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Abstract

Computer Graphics and Human-Computer Interaction have significantly evolved over the

past decade, changing how our society interacts with technology. The interaction with

computers and connected electronic devices is shifting from WIMP (Windows, Icons, Menus,

Pointer) interfaces to more natural human-like experiences. This shift is heavily related

to the advances in speech recognition, text-to-speech synthesis, and natural language

processing systems that enabled, for example, the advent of sophisticated virtual assistants

that communicate naturally in a variety of situations. However, these assistants still do

not have a face. Visual speech communication is naturally multimodal and contains both

verbal and non-verbal components. Speech articulatory movements can be modified or

modulated by the expression of emotions and other non-verbal communication mechanisms.

For this reason, the synthesis of realistic talking-heads and the proper reproduction of

facial expressions and speech articulatory movements is a challenging task. This work

presents an expressive visual speech synthesis methodology that produces videorealistic

results for a talking head’s speech. The system adopts a Generative Adversarial Network

synthesis approach to produce expressive visual speech using a sequence of facial keypoints

as input. The network contains dedicated structures to ensure that the facial expressions

match the expressions expected of a given target emotion. To evaluate the work, we

analyzed objective metrics and the results of a subjective perceptual study based on the

recognition of facial expressions associated with emotions, in addition to a preference test

between different synthesis methods. The results demonstrate that our methodology is

capable of incorporating facial expressions of a target emotion into visual speech animation,

maintaining a high level of videorealism.

Keywords: facial animation, visual speech synthesis, expressive speech animation, machine

learning



Resumo

As áreas de computação gráfica e interação humano-computador evoluíram significativa-

mente ao longo da última década, mudando a maneira como nossa sociedade interage

com a tecnologia. A interação com computadores e outros dispositivos tem evoluído de

interfaces do tipo WIMP (Windows, Icons, Menus, Pointer) para paradigmas mais naturais

e similares às interações humanas, tais como a comunicação face-a-face. Essa mudança está

muito relacionada aos avanços nas tecnologias de reconhecimento de fala, síntese de texto

em fala e processamento de linguagem natural. Tais avanços alavancaram, por exemplo, o

surgimento de assistentes virtuais cada vez mais capazes de proporcionarem uma exper-

iência de comunicação natural. No entanto, tais assistentes ainda não possuem uma face.

A fala visual é naturalmente multimodal, incluindo componentes verbais (movimentos

articulatórios da fala) e não-verbais. Em particular, as expressões não-verbais enriquecem a

comunicação e frequentemente influenciam os movimentos articulatórios da fala indicando,

por exemplo, se uma frase é uma questão ou afirmação e fornecendo pistas sobre as emoções

que acompanham a fala. Pela complexidade das expressões envolvidas na fala acompanhada

de expressividade, a criação de cabeças falantes realistas, ou “talking-heads”, é uma tarefa

desafiadora. Este trabalho apresenta uma metodologia de síntese de animação de fala

acompanhada de emoção, resultando numa “talking-head” videorrealista. O sistema utiliza

uma rede generativa adversária, do inglês Generative Adversarial Network (GAN), para

sintetizar a parte visual da fala com emoção, utilizando como entrada uma sequência de

pontos chave da face. A rede contém estruturas dedicadas para garantir que as expressões

faciais geradas estejam de acordo com a emoção desejada. Para avaliar o trabalho, foram

utilizadas métricas objetivas e resultados de um estudo subjetivo perceptual baseado no

reconhecimento de expressões faciais associadas a emoções, além de um teste de preferência

entre diferentes métodos de síntese. Os resultados demonstram que nossa metodologia é

capaz de incorporar expressões faciais de uma emoção alvo à animação facial, mantendo

um alto nível de videorrealismo.

Palavras-chaves: animação facial, síntese da parte visual da fala, animação da fala

expressiva, aprendizado de máquina.
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1 Introduction

Computer Graphics and Human-Computer Interaction have significantly evolved

over the past decade, changing how our society interacts with technology. The interaction

with computers and connected electronic devices is shifting from WIMP (Windows, Icons,

Menus, Pointer) interfaces to more natural human-like experiences. This shift is heavily re-

lated to the advances in speech recognition, text-to-speech synthesis, and natural language

processing systems that enabled, for example, the advent of sophisticated virtual assistants

that communicate naturally in a variety of situations. This natural communication is

enhanced by using speech synthesis systems, allowing users to interact seamlessly with the

system.

These virtual assistants may be applied to various applications, such as personal

general assistants, where the assistant can execute diverse tasks such as controlling

connected devices and retrieving information from the internet. Another interesting

application of virtual assistants is the shopping assistants, who are dedicated to helping

customers better understand products and make better purchases. Additionally, it is

possible to use virtual assistants in healthcare applications, from triage assistants to

patient companions, improving the patient experience.

Human speech is naturally multimodal and characterizes an audiovisual signal.

The visual cues that accompany the articulatory speech movements are part of the

input information processed by the brain to extract meaning from the speech. If we

talk to someone in a noisy environment, we naturally switch to a vision-based speech

intelligibility processing. An enhanced visual speech processing mechanism is also developed

by individuals that are deaf or hard of hearing.

Visual information on the face also adds key elements of non-verbal communi-

cation to the speech, which are essential to social interactions. These elements express

(involuntarily or in a controlled manner) the informant’s internal states such as emotions

(facial expressions that accompany speech), tiredness (for example, through excessive

blinking of the eyes), and intentions (pointing the look at some direction or complementing

the speech with a nod) (MATTHEYSES; VERHELST, 2015).

Considering the role of visual information in speech, adding embodiment to

virtual assistants is vital to improving communication and promoting more natural,

engaging, and intuitive interaction mechanisms. Studies about synthetic audiovisual speech

have demonstrated that the addition of visual speech signal leads to more positive reactions

(PANDZIC I., 1985) and better engagement with the agent (WALKER; SPROULL;

SUBRAMANI, 1994). Kim et al. (2019) present a study on the effects of patient care
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assistant embodiment, concluding that this embodiment resulted in a more engaging

interaction. Fraser, Papaioannou e Lemon (2018) show that the modeling of character

emotions on a role-playing video game, helped to turn the system more engaging, making

the users spend more time talking to the game agent and improving the evaluation of

users about the system, turning it more enjoyable to use.

In particular, the expression of emotions by embodied conversational agents

provides the ability to demonstrate empathy to the user, which is extremely valuable in

customer-facing applications, such as educational applications and support centers. An

agent capable of expressing emotions can react much better to the user’s emotions and

interact accordingly. However, the synthesis of expressive agents is still an open challenge

due to its high complexity. Incorporating emotions on an agent dramatically increases

the synthesis effort once the speech needs to be carefully synthesized for each emotion

available to the agent, and the facial expressions need to be adapted accordingly.

Considering this vital role that visual speech has in improving communication,

the present work adopts an image-based, or 2D, approach to synthesize expressive talking

heads.

The typical approach to 2D facial animation synthesis has been using data-

driven models, either by reusing real pieces of the original speech or using statistical models

trained on the original speech (MATTHEYSES; VERHELST, 2015). The statistical model

approach is commonly based on Hidden Markov Models (HMM).

Advances in easily available computational power have also allowed significant

advances in the fields of Neural Networks. One of such advances was the creation of

Generative Adversarial Networks (GOODFELLOW et al., 2014), which allows the computer

to create a model capable of generating new data based on a training set. This family

of networks has been typically used to create new images on applications such as face

swapping and image remapping (HUANG; YU; WANG, 2018).

We propose the use of Generative Adversarial Networks to fully synthesize

images from keypoints, obtaining a data-driven system trained on a set of videos capable

of synthesizing 2D videorealistic expressive visual speech for an agent face using only

facial keypoints coordinates as input. This approach allows for generating different faces,

requiring only the retraining of the model. The possibility of synthesizing different faces

with the same input keypoint is extremely important as it allows the customization of

virtual assistants, and even face transfer.
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1.1 Objectives

The widespread acceptance and increase in the use of virtual assistants with

visual representations are only possible if they are natural, accurate, and have good quality.

This project has the general objective of implementing and evaluating a talking head

synthesis system using Generative Adversarial Networks.

Our specific objectives in this project are:

1. To investigate the state of the start of expressive facial animation synthesis;

2. To propose an expressive visual speech synthesis pipeline using Generative Adversarial

Networks;

3. To propose and to conduct an evaluation protocol to assess the results.

1.2 Contributions

The main contributions of this work are:

• Creation of a system capable of generating the visual part of the speech of a talking

head while expressing emotions: we create a system capable of generating expressive

visual speech based on only a sequence of facial keypoints and a target emotion.

Additionally, this system is capable of achieving better results than the state-of-

art vid2vid network. Finally, the proposed system can generalize well to keypoints

extracted from new faces;

• Creation of an evaluation protocol for emotion perception and video quality assess-

ment: we propose a complete evaluation protocol used to obtain our results. Our

evaluation system can perform tests for comparing the quality between distinct

videos and for defining which emotion the users can perceive on a given video. the

whole process is randomized to avoid positional and sequential biases;

• Evaluation of the effects of adding emotion to talking head video: we evaluate the

influence that producing expressive visual speech has on the perception of the

videorealism of the speech.

The contributions of this work also resulted in the following publication:

• Filipe Antonio de Barros Reis, Paula Dornhofer Paro Costa, and José Mario de

Martino. 2020. Deeply Emotional Talking Head: A Generative Adversarial Network

Approach to Expressive Speech Synthesis with Emotion Control. In Special Interest
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Group on Computer Graphics and Interactive Techniques Conference Posters (SIG-

GRAPH ’20 Posters), August 17, 2020, Virtual Event, USA. ACM, New York, NY,

USA 2 Pages. https://doi.org/10.1145/3388770.3407417

1.3 Text Organization

This text is organized as follows. The core concepts of Generative Neural

Networks are presented in Chapter 2, as well as the related work to this research. In

Chapter 3, we present our methodology and objective results using this method. We

present the perceptual study considered in the evaluation process, as well as the results in

Chapter 4. Finally, we present final remarks and directions for future work in Chapter 5.
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2 Background

This chapter discusses the state of the art of expressive facial animation focusing

on the use of Generative Adversarial Networks. The first section of this chapter provides an

introduction to Generative Adversarial Networks and how they work. Section 2.2 presents

a review of visual speech synthesis and state of the art for expressive facial animation. In

Section 2.3, we discuss the role of an emotion model and review the use of these models in

the state of the art of expressive visual speech synthesis. The final section of this chapter

provides a discussion on the relation of the current work with the existing approaches.

2.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a specific set of neural network

arrangements capable of mapping a given distribution and generating new data with

similar characteristics. After properly trained, these networks generate new, realistic data

following the same distribution of the original data. The generated data may be in different

formats, such as image, audio, and temporal series. This generation process is useful in

many applications, such as generating new data to train semi-supervised or reinforced

models (GOODFELLOW, 2017). In this work, we focus on applying GANs to generate

images, as by generating a sequence of images of faces, we can obtain expressive speech

animation.

The first Generative Adversarial network was proposed by Goodfellow et

al. (2014) as a framework for estimating generative models. Although there have been

significant advances in GANs, the core concepts presented in this section are still used

(GOODFELLOW, 2017).

GANs may be considered as an arrangement of neural networks because they

are composed of a combination of two distinct networks. The networks that compose a

GAN are the generator and the discriminator. The generator is the network responsible

for capturing a given data distribution well enough to be capable of generating new data

following such distribution. The discriminator is a network responsible for detecting real

and fake data, being the real data a sample from the dataset, and the fake synthesized by

the generator. In Figure 2.1, we graphically present this relation representing inputs and

outputs as parallelograms, networks as rectangles and decisions as diamonds. Discriminator

structures are presented in green and generator in blue, while results produced by the

system are yellow, and external data is purple.

The adversarial part of this network arrangement relates to the training phase,
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• x are the inputs to the generator, the segmentation maps corresponding to the real

inputs y;

• Ex represents the expected value over the real data instances;

• Ez represents the expected value over the synthesized instances;

• V (D, G) represents the value function for the two-player min-max game between

the generator and the discriminator.

Conditional GANs are a significant increment over traditional networks, es-

pecially for face generation. It is possible to use as input facial keypoints and obtain a

resultant model capable of generating visual speech using only new facial keypoints.

To further improve the results, Radford, Metz e Chintala (2015) proposed the

use of Convolutional Neural Networks instead of Multilayer Perceptrons as networks for

both the generator and the discriminator. These networks provide a significant performance

increase as the structure of CNNs is better suited for images.

In addition to changing the generator and discriminator functions, researchers

have developed other alternatives to improve GANs, such as changing the loss function

and using regularization techniques to prevent mode collapse (HONG et al., 2019).

2.1.1 Objective Metrics

Evaluating GANs that produce images and videos is challenging, as the quality

of these results is subjective and closely related to human evaluation. Another factor that

increases the difficulty is that the loss calculated during training is a bad indicator of actual

performance compared to what happens on classification problems. This difference between

the training loss and the actual performance of a GAN occurs because a combination

between the generator and discriminator losses composes the general loss of a GAN. As

these losses are determined in an adversarial manner, it is possible to achieve good general

loss when one network dominates the other, which results in the bad visual output. As

the studies with GANs move fast and with a big scale of results, researchers have adopted

other objective measures to help.

These standard objective metrics usually aim to determine the level of realism

of the generated data. One standard objective metric is the Inception Score (IS), which

focuses on evaluating the quality and diversity of the results produced by the GAN. IS

uses the Inception-v3 neural network created by Szegedy et al. (2016) to classify the

results of the GAN. This process generates a set of class probabilities for each of the

1000 classes in this network and each result. It is then possible to determine if the image

contains meaningful objects by analyzing if the conditional class probabilities have low
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entropy (SALIMANS et al., 2016). Additionally, to identify if the results are varied, the

IS analyzes if the integral of the marginal probability distribution has high entropy. IS

calculates the average relative entropy between conditional and marginal probabilities,

which is the final output of this metric (SALIMANS et al., 2016). The best score possible

for IS when trained using the InceptionV3 model trained on the ILSVRC 2012 dataset is

1000, as this is the number of classes in the dataset. In contrast, the lowest score is 1. One

major drawback of the IS is that this metric does not consider any information on real

samples (HEUSEL et al., 2017).

To improve the drawback of Inception Score, Heusel et al. (2017) proposed

the Frechet Inception Distance (FID). Recent studies, such as (ZAKHAROV et al., 2019;

WANG et al., 2018; WANG et al., 2019), vastly use this metric due to its ability to capture

the similarity between real images and synthesized ones. FID also uses results from the

Inception-v3 network to capture features from the images for both real and synthesized

data. These features are then summarized into a probability distribution, and the distance

between the distribution of real and fake images is calculated using the Frechet Distance.

This process makes the FID more robust and with results closer to the human evaluation

on the realism and variability of the results (HEUSEL et al., 2017). Smaller FID results

indicate a more realistic dataset than bigger ones. One drawback of FID is its inability to

detect overfitting, so if the considered network only reproduces real images, it will achieve

a good score (LUčIć et al., 2018). Another shortcoming of FID is that the Inception-v3 is

typically trained on a dataset with many distinct objects, which makes the metric less

precise for comparing results between items from a single class, like a human face (LUčIć

et al., 2018).

Another group of objective metrics is formed by the techniques to measure

the similarity of the synthesized output with the original, ground-truth, video. These

metrics evaluate each frame and calculate the distance from the original to the synthesized

one. Many works on facial animation and expressive speech synthesis use this group

of metrics to evaluate their results, especially the Structural Similarity (SSIM) metric

(MATTHEYSES; VERHELST, 2015). SSIM and other video similarity techniques are less

used when designing GANs as these metrics measure the ability of the results to replicate

the original images accurately. This objective is not always aligned with the goal of these

networks, as they aim to create entirely new images.

In contrast, these metrics may be applied to our case as we consider only one

actress in our training, so comparing the results obtained using the same keypoints from

the training dataset with the real video indicates the quality of the results. Additionally,

temporal consistency is essential for visual speech synthesis, and both FID and IS consider

the results as a set without a given order, while SSIM accounts for the temporal consistency.

Finally, SSIM allows a comparison between our results and others from previous works.
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2.2 Related Work in Facial Animation Synthesis

The creation of automated videorealistic talking heads has been a research

topic since the 1972 pioneering work, from Parke (1972). As described by Mattheyses e

Verhelst (2015), researches in this area have adopted many different synthesis strategies.

In the present work, we focus on the strategy adopted to generate facial dynamics during

the speech. Besides, the target of the synthesis can be in either 2 (image-based) or three

dimensions (model-based). In this section, we consider only approaches that generate

image-based results.

The first strategy is a rule-based synthesis, where a set of predefined rules

are applied to determine the movement of a head model for each synthesized frame. The

frames that are not synthesized originate from a dataset, allowing these systems to be

also called keyframe-based. Rule-based systems have proven to be quite versatile, allowing

the creation of a wide range of expressive agents in 2D, such as Liu e Ostermann (2011),

Ezzat, Geiger e Poggio (2002). In Costa (2015), the authors propose a rule-based system

capable of synthesizing expressive video. This strategy relies on rules for the transition

between visemes. It requires a set of annotated visemes that covers as many transitions as

possible, significantly increasing the cost associated with the creation of the dataset.

Concatenative systems can create new speech data by using segments that

match the required phoneme sequence, forming a new set of segments, that are then

concatenated. These systems have the advantage of requiring a dataset only as big as the

number of possible combinations of diphones. A pioneer work to use the concatenative

method is Videorewrite (BREGLER; COVELL; SLANEY, 1997), where existing images

from an actor speaking are used to generate new speeches. This is achieved by either

evaluating the phoneme sequence and reordering the existing frames or interpolating similar

frames when the desired one is not initially available (MATTHEYSES; VERHELST, 2015).

Another approach using this technique was presented by Cosatto e Graf (2000), when the

authors proposed a system with improved cost function to determine the best sequence

of original videos from the dataset for the synthesized one. A significant advantage of

Mattheyses e Verhelst (2015) is that the authors used videos acquired without controlled

conditions such as front-facing and TV studio environment. A downside of this technique is

that as it relies on existing frames, there are only a few concatenative expressive systems.

The last approach, model-based synthesis, rely on mathematical models to

generate new speech. Researches using this approach can obtain a model by exposing a

training set to either a statistical or, more recently, a Neural Network model. Many works

that use Hidden Markov Models as the driver of the synthesis, such as (ANDERSON et

al., 2013; XIE; SUN; FAN, 2014; FAN et al., 2015). Recently, there is a shift from the

HMM models to models based on Deep Neural Networks, especially Generative Adversarial

Networks.
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Generative Adversarial Networks were proposed by Goodfellow et al. (2014) as

a framework for estimating generative models, which was able to generate new images, with

a distribution similar to the present on a data set, using random noise as input. Further

studies improved the versatility of GANs by changing the input from random noise to

segmentation maps, such as facial keypoints or contour lines (MIRZA; OSINDERO, 2014).

Another vital contribution to GANs was the adoption of Convolution Neural Networks as

the internal neural networks instead of Multilayer Perceptrons. This change provided a

significant performance improvement for images (RADFORD; METZ; CHINTALA, 2015).

Another vital contribution to GAN structure was the use of patch GANs, which

improved the efficiency while maintaining the performance of the discriminator by using

a sequence of convolutions layers and analyzing smaller patches (LI; WAND, 2016). In

Vondrick, Pirsiavash e Torralba (2016), the authors propose a GAN for video VGAN, using

a Spatio-temporal convolutional architecture that learns typical video dynamics from a

massive set of unlabeled videos.

The training process of GANs is extremely challenging due to its adversarial

nature, which leads researchers to propose new optimization strategies, such as using

special activation functions different architectures, such as U-Net (RONNEBERGER;

FISCHER; BROX, 2015). To reduce the necessity of having a paired dataset, with both

original images and their segmentation maps, Zhu et al. (2017) proposes a cyclic loss

strategy, which adds an extra step of transformation, transforming a segmentation map to

a target image and from target image back to segmentation map, to train based on the

consistency of the transformations.

With these improvements, GANs started to generate even better results on

various applications, synthesis of faces, and expressive speech. In pix2pix, both the source

and target domains are images, and a key element to the success of this network is that it

learns not only the mapping but also a loss function to train this mapping, which excludes

the need to hand engineer features (ISOLA et al., 2017). Although pix2pix provides

excellent performance to static images, the performance for videos is not optimal, as the

frames are synthesized sequentially, without the knowledge of prior results, degrading

continuity. To improve this performance when generating videos, vid2vid proposes the use

of a network structure similar to pix2pix, but with an additional discriminator for analyzing

the images generating when computing the optical flow of the previous images(WANG et

al., 2018). By doing so, vid2vid differs from VGAN because it calculates the next frame

by analyzing the relation between the previous ones. In contrast, the latter calculates the

next frame based on a prediction learned from other videos. Although vid2vid provides

videorealistic results, the output is a direct mapping from the input, making the task of

conveying emotions difficult, as there is no control of the outputs concerning the target

emotion.
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Recently, Zakharov et al. (2019) used a Conditional GAN in combination with

pre-trained models to employ meta-learning in the process and achieve great results with

as few as one input image of the target. In a similar line of work, (WANG et al., 2019)

uses attention models to achieve videorealistic results with only a few input frames, as

little as two frames. Both these works offer only the mapping from keypoints to images,

without any possibility of controlling additional aspects such as emotions.

An important line of work presented in Karras, Laine e Aila (2019), Karras et al.

(2020) uses concepts from style transfer to perform unsupervised separation of attributes

such as pose and identity. These approaches can produce photorealistic results without

requiring semantic maps as inputs.

Another use of Generative Adversarial Networks for the synthesis of a talking-

head is using GANs to map sketches of faces to actual images (Kazemi et al., 2018; HU;

GUO, 2020). Although this approach provides a possible way of generating a talking head,

the difficulty of obtaining the sketches makes it not optimal for this use. Additionally, the

results are not videorealistic, as the frames are generated without considering the previous

outputs.

Another line of work related to facial synthesis is facial editing. Recent ground-

breaking work is proposed by Suwajanakorn, Seitz e Kemelmacher-Shlizerman (2017),

where facial dubbing was possible by using a Recurrent Neural Network and a large dataset

containing more than 7 hours of video. Although the results were expressive, the amount

of input necessary to train was too extensive. In Fried et al. (2019), the authors combine

Recurrent Neural Networks with a GAN to allow video editing based on phonemes as

input, achieving great results for making corrections after a video was filmed.

Finally, some works use GANs for synthesizing still images with new facial

expressions. Aiming to generate more inputs to be used on emotion recognition tasks,

Wang et al. (2019) proposes a method to synthesize new emotions on still image, using

an image of a face as input, and generating the same face but expressing a different

emotion as a result. As the goal of this work was to improve facial expression recognition

performance, no perceptual evaluation was performed. Qiao et al. (2018) proposes a

Geometry-Contrastive GAN method to transfer emotions across different subjects, and

handle emotion transition. However, the evaluation of this work is based on similarity

metrics rather than user recognition of emotions. Our approach is capable of generating

different emotions with only the base facial keypoints, without requiring a real picture

as input during the synthesis of new frames. These methods focus on still images, which

makes the results not videorealistic, as they are generated from pure segmentation mapping

and do not consider the previous frames on the generation process.

As our focus is to generate videorealistic results capable of conveying emotions

with control, our work expands the structure of vid2vid by adding the ability to achieve
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expressive visual speech capable of conveying the desired emotion while maintaining realism

and time consistency. As described in Chapter 3, we add the target emotion information

on the segmentation maps and include one emotion discriminator to guarantee proper

system training. To generate the segmentation maps, we use a sequence of keypoints to

determine the desired output shape, allowing the system to render the new face with this

desired shape.

2.3 Models of Emotions

The use of emotions on facial animation synthesis is a challenging task, as the

expression of emotions is naturally multimodal and complex because the emotion conveyed

is a combination of the positioning and movement of different aspects of the face, such as

eyebrows, lips, nose, and forehead.

Another challenge creating systems capable of synthesizing facial animation

with emotions is that the dataset required to train the system is significantly bigger.

Usually, we need the same amount of samples for each target emotion, which escalates

the number of total samples needed (MATTHEYSES; VERHELST, 2015). For systems

that require at least one sentence with each context-dependent viseme of the language

(MARTINO; MAGALHãES; VIOLARO, 2006), adding emotions greatly increases the

required dataset size.

Most recent work on expressive facial animation using neural networks is based

on producing results with a small set of categorical emotions. This is due to the availability

of datasets containing these emotions.

In Qiao et al. (2018), researchers aim to transfer the emotion of a face to

another by using a Geometry-Contrastive GAN. To validate the proposed network, the

authors use different datasets with discrete categorical emotions and produce quantitative

results. Comparing the presented video similarity metrics, PSNR and SSIM, this work

achieves good results, which means that the final image is similar to the original one, which

is related to the objective of maintaining the original face characteristics. In contrast, the

researchers did not perform any emotion recognition tests, not allowing them to verify the

accuracy regarding the emotions synthesized.

Another approach to emotion transfer using GAN is presented by Choi et al.

(2017) as an application to the proposed unified GAN for multi-domain image-to-image

transfer. The authors used the RaFD dataset, which contains images of models expressing

eight still emotions, to train a model capable of synthesizing new images expressing different

emotions for a single image of a neutral face. This work also considers only quantitative

metrics and does not present the performance of the model on the emotion recognition

task.
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Although most recent works consider a small categorical set of emotions, the

context in which talking heads may be used probably requires more complex emotions.

Costa (2015) proposed the adoption of the Ortony, Clore, and Collins (OCC) model of

emotions for embodied conversational agents, as these emotions are adequate for the

application. This model is well suited for synthesis tasks as it contains 22 different subtle

emotions defined through a valenced reaction to different events, actions, or aspects. The

present work is a sequence to (COSTA, 2015), and we use the dataset proposed in that

work, which contains carefully designed sentences for each emotion in the OCC model.

2.4 Concluding Remarks

This chapter presented an introduction of Generative Adversarial Networks

(Section 2.1), which are the foundation of the system proposed in this work. It also

presented a review of related work in facial animation synthesis, focusing on projects using

GANs in Section 2.2.

In Section 2.3, we have discussed the use of emotion models on relevant work

and the importance of using such models.

The following chapters present a Generative Adversarial Network approach

to expressive facial animation, which produces a talking head capable of conveying the

target emotions. To validate that the synthesized samples convey the desired emotions,

we perform a subjective test with a user group to evaluate if the users can discern the

emotions presented by the talking head.
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3 Expressive Visual Speech Synthesis

Recent advances in GANs have allowed visual speech synthesis with great

videorealism and overall quality. These networks can synthesize realistic video speech, as

described in Section 2.2. Despite the quality, these networks do not focus on conveying

emotions in a controllable way. In this chapter, we propose a network capable of synthesizing

realistic video speech while expressing a defined emotion.

We adopted the vid2vid network as the foundation for our approach. We discuss

how this network works in Section 3.1. Following, we discuss our key contributions to

improve the results of vid2vid: the emotion discriminator in Section 3.2.2 and the emotion

segmentation maps in Section 3.2.1. Section 3.4 presents the experiments we performed

during the development of our network to validate our proposal. Figure 3.1 illustrates the

components used in our network, along with the section where we describe each component.

3.1 Vid2vid Network

The vid2vid network is a GAN composed of multiple discriminators and gen-

erators to obtain good results on image quality and video realism. The authors have

demonstrated the possibility of using this network for various domain transformation

applications, including facial keypoints to facial synthesis (WANG et al., 2018).

In Chapter 2, we presented the concept of a conditional GAN. The vid2vid

network uses the conditional GAN concept as a foundation, but with a more complex

structure. In this section, we describe each component of the vid2vid, and in Section 3.2

we present our proposed network.

3.1.1 Generator

The vid2vid network aims to transform sequences of edge or semantic seg-

mentation maps into realistic video frames. This differs from a standard conditional

GAN as we need to generate a sequence of frames to form a video. We may model

this relation by considering yK
1 = {y1, y2, y3, ..., yK} as the sequence of real frames, and

xK
1 = {x1, x2, x3, ..., xK} as the corresponding semantic segmentation maps, where K is

the total number of frames. We define ŷK
1 = {ŷ1, ŷ2, ŷ3, ..., ŷK} as the sequence of output

frames. Equation 3.1 shows the main objective of the generator, which is to produce results

with a distribution similar to the original distribution of the training data.

P (ŷK
1 |xK

1 ) = P (yK
1 |xK

1 ), (3.1)
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on video signals, Wang et al. (2018) proposes the use of a window of 2 past frames for

optimal training stability and resource consumption, as presented on Equation 3.2:

P (ŷK
1 |xK

1 ) =
K∏

k=1

P (yk|yk−1
k−2, xk

k−2), (3.2)

where:

• P (ŷK
1 |xK

1 ) is the conditional distribution of the synthesized data given the input

maps;

•
∏K

k=1 P (yk|yk−1
k−2, xk

k−2) is the product of the conditional distribution of the real data

given the input maps for the window of 2 frames;

To compose the sequential generator, the authors propose using an optical flow

calculation between frames to estimate the next image. Wang et al. (2018) base this on the

assumption that the next frame may be obtained by warping the current frame with the

optical flow between the past consecutive frames. The estimated optical flow is represented

by Equation 3.3:

ŵk−1 = W (ŷk−1
k−2, xk

k−2), (3.3)

where:

• ŵk−1 is the estimated optical flow;

• W is the optical flow network;

• ŷk−1
k−2 are the past synthesized images;

• xk
k−2 are the past segmentation maps.

This composition is achieved through the process mapped on Equation 3.4 1:

G(ŷk−1
k−2, xk

k−2) = (1 − m̂k) ⊙ ŵk−1(ŷk−1) + m̂k ⊙ ĥk, (3.4)

where:

• G is the function associated with our complete generator;

• ⊙ is the element-wise product operator;
1 The piece of code responsible for implementing Equation 3.4 is available at <https://github.com/

fireis/emot_vid2vid/blob/master/models/networks.py#L229>
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• ŵk−1 is the estimated optical flow;

• ŷk−1
k−2 are the past synthesized images;

• xk−2 are the past the semantic segmentation maps;

• ĥk = H(ŷk−1
k−2, xk

k−2) is the intermediate image synthesized directly by the generator,

noted as H;

• m̂k is an occlusion mask used to handle background information, being M the mask

prediction network.

We represent this process graphically in Figure 3.2. The optical flow prediction

network uses the image generated by the conditional generator and the past frames to

estimate a corresponding flow map. The next step in the process is to warp the flow map

into the past synthesized frame, generating a warped frame. The last step in the process

is to combine the image synthesized by the conditional generator and the warped frame,

resulting in a time consistent frame.

Input

Generator

Intermediate
Frame

Synthesized 
frameSynthesized 
frame
Past 

Synthesized
Frames 

Optical Flux
Estimation

Time 
Consistent 

Frame

Flow Map

Frame Warping Warped 
Frame

+

Figure 3.2 – The structure of the vid2vid sequential generator. The conditional generator
uses semantic segmentation maps as input to generate an intermediate frame.
This frame and the past synthesized frames are fed into a flow network to
generate a flow map, which is warped to the previous frame, generating a
warped frame. Finally, the warped frame is combined with the intermediate
frame produced by the generator and result in a time consistent frame.

3.1.2 Image Discriminator

To evaluate the image quality of the results produced by the sequential generator,

Wang et al. (2018) uses a multi-scale PatchGAN architecture for the discriminator. The

PatchGAN discriminator aims to analyze the images on the scale of patches, verifying if
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patches of a given size are real or fake, and its structure is shown in Figure 3.3 (ISOLA et al.,

2017). The multi-scale aspect of the discriminator used on vid2vid refers to a combination

of different PatchGANs changing the number of intermediate channels analyzed on the

network, as shown on Figure 3.4, where an image is analyzed.

128 x 128 x 2 x 2

Average Pool (3x3)

128 x 64 x 2 x 2

Convolution   (4x4)
+ Leaky Relu

128 x 512 x 3 x 3

Convolution   (4x4) 
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Normalization 
+ Leaky Relu

Convolution   (4x4) 

x3

128 x 64 x 3 x 3

Convolution   (4x4)
+ Leaky Relu

128 x 512 x 3 x 3

Convolution   (4x4) 
+ Batch

Normalization 
+ Leaky Relu

Convolution   (4x4) 

x3

Figure 3.3 – Representation of PatchGAN discriminator structure proposed by Isola et
al. (2017). This discriminator analyzes the images at the scale of patches,
and classifies if each patch is real or fake. After assessing the whole image
through patches, an average is calculated to obtain the final output of the
discriminator.

3.1.3 Video Discriminator

To evaluate the video quality, vid2vid uses a multi-scale video discriminator.

This discriminator also relies on a multi-scale PatchGAN network but validates if the

generated frames are similar to real ones considering the optical flow. Additionally, to

assure both short and long term temporal consistency, the video discriminator is temporally

multi-scale. Wang et al. (2018) implement this multi-scale aspect by using a subsampling

technique of skipping a given number of frames. In the finest scale, the discriminator

analyzes every frame. On the other scales, the discriminator skips some of the previous

frames, as presented in Figure 3.5. The authors propose up to three temporal scales.
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3.1.4 Learning Objective

In Section 2.1 we presented the learning objective for a generic conditional

GAN through Equation 2.6. To accommodate for the multiple discriminators and the

sequential generator, we consider the adversarial loss indicated by LGAN in Equation 3.5:

LGAN = min
G

(max
DI

LI(G, DI) + max
DV

LV (G, DV )) + λW LW (G), (3.5)

where:

• LGAN is the general adversarial loss of the network;

• LW is the flow estimation loss;

• LV is the video loss, associated with the video discriminator;

• LI is the image loss, associated with the image discriminator;

• G is the complete generator;

• DI is the image discriminator;

• DV is the video discriminator;

• λW is a weight for the flow term.

The individual image loss may be represented by using the Binary Cross

Entropy Loss from Equation 2.1, as shown in Equation 3.6:

LI = E(yK

1
,xK

1
)[log DI(yi, xi)] + E(ŷK

1
,xK

1
)[log(1 − DI(ŷi, xi)], (3.6)

where:

• LI is the image loss;

• DI is the image discriminator;

• E(yK

i
,xK

i
) is the expected value over the real data yK

i instances given the corresponding

segmentation maps xK
i ;

• E(ŷK

i
,xK

i
) is the expected value over the synthesized data, ŷK

i , given the segmentation

maps xK
i .
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The video component of the loss obtained considering a window of N consecutive

frames may also be obtained from Equation 2.1, as represented in Equation 3.7:

LV = E(wK−1

1
,yK

1
,xK

1
)[log DV (yi−1

i−N , yi−2
i−N)] + E(wK−1

1
,ŷK

1
,xK

1
)[log(1 − DV (ŷi−1

i−N , wi−2
i−N)], (3.7)

where:

• LV is the video loss;

• DV is the video discriminator;

• wK−1
1 is the optical flow calculated for the past frames;

• E(wK−1

1
,yK

1
,xK

1
) is the expected value over the real data, yK

1 , given the optical flow

calculated wK−1
1 considering the past real frames, and the segmentation maps xK

1 ;

• E(wK−1

1
,ŷK

1
,xK

1
) is the expected value over the synthesized data, ŷK

1 , given the optical

flow calculated considering the past synthesized frames, and the segmentation maps

xK
1 .

Finally, the flow loss is presented in Equation 3.8, as defined by Wang et al.

(2018):

LW =
1

K − 1

K−1∑

k=1

(‖ŵk − wk‖1 + ‖ŵk(yk) − yk+1‖1), (3.8)

where:

• ‖‖1 represents the L1 norm;

• wk is the ground truth flow calculated using the original frames from yk to yk+1;

• ŵk is the flow calculated using the synthesized frames from ŷk to ŷk+1;

• ‖ŵk − wk‖1 represents the error between the ground truth and the estimated flow;

• ‖ŵk(yk) − yk+1‖1) represents the warping loss obtained by the flow warping the

previous and the next frames.

The flow loss accounts for the error between the original and the synthesized

flow, and the error associated with the flow warping with the previous frame.
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Figure 3.6 – Representation of the composition of the losses. The image loss is calculated
using the synthesized temporal consistent frame. The video loss is calculated
evaluating both the past frames and the temporal consistent frame. We
calculate the flow loss by evaluating the flow maps from past and current
frames.

3.1.5 Network Training

The vid2vid network can produce high-resolution results, of up to 2048 x

1024 using the coarse-to-fine strategy of the generator. This high resolution requires an

impressive computational power, taking ten days to train the system using a Nvidia

DGX1 machine. Due to our computational power limitations, we use the network on lower

resolutions, which do not require the use of multiple generators. We have used a Linux

server with 1 Nvidia V100 GPU, eight processor cores, and 32 Gb of RAM to run our tests.

The network consumed around 13Gb of video memory in the training process, considering

a training dataset with 166 seconds of video at 256 per 256 pixels. In this configuration,

each epoch took an average of 20 minutes to complete.

3.2 Our Network

In this section, we present the key contributions that compose our approach.

We start by presenting the semantic segmentation proposed. Then we present the strategy

for the emotion discriminator and the learning objective.

3.2.1 Semantic Segmentation Map

To generate expressive speech, we need to provide information relative to the

target speech to our network. The input to the original vid2vid network is an image

with a drawing related to the facial keypoints with a black background and white lines.

The generator processes this entire image. One option to consider the target emotion

information would be to use a second generator to generate a facial expression with the

desired emotion and warp this with the main sequential generator’s result. Although valid,
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as defined by the target. The objective of this discriminator is to assess if the perceived

emotion on the resultant image follows the target emotion. The objective function, based

on the Binary Cross-Entropy Loss, Equation 2.1, for this discriminator, awards images

with the correct emotion and penalizes ones with the incorrect one, as described on

Equation 3.10, where e represents the target emotion:

LE = log(DE(G(x|e))) + log(1 − DE(G(x|e))), (3.10)

where:

• LE is the emotion loss;

• DE is the emotion discriminator;

• G(x|e) is the result produced by the generator using the input segmentation map

and the target emotion.

This additional discriminator is intended only for emotion control. The loss of

this discriminator is accounted in conjunction with the other discriminator losses described

in Section 3.1. We have used the same discriminator structure as the image discriminator,

shown in Figure 3.3. The final loss for our approach, considering this new element, is

presented in Section 3.2.3.

3.2.3 Learning Objective

The learning objective of our approach builds on the one from vid2vid, previously

presented on Equation 3.5. The new learning objective also accounts for the emotion

discriminator term, as shown in Equation 3.11:

LGAN = min
G

(max
DI

LI(G, DI) + max
DE

LE(G, DE) + max
DV

LV (G, DV )) + λW LW (G), (3.11)

Where:

• LGAN is the general adversarial loss of the network;

• LW is the flow estimation loss;

• LV is the video loss, associated with the video discriminator;

• LI is the image loss, associated with the image discriminator;

• LE is the emotion loss, associated with the emotion discriminator;

• G is the complete generator;
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• DI is the image discriminator;

• DV is the video discriminator;

• DE is the emotion discriminator;

• λW is a weight for the flow term.

3.2.4 Network Training

Our approach’s network training follows the training from the original vid2vid

network, as presented in Section 3.1.5. The difference between ours and vid2vid is the

addition of the emotion label map and the emotion discriminator. Even though we have

added the discriminator, both the time to complete each epoch and the memory consumed

did not change compared to the original vid2vid network.

3.3 Image preprocessing

Our system uses a sequence of facial keypoints to generate a drawing of the face

to be synthesized. In this section, we present our approach to obtain the facial keypoints,

and to transform these coordinates into images.

3.3.1 Facial Keypoint Identification

Proper facial keypoint detection is paramount to achieving a good result in our

system, as we use these keypoints to generate the input to our system. The facial keypoint

identification problem is well known, with standard software packages providing excellent

results with little computational power.

In the development stage, we have tested different approaches to identifying

facial keypoints. The two approaches that were more extensively tested were DLIB (KING,

2009), and the face align method (BULAT; TZIMIROPOULOS, 2017). Both approaches

generate a sequence of 68 facial keypoints, as shown in Figure 3.8.

The DLIB approach provided good results when the head of the actress did

not present any rotation. In contrast, when the actress performed small, natural, facial

rotations while speaking DLIB failed to detect the keypoints on some frames.

The face align approach achieves better results to identify the facial keypoints

even with slight facial rotations. Due to this improved performance, we use the face align

approach to obtain the facial keypoints used in our experiments.
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(a) Ground truth image. (b) Semantic segmentation maps.

Figure 3.9 – Original frame from the dataset proposed by Costa (2015) and the corre-
sponding semantic segmentation map used as input to our network.

We obtain the facial keypoints and generate the semantic segmentation map

for every frame in our dataset. As presented in Section 3.2.1, the semantic segmentation

map background color, and the color of the facial shape lines are defined by the emotion

associated with the original video.

3.4 Objective results

To evaluate our results in an objective manner, we adopted the FID score.The

InceptionV3 network used to calculate the FID of our results was trained on the ImageNet

train set. To provide a reference to the FID score, Figure 3.10 shows results obtained by

Heusel et al. (2017).

Although FID can provide a direction in the decision making process to improve

the results, the metric alone cannot provide definitive answers on the perceived videorealism

of the results. In Figure 3.10, we can see that a face with a highly distorted shape presented

in the bottom left corner has a better score (around 150) than a face with the correct

shape but noisy (around 250), on the upper right corner. This indicates that the evaluation

performed by the FID score may differ from the human perception, justifying the perceptual

evaluation performed to assess the quality of our work, presented in Chapter 4.

The results were generated after training our model for 160 epochs, with an

output format of 256 by 256 pixels. The results are presented in Table 3.1.

The results for the FID score shows good indication that our approach out-

performs vid2vid, since the smaller the score, the better. This result indicates that our

approach tends to synthesize images with a distribution more similar to the distribution





CHAPTER 3. EXPRESSIVE VISUAL SPEECH SYNTHESIS 52

(a) Original frame. (b) Synthesized
frame using
vid2vid.

(c) Synthesized
frame using our
approach.

Figure 3.11 – Comparison between the original frame and the synthesized frames using
the vid2vid network, and our approach. The vid2vid network uses only
the keypoints from the original frame to synthesize new images, while our
approach uses both the keypoints and a target emotion. This results on our
results having results less similar to the original frame than vid2vid, as we
focus on always conveying the target emotion.

from the ground truth images than vid2vid. The difficulty to assert this conclusion is due

to the reduced set analyzed to calculate the FID due to limitations of the amount of

reference keypoints.

Figure 3.11 exemplifies differences from results using ours and the vid2vid

approach. The main difference is that while vid2vid synthesizes the resulting image

considering only the input keypoints, our approach also makes an effort to maintain the

resulting face with the target emotion, even if the actress on that specific frame was not

conveying this emotion.

We consider our objective results positive compared to the vid2vid network

because we achieve a better score on FID, which is a good measure of similarity to real

images.

We obtained the results considered in this section by training our system using

a Linux server with 1 Nvidia V100 GPU, eight processor cores, and 32 Gb of RAM. The

training stage consumed approximately 48 hours to train until epoch 160.

3.4.1 Ablation Study

Ablation studies are vastly used in the development of neural networks to

determine each component’s influence over the final result. These studies typically consist

of removing elements of a neural network and evaluating the results without each element.

This study may be instrumental because multiple structures are tested simultaneously in

the development of neural networks, which makes the mapping of the influence of each

component a tough task.

An ablation study was performed to assess the influence of the different elements
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that we have introduced to our network. To obtain these results, we have trained one

model for each approach for 140 epochs. We have set the model’s output as 128 per 128

pixels to reduce the computational power required to train the models.

We extracted the inputs used in this test from videos where the actress per-

formed the sentences with the resentment emotion, which presents a low level of activation

and can be considered close to neutral as per empirical results presented on a previous

study by Costa (2015). We want to evaluate if our system can generate results with

different target emotions even without the emotion information in the segmentation maps,

and the emotion discriminator.

We present the results in Table 3.2, where we calculated the FID score consid-

ering the synthesized results and original videos from the Resentment emotion. We also

present sample frames obtained using each model and the same keypoints extracted from

the Resentment emotion in Figure 3.12.

Approach FID
Full system 51

Without Emotion Discriminator 52
Without Segmentation Map 53

Vid2vid 54

Table 3.2 – Results of our ablation test. We have trained four models with different network
configurations to assess the influence of each component that we propose on
our work. The first approach is the original vid2vid network. The second is the
complete system, with all of the proposed components. Another approach is
with the segmentation map described in Section 3.2.1 but without the emotion
discriminator. The last approach is a network with the emotion discriminator
described in Section 3.2.2, but without the segmentation map. The results
present the positive influence of both elements as the full system is the approach
with the best performance, which is measured by the lowest FID.

Analyzing the FID for each approach, we verify that we obtain better results

when using our full proposed approach by comparing the scores from the vid2vid approach

and our full approach. We can conclude that our proposed network can produce results

with a distribution more similar to the distribution from the ground truth images. These

realistic results may be due to the increase of information provided to our model, increasing

its ability to generate better results. Another possible explanation for this improved

performance is that by controlling the target emotion, we avoid emotion inconsistencies on

the emotion expressed that occur when no emotion information is given. We use this result

as an indication that using our full proposed approach optimizes our result. To measure

the final quality of our results we consider the perceptual studies presented in Chapter 4.
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(a) Original vid2vid

network,
FID 54.2.

(b) Proposed net-
work without
the emotion
discriminator,
FID 52.2.

(c) Proposed network
without the seg-
mentation map,
FID 52.8.

(d) Proposed
network,
FID 50.6.

Figure 3.12 – Results for ablation test considering the same input keypoints for each
approach, obtained from a video of the actress performing the sentences
with the Resentment emotion. The target emotion was set to Happy-for. We
can see that the approach 3.12d presents the most realistic result, with both
eyes open and mouth close to a smile.

3.4.2 Evaluation Across Epochs

We evaluate the evolution of the FID score as we train our model for more

epochs. This evaluation is important as a form to validate the effect that increasing the

training stage has on the final results. We present the results in Table 3.3 and show samples

for each epoch are in Figure 3.13.

(a) Epoch 20. (b) Epoch 40. (c) Epoch 60. (d) Epoch 80.

(e) Epoch 100. (f) Epoch 140. (g) Epoch 160.

Figure 3.13 – Samples from the results obtained training our system for a different amount
of epochs. As we increase the amount of epochs, the results become more
realistic, eliminating artifacts that should not be present, such as head
deformations encountered from epoch 20 to 60.

The analysis of the FID for each epoch demonstrates that we have obtained the
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Epoch FID
Epoch 20 114
Epoch 40 46
Epoch 60 40
Epoch 80 33
Epoch 100 34
Epoch 140 33
Epoch 160 32

Table 3.3 – Results obtained considering a set generated using our proposed model trained
for a different amount of epochs. This result demonstrates that the training
process indeed allows our system to improve the final result.

best result on epoch 160, which is the chosen epoch to generate the final results used on

our user group evaluation. During the development stage of the network, we have stopped

the training at epoch 160. We chose this stopping point due to the computational cost

associated with the training, as at this stage of the training, each epoch took more than

20 minutes to be processed.

3.5 Concluding Remarks

In this chapter we presented the vid2vid network in Section 3.1, which is the

basis for our approach. In Section 3.2, we presented the network we proposed, as well as

our key contributions for adding emotion control to the vid2vid network. Our approach

can generate consistent results without increasing the complexity and computational

cost of the system. In Section 3.3, we presented the preprocessing stage to generate our

training dataset. Finally, in Section 3.4, we presented the tests we performed during the

development of our network. The results presented in this chapter allowed us to make

important design options and indicated that our system generates good results, especially

when comparing to the original vid2vid network. In the following chapter, we present our

user study evaluation to assess if the users can identify emotions associated with the facial

expressions synthesized, and if they prefer results obtained using the vid2vid network or

ours, properly evaluation the quality of our results given the limitations of the FID score

for this purpose.
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4 Videorealism Assessment

The evaluation process for visual synthesis projects is challenging, mostly

because the final goal is subjective: to measure how videorealistic are the results. We use

the videorealism definition as the extent to which animation can be discerned from a real

video by the spectator (MATTHEYSES; VERHELST, 2015). Therefore, we consider our

results videorealistic if they may be classified as real videos by our viewer population.

Related research usually evaluates the resulting systems in one or more of three forms,

with perceptual, subjective, and objective measures (MATTHEYSES; VERHELST, 2015).

Objective evaluations consider the synthesized video signal’s measurable char-

acteristics, such as the difference between the synthesized and the ground truth videos.

Typically, these metrics rely on a mathematical calculation to compare a set of results with

a collection of original data by considering the actual data or its probability distribution.

Related works on GANs consider FID score as at least one of the objective metrics as this

score evaluates if the synthesized data has a distribution similar to the original data, as

discussed in Section 2.1.1 (WANG et al., 2018; WANG et al., 2019; ZAKHAROV et al.,

2019). In other approaches, researchers consider similarity metrics such as SSIM, as these

allow a direct comparison to the ground-truth data (QIAO et al., 2018; ZAKHAROV et

al., 2019; KIM et al., 2018). We have used these metrics to design and evaluate our work

during the development stage, as already presented in Section 3.4.

Another method of evaluating the results of visual facial synthesis is through

perceptual measures. In studies that use these metrics, the researchers present speech

fragments to a group of test participants and ask them to perform a series of tasks related

to the comprehension of the information (MATTHEYSES; VERHELST, 2015). A notable

example of a perceptual test is the evaluation of the intelligibility of the speech, where

the users need to define what they have comprehended from the given stimuli (COSTA;

MARTINO, 2013; EZZAT; GEIGER; POGGIO, 2002; DEY; MADDOCK; NICOLSON,

2010).

Subjective tests are similar to perceptual evaluations because they employ a

group of test subjects to observe a series of visual speech fragments, differing that these

subjects present their opinion about the evaluated pieces. Related work on visual speech

synthesis typically uses subjective tests to evaluate the research. One substantial downside

of this approach is that even small errors in the speech synthesis usually significantly

degrade the results (MATTHEYSES; VERHELST, 2015). An example of this group of

tests is to present the user a synthesized video sequence and ask to evaluate how natural

the video feels on a Likert scale (FRIED et al., 2019; KIM et al., 2018; FILNTISIS et al.,
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2017; RUHLAND; PRASAD; MCDONNELL, 2017).

Our focus in evaluating our results is to assess if they are videorealistic even

while conveying facial expressions related to a set of emotions. Although this is a challenging

task, we proposed subjective tests in Section 4.2, along with the test protocol. We evaluate

our results by comparing them to ones obtained using the original vid2vid approach,

which generates viderealistic results (WANG et al., 2018). Additionally, we assess emotion

perception, focusing both on the actual emotion perception and valence perception.

In this chapter, we describe and discuss the results of a subjective study

performed to evaluate the animations achieved by applying the synthesis methodology

presented in Chapter 3. We start by presenting qualitative results in Section 4.1, showing

different use cases. Sections 4.2 to 4.5 present all stages of the user study proposed to

evaluate our results, from design to actual results. The final section of the chapter discusses

the different results.

4.1 Qualitative Assessment

In this section, we present the qualitative results of our work. To better

organize this section, we divide it into two subsections regarding the origin of the keypoints.

Section 4.1.1 presents results obtained with keypoints from the actress in the training set,

while Section 4.1.2 presents results with keypoints from another actor.

4.1.1 Keypoints from the Subject in the Training Set

To evaluate the quality of the synthesis using keypoints extracted from the

actress present in the training set, we have used ground-truth videos of the emotion

Resentment. In a previous study with the same dataset, users assigned mostly a neutral

valence to this emotion (COSTA, 2015). These videos were not in the training set to

impose a more significant challenge to our system. We present the results in Figure 4.1.

We note that the results are different for each emotion, showing that our system

changes the output according to the emotion input. Additionally, we do not perceive any

significant visual artifact in these samples.

When analyzing more frames synthesized from keypoints extracted from videos

of the actress in the training set, we note that sometimes the system generates frames

with the subject blinking only one eye, as shown in Figure 4.2.

When we analyze the original image from which we obtained the keypoints,

we note that the left eye of the actress was more closed than the other. Analyzing the

outputs for every emotion, we note that our system has synthesized this difference in

various intensities. With these differences, the only emotion where this is an actual quality
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(a) Original sample. (b) Extracted keypoints.

(c) Synthesis with
Happy-for target.

(d) Synthesis with Ad-

miration target.
(e) Synthesis with Fear

target.
(f) Synthesis with

Anger target.

Figure 4.1 – Original sample and corresponding synthesized frames. We generate one
output for each emotion (c through f ) by using as input the keypoints (b)
extracted from the original frame (a)

(a) Original sample. (b) Extracted keypoints.

(c) Synthesis with
Happy-for target.

(d) Synthesis with Ad-

miration target.
(e) Synthesis with Fear

target.
(f) Synthesis with

Anger target.

Figure 4.2 – Original sample and corresponding synthesized frames. We generate one
output for each emotion (c through f ) by using as input the keypoints (b)
extracted from the original frame (a). We note that our system synthesized
frames with only one eye open for the Happy-for emotion.
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issue is the Happy-for. This issue is likely associated with the system generating more

intense expressions for this emotion and thus allowing such disturbance.

4.1.2 Keypoints from a New Subject

The speech is a natural process, and even with similar directions, each person

has its way of expressing during the speech. This difference results in distinct head

trajectories during the speech for each person. In Figure 4.3, we present frames recorded

from original videos of each subject to present some differences in their head trajectories.

(a) (b) (c)

(d) (e) (f)

Figure 4.3 – Original samples from subjects both in the training set (a through c) and other
subject (d through f ). Both subjects were asked to express the same sentences
and emotions. In the middle frames (b and e) we can note a difference in
the head movement, with the actor making a more significant vertical head
rotation than the actress.

The actress in the training set presents slight vertical head rotation, while the

other actor moves its head in this direction in a more significant way. This difference

results in significant discrepancies in the extracted keypoints, as presented in Figure 4.4.

We note that the shape of the head is significantly different when comparing

the representation of the keypoints from both subjects. This variation is likely related to

the vertical rotation of the head that the actor not in the training set (images d through

f ) performs when speaking. This difference imposes a challenge for our trained model as

the samples in the training set did not cover head rotations with this intensity. The results

for the synthesis of the keypoints in our analysis are presented in Figure 4.5.

Analyzing the synthesized images in Figure 4.5, we note that the results for

the actress in the training set (a through c) are similar to original images, without visual

artifacts that affect the quality, making them realistic. In contrast, the results for keypoints

from another actor (d through f ) are not as realistic. We note mainly two different artifacts:

blurriness in the hair and forehead division, and visual artifact in the right portion of
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(a) (b) (c)

(d) (e) (f)

Figure 4.4 – Representation of the keypoints extracted from samples of subjects both in
the training set (a through c) and a new subject (d through f ). The keypoints
were extracted using the same method for both subjects. The images from
which the keypoints were extracted are presented in Figure 4.3.

the neck. We attribute both issues to the vertical movement of the head. When the actor

rotates vertically rotates the head, the keypoints for its chin become higher than normal.

This difference causes our model to consider the whole face shifted up and created the

distortion on the neck region. Additionally, we attribute the forehead blurriness to the

proximity between the eyebrow lines, and the forehead contour, creating difficulty for our

system in this detection.

These visual artifacts represent the main challenge our system faces when

generalizing input keypoints from other subjects. We could likely overcome this issue by

either augmenting our training dataset, performing carefully defined operations in the

original images to allow our model to learn new mappings. Another option to improve

this would be to use in our training set a subject with more significant head movements,

presenting more distinct movement options for our system during training.

4.2 Experiment Design

Our experiments were designed to evaluate if our system could generate results

from which the users would be able to perceive the target emotion. To evaluate if our

system was able to produce expressive results with the correct emotions, we had to define
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(a) (b) (c)

(d) (e) (f)

Figure 4.5 – Original samples from subjects both in the training set (a through c) and other
subject (d through f ). Both subjects were asked to express the same sentences
and emotions. In the middle frames (b and e) we can note a difference in
the head movement, with the actor making a more significant vertical head
rotation than the actress.

a set of target emotions. One common option of emotions choice is to adopt the six

basic emotions proposed by Ekman (1993) (Anger, Disgust, Fear, Happiness, Sadness and

Surprise). This approach may provide good results for the model in question, but are

not an adequate representative for applications in the real world, as the most common

emotions are typically more subtle (COSTA, 2015). Additionally, these six emotions are

archetypal, which makes them easier for users to perceive correctly.

To impose a challenge resembling a real-world use case, we have adopted some

emotions from the OCC model (ORTONY; CLORE; COLLINS, 1988). We have followed

conclusions presented by Costa (2015) on the analysis of experimental results obtained

with the dataset proposed by Costa (2015) to define the emotions used in our evaluation.

These conclusions indicate that it is possible to cluster the 22 emotions in the OCC

model into 5 different groups, Strong Negative, Negative, Neutral, Positive, and Strong

Positive. We have chosen four emotions situated at the limits of each cluster: Anger -

Strong Negative, Fear - Negative, Admiration - Positive and Happy-for - Strong Positive.

The neutral emotion used as input was Resentment - Neutral. We consider this set an

adequate representative of a real use case for the model. The ability to properly represent

them is proof that our system can correctly express subtle emotions.
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We performed the study with 42 participants, which had two tasks: (1) to

determine the emotion shown in one video segment of a talking head, and (2) to choose

the most realistic video between two choices. In every task, we presented only the video

without the audio signal. These tasks were given on three different stimuli, as follows:

• Neutral to Expressive Synthesis - Same Subject: These stimuli consists of

expressive facial animations synthesized from keypoints extracted from neutral

speeches from the same actress from which we trained the face model, as presented

in Figure 4.6. We extracted the keypoints from neutral speech videos (Resentment

emotion) that were not present on the training set. Two animations were generated

for each of four emotions (Anger, Fear, Admiration and Happy-for), totalling eight

samples. In this test, we asked the participants to determine the emotion shown on

each video;

• Neutral to Expressive Synthesis - Different Subject: These stimuli consist

of expressive facial animations synthesized from keypoints extracted from neutral

speeches from an actor whose face was completely new to the system. We extracted

the keypoints from neutral speech videos (Resentment emotion) that were not present

on the training set. We generated two animations for each of four emotions (Anger,

Fear, Admiration and Happy-for), totalling eight samples, as presented in Figure 4.7.

In this test, we asked the participants to determine the emotion shown on each video;

• Synthesis Method Comparison: These stimuli consist of pairs of expressive facial

animations synthesized from keypoints extracted from neutral (Resentment emotion)

speeches from the same actress from which we trained the face model. The difference

between the videos in pairs is the synthesis method, as we synthesized one using our

approach, and the other using the vid2vid network. We generated two animations

pairs for each of four emotions (Anger, Fear, Admiration and Happy-for), totalling

eight pairs of samples. In this test, we asked the participants to choose the most

realistic video between the options.

Every participant in our study analyzed the three stimuli in a random sequence,

as explained in Section 4.3.

4.3 Evaluation Protocol

The evaluation was conducted through a dedicated assessment application

developed for this specific purpose1. This tool was necessary to provide all the flexibility

and resources we needed for the planned study.
1 The software for the evaluation study is available at <https://github.com/fireis/video-choices>
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(a) Original frame
from another
actor with the
Resentment

emotion.

(b) Synthesized
frame with
Happy-for

target.

(c) Synthesized
frame with
Admiration

target.

(d) Synthesized
frame with
Fear target.

(e) Synthesized
frame with
Anger target.

Figure 4.6 – Example of original frame and corresponding synthesized results used on the
neutral to expressive synthesis - same subject stimuli. In this test, we ask the
users to chose the emotion they perceive in a video segment. We synthesized
the video segments from keypoints obtained from an actor absent from the
training set. We used two videos per emotion, totaling eight videos in this
test.

(a) Original frame
from another
actor with
Resentment

emotion.

(b) Synthesized
frame with
Happy-for

target.

(c) Synthesized
frame with
Admiration

target.

(d) Synthesized
frame with
Fear target.

(e) Synthesized
frame with
Anger target.

Figure 4.7 – Example of original frame and corresponding synthesized results used on the
neutral to expressive synthesis - different subject stimuli. In this test, we
ask the users to chose the emotion they perceive in a video segment. We
synthesized the video segments from keypoints obtained from an actor absent
from the training set. We used two videos per emotion, totaling eight videos
in this test.
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and a box for the indication of compliance with the terms of the research2.

After the initial screen, the software determines the next stimuli randomly.

We use a random sequence of stimuli to avoid bias due to the order of the experiment.

Using a random sequence of stimuli and different videos in each stimulus, we assure that

each participant evaluates the options in a different sequence, reducing the influence of

effects such as the subject being tired at the end of the test. Additionally, the order of the

emotions presented in the screens of emotion perception is randomly defined. We have

used this process to avoid selection bias due to the order of emotions presented. Finally, in

the synthesis comparison test, we define randomly which video we present on the right

and which is on the left of the screen to mitigate selection bias.

To evaluate the different stimuli, we use two types of screen, one for multiple

videos and another for a single video. Both types of screens share the same flow presented

in Figure 4.10. The process starts with the video playing, and the user can press a button

to restart the video. After the video ends, a button to confirm the user choice is enabled,

and the user may choose an option, and press confirm or replay the video as many times as

desired. After the user confirms its option, a button to advance to the next step is enabled,

and the user may either replay the video or advance to the next screen, ending the flow.

We conducted the test on a computer located in a closed room without external

distractions.

4.4 Participants Profile

Forty-two subjects participated as volunteers in our user study. These users

had no prior knowledge of our research or test purposes. None of the participants informed

having visual impairment conditions, which could undermine their participation. We have

considered data from every participant in our study. The age range of most participants

was 26 to 35 years, as shown in Figure 4.11.

Our user study participants were mostly undergraduate, and graduate students

of the University of Campinas, and the majority of them had already achieved higher

education levels, as seen in Figure 4.12. We relate this to our user base being familiar with

technology, eliminating distortions due to difficulties to complete the evaluation.

The users were closely distributed in the masculine and feminine gender, as

shown in Figure 4.13.
2 Consent term as per approval of the Ethics Committee of Unicamp, process 65289517.9.0000.5404,

available at <https://drive.google.com/file/d/10p9Ccs1FTF1TS3niE-boLQ-x3zU3iMrW/view?usp=
sharing>
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5 Conclusion

We proposed an expressive visual speech generation system using Generative

Adversarial Networks to generate two-dimensional videorealistic results while conveying

facial expressions of emotions.

In Chapter 2, we described Generative Adversarial Networks (GANs), to assure

the understanding of the rest of the thesis. In this chapter, we reviewed the relevant

literature for our work in the visual speech area, presenting historical contributions

to the challenge of animating a videorealistic facial animation. We also presented new

developments in facial animation using GANs. Finally, we introduced and discussed the

emotion model used in our work.

We presented the methodology of this work in Chapter 3. In this chapter, we

presented vid2vid, the network used as the foundation of our network. We then presented our

contributions and approaches to adding the emotion information to vid2vid. Additionally,

we presented our first results using objective metrics and qualitative evaluation. The

objective metric FID shows that our results have a level of videorealism similar to vid2vid,

which demonstrates that we at least maintained the videorealism after adding the emotion

information. By analyzing the qualitative results, we can verify that our results are realistic

and that our system allows transposing the facial keypoints from a subject to a completely

different target. We showed that the system usually generalizes well to input keypoints

from other subjects. However, we may produce some undesired visual artifacts when

generating new videos using keypoints from a different subject as specific head movements

of this subject may be completely absent from the training set, imposing difficulty on the

generation system.

We presented our results in Chapter 4. Our results show that the users could

associate the expressive speech synthesized by our system with the targeted emotion. This

was true even when the keypoints used to synthesize the videos originated from a subject

not included in the training set. Additionally, we provided results for the comparison

between our approach and vid2vid, which results may be considered videorealistc. Our

approach was usually preferred over vid2vid, which indicates that methodology was capable

of adding emotion expressions to the final animation without degrading, or even improving,

the perception of videorealism.

These results allow us to consider that our system achieves results at least

as good as our reference network, vid2vid, which is considered to produce videorealistic

results (WANG et al., 2018). Our system achieves these results in expressive video speech

while generalizing well for keypoints extracted from different faces. The user evaluation
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group results also demonstrate that our system can generate expressive results with the

desired target emotion and valence.

5.1 Future Work

The results of our evaluation provided useful pointers on approaches to improve

our method. Based on the perceptions described in Section 4.1, we know that our system

has lower performance when the keypoints are extracted from a subject with different

movement patterns than the subject in the training set. One approach to mitigate this

effect would be to use data augmentation techniques, such as translation and rotation, to

artificially increase the variance of the movements performed by the subject in the training

set. Another approach would be to use videos from subjects with higher head movement

variability.

Another future work approach is to incorporate our approach as the video

synthesis part of a full text-to-video pipeline. This could be done by using keypoints

generated by a text-to-keypoint system as inputs to our system.
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