, 2012]. On the other hand,

difficult lesions appear really hard to diagnose.

4.5 Designing a powerful melanoma classifier

We participated in the 2017Šs edition of the ŞISIC Challenge on Skin Lesion Anal-

ysis Towards Melanoma DetectionŤ. Based on previous results, we knew two facts: 1) deep

learning is greedy for data, and 2) the best deep learning approach is a transfer learning

scheme from a huge dataset. So, we based our approach in 3 main factors: data, models,

and simple strategies that could enhance existing architectures.

We provide details about data collection, data usage, preliminary results, and

intermediate analysis, in our report [Menegola et al., 2017b], from which we reproduce

part of the text to compose this Section. The present author contributed to discussions,

experimental design, experimental setup, result evaluation, and writing of the report of

participation.

4.5.1 Experimental Proposal

We started to gather as much as data as possible, which lead us to use of datasets

listed on Section 4.3, expect the Retinopathy, the ISIC Challenge 2018 and Other Sources.

We also excluded images that could cause annotation clashes with the challenge (like

images without a diagnosis from the ISIC Archive, and images marked as Şatypical neviŤ

from PH2).

The Challenge provided official sets for training, validating and testing approaches.

However, since we add external data to the training set (which was allowed), we also

constructed and internal validation set, which better represented the training set and,

hopefully, the unknown testing set.

We gathered the datasets during the competition, so we fully trained models using

part of the datasets (ISIC Challenge, ISIC Archive, and Atlas) and other models trained
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in all available datasets (with the exclusions explained above). We call those different

amounts of data as semi and deploy, respectively.

The open question, however, was the choice of the deep learning architecture. We

based our approach in two models: ResNet-101 [He et al., 2016] and Inception-v4 [Szegedy

et al., 2017]. Both were state of the art and were available in multiple frameworks, pre-

trained for ImageNet with good results. We Ąne-tuned each model in a 3-class scheme:

melanoma vs. seborrheic keratosis vs. other lesions.

Since many other competitors may had similar approaches, we performed a series

of strategies aiming to improve the modelsŠ accuracy. We established an initial agenda of

hypotheses to validate. Omitting a few speculative ideas we did not have time to touch,

those were:

1. Compare standard-resolution images (224 for VGG and ResNet) to double-

resolution images;

2. Contrast different strategies of class- and sample- weighting during training;

3. Compare normal training schedule with some form of curriculum-learning;

4. Contrast different regimens of training and test augmentation;

5. Measure the impact of adding SVM as a Ąnal decision layer;

6. Attempt to use the patient data (age and sex) on classiĄcation;

7. Attempt different model optimizers;

8. Add different types of per-sample normalization;

9. Add a Ąnal meta-decision based upon multiple models (ensemble, stacking, etc.)

Our normal procedure would be to attempt an (incomplete) factorial design, at

least for the factors where we expected cross-effects (e.g., depth × resolution × weighting

× scheduling × augmentation). For the competition, however, there was no time for such

level of rigor. We tested the hypotheses more or less sequentially, revisiting only those

that seemed too surprising, and crossing only the effects for which we had a very strong

expectation for interactions.

Failures: most of our attempts resulted in little to none improvement. We were

not very diligent, however, in pursuing any factor whose effect size seemed small, and we

performed no signiĄcance nor equivalence tests at that time. We sort the list placing Ąrst

the biggest disappointments/surprises Ů the factors we most expected to improve the

results but did not:
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1. Image resolution: we tried both amending VGG-16 to accept larger inputs, and

amending the augmentation procedure of Inception-v4 to accept larger images pre-

cropping (but keeping the network input itself unchanged). Neither attempt im-

proved the results.

2. We attempted several class- and sample- weighting schemes, both to compensate

the unbalancing of the classes, and the reliability of the annotations. In one case we

attributed weights inversely proportional to the frequency of the classes; in another

case we combined those with weights that went from 1 to 3 ranging from Şunknown

follow-upŤ/Şno follow-upŤ until ŞconĄrmed by histopathologyŤ (we attributed 5 to

the official dataset to give it extra weight). The more complex the weighting scheme,

the worse the AUCs Ů no weighting was the best weighting.

3. Validation and early stopping: we tried two ways to perform early stopping: Ąrst,

when our internal validation AUC started to decrease, and second (more aggressive)

when it refused to increase. With a single exception, there was no impact in the

results. We could not afford the very long Ąne-tunings (several weeks) recommended

for Inception in some applications6. It is possible that in those super-long training

scenarios early stopping with validation becomes important.

4. Patient data: we attempted different encodings for incorporating the patient data

(age and sex) into the features, inserting them in the transition between the deep

model and the SVM decision layer. The results were inconsistent, sometimes im-

proving and sometimes worsening the results.

5. Curriculum learning: curriculum learning consists in careful scheduling of the train-

ing samples in order to present a ŞcurriculumŤ of learning steps to the algorithm,

instead of learning the samples at random (e.g., learning the easy cases Ąrst). The

Interactive AtlasŠ samples are annotated with a level of diagnosis difficulty (from a

human point of view), allowing such scheme. We attempted a three-step schedule

(starting with AtlasŠ easy images, proceeding to AtlasŠ easy and moderate images,

and Ąnalizing with all images). The results were worse than simply training with all

images at once.

Success Factors: if most attempts disappointed, some deĄnitely were valuable,

as measured by both the internal and official validation AUCs. We have not, for the

moment, a factorial analysis to quantify the contributions, but we sort the list placing

Ąrst the factors we believe helped the most:

6 https://github.com/tensorflow/models/tree/3be9ece9574d7bac07704e
43705741d9af1de1e6/im2txt#fine-tune-the-inception-v3-model
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1. Models + data: the mere transition to deeper models helped, but not by very much.

It was the combination of deeper models and larger datasets that boosted the num-

bers.

2. Data augmentation: from experience, we knew that training with data augmentation

is critical (i.e., applying random transformations: croppings, Ćippings, etc. on the

images before using them in the network) and made all attempts with it. Train

augmentation is not set to a Ąxed number of transformations: as long as the training

persists, images are sampled from the training set, and random transformations are

applied to them. We found out that test augmentation is critical as well: applying

random transformations to the test sample, submitting those transformed samples to

the network, and then pooling the results. When we employed a SVM decision layer

after the network, augmentation was again fruitful, and when we stacked several

models with a meta-learning SVM, augmentation was yet again important. We

attempted several schemes for pooling, but a simple average pooling worked best in

all cases.

3. Per-image normalization: on Inception, normalizing the inputs to the network by

subtracting the average image pixel improved results considerably. Surprisingly, go-

ing one step further and dividing the pixels by the standard deviation gave worse

results than no per-image normalization at all.

4. Stacking models and meta-learning: fusing the decision of several models gave, al-

most always, better results than just using the single best model, even when using

simple schemes, like averaging the probabilities among the models for a given sam-

ple. However, a meta-learning scheme, using an additional SVM layer to learn the

decision from the probabilities output by the models, gave the best results on the

official validation AUC.

4.5.2 Results and Analyses

Figure 13 shows a subset of 48 out of more than a hundred models we evaluated

(most experiments were too quick-and-dirty to allow inclusion in the plot). From the

beginning we noticed that the correlation between our internal validation AUCs and the

official validation AUCs was far from perfect. In the plots shown, from left to right, the

correlations are R=0.58, R=0.77, and R=0.79. The correlation was particularly bad for

melanoma. That posed a challenge of choosing who to trust: the official or the internal

validation AUC. In the end we chose to trust both (or neither), and included models that

showed good performance in the two axes.

Another difficulty was that the best models for melanoma were not necessarily

those for keratosis and vice-versa. We considered selecting different models for the different
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Symbol Factor Levels

a Model ResNet-101 v2 versus Inception v4
b Train dataset Train split of ISIC Challenge 2017 versus Full: Level 1 + ISIC

Archive + U. of Porto PH2 + U. of Edinburgh Dermofit
c Input resolution Pre-augmentation resolution — 299×299 pixels (305×305 if us-

ing segmentation) versus 598×598 pixels
d Train augmentation TensorFlow/Slim’s default versus Level 1 + rotations = on,

fast_mode = off, minimum_area = 0.20
e Input normalization TensorFlow/Slim’s default versus Subtract mean of samples’

pixels
f Segmentation No segmentation information versus Segmentation pre-encoded

at input
g Training length Short (about half the length of Full) versus Full (30k batches

for ResNet / 40k batches for Inception; batch_size = 32)
h SVM decision layer Absent versus Present
i Test augmentation post-deep No (decision on single non-augmented sample) versus Yes (de-

cision on average of 50 random-augmented samples)
j Test dataset Split of Train/Full vs. Validation of ISIC Chall. ’17 vs. Test of

ISIC Chall. ’17 vs. EDRA/Dermoscopic vs. EDRA/Clinical
t Transfer learning Training from scratch (weights initialized at random) vs. Trans-

fer from ImageNet (checkpoint published by Tensorflow/Slim)

Table 5 – Factors in our experimental designs, with corresponding levels. Table reproduced from Valle
et al. [2017]

4.6 How to Extract Greater Performance From Deep Models?

Our participation in the 2017 ISBI Challenge raised some questions of what are

the main aspects that contribute to improving classiĄcation rates of methods based on

deep learning. That motivated the proposal of an experimental design to eliminate any

doubt. We explore ten choices often faced to design deep networks: model architecture,

training dataset, image resolution, type of data augmentation, input normalization, use

of segmentation, duration of training, additional use of SVM, test data augmentation and

testing set (Table 5).

Most of those factors are not particular to melanoma detection, but are relevant

for all image classiĄers using deep learning. However, a preoccupation with resolution (c),

augmentation customization (d), and segmentation (f) makes more sense for melanoma

detection Ů or at least for medical images in general Ů than for general-purpose tasks,

like ImageNet.

We perform a two-level full factorial experiment, for Ąve different test datasets,

resulting in 2560 exhaustive trials, which we analyze using a multi-way ANOVA.

Here we summarize the main Ąndings and discuss the new perspectives brought by

our results. The details are present in one of our publication [Valle et al., 2017], which parts

of the text are reproduced in this Section. The present author contributed to discussions,

experimental designing, result evaluation, and writing of the paper under review.
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Type Melanoma Nevus Keratosis
ISIC Challenge 2017 train split 374 1372 254
Full train (composition of datasets) 1227 10124 710

Internal test split from full 135 3129 89
ISIC Challenge 2017 validation split 30 78 42
ISIC Challenge 2017 testing split 117 393 90
EDRA Atlas of Dermoscopy (each version) 518 1154 95

Table 6 – Summary of the train and test sets. Table reproduced from Valle et al. [2017].

4.6.1 Experimental Proposal

The main experimental design was a two-level full factorial design for nine of

the ten factors mentioned above (aŰi), for each one of the Ąve test datasets (j), resulting

in 29 × 5 = 2560 treatments evaluated. We run a second experiment to evaluate the

impact of transfer learning, evaluating seven factors (aŰe, g, i, t), and Ąxing (f) as no

segmentation and (h) as SVM layer absent, resulting in 28×5 = 1280 treatments evaluated.

In all experiments, we used the area under the Receiver Operating Characteristic curve

(AUC) as main metric. Following the ISIC Challenge 2017, we use the mean AUC between

the melanoma-vs-all and the keratosis-vs-all as the measured outcome in all experiments.

The analysis for both experiments was a classical multi-way ANOVA, in which

the test datasets entered as one of the factors. That choice highlights our aim to make

decisions that generalize across datasets, in contrast to maximizing the performance for

a particular dataset.

We used all skin lesion datasets listed in Section 4.3, except the IRMA Dataset

and the ISIC Challenges 2016 and 2018.

Data sources affect the train and test datasets. For the train dataset (factor b),

we contrasted (1) using only the official train split of the ISIC Challenge 2017 dataset, to

(2) joining the train split of the ISIC Challenge, the ISIC Archive, the DermoĄt Library,

and the PH2 Dataset and extracting from that full dataset a train split. For the test

dataset (factor j), we contrasted (1) an internal test split extracted from our full dataset;

(2) the official validation split and (3) the official test split of ISIC Challenge 2017; (4)

the dermoscopic images and (5) the clinical images of the EDRA Interactive Atlas of

Dermoscopy. Table 6 summarizes the Ąnal assembled sets.

Segmentation was used only as an ancillary input for classiĄcation (factor f). For

the ISIC Challenge 2017, we had used a segmentation network based on the work of

Ronneberger et al. [2015] and Codella et al. [2015]. For this work, we streamlined that

model, reducing the number of parameters, removing the fully-connected and Gaussian-

noise layers, and adding batch-normalization and dropout layers. The new model7 is faster

to train and occupies much less disk space. We trained the segmentation models on the

7 https://github.com/learningtitans/isbi2017-part1
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same images as their corresponding classiĄcation models.

Skin lesion segmentation is a very challenging task by itself, posing some challenges

like handling with inter-annotator agreement [Ribeiro et al., 2019]. Because of the lack

of literature consensus on how to use segmentation for melanoma detection, we opted

for schemes with minimal changes to both data and networks. We pre-evaluated two

candidates: pixel-wise multiplying the input RGB images by the segmentation masks

versus pre-encoding the four planes (R, G, B, and mask) into three planes, keeping the

rest of the networks unchanged. For the full design, we only considered the latter, which

appeared more promising on those preliminary tests.

Pre-encoding the masks required slightly adapting ResNet and Inception, by

adding the pre-encoding adapter layers. For both ResNet/Inception we added three con-

volutional layers before the input, two layers with 32 Ąlters, and a third with 3 Ąlters. All

convolutional layers used 3×3 kernels and stride of 1. Since ResNet-101-v2 and Inception-

v4 models require input images of 299×299 pixels, the adapter layer took 305×305-pixel

images, to account for the 2 border pixels lost at each convolutional layer.

Most of the time, our full factorial designs are too costly to use Ů thus our next set

of experiments, exploring ensemble techniques, helps in more practical situations. We

evaluated a straightforward ensemble, which just pools the decision of several classiĄers,

and showed that it provides very good performances, without the costs of a full design.

We also simulated the most common procedure employed by researchers and prac-

titioners: sequential optimization of hyperparameters, in which one starts from a

given conĄguration of hyperparameters, selects one of them to evaluate, commits to the

best results, and proceeds to evaluate the next. Although such procedure is very fast (it al-

lows optimizing the nine factors our main design in just 18 experiments), it is sub-optimal

in comparison to ensembles.

Finally, we showed that the customary procedure of optimizing the hyperparam-

eters in the same test set used to evaluate the technique leads to overoptimistic results

in both the ensemble and the sequential design.

4.6.2 Results and Analyses

Here we describe the results of each aspect described in previous subsection (in

bold). The reader interested in particular results can go direct to the highlighted subparts

of the text (with bold and italic).

Main Results: as explained, the main experiment was a full factorial design with nine

two-level factors (aŰi), and Ąve test datasets (factor j). We used a classical multi-way

ANOVA with the mean AUC for melanoma and keratosis as the measured outcome (with

the small technicality of taking the logit of that measure, since, when working with rates,
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Explanation (%) Best AUC (%) Worst AUC (%)
Factor p-value Absolute Relative Treatment Mean Treatment Mean

a Model architecture <0.001 0 1 resnet 84 inception 83
b Train dataset <0.001 5 46 full 85 challenge 81
c Input resolution <0.001 1 5 598 84 299–305 82
d Data augmentation 0.17 0 0 default 83 custom 83
e Input normalization 0.001 0 0 default 83 erase mean 83
f Use of segmentation <0.001 0 2 no 84 yes 83
g Duration of training 0.003 0 0 full 83 half 83
h SVM layer <0.001 0 4 no 84 yes 83
i Augmentation on test <0.001 1 12 yes 84 no 82
j Test dataset <0.001 75 full.split 96 edra.clinical 66

a:b <0.001 1 8 inception/full 86 inception/challenge 80
a:f <0.001 0 2 resnet/no 84 inception/yes 82
b:e <0.001 0 2 full/default 86 challenge/default 80
b:j <0.001 2 full/full.split 98 chall/edra.clinical 63
h:j <0.001 0 no/full.split 97 yes/edra.clinical 65
i:j <0.001 0 yes/full.split 97 no/edra.clinical 65

a:b:d <0.001 0 2 inception/full/custom 86 inception/challenge/custom 78
a:d:e <0.001 0 2 resnet/custom/default 85 inception/custom/default 81
a:f:j <0.001 0 resnet/yes/full.split 97 inception/yes/edra.clinical 65
b:d:e <0.001 0 1 full/custom/default 86 challenge/custom/default 79
c:e:f <0.001 0 1 598/default/no 86 299–305/default/yes 82

Residuals — 12

Table 7 – Selected lines from the 176-line ANOVA table; most of the omitted lines (126) had p-values
≥ 0.05. Absolute explanation based on η

2-measure, relative explanation ignores residuals and
choice of test dataset (j). Table reproduced from Valle et al. [2017].

the logit helps to fulĄll ANOVAŠs assumption of Gaussian residuals). We considered all

main effects, and up to 3-way interactions. We considered higher-order interactions un-

likely and assigned them to the residuals.

Table 7 shows a summary of main experimentŠs ANOVA, with the symbols for

the factors and interactions on the Ąrst column, and the names of the main factors on

the second. The remaining columns show the outcomes of the test. The most important

columns are p-value, which measures statistical signiĄcance, and explanation (%), which

measures effect-size/explanatory power.

We present the absolute explanation (considering the entire table) for reference,

but our analysis is focused on the relative explanation, which ignores the choice of the test

set (j) and the residuals. The reason for ignoring those is that they are not actual choices

for designing a new model; therefore, relative explanations indicate better the relative

importance of choices to practitioners.

The original full table contained all main effects, and up to 3-way interactions.

However, not surprisingly, 126 of the resulting 176 lines were non-signiĄcant interactions,

which were omitted here. We also left out those interactions with relative explanations

lower than 1%, even if signiĄcant. With the notable exception of the customized data

augmentation (d), all main effects were signiĄcant, but most of their relative explanations

were small.

The analysis of the relative explanation shows an unsurprising, but still disap-

pointing result: the performance gains (b) are almost wholly due to the usage of more

data. Other than data, the most important factor was the use of data augmentation on
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test (d). We performed it, as usual, by taking the test image, generating a number (in our

case, 50) of augmented samples exactly like in training, collecting the prediction for each

of the samples, and pooling the decisions (in our case, by taking the average prediction).

Although not surprising for the literature of deep learning, that Ąnding is relevant for the

literature of melanoma detection, where many works still forgo augmentation in the test.

Most of the Ąndings tended to conĄrm the (limited) observations we made dur-

ing the ISIC Challenge 2017, with two notable exceptions. Input resolution (c), which we

deemed unimportant during the challenge, turned out to have a non-negligible effect. That

result is particularly interesting, because we used a very rough form of augmented reso-

lution, by inputting high-resolution images to the augmentation engine, but still feeding

normal-resolution crops to the network. On the other hand, the use of an SVM decision

layer (h), which we considered advantageous during the Challenge turned out to have a

large-effect... only negative! Globally, ANOVA shows it is better not to use the SVM.

Normalization (e) and training duration (g) showed tiny (<1%), but still signiĄcant

positive effects. The choice for those factors must consider their very different costs: adding

normalization costs next to nothing, both in implementation complexity and in training

time. Training duration doubled the already many-hours-long training times.

As usual, most of the interactions were not signiĄcant, and even the ones that were,

had effect sizes too small to be worth noting. A notable exception was the interaction

between model architecture and train dataset (a:b), whose 8% of relative explanation

was bigger than most main effects. Model choice alone favors the simplest ResNet over

Inception, but the combination of Inception with the full dataset is so advantageous that

it offsets that effect. We had already observed, informally, this synergy between more data

and deeper models during the Challenge.

The most disappointing result was the use of segmentation, which was more than

unhelpful, harmful. This result, however, is contingent on our choice for adding segmen-

tation to classiĄcation.

Correlations of Metrics and Testing Sets: we performed an additional correlation

analysis with the full factorial experiment (Figure 14), to highlight the correlations (a)

among results on different test datasets; and (b) among different metrics. To keep the

scatter plots directly interpretable, instead of taking the logit of the rates, we dealt with

the non-linearity by using SpearmanŠs 𝜌 instead of PearsonŠs 𝑟 as correlation measure.

The correlogram on Figure 14(a) considers, as the ANOVA, the mean

melanoma/keratosis AUC. The test dataset names appear in the diagonal, along with

the maximum and minimum AUCs obtained for the 512 variations of the full design on

that dataset. The scatter plots in the upper-triangular matrix follow the usual construc-

tion for correlograms. The lower-triangular matrix displays the SpearmanŠs 𝜌Šs: the mean
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estimate appears as the printed numeral and as the area of the solid circle; the bounds of

the 95%-conĄdence interval appear as the area of the internal and external dashed circles.

Negative correlations appear in red.

The correlation between different test datasets is far from perfect. That is, perhaps,

obvious, but must be stressed, since it reveals that naively hyperoptimizing a model on

one test set will not necessarily generalize to other data. The relationship between splits

of different datasets is more subtle. Note how the correlation between the validation and

the test splits of ISIC 2017 Challenge, and the dermoscopic and clinical splits of EDRA

have the highest correlations. This suggests that results measured on splits of the same

dataset may not wholly generalize over data of the same type obtained on different condi-

tions. Both phenomena show how hyperoptimizing on test gives unwarranted advantages,

leading to overoptimistic assessments.

The correlogram on Figure 14(b) considers only the results for the test split of the

ISIC Challenge. Different metrics appear in the diagonal: average precision, area under the

ROC curve, sensitivity (true positive rate), and speciĄcity (true negative rate), for both

melanoma and keratosis. The interpretation of the plots, numerals, circles, and colors is

the same as above.

This correlogram is interesting for showing that many metrics have correlations

that are not that big. Particularly noteworthy is the speciĄcity, which has not only a

negative correlation with sensitivity (as expected), but also a negative or very small

correlation with most of the other metrics.

The Impact of Transfer Learning: we run a second full factorial design, with seven of

the ten factors of the main experiment (aŰe, g, i, j), Ąxing factors (f) and (h), and adding

a factor to evaluate the presence versus absence of transfer learning (factor t). The new

factorial design, with 28 × 5 = 1280 treatments, shows transfer learning as critical for

performance: it explains (favorably) 14.7% of the absolute variation, and a whopping

62.8% of the relative variation of performance (computing those metrics the same way as

the in the main experiment, i.e., excluding the residuals, and the choice of test dataset and

its interactions from the relative variation), with high signiĄcance (p-value below 0.001).

We omit the ANOVA table for concision. Those results reinforce previous Ąndings on the

importance of transfer learning for melanoma detection [Menegola et al., 2017a].

The Sequential Procedure to Design a Model: the sequential procedure tries to

avoid the costs of full factorial designs, whice are way too expensive for the majority

of situations. The sequential procedure relies on taking a single factor to optimize, and

performing a couple of experiments on that factor alone, keeping all others Ąxed (starting

from a combination considered reasonable). Once a factor is decided, one commits to it

and takes the next to optimize, until the procedure is complete. Here we evaluated the

impact of such approach.
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We take, at random, both the starting treatment and the sequence of factors to test.

For factors not yet optimized, the level is given by the starting treatment. Each factor is

optimized in turn, by comparing the performance of the alternative treatments on the full-

factorial data of a chosen hyperoptimization dataset. The outcome of a single simulation

is the performance of the optimized treatment on a chosen measurement dataset. We use

the mean keratosis/melanoma AUC as the performance metric.

Figure 15 shows the results for pairs of hyperoptimization× measurement datasets,

where we perform 100 simulations for each pair. The actual measurements appear as black

dots, and the violin plots show their estimated density, while the big red dot shows their

mean. The most notable observation is the (unrealistic) advantage of hyperoptimizing and

measuring on the same dataset: not only do we get higher averages, but also a smaller

variability. The advantage of hyperoptimizing and measuring on splits of the same dataset

is more subtle, but present.

The expense of the full factorial design, the instability of the sequential procedure,

and the limited correlation of performances across datasets seem to leave few options to

practitioners. Fortunately, single-model schemes are seldom used today, and ensembles of

several models help to alleviate those issues.

Ensemble Approaches: we simulated different ensemble strategies, by pooling the pre-

dictions of models present in our full design. We evaluate three pooling strategies: average,

max, and extremal. Average- and max-pooling work as usual. Extremal pooling takes,

from the list of values being pooled, the value most distant from 0.5 Ů it may be seen

as an Şhypothesis-invariantŤ max-pooling. In all cases, after pooling, we re-normalize the

probability vector to ensure it sums up to one. Half the models in the full design entered

as candidates, and we discarded in this experiment the models with the SVM layer, due

to issues in making their probabilities commensurable with the deep-only models.

Figure 16 shows the main results. Average-pooling was, by far, the best choice for

pooling the decision. Such clear-cut advantage came as a surprise for us, as max-pooling

often outperforms average-pooling in related tasks. If no other information is available,

simply average-pooling randomly selected models is a reasonable strategy.

The use of dozens Ů even hundreds Ů of models may sometimes be justiĄed in

critical tasks (like medical decisions), but training and evaluating so many deep networks

is cumbersome. Fortunately, as Figure 17 shows, a handful of models seem to work just

as well. The results shown here are the Şgood newsŤ part of this paper: we can escape

the expense of the full factorial design, and the instability of the sequential designs, by

averaging a dozen or so models with parameters chosen entirely at random Ů although

the random ensembles start very unstable, they soon converge to a reasonable model, in

average and variability. If we decide to perform a full factorial, there is good news too:

the best models learned in one dataset seem to be informative to compose the ensembles
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4.7 New Perspectives For Skin Lesion Analysis

Motivated by our good performance in the ISIC competition of 2017 as well as the

discoveries described in Section 4.6, we decided to participate in the 2018 edition of the

ISIC competition.

We participated in the three tasks of the Challenge, but here we describe the

experiments related to image classiĄcation. The other tasks and detailed explanations

can be found at our report [Bissoto et al., 2018a], from which we reproduce part of the

text to compose this Section. The present author contributed to discussions, activities

organization, and writing of the report.

The experiments conducted in the previous months allowed the creation of a robust

framework, aimed at increasing the performance of computational methods for automatic

melanoma screening. However, the main task of the competition is no longer the identi-

Ącation of melanomas amongst other lesions, and it has become a multiclass task, which

requires discrimination of multiple types of skin lesions.

It is, therefore, an even more complex and even more demanding problem, partic-

ularly for the minority classes. To improve our chances, we also introduced two original

contributions Ů synthetic lesions generation and stronger data augmentation approaches

Ů to boost the models training. Such contributions will be detailed next.

4.7.1 Experimental Proposal

In previous work, we showed that the training set size responds by almost 50% of

the variation on the prediction power of the classiĄer [Valle et al., 2017]. The freedom to

use external sources enabled us to gather more data to boost our models. Therefore, in

addition to the official basis of the competition 2018, we also use the data ISIC Archive,

Atlas, DermoĄt, PH2 and Other Sources (Section 4.3), ending with 30,324 images (with

diagnosis label).

After picking a dataset, we divided it the into 3 splits, for each task: 10% for

holdout (for our internal model selection) and the remaining 90% for training. The training

split was further divided into Ąve 10%-validation/90%-training different splits (at random,

not using cross-validation folds). We considered case numbers, aliases, and near-duplicates

in the split division, to minimize contamination across splits.

We used the holdout sets to select the models. We used the metrics observed

in the holdout sets to identify strong release candidate models and/or good bets for a

meta-learning phase. Although the official validation data was very limited on this yearŠs

Challenge, we still used its scores as ancillary estimates. The exact datasets and splits,
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Figure 18 – Samples of high-definition, visually-appealing, clinically-meaningful synthetic skin lesion im-
ages. All samples are synthetic. Image reproduced from Bissoto et al. [2018b].

for each task, are listed, image by image, in our code repository8.

For this year we took advantage of our recent results regarding new approaches

for data augmentation: (a) image processing of real skin lesion images [Perez et al., 2018],

and (b) synthetic skin lesions using Generative Adversarial Networks (GANs) [Bissoto

et al., 2018b].

In work (a), we investigated the impact of 13 image processing-based scenarios of

data augmentation for melanoma classiĄcation. Scenarios include traditional color and ge-

ometric transforms, and more unusual augmentations such as elastic transforms, random

erasing and a novel augmentation that mix two different lesions. Using our participation

on ISIC Challenge 2017 (with Inception-v4) with as baseline, we observed similar per-

formance using the new data augmentation methods, but without using external data.

That is, the image processing data augmentation methods were equal to the performance

of the model trained with external data (which we know that has a huge impact on the

classiĄer prediction power). Among all experiments and scenarios, scenario J (random

crops, simulation of camera distortions, random horizontally and/or vertically Ćips and

saturation, contrast, brightness and hue modiĄcations by random factors Ů please refer

to Perez et al. [2018] for details) leads to better performance and was the one introduced

in the experiments of the competition (only in Task 3).

In work (b), we created fake high-resolution (1024×512 pixels) skin lesion samples,

aiming to extend the training set artiĄcially. To do that, we used GANs to teach the

network the malignancy markers and also incorporating the speciĄcities of a lesion border.

Please refer to Bissoto et al. [2018b] for details. Figure 18 shows some examples of the

generated images.

We used the synthetic images only on Task 3 (on the two submissions using external

data). We added the synthetic images to the training/training splits (never to the holdout

or to the training/validation splits) keeping a 1:1 per class proportion (i.e., one synthetic

image for each real image in each lesion class).

We trained three different CNN architectures: Inception-v4 [Szegedy et al., 2017],

ResNet-152 [He et al., 2016], and DenseNet-161 [Huang et al., 2017], all pretrained on Ima-

geNet dataset. We Ąne-tuned the networks on three datasets: full, only, and full+synthetic

8 https://github.com/learningtitans/isic2018-{part1,part2,part3}
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augmentation.

To deal with dataset imbalance, we set the optimization goal to a class-weighted

cross-entropy, with the weights calculated by dividing the frequency of the most common

class by the frequency of each class.

We performed online data augmentation as described in Perez et al. [2018] (scenario

J). We applied the transformations to the validation (single replica), holdout (32 replicas),

and Ąnal test (128 replicas), taking the decision as the average of the replicas.

4.7.2 Results and Analyses

Our three submissions were (1) XGBoost ensemble of 43 deep learning models; (2)

average of 8 best deep learning models (on the holdout set) augmented with synthetic

images9 and (3) average of 15 deep learning models trained only with Challenge data. Our

Ąnal results on the official testing set were, respectively, 0.732, 0.725 and 0.803 for the

normalized multi-class accuracy. Also, our positions of each submission were, respectively,

32th, 39th and 9th among 141 submissions.

We are very excited to see the ISIC Challenge as a continuing event, since we

consider such initiative as pivotal for the development of our research area. Until recently,

making comparisons across different approaches for skin lesion analysis was essentially

impossible, due to difficulties of code and data sharing, and lack of standardized evaluation

metrics and datasets [Fornaciali et al., 2016]. We also acknowledge the importance of

keeping the testing set secret until all evaluations were over, preventing, thus, subtle

methodological errors that inĆate the performance evaluation of models [Valle et al.,

2017; Salzberg, 1997].

Despite the diversity of skin lesion types and their dermatological importance, we

asked ourselves whether making the classiĄcation task (Task 3) so Ąne-grained was really

necessary, especially given the huge class imbalance. We fear that confusion among very

small classes (e.g., Benign Keratosis and Actinic Keratosis) will bring much noise to the

evaluation. In our current research, we are still focusing on coarse-grained melanoma/non-

melanoma screening/triage classiĄers Ů and we notice that real-world performances even

for such coarse-grained procedures are still far from ideal.

4.8 Deep Learning Requires Data: Is Our Data Flawless?

Knowing the value of the data for machine learning, we decided to investigate

the potential of the already existing datasets for the development of robust solutions. Our

9 N.B. that approach is wrongly named as an average of 15 models on the official leaderboard
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objective was to analyze how the computational models take advantage of the information

provided by the images, as well as to assess the quality of such bases.

Due to the scarcity of good-quality, annotated skin lesion images, two datasets

dominate research on automated skin lesion analysis: the Interactive Atlas of Dermoscopy

and the ISIC Archive (Section 4.3). The problem of having so few, relatively small datasets

dominating much of research in automated skin analysis, is the risk of datasets biases. If

bias is present even in bigger and more diverse datasets [Torralba and Efros, 2011] like

ImageNet [Russakovsky et al., 2015], it is naive to think it is not present in the smaller

and harder to obtain skin cancer datasets, where we lack works identifying the possible

sources of dataset bias.

We also know that there are visible artifacts introduced during the image acqui-

sition process (e.g., dark corners, marker ink, gel bubbles, color charts, ruler marks, skin

hair) [Mishra and Celebi, 2016] that could inĆate models performances due to spurious

correlations. Despite being impossible to eliminate wholly, it is crucial to understand

bias and its sources to improve our image acquisition processes and deep learning models

further.

Our hypothesis is: if we hide the lesion information from the networks, can it

still learn patterns that help differentiate benign from malignant lesions? We believe that

when a model learns to classify malignant lesions by analyzing only the skin Ůwithout

information on the borders, biological markers or lesionsŠ diameterŮ it strongly relies on

patterns introduced during image acquisition and general dataset bias.

We published our main Ąndings in our last paper [Bissoto et al., 2019], from

which we reproduced some parts to compose this thesis. The present author contributed

to discussions, part of the experiments, and writing of the published paper.

4.8.1 Experimental Proposal

For our experiments, we select only the dermoscopic samples, remove ŞduplicatesŤ

(some medical cases have multiple images), and include only the classes present in the

dataset of task 2 of 2018 ISIC Challenge (melanoma, nevus, and seborrheic keratosis).

Those alterations result in a dataset containing 872 images.

We Ąrstly employ the 7-point checklist [Argenziano et al., 1998], a score-based

medical algorithm, to verify bias in the Atlas dataset. This way we can isolate the neu-

ral networkŠs learning capabilities. Dermatologists use attribution pattern analysis to

diagnose malignant cases. The 7-point medical algorithm assigns a score to each of the

dermoscopic attributes (see Table 8). The medical practitioner needs to accumulate the

scores over the detected present attributes. If this score surpasses a threshold, the lesion

is assigned as a melanoma. We use the 7-points checklist score instead of other medical
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# Criterion Definition 7-point score

Major criteria
1 Atypical pigment network Black, brown, or gray network with irregular meshes and thick lines 2
2 Blue-whitish veil Irregular, conĆuent, gray-blue to whitish-blue diffuse pigmentation 2
3 Atypical vascular pattern Linear-irregular or dotted vessels not clearly combined with regression structures 2

Minor criteria

4 Irregular streaks
Irregular, more or less conĆuent, linear structures not clearly combined with
pigment network lines

1

5 Irregular pigmentation Black, brown, and/or gray pigmented areas with irregular shape and/or distribution 1

6 Irregular dots/globules
Black, brown, and/or gray round to oval, variously sized structures irregularly
distributed within the lesion

1

7 Regression structures
White areas (white scarlike areas) and blue areas (gray-blue areas, peppering,
multiple blue-gray dots) may be associated, thus featuring so-called blue-whitish
areas virtually indistinguishable from blue-whitish veil

1

Table 8 – The 7-Point Checklist [Argenziano et al., 1998]. Seven features compose the checklist, divided
into major and minor criteria. The major criteria are associated with 2 points each one; the
minor criteria are associated with 1 point each one. The simple addition of the individual scores
a minimum total score of 3 indicates a melanoma, whereas a total score of less than 3 suggests
a non-melanoma.

algorithms because it was available as metadata of the Atlas dataset. It achieves 91.7%

AUC over all selected Atlas samples (see Figure 19).

To help us to understand that result, we adopted the melanoma classiĄcation

benchmark [Brinker et al., 2019] to measure the expected performance for dermatolo-

gists, in an unbiased scenario. This benchmark is the result of a study with 157 German

dermatologists to be a reliable benchmark for artiĄcial intelligence algorithms. Brinker

Šs procedure were to send an electronic questionnaire to dermatologists containing 100

dermoscopic images (80 nevi and 20 biopsy-veriĄed melanoma) randomly chosen from

the ISIC Archive, asking for their evaluation. The AUC achieved by dermatologists for

dermoscopic images (which is the case for our Atlas set) is 67%.

The huge gap between the 7-point checklist performance with the melanoma classi-

Ącation benchmark reveals it is biased due to the characteristics and educational objectives

of the Atlas dataset. Low and medium difficulty cases selected to compose the dataset are

probably hand-picked to be good examples to teach new medical practitioners to identify

and classify dermoscopic attributes, while hard cases are exceptions to the pattern-based

analysis.

Next, we try to Ąnd the source of bias, by gradually destructing clinical-meaningful

information from the images, and assessing the networkŠs performance on them.

To accomplish our goals, we propose destructive actions in the target datasets

(Figure 20). First, we introduce our ideas to exploit the deep neural network learning

capabilities.

We use the same network architecture and hyperparameters for all experiments. We

employ an Inception-v4 network [Szegedy et al., 2017], widely used for computer vision,

and well-established for skin lesion analysis. We Ąne-tune the ImageNet [Russakovsky

et al., 2015] pre-trained network to the target dataset. We resize the input images to
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Traditional images

Only Skin images

Bbox images

Bbox70 images

Figure 20 – Samples from each of our disrupted datasets. We gradually remove cogent information, until
there is no information left to apply any aspect of medical score algorithms [Argenziano
et al., 1998; Friedman et al., 1985]. Next, we use those sets to evaluate if the network can
still learn patterns with the information left to correctly classify skin lesions. Best seen in
digital format. Image reproduced from Bissoto et al. [2019].

more generic dataset, with fewer effects of human bias. We apply the same 10 split

generation procedure we described for this experiment, except for the diagnostic

difficulty stratiĄcation (the information is not present for the ISIC dataset).

• Destructing Cross-dataset: We increase the difficulty by experimenting with a

cross-dataset fashion. We train with all 2, 594 samples from the ISIC dataset and

evaluate on the complete 872 images set from Atlas. The differences between the

statistics between those two datasets make this task harder, and better reĆect a

real-world setting [Torralba and Efros, 2011]. We repeat that experiment 10 times,

for statistical signiĄcance.

4.8.2 Results and Analyses

Figures 21 and 22 show the networkŠs performance for the different sets.

High difficulty lesions classiĄcation seem to be a very hard and speciĄc task to the

network, as it is for dermatologists. It could not learn clinical patterns properly with the

training set, and destroying information do not inĆuence the results. We understand that

the network is probably exploiting image acquisition artifacts and dataset bias.
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When experimenting in a cross-dataset fashion, the performance drops as expected,

because of the differences between the statistics of Atlas and ISIC. The behavior of the

network is similar in all experiments, and the following analysis can be generalized.

Traditional has the best overall performance, as expected. The network results

follow the annotation of difficulty to diagnose by dermatologists. The results start to

drop in Only Skin, where we start to deconstruct the information. When we remove the

pixel information inside the lesion, we are removing all the information about dermoscopic

attributes. The only clinically-meaningful information present is the border of the lesion,

that could be used to verify its symmetry and irregularity, and skin features, such as

vascularization.

When we remove the information of the borders, on Bbox, the performance lower,

even more, revealing that we removed an essential feature for classiĄcation. An expla-

nation, referring to medical algorithms like ABCD [Friedman et al., 1985], is that the

diameter of the box contains the information on the size of the lesion, which is also

relevant information when diagnosing skin lesions.

At Bbox70, we remove 70% of all pixels in the image and all medical relevant

features that could aid the classiĄcation. Still, surprisingly, the network can make sense

of visual features to make decisions that are much better than chance. There is a pattern

within the available pixels that contain information that leads to the correct label. This

is shocking. The numbers achieved by the network at this point even surpass the AUC

achieved by dermatologists on the melanoma classiĄcation benchmark. As sanity check, we

performed an experiment hiding all image information, feeding the network (for training

and testing) only zero-Ąlled images. We achieved an AUC of 50%, which is expected since

AUC is insensitive to class balance.

We believe that dataset bias is the culprit for inĆating the networkŠs performance

in our destructive experiments, introducing artifacts [Mishra and Celebi, 2016] that un-

desirably can deviate the networkŠs attention from more critical features. We also verify

that bias is not only present in the smaller educational purpose Atlas dataset, but also

the most diversiĄed ISIC dataset. Even performing the experiments in a cross-dataset

fashion (the network is trained on ISIC, and tested on Atlas), the unnatural behavior

persists, attesting to the fact that these two datasets may also share the same bias. We

will address the exact causes and artifacts in future works.

Another possibility is that there is meaningful information at the borders of the

images (parts that were not affected by the destruction procedures). This is unlikely

because according to medical algorithms [Argenziano et al., 1998; Friedman et al., 1985;

Abbasi et al., 2004], there is no information left to account.

Summarizing, the main contributions of these experiments are:
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• We provide a discussion to raise awareness of bias in the automated skin lesion

analysis community to improve the next generation of solutions for classifying skin

lesions in the real world.

• We perform single- (training and testing on the same dataset) and cross-dataset

(training on ISIC and testing on Atlas) experiments, and Ąnd that in both cases,

the networks are able to maintain a surprising amount of accuracy, even after almost

all cogent information has been destroyed.

4.9 Conclusion

This Chapter showed all the hypotheses and experiments conducted throughout

the research. We were always guided by the desire to raise the quality and reliability

of current techniques to allow their usage in real scenarios. Therefore, our contributions

Ů much more than just reaching new state-of-the-art results Ů discuss methodological

phenomena delaying the continuous improvement of existing methods.

Starting from a more in-depth analysis of the use of transfer learning Ů a practice

consecrated in the literature of image classiĄcation and automated melanoma screening

Ů we were able to elucidate the real contribution of this technique to the central problem,

also listing a series of new perspectives that may direct future work, such as the use of

other medical datasets to reĄne melanoma models.

We also focus on the experimental design of image classiĄcation techniques, propos-

ing a robust framework specially designed for automatic screening of skin lesions. The main

Ąnding is that the size of training data has disproportionate inĆuence, explaining almost

half the variation in performance. Of the other factors, test data augmentation and input

resolution are the most helpful. Deeper models Ů when combined, with extra data Ů also

help. We show that the costly full factorial design, or the unreliable sequential optimiza-

tion, are not the only options: ensembles of models provide reliable results with limited

resources. Those results are relevant for future work on automated melanoma screening

since they indicate which aspects of deep learning should be scrutinized to deliver better

results.

In addition to more reliable experimental designs, we also analyze the quality of

the datasets used in related research, showing the problems that the biases of such data

causes, and raising many concerns about data that should be taken into account in future

work.

Finally, besides participating in international competitions for skin lesion analysis

through images, we distribute our codes for use by the community11, in order to increase

11 All source code of this work is available at: https://sites.google.com/site/robustmelanomascreening
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the reproducibility of related literature.

In the next Chapter, we analyze our contributions to the current art and discuss

future works.
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5 Conclusion

In this Ąnal chapter, we summarize the major contributions and Ąndings of this

work, and discuss exciting directions for future works Ů discoveries and reĆections that

we could not address in this thesis due to limitation of time and scope.

5.1 Contributions

In this work we studied the current art of automated melanoma screening in an

interdisciplinary way. We aimed to identify the main aspects of this research Ąeld, with

a focus on deployment to the real world. We saw that computational, medical, and legal

requirements must be addressed to enable such deployment.

Although the Ąeld has experienced a sharp advance in recent years, especially in

what concerns Computer Sciences, there was still plenty to be done: in this work we

proposed, evaluated, and delivered several experiments towards developing robust deep

learning approaches for melanoma screening. We also surveyed the legal requirements

to evaluate artiĄcial intelligence solutions for healthcare. We saw that methodological

gaps of the current literature impose important challenges on the rigorous evaluation of

existing solutions, which may, in turn, affect how new solutions are evaluated by regulatory

agencies, and affect the whole chain of deployment of solutions on the market. That is

concerning, considering that software and hardware devices for assisted analysis of skin

lesions are already being commercialized.

Finally, in the medical area, we investigated an interdisciplinary agenda of collab-

oration with physicians, concluding that those partnerships are crucial for speeding up

the improvement of current art and creation of solutions aligned to real needs.

Our main contributions are:

• an interdisciplinary meta-analysis of current literature;

• a series of machine learning methodological guidelines to develop automated

melanoma systems better;

• new perspectives for future works, enriching the discussions of current art.

5.2 Future Work

In this section, we discuss open challenges and future perspectives to develop au-

tomated melanoma screening for real-world scenarios. From a practical point of view,
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recent work shows that automatic methods can overcome human rates of recognition of

malignant skin lesions [Esteva et al., 2017; Haenssle et al., 2018; Tschandl et al., 2019].

However, these experiments are conducted under controlled conditions that do not nec-

essarily reĆect clinical reality.

Our work has shown that the degradation of the accuracy rates of machine learning

models from conception to implantation is also a phenomenon observed in the melanoma

screening literature. Mitigating this challenge is a critical step to allow the use of such

systems in clinical situations. We have both demonstrated feasible steps that can reduce

the excessive optimism on how models are evaluated (Section 4.6), and showcased how

current datasets may give biased hits to AI models that are not necessarily biomedical

relevant (Section 4.8).

From a broader perspective, to promote real-world screening solutions, we believe

that future research must address the following six aspects:

• know which system to develop: ArtiĄcial Intelligence is gaining more attention

for medical purposes. Researchers should deliberate about the implications of having

CAD software of that nature deployed in the public or private health systems: are

patients ready to receive a diagnosis from a machine? We argue that a referability

framework is potentially more fruitful than a diagnostics framework. Referring to

the doctor both the cases in which the model has high conĄdence for the positive

label and the hard cases (for which the model has low conĄdence), might be more

achievable in the short term than attempting to have high conĄdence for all cases;

• broaden the availability of data for research: our experiments have shown

the importance of data for models based on deep learning, so continuing efforts to

capture and disseminate them must be a continuous effort. Other possibilities would

be working with the already available data, augmenting the datasets artiĄcially.

For examples, with typical data augmentation approaches, or with another kind of

augmentation, like the ones inspired in biological aspects of the disease [Vasconcelos

and Vasconcelos, 2017]. Another approach that should be investigated is the usage

of GANs to generate artiĄcial images of skin lesions that are so convincing as to

deceive physicians about their artiĄciality [Bissoto et al., 2018b];

• incorporate clinical data from patients: we performed very few experiments

on the beneĄt of using patient data in model construction. The literature itself is

inconclusive about whether that information helps to deliver the diagnosis or not.

However, clinical data is something that future research should investigate ade-

quately. Dermatologists use this kind of information Ů e.g., if the lesion is growing,

if it itches, if it bleeds, if it hurts, its location and patientŠs age and sex Ů to better
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diagnose skin lesions. So, why they are not fully incorporated in current methods

for automated screening?

• be aware of medical procedures: the medical algorithms to detect malignant skin

lesions help improving human accuracy rates. However, if future research continue

trying to implement such as they are, we believe that the predictive power of the

models will be limited, because machines ŞthinkŤ different as humans; instead, we

argue that trying to understand the rationale behind such algorithms would be more

helpful to incorporate medical knowledge on modern approaches;

• increase the variability of image sources in reference datasets: rather than

acquiring new images, it is interesting that public databases contain data from dif-

ferent sources to broaden the representation of the population. The biggest problem

when implementing a real-time automatic classiĄcation system is that the system

will have access to data many times different from the ones used in its construction.

Decreasing this gap is a way to avoid the natural degradation of the models;

• investigate standardized forms for skin lesion imaging: variability of data

sources and acquisition processes make models more generalizable and robust for

real-life use. However, stipulating a standardized data acquisition can be beneĄcial,

because the machine no longer has to learn issues related to lighting, resolution,

brightness, and can focus on more relevant nuances such as skin patterns, prototypes,

and skin aging.

From the computing point of view, we believe that past models (global descriptors,

BoVWs) can no longer compete with DNNs, even in the context of small-dataset medical

applications. If some model can beat DNNs, it is a model from the future, not from the

past. In our group, our current research efforts on automated diagnosis rely on DNNs,

for example, exploring tuning approaches, deeper models, and assembling of different

techniques. Since 2015 the literature has presented solutions based on deep learning,

generating better results. We believe that this path is no longer back, so future works

should surely invest in this kind of approach.

In addition to lesion classiĄcation aiming at diagnosis, automated screening in-

volves other relevant tasks: lesion detection, segmentation, registration, and tracking. For

many of those tasks the main aim is building/analysing a time series of lesion evolu-

tion. Indeed, as techniques like full-body skin scan increase in popularity, automating

those tasks may become critical Ů but currently there is essentially no publicly available

dataset allowing researchers to work on lesion tracking or evolution.

We believe it would beneĄt everyone if researchers were more aware of regulatory

processes, and had them in mind when designing and conducting their experiments. Such
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knowledge should ideally inform everything from the quality of the code in current pro-

totypes, until future clinical trials that hopefully will happen when the Ąeld matures.

Although not all published works are interested in launching market products for auto-

mated screening, quality concerns would beneĄt the entire Ąeld: including colleagues who

are attempting to reproduce othersŠ works. Researchers should also be aware that their

works, even when not intended for clinical settings, set a Şbackground standardŤ of how

techniques are perceived/evaluated by regulatory agencies.

An exciting new frontier for automated skin analysis is the arrival of new types of

data, including new types of images. Newer imaging technologies such as infrared imaging,

multispectral imaging, and confocal microscopy, have recently come to the forefront in

providing the potential for greater diagnostic accuracy. Again, the limitating factor is the

lack of publicly available datasets: we hope to see new developments in those areas, that

allow collaboration in the acquisition of these types of data.

Advances in the literature have already brought signiĄcant changes on melanoma

screening. ArtiĄcial Intelligence for automated lesion analysis is already here. We still

fall short of deploying accurate, robust systems in real-world clinical settings, but the

directions above indicate many possibilities to make that possible. We are excited to see

what the future holds.

5.3 Publications

We highlight the following publications, results of the Ph.D.:

Journal Papers:

• Valle, E., Fornaciali, M., Menegola, A., Tavares, J., Bittencourt, F. V., Li, L. T., &

Avila, S. (2017). Data, Depth, and Design: Learning Reliable Models for Melanoma

Screening. (in press at Neurocomputing)

Conference Papers:

• Bissoto, A., Fornaciali, M., Valle, E., & Avila, S. (2019). (De) Constructing Bias on

Skin Lesion Datasets. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition Workshops (pp. 0-0).

• Menegola, A., Fornaciali, M., Pires, R., Bittencourt, F. V., Avila, S., & Valle, E.

(2017, April). Knowledge transfer for melanoma screening with deep learning. In

2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) (pp.

297-300). IEEE.
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Preprints:

• Fornaciali, M., Carvalho, M., Bittencourt, F. V., Avila, S., & Valle, E. (2016). To-

wards automated melanoma screening: Proper computer vision & reliable results.

arXiv preprint arXiv:1604.04024.

Technical Reports:

• Bissoto, A., Perez, F., Ribeiro, V., Fornaciali, M., Avila, S., & Valle, E. (2018).

Deep-Learning Ensembles for Skin-Lesion Segmentation, Analysis, ClassiĄcation:

RECOD Titans at ISIC Challenge 2018. arXiv preprint arXiv:1808.08480.

• Menegola, A., Tavares, J., Fornaciali, M., Li, L. T., Avila, S., & Valle, E. (2017).

RECOD titans at ISIC challenge 2017. arXiv preprint arXiv:1703.04819.

5.4 Achievements

This research also received the following prizes and distinctions:

• Google Research Awards for Latin America (2016 and 2017)

• 1st place on Şmelanoma classiĄcation taskŤ @ ISIC Challenge 2017

• Honorable mention of a post presentation of our Ąrst conference paper Menegola

et al. [2017a] @ Ş12a Conferência Brasileira sobre MelanomaŤ, São Paulo/SP (2017)

• 5th place (4th team) on Şlesion diagnosis task Ů challenge data onlyŤ @ ISIC

Challenge 2018

• 2nd place in the ŞBest Paper AwardsŤ of the conference paper Bissoto et al.

[2018b] @ Ş2nd International Educational Symposium of the Melanoma World So-

ciety (MWS)Ť, Rio de Janeiro/RJ (2018)
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