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Abstract

Multimedia video services traffic is rapidly growing in mobile networks in recent years. Video
services using Dynamic Adaptive Streaming over HTTP (DASH) techniques have dominated
the total internet traffic to carry video traffic. Mobile Network Operators (MNOs) are expected
to run on with this growing demand for DASH-supported video traffic while providing a high
Quality of Experience (QoE) to the end-users. Besides, operators need to have a crystal notion
of video quality perceived by the end-users and correlate them with network-level monitoring
or telemetry information for problem identification, root cause analysis, and pattern prediction.
To ensure QoE—aware network traffic management, a prerequisite for the MNOs is to monitor
the network traffic passively and measure objective QoE Key Performance Indicators (KPIs)
(such as resolutions and stalling events) effectively that directly influence end-user subjective
feedback. Many literature approaches have been proposed to measure the KPIs aimed to deliver
acceptable video service quality. Most of the solutions require end-user awareness, which is not
viable from the MNOs’ perspective. However, Deep Packet Inspection (DPI), another most
widely used solution to estimate the KPIs directly from network traffic, is not a convenient
solution anymore for the operators due to the adoption of end-to-end video streaming encryption
over TCP (HTTPs) and QUIC transport protocol. Hence, in recent, Machine Learning (ML)
has been accepted as a well-recognized solution for estimating QoE KPIs by analyzing the
encrypted traffic patterns and statistics as Quality of Service (QoS).

This work presents an ML-based lightweight and fine-grained Edge QoE Probe approach
to estimate the end-user QoE for DASH video service by passively monitoring the encrypted
network traffic on the edge of the network. Our approach can assess numerous QoE KPIs (such
as resolution, bit-rate, quality switches, startup delay, and stall ratio) both in a real-time and
per-session manner. Moreover, we investigate the DASH video service performance over the
traditional TCP (HTTPs) and QUIC transport protocol in this work. For this purpose, we ex-
perimentally evaluate different cellular network traces in a high-fidelity emulated testbed and
compare the behavioral performance of Adaptive Bitrate Streaming (ABS) algorithms consid-
ering QoE KPIs over TCP (HTTPs) and QUIC. Our empirical results show that QUIC suffers
from traditional state-of-the-art ABS algorithms’ ineffectiveness to improve video streaming
performance without specific changes.

Keywords: Dynamic Adaptive Streaming over HTTP (DASH); Quality of Experience (QoE);
Quality of Service (QoS); Machine Learning (ML); Edge Computing (EC); Transport Protocol.



Resumo

O trafego de servigos de video multimidia esta crescendo rapidamente nas redes méveis nos
ultimos anos. Os servigos de video que usam técnicas de Dynamic Adaptive Streaming sobre
HTTP (DASH) dominaram o trafego total da Internet para transportar o trafego de video.
Espera-se que as operadoras de rede moével (Mobile Network Operators - MNOs) continuem
atendendo a essa demanda crescente por trafego de video suportado por DASH, ao mesmo
tempo em que fornecem uma alta qualidade de experiéncia (Quality of Experience - QoE)
aos usudrios finais. Além disso, as operadoras precisam ter um conhecimento claro acerca da
qualidade de video percebida pelos usuarios finais e relaciona-la com o monitoramento em nivel
de rede, ou com informagoes de telemetria para identificagao de problemas, andlise da causa raiz
e predicao de padroes. Para garantir um gerenciamento de trafego de rede com reconhecimento
de QoE, um pré-requisito é que os MNOs monitorem o trafego de rede passivamente e realizem
medigoes efetivas de indicadores-chave de desempenho (Key Performance Indicators - KPIs)
de QoE, como resolugoes, eventos de paralisagao, entre outros, que influenciam diretamente a
percepcao do usuario final. Muitas abordagens da literatura foram propostas para medir os
KPIs com o objetivo de fornecer uma qualidade de servico de video aceitavel. A maioria das
solucoes exige consciéncia de contexto do usudrio final, o que nao é viavel do ponto de vista
do MNO. No entanto, Deep Packet Inspection (DPI), outra solu¢ao mais amplamente usada
para estimar os KPIs diretamente do trafego de rede, nao é mais uma solucao conveniente
para as operadoras devido a adog¢ao de criptografia de streaming de video fim-a-fim sobre TCP
(HTTPs) e QUIC. Portanto, o aprendizado de maquina (Machine Learning - ML) passou a ser
recentemente aceito como uma solu¢ao bem reconhecida para estimar KPIs de QoE, analisando
os padroes de trafego criptografados bem como estatisticas como qualidade de servigo (Quality
of Service - QoS).

Este trabalho apresenta uma abordagem mais refinada e leve, baseada em aprendizado de
maquina, denominada Edge QoE Probe, para estimar QoE do usuario final para o servigo de
video DASH, monitorando passivamente o trafego de rede criptografado na borda da rede.
Nossa abordagem pode avaliar varios KPIs de QoE, como por exemplo resolugao, taxa de
bits, propor¢ao de paralisacao, entre outros, tanto em tempo real quanto por sessao. Além
disso, neste trabalho investigamos o desempenho do video DASH sobre o protocolo de trans-
porte tradicional TCP (HTTPs) e QUIC. Para este propdsito, avaliamos experimentalmente
diferentes traces de rede celular em um ambiente emulado de alta fidelidade e comparamos o
desempenho comportamental de algoritmos Adaptive Bitrate Streaming (ABS) considerando
KPIs de QoE sobre TCP (HTTPs) e QUIC. Nossos resultados empiricos mostram que os al-
goritmos tradicionais de ABS usando QUIC como transporte precisariam alteragoes especificas
para melhorar o desempenho em termos de QoE de video baseados em DASH.

Palavras-chave: Dynamic Adaptive Streaming over HT'TP (DASH); Qualidade de Experiéncia
(QoE); Qualidade de Servigo (QoS); Aprendizado de Maquina (ML); Computagao de Borda (EC);
Protocolo de Transporte.
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Chapter 1

Introduction

Over the past year, vast development in telecommunication and networking areas has fostered
global internet traffic growth. With the rapid evolution of electronic gadgets and multimedia
services, the number of internet users worldwide is forecasted to reach 5.3 billion by 2023, as
shown in Figure 1.1, up from 3.9 billion in 2018 [1]. Hence, in terms of the global population,
two-thirds will have internet access by the end of 2023-——such an increased rate of internet users
creates massive traffic while using diverse applications over the internet.

6% Compound Annual Growth Rate

4.7
4.5

4.2

IS
W
=}

Internet User (Billion)
w

N

0
® 9 o Ay 2 >
29 29> 8% 2S* 2S* 9%
Year

Figure 1.1: Global Internet User Growth

According to the Global Internet Phenomena Report [2], the downstream video traffic ac-
counted for 65% of global internet traffic in 2020, mainly derived from popular video streaming
services (e.g., YouTube and Netflix) and social networks (e.g., Facebook and Instagram) in
the multimedia application domain. In the Cisco VNI whitepaper [3], video streaming traffic
accounted for 60% of the total internet traffic in 2017. By 2022, it has expected to reach 82%
of the total internet traffic with immense video traffic growth rates. Besides, Figure 1.2 depicts
the distribution of global internet traffic for diverse applications from 2016 to 2021, based on
the earlier Cisco VNI whitepaper [4]. It indicates that internet! video traffic has always been

ncludes short-form Internet video (for example, YouTube), long-form Internet video (for example, Hulu),
live Internet video, Internet video to TV (for example, Netflix through Roku), online video purchases and
rentals, webcam viewing, and web-based video monitoring (excludes P2P video file downloads)
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used at a significant rate. On the other hand, according to Ericson Mobility Report [5], video
content traffic accounted for 63% of global mobile traffic in 2019 and is projected to reach 76%
by 2025. The recent pandemic due to COVID-19 increased the video content watching time by
60% in early 2020 [6]. The essence of all the reports shows the predominance of internet video
application traffic in the foreseeable future.

Consumer Internet Traffic, 2016-2021

B Internet video

mmm \Web, email, and data
175 Online gaming

mmm File sharing

—
——
———
o —
— =
50—
i .
0
1010
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’191}

Figure 1.2: The Distribution of Global Internet Traffic for Diverse Applications

Moreover, these days, a large number of internet video streaming is provided via Over-
the-Top (OTT) platforms. Hence, the popularity of OTT platforms such as Netflix, Hulu,
Amazon, and YouTube/YouTube Red is growing enormously for Video-on-Demand (VoD) ser-
vices. Where HTTP Adaptive Streaming (HAS) is considered a de-facto standard to carry
video traffic for VoD services [7]. Therefore, it has become a critical issue for stakeholders
such as Content Providers, Content Delivery Networks (CDNs), and Mobile Network Opera-
tors (MNOs) to manage such video traffic demand and ensure that end-users perceive the best
quality. They all want to provide a satisfactory experience to their end-users, known as Quality
of Experience (QoE). To ensure better QoE, for each stakeholder, specifically for MNOs, un-
derstanding and monitoring the key factors that impact users’ perceived experience and service
quality has become challenging. It is also a trending topic in QoE-related research among the
networking community in recent years [8]. The goal of such research is to introduce QoE-driven
strategies into the network management system [9].

The limitation in traditional networks (e.g., flexibility, agility, and scalability) for ongoing
QoE monitoring and management, fostering future networks (e.g., 5G and Beyond) towards
softwarization and virtualization via Software-Defined Networking (SDN) [10] and Network
Functions Virtualization (NFV) [11]. The NFV role will be decoupling the network functions
as a virtual function from the hardware appliance. The SDN will enable the NFV networking
infrastructure’s programmability to treat the control and forwarding planes separately. Besides,
the network resources will be equipped with cutting-edge technologies such as Edge Computing
(EC) to decentralize the processing power for customizing the delivery service and meet the
end-user need for the intended QoE via intelligent QoE monitoring and management techniques.
Therefore, QoE aware/driven strategies for HAS-based video service in SDN and NFV context,
specifically EC as emerging architecture, are current research questions.
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1.1 Motivation

Existing QoE monitoring system taking end-user participation. Typically to assess
the QoE for any specific multimedia service (e.g., video streaming), active users contribute with
subjective feedback to evaluate the given service, which is quite expensive in terms of time,
money, and manual efforts [8]. Due to this fact, the alternative of subjective assessment is to
calculate the objective QoE from the information collected at the application level, allowing
the installation of specific tools (e.g., software or application) on the user’s terminal [12] [13].
However, this approach has limited wide-applicability and required end-user engagement to
estimate user-level QoE as well as annoying to the user always asking about the service (e.g.,
video streaming). Most importantly, such tools provided user end QoE information is not ac-
cessible by the MNOs for taking adequate action to overcome the quality degradation.

Traditional passive Deep Packet Inspection (DPI). Usually, content providers and CDNs
directly measure end-user QoE either by using logs from server-side or client-side tools. In
contrast, to assess the end-user perceived quality, network operators (e.g., MNOs) only rely on
the traffic as it passes through the network. Traditionally, network operators rely on on-path
middle-box processing. Which is a passive DPI monitoring probe technique to examine the
HTTP packet flows. It extracts the video session information to estimate the application-level
QoE metrics (e.g., startup delay, re-buffering events, resolutions) [14] [15]. However, according
to European Union (EU) General Data Protection Regulation (GDPR) compliance, such a
DPI-based solution has limited applicability. Due to data transfer privacy concerns, in recent
OTT platforms delivering their video streaming services with encryption. At this moment,
contents are started serving over HyperText Transfer Protocol Secure (HTTPs), a combination
of HTTP+TLS+TCP. An alternative of HT'TPs due to TCP transport’s native shortcomings
for earlier HT'TP versions, recently Google introduced QUIC transport that incorporates TLS
by default. Moreover, QUIC has been adopted as a new transport protocol for the newer
HTTP (HTTP/3) version at a recent time [16]. End-to-end encryption due to HTTPs and
QUIC makes MNO blackout look at the video session quality directly from network traffic.
Network operators no longer have access to extract the application-level QoE metrics from
HTTP packet flow, as shown in Figure 1.3.
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Figure 1.3: End-to-End Encryption over HTTPs and QUIC (adopted from [17])

Thus, in recent the network operators rely on IP packet patterns and their statistical char-
acteristics to predict the application-level QoE metrics and the potential root cause that leads
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to degrading quality. Several works recently leveraged Machine Learning (ML) techniques to
map network traffic patterns with application-level QoE metrics. They found that network-
level Quality of Service (QoS) metrics (e.g., bandwidth, delay, packet loss) directly impact QoE.
However, most of the mapping methods are not lightweight, fine-grained, and generalized.

Adaptive streaming performance over TCP and QUIC transport protocol. HTTP
Adaptive Streaming (HAS) is considered the de-facto standard to deliver VoD services, and
Dynamic Adaptive Streaming over HT'TP (DASH) is regarded as the most dominating format
for implementing HAS [18]. In this form, the Adaptive Bitrate Streaming (ABS) algorithm is
deployed in a client-side player that detects a favorable quality of the video stream between
multiple bit-rates and resolutions by adapting the network changes. Therefore, end-user re-
ceives interrupt-free video streaming services that enhance overall QoE. The ABS algorithms
were initially designed and built over TCP transport as the HT'TP standard requires a reliable
transport [19]. As a result, HAS has been using the TCP transport protocol predominantly
for many years. Despite the reliability and in-order delivery benefits of TCP, both HTTP /1.1
and HTTP/2 versions of application-level HTTP standard over traditional TCP transport suf-
fers from Head of Line (HOL) blocking problem [20]. Moreover, for a secure connection, TLS
over TCP requires an additional handshake latency. In contrast, for the third version of the
HTTP standard (HTTP/3) [16], the new transport protocol QUIC [21] running over the UDP
solves the issues of HOL blocking. Besides, newly standardized QUIC transport embraces other
features such as fast connection establishment, improving congestion control, forward error cor-
rection, and seamless connection migration. The aforementioned motivates us to evaluate the
impact of QUIC transport on QoE for HAS (e.g., DASH) video service. Specifically, to assess
state-of-the-art ABS algorithms (built on TCP concept) performance over QUIC transport.

Inadequate QoE monitoring and optimization work in the scope of Edge Com-
puting (EC). HAS (e.g., DASH) standard video service prone to adjust video quality based
on network function status. Therefore, the MNO must be aware of network conditions and the
capacity to ensure acceptable video quality by optimizing network performance on run time.
However, to meet the vast quantity of video service demand and provide the most desirable QoE
in the foreseeable future has to lead advent cutting-edge technologies such as EC. It brings real-
time computing processing for low latency, high throughput, and reliability features, as well as
data and applications close to the end-user. To implement the EC concept, European Telecom-
munications Standards Institute (ETSI) defined the Multi-access Edge Computing (MEC) [22]
paradigm providing an I'T service environment and cloud-computing capabilities at the edge
of the mobile network, integrating the Radio Access Network (RAN). A couple of work has
been done in recent times with the MEC paradigm in multimedia service. Most of the work
presents the benefits of adding a MEC server to raise the end-user QoE in the context of con-
tent caching, bit-rate optimization, and service migration. Nevertheless, no significant works
have not been done in the scope of MEC potential use cases [23], under “Network Performance
and QoFE Improvement Services,” to optimize the network performance by monitoring network
traffic. In such a use case, a QoE aware probe solution, as shown in Figure 1.4, will be respon-
sible for monitoring the fronthaul (e.g., RAN) or backhaul (e.g., core, internet) network traffic
and estimating the end-user QoE. MEC also extends the notion of the NFV for virtualization
and SDN for QoE management approaches; hence, such a QoE probe would act as a Virtual
Network Function (VNF) probe (vProbe). Following the estimated QoE information would
help the MEC orchestrator (e.g., cloud edge SDN controller) in taking appropriate action (e.g.,
optimize the backhaul transport) to boost the network performance.
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Figure 1.4: A High-level Overview of QoE-aware MEC Solution

1.2 Aim and Scope

This work aims to propose a lightweight approach for a predictive QoE probe scheme to
allow the network operators to infer users’ QoE at the network edge facility for
adaptive video streaming service (e.g., DASH). The edge node will act as sinks of target
end-users network monitoring traffic lows. The analysis of the network traffic flows collected
and processed by the QoE probe scheme at the edge will allow the network operator to estimate
end-user objective QoE metrics (e.g., resolution, bit-rate, and stall). The reasons to select the
edge node for the sink of target end-users network traffic are- First, nearest the monitoring
location provides the closest prediction of end-user perceived video service quality. Second,
traffic monitoring at other locations (e.g., core) in network premises, away from the user, can
lead to error-prone predictions due to cross-traffic interference.

The outcome for such end-user QoE prediction from network-level measurement has a two-
fold impact on QoE-driven network management:

1. Proactive: Per-session QoE estimation and Service-Level Agreement (SLA).
SLA defines the level of service a user expects from a network operator; therefore, the
per video session QoE estimation store in SLA helps network operators evaluate their
delivery service for proactive QoE optimization and better network capacity planning.

2. Reactive: Real-time QoE estimation and autonomous Closed Control Loop
(CCL). A service assurance CCL system continuously assesses real-time, i.e., a spe-
cific time window’s network conditions, traffic demands, and resource availability. In
autonomous CCL, network orchestrator (e.g., SDN controller) plays a role in taking the
appropriate action based on the assessment. Hence, real-time QoE estimation helps on-
line service assurance CCL periodically (e.g., on a specific time window basis) correlate
network information with estimated objective QoE metrics to determine the root cause
and predict QoE impairment patterns. Thus, the orchestrator can take run time action
(e.g., reroute or reshape traffic) to improve user QoE.

Specific requirements that guide this work include:

e Design and implementation of predictive QoE probe scheme to deal with a
softwarized intelligent-driven network. The predictive QoE probe scheme should be
feasible in traffic monitoring and QoE inferring to deal with the EC concept. Therefore,
in the context of virtualization and softwarization, the QoE probe scheme can fit as a
virtual function (vProbe), and QoE analytics can deal with a softwarized (e.g., SDN-based
architecture) intelligent-driven network for run-time network performance optimization.
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e Understanding the video streaming performance over different transport pro-
tocols. Imposing end-to-end encryption for video streaming service (e.g., DASH) over
TCP (HTTPs) and QUIC transport requires knowing the notion of video streaming per-
formance for different video streaming schemes (e.g., ABS algorithms). Moreover, the
newly standardized QUIC transport protocol promoted to obtain numerous advantages
over TCP. Therefore, the QoE probe scheme should be aware of the state-of-the-art ABS
algorithm’s behavior over traditional TCP (HTTPs) and QUIC transport.

In order to achieve the main goal of this thesis, the following specific objectives have been

defined:

e No end-user cooperation. To estimate QoE, network operators (e.g., MNOs) will
not need to rely on users directly to get feedback or installing any tools in the end-user
terminal. Our proposed approach will allow the network operator to estimates user-
end application-level QoE by passive network-level traffic monitoring at the edge of the
network without annoying the end-user.

e Lightweight, fine-grained method without requiring DPI and segment infor-
mation. The QoE probe scheme will not need on-path complex computational process-
ing such as DPI. QoE prediction/estimation will be based on lightweight network features
(e.g., QoS) that rely on encrypted IP packet header information without computationally
expensive video segment identification. The prediction method (e.g., ML-based QoS-to-
QoE correlation model) will be fine-grained (both for real-time and per-session) instead
of coarse granularity (e.g., per-session good or bad QoE).

e Experimental evaluation of QoE estimation and performance under realistic
scenarios. This work will consider realistic scenarios to conduct a large-scale experimen-
tal assessment, with an emulation-based DASH-supported player, including end-to-end
encryption via HTTPs and QUIC and diverse mobility patterns derived from different
cellular network technologies throughput /bandwidth information. Such realistic through-
put/bandwidth information will be fruitful for evaluating the QoE performance of different
ABS algorithms.

1.3 Contributions

1. We design a non-invasive network-level encrypted traffic measurement method based on
passive probing running on edge computing facility (e.g., MEC) to estimate video QoE
metrics without requiring endpoints awareness and on-path middlebox processing. Such
QoE estimation we define as Edge QoE Probe tailored to specific network region (e.g.,
edge), network topology, network condition (e.g., congestion/bottleneck in specific back-
haul links), end-user (e.g., individual user or group), and service (e.g., DASH video).

2. We propose a lightweight, fine-grained network-level temporal QoS features extraction
technique stand on the three-time window, i.e., current, trend, and session, by observing
bi-directional encrypted network packets’ IP header information. We set the shortest
granularity time window of 0.5-second length to compute different statistics of temporal
QoS features. By analyzing the extracted temporal QoS features, we estimate real-time
(e.g., 0.5-second time interval) fine-grained (e.g., multi-class classification) quality of dis-
played DASH video QoE metrics such as resolution and bit-rate instead of coarse-grained
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estimation (e.g., binary classification) to enable quick reactive QoE management service.
We further show the per-session level QoE metrics estimation approach by aggregating
the QoS features computed at the current time window. We estimate per-session fine-
grained (e.g., multi-class classification) QoE metrics such as average resolution, average
bit-rate, quality switches, stall ratio, and average MOS based on ITU-T P.1203. Apart
from classification techniques, we provide a more fine-grained continuous estimation of
the average MOS and startup delay using regression techniques. Such per-session QoE
estimation enables proactive QoE management service.

3. To estimate the QoE metrics by analyzing QoS features through the QoS-to-QoE corre-
lation model, we present different ML algorithms’ benchmark. We evaluate the different
models’ performance based on their prediction accuracy and training time to pick the
most suitable algorithm for our QoS-to-QoE correlation model. Moreover, we study more
on QoS features by their relative importance on specific QoE metric prediction.

4. We show that Edge QoE Probe performs nearly accurately to estimate video QoE metrics
for real-time and per-session over our generated datasets. To the best of our knowledge,
we are the first to use a high-fidelity and fully controllable Mininet-WiFi-based emulation
environment for the sake of QoE estimation. We use a heterogeneous combination to gen-
erate the dataset, i.e., three cellular network technologies (3G, 4G, and 5G) traces from
different mobility to set link conditions, two transport protocols (QUIC and TCP), six
state-of-the-art ABS algorithms using goDASH player. goDASH is a lightweight head-
less DASH video player built mainly for emulation environment to conduct large-scale
adaptive video streaming evaluation.

5. We evaluate the DASH video service’s QoE performance over traditional TCP and open-
source implementation of newly standardized QUIC transport protocol. With our em-
pirical QoE study, we try to answer whether QUIC has been able to keep its promise
of better QoE for unmodified state-of-the-art ABS algorithm on diverse (e.g., stable and
unstable) network conditions.

6. We present a reproducible artifact to conduct large-scale emulation-based adaptive video
streaming and generate datasets to build a QoE estimation model. The artifact is versatile
and can be easily modified to accommodate additional ABS algorithms, cellular network
traces, background traffics, video contents, etc. The complete artifact information for
a reproducible purpose, including data generation, pre-process, and analysis code and
datasets available online?.

1.4 Thesis Outlines

This thesis is organized as follows: Chapter 2 presents the necessary background and discussion
of related research works. Then, the design and implementation of Edge QoE Probe for QoE
estimation and performance study are discussed in Chapter 3. Next, Chapter 4 provides the
experimental evaluation analysis of the work. Finally, Chapter 5 concludes the thesis and
discusses the limitations and directions of future work.

Zhttps://github.com/sajibtariq/MSc_thesis
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Chapter 2

Literature Review

This chapter provides the relevant background for our work and describes related work on
similar issues and solutions to our approach.

2.1 Background

This section defines six main concepts in our research work: Quality of Experience (QoE)
ecosystem focusing on Quality of Service (QoS), QoE assessment techniques, Probe as network
traffic monitoring technique, HTTP Adaptive Streaming (HAS) standard video as most domi-
nating internet traffic application, TCP and QUIC transport option for HAS and Multi-access
Edge Computing (MEC) to take advantage of Edge Computing (EC) and Cloudification.

2.1.1 Quality of Experience (QoE) Ecosystem

It is expected that video traffic will reach 82% of the global IP traffic by the year 2022 [3] due to
the advancement of digital multimedia technologies. Therefore, to meet user’s satisfaction by
providing excellent quality, it is necessary to monitor their satisfaction level from stakeholders’
perspective, i.e., Content Providers, CDNs, and MNOs. Wherein for MNOs most common
approach to measure user satisfaction relies on the QoS metrics/parameters collected from the
network. The definition of QoS, according to the Telecommunication Standardization Sector
of the International Telecommunications Union (ITU-T), is:

“Quality of Service (QoS) is the totality of characteristics of a telecommunications service
that bear on its ability to satisfy stated and implied needs of the user of the service” [8].

Therefore, QoS is a network element’s ability to assure that its traffic and service re-
quirements would be satisfied. It is defined in terms of some parameters such as through-
put/bandwidth, delay, packet loss. Specifically, QoS parameters describe the network system’s
technical performance or service without considering user perception and judgment. Conse-
quently, the concept of QoE has developed as a user-centric reflection of QoS. The definition
of QoE in the Qualinet white paper stated is:

“The degree of delight or annoyance of the user of an application or service. It results from
the fulfillment of his or her expectations with respect to the utility and/or enjoyment of the
application or service in the light of the user’s personality and current state” [24].

Hence, QoE is a user-perceived experience that may differ according to users’ expectations
and context. Figure 2.1 (a) illustrates the QoE ecosystem with important influence factors that
directly or indirectly affect the user reaction/perception for any service. These influence factors
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are co-related to each other. For video streaming, in most cases, application-level metrics such
as video bit-rate, resolution, and buffering/stall have a strong influence on QoE [25].

QoS reflects the network and service level performance and is used to evaluate the quality of
multimedia transmission (e.g., video streaming). Consequently, it directly affects application-
level metrics, which later work as the most influential factor for changing user satisfaction
or experience [26]. The relation between network-level QoS and application-level QoS (a.k.a
objective QoE) is shown in Figure 2.1 (b). As a network operator, most influential factors
are hardly measurable to predict QoE, but monitoring QoS metrics/parameters at the network
level is viable and convenient. In terms of QoE and QoS, some metrics/parameters indicate
the overall success of multimedia service (e.g., video streaming) known as Key Performance
Indicators (KPIs). This thesis work focuses on network-level QoS KPIs (e.g., throughput,
packet inter-arrival time and size) and application-level QoS KPIs, also referred to as objective
QoE KPIs (e.g., resolution, bit-rate, stall). However, we use the QoE metrics term and QoE
KPIs term interchangeably in some places.

User-end

QoE subjective feedback

QOE KPIs resolution, bit-rate,

stall etc.

@ G >

Application QoS KPIs
network-level

throughput, packet
size etc.

(a) (b)
Figure 2.1: (a) QoE Ecosystem (b) Relation Between QoS and QoE

2.1.2 QoE Assessment Techniques

QoK is the level of user satisfaction or enjoyment with an application or a service. Therefore,
it is essential for operators that users always stick with their service. For this reason, network
operators require to assess the QoE in such a way they can react to the network quality
degradation. The following subsections discuss the most common subjective and objective
QoE assessment techniques and data-driven approaches for recent QoE assessment.

2.1.2.1 Subjective Assessment

Subjective quality assessment is a reference way to measure the quality by taking user feedback
directly [27]. This assessment consists of several people participating as viewers of any particular
sample multimedia service (e.g., video) and expressing their feelings or perception about that
service. The Mean Opinion Score (MOS) is used as quantifying the users’ feelings/perceptions.
The MOS can take the values as shown in Table 2.1, which represent the corresponding degree
of user satisfaction with the service [28]. Though subjective QoE assessment is considered the
most accurate way, it suffers from a few significant drawbacks. First, this test is conducted
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Table 2.1: Mean Opinion Score (MOS)

’Values\1\2\3\4\5‘
’ Quality \ Bad \ Poor \ Fair \ Good \ Excellent ‘

in the laboratory environment, which should be unbiased, should not be affected by external
noise, and should be close to the real-world scenario. Besides, it has a limited viewer of
demography /diversity. Second, a high cost in terms of time, money, and manual effort. Third,
quite impossible for real-time QoE evaluation.

These days crowd-sourcing is another promising direction considered an alternative for col-
lecting subjective QoE ratings from users [29]. Crowd-sourcing connects to the internet beyond
traditional laboratory environments and gives researchers a powerful tool to access a global
pool of subjects. As a result, a diverse population and users’ heterogeneity can be taken into
account while simultaneously offering the possibility to extend laboratory studies (e.g., user-
related influence factors or contextual factors). It is often not possible in a single test carried
out in a test lab due to the restricted pool of subjects and limited contexts. However, one
of the significant disadvantages of crowd-sourcing is the unreliability of the user rating. It is
because incentives and payment schemes may influence users. Additionally, the test conditions
and environments of the user are unknown in most cases. Thus, the impact of test conditions
on the result is different from user to user and work to work.

2.1.2.2 Objective Assessment

Objective QoE assessment refers to the predict user behavior based on a mathematical model
(e.g., expert model) instead of direct human judgment [30]. Such a model takes a set of objective
input metrics/parameters. The mathematical model metric’s output should correlate well (for
validation) with the subjective test results, which serve as the ground truth QoE. Moreover,
this assessment predicts quality automatically and performs fast enough. Therefore, service
providers and network operators are mostly interested in this assessment technique.

As shown in Figure 2.2, we can categorize objective quality assessment techniques based
on the source information they use. According to [31], we can define the Full Reference (FR),
Reduce Reference (RR), and No Reference (NR) method depending on the availability of the
source signal/information.

Full Reference (FR) Model Reduce Reference (RR) Model No Reference (NR) Model

A

Extracted
Features

L

Source Receiver

Figure 2.2: Objective Model Classification Based on Available Source Information
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e Full Reference (FR): This process compares the source signal and receiver signals
to predict QoE (e.g., Peak Signal-to-Noise Ratio or PSNR, Structural Similarity Index
Metric or SSIM). In this case, the information of the source signal is fully accessible.

e Reduce Reference (RR): This process has partial access to the source signal. Tt
predicts QoE by combining the received signal information with some extracted features
of the source signal.

e No Reference (NR): This process does not have any access to the source signal. Tt
predicts QoE only based on the received signal.

In another approach [32], as shown in Figure 2.3, we can classify the objective quality
assessment into five different groups according to the level of information used as an objective

input parameter.
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Figure 2.3: Objective Model Classification Based on the Information Used as Input Parameter

e Media Layer Model (a.k.a Signal Based Model): This model uses the media signal
(e.g., video) as an input parameter to predict QoE. FR and RR video quality methodolo-
gies fall into the media layer model.

e Parametric Packet Layer Model (a.k.a Bitstream Header Based Model): This
model uses IP/RTP packet header level information (e.g., throughput, packet loss, jitter)
as an input parameter to predict QoE. In this case, the model does not need to look
at payload information. Therefore, there is no requirement for media signal decoding
information to predict quality.

e Bitstream Layer Model (a.k.a Bitstream Payload Based Model): This model
uses not only IP/RTP packet header level information but also payload information as
an input parameter to predict QoE.

e Hybrid Model: This model uses the models mentioned above combinedly to predict
QoE.
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e Planning Model: This model takes assumed network and client parameters as input
and predicts QoE. Besides, it usually requires prior knowledge about the system. Such
models can be applied to network planning and terminal/application design.

2.1.2.3 Data Driven (ML-based) Assessment

Video streaming traffic over the internet using digital devices made a wide range of user context,
choice/preference of contents, and system-related data available to the video content provides.
Therefore, a data-driven approach emerges as a promising way for multimedia QoE evaluation.
The data-driven approach’s strategic decisions help predict more accurately user perspective
QoK considering the subjectivity based on data analysis and interpretation. Since video content
providers have direct access to user-related data and video quality from a user terminal, using
those observed data, content providers can gain knowledge of the end-user QoE and an idea
of video content choice preference. On the contrary, network operators (e.g., MNOs) do not
have access to user-related data and only can track the traffic it passes through the network.
The earlier section already stated limitations about the subjective assessment in terms of real-
time QoE evaluation, and network operators are more prone to objectively QoE evaluation.
Nevertheless, limitations still exist in the traditional objective assessment of QoE using the
PSNR/SSIM when network traffic is encrypted. Due to the encryption, the visual quality of
video and its variation can not be measured using PSNR/SSIM based objective assessment.
Besides, DPI can not be read the quality of video directly from the network traffic payload.
Prior work found QoS parameters from network traffic have a strong relation with QoE [26]. It
is also feasible to predict QoE in terms of video quality metrics from classic QoS parameters [33]
when traffic is encrypted. However, to make a correlation/mapping between QoS and QoE is
not a trivial task. For this purpose, in recent ML strategy of achieving complex relationships
between QoS and QoE has become a hot topic from both academic and industry perspectives.
As the data-driven approach, rely on statistical and probabilistic as well as ML techniques,
thus concluding that in-network QoE measurements are shifted to a data-driven approach.

Therefore, leveraging the data-driven approach, ML models are currently replacing the
mathematical models (e.g., expert models) under the objective assessment to estimate the
QoE. Wherein ML is a process of learning with a set of observations data in order to find any
pattern in the data set and make better decisions for future data. ML usually follows four types
of learning approach to make the ML model.

e Supervised ML: A set of observation data given in the input-output pair wherein the
values are tagged with labels to identify the target output. This technique aims to make a
function that defines the correlation between the inputs feature and target output. More
specifically, in Supervised ML, a set of labeled data is given to training a model. Such
a trained model later takes any new feature as input and predicts the target as output
from experience. Supervised ML mainly divided into two categories.

— Classification: Predict a category/discrete value as output (e.g., spam and not
spam email). Algorithms are- Naive Bayes, Support Vector Machine, etc.

— Regression: Predict a continuous value as output (e.g., house price). Algorithms
are- Linear Regression, Ridge Regression, etc.

e Unsupervised ML: The observations of the data set present only the input values.
More specifically, there is no target output exists as no values were tagged with labels. It
aims to learn a function to find the pattern and similarities between values and make the
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Figure 2.4: Supervised ML-based QoE Estimation Workflow

group of similar values in cluster form. Algorithms are- K-means, Principal Component
Analysis, etc.

e Semi-supervised ML: It falls between supervised and unsupervised ML because it uses
a data set to train a model with a small number of values tagged with a label and a large
number of values without any tag.

¢ Reinforcement ML: This learning method allows a software agent to interact with its
environment by taking action to maximize the notion of cumulative reward, where reward
aids the agent in learning which action is best. Algorithms are- Markov Decision Process
Q-learning, etc.

As we already know, network-level QoS parameters strongly impact application-level QoE,
thus motivating using supervised ML to correlate network-level QoS parameters to QoE. For
this purpose, a set of label data (tagging application-level objective QoE KPIs as target output
and network-level QoS KPIs as feature input) must be built offline before training the supervised
ML algorithms to make a QoE estimation model from network traffic measurement. Figure 2.4
presents a baseline workflow for applying supervised ML in the QoE estimation. A network
operator can readily deploy such a trained model on its network premises and estimate the
end-user perceived QoE of video streaming from real-time network traffic measurement. In this
case, a monitoring agent named as a probe (described in the next section) is responsible for
collecting network traffic measurements in QoS format. Due to encryption, such a probe only
relies on the IP packet header; thus, we can place this QoE estimation in the parametric packet
layer model objective QoE assessment category. Apart from this, there are multiple aspects of
the probe scheme in the QoE evaluation solution, such as probe techniques, placement of the
probe, monitoring probe type (e.g., physical or virtual).

2.1.3 Monitoring Probe Techniques

For network traffic monitoring and measuring, probes are used to extract and process informa-
tion sent over the network — further, that information is used for quality assessment (e.g., QoE
evaluation). The probes can be installed at any point in the delivery service delivery chain. As
shown in Figure 2.5 (a) and (b), we can categorize probes into active and passive.

e Active Probe: Active probes send the extra test traffic over the network and then
measure the network performance quality (e.g., Nmap'). Active probes do not examine

Thttps://nmap.org
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Server

(b)
Figure 2.5: (a) Active Probe (b) Passive Probe

the actual user traffic, instead of it injects artificial traffic. Therefore, active probing
has also known as synthetic monitoring. This monitoring helps to identify potential
problem areas before affecting users. Active probes typically provide more detailed and
reliable information from a user perspective. This type of probe grabs a small sample
from an entire network scenario, so it is challenging to measure network quality’s entire
performance. The negative side of injecting extra test traffic over the network is to make
congestion in the network system due to sharing the same network resources with real
traffic, which may cause lousy network performance quality [34].

e Passive Probe: Passive probes passively inspect the network traffic that passes through
the network (e.g., p0f?). A passive probe can be placed in any monitoring points such
as server network, core network, access network (edge), or even user terminal based on
preference. As passive probes pull real network traffic from any specific monitoring point,
and unlike active traffic monitoring, it does not inject any additional data. Hence, passive
probing does not interfere with the actual network traffic. It provides a holistic view of
overall network performance quality. Moreover, passive probing helps network providers
to identify the root cause that directly affects the user and traffic behavior pattern.
Such traffic pattern later directly helps the QoE evaluation. DPI a traditional passive
probing technique is used to capture the traffic passing through a monitoring point. DPI
can quickly identify the network traffic type and monitors the objective QoE by extract
KPIs from unencrypted payload data, but this can cause privacy and security issues. In
contrast, for encrypted traffic, passive probing only can track and monitor network layer
KPIs such as the number of packets, packet size, packets inter-arrival time, or throughput.
Later leveraging ML techniques can classify the network traffic type and predict end-user

Zhttps://github.com /pOf/pOf
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QoE KPIs for specific service traffic flow. A passive probe can be traditional (physical) or
virtual. The traditional probes are operated on physical devices, and it suffers from several
limitations such as hardware dependence, lack of scalability, and flexibility. In contrast to
a traditional probe, a virtual probe is a software or a function that works in a virtualized
environment (e.g., VirtualBox® or Docker Container?). Besides, a virtual probe is more
scalable and flexible than a traditional one because network operators can immediately
deploy a new virtual probe in any location without requiring any dedicated hardware
device. This makes virtual probe hardware independent and at a lower cost for network
operators. The virtual probes are only viable for use when network infrastructures are
virtualized; otherwise, traditional probes are used for traffic monitoring.

2.1.4 HTTP Adaptive Streaming (HAS) Standard
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Figure 2.6: HTTP Adaptive Streaming (HAS) Overview

HAS has considered a de-facto standard for video streaming [7]. It is a combination of
server and client and works by breaking the video content file into a sequence of small HTTP-
based file segments (a.k.a chunks). Each segment contains a short interval (between 2 and 10
seconds in duration) playback time of a video with different representation level information
(encoded with different bit-rates and resolutions). This information is comprised of an index
file. Each different HAS implementation (e.g., Dynamic Adaptive Streaming over HTTP or
DASH, HTTP Live Streaming or HLS) strategy has given different names of that index file. In
DASH (a.k.a MPEG-DASH standard), the index file is called Media Presentation Description
(MPD), an XML-compatible document. Over the internet, DASH is the most dominating
format [18]. DASH format only specifies the structure of different representations of video
content in MPD format. In a HAS streaming session, the DASH format compatible client first
requests the MPD that contains the representation level information for video content. Based
on that information, it asks the individual segments that include good video quality. In client-
side Adaptive Bitrate Streaming (ABS) algorithms, they are mainly responsible for dynamically
selecting the appropriate segments based on current network conditions (e.g., Bandwidth) and

3https://www.virtualbox.org
4https://www.docker.com
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client playback buffer level. The purpose of this dynamic segment selection to adapt the network
condition changes and avoid unwanted stall /re-buffering events. A representation of the HAS
logic in dynamic network condition is presented in Figure 2.6. The ABS algorithms have three
strategies to adopt the best segments as follows.

e Rate-based: This strategy estimates the Bandwidth based on delivery rates of previously
downloaded segments and adopts the best representation (quality) of the next segment
that fits this estimation [35].

e Buffer-based: This strategy monitors the state of playback buffer before every segment
downloads and makes appropriate decisions for the next segment [36].

e Hybrid: This strategy is a combination of rate and buffer-based algorithms and adopts
the best representation (quality) of the next segment from that two result [37].

2.1.5 Transport Options: TCP and QUIC for HAS Video Service

HAS was initially designed and implemented on top of TCP as the application-level HTTP
standard requires a reliable transport protocol [19]. Afterward, HAS predominately used TCP
long time for the benefits of reliability and in-order delivery. But, the initial HTTP /1.1 standard
with persistent connection feature has suffered from a well-known Head of Line (HOL) blocking
problem. Such a situation occurs as each client has limited TCP connections to the server and
a delay in a new request queue over those connections. Although a pipeline feature was added
later to make multiple requests over a single connection, the HOL problem has not been resolved
because it requires responses to arrive in order. The next version, HTTP /2 [38] standardized
by the IETF?, has come with a multiplexing feature to overcome this issue. In HTTP/2
multiplexing, a single TCP connection can handle multiple requests in parallel, and responses
do not require to arrive in order. It also embraces server push, stream priority, and stream
termination features. Nevertheless, another kind of HOL blocking still exists in TCP transport
for HTTP /2 standard. When HTTP/2 uses TCP, if a packet loss occurs in the TCP stream,
it makes all subsequent TCP streams wait until that packet is retransmitted and recovered.

Due to the data privacy and security issues in recent OTT platforms are delivering their
streaming services with encryption. A new Transport Layer Security (TLS) is imposed over
the TCP and under the HTTP to facilitate the privacy and data security for communications
over the internet through encryption. In this work, we adopt the TCP term considering the
combination of HTTP+TLS+TCP, which is also referred to as HyperText Transfer Protocol
Secure (HTTPs). TLS requires a new handshake to ensure that the session is secured alongside
the initial TCP handshake, leading to a little time-consuming connection establishment. In
HAS, connection delay or retransmission due to HOL issue and handshake latency due to TLS
and TCP may cause unwanted delays while downloading video segments and force the ABS
algorithm to adopt degraded quality segments..

The shortcomings mentioned above of TCP lead to the development of alternative transport
protocol such as Google developed QUIC protocol running on top of UDP [21]. QUIC inherits all
the HTTP features over TCP, aiming to reduce connection establishment, improving congestion
control, multiplexed/pipelined requests without HOL blocking, forward error correction, and
seamless connection migration. Recently, QUIC was adopted as a transport protocol for the

Shttps://bit.ly/3qORHbk: The Internet Engineering Task Force (IETF) is the leading Internet standards
body. It develops open standards through open processes with one goal in mind: to make the Internet work
better.
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Figure 2.7: DASH Player over TCP and QUIC to Download the Video Segments

HTTP/3 standard [16]. Therefore, the HTTP/3 standard over QUIC uses a single handshake
for a secure connection and avoids the HOL blocking issue from the multiplexing feature. In
HTTP/3 over QUIC multiplexing, each stream is independent of the other, and subsequent

streams are not affected while a particular stream packet loss occurs. Figure 2.7 depicts how
the client-side DASH player works with TCP and QUIC transport.

2.1.6 Edge Computing (EC) and Cloudification
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Figure 2.8: MEC Use Cases

DASH clients are allowed to switch between different video qualities to improve the viewing
experience, matching based on current network conditions. Thus, there is a need to be aware
of network conditions to optimize video delivery. A new QoE-centric cutting-edge technology,
EC, optimizes video delivery and meets user demand. It allows pushing applications, data,
and computing power to the edge of the operator’s network. The ETSI promotes Multi-access
Edge Computing (MEC) [39] a virtual platform paradigm to implement the EC concept. MEC
provides an IT service environment and cloud-computing capabilities at the mobile network’s
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edge, integrating the Radio Access Network (RAN). Besides, it also offers a service environment
with low latency and high bandwidth. Figure 2.8 depicts the potential use cases of MEC [40].
We shed light on the “Network Performance and QoE Improvement Services” category among
all the possible use cases. More specifically, network traffic monitoring and network (e.g.,
backhaul/fronthaul) performance optimization under this category.

Regarding this, a MEC monitoring network function will provide the real-time network-level
(e.g., backhaul/fronthaul) traffic information to a MEC analytic network function, which role
is to compute the traffic requirements if any degradation occurs at the backhaul (e.g., Core,
Internet) or fronthaul (e.g., RAN) end. Later, a MEC optimization function will optimize
the network according to traffic requirements calculated by the analytic function. Such a use
case can also help to make co-ordination between the backhaul and fronthaul network. The
optimization function can optimize the network in several ways, such as-

e Backhaul: Traffic re-routing (reactive).
e Backhaul: Reshaping the traffic per application (reactive/proactive).

e Fronthaul: Increase/reduce the power of microwave links based on actual capacity need
(reactive/proactive).
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Figure 2.9: (a) SDN Architecture (b) NFV Architecture

However, MEC virtual platform can cope with the future network (e.g., 5G and Beyond)
cloudification via Network Functions Virtualization (NFV) [11] and Software-Defined Network-
ing (SDN) [10]. While NFV serves as a technology for decoupling network functionality as a
Virtual Network Function (VNF) from the hardware appliance. Figure 2.9 (b) presents the basic
NFV architecture composed of three key elements: Network Function Virtualization Infrastruc-
ture (NFVI), VNFs, and NFV Management and Orchestration (MANO). Specifically, a VNF
would be deployed on a virtual resource (e.g., NFVI) in the form of a Virtual Machine/Docker
Container with a specific specification that operates a piece of a software implementation of
network function. And, NF'V MANO will be responsible for taking adequate actions to manage
all virtual-specific tasks in the NFV framework.

In contrast, SDN separates the control and forwarding/data planes, and logically central-
izes network intelligence/brain into the SDN controller. SDN controller has a global view of
the underlying network (e.g., NVFI or physical) and enables the underlying networking in-
frastructure’s programmability. Figure 2.9 (a) describes the architecture of SDN. The control
plane consists of an SDN controller with a software-based service called network operating sys-
tem (NOS) and can contain network and control applications. The data plane includes the
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[91)

forwarding device (e.g., virtual or physical switches). The southbound interface defines the
communication protocol (e.g., OpenFlow) between the data plane’s forwarding devices and the
control plane. On the other hand, the northbound API opens a common interface between
the management plane and the control plane. Wherein the management plane contains a set
of SDN applications, such as QoE-aware re-routing, QoE-aware network optimization. In a
nutshell, a management plane defines the high-level policies (e.g., a set of rules), which are
ultimately translated via the SDN controller to southbound-specific instructions that enable
the forwarding devices’ programmability.

The MEC ecosystem can leverage the NFV concept to obtain virtualization and SDN to
make the underlying network infrastructure programmable. To the end, MEC as a virtual
platform extends the notion of the SDN’s QoE monitoring and management approach at the
network edge where a passive probe for QoE-centric network traffic monitoring would work
as a VNF. Figure 2.10 depicts the high-level scenario of future network scenarios, including
the most recent technological QoE management approaches. A service assurance block will
gather monitoring data for analytics and inform the edge controller for taking concrete action
to QoE-centric network optimization.

This work showcases a lightweight technique of passive network traffic monitoring for DASH-
supported video service at the network edge and trains the supervised ML algorithms for user-
level QoE metrics (KPIs) estimation. Evaluation of such QoE-centric monitoring and estimation
information will help network orchestrators (e.g., edge SDN controller) to overcome network
degradation. The purpose of this work is to monitor the network-level traffic information and
estimate the end-user QoE, not about how the network takes concrete action to overcome QoE
drop.

2.2 Related Work

This section covers QoE measurement approaches and QoE performance evaluation over tradi-
tional TCP (HTTPs) and QUIC transport for DASH video services. A fair amount of diverse
methods are already stated for end-user QoE estimation. Figure 2.11 shows a complete hi-
erarchy of related work in the area of QoE measurement based on the QoE monitoring data
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and implemented strategies. This section is organized into the following category. The first
category discusses client-level QoE measurement. The QoE measurement approaches at the
network-level for unencrypted and encrypted traffic are presented in the second category. Be-
sides, the most recent techniques using ML for QoE estimation are elaborately presented under
this category. The third category presents a hybrid approach for QoE estimation. In the fourth
category, we showcase related work for the QoE-centric strategy in EC. Apart from this, a
brief overview of DASH video performance evaluation works over TCP and QUIC is shown in
the fifth category. Finally, we provide a brief comparison of this thesis work’s contribution in
contrast to all state-of-the-art QoE measurement approaches.
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Figure 2.11: Related Work Classification in the Area of QoE Measurement

2.2.1 Client-level Measurements

Many approaches are based on assessing QoE from direct end-user devices. A tool (e.g., appli-
cation or software) is installed on the client-side can passively grab the user device’s capabilities
information, user context information, user content usage preference, content’s application-level
metrics, and network statistics. Later, such information helps to evaluate end-user QoE at the
application level.

Work [12] [41] [42] [43] [44] [13] are based on end-user cooperation to install a dedicated
tool for evaluating the video streaming QoE. Wamser et al. in [12] [41] developed an Android
app YoMoApp (YouTube Performance Monitoring Application) to passively monitors KPIs
(e.g., player state/events, buffer, and video quality level) of YouTube on end-user smartphones.
Also, it supports collecting subjective QoE feedback from end-user along with network usage
statistics and device characteristics. Similar to YoMoApp, Nam et al. developed YouSlow
in [42], a web browser plug-in that can monitor YouTube stalling events while clients watch
YouTube videos on Chrome browsers. The monitoring data then marked on Google maps with
Internet Service Providers (ISPs) statistics for stall event duration and approximate location.
Joumblatt et al. in [43] proposed a passive measurement of collecting network performance and
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direct user feedback by a tool called HostView installed in the end-user devices to infer QoE.
Similar kinds of approaches used Chen et al. in [44] to capture the user experience over a net-
work application by a framework called OneClick run in the user devices. Users were asked to
click a dedicated button whenever they feel dissatisfied with the application’s quality. Another
tool named Pytomo, Juluri et al. in [13] designed to analyze the YouTube videos for evaluating
user QoE. This tool emulated the user behavior by downloading and playing a YouTube video
and collected statistics of the video download and playback (e.g., initial buffer, interruptions,
total buffering duration, buffer duration at the end of the download).

2.2.2 Network-level Measurements

However, end-user provided application-level QoE metrics are not accessible by network oper-
ators (e.g., MNOs). They do not have any access to the video streaming app or on the user’s
device to install any probe mechanism (e.g., tool). For this reason, in the second category, the
operator relies on in-network measurement to monitor the application-level metrics as well as
end-user QoE.

2.2.2.1 Unencrypted Traffic

DPI. For a long time, network operators rely on DPI, a passive probing in most cases for
unencrypted traffic. DPI helps to extract the application-level information directly from the
network traffic payload. In video streaming service (e.g., DASH ), using DPI operators can in-
stantly recognize the HTTP GET request and response message for each video segment /chunk
to infer video QoE. Work [14] [45] [46] [47] [48] [49] [15] are based on information obtained from
network-level by DPI without user cooperation to infer the QoE. Schatz et al. in [14] showed
the YouTube QoE monitoring approaches for ISPs by the passive probe. According to their
proposed method, it is feasible to detect application-level stalling events at high accuracy by us-
ing network-level DPI. Mangla et al. in [45] developed MIMIC, a passive network measurement
system to estimate the QoE metrics such as average bit-rate, re-buffering ratio, and bit-rate
switches of video sessions by investigating the request-response pattern of HT'TP logs. Later,
Mangla et al. in [46] proposed VideoNOC, a prototype to assess adaptive video QoE metrics
using the passive measurement for MNO. For this purpose, they collected HTTP/HTTPs data
using a web proxy. They also processed them in a distributed manner to estimate QoE metrics
such as video quality, re-buffering ratio, and quality switches. Farshad et al. in [47] proposed
an in-network QoE monitoring framework on an SDN-based network where video streaming
related traffic was replicated toward the measurement agent to parse the manifest file (HTTP
GET request and response message) for objective QoE predicting. Huysegem et al. in [48]
proposed ‘HAS probe’ a session re-construction (containing parsed HTTP GET request and
response sequence through DPI) framework based packet capturing from network element with-
out requiring client level monitoring to infer the QoE. Wu et al. in [49] proposed an ML-assisted
approach based on the segment retrievals log information from the CDN node to detect the
freeze (stall) events of the DASH client. Krishnamoorthi et al. in [15] proposed BUFFEST, a
buffer state emulator to inferring video streaming re-buffering, leveraging DPI on the content
of HTTP requests in the clear or on unencrypted HT'TPs requests by a trusted proxy.
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2.2.2.2 Encrypted Traffic

Nowadays, the widespread use of encryption in OTT provided video streaming traffic made
network operators unable to infer the application-level QoE metrics’ by the DPI approach.
Hence, end-to-end encryption makes the in-network measurement more challenging to network
operators for figuring QoE. There are two approaches operators uses to tackle this challenge:
1. Session Modeling-based (SM) and 2. Machine Learning-based (ML).

Session modeling-based. SM approach requires the properties of underlying streaming pro-
tocols to infer QoE by modeling a video session. For unencrypted traffic, previously in [45] [48]
work presented video sessions reconstruction by extracting directly the video segment/chunk
request-response pattern of HTTP through DPI. In [50], the authors presented the eMIMIC
extension of MIMIC [45] a video session modeling to infer QoE metrics, such as average bit-
rate and re-buffering ratio from encrypted traffic. In this work, the authors reconstructed the
HTTP segments/chunk delivery sequence of the video session based on packet header infor-
mation. Besides, they compared the performance of eMIMIC with ML-based solutions and
highlighted eMIMIC obtained better performance. Nevertheless, eMIMIC suffers from two
drawbacks- firstly, the video session reconstruction was based on HT'TPs traffic. Thus, such a
model is not applicable for the QUIC transport protocol, which supports multiplexing features.
Next, eMIMIC was based on considering fixed-length video segment/chunk, thus makes it im-
practicable for video streaming service, which uses variable-length video segment/chunk (e.g.,
YouTube). In the end, the eMIMIC can lead to error in session reconstruction for new under-
lying streaming protocols because this solution was based on specific services and protocols.

Machine learning-based. The diversity of the devices, streaming services, network types and

protocols has made the SM-based solution more complex. For network operators, such a solution
is not flexible enough to adapt if the content provider changes the adaptation strategy. Due
to SM-based solutions’ inflexibility, recent studies leverage ML-based approaches to estimate
QoE metrics/KPIs from encrypted traffic. ML approach infers the application-level objective
QoE KPIs by correlating network-level QoS KPIs (e,g, throughput, loss, delay). Specifically,
supervised ML uses a significant number of network-level QoS KPIs as features and ground truth
(e.g., application-level QoE KPIs) as targets to build a correlation model. For video streaming,
the supervised ML-based approach is divided into two methods. They are Per-session and
Real-time. In the per-session KPIs estimation approach (a.k.a Offline), the entire video session
generated network-level QoS KPIs features are used to make a classification /regression-based
prediction model. On the contrary, in the real-time KPIs estimation approach (a.k.a Online),
network-level QoS KPIs features generated on a specific time window in video session are used
to make a prediction model calculating QoE KPIs on that time window. A brief overview
of in-network per-session and real-time ML-based QoE estimation related works for adaptive
video streaming is given in the following Table 2.2.

2.2.3 Hybrid Measurements

The next category for QoE measurement relies on a hybrid approach, a combination of client and
network side measurement to estimate the user-end QoE from the network operator perspective.
In such methods, the client must provide specific information to the network to estimate QoE
[61]. However, this approach is still needed user cooperation and painstaking to use.
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Table 2.2: ML-based Per-session and Real-time QoE KPIs Estimation Approaches

Approach ‘Work Target QoE Methodology
Streaming Service- YouTube
Transport- TCP
Features- Network and transport level traffic
Ground Truth- Collected by web proxy
Streaming Service- YouTube on android
Transport- TCP

Dimopoulos et al. Per-session KPIs classificati
in [33] (stall, average quality and quality variation)

()m.oh(r(it al. Pcr-susmo? F;%E.p?rtonudnw Features- Network level traffic
in [51] classification Ground Truth- Collected by IFrame based YouQ app
Streaming Service- YouTube on iOS platform
Per-session Orsolic et al. Per-session MOS (ITU-T P1.203) and KPIs classification ) Transport- TCP
(a.k.a Offline) in [52] (resolution, stall, initial delay and bit-rate) Features- Network level traffic
: ’ ! Ground Truth- Collected by stats for nerds
Streaming Service- AMuSt simulation platform
Vasilev et al. Per-session KPI classification . Transport- TCP .
in [53] (re-buffering ratio) Features- Network zru-ld transport level traffic
Ground Truth- AMuSt
Streaming Service- YouTube
. . ; . Transport- TCP
Khokhar et al. Per-session MOS (ITU-T P1.203) and KPI (startup delay) regression, o ¥ N o
in [54] and KPIs (quality, stall and quality switches) classification Features-Network and application level traffic
o i e Ground Truth- Collected by YouTube data APT
Streaming Service- YouTube in browser
Transport- TCP and QUIC
Mazhar and Shafiq Real-time KPIs classification Features- Network and transport level traffic
in [55] (initial delay, stalling and resolution) Ground Truth- Collected by YouTube IFrame APT
Prediction Granularity- 10 second
Streaming Service- YouTube in browser
Transport- TCP and QUIC
Gutterman et al. Real-time KPIs classification Features- Application level traffic (with segment detection)
in [56] (buffer warning, streaming phase and resolution) Ground Truth- Collected by YouTube IFrame APT
Prediction Granularity- 5 second
Streaming Service- Netflix, YouTube, Amazon and Twitch
Transport- TCP and QUIC
Schmitt et al. Real-time KPIs classification and regression Features-Network, transport and application level feature (with segment detection)
in [57] (resolution and initial delay) Ground Truth- Collected by Chrome extension

Prediction Granularity- 10 second
Streaming Service- YouTube in browser
Transport- TCP and QUIC
Features- Network level feature (temporal feature®)

Real-time
(a.k.a Online)

Real-time KPI classification

Seufert et al. (stall event)

in [58] Enable entire session KPIs estimation® Ground Truth- Collla:tcd by JavaS(-v"}pt—l)asml monitoring script
Prediction Granularity- 1 second
Streaming Service- YouTube in browser
Transport- TCP and QUIC
Wassermann et al. Real-time KPI classification Features- Network level feature (temporal feature)
in [59] (resolution) Ground Truth- Collected by JavaScript-based monitoring script

Prediction Granularity- 1 second
Streaming Service- YouTube in android and iOS platform
Transport- TCP
Features- Network level feature (temporal feature®)
Ground Truth- Collected by stats for nerds
Prediction Granularity- 1 second

Real-time KPIs classification
(resolution and bit-rate )
Enable entire session KPIs estimation®

Orsolic and Skorin-Kapov
in [60]

2Aggregating real-time temporal QoS features for all time window can evaluate the entire video session QoE
KPIs
bA series of QoS features computed over a time period (e.g., multiple time window)

2.2.4 QoE-centric Strategy in EC

Apart from the QoE measurement approached above-mentioned, EC’s QoE-centric strategy is
the trending topic these days. Several works presented a QoE-centric scheme for EC concepts
in terms of DASH video service leveraging the MEC paradigm. Most of the EC’s work mainly
focuses on service migration, content caching, and adaptive bit-rate use cases.

Service migration. The authors in [62] discussed the impacts and benefits associated with
network service migration from the cloud to fog nodes for video distribution with QoE support.
Dinh-Xuan et al. in [63] proposed a VNF for video traffic monitoring in the network. They
evaluated its accuracy depending on different placements (network edge vs. close the streaming
server).

Content caching. Xu et al. in [64] proposed a MEC enhanced video delivery scheme com-
bining content caching and streaming technology together where the MEC server acts as a
controlling component to implement the video caching strategy and adjust the transmitted
videos bit-rate flexibly. Ge et al. in [65] presented a content caching framework to improve
user QoE at EC for DASH video streaming applications. In [66], the authors presented a
QoE-driven mobile-edge caching placement optimization strategy for dynamic adaptive video
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streaming. Liang et al. in [67] presented QoE-aware wireless edge caching with bandwidth
provisioning and caching strategies in SDWNs to decrease the content delivery latency and
improve the utilization of the network resources. Behravesh et al. in [68] showed an ML-driven
predictive prefetch and caching approach for DASH content in MEC-enable mobile networks.

Adaptive bit-rate. Li et al. in [69] proposed a novel architecture for adaptive video stream-
ing, including an adaptation algorithm running as a MEC service, aiming to relax network
congestion while improving user experience. Kim and Chung in [70] presented an EC-assisted
greedy based bit-rate allocation algorithm that jointly optimizes the QoE, resources, and fair-
ness among the DASH clients.

Passive QoE measurements at EC. In the scope of QoE monitoring and measurement at
the edge, there was no such significant work has not been done to date. A demonstration of real-
time QoE estimation of DASH-based mobile video applications through EC is presented in [71].
The authors implemented a virtual function in LTE network edge premises integrating a proxy
(e.g., DPI), which plays a role in breaking the encryption and reading the QoE information from
packet headers to evaluate real-time streaming quality. Their proposed algorithm computed per
0.5 second’s video buffer length with other QoE metrics (e.g., initial delay, playback duration,
and re-buffering duration). On the other hand, Zheng et al. in [72] proposed a Fog-assisted
Real-time QoE Prediction (FRQP) scheme to enable service providers to estimate DASH video
QoE at fog (edge) nodes. The authors showed a passive probing technique at fog nodes with
the supervised ML model’s help to infer users’” QoE by observing network traffic packet headers.
For this, the authors proposed a heuristic approach to split the playback buffer status into two
sub-phases (e.g., re-buffering or no re-buffering) based on the ON-OFF traffic pattern between
the user and the DASH server. They stated a time sequence-based temporal technique to
collect per time window real-time QoS features, i.e., download throughput, moving average
download throughput, and request distance (density of request packets). However, the authors
did not precisely mention the granularity of the time window to evaluate QoE prediction (e.g.,
re-buffering or no re-buffering) from QoS features.

Apart from work in the aforementioned EC zone, for the virtualization and softwarization
context, related work in [73] discussed the deployment of virtualized monitoring probes consid-
ering the 5G network scenario at MEC platforms. Furthermore, work in [32] [74] [9] provided
challenges and a detailed overview of QoE-oriented MEC architecture in the context of SDN
and NFV.

2.2.5 QoE Performance Evaluation over TCP and QUIC

Table 2.3 presents relevant details about the work related to the performance of adaptive video
streaming over TCP and QUIC transport.

2.2.6 This Work vs. State-of-the-Art

In this work, we propose a lightweight, fine-grain passive encrypted network traffic monitoring
technique from an edge node for real-time DASH video service QoE estimation. We adopt an
approach similar to the most recent three works [58] [59] [60] as stated in the Table-2.2 for
ML-based real-time QoE estimation. Since a stall or re-buffering event is rarely observed in
the shortest granularity time window, this work emphasizes displayed video quality such as
resolution and bit-rate QoE metrics. However, this work is based on an emulation-based DASH
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Table 2.3: Related Work in the Area of DASH Video Performance Evaluation over TCP and
QUIC (Category 1 and 2) and Current Research Approaches for Getting Better DASH Video
Performance over Newly Standardized QUIC Transport (Category 3).

| Category | Work ‘ Main Insight ‘

Timmerer and Bertoni in [75] evaluated TCP and
QUIC on dynamic adaptive streaming with varying
network link utilization and throughput. The
authors stated that QUIC does not provide

improvement in the overall streaming performance. (1) QUIC offers poor performance than TCP
1 Bhat et al. in [76] evaluated the performance of the for adaptive video streaming.

ABS algorithms by head-to-head comparing between | (2) An open-source implementation is applied

TCP and QUIC transport. The authors stated that for QUIC transport.

QUIC does not provide significant QoE benefits to
the existing ABS algorithms because these
algorithms were designed over TCP.

Arisu and Begen in [77] evaluated QUIC in terms of

the users’ frame-seek requests and frequent network
changes. They used Google provided toy server and (1) QUIC offers better performance than TCP

client (player) and showed QUIC provided better for adaptive video streaming with Google
QoE by reducing the wait times and the buffer provided QUIC server and player.
starvation rates. (2) In category 1, QUIC was less competitive
2 Kakhki et al. in [78] found that QUIC provided than TCP due to using open source
better streaming QoE, but only for high-quality implementation of QUIC or not using Google
video-streaming using YouTube. provided server with the latest version of
Zinner et al. in [79] showed QUIC with 0-RTT QUIC transport.

connection establishment performed better than the
other protocols for the playback start in YouTube
video streaming.

Li et al. in [80] and Hayes et al. in [81] provided
MMT and SDN based approach to improve the QoE
of adaptive streaming over QUIC transport.

Bhat et al. in [82] showed QUIC performed better (1) Novel strategies to make the QoE
than TCP with a modified DASH-based ABS performance of adaptive video streaming more
approach (SQUAD), which inherits retransmit robust with QUIC transport.

3 segments’ ability to improve to QoE of a viewer (2) Modification of ABS algorithms to obtain
watching the video. better performance over open-source
Nguyen et al. in [83] presented a retransmission implementation of QUIC transport.

technique (H2BR) for the modified ABS algorithms
perform well by improving the average video quality
with HTTP/3 atop QUIC compared to HTTP/2 atop
TCP in the context of packet loss and retransmission.

video service, which allows the use of different adaptation logic for video segment selection
instead of a particular streaming service (e.g., YouTube) adaptation logic. A brief comparison
between our work and state-of-the-art most recent three works is presented in Table 2.4.

As our work focuses on QoE estimation at the edge premises, we also provide a brief com-
parison (Table 2.5) between our work and the works [71] [72] carried out in EC’s scope stated
in the earlier subsection 2.2.4 for QoE measurements.

Lastly, in this work, we conduct all the experiments using traditional TCP and open-source
implementation of QUIC transport (similar to category 1 stated in Table 2.3) for QoE estimation
and QoE performance evaluation.

2.3 Literature Review Summary

Quality of Experience (QoE) is a user-centric experience that depends on numerous factors
and is assessed both subjectively and objectively. Wherein Machine Learning (ML)-assisted
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Table 2.4: A Comparison Between This Work and ML-based Real-time QoE Estimation State-
of-the-Art Works

Work [58] Work [59] Work [60] This Work

Resolution (Binary Classification) Resolution (Multi-class Classification)
Bit-rate (Binary Clas i Bit-rate (Multi-class ion)
Resolution (Multi-class Classification)
Bit-rate (Multi-class

Real-time | Stall Event (Binary Classification) | Resolution (Multi-class Classification)

Startup (initial) Delay (Regression)

Target Qof P ) Stall Event Number (Regression) ITU-T MOS (Multi-class Classification/Regression)
CI=SESSION | gall Bvent Duration (Regression) Quality Switches (Multi-class Classification)
Stall Ratio (Regression) Stall Ratio (Multi-class Cl: ation)
Startup Delay (Regression)
Granularity - 1 second 1 second 1 second 0.5 second
Temporal Current Current Current Current
Time - Trend Trend Trend Trend
Window Session Session - Session
Packet Size Packet Size Packet Size Packet Size
Basic Packet, Count Packet, Count Packet Count Packet Count
Features Packet TAT* Packet IAT* Packet TAT* Packet IAT®
- - Throughput Throughput

252 (TCP)

Real-time 208 (TCP and QUIC) 208 (TCP and QUIC) 218 (TCP) 168 (QUIC)
Total Features - - - - - : - 216 (TCP)
Per-session 208 (TCP and QUIC) 208 (TCP and QUIC) 62 (TCP) 144 (QL‘T(;)
Window Used
for Session - All (Current, Trend and Session) All (Current, Trend and Session) All (Current and Trend) Current
QoS Aggregation
Streaming Service - YouTube YouTube YouTube Emulation-based DASH

%Inter Arrival Time

Table 2.5: A Comparison Between This Work and QoE Estimation Works in the Scope of EC

‘ | Work [71] | Work [72] ‘ This Work ‘
‘ QoE Measurement at Edge ‘ v ‘ v ‘ v ‘
\ DPI \ v \ X \ X \
‘ ML-based ‘ X ‘ v ‘ v ‘
| ML Model Benchmark | X ‘ X ‘ v ‘
‘ Real-Time Target QoE ‘ Buffer Length ‘ Buffer Status ‘ Resolution and Bit-rate ‘
‘ Prediction Granularity ‘ 0.5 second ‘ Vague ‘ 0.5 second ‘
‘ Basic Features ‘ - ‘ Throughput and Request Density ‘ Throughput, Packet Size/Count/IAT® ‘
‘ Transport Option ‘ TCP ‘ Vague ‘ TCP and QUIC ‘

%Inter Arrival Time

passive probing-based parametric objective QoE assessment is the most widely used technique
nowadays. The network-level Quality of Service (QoS) metrics play the most vital role in alter-
ing the QoE for the most dominating Dynamic Adaptive Streaming over HTTP (DASH) video
service. Besides, DASH video service works based on adapting network function status, and
Over-the-Top (OTT) platforms deliver the DASH service to end-user by end-to-end encryption
over TCP (HTTPs) and QUIC transport. On the other hand, the concept of Edge Computing
(EC) facilitates the network operator to keep aware of network conditions and optimize video
delivery of such DASH service by passively monitoring QoS metrics and assessing QoE. Several
approaches were applied to QoE measurements in the literature, such as client-level, network-
level for encrypted and unencrypted traffic, hybrid, and edge-centric measurement. Moreover,
a couple of works were carried out for QoE performance evaluation over TCP and QUIC trans-
port. We provided a brief comparison of this thesis work with the most recent related work for
QoE measurement and performance evaluation.
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Chapter 3

Edge QoE Probe Design and
Implementation

This chapter presents the approach used in the design and implementation of the Edge QoE
Probe to passively monitor the traffic containing video service information at the network’s
edge premises for parametric ML-based QoE estimation. Besides, we discuss the impact of
different transport protocols on DASH video service performance.

3.1 Design Overview

For our proposed predictive Edge QoE Probe scheme Figure 3.1 shows a high-level network
architecture compound with end-user, access network (AN), which can be a wireless network
such as WiFi and LTE, core network, internet, and video source. The location of the video
source can be located anywhere on the internet or in-network operator premises. The packet
flow from/to video source passes through the internet, core, and access. We deploy a predictive
QoE probe mechanism for DASH video service at the edge of the network where AN is consid-
ered an edge node. Such a predictive Edge QoE Probe can act as a VNF for a MEC facility
located in edge premises. Network operators are mainly responsible for managing the edge
premises (e.g., AN) and backhaul network (e.g., core). From the network operators’ point of
view, the network’s edge is considered closer to the user premises to observe the nearly accurate
end-user video service’s performance. Also, the monitoring traffic at the edge location is less
mixed with cross-traffic than other locations.

MEC

WEdge QoE

Probe

Pass:ve Monitoring

V '
)
End-User & Core Network E
Vun

Tuhe

Access Network Internet Video Source

Figure 3.1: A High-level Network Architecture
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Our proposed solution for the DASH video service tracks the bi-directional encrypted net-
work traffic from the network edge, enable us to infer users’ QoE according to the bi-directional
network traffic’s lightweight QoS features. Specifically, it continuously collects the bi-directional
network traffic in a real-time fashion and predicts end-users QoE for DASH video service.

Passive Probing

| Identify video streaming traffic |

| Identify video streaming session's start and end |

| Temporal network-level QoS feature extraction |

ML-based Parametric QoE

Edge QoE Probe,
(Edge Q ) Estimation

Training phase with ground truth data

Prediction phase

e Real-time (online) KPIs prediction
o Per-session (offline) KPIs prediction

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Topic 1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Thesis Overview —

DASH-supported Video Service
QoE Performance

| Rate based, buffer based and hybrid ABS algorithm |

| Diverse network condition |

Single and multiple streaming client |

Topic 2

Different Transport
Protocols

| TCP (HTTP/1.1 and HTTP/2) |

| QUIC (HTTP/3) |

Figure 3.2: Overall Thesis Design Overview

However, this thesis is based on the prediction of the end-user QoE for the DASH video
service at edge premises as well as the evaluation of the QoE performance of the DASH video
service. Hence the overall design requirement is divided into two topics.

e Topic 1: QoE prediction of DASH-supported video service at edge premises.

e Topic 2: QoE performance evaluation of DASH-supported video service over different
transport.

For two topics, we state Topic 1 is mandatory for the Edge QoE Probe design and imple-
mentation, and Topic 2 is non-mandatory or an additional part to analyze the QoE perfor-
mance over the different transport protocols. Details on each topic are presented in Figure 3.2
and stated as follows.
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3.2 Topic 1: QoE Prediction of DASH-supported Video
Service at Edge Premises

This section discusses the steps to be considered in designing the Edge QoE Probe for passive
network traffic detection and ML-based QoE estimation. Further, to implement the probing
scheme (interchangeable with Edge QoE Probe), we thoroughly explain our controlled experi-
ment.

3.2.1 Passive Probing-based Network Traffic Acquisition and Pro-
cessing

Network traffic sent over the network system needs to capture without altering or modifying
the original traffic. A packet sniffer can capture the network traffic at the access network/point
interface (or any other network interface) on the network layer and processes the IP packets
into QoS KPIs.

In general, network traffic comprises parallel traffic flows for several services and a network
interface containing raw network packets. Moreover, application-level header information re-
mains inaccessible due to the end-to-end encryption over TCP (HTTPs) and QUIC transport
protocols. Hence, inferring video quality by the passive probing scheme from network traffic
requires considering the following points to extract and process the QoS KPIs as features effi-
ciently.

Identify video streaming service traffic. The first responsibility to identify corresponding
video streaming service traffic from a network interface (e.g., edge node/access point). For this
purpose, to capture the video service traffic, the probing scheme can utilize [55]-

e a unique 5-tuple (IP source, IP destination, port source, port destination, protocol).

e video content providers used IP address.

inspect DNS responses (matching the DNS lookups against the known signature of video
service).

analyzes the Server Name Indication (SNI) in TLS handshakes.

traffic classification techniques by ML.

Identify the start and end of the video streaming sessions. After identifying video
streaming service traffic, the next requirement is to determine the video streaming sessions.
The probing scheme should have characteristics that can pinpoint the video streaming session’s
start and end to obtain the quality or QoE of the video service at the right moment. But,
in general, from the noisy network traffic, it is not a trivial task. To solve this, work in [57]
showcase a heuristic solution where-

e a spike of non-video traffic such as player code or web-page catalog in the download link
indicates the session’s start.

e no video traffic or a silent period indicates the end of the session.
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This technique is more viable when a DASH player streams video content one by one.
The silent period in download link and later a spike in download link makes it convenient to
recognize the video streaming sessions. Since each of the DASH players maintains a certain
buffer threshold to store the downloaded video segments. As a result, it creates a silent period
for download video segments after receiving all the video segments in the buffer.

Such a technique can trigger the probing scheme to identify the video session’s start and
end. Therefore, at the right moment, our approach can track the corresponding video session’s
network traffic and extract the network-level QoS features.

Temporal network-level QoS feature extraction. After identifying both video streaming
traffic and video session, the subsequent role is to extract QoS features from the network traffic.
Due to end-to-end traffic encryption, application-level information remains hidden in network
traffic and makes it infeasible to inspect the corresponding video streaming’s application-level
information directly. In this situation, the probing scheme only can observe the bi-directional
network traffic as opposed to time-sequence. Therefore, it is needed to extract the QoS feature
over the time sequence.

To make the QoS extraction process time and memory efficient, the probing approach
requires a lightweight method similar to work [59] [58] [60], which follows a temporal network-
level features extraction solution in real-time. In this process, at each time interval (T), the
network layer’s multiple statistical features are extracted from the IP header information with
different temporal aggregations of the current time window (T) and past time windows. Past
time windows are the most recent N time window or trend window and past all-time window or
session window. Both include the current window as well. More specifically, in the temporal
feature extraction approach, the probing scheme can extract three types of time windows, i.e.,
current, trend, and session QoS features at each time interval.

We can choose the shortest possible size for the time window (e.g., 1-second, 5-second) for
real-time QoE estimation. Furthermore, this approach only relies on the bi-directional (uplink
and downlink) network-level information; thus, it does not require application-level segment-
detection mechanisms and segment-based features, unlike work [57] [56]. Segment-detection
and extract segment-based features require more processing time and impracticable if multiple
segment, downloads in parallel. Hence, without segment-detection, the QoS feature’s temporal
extraction is considered more robust, lightweight, and fine-grain.

3.2.2 ML-based Parametric QoE Estimation

The extracted network-level QoS features need to be fed into the supervised ML model to
make the QoS-to-QoE correlation model and estimate end-user QoE. Therefore, the probe
scheme needs ground truth from video streaming performance for labeling the dataset, which
is a prerequisite to train a supervised ML model. Wherein the extracted QoS KPIs from the
network edge premises will be used as a feature input. Hereby, our proposed Edge QoE Probe
has two operational phases: training (a.k.a learning) and prediction (a.k.a inference).

1. Training Phase: In this phase, the probing scheme relies on a specific user who will con-
tribute using a particular device or player by continuously reporting the video streaming
performance in objective QoE KPIs format. Alternatively, an HTTP proxy will decrypt
the encrypted traffic and read video quality information from the IP packet header. Later,
this KPIs information converts into target QoE labels. Then, the probing scheme will
train a supervised ML algorithm as a QoS-to-QoE correlation model based on converted
QoE labels and extracted QoS features from the network edge.
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Note that the training phase takes end-user devices or DPT assistance (which might seem
to conflict with this thesis’s motivation) because the supervised ML technique demands
ground truth.

2. Prediction Phase: Afterward, in run time, the probe scheme will only use the trained
model to predict or infer a group of users or a specific user QoE by extracting QoS features
from the network edge as an input of the model. This phase no longer needs a user-side
report or HT'TP proxy to collect ground truth information.

Our proposed Edge QoE Probe uses the ML model for both real-time and per-session QoE
estimation purposes.

e For real-time QoE estimation, a particular time window’s network traffic temporal QoS
features are used to predict that time window’s QoE.

e On the contrary, for per-session QoE estimation, the entire video session network traffic
(e.g., by aggregating real-time features) is used to predict the QoE of the whole video
session.

Both real-time and per-session QoE estimation output has two different roles for QoE man-
agement in optimizing network performance, as shown in Figure 3.3.

e Real-time QoE estimation helps service assurance CCL for run-time network optimization
with reactive performance diagnosis and resource allocation.

e Per-session QoE estimation helps network operators to review the SLA for proactive

network capacity planning and configuration.

QoE Estimation Type Network Optimization Action Type

[ Real-time (online) ]\l_ _____________ Reactive ]
1
1| Service Assurance CCL
1
1
1
1
1] Store Estimated QOE in
SLA
1
[ Per-session (offline) | Proactive ]

Figure 3.3: Twofold QoE Estimation Benefits

LN

3.2.3 Implementation

In order to implement and evaluate the performance of the predictive Edge QoE Probe, we
underwent a controlled experiment. The overall controlled experiment was based on four-
section: (i) Experimental Setup (7i) Network-level Temporal QoS Features (i7i) Application-
level QoE KPIs as Ground Truth, and (iv) Supervised ML-based QoE Estimation. Each of the

sections is explained below.
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3.2.3.1 Experimental Setup

To generate and capture network traffic at the edge of the network and video streaming log at
the client-side, we set up a testbed for the controlled experiment, which enclosed: (7) Mininet-
WiFi - a network emulation tool, (i) goDASH - a DASH video player, (iii) Caddy - a web
server hosting DASH video content, (iv) DITG - a background traffic generator, (v) Linux
TC - a traffic controller in the Linux kernel, and (vi) Tcpdump - a passive network traffic
sniffer.

e Network emulation. Network emulation is a technique to mimic real network behavior
over the virtual network. Since wireless networks are growing in popularity and SDN
approaches to virtualized and programmable networks; thus, Mininet-WiFi [84] (a fork
of Mininet! extended), a wireless SDN emulator was chosen for our work. It supports
WiFi by adding virtualized WiFi Stations (STAs) and Access Points (APs). Therefore,
we emulated a network scenario with a high-fidelity and fully controllable Mininet-WiFi
emulation environment. All the experiments carried out inside of the virtual machine cre-
ated with a virtual box. We used a network architecture scenario as shown in Figure 3.4,
where the topology comprises one Access Point (AP) and one Open vSwitch (OvS)?. The
topology depicts one DASH client and one DITG cross-traffic sender are connected with
AP. On the opposite side, a single web server hosts DASH video content and one DITG
cross-traffic receiver are connected with OvS.

/ Ground Truth \
Training Phase Prediction Phase

s
Objective QOE KPIs
Supervised ML 5 QoE Prediction QoE
k Algorithm Trained Model Output
Video log
QoS Features : QoS Input
Tepdump
\\ Passive Probing /
."0 ------
25
goDASH T Caddy Web
Client e Server
W e
D ”’., ........... Link Utilization Based on —
= Cellular Network (3G, 4G, and 5G)
Video Player ( ( )) [ Traces Bandwidth
<
(@) D = Video Content
Recess Point Cross Traffic N
[ ]~ L
—= —)
Cross Traffic Cross Traffic
Sender Receiver
* Network Edge » = ——— = = = = = = Network Core and Internet = = = =

Figure 3.4: Network Emulation Architecture

Thttp://www.mininet.org
Zhttps://www.openvswitch.org/
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e DASH player. To stream a DASH-supported video, we used goDASH [85], a lightweight
headless streaming player at the client-side. It streams video content without decoding,
making goDASH lightweight and memory-efficient for large-scale evaluation than other
players such as dash.js and ExoPlayer. goDASH has the feature of supporting numerous
state-of-the-art ABS algorithms, two transport protocols (e.g., TCP and QUIC). Also,
goDASH provides a video streaming log containing per segment objective QoE metrics
(e.g., segment arrival time, stall, bit-rate, resolution) and five different real-time output
from QoE models (ITU-T P.1203 MOS, Claey, Dunamu, Yin, and Yu). Since TCP
(HTTPs) and QUIC require a secured and encrypted connection, goDASH was equipped
with its goDASHbed? to set security certificates on both ends (client and server). Our
testbed derives all the features of the goDASHbed. We customized the network topology,
limiting the link bandwidth from network traces, DITG cross-traffic utilization, DASH
video content, and ABS algorithm selection.

e Web server and video source. The testbed offered a Caddy* (v2) webserver hosting
DASH video content. Caddy is a Web Server Gateway Interface (WSGI) server supporting
HTTP/3 atop experimental QUIC and HTTP/1.1 and HTTP/2 atop TCP. Hence the
DASH clients stream videos either over TCP or QUIC transport. Caddy leverage the quic-
go® library, an open-source implementation of QUIC transport protocol (draft-29) [86]
written in Go language. At the server-side, we used a 4-second segment duration short
science fiction film (Tears of Steel), sourced from a publicly available 4K DASH video
dataset [87]. This video content has a total duration of over 14 minutes, encoded using
H.264/AVC, and contains eight resolutions across thirteen representation rates. The
detailed mapping of the video resolution to bit-rate is shown in Table 3.1.

Table 3.1: Quality Representations: (Bit-rates vs Resolutions) Tears of Steel Video

Bit-rates | 230 | 375 | 560 | 750 | 1050 | 1750 | 2350 | 3000 | 3850 | 4300 | 15000 | 25000 | 40000
(Kbps)

Resolutions | 320x | 384x | 512x | 512x | 640x | 736x | 1280x | 1280x | 1920x | 1920x | 1920x | 3840x | 3840x
180 | 216 | 288 | 288 | 360 | 414 720 720 1080 | 1080 1080 2160 | 2160

e Trace-based link bandwidth utilization. We emulated different network conditions
through Linux TC (Hierarchical Token Bucket) between AP and OvS link using the down-
link bandwidth parameter from 3G [88], 4G [89], and 5G [90] cellular network traces.
For our experiment, we randomly selected a total of 15 different mobility traces where
3G (Bandwidth: mean=1.74 and std=0.92 Mbps), 4G (Bandwidth: mean=12.50 and
std=14.64 Mbps), and 5G (Bandwidth: mean=44.41 and std=53.40 Mbps) traces repre-
sent low, moderate, and higher bandwidth scenarios respectively. Figure 3.5 illustrates
the statistical overview of the 15 different traces.

e Background traffic generator. The DITG tool was used to introduce cross-traffic
alongside the video streaming traffic in the testbed. Using DITG, we sent three concurrent
flows of UDP traffic from one sender host to another receiver host. The amount of total
UDP cross-traffic in such quantity occupied approximately 20% of the average bandwidth
of 3G, 4G, and 5G traces.

3https://github.com /uccmisl/goDASHbed
4https://caddyserver.com
Shttps://github.com /lucas-clemente/quic-go
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e Passive network traffic monitoring at edge. During the video streaming emulation
to extract network-level QoS KPIs features, firstly, we captured the network traffic at the

AP interface with Tepdump®, a packet sniffer tool. It passively grabs what is going on

within the specific interface without intercept and alter the raw data. It is also flexible in
selecting which traffic to capture (e.g., TCP, UDP) at which port and interface. Besides,
it captures network traces as fast as possible in a lightweight manner as it requires less

RAM usage than tshark/wireshark”.

— Video streaming traffic identification. The testbed contained two types of
traffic- video streaming traffic and cross-traffic, as shown in Figure 3.6. We were
already aware of both traffic’s source and destination IP addresses due to the con-
trolled experimental setup. Hence, at the AP interface, we quickly identified the

IP address of the video streaming traffic used by the video server (Caddy) through

Tepdump. As our testbed provides end-to-end encryption for video streaming traf-
fic, it makes the application header information inaccessible directly. The captured
encrypted traffic traces (uplink and downlink) information by Tcpdump was stored

as a dump file (PCAP). Later, only the network layer header information of offloaded

PCAP files was analyzed to process network-level QoS KPIs features.

Shttps://www.tcpdump.org/manpages/tcpdump.1.html
"https://www.wireshark.org
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Source Destination  Protocol Length Info Source Destination Protocel Length Info
10.0.0.80 10.6.0.81 UDP 179 45025 -~ 10001 Len 10.0.0.1 10.0.0.21 TCP 66 443 ~ 49902
10.0.0.1 10.0.0.21 QUIC 1294 Protected Payload 10.0.0.1 10.0.0.21  TLSv1.3 1617 Server Hell
10.0.0.80 10.0.0.81 UDP 179 39623 — 10003 Len 10.0.0.21 10.0.0.1 TCP 66 49902 — 443
10.0.0.1 10.0.0.21 QUIC 1294 Protected Payload 10.0.8.21 10.6.0.1 TCP 66 49902 . 443
10.0.0.80 10.0.0.81 UDP 179 60291 ~ 10002 Len 10.0.8.21 10.0.8.1 TLSV1.2 136 Change Ciph
10.6.0.21 10.0.0.1 QUIC 72 protected Payload 10.0.0.21 10.0.0.1  TLSv1.3 259 Application
10.0.0.80 10.0.0.81 UDP 179 45025 — 10001 Len 16.6.6.21  16.6.6.1 e 66 49960 - 444

6 6 o 6 Prote ST 10.0.0.1 10.6.0.21  TCP 66 443 — 49902

.0.0. .0.0. 1294 Protected Video 0.0.0. .0.0. *

.0.0. .0.0. 71 Protected Traffic  |10.0.8.1 10.0.0.21 TLSv1.3 1274 Applicatio
10.0.0.1 10.08.8.21 QUIC 1294 Protected Payload 10.0.0.21 10.0.0.1 TCP 66 49902 - 443
16.6.0.21 10.0.6.1 QUIC 71 Protected Payload 10.0.0.1 10.0.0.21 TLSv1.3 2460 Application
10.0.0.1 10.0.0.21 QUIC 1294 Protected Payload 10.0.0.21 10.0.0.1 TCP 66 49902 . 443
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Figure 3.6: Testbed Generated Network Traffic

— Video streaming session starts and ends identification. In our controlled
experiment, we maintained a parameterized script to stream video one by one at
each time. Thus, the testbed automatically started capturing network traffic when
the video began to play and stopped capturing when the video streaming finished.
For each video streaming experiment, the testbed captured and stored the PCAPs
file separately.

e Experimental parameter usage. To stream video each time at client-side, goDASH
player was configured with specific ABS algorithms. We used the following six state-of-
the-art ABS algorithms from three categories in the entire experiment. The details of
each category ABS algorithm are taken from work [91].

— Rate-based ABS algorithm

« Conventional [92] and Exponential: Both algorithms make the decision on
the next segment by using an exponential moving average of past segments’
delivery rate.

— Buffer-based ABS algorithm

+x BBA [36] and Logistic [93]: Both algorithms select the next segment quality by
mapping the buffer level to a target segment quality. Moreover, the Netflix plat-
form’s BBA scheme incorporates a throughput-based decision in its “startup”
phase while considering future video segment sizes. Logistic uses a logistic model
to map buffer levels to video bit-rate.

— Hybrid ABS algorithm

« Arbiter [94] and Elastic [95]: Arbiter uses the exponential weighted moving
average of the last ten segment’s delivery rates to estimate the next segment’s
available throughput. However, to adapt quickly to sudden changes in through-
put, it uses adaptive scaling, such that its estimation is based on the second
moment of the throughput sample. The additional scaling factor reflects the
player’s buffer state. On the other hand, Elastic uses a harmonic average of
the recent five-segment rates. The harmonic average is a conservative estimate
of available throughput. Furthermore, Elastic uses the control theory to com-
bine throughput estimate and buffer levels when making video rate selection
decisions.
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During each streaming session, link bandwidth between AP and OvS was used based on
individual traces from 15 selected cellular networks (3G, 4G, and 5G) traces, and the
video content was played for up to 2 minutes. Moreover, TCP and QUIC transport were
used separately for each streaming session. We customized the selected traces for every
sample with 4-second granularity. Linux TC was applied to change the link bandwidth
after every 4 seconds during the video streaming so that at least two segments can easily
download between 4-second intervals. Each streaming session experiment with a specific
ABS algorithm, link utilization, and transport option was repeated five times. All the
parameters used for different combinations during video streaming sessions are given in

Table 3.2.

Table 3.2: Experimental Parameters Usage Based on Different Combinations

Cellular Total | Mobility | DASH ABS Transport Video Cross | Experiment
Network | Traces Client | Algorithms Option Duration | Traffic | Repetition
Conventional
Bus .
Car Exponential
3G 5 Ferry 1 BB.A. TP 2 min UDP 5 times
Logistic QUIC
Metro .
Train Arbiter
i Elastic
Conventional
Bus .
Car Exponential
4G 5 Pedestrian 1 BB.A. TCP 2 min UuDP 5 times
. Logistic QUIC
Static .
Train Arbiter
Elastic
.. Conventional
Driving-1 .
Driving-2 Exponential
. BBA TCP . )
5G 5 Static-1 1 . 2 min UDP 5 times
. Logistic QUIC
Static-2 .
Static-3 Arbiter
Elastic

3.2.3.2 Network-level Temporal QoS Features

A Python-based script was used to extract the network-level QoS KPIs features for QoE es-
timation. This script analyzed and calculated various network-level QoS KPIs statistics using
only packet headers, specifically the IP addresses and packet sizes from traffic traces (PCAPs).

Real-time QoS features. For real-time, the core idea was to estimate QoE KPIs for each
short interval time window, which should be constant during the entire video session. For this
reason, temporal network-level features were calculated from bi-directional network traffic in a
sliding window fashion. In this technique, for each short interval time window, the QoS KPIs
features were calculated for that time window as well as related past windows. Each short
interval was defined as a current time window, and past windows were defined as two ways-
most recent windows or trend time window and past all windows or session window.

Throughout our work, we chose a half-second or 0.5-second interval as a current window
length. For the trend window, the time window length was considered 1, 3, 5, 10, and 20
seconds. Note that the trend window contains traffic information on the current window as
well. In contrast, the session window covers all the previous time window’s traffic information
from the beginning of the video stream to till current time window.
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For each type of time window, network layers QoS KPIs features were calculated for uplink
and downlink directions and TCP and QUIC connections. Specifically, four basic network-level
QoS KPIs: throughput, number of packets, packet sizes, and packets inter-arrival
time were considered throughout our work. Later, for each time window, we computed the
overall statistics of each KPI. The detailed description of the calculated features is presented
in Table 3.3. The following format was used to name each real-time QoS features-

traffic-direction__kpi__statistic__time-window

Thus, for real-time QoE KPIs estimation, we extracted a total of 252 features for the TCP
connection and 168 features for the QUIC connection.

Entire session’s QoS features. As opposed to real-time QoE estimation, the probe scheme
estimated the entire video session’s QoE as well. For this reason, calculated statistics of the QoS
features i.e., total numbers of packet, average throughput, mean packet size and inter-arrival
time in the current time window were aggregated for entire video session traffic. The following
format was used to name each QoS features for entire session-
traffic-direction__kpi__statistic__S (entire session)

Thus, we calculated 216 features for the TCP connection and 144 features for the QUIC
connection for the entire video session. Besides, the detailed description of the per video
session QoS features is presented in Table 3.4. An overview of the real-time and per-session
QoS features computing approach is given in Figure 3.7.

Network Traffic

1
1
) : : : : : T : Entire
® Current Window Traffic (0.5 second) Time™ .. Session's

n Trend Window Traffic (1, 3, 5, 10, 20 second) Qos

Temporal QoS Features Features
m Session Window Traffic

563 Entire Session's Traffic by Aggregating All Current Window
Per 0.5s Interval /) \ Per Session
QoE QoE

Figure 3.7: Network-level QoS Features Extraction Technique

3.2.3.3 Application-level QoE KPIs as Ground Truth

A prerequisite for supervises ML technique is to use QoE metrics/KPIs as ground truth. There-
fore, it is necessary to obtain QoE metrics while a video is played from the client-side in the
emulation-based experiment.

During our experiment, goDASH was used as a client-side player to stream the video content.
It provides a log file of streaming content which consists of potential information about each
downloaded segment such as bit-rate, buffer level, stall duration, delivery rate, actual rate.
These information are regarded enough for QoE metrics (e.g., the average video quality, quality
switching rate, and video stalls) calculation [96] [97]. Moreover, goDASH provides optional
information (e.g., codec, frame rate, abs algorithm, segment duration) at the log file for each
segment with five QoE models output- ITU-T Rec. P.1203 MOS Score [98] [99], Clay [100],
Dunamu [101], Yin [102], and Yu [103].

These pieces of optional information are used as input of recently standardized I'TU-T
recommendation P.1203 QoE model [99] to obtain MOS (derived from subjective MOS studies)
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Table 3.3: Real-time QoS Features Statistics Calculated for Uplink and Downlink Direction
Traffic and on Current (0.5 second), Trend (1, 3, 5, 10, and 20 second), and Session Window

‘ Features ‘ Connection Type ‘ Description ‘
UP/DL_Th_avg CW/TW/SW TCP, QUIC Uplink and Downlink average throughput in the window
UP/DL_Pkt-N_total CW/TW/SW TCP, QUIC Uplink and Downlink total number of packets in the window
UP/DL_Pkt-N-g100_total CW/TW/SW Only TCP Uplink and Downlink total number of packets in the window
(packets greater than 100B are only counted to ignore ACKs)
UP/DL_Pkt-S_mean CW/TW/SW TCP, QUIC Uplink and Downlink mean packet size in the window
UP/DL_Pkt-S_medn CW/TW/SW TCP, QUIC Uplink and Downlink median packet size in the window
UP/DL_Pkt-S_std CW/TW/SW TCP, QUIC Uplink and Downlink standard deviation of the
packet size in the window
UP/DL_Pkt-S_max CW/TW/SW TCP, QUIC Uplink and Downlink maximum packet size in the window
UP/DL_Pkt-S_min CW/TW/SW TCP, QUIC Uplink and Downlink minimum packet size in the window
UP/DL_Pkt-S-g100_mean CW/TW/SW Only TCP Uplink and Downlink mean packet size in the window
(ignore ACKs)
UP/DL_Pkt-S-g100_medn CW/TW/SW Only TCP Uplink and Downlink median packet size in the window
(ignore ACKs)
UP/DL_Pkt-S-g100_std_CW/TW/SW Only TCP Uplink and Downlink standard deviation of the packet size in the window
(ignore ACKs)
UP/DL_Pkt-S-g100_max_CW/TW/SW Only TCP Uplink and Downlink maximum packet size in the window
(ignore ACKs)
UP/DL_Pkt-S-g100_min CW/TW/SW Only TCP Uplink and Downlink minimum packet size in the window
(ignore ACKs)
UP/DL_IA mean CW/TW/SW TCP, QUIC Uplink and Downlink mean inter-arrival time of packets in the window
UP/DL_IA _medn CW/TW/SW TCP, QUIC Uplink and Downlink median inter-arrival time of packets in the window
UP/DL_IA _std CW/TW/SW TCP, QUIC Uplink and Downlink packet inter-arrival time’s standard deviation
in the window
UP/DLIA _max CW/TW/SW TCP, QUIC Uplink and Downlink maximum inter-arrival time of packets in the window
UP/DLIA min CW/TW/SW TCP, QUIC Uplink and Downlink minimum inter-arrival time of packets in the window
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Table 3.4: Entire Session’s QoS Features Statistics Calculated for Uplink and Downlink Direc-
tion Traffic by Aggregating Current Window’s QoS Features

Features

Connection Type

Description

UP/DL_Th_avg/medn/std/max/min_S TCP, QUIC Uplink and Downlink average, median, standard deviation,
maximum, minimum throughput in the entire video session
UP/DL_Th_avg-f25/£50 /125 /150_S TCP, QUIC Uplink and Downlink average throughput in the
first and last 25% and 50% of video session
UP/DL_Th_p-10/p-20/p-30/p-40 TCP, QUIC Uplink and Downlink 10 to 90 percentile throughput
/p-50/p-60/p-70/p-80/p-90_S in the entire video session
UP/DL_Pkt-N_total/mean/medn/std /max/min_S TCP, QUIC Uplink and Downlink total, mean, median, standard deviation,
maximum, minimum of packet numbers in the entire video session
UP/DL_Pkt-N_total-f25/f50/125 /150_S TCP, QUIC Uplink and Downlink total number of packets in the
first and last 25% and 50% of video session
UP/DL_Pkt-N_p-10/p-20/p-30/p-40 TCP, QUIC Uplink and Downlink 10 to 90 percentile of total packets
/p-50/p-60/p-70/p-80/p-90_S in the entire video session
UP/DL_Pkt-N-g100_total/mean/medn/std/max/min_S Only TCP Uplink and Downlink total, mean, median, standard deviation,

maximum, minimum of packet numbers in the entire video session (ignore ACKs)

UP/DL_Pkt-N-g100_total /£25/£50,/125 /150_S

Only TCP

Uplink and Downlink total number of packets in the
first and last 25% and 50% of video session (ignore ACKs)

/p-50/p-60/p-70/p-80/p-90_S

UP/DL_Pkt-N-g100_p-10/p-20/p-30/p-40 Only TCP Uplink and Downlink 10 to 90 percentile of total packets
/p-50/p-60/p-70/p-80/p-90_S in the entire video session (ignore ACKs)
UP/DL_Pkt-S_mean/medn/std/max/min_S TCP, QUIC Uplink and Downlink mean, median, standard deviation,
maximum, minimum packet size in the entire video session
UP/DL_Pkt-S_mean-{25/£50/125/150_S TCP, QUIC Uplink and Downlink mean packet size in the
first and last 25% and 50% of video session
UP/DL_Pkt-S_p-10/p-20/p-30/p-40 TCP, QUIC Uplink and Downlink 10 to 90 percentile of packet size
/p-50/p-60/p-70/p-80/p-90_S in the entire video session
UP/DL_Pkt-S-g100_mean/medn/std/max/min_S Only TCP Uplink and Downlink mean, median, standard deviation,
maximum, minimum packet size in the entire video session (ignore ACKs)
UP/DL_Pkt-S-g100_mean-£25 /50 /125 /150 Only TCP Uplink and Downlink mean packet size in the
first and last 25% and 50% of video session (ignore ACKs)
UP/DL_Pkt-S-g100_p-10/p-20/p-30/p-40 Only TCP Uplink and Downlink 10 to 90 percentile of packet size
/p-50/p-60/p-70/p-80/p-90_S in the entire video session (ignore ACKs)
UP/DLIA _mean/medn/std/max/min_S TCP, QUIC Uplink and Downlink mean, median, standard deviation,
maximum, minimum of packet inter-arrival time in the entire video session
UP/DL_IA _mean-f25/£50/125/150_S TCP, QUIC Uplink and Downlink mean packet inter-arrival time in the
first and last 25% and 50% of video session
UP/DL_IA _p-10/p-20/p-30/p-40 TCP, QUIC Uplink and Downlink 10 to 90 percentile of packet inter-arrival time

in the entire video session
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for each segment. The recommendation describes four different quality modules as mode-0, 1, 2,
and 3. Each mode of operation has different input requirements ranging from the only log files
to segment level information of the video stream. goDASH uses the mode-0 ITU-T P.1203 QoE
model that requires the bit-rate, codec, duration, frame rate, and resolution of each segment
to obtain the MOS. The main shortcoming of the ITU-T standardization is its limitation to
H.264 (AVC) encoding content to Full HD (1920x1080). Hence in our experiment, each video
streaming was conducted by setting the maximum 1920x1080 resolution in the goDASH player
end.

Table 3.5 presents the options for per segment output logs generated by the goDASH.
The logs are divided into three parts. Part 1- default output, Part 2- optional output, and
Part 3- QoE models output. Table 3.6 (default output) and 3.7 (optional and QoE models
output) present the first five-segments information obtained from the goDASH log file for
arbiter algorithm, 4-second segment duration video content, and QUIC (HTTP/3) protocol.

Table 3.5: Notation Used in the goDASH Trace Output Logs

Part | Type | Description
Seg_# Streamed segment number
Arr_Time Arrival time in milliseconds (ms)
Del_Time Time taken to receive the segment (ms)
Stall_Dur Stall duration (ms)
1. Default output Rep_Level Representation quality of downloaded segment (kbps) (taken from MPD file)
Del Rate Delivery rate of downloaded segment (kbps) (segment size divided by time for delivery)
Act_Rate | Actual rate of of downloaded segment (kbps)(segment size divided by the segment duration)
Byte_Size Segment size in bytes
Buff_Level Buffer level (ms)
Algorithm ABS algorithm name
Seg_Dur Segment duration (ms)
Codec Video encoder
Width Representation width in pixels
2. Optional output Height Representation height in pixels
FPS Frame rate of the streamed video
Play Pos Current playback position (ms)
RTT Application level (ms)
Protocol HTTP protocol
P.1203 P.1203 standard - scale [0, 5]
Clae Clae model - scale [0, 5
3. Five QoE model output | Duanmu Duanmu model - scale [0, 100]
Yin Yin model - scale dependent on HAS bitrates
Yu Yu model - scale [0, 5]

Table 3.6: Sample Default Trace Output from goDASH for First 5 Segments - Arbiter Algo-
rithm, 4-second Segment Duration and QUIC (HTTP/3) Protocol

‘ Seg # ‘ Arr_time ‘ Del Time ‘ Stall Dur ‘ Rep_Level ‘ Del Rate ‘ Act_Rate ‘ Byte_Size ‘ Buff Level ‘

1 79 78 0 236 565 11 5516 4000
2 717 153 0 375 586 22 11219 8000
3 6192 5005 0 375 570 714 357007 6525
4 10718 4037 0 236 493 498 249220 5999
) 12023 772 0 236 1284 247 123943 8694

Real-time QoE estimation ground truth. Note that goDASH provides only the required
output per video downloaded segment. We need video streaming performance information
(QoE KPIs) with a time sequence for real-time QoE prediction. For this reason, we customized
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Table 3.7: Sample Optional and QoE Models Output from goDASH for First 5 Segments -
Arbiter Algorithm, 4-second Segment Duration and QUIC (HTTP/3) Protocol

[ Seg_# | Algorithm | Seg_ Dur | Codec [ Width | Height | FPS | Play_Pos | RTT | Protocol || P.1203 | Claey [ Duanmu |  Yin [ Yu |
1 arbiter 4000 h264 320 180 24 0 28.679 | HTTP/3 1.871 0.000 46.453 -11763.802 | 0.236
2 arbiter 4000 h264 384 216 24 4000 32.051 | HTTP/3 1.871 0.420 37.839 -23527.604 | 0.306
3 arbiter 4000 h264 384 216 24 8000 46.048 | HTTP/3 1.888 0.479 38.002 848.121 0.329
4 arbiter 4000 h264 320 180 24 12000 38.941 | HTTP/3 1.876 0.449 37.839 944.792 0.306
5 arbiter 4000 h264 320 180 24 16000 34.004 | HTTP/3 1.874 0.437 37.742 1180.990 | 0.292

the goDASH provided log information by subdividing the video streaming into a sequence of
time. Throughout the work, we considered 0.5-second constant time length’s QoE KPIs (e.g.,
playback status, stall event, bit-rate, and resolution) information based on per segment arrival
information at the goDASH player end. goDASH, by default, used two segments for the initial
buffer threshold to start playback; thus, by measuring the first two segments’ arrival time, we
interpreted whether the video started to play or not.

Table 3.8 presents customized goDASH output (8-second) for per 0.5-second interval video
streaming. If we recall Table 3.6 we can see the first two segments taking 717 milliseconds or
0.717 seconds to arrive at the player buffer. Therefore, we can state that the 1st segment of
the video was started to play at 0.717 seconds. The following step (See Algorithm 1) is taken
to shape the time scale to ease the converting process® of per-segment goDASH output into a
time sequence format. The last three-row in Table 3.8 showcase the scenario if any segment
suffers stall.

Algorithm 1: The Procedure of Shaping the Time Scale

/¥X=0,1,2,..Nand Y =1, 2, 3,....N+1 */
if time_range(s) < [X.0, X.5] then
if time(s) < X.25 then
| time(s) < X.0
else
| time(s) < X.5

else if time_range(s) +[X.5,Y.0] then
if time(s) < X.75 then

| time(s) < X.5
else

| time(s) < Y.0

Per-session QoE estimation ground truth. During each video streaming emulation time,
we streamed video content for up to 2 minutes. Therefore, for the entire video session’s ground
truth, we measured the average values of 30 segments (4 seconds * 30 = 120 seconds or 2
minutes) goDASH provided outputs for a few QoE KPIs such as average resolution, average
bit-rate (Rep_Level), average MOS. We also calculated other QoE KPIs from the summary of
30 segments output, such as stall ratio, quality switches.

8(a) To calculate the segment playing start time, (b) If any segment got a stall, shape the stall time duration
following the same step and then add with segment playing start time
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Table 3.8: Sample QoE KPIs Output from Customized goDASH for First 8 Seconds (Except
Last Three Row) - Arbiter Algorithm, 4-second Segment Duration and QUIC (HTTP/3) Pro-

tocol.
Time (s) | Playback | Segment Playing Actual Segment | Customize Segment | Stall | Stall Duration Stall Duration Bit-rate | Resolution
Status Position (s) | Playing Start Playing Start Event | Actual Time (s) | Customize Time (s) | (kbps)
Time (s) Time (s)

0.0 Not started - - - - - - - - -

| 05 | Playd | 1 | 00t04 | 077 | 05 | No | 00 00 236 [ 320xI80 |
1.0 Played 1 0.5t00.9 - - No - - 236 320x180
1.5 Played 1 1.0 to 1.4 - - No - - 236 320x180
2 Played 1 14to 1.9 - - No - - 236 320x180
2.5 Played 1 2.0 to 2.4 - - No - - 236 320x180
3.0 Played 1 241029 - - No - - 236 320x180
3.5 Played 1 3.0 to 3.4 - - No - - 236 320x180
4.0 Played 1 3.5 t0 3.9 - - No - - 236 320x180

| 45 | Played | 2 [ 40tedd | 4m7 | 45 [ No | 00 00 375 | 384x216 |
5.0 Played 2 4.5t04.9 - - No - - 375 384x216
5.5 Played 2 5.0 to 5.4 - - No - - 375 384x216
6.0 Played 2 541059 - - No - - 375 384x216
6.5 Played 2 6.0 to 6.4 - - No - - 375 384x216
7.0 Played 2 6.4 to 6.9 - - No - - 375 384x216
7.5 Played 2 7.0to 74 - - No - - 375 384x216
8.0 Played 2 75t0 7.9 - - No - - 375 384x216




59

3.2.3.4 Supervised ML-based QoE Estimation

QoE metrics/KPIs. To build supervised ML models that predict video performance both
for real-time and per-session, we considered the following key QoE metrics/KPIs, which are
commonly used to assess user-perceived video quality.

e Resolution: Video resolution determines the amount of detail in the displayed video
streaming on the device. Resolution measures by the number of distinct pixels displayed
in each dimension. The dimensions are usually quoted as “width X height”. For ML-based
resolution estimation, we can compute the average resolution of a video session [33] or a
time window [55].

e Bit-rate: Bit-rate over a video session is a crucial metric for a displayed video streaming
quality (e.g., resolution). Precisely, bit-rate is measured based on the amount of down-
loaded segment data during the video session. The ABS algorithms aim to maximize
video quality by adopting a high bit-rate so that end-user perceived better quality of the
video. However, bit-rate has a complex relation with quality (e.g., resolution) as bit-rate
depends on the encoding and content type [104]. On the other hand, only the bit-rate
can not depict the actual user satisfaction [105]; other metrics such as startup delay, stall,
and the number of quality (e.g., resolution) changes require to assess the accurate QoE.

e Quality Switches: This metric defines the number of quality (e.g., resolution) levels
switched over video streaming. In general, poor network condition leads to a high num-
ber of changes in quality level. Such amplitude and frequency of quality switching can
negatively influence end-user experience and affect QoE [106]. Two concurrent video
streaming sessions might have the same bit-rate, but the session with the lower quality
switch will be perceived better by the viewer.

e Stall Ratio: Stall occurs when there is no adequate number of video segments buffered,
and the player stops the playback. Such a stall event harms QoE, and the higher number
of stalling events can increase the user’s abandonment rate when streaming the video [25].
In our experiment, the metric stall ratio is calculated as follows [33]:

Sum of Total Stall Duration

Stall Ratio =
s atio Entire Video Duration

* 100

The “stall duration” means that streaming pauses during the playback to fill up the buffer
again.

e Startup Delay: The startup delay of video plays a vital role in the user’s abandonment
rate when playing the video [107]. The delay measured in the startup phase of video
streaming is known as startup delay. Each of the DASH players has an initial buffer
threshold. Before starting playback DASH video, the client downloads multiple video
segments. When a certain number of downloaded segments hits that buffer threshold, the
player initiates to start the video. In our experiment, we set 2 segments as an initial buffer
threshold. That means the player starts playback when initially two-segment download.
We measured the first two segments’ arrival time in the player buffer for the startup delay
metric.

e P1203 MOS: Apart from the above-stated metrics, we also considered the subjective
MOS values ranging between 1 and 5, according to I'TU-T Rec. P.1203.1 standardization
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(an objective parametric model derived from subjective studies). The goDASH player
used in our experiment has the feature to calculate per-segment MOS based on the ITU-
T Rec. P.1203.1 (mode-0) standardization® considering corresponding segments bit-rate,
framerate, and resolution.

Supervised ML algorithms. Then, to evaluate different ML-model performance throughout
the work, we used the following supervised ML algorithms!® for classification and regression
task, which are:

e Linear Regression (Linear Model): To estimate continuous outcomes in the regres-
sion analysis, Linear Regression (Ordinary Least Squares) fits a linear model with co-
efficients to minimize the sum of squared residuals between the observed targets in the
dataset and the targets predicted by the linear approximation.

e Logistic Regression (Linear Model): Logistic Regression technique fits a linear model
to perform the classification task or compute discrete outcomes. This technique analyzes
a dataset in which one or more independent variables determine a discrete outcome using
a logistic (or sigmoid) function!'!. There are two types of classification in supervised ML:
Binary Classification (two discrete outcomes) and Multi-class Classification (more than
two discrete outcomes).

e K-Nearest Neighbors (Nearest Neighbors): K-Nearest Neighbors (KNN) supervised
ML technique is used for both classification (KNC) and regression (KNR) tasks. The
Nearest Neighbors method’s logic is to find a predefined number of training samples
closest in the distance to the new point and predict the outcome from these. In KNN,
the number of samples is a constant value specified by the user.

e Gaussian Naive Bayes (Naive Bayes): Naive Bayes is a classification-based technique
with strong independence assumptions between the features. Specifically, the value of a
particular feature is independent of the value of any other feature. Gaussian Naive Bayes
(GNB) is a particular type of Naive Bayes. It supports continuous-valued features and
assumes all the features follow Gaussian (normal) distribution.

e Support Vector Machine: Support Vector Machine (SVM) is the popular supervised
ML method used for both classification (SVC) and regression (SVR), but mainly used for
classification purposes. In the classification task, SVC works by finding a hyperplane in
n-dimensional space (where n is the number of features) that distinctly classifies the data
points. In contrast, SVR uses the same principles for the regression task, with only a few
minor differences.

e Decision Tree: Decision Tree (DT) is a non-parametric supervised ML method used for
both classification (DTC) and regression (DTR). It works by making a model that predicts
a target variable’s output by applying simple decision rules (if-else/yes-no conditions)
inferred from the dataset’s features.

e Random Forest (Ensemble): Random Forest (RF) is also a supervised ML technique
used for a diversity of tasks, including regression (RFR) and classification (RFC). RF

9https://github.com/itu-p1203/itu-p1203
Ohttps:/ /scikit-learn.org/stable/supervised learning.html
Hhttps://en.wikipedia.org/wiki/Logistic_function
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technique follows an ensemble method; precisely, an ensemble of decision trees creates
the RF model. In this method, an RF model is consists of a large number of small
decision trees, known as estimators, where each produces its predictions. The RF model
combines the predictions of the estimators to build a more accurate forecast.

e Multi-layer Perceptron (Neural Network): Multi-layer Perceptron (MLP) is one of
the extensively used supervised ML architectures in the Artificial Neural Network (ANN)
area for classification (MPC) and regression (MPR). MLP uses a backpropagation'? al-
gorithm to fit the model, and it usually consists of three layers: an input layer, a hidden
layer (s), and an output layer.

Model performance metrics. Classification- this approach is used to predict the dependent
discrete/categorical output variable from different independent variables (input features). To
evaluate the classification-based trained model, we used multiple matrices, including accuracy,
precision, recall, F1-score. To present the predicted and actual class labels from the ML models,
confusion matrix, an intuitive method is used as follows (Figure 3.8), which will help define
each performance metric.

predictea <! Positive (1) Negative (0)
Positive (1) TP EP
Negative (0) EN TN

Figure 3.8: Confusion Matrix

Where, True Positive (actual-1, predicted-1), False Negative (actual-1, predicted-0), False
Positive) (actual-0, predicted-1), and True Negative (actual-0, predicted-0)

e Accuracy: It is defined as the ratio of correctly predicted observation to the total ob-
servations and obtained using the following formula:

TP+ TN
TP+ FP+FN+TN

Accuracy =

e Precision: It determines the ratio of correctly predicted positive observations to the
total predicted positive observations using the following formula:

TP
TP+ FP

e Recall: It determines the ratio of correctly predicted positive observations to all obser-
vations in the actual class that should have been identified as positive using the following

Precision =

formula:
TP
= ——-—
fecall = p T FN
e Fl-score: It used to define the harmonic mean of precision and recall using the following
formula:

Precision x Recall

Fi- = 2%
seore Precision + Recall

2https: //en.wikipedia.org/wiki/Backpropagation
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Regression- the metrics used to evaluate the regression-based trained model are different
from classification metrics and can predict the dependent variable’s continuous values by learn-
ing from numerous independent features. In this work, we utilized the two most widely used
metrics for the regression-based model. They are R? and RMSE.

e R2: It is used to determine how well the trained model fits the regression line of dependent
variables. It is also known as the Coefficient of Determination. Specifically, R? represents
the variability of the dependent variable fit data compared with the mean of data and a
horizontal line at the mean. Mathematically it defines as follows:

R —1_ Zi\il(yi - yAi)Q
S (i — )2

where, y; represents actual output value, y; represents predicted output value by regression
model, and ¢; represents mean of actual output value. The closer the value of R? to 1
(or 100%), the better the model that accurately fits the actual and predicted value. On
the other hand, the negative value of R? represents a model that fits the regression line
worse than a horizontal line.

e RMSE: Root Mean Square Error or RMSE is the square root of the averaged squared
difference (error) between the predicted value and actual value. Expressed as follows:

N )2
RMSE = \/ Ziﬂ(i’\‘[ )

where, y; represents actual output value, and ; represents predicted output value by
regression model.

3.3 Topic 2: QoE Performance Evaluation of DASH-
supported Video Service over Different Transport

This section aims to analyze the impact of TCP and QUIC transport on QoE, specifically for
DASH video service. To assess DASH-based empirical QoE study over TCP and QUIC, we
make a head-to-head QoE performance comparison of ABS algorithms over newly standardized
QUIC and traditional TCP transport protocol in a controlled testbed environment. Throughout
the evaluation, we try to find out a few answers to the following questions.

e State-of-the-art ABS Algorithm’s Behavior: How does the different state-of-art
ABS algorithm act over QUIC and traditional TCP?

e Different Clients’ Streaming Reaction: Does QUIC outperform TCP when multiple
clients are competing for the video content?

e Stable and Unstable Network Scenario’s Impact: Does QUIC outperform TCP on
diverse network conditions?

We leverage the similar approaches conducted in earlier work [76] [75] with our testbed
incorporating the 5G network in addition to the 3G and 4G network and DASH content from
Ultra High Definition (UHD) 4K dataset. For this purpose, we carry the following experiments.
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1. QoE performance of ABS algorithms over QUIC and TCP across selected 3G, 4G, and 5G
network traces (stable) for the single and parallel client that competes for DASH content.

2. QoE performance of ABS algorithms over QUIC and TCP on a restless network (unstable)
with extreme bandwidth fluctuation.

To implement the two experiments mentioned above, we made a controller testbed for
experimental purposes. The description of our experimental setup is given in the following
subsection.

3.3.1 Experimental Setup

Our testbed framework was based on the following components: (i) Mininet - a network
emulation tool, (ii) goDASH - a DASH video player, (iii) Caddy - a web server hosting
DASH video content, (iv) DITG - a background traffic generator, and (v) Linux TC - a
traffic controller in the Linux kernel.

e Network emulation. The Mininet network emulation tool was used to create the topol-
ogy consist of two OvS (Switch 1 and 2). Figure 3.9 depicts DASH clients and one DITG
cross-traffic sender are connected with Switch 1, and on the opposite side, the DASH web
server and one DITG cross-traffic receiver are connected with Switch 2.

s
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DASH = HTTP
Client i Server
a
ey
et
: . Video
Time Content
Cellular Network Traces onten
— e 2N
e . Switch1 X Switch 2
v UDP Traffic (3 flows, 20% of the
average 3G, 4G and 5G traces
bandwidth)

— A 4
—— e
Cross Cross
Traffic Traffic
Sender Receiver

Figure 3.9: Network Emulation Topology

e DASH player, web server, and video source. Likewise Topic 1, we used goDASH, a
lightweight headless player, to stream video from the client-side. On server-side. Caddy
was used to offering an HTTP server with support HTTP /3 atop experimental QUIC and
HTTP/1.1 and HTTP/2 atop TCP. Moreover, the server offered the same video content
(Tears of Steel) used in the Topic 1 experiment.

e Trace-based link bandwidth utilization, and background traffic generator. Nu-
merous network traces downlink bandwidth parameter was used to change the bandwidth
condition between Switch 1 and 2 links through Linux TC (Hierarchical Token Bucket).
For experiment (1), we used 15 different mobility pattern traces considering stable net-
works (used in Topic 1 experiment) as illustrated in Figure 3.5. Apart from this, for
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experiment (2), another specific driving mobility pattern of the 5G network trace was
used to emulate the behavior of an unstable network, where network mode frequently
changes from 5G to LTE or HSPA+, as presented in Figure 3.10. However, using the
DITG tool, we sent three concurrent flows of UDP traffic from one sender host to an-
other receiver host to produce the cross-traffic. The amount of total UDP cross-traffic in
such quantity occupied approximately 20% of the average network traces bandwidth (for
experiment 1- five different traces’ average bandwidth for each 3G, 4G, and 5G network;
for experiment 2- one specific trace’s average bandwidth for 5G network).

Mobility: Driving, Bandwidth: Mean= 2.59, Std= 2.43 (Mbps)
5G ---- 4G (LTE) e HSPA+

14

iy
N

)
o

Bandwidth (Mbps)

0 50 100 150 200 250 300 350 400 450 500
Time (Second)

Figure 3.10: Single Selected Driving Mobility Trace over 5G Network Contains Extreme Band-
width Fluctuation and Frequent Connection Changes

e Experimental parameter usage. For the sake of our QoE evaluation, we worked with
the following three algorithms: (i) Conventional (Rate-based) [92], (ii) BBA (Buffer-
based) [36], and (iii) Arbiter (Hybrid) [94]. As the current goDASH version does not
support HTTP/2 standard, therefore for both experiments, goDASH clients played the
video using the above mentioned three ABS algorithms from the DASH server (Caddy)
using HTTP/1.1 atop TCP and HTTP/3 atop QUIC transport. During each streaming
session, the video content was played for up to 3 minutes. Both experiments were repeated
three times for unbiased statistical evaluation, and the QoE metrics’ only average values
were taken. All the parameters used for different combinations during video streaming
sessions are given in Table 3.9.

e QoE metrics/KPIs. We considered the following five metrics that play an essential
role in defining video streaming performance and end user’s QoE: (i) Average Bit-rate,
(71) Quality Switches, (iiz) Stall Ratio, (iv) Startup Delay, and (v) Average P1203

MOS.
Table 3.9: Experimental Parameters Usage Based on Different Combinations
Experiment No | Cellular | Total DASH ABS Transport Video Cross Experiment
Network | Traces Client Algorithms Option Duration Traffic Repetition
3G 1 (Single) Conventional W/ (UDP) & W/O
1 4G 15 _ BBA TCP & QUIC 3 min _ 3 times
5G 3 (Parallel) Arbiter W/0
Conventional
2 5G 1 1 (Single) BBA TCP & QUIC 3 min W/ (UDP) & W/O 3 times
Arbiter
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3.4 Concluding Remarks

The overall design requirement regarding Edge QoE Probe was described for QoE prediction
at the edge of the network and QoE performance evaluation over different transport protocols.
For implementation, an emulation-based testbed was developed to stream DASH video content
by replaying different cellular network traces bandwidth. Network traffic as QoS format and
video log as ground truth were used to train different supervised ML models for QoE KPIs
prediction. Moreover, we performed a QoE performance evaluation of DASH video over TCP
and QUIC transport. The experimental results and analysis are presented in the next chapter.
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Chapter 4

Experimental Evaluation Analysis

This chapter evaluates the supervised ML-based QoE estimation performance of the proposed
Edge QoE Probe for end-to-end encrypted DASH video service traffic. Moreover, a detailed
discussion of the results obtained from the experiment stated in the previous chapter about
DASH-supported video streaming QoE performance over TCP and QUIC transport protocol
for different ABS algorithms and diverse network conditions are provided in this chapter.

4.1 QoE Prediction at Edge Premises

This section evaluates the performance of the supervised ML model built using separately
generated datasets on the TCP and QUIC transport protocols for the DASH video service from
the controlled experiment. This work aimed to estimate the QoE of the DASH video service
using the QoS measurement capabilities at the network level extracted from the network’s edge.
Thus, the overall QoE prediction was divided into two parts: real-time QoE prediction, and
per-session QoE prediction.

We considered only two QoE KPIs, namely resolution and bit-rate, for real-time (0.5-second
interval) prediction. In contrast, for per-session, we considered five QoE KPIs, namely resolu-
tion, bit-rate, quality switches, stall ratio, startup delay, and one QoE model output, namely
P1203 MOS.

We picked seven supervised ML algorithms for the classification task and six supervised
ML algorithms for the regression task. They were- Linear Regression (LR"), Logistic Regres-
sion (LR?), K-Nearest Neighbors Classifier (KNC), K-Nearest Neighbors Regressor (KNR),
Gaussian Naive Bayes (GNB), Support Vector Machine Classifier (SVC), Support Vector Ma-
chine Regressor (SVR), Decision Tree Classifier (DTC), Decision Tree Regressor (DTR), Ran-
dom Forest Classifier (RFC), Random Forest Regressor (RFR), Multi-layer Perceptron Classi-
fier (MPC), and Multi-layer Perceptron Regressor (MPR).

The well-known python-based scikit-learn! library was used for implementing each ML
model (including a Multi-layer Perceptron Neural Network). We evaluated each ML model’s
performance on a system with 10-core, 2.20 GHz CPUs (Intel Xeon(R) Silver 4114 CPU) and
64 GB of RAM.

In both real-time and per-session QoE prediction, we performed model benchmarking. For
this purpose, we compared seven (for classification task) and six (for regression task) ML
algorithms models and selected the best model based on cross-validation reports. To select the
best model, we used the entire dataset to train/build models. Firstly, the hyper-parameters

Thttps://scikit-learn.org/stable/
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were chosen for each model using an exhaustive grid search? and selected the best parameters
that maximize the scores (e.g., mean accuracy, R?) and avoid over-fitting.

After tuning the hyper-parameters, a 5-fold cross-validation method was used to compare
the overall scores and training time (e.g., the time for fitting the estimator on the train set for
each cross-validation split) among different models. During the training of each model, cross-
validation was used on the training portion dataset. In 5-fold cross-validation, the training
portion dataset was split into a 5 number of sections/folds where a portion of the fold was
used as a validation set, and the remaining part was used as the training set. Thus, each of the
models calculated scores (e.g., accuracy, R? ) and training time five times and, lastly, computed
average scores (e.g., accuracy, R?) and training time. Then, by getting the most suitable
algorithm from the model benchmark, further evaluation such as feature importance/selection
and reduced features results were conducted on the selected suitable algorithm’s model using
the same tuned hyper-parameters.

A detailed discussion of the results on ML-assisted real-time and per-session QoE prediction
is stated below.

4.1.1 Real-time QoE Prediction

The datasets generated over TCP and QUIC transport per time interval were used to make the
ML model included temporal QoS metrics as a feature and resolution and bit-rate QoE KPIs
from customized video logs as a ground truth. Thus, both QoE KPIs per time interval was
considered to use as a target to build ML models. This approach allows for obtaining real-time
predictions for any video session. Specifically, it would be feasible to forecast the resolution and
bit-rate outcomes for each current time interval. The dataset contains a total of 105613 entries
over TCP and 100757 entries over QUIC for each 0.5 second time interval of video playback.

As stated earlier, firstly, we benchmarked different ML algorithms using the entire dataset
to train the models and select the best algorithm based on cross-validation results that suit
our real-time QoE KPIs prediction. Next, the entire datasets were divided into multiple sets
of a new dataset based on all and reduced QoS features computed on different time windows.
Then, each dataset was split into training and testing in the ratio of 80% and 20%. Lastly,
we used the training portion dataset to train the model over the obtained best algorithm and
evaluated its performance based on the testing dataset. We used the classification approach for
the following QoE KPIs.

Distribution of Resolution Distribution of Resolution

) _30.7% ) _36'7%

sb 31.6% sb 33.2%

0 5000 10000 15000 20000 25000 30000 35000 40000 0 5000 10000 15000 20000 25000 30000 35000 40000
Percentages and Numbers Percentages and Numbers

(a) (b)

Resolution
Resolution

Figure 4.1: Distribution of Resolution Classes across (a) TCP and (b) QUIC Datasets

Zhttps://scikit-learn.org/stable/modules/generated /sklearn.model_selection. GridSearchCV.html
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Figure 4.2: Distribution of Bit-rate Classes across (a) TCP and (b) QUIC Datasets

e Resolution: To estimate real-time resolution KPI, we used the classification method with
three classes: LD, SD, and HD. Class “LD” or Low Definition denotes that video was
played in 320x180 and 375x216 resolution. Likewise, class “SD” or Standard Definition
means that video was played in 512x288, 640x360, and 736x414 resolution. Lastly, class
“HD” or High Definition corresponds to 1280x720 and 1920x1080 resolution.

Figure 4.1 depicts the distributions of resolution classes across the real-time-based TCP
and QUIC datasets. The majority of resolution instances belong to the HD class (37.8%)
over TCP and LD class (36.7%) over QUIC datasets. Thus, the distribution of resolution
classes indicates all the ABS algorithms for DASH service were aggressive to hold higher
resolution over TCP transport.

e Bit-rate: To estimate real-time bit-rate KPI, we classified bit-rate into three classes:
Low, Medium, and High. Where class “Low” denotes that the video was played in less
than 700 Kbps bit-rate. Likewise, class “Medium” corresponds to above 700 Kbps and
below 2500 Kbps bit-rate, and “High” corresponds to above 2500 Kbps.

Figure 4.2 depicts the distributions of bit-rate classes across the real-time-based TCP
and QUIC datasets. We observe that Low class over the TCP dataset (40.5%) and the
QUIC dataset (48.5%) dominated most. However, the instances of High class over the
TCP dataset were higher than QUIC.

Model benchmarking. We evaluated seven multi-class classifiers’ performance over the TCP
and QUIC dataset separately. The tuned parameters used to train each classifier for both
resolution and bit-rate KPI predictions are given in Table 4.1. Moreover, Table 4.2 shows each
multi-class classifier’s 5-fold cross-validation average accuracy and training time.

We note that the GNB achieved the least amount of time for training but provided the worst
accuracy. The SVC took the highest amount of time for the training and exhibited second-worst
accuracy. The MPC showed the highest variability in the case of accuracy.

In general, out of the seven classifier’s DTC and RFC achieved higher accuracy, nearly 90%
over the TCP dataset and above 90% over the QUIC dataset. Though RFC took slightly high
training time than DTC, we assume it is a reasonable time for training, and RFC achieved
approximately 3% improvement in the accuracy compared to the DTC. Based on the obtained
results, we conclude that the Random Forest Classifier (RFC) was the most appropriate for
real-time resolution and bit-rate prediction tasks. For further evaluation, we use RFC with the
same tuned parameters.
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Table 4.1: ML Model with Tuned Hyper-parameter for Real-time Two KPIs Prediction

Tuned Parameters

alpha=0.05

ML Model | QoE KPIs TCP Dataset H QUIC Dataset
LRe Resolution penalty=°12’, solver="‘I1bfgs’ penalty="‘12’, solver="Ibfgs’
Bit-rate penalty=°12’, solver="‘I1bfgs’ penalty=‘12’, solver="1bfgs’
KNC Resolution n_neighbors=7 n_neighbors=3
Bit-rate n_neighbors=7 n_neighbors=3
GNB Resolution priors=None, var_smoothing=1e-09 priors=None, var_smoothing=1e-09
Bit-rate priors=None, var_smoothing=1e-09 priors=None, var_smoothing=1e-09
VO Resolution C=1, kernel="poly’, gamma="‘scale’ C=1, kernel="poly’, gamma="scale’
Bit-rate C=1, kernel=‘poly’, gamma="*scale’ C=1, kernel=‘poly’, gamma=*scale’
criterion="‘entropy’, max_depth=None, criterion="‘entropy’, max_depth=50
Resolution | class_weight=‘balanced’, min_sample_leaf=3, || class_weight="‘balanced’, min_sample_leaf=>5,
DTC min_samples_split=4 min_samples_split=2
criterion="‘entropy’, max_depth=>50, criterion="‘entropy’, max_depth=>50
Bit-rate class_weight=None, min_sample_leaf=3, class_weight=None, min_sample_leaf=5,
min_samples_split=2 min_samples_split=2
criterion="‘gini’, max_depth=90, criterion="gini’, max_depth=100
Resolution class_weight=‘None’, min_sample_leaf=4, class_weight=‘balanced’, min_sample_leaf=3,
RFC min_samples_split=12, n_estimators=500 min_samples_split=10, n_estimators=500
criterion="gini’, max_depth=>50, criterion="gini’, max_depth=>50
Bit-rate class_weight="‘balanced’, min_sample_leaf=3, || class_weight="‘balanced’, min_sample_leaf=3,
min_samples_split=10, n_estimators=200 min_samples_split=10, n_estimators=500
solver=‘adam’, activation="‘identity’, solver=‘adam’, activation="‘identity’,
Resolution hidden laye sizes=(100,), hidden layer_sizes=(50, 100, 50),
alpha=0.05 alpha=0.0001
MPC ; — - - 7 — - -
solver=‘adam’, activation="‘identity’, solver=‘adam’, activation="‘identity’,
Bit-rate hidden laye_sizes=(50, 100, 50), hidden layer_sizes=(50, 50, 50)

alpha=0.0001

Table 4.2: Benchmarking of Seven Supervised ML Model for Real-time Two KPIs Prediction

Accurac Training Time (min

ML Model | QoE KPIs TCP Dataset H 5&%)Dataset TCP Datasetg H QéIC D)ataset
LRe Res.olution 67 (+ 0.91) 65 (+ 1.43) 0.07 (& 0.002) 0.06 (& 0.003)
Bit-rate 67 (£ 0.68) 64 (£ 1.11) 0.08 (£ 0.002) 0.06 (£ 0.004)

KNC Resolution | 79 (£ 1.02) 82 (£ 1.00) 0.09 (£ 0.001) 0.05 (£ 0.001)
Bit-rate 78 (£ 0.63) 82 (£ 0.78) 0.09 (£ 0.001) 0.05 (£ 0.001)
GNB Resolution | 56 (& 2.57) 62 (£ 0.88) | 0.008 (£ 0.00009) || 0.005 (£ 0.0002)
Bit-rate 55 (£ 1.02) 56 (£ 0.97) | 0.008 (£ 0.00005) || 0.005 (£ 0.0001)

VO Resolution | 64 (£ 0.91) 57 (£ 0.52) 39.01 (£ 0.239) 27.62 (+ 0.240)
Bit-rate 64 (+ 0.73) 58 (4 0.53) 40.66 (£ 0.137) 26.56 (£ 0.132)

DTC Resolution | 88 (£ 1.03) 92 (£ 0.46) 0.20 (4 0.004) 0.18 (£ 0.007)
Bit-rate 88 (£ 0.80) 94 (£ 0.98) 0.19 (4 0.003) 0.16 (& 0.005)

RFC Resplution 91 (£ 0.28) 96 (£ 0.54) 3.41 (£ 0.014) 3.36 (£ 0.023)
Bit-rate | 91 (£ 0.44) | 96 (£ 0.55) | 1.34 (£0.022) | 3.14 (+ 0.020)

\PC Resolution | 68 (£ 5.19) || 64 (£ 7.33) | 2.16 (£ 0.020) 2.62 (% 0.027)
Bit-rate 72 (£ 1.16) 69 (£ 5.79) 2.93 (£ 0.031) 2.51 (£ 0.044)
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Feature importance. Then, we analyzed different feature influences or importance in terms
of resolution and bit-rate predictions. For this purpose, we divided the full feature (TCP-
252 features, QUIC-168 features) of the dataset into a total of six feature subsets with two
categories. The first category contains three subsets of features from the current window
(TCP-36 features, QUIC-24 features), trend window (TCP-180 features, QUIC-120 features),
and session window (TCP-36 features, QUIC-24 features). In these subsets, all the features
computed in each particular window were considered.

For the second category, we leveraged the features relative importance score to select the
top 15 features from each window using a multi-class RFC with a fixed seed for controlling
randomness. After that, we split each feature subsets into the ratio of 80% (training) and 20%
(testing). We used the RFC to build a model with a training portion of data and evaluated
the precision, recall, and Fl-score of the model based on testing data from each of these six
feature subsets. The model prediction performance reports for each feature subsets are given
in Tables 4.3 and 4.4.

Takeaway: The analysis indicates that the top 15 feature subsets provided similar perfor-
mance as full feature subsets provided. Figure 4.3 and 4.4 exhibits the up/downlink packets
inter-arrival time QoS KPI for the current, the uplink packet size QoS KPI for the trend, and
the downlink average throughput QoS KPI for session window hold high relative importance

Table 4.3: Different Feature Subsets’ Model Performance for Real-time Resolution KPI

TCP Dataset QUIC Dataset

Feature Set Class Precision | Recall [ Fl-score || Precision | Recall | Fl-score
LD 7% 41% 54% 79% 53% 63%
Current SD 70% 48% 57% 76% 60% 67%
full 0D 56% 91% 69% 54% 90% 68%
Weighted Average 67% 62% 61% 71% 66% 66%
LD 8% 41% 54% 90% 53% 63%
Current SD 1% 48% 57% "% 60% 68%
top-13 HD 56% 92% 69% 54% 90% 68%
Weighted Average 67% 63% 61% 71% 67% 66%
LD 97% % 86% 97% 83% 90%
Trend SD 97% 85% 90% 97% 89% 93%
full HD 79% 99% 88% 8% 99% 87%
Weighted Average 90% 88% 88% 91% 90% 90%
LD 94% 76% 4% 97% 83% 89%
Trend i SD 94% 83% 8% 96% 89% 92%
fop-15 HD 8% 98% 87% 7% 98% 87%
Weighted Average 88% 87% 87% 91% 89% 89%
LD 99% 98% 98% 99% 99% 99%
Session SD 98% 97% 97% 99% 98% 98%
Full HD 98% 100% | 99% 99% 100% | 99%
Weighted Average 98% 98% 98% 99% 99% 99%
LD 98% 97% 98% 99% 99% 99%
Session SD 98% 97% 97% 99% 98% 98%
top-13 HD 98% 99% 99% 99% 100% | 99%
Weighted Average 98% 98% 98% 99% 99% 99%
LD 98% 97% 98% 99% 99% 99%
Allwindow SD 98% 97% 97% 98% 98% 98%
top-15 HD 98% 99% 99% 99% 100% 99%
Weighted Average 98% 98% 98% 99% 99% 99%




Table 4.4: Different Feature Subsets’ Model Performance for Real-time Bit-rate KPI
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TCP Dataset

QUIC Dataset

Feature Set Class Precision | Recall [ Fl-score || Precision | Recall | Fl-score
Low 2% 48% 60% 86% 56% 68%
Current Medium 67% 44% 53% 67% 58% 62%
full High 52% 91% 66% 50% 89% 64%
Weighted Average 68% 61% 60% 72% 65% 65%
Low 82% 47% 60% 87% 56% 68%
Current Medium 68% 44% 54% 69% 60% 64%
top-15 High 52% 91% 66% 51% 89% 65%
Weighted Average 68% 61% 60% 73% 66% 66%
Low 97% 81% 88% 99% 86% 92%
Trend Medium 96% 82% 88% 97% 88% 92%
full High 75% 99% 85% 74% 99% 85%
Weighted Average 89% 87% 87% 92% 90% 90%
Low 96% 80% 87% 98% 85% 91%
Trend Medium 93% 80% 86% 95% 88% 91%
top-13 High 75% 98% 85% 74% 98% 85%
Weighted Average 88% 86% 86% 91% 89% 89%
Low 99% 98% 98% 100% 99% 99%
Session Medium 97% 95% 96% 99% 99% 98%
Sl High 9% 99% 98% 99% 99% 99%
Weighted Average 98% 98% 98% 99% 99% 99%
Low 98% 98% 98% 100% 99% 99%
Session Medium 97% 95% 96% 98% 98% 98%
top-15 High 97% 99% 98% 99% 99% 99%
Weighted Average 98% 98% 98% 99% 99% 99%
Low 99% 98% 98% 100% 99% 99%
Allwindow Medium 97% 95% 96% 98% 98% 98%
top-15 High 0% | 99% | 9%% 99% | 99% | 99%
Weighted Average 98% 98% 98% 99% 99% 99%

for both QoE KPIs prediction.
We observe that current and trend window features are not adequate to predict video QoE
KPIs according to recall, precision, and F1l-score. For the trend window, we found that the

larger time duration interval’s features (e.g., 20 and 10 second) had the most influence on

prediction.

The model with only the session window’s features yielded (98% over TCP and 99% over
QUIC dataset) the highest accuracy for both QoE KPIs prediction. Moreover, it is noticeable

that most of the top 15 features from all window’s full feature datasets belong to the session
window and provided similar results.
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Figure 4.3: Top 15 Important Features for Resolution Prediction: Current Window- (a) TCP
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4.1.2 Per-session QoE Prediction

The dataset generated over TCP and QUIC transport separately to estimate per session QoE
as well. The aggregated QoS KPIs from the current window as feature input and goDASH
provided the entire session’s outputs as ground truth were used to train the ML models for
estimating per session QoE KPIs. We considered a total of six KPIs for per-session QoE
estimation, namely average resolution, average bit-rate, quality switches, stall ratio, startup
delay, and average MOS based on ITU-T Rec. P.1203.1 model. For the following five QoE
KPIs, we used the classification approach.

e Average Resolution: The average resolution was labeled in three classes. Resolution
320x180, and 375x216 as Low Definition (LD), 512x288, 640x360, and 736x414 as Stan-
dard Definition (SD) and 1280x720 and 1920x1080 as High Definition (HD).

e Average Bit-rate: The average bit-rate was labeled in three classes. Bit-rate less than
700 Kbps as Low, between 700 and 2500 Kbps as Medium, and above 2500 Kbps as High.

e Quality Switches: As opposed to coarse-grained binary classification (video being
played with the consistent quality or quality changes at least once) stated in the work
[54], we used a multi-class approach for quality switches. We defined quality switches 0
to 5 times as Low, 6 to 10 times as Medium, and above 10 times as High.

e Stall Ratio: Based on a similar approach in work [33] stall ratio was labeled in three
classes. Ratio value 0 as No Stall, 0 to 0.1 as Mild Stall, and above 0.1 as Severe Stall.

e Average MOS: To ease classification, MOS was labeled in three classes as well. MOS
values 1 to 2.5 as Poor, 2.6 to 3.5 as Fair, and above 3.5 as Good.

We observe the overall per video session datasets from the distribution Figures 4.5 - 4.9 were
not big enough, and for a few QoE KIPs’ datasets were highly imbalanced. Hence, before train
ML classifiers for each QoE KPI, we handled the data imbalances by balancing the number of
instances or entries per class with upsampling the minority classes using SMOTE? (Synthetic
Minority Oversampling Technique) to avoid bias models.

Moreover, we used the ML regression method to estimate the following two QoE KPIs.

e Startup Delay: As opposed to previous work [55] to classify (binary classification) the
video started or not based on startup delay threshold, we tried to predict more fine-
grained startup delay time using ML regressor. We observe from Figure 4.10 that most
of the video sessions over our generated TCP and QUIC datasets took around 0.5 to 1
second to start the playback.

e Average MOS: Alongside the classification approach to estimate MOS, we also used the
regression approach to achieve finer prediction granularity of MOS since our generated
dataset contains the continuous values of MOS range between 0 to 5. The distribution
Figure 4.11 shows that the MOS over the TCP dataset calculated between 1.5 to 3.5
values and over the QUIC dataset calculated between 1.5 to 4 values, but values around
1.75 to 2 contain high-frequency density.

3https://imbalanced-learn.readthedocs.io/en/stable/generated /imblearn.over_sampling. SMOTE.html
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Figure 4.6: Distribution of Per-session Bit-rate Classes across (a) TCP and (b) QUIC Datasets
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Figure 4.8: Distribution of Per-session Stall Ratio Classes across (a) TCP and (b) QUIC
Datasets and Top 15 Important Features across (¢) TCP and (d) QUIC Datasets
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Figure 4.9: Distribution of Per-session MOS Classes across (a) TCP and (b) QUIC Datasets
and Top 15 Important Features across (¢) TCP and (d) QUIC Datasets

Model benchmarking. We used both the classification and regression method for per-session
QoE KPIs estimation. Therefore, we evaluated both classifiers” and regressors’ performance over
TCP and QUIC datasets. We tuned the parameters to train each classifier and regressor as
well, maximizing the accuracy (for classification) and R? score (for regression). Tables 4.5 and
4.6 contain average accuracy and R? score from the 5-fold cross-validation. Due to the small
size of the dataset, all the classifiers and regressors took less than 1 minute to train. Hence, we
omitted the training time from Tables 4.5 and 4.6.

We note that RFC among all the classifiers presented the highest average accuracy for each
QoE KPI. Then, DTC provided the second-highest average accuracy. However, SVM as a
classifier showed the worst performance in terms of per-session QoE KPIs estimation.

In contrast, regression analysis for startup delay and MOS QoE KPIs, RFR showed the
maximum R? score, which indicates that data over the RFR model mostly close to the fitted
regression line. Both LR* (Linear Regression) and MPR showed the negative R? score, which
means the models did not follow the data trend, so it fits the regression line worse than a
horizontal line using the mean value.

Consequently, we conclude that Random Forest acts as the most suitable algorithm to esti-
mate per-session QoE KPIs for classification and regression tasks. Further evaluation conducts
using only the Random Forest ML algorithm.
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Figure 4.10: Distribution of Per-session Startup Delay Values across (a) TCP and (b) QUIC
Datasets and Top 15 Important Features across (¢) TCP and (d) QUIC Datasets

Feature importance. To more analyze the RFC (classification) and RFR (regression) perfor-
mance with the relative feature importance, we split the dataset in the ratio of 67% (training)
and 33% (testing). Note that, for the classification task, we balanced all class instances or
entries. We trained the RFC and RFR using the same tuned parameters obtained from grid
search carried out during per-session model benchmarking. Based on testing data classification
report (e.g., precision, recall, and Fl-score) for five QoE KPIs and regression result (e.g., R?
score, and RMSE ) for two QoE KPIs are presented in Table 4.7 and 4.8. We also evaluated the
most influential QoS features for the trained model (Random Forest-based) that play a vital
role in estimating per-session QoE KPIs.

Takeaway: The key finding to estimate each of the QoE KPIs with QoS features impor-
tance are given as follows.

o Average Resolution: The model accurately predicted the LD and SD resolution classes
(recall 100%) over the TCP dataset and LD and HD resolution classes (recall 100%)
over the QUIC dataset. Figure 4.5 (c¢) (d) depicts RFC-based resolution classification
over both TCP and QUIC dataset strongly relies on the entire session’s downlink average
throughput QoS feature.

e Average Bit-rate: The model only showed 6% (recall 94%) incorrect predictions over the
QUIC dataset for the High bit-rate class. Figure 4.6 (¢) (d) depicts RFC-based bit-
rate classification strongly relies on the entire session’s downlink average throughput QoS
feature only over the TCP dataset. On the other hand, the first half and the entire
session’s downlink average throughput and the number of packets QoS feature mostly
influence bit-rate classification over the QUIC dataset.
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Figure 4.11: Distribution of Per-session MOS Values across (a) TCP and (b) QUIC Datasets
and Top 15 Important Features across (¢) TCP and (d) QUIC Datasets

o Quality Switches: According to the weighted average* of recall, the overall model 14-13%

incorrectly predicted quality switches classes. Uplink packet size, the number of packets,
packets inter-arrival time QoS features over TCP dataset (Figure 4.7 (c¢)), and uplink
throughput QoS features over QUIC dataset (Figure 4.7 (d)) mostly influence predict
quality switches.

Stall Ratio: The classifier showed the most incorrect prediction for only the No-Stall
class. Downlink packet size and up/downlink 10th percentile QoS features holds more
crucial influence for stall ratio prediction over TCP dataset (Figure 4.8 (c)). Over the
QUIC dataset (Figure 4.8 (d)), the last quarter of the session’s QoS features (up/downlink
average throughput, the number of packets) and 30-50th percentile QoS features (uplink
packets inter-arrival time, packet size) mostly influence to predict stall ratio.

Average MOS': For classification, the model over TCP dataset 3% (97% weighted average
of recall) and QUIC dataset 1% (99% weighted average of recall) incorrectly predicted
MOS classes. The first quarter, half, and entire session’s downlink average throughput
and the number of packets QoS features strongly influence to predict MOS over both
datasets (Figure 4.9 (c) (d)). For regression, the model showed the 98% R? score over
both datasets, which indicates data were mostly close to the fitted regression line; thus,
we observe negligible RMSE (Table 4.8). Downlink the number of packets and average
throughput QoS features (Figure 4.11 (c) (d)) comparatively play the most crucial role
in MOS regression analysis.

4https://en.wikipedia.org/wiki/Weighted _arithmetic_mean
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e Startup Delay: The regression model obtained a reasonable R? score (more than 80%)
to follow the data trend over both datasets. Up/downlink packets inter-arrival time QoS
features specifically for the high percentile (80th) and the first quarter of the session over
TCP dataset (Figure 4.10 (c)) and up/downlink average throughput QoS features for the
first quarter and half of the session over QUIC dataset (Figure 4.10 (d)) mostly influence
to predict startup delay. In general, we conclude that the first quarter and half of the
session’s QoS features strongly influence startup delay.

Table 4.5: Benchmarking of Seven Supervised ML Model for Per-session Five KPIs Prediction

Accuracy (%)
ML Model QoE KPTs TCP Dataset \ QUIC Dataset
Resolution 85 (£5.46) 84 (£ 4.53)
Bit-rate 86 (£ 4.54) | 80 (£ 5.92)
LR¢ Quality Switches | 46 (£ 12.27) | 58 (£ 5.50)
Stall Ratio 97 (£ 2.79) 94 (+ 3.22)
MOS 74 (£ 10.53) 80 (& 4.59)
Resolution 75 (£ 8.90) 80 (£ 5.39)
Bit-rate 80 (£ 451) | 85 (£ 7.12)
KNC Quality Switches | 76 (£ 12.01) 72 (£ 9.20)
Stall Ratio 98 (£ 1.52) 96 (£ 4.10)
MOS 73 (£ 4.18) | 85 (L 4.42)
Resolution 75 (£ 6.97) 87 (£ 3.51)
Bit-rate 87 (£ 2.17) | 89 (% L.83)
GNB Quality Switches | 56 (£ 5.33) 54 (£ 2.30)
Stall Ratio 92 (4 2.32) 91 (4 6.05)
MOS 78 (£ 12.50) | 82 (£ 10.61)
Resolution 50 (L 2.82) | 5L (L 4.90)
Bit-rate 60 (£ 4.87) 47 (£ 6.87)
SVC Quality Switches | 34 (£ 17.04) | 48 (£ 10.01)
Stall Ratio 85 (£ 7.16) | 75 (£ 16.73)
MOS 10 (£ 21.66) | 42 (£ 17.64)
Resolution 97 (£ 2.60) 97 (£ 2.72)
Bit-rato 99 (£ 0.41) | 98 (£ 1.37)
DTC Quality Switches | 86 (& 6.77) 83 (£ 5.74)
Stall Ratio 98 (£ 1.71) 97 (£ 4.09)
MOS 92 (£ 1.85) | 98 (£ 0.87)
Resolution 98 (& 2.08) 98 (£ 1.24)
Bit-rate 99 (£ 0.42) | 98 (£ 0.75)
RFC Quality Switches | 89 (4 3.67) 86 (£ 5.90)
Stall Ratio 90 (£ 1.92) | 97 (£ 2.70)
MOS 94 (£1.99) | 98 (£ 1.66)
Resolution 78 (£ 10.92) | 89 (£ 3.25)
Bit-rate Ol (£4.37) | 92 (£ 2.83)
MPC Quality Switches | 58 (£ 10.80) | 60 (£ 7.54)
Stall Ratio 99 (£ 1.24) 90 (£ 7.32)
MOS 83 (£3.46) | 93 (% 6.52)
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Table 4.6: Benchmarking of Six Supervised ML Model for Per-session Two KPIs Prediction

R? Score
ML Model |- QoE KPlIs TCP Dataset | QUIC Dataset
LR Startup Delay -2.64 (£3.50) -7.3e0 (4 1.5et2)
MOS 028 (£ 1.14) | 2.5¢7® (£ 5.1c7™)
KNR Startup Delay 0.73 (£0.18) 0.63 (£0.07)
MOS 0.63 (£ 0.08) 0.64 (£0.04)
SVR Startup Delay 0.57 (£0.02) 0.04 (£0.01)
MOS 0.51 (£ 0.05) 0.20 (£0.02)
DTR Startup Delay 0.72 (£0.14) 0.78 (£0.10)
MOS 0.98 (£ 0.01) 0.98 (£0.01)
RFR Startup Delay 0.80 (£0.19) 0.88 (£0.02)
MOS 0.99 (£ 0.01) 0.99 (£0.001)
MPR Startup Delay | -2.1e™ (& 1.3e™) | -4.7e™! (£ 3.5eT!1)
MOS -2.6eT (£ 1.5 [ 5.2 (£ 2.3eTH)

Table 4.7: Random Forest Classifier’s Report for Per-Session Five QoE KPIs

TCP Dataset QUIC Dataset
QoE KPIs Class Precision | Recall | Fl-score || Precision | Recall | Fl-score
LD 100% 100% 100% 100% 100% 100%
Resolution SD 94% 100% 97% 100% 96% 98%
HD 100% 89% 94% 97% 100% 99%
Weighted Average 97% 97% 97% 99% 99% 99%
Low 100% 100% 100% 100% 100% 100%
Bit-rate Medium 100% 100% 100% 95% 100% 98%
High 100% 100% 100% 100% 94% 97%
Weighted Average 100% | 100% | 100% 98% 98% 98%
Low 7% 5% 86% 79% 94% 86%
Quality Switches Medium 2% 5% 83% 88% 69% 8%
High 96% 94% 85% 92% 95% 93%
Weighted Average 88% 87% 87% 87% 86% 86%
No-Stall 100% | 99% | 99% 8% | 93% | 96%
Stall Ratio Mild-Stall 99% 100% 100% 98% 100% 99%
Severe-Stall 99% 100% 100% 96% 98% 97%
Weighted Average 99% 99% 99% 97% 97% 97%
Poor 97% 100% 99% 100% 98% 99%
MOS Fair 96% 96% 96% 97% 100% 99%
Good 98% 95% 97% 100% 100% 100%
Weighted Average 97% 97% 97% 99% 99% 99%

Table 4.8: Random Forest Regressor’s Report for Per-Session Two QoE KPIs

TCP Dataset | QUIC Dataset

QoE KPIs "po " RNMSE | R? | RMSE
| Startup Delay [ 0.81 | 030 [ 0.86| 040 |
| MOS 098] 006 [098] 007 |
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4.2 QoE Performance over TCP and QUIC Transport

This section shows the result obtained from two selected experiments using TCP and QUIC
transport protocol separately for DASH-supported video service with different combinations,
i.e., clients, ABS algorithms, and network traffic conditions.

4.2.1 Experiment 1- QoE Performance Using 3G, 4G, and 5G Net-
work Traces for Single and Parallel DASH Clients

The entire experiment was carried out based on 15 selected network traces. We used Linux TC
to change the link bandwidth after every 4 seconds so that at least two segments can easily
download between 4-second intervals. This set of experiments covers the successive scenarios.

1. Single DASH client w/ and w/o background (cross) traffic to stream DASH content.

2. Three concurrent DASH clients w/o any background (cross) traffic to stream the same
DASH content at the same time.

We observed negligible differences in QoE metrics’ (KPIs) output w/ and w/o background
(cross) traffic. Therefore, we only shed light on the result with no (w/o) background traffic
for the first set of single client experiment. Figure 4.12, 4.13, and 4.14 present the overall
single client video streaming performance for three ABS algorithms, three network type link
utilization, and two transport protocols. Moreover, Figure 4.12, 4.13, and 4.14 contain the QoE
output of video streaming performance metrics (KPIs): average bit-rate, P1203 MOS, quality
switches, stall ratio, and startup delay.

Average bit-rate. The rate-based Conventional algorithm performed best to choose average
bit-rate over both transport (TCP and QUIC) and three networks (3G, 4G, and 5G) scenarios.
For the most part, all three ABS algorithms adopted a higher average bit-rate over TCP
transport than QUIC. The average bit-rate metric results provide an interesting insight that the
difference of choosing bit-rate deliberately downturn from the 3G to 5G network scenario over
both TCP and QUIC. Hereby, video streaming performs nearly similar over TCP and QUIC
transport when there is high bandwidth available in the link; otherwise, TCP outperforms
QUIC.

P1203 MOS. The MOS results retained the same observation for the bit-rate metric. The
buffer-based BBA algorithm performed poorly, and the hybrid Arbiter algorithm performed
moderately in each case. However, all three ABS algorithms predominantly maintained higher
MOS values over TCP.

Quality switches. Video streaming suffered the most quality changes for the BBA algorithm
and the least quality changes for the Conventional algorithm. Conventional utilizes the segment
quality decision based on estimated bandwidth which helps to get consistent video streaming
quality. In general, the difference in quality switches over TCP and QUIC for all ABS algorithms
was negligible. In the 5G network, the quality switches’ amplitude was roughly equal and less
than 3G and 4G network over TCP and QUIC.

Stall ratio. The obtained results show that the Conventional algorithm predominately expe-
rienced high and the BBA algorithm experienced low stall events over TCP and QUIC. We
observe that Conventional always relied on high-quality segments from the earlier bit-rate and
MOS results. Thus, it took more time to rebuffer while the buffer empties. On average, video
streaming for all ABS algorithms suffered severe stall events on 3G and 4G networks, and the
QUIC scenario showed higher stall events than TCP.
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Startup delay. Interestingly, both TCP and QUIC exhibited nearly equal startup delays for
each ABS algorithm. Figure 4.20 helps to interpret similar startup delay results. We noticed
each ABS algorithm always downloaded video segments from the low quality over both TCP
and QUIC. In this experiment set, the link’s bandwidth utilization was changed after each
4-second interval which influenced the DASH player to download at least two simultaneous
segments in the same bandwidth condition of 4-second interval. The first two segments always
maintained the same low quality, which we set an initial buffer limit to start playback. Thus,
there was no such significant difference in startup delay. The result may vary if there was a
larger initial buffer threshold to start the playback. However, the 3G network held a higher
average startup delay for all ABS algorithms and transports than the 4G and 5G networks.

The second set of parallel clients’ experiment results is depicted in Figures 4.15, 4.16,
and 4.17. In this experiment, the Conventional ABS algorithm achieved the highest bit-rate for
all combinations. Similar to the single client experiment, TCP was still aggressive to download
the high bit-rate than QUIC. As a consequence, each ABS algorithm predominantly gained high
MOS using TCP transport. However, the behavior of the rest of the metrics of parallel clients
was almost identical, likewise single client’s metrics. Due to the sharing bandwidth resource for
multiple clients, more stall events occurred, and overall QoE of video streaming performance
was reduced than the single client as natural.
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4.2.2 Experiment 2- QoE Performance over an Unstable Network
with Extreme Bandwidth Fluctuation

As stated in [90], the collected 5G trace observed many bandwidth fluctuations due to a lack
of 5G base stations across all driving routes which forced the devices to use 4G and 3G. Thus,
this experiment was conducted under a single driving mobility trace (Bandwidth: mean=2.56
and std=2.43 Mbps) of the 5G network with 1-second granularity. Linux TC was applied to
change the link bandwidth after every 1 second to emulate a restless connection switch scenario.
This experiment covers a single DASH client w/ and w/o background (cross) traffic scenario
to stream DASH content.

Figure 4.18 and 4.19 describe the performance of single client video streaming in terms of
QoE metrics using a scenario of frequent fluctuations in link bandwidth usage. It is noticeable
that differences in the output of QoE metrics w/ and w/o background traffic are negligible.
To download the desirable bit-rate, each of the ABS algorithms obtained a high bit-rate over
TCP, and as a consequence, TCP had higher P1203 MOS values than QUIC. BBA suffered
most quality changes in the quality switches scenario, and Conventional suffered minor quality
changes over TCP and QUIC.

It is visible in Figure 4.20, which has drawn from one of the random samples of this exper-
iment that Conventional was more constant to select the quality of the segments using TCP,
and BBA often changed the segment quality using both TCP and QUIC. Also, Conventional
and Arbiter suffered nearly zero stall events over only TCP. Both algorithms rely on bandwidth
estimation to select the segments’ quality; hence TCP transport facilitates adjusting to the get
properly requested segments and filling the player buffer in time. On the other hand, BBA re-
lies on buffer status to decide each segment and holds low quality. Thus, players’ buffer always
remains fill-up with low-quality segments, leading to no stall event over both TCP and QUIC.

Lastly, the startup delay result is distinct from the previous experiment. In this case, each
ABS algorithm took startup playback delays slightly different from each other. The fluctuation
of the link bandwidth in the granularity of 1 second might lead to this. In the end, BBA as an
ABS algorithm and QUIC as a transport protocol occupied higher startup delay than others.
The summary of experiments 1 and 2 concerning the QoE metrics (KPIs) for the best ABS
algorithm and transport option is given in the Table 4.9.

Table 4.9: Best ABS Algorithm and Transport Based on QoE Metrics (KPIs) Results

Exp. 1- Single Client Exp. 1- Parallel Client Exp. 2- Single Client
ABS Algorithm ‘ Transport | ABS Algorithm ‘ Transport | ABS Algorithm ‘ Transport

QoE Metrics

Bit-rate (High) Conventional TCP Conventional TCP Conventional TCP
P1203 MOS (High) Conventional TCP Conventional TCP Conventional TCP
Quality Switch (Stable) | Conventional - Conventional - Conventional TCP
Stall Ratio (Low) BBA TCP BBA TCP BBA TCP
Startup Delay (Low) - - - - Arbiter TCP
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Figure 4.18: Experiment 2: Single Client- Average Bit-rate, P1203 MOS, Quality Switches,
Stall Ratio, Startup Delay: (a) (c¢) (e) w/ Background Traffic, (b) (d) (f) w/o Background

Traffic
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Chapter 5

Conclusions, Limitations and Future
Work

5.1 Conclusions

This thesis presented a passive network traffic probing technique that allows network operators
to assess the client-side obtained experience for DASH-specific video services at the edge com-
puting facility. Also, this thesis provided an empirical video streaming performance study over
the different transport protocols. In the following, we concisely summarize the contributions
to reflect this thesis’s goal and objectives.

5.1.1 Design and Evaluation of Predictive Edge QoE Probe

We designed and evaluated the non-invasive predictive Edge QoE Probe’s performance by pas-
sively monitoring encrypted network traffic from the network’s edge. Our approach played a
role in predicting the target end-user perceived QoE for DASH video without requiring end-
user direct cooperation by the assistance of the QoS-to-QoE supervised ML correlation model.
We stated all the reasonable steps to identify the video traffic and sessions and conducted an
extensive experiment using a fully reproducible emulation-based testbed. Numerous cellular
network traces information (e.g., downlink bandwidth) was used to realistically emulate mo-
bility scenarios on the controlled testbed for emulation purposes. We also played DASH video
utilizing different client-side state-of-the-art ABS algorithms over TCP (HTTPs) and QUIC
transport that facilitate end-to-end encryption.

The proposed design demonstrated a lightweight, fine-grained temporal (three-time window-
based, i.e., current, trend and session) network-level QoS feature extraction by observing bi-
directional IP packet header information from the edge node and capable of predicting per 0.5-
second interval video streaming QoE metrics without DPI and video segment identification.
For real-time video QoE KPIs estimation, we emphasized more on displayed video quality.
Thus, we considered only resolution and bit-rate KPIs as other KPIs rarely observed (e.g., stall
events) or hardly measurable (e.g., quality switches).

As far as we are aware, our approach by now the shortest granularity for in-network QoE
inferring of encrypted video streaming. Such real-time estimation strongly impacts the network
management, specifically in the self-governing CCL system, to be used as a threshold for taking
reactive performance diagnosis and resource allocation actions. Moreover, our proposed method
estimated per-session several QoE KPIs, namely average resolution, average bit-rate, quality
switches, stall ratio, startup delay, and P1203 MOS, by aggregating real-time QoS features.
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Such estimation is highly relevant to network operators to review the SLA for proactive network
capacity planning and configuration. Hereby, both real-time and per-session in-network QoE
inferring enables proactive and reactive QoE-aware network traffic management.

We built datasets over TCP and QUIC transport separately for a specific DASH video
content and benchmarked different supervised ML models. We concluded that Random Forest,
a tree-based ensemble learning method, provides the most suitable fine-grained regression and
multi-class classification task model. The Random Forest-based model accurately inferred
real-time and per-session video QoE KPIs by taking reasonable training time in our work.
Furthermore, we explored the relative QoS feature importance using the Random Forest-based
model. We found that the top 15 session window QoS input features-based model achieved a
higher inference accuracy score for real-time QoE estimation. We also showed per-session QoS
feature importance on each QoE KPIs estimation.

The study of the QoS input feature’s importance shows potential feature influences on spe-
cific QoE KPIs. And, it indicates that more carefully crafting the QoS features will lead our
proposed Edge QoE Probe to become more efficient in processing time and memory consump-
tion.

5.1.2 Evaluation of QoE Study over TCP and QUIC Transport

QUIC, a relatively new protocol with the promise of performance improvement over the widely
used TCP, motivated us to reconsider an ideal transport protocol for adaptive video streaming
service. Thus, we investigated the three strategies (Rate, Buffer, and Hybrid) based ABS
algorithm streaming performance over TCP and QUIC using different cellular network traces
information (e.g., downlink bandwidth) in a controlled testbed alongside the QoE estimation.

Our preliminary study showed all ABS algorithms using TCP transport achieved a high
quality of video streaming performance (e.g., specifically high average bit-rate and P1203 MOS,
and low stall ratio) under varying network conditions (e.g., stable and unstable) and verified
the earlier work [76] conclusion. We also found the rate-based Conventional ABS algorithm
provides considerably better performance compared to other algorithms.

The poor performance over QUIC transport indicates that the traditional state-of-the-art
ABS algorithms were built mainly on TCP in mind. As a result, despite HOL issues and
handshake latency in HTTP/1.1, TCP still performs better than HTTP/3 over QUIC for
adaptive video streaming.

To deal with the IETF! mentioned QUIC features, state-of-the-art ABS algorithms require
modification in terms of video segment requests to embrace the potential benefit of QUIC
multiplexing, disable HOL blocking, congestion control, and service migration.

5.2 Limitations

While conducting QoE estimation using the supervised ML approach for the generated datasets
by emulation-based testbed, we considered few limitations. Besides, this thesis noted the
limitation for the QoE performance study. The overall enlisted limitations, as given in below,
provide opportunities for improvement in further work.

e Lack of Generalization: The dataset used in this thesis was obtained using a headless
goDASH player based on a high-fidelity emulated controlled testbed. This work more

Thttps://datatracker.ietf.org/doc/draft-ietf-quic-recovery/
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emphasized target end-user QoE and specific video service rather than generalization.
In reality, QoS’s impact on QoE may vary as end-users can stream video from different
OTT platforms (e.g., Netflix, YouTube, Amazon) via various devices (e.g., Mobile, PC,
Tablet). Besides, in devices, the scenarios are more complicated because of the diversity
of browsers (e.g., Chrome, Mozilla), streaming apps, mobile platforms (e.g., Android,
I0S). Therefore the used QoE prediction model in this thesis is unable to manage such
diversity.

Model Re-evaluation: In this thesis, supervised ML model trained based on label
dataset where ground truth obtained from test device (e.g., goDASH player running over
mininet-wifi station) for predefined network conditions and adaptive streaming logic (e.g.,
ABS algorithms). Over time, in reality, it is expected that video adaptation schemes by
content providers and network conditions can change, which would limit the comprehen-
sive applicability of the trained model for future usage. Therefore, the model requires
periodically re-evaluating over a while to assess the model’s performance with new ground
truth. The challenges related to this aspect are to define a specific threshold (e.g., level
of accuracy) to re-evaluate the model’s effectiveness and amount of data need with new
ground truth for retraining the model if the existing model fails to obtain the particular
threshold.

MOS Calculation: In this thesis, the output of MOS was based on ITU-T Rec. P.1203.1
standardization considering device type- PC, display size- 1920x1080, and viewing distance-
150cm. Based on a different device type, screen size, and viewing distance, MOS output
will be changed, which would affect the model’s performance.

Lack of Root Cause Localization: To take proper reactive action, the network opera-
tors need to identify the potential root cause (e.g., congestion in specific backhaul links),
which causes QoE degradation. Our approach was more focused on inferring QoE rather
than detecting the reason for QoE impairments. However, network operators can employ
a decision tree model that allows identifying root causes with little effort.

Lack of Integration with Radio Access Information: This work was leveraged by
the concept of edge computing, which considers a combination of both backhaul and fron-
thual networks. However, our approach lacks fronthual information (e.g., RAN analytics).
Hence, the current system limits tracking the issues that lead to low QoE in the wireless
network link.

Practical Deployment: Our designed QoS features technique and ML model require
evaluation for practical deployment. This thesis lacks assess the computational complexity
for run-time operation, such as time requires to update the features set for per-packet /time
interval during feature extraction, QoE metrics estimation time for per time interval
by the trained model. Such run-time evaluation will help to justify our proposed real-
time video streaming QoE metrics estimation for the 0.5-second interval in the case of
the practical consideration. Besides, in virtualization, how much resources (e.g., CPU,
memory, storage) would require such Edge QoE Probe as a VNF remains vague and needs
more studies.

Lack of Indicating the Variability of QoE Study: For the QoE study over TCP and
QUIC transport, this thesis repeated the experiment three-times and considered only the
average values, which currently lacks to present the overall variability (e.g., confidence
intervals) of the results (e.g., QoE metrics).
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5.3 Future Work

To make feasible the Edge QoE Probe for run-time operation from network-level temporal QoS
feature extraction as well as novel QoS feature extraction technique and obtain more meaningful
empirical QoE performance study over TCP and QUIC transport, the scopes of future work
are given below.

5.3.1 Integrating Edge QoE Probe to the CCL Platform

As future work, we plan to integrate our Edge QoE Probe, specifically network-level QoS feature
extraction approach, to the intent-based CCL platform [108]. A high-level overview of the CCL
architectural design is given in Figure 5.1. It contains the following components.

1. Collector: This component executes a non-invasive network-level measurement method

based on traffic mirroring processed by a passive probe running at the edge node (e.g.,
MEC).

2. QoE Estimator: The QoE Estimator component (e.g., supervised ML-based) performs
inferences of video QoE metrics/KPIs from network-level QoS input features received
from the Collector component.

3. Policy-driven Orchestrator: This component stands on adaptive policies in a control
loop approach that automatically manages a set of orchestrated actions (e.g., reactive) to
assure the end-to-end network service quality.

4. Actuator: This component is responsible for closing the smart control loop by translating
the orchestrator’s high-level actions to low-level actions (e.g., network device commands
of the underlying infrastructure).

Policy-driven

,1! Orchestrator .
Netwprk : QoE Classifier
Service : Estimator Regressor

A
Actuators : Y
T : Collector | e QOE Probe -
7 Configure, modify,. Existing Approach
-
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e Y the priority Future Approach

Video _ |> Network i D Edge .) @
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Figure 5.1: CCL Architectural Overview
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Currently, the Collector component relies on video segment detection from unencrypted
traffic (e.g., HTTP/1.1 over TCP) to extract (e.g., python-based script) per video segments
QoS features (e.g., uplink RTT, downlink throughput, and packets). The segment detection
and per-segments QoS features require more processing time and unfeasible when multiple
segments are downloaded parallel (e.g., HTTP/2 or HTTP/3 multiplexing). Therefore, we
focus on integrating our lightweight temporal QoS feature extraction technique to make the
Collector component more robust and fine-grained (e.g., short time interval).

5.3.2 In-band Network Telemetry (INT) as Potential Future Source
of Network QoS KPIs

Another novel idea for the future is the potential utilization of more fine-grained QoS informa-
tion to estimate QoE, using INT (e.g., using the P4 language) [109] [110]. It has capabilities
to passively monitor network and traffic information (including the status of a network device-
hop latency, queue occupancy) from the data plane beyond the programmability of the SDN
control plane. The core idea of INT (See Figure 5.2) is to write the network status (from
INT source) into the header of a data packet to guarantee the granularity of monitoring the
network at the packet level. The telemetry data will be attached to the network packet. When
the network packet comes to the INT sink point, the load data will send to the user, and the
telemetry data will send to the network monitoring probe. INT makes it easier to gather and
analyze information such as when a packet enters and leaves the network, the packet arrival
rate at a specific hop, what path a packet takes, how long the packet spends on each hop, and
which switches experience congestion. The edge node (e.g., MEC) would act as a sink to send
the telemetry data to the QoE probe to estimate objective QoE KPIs by ML approach and
take further action to optimize the network. At present, there is a basic tutorial available on
INT at the P4-Github? repository. It would be interesting to extend that tutorial as a future
task by adding more metadata to make it feasible for QoE inferring.
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Figure 5.2: In-band Network Telemetry (INT) Overview

2https://github.com /p4lang/tutorials/tree/master/exercises/mri



99

5.3.3 Extensive Adaptive Streaming QoE Study over TCP and QUIC

In the future, we plan to extend our empirical QoE study by adding more DASH segment size
content, different buffer levels of DASH player, more realistic lousy network condition, and
the alternative implementation of QUIC transport taking into account the latest efforts made
by IETF3. We will increase the number of experiments repetition for comparing the adaptive
streaming QoE using HTTP/2 over TCP and HTTP/3 over QUIC (including different open-
source implementations of QUIC transport, i.e., aioquic*, Isquic®, picoquic®, mvfst”, quiche®,
etc.). Moreover, it would be interesting to find out any novel approaches alongside the existing
findings to modify ABS algorithms’ segment choice decision to achieve better performance over
QUIC transport.

3https://datatracker.ietf.org/doc/draft-ietf-quic-transport /
4https://github.com/aiortc/aioquic
Shttps://github.com/litespeedtech /lsquic
Shttps://github.com/private-octopus/picoquic
"https://github.com /facebookincubator /mvfst
8https://github.com/cloudflare/quiche
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