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Resumo

Projeções acuradas da evolução de mantos de gelo marinho e suas contribuições ao aumento do
nível dos mares sob mudanças climáticas requerem alta resolução de malha/grade em modelos
numéricos para capturar corretamente processos físicos fundamentais, tais como a evolução
da linha de aterramento, a região onde o gelo apoiado sobre o embasamento rochoso começa
a flutuar. A evolução da linha de aterramento desempenha um papel importante na dinâmica
dos mantos de gelo marinho, já que exerce um controle fundamental sobre a estabilidade do
manto de gelo apoiado. A modelagem numérica da dinâmica da linha de aterramento requer
recursos computacionais significativos, pois a exatidão de sua posição depende da resolução da
malha ou grade. Uma técnica numérica que contribui para a exatidão com custo computacional
reduzido é o refinamento adaptativo de malhas. Apresentamos aqui a implementação de malhas
adaptativas no Ice Sheet System Model para simular a dinâmica da linha de aterramento sob dois
diferentes benchmarks: MISMIP3d e MISMIP+. Testamos diferentes critérios de refinamento
baseados em: (a) distância ao redor da linha de aterramento, (b) estimador de erro a posteriori,
o estimador de erro Zienkiewicz-Zhu e (c) diferentes combinações de (a) e (b). Em ambos
benchmarks, os estimadores de erro apresentam valores altos em torno da linha de aterramento.
Particularmente para o MISMIP+, o estimador também apresenta valores altos na parte apoiada
do manto de gelo, seguindo as principais feições da geometria do leito rochoso. O emprego do
estimator de erro orienta o procedimento de refinamento de forma que o desempenho das malhas
adaptativas é otimizado. Nossos resultados mostram que o tempo computacional utilizando
malhas adaptativas depende da acurácia requerida, mas em todos os casos, é significativamente
menor em comparação com o tempo necessário ao empregar malhas uniformemente refinadas.
Concluímos que o emprego de malhas adaptativas em simulação numérica de mantos de gelo
marinho sem um estimador de erro associado deve ser evitado, especialmente em mantos de
gelo reais em que o leito rochoso apresenta feições mais complexas.



Abstract

Accurate projections of the evolution of marine ice sheets and their contribution to sea level
rise in a changing climate require a fine mesh/grid resolution in ice sheet models to correctly
capture fundamental physical processes, such as the evolution of the grounding line, the region
where grounded ice starts to float. The evolution of the grounding line indeed plays a major
role in marine ice sheet dynamics, as it is a fundamental control on marine ice sheet stability.
Numerical modeling of a grounding line requires significant computational resources since the
accuracy of its position depends on grid or mesh resolution. A technique that improves accuracy
with reduced computational cost is the adaptive mesh refinement approach. We present here the
implementation of the adaptive mesh refinement technique in the parallel finite element Ice Sheet
System Model to simulate grounding line dynamics under two different benchmarks: MISMIP3d
and MISMIP+. We test different refinement criteria: (a) distance around the grounding line, (b)
a posteriori error estimator, the Zienkiewicz–Zhu error estimator, and (c) different combinations
of (a) and (b). In both benchmarks, the error estimator presents high values around the grounding
line. In the MISMIP+ setup, this estimator also presents high values in the grounded part of the
ice sheet, following the complex shape of the bedrock geometry. The error estimator helps guide
the refinement procedure such that the mesh adaptivity performance is improved. Our results
show that computational time with adaptive mesh depends on the required accuracy, but in all
cases, it is significantly shorter than for uniformly refined meshes. We conclude that the use of
adaptive mesh refinement in marine ice sheet simulations without an associated error estimator
should be avoided, especially for real glaciers that have a complex bed geometry.
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Chapter 1

Introduction

1.1 The Cryosphere and the climate system

Approximately, 10% of the Earth’s surface is covered by water in solid state: snow, freshwater, ice
in lakes and rivers, sea ice, mountain glaciers and ice caps, ice sheets and subsoil ice (permafrost).
This entire set is known as ‘Cryosphere’1. The largest bulk is present in Antarctica Ice Sheet, a
continent with 24.7×106 km3 of ice volume2, meaning 60.9 m of sea level rise3, followed by the
Greenland Ice Sheet, the largest island on the Earth, with an ice volume equal to 2.9 × 106 km3

(7.1 m of sea level rise) [91, p.342]. The remaining ice present on the Earth means ∼ 3% of
the Cryosphere (∼ 0.9 × 106 km3 of ice volume). Considering only glaciers and ice caps, the
equivalent sea level rise is estimated between 0.15 − 0.37 m [91, p.342]. Figure 1.1 shows the
spatial view and the time scales of the cryospheric components.

Figure 1.1: Spatial and temporal scales of the Cryosphere’s components. From [91, p.341].

1’Cryos’, from the Greek, means glacial or cold [143].
2Excluding the attached ice shelves.
3For 3.62 × 108 km2 of oceanic area, and 917 kg/m3 and 1, 028 kg/m3 for the ice and seawater densities, resp.
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How does a glacier flow? Glaciers and ice sheets are masses of ice that deform and slide under
the gravitational force. In their upper portions, called ‘accumulation zone’, they accumulate ice
mass due to the annual snow precipitation. In their lower portions, the ‘ablation zone’, they lose
ice mass due to melting, sublimation and/or iceberg calving4. Where there is no accumulation
neither ablation is called as the Equilibrium Line Altitude (ELA). The ice flows from the upper
part to the lowest point following the (negative) gradient of the ice surface. A schematic view
of the flows of glaciers and ice sheets are presented in Figure 1.2.

Figure 1.2: (A) Alpine glacier and (B) ice sheet with terrestrial and marine ice margins. The
ice flows are represented by the arrows. The ablation zone is represented in red. ELA is the
Equilibrium Line Altitude. Adapted from [71] (here we are using only the upper part of the
original figure). ©The Authors, some rights reserved; exclusive licensee American Association
for the Advancement of Science. Distributed under a Creative Commons Attribution Non-
Commercial License 4.0 (CC BY-NC) http://creativecommons.org/licenses/by-nc/4.0/.

The Cryosphere is an important and active component of the Earth’s climate system due
to the energy and mass exchanges carried out with the atmosphere and oceans. Figure 1.3
highlights the interactions between the Cryosphere and the climate system. The cryospheric
components are extremely sensitive to climatic variations (e.g. [95, 30, 131, 140]), and in its turn,
changes in these components may affect the atmospheric and ocean circulation patterns [26, 83].
Recently, an increasing in ice discharges and ice front retractions of glaciers have been reported
[145, 159, 142, 128], and a number of studies correlate these recent changes with atmospheric
temperature increasing or with relatively warmer ocean circulations [78, 84, 121, 131].

Figure 1.3: The Cryosphere interactions with the Earth’s climate system. From [24, p.1143].

4Ablation is the process by which snow, ice or water is lost by a glacier, floating ice or seasonal snow cover. It
includes melting, evaporation, detachment, wind erosion and avalanches [143].
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1.2 The risk: sea level rise

The projections of impacts, vulnerabilities and adaptations due to the climate change has been a
continuous effort of the scientific community since the 1st Intergovernmental Panel on Climate
Change report (IPPC AR1/1990). Among several impacts, the sea level rise is a great concern:
among the 600 million people living in coastal areas below of 10 m of altitude, about 150 million
live in regions up to 1 m above the sea level, and the cost of damage and adaptation in these
areas are enormous [93, 63, 69]. Any planning of adaptation and risk management depend
heavily on the projections of the sea level rise, as well as the impacts associated with each
projection [107]. However, these projections present large variability because there are several
difficulties to accurately estimate the contributions from the Greenland and mainly from the
Antarctica [108]. In particular, the collapse of the West Antarctica Ice Sheet (WAIS) represents
a potential fast sea level rise [12, 58, 43] by the end of the 21st century, above the upper limit
presented by the latest IPCC report (AR5) [79].

The collapse of WAIS is related to the Marine Ice Sheet Instability hypothesis (MISI).
Marine ice sheets are those that rest on bedrock below of sea level. Ice shelves are commonly
attached to these ice sheets. Confined ice shelves5 may hold back ice sheets, ’buttressing’ them.
The ice flows from the grounded part to the ocean, where the ice mass is lost by melting and
iceberg calving. The point where the grounded ice begins to float is called ‘grounding line’.
Figure 1.5(a) shows a typical marine ice sheet and the grounding line position. The grounding
line may migrate according to the local balance between the weight of ice and displaced ocean
water and this balance depends on the ablation and accumulation rate along the marine ice sheet.

The MISI hypothesis states that the grounding line does not stabilize on a bedrock with
inland-deepening slope, as represented in Figure 1.5. The most recent ice sheet theory says that
the ice flux at the grounding line, Figure 1.5(b), is a positive function of the ice thickness at the
grounding line. In marine ice sheets resting on a bedrock that deepens towards the ice-sheet
interior, the ice flux increases as the grounding line retreats inland, Figure 1.5(c), which in its
turn, induces further the grounding line retraction, Figure 1.5(d). A positive feedback is then
triggered, where a self-sustaining grounding line retreat carries on until a stable region is reached
(a seaward-sloping bedrock). The MISI hypothesis, emerged in the 1970s [156, 96, 148], has
gained attention in recent years with in-situ and satellite observations, analytical studies and
numerical simulations [72, 152, 136, 159, 114, 128, 41, 43].

In particular, the Pine Island Glacier, the glacier with the largest discharge in WAIS, has
undergone rapid changes in recent decades: satellite data has shown an increase in ice velocities
by more than of 40% and a grounding line retraction at a rate of ∼ 1 km/year [104, 128]. The
location and profiles of the ice surface and bedrock elevations of Pine Island Glacier are shown
in Figure 1.4. The panel in Figure 1.6 summarizes the observed changes in the Cryosphere
and sea level equivalent of ice loss from ice sheets (Greenland and Antarctica) and glaciers
worldwide (except those present around the ice sheets).

5Confined means that the ice shelves are surrounded by a bay, excluding the ice front, which reaches the ocean.
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Figure 1.6: Summary of the observed changes in the Cryosphere and estimates of sea level
equivalent of ice loss from Greenland and Antarctica, and from all glaciers (except those present
around the ice sheets). From [151, p.367].
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1.3 Marine ice sheet numerical modeling: challenges

The numerical modeling of ice sheets and glaciers represents a numerical challenge since there
are different physical processes involved: distribution of internal forces, non-linear ice rheology,
mass balance (accumulation, ablation), heat transfer with atmosphere and bedrock, basal friction,
contact with the ocean, grounding line dynamics, etc. In particular, the grounding line represents
a discontinuity in the basal friction6, and the accuracy of its position depends on high mesh or
grid resolutions [153, 39, 119].

Meshes or grids with high resolution represent higher computational cost, mainly in un-
certainty analyses and sensitivity studies. The generation of meshes or grids with different
resolutions may overcome the computational cost: high resolution is employed only in the
vicinity of the grounding line. Nevertheless, in transient simulations, the grounding line is free
to move and, therefore, the mesh may not be more suitable. The adaptive refinement technique
is more appropriate in this case [33, 15]: the mesh is dynamically refined in order to follow
the grounding line movement. Basically, there are two types of adaptive mesh refinement: r-
adaptivity and h-adaptivity [112]. The r-adaptivity, also known as moving mesh method, moves
progressively a fixed number of vertices in a given direction or region [6, p.533], while the h-
adaptivity method splits edges and/or elements, inserting new vertices into the mesh where high
resolution is required [33, 15]. A number of works applying these techniques show promising
results: reduction of the error in the grounding line position with reduced computational cost in
comparison to uniformly refined meshes [153, 57, 54, 27, 81, 53].

Nowadays there are several ice sheet models dedicated to continental scale simulations (e.g.,
participants of the ice sheet model intercomparison project [119, 118]) but, unfortunately, the
adaptive mesh refinement is not widely applied by these models. For example, the Ice Sheet
System Model (ISSM, [88]), developed by the Jet Propulsion Laboratory (JPL/NASA) and
University of California at Irvine (UCI), is a parallel finite element-based model dedicated to
large-scale simulations. The main goal of the ISSM’s team is to model the evolution of Greenland
and Antarctic ice sheets. Several techniques are employed in ISSM: parallelism based on the
Message Passing Interface (MPI), generation of anisotropic meshes, data assimilation, inverse
methods, tools for sensitivity analysis, etc [88, 103]. We highlight that the ISSM mesher only
produces static adapted meshes and, therefore, an effort is necessary to tune it to dynamic mesh
refinement.

Since each ice sheet model employs a specific numerical method to solve the ice flux
equations, some benchmarks have been suggested by the community with the purpose of com-
paring the models’ behavior and understanding the marine ice sheet dynamics, like WAIS
(e.g., [119, 118, 7]. These benchmarks reproduce the main aspects of the bedrock topography
and climate forcings of real marine ice sheets in idealized model setups. The most recent project
is the Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP) [7]. The novelty of
MISOMIP is the comparison of coupled ice sheet and ocean models. This effort is motivated by
recent observations of relative warmer ocean circulation below WAIS ice shelves [78, 40, 86].

6The friction at the base of the ice shelf is negligible. See Section 2.6
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1.4 Brazilian Antarctic research

In terms of Brazilian Antarctic research, the ‘INCT da Criosfera’7, led by professor Jefferson
Cardia Simões, integrates seven (7) national laboratories dedicated to variability analyses of
different cryospheric components8 and their responses to climate changes [144, 145, 126, 35].
Studies include King George Island, where is located the Brazilian station Commander Ferraz9,
Antarctic Peninsula, part of the Antarctic ice sheet 10, as well as the Southern Ocean. A demand
of the group is the numerical modeling of glaciers and ice sheets. The last work in this sense
was carried out in 2004 [14].

1.5 Goal and contribution of this work

The reduction of numerical errors in marine ice sheet modeling increases the results’ accuracy
reliability. The goal of this work is to improve the numerical accuracy of marine ice sheet
simulations by better capturing grounding line dynamics, while maintaining a low computational
cost. To achieve this goal, we implement the adaptive mesh refinement technique and different
refinement criteria in the Ice Sheet System Model. We analyze adaptive mesh simulations with
uniformly refined meshes using two different benchmarks.

The contributions of this work are summarized below:

• Implementation of an adaptive mesh refinement technique in the Ice Sheet System Model;

• Participation in the Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP);

• Performance analysis of the adaptive mesh refinement implementation.

The publications and presentations related to this work are summarized below:

• dos Santos, T. D., Morlighem, M., Seroussi, H., Devloo, P. R. B., and Simões, J. C.: Im-
plementation and performance of adaptive mesh refinement in the Ice Sheet System Model
(ISSM v4.14), Geosci. Model Dev., v. 12, p. 215-232, https://doi.org/10.5194/gmd-12-
215-2019, 2019.

• Santos, T. D., Devloo, P. R. B., Simões, J. C., Morlighem, M. and Seroussi, H. h-
Adaptivity Applied to Ice Sheet Simulation. In: CNMAC 2018 XXXVIII Congresso
Nacional de Matemática Aplicada e Computacional, Campinas, SP, Proceeding Se-
ries of the Brazilian Society of Computational and Applied Mathematics v. 6 n. 2,
https://doi.org/10.5540/03.2018.006.02.0280, 2018.

• Santos, T. D., Devloo, P. R. B., Simões, J. C., Morlighem, M. and Seroussi, H. Adaptive
Mesh Refinement Applied to Grounding Line and Ice Front Dynamics. In: European
Geosciences Union General Assembly 2018, Viena. Geophysical Research Abstracts,
2018, v. 20., EGU2018-1886.

7Instituto Nacional de Ciência e Tecnologia da Criosfera, http://www.ufrgs.br/inctcriosfera/index.html.
8Antarctic sea ice, glaciers and Antarctic ice sheet, Andean glaciers, and permafrost.
9The operation of the station started in 1984, and in 2012 it was destroyed by a fire. Temporary station modules

were installed until the end of the reconstruction, planned for 2018.
10Where is installed the Brazilian remote station Criosfera I, https://www.criosfera1.com.
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• Santos, T. D., Morlighem, M., Seroussi, H., Larour, E., Simões, J. C., Devloo, P. R.
B. h-Adaptivity Applied to Ice Sheet Simulation. In: Numerical Challenges in PDE II,
Campinas, 2016

• Seroussi, H., Nakayama, Y., Menemenlis, D., Larour, E., Santos, T. D., Morlighem, M.,
Cornford, S., Feldmann, J. Marine Ice-sheet and Ocean Model Intercomparison Projects
ISSM-MITgcm results. In: Rising Coastal Seas On A Warming Earth II Workshop, New
York University Abu Dhabi, United Arab Emirates, 2016.

1.6 Thesis structure

This thesis is organized as follows: in Chapter 2 we outline fundamental physical aspects of ma-
rine ice sheet dynamics such as the non-linear behavior of glacial ice, stress balance, grounding
line dynamics, etc. In Chapter 3 we summarize the main features of ISSM’s architecture and
the strategies used to implement an efficient adaptive mesh refinement technique for transient
simulations. In Chapter 4 we describe both MIMISP3d and MISMIP+ (a branch of MISOMIP)
experiments and the results in terms of grounding line position and processing time. Discussions
of our results are also shown in Chapter 4. We finish this thesis with conclusions and future
work descriptions in Chapter 5.
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Chapter 2

Marine ice sheet dynamics

2.1 Introduction

The dynamics of a glacier is dictated by internal viscous deformation (creep deformation) and
basal slip. The driving force is the gravitational force such that the ice flows from a higher point
to a lower one, following the gradient of the ice surface. On ice shelves, the floating portions
of glaciers or ice sheets, the glacial ice flows continually towards to the open ocean/water, also
driven by the gravitational force. The elastic deformation is negligible in time scales greater than
days [61, p.60]. The ice flow is modeled by the Stokes equations and the glacial ice is considered
incompressible [28, p.12]. The constitutive law relates the strain rate and stress tensors from a
non-linear viscosity-type defined by the Glen’s law [56]. The evolution of the glacier/ice sheet
geometry is computed through a transport-type equation.

The typical spatial scales of glaciers and ice sheets allow some simplifications in the Stokes
equations, reducing drastically the computational effort mainly in continental-scale simulations.
These simplified models are known as ‘approximations’ and are widely used in centennial to
millennial ice sheet and paleoclimatic reconstruction, sensitivity analysis and future sea level
rise projections under climate scenarios [75, 130, 122, 129, 116].

The following sections present the typical scales of ice sheets and the equations commonly
used in ice sheet modeling. The equations are derived from conservation laws considering the
mechanics of continuous medium. A special emphasis is given to the set of equations used in
marine ice sheet simulation, the purpose of this work.

2.2 Typical scale values

Figure 1.1 in Chapter 1 outlines the general components of the Cryosphere, as well as the
spatial and temporal scales of each one. Table 2.1 brings together some typical values found in
ice sheets and ice shelves. Table 2.2 presents typical values for some dimensionless numbers
obtained with the values of Table 2.1. These dimensionless numbers are used in the following
sections.
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Table 2.1: Typical spatial and temporal scales of ice sheets[61, p.63] and ice shelves [61, p.111].

Parameter Symbol [unit] Ice sheets Ice shelves

ice density ρ0 [kg/m3] 910 910
ice viscosity* µ0 [Pas] 1015 1015

gravitational acceleration g0 [m/s2] 9.81 9.81
angular velocity of the Earth Ω0 [rad/s] 7.2921 × 10−5 7.2921 × 10−5

horizontal extent L0 [km] 1000 500
vertical extent H0 [km] 1 0.5
horizontal velocity U0 [m/yr] 100 1000
vertical velocity W0 [m/yr] 0.1 1
pressure P0 = ρ0g0H0 [MPa] ≈ 10 ≈ 5
time-scale T0 = L0/U0 = H0/W0 [yr] 10000 500

*At T = −20◦C and with σe = 50 kPa [61, p.54].

Table 2.2: Dimensionless numbers obtained with the typical scales of ice sheets and ice shelves.

Dimensionless number Symbol Ice sheets Ice shelves

Strouhal St = L0U−1
0 T−1

0 1 1
Reynolds Re = ρ0U0L0µ

−1
0 ≈ 10−12 ≈ 10−11

Froude Fr = U0g
−1/2
0 L

−1/2
0 ≈ 10−9 ≈ 10−8

Rossby Ro = U0L−1
0 (2Ω0)−1 ≈ 10−8 ≈ 10−7

Table 2.2 allows us to write the aspect ratio between the vertical and horizontal extents, as
well as the respective vertical and horizontal velocities:

ǫ =
H0

L0
=

W0

U0
= 10−3. (2.1)

Aspect ratio 2.1 is the ‘core number’ in glacier/ice sheet dynamics theory. As shown in the
following sections, this number also appears in the ratio between internal forces of an ice sheet,
which reduces the three-dimensional flow description to simpler formulations.

The aspect ratio ǫ for glaciers differs from that found in ice sheets, assuming a higher
value1. Therefore, some simplifications applied to ice sheets could generate inaccurate values
in numerical simulation of glaciers, where a more complex flow could be present.

1Typically some orders higher than the aspect ratio 2.1; even so, as an upper bound, the value ǫ ≤ tan 30◦ is
virtually fulfilled by all glaciers on the Earth [28, p.296][61, p.152].



23

2.3 Linear momentum equations

Figure 2.1 presents an idealized marine ice sheet geometry and the coordinate system used
throughout this thesis.

sea level

ice surface s(x,y)

ice base b(x,y)

bedrock r(x,y)

ice thickness H(x,y)

grounding line

ice front

X

Z

Figure 2.1: Schematic overview of an ice sheet with the coordinate system used in this work.

The glacial ice is considered incompressible [28, p.12]. Then, the equations that represents
the conservation of linear momentum are written as:

ρ
∂u

∂t
+ ρ (u · ∇)u − divσ = f, (2.2)

with the incompressibility condition:

div u = 0, (2.3)

where u (=
[
ux uy uz

]
⊺

) is the ice velocity, ρ is the ice density and f are body forces. Body forces
acting on a mass of ice on the Earth’s surface are the gravitational and Coriolis forces, this last
due to the Earth’s rotation. Considering these two body forces, Eqs. 2.2 are rewritten as:

ρ
∂u

∂t
+ ρ (u · ∇)u − divσ = ρg − 2ρΩ × u, (2.4)

where Ω is the angular velocity vector.
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2.4 Stokes equations

Each variable in the linear momentum equations (Eqs. 2.4) can be rewritten as x = x∗X0, where
x∗ = O(1) and X0 has a typical value of the variable x. Then, Eqs. 2.4 are rewritten as:

(
ρ0U0

T0

)
ρ∗
∂u∗

∂t∗
+

(
ρ0U2

0

L0

)
ρ∗ (u∗ · ∇)u∗ −

(
σ0

L0

)
divσ∗

= (ρ0g0) ρ∗g∗ − (ρ0Ω0U0) 2ρ∗Ω∗ × u∗.

(2.5)

Multiplying both sides of Eqs. 2.5 by L0/
(
ρ0U2

0

)
, we have:

(
L0

U0T0

)
ρ∗
∂u∗

∂t∗
+ ρ∗ (u∗ · ∇)u∗ −

(
σ0

L0U2
0

)
divσ∗

=

(
g0L0

U2
0

)
ρ∗g∗ −

(
L02Ω0

U0

)
ρ∗Ω∗ × u∗. (2.6)

We can crudely define the typical value for the stress as σ0 = µ0U0L−1
0 . Then, using the

dimensionless numbers (Table 2.2) and dividing Eqs. 2.6 by ρ∗, we obtain:

St
∂u∗

∂t∗
+ (u∗ · ∇)u∗ − 1

Re ρ∗
divσ∗

=

1

Fr2
g∗ − 1

Ro
Ω

∗ × u∗, (2.7)

such that St, Re, Fr and Ro are the Strouhal, Reynolds, Froude and Rossby numbers, respectively.
Using the typical values shown in Table 2.2, we can write the following relation:

1

Fr2
>

1

Re
>

1

Ro
≫ St. (2.8)

Since St = O(1), both the acceleration and inertia terms have small ‘contributions’ in
comparison to the remaining terms in Eqs. 2.7. Moreover, the Coriolis force is at least nine
orders of magnitude smaller than the gravitational force. Neglecting these terms yields:

divσ + ρg = 0. (2.9)

Eqs. 2.9 represent a quasi-static flow, known as Stokes or creeping flow, where the only
driving force is the gravitational force.

2.5 Constitutive law

The stress tensor σ (Cauchy) can be expressed as:

σ = −pI + τ, (2.10)

where p is the mechanical pressure, I is the identity matrix and τ is the deviatoric stress tensor.
Using Eq. 2.10, Eqs. 2.9 are rewritten as:

div τ − ∇p + ρg = 0 (2.11)

Since the glacial ice is considered isotropic and incompressible, the resulting constitutive
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equations are:
τ = 2µ Ûε, (2.12)

where µ = µ (T, p, Ûε) is the dynamic (shear) viscosity of the ice, which depends on the temper-
ature T , pressure p, and strain rate tensor Ûε. The strain rate tensor Ûε is defined as:

Ûε = 1

2
(∇u + ∇u⊺) . (2.13)

Then, using Eqs. 2.12 and 2.13, the resulting linear momentum equations are:

div [µ (∇u + ∇u⊺)] − ∇p + ρg = 0. (2.14)

A constitutive law widely used is the Glen’s law, based on the experiments of J. W. Glen in
1955 [56]. Using uniaxial compressive experiments under several values of compressive stress
and temperature, Glen obtained the following relation:

Ûεc = Aσn
c , (2.15)

where the subscript c indicates the uniaxial compressive strain rate and stress, A is a parameter
that depends on the temperature and n is a constant, known as the flow law exponent, or the
Glen’s exponent. Glen found n ≈ 3 [56], and although it is a topic of discussion, several studies
have found similar value. Thus, n = 3 is the value most frequently used in the literature [73,
p.15], [28, p.55].

Relation 2.15 obtained by Glen was generalized by J. F. Nye in 1957 for multiaxial stress
states [110]. Assuming the glacial ice as a continuous isotropic medium, Nye postulated the
following relation:

Ûεe = f (τe), (2.16)

where Ûεe and τe was named by Nye as ‘effective strain rate’ and ‘effective shear stress’, respec-
tively. Nye defined both of them in terms of the second invariant of the respective tensors:

Ûεe =

√
I I Ûε =

√
1

2
tr ( Ûε Ûε⊺) =

√
1

2

∑
i

∑
j

Ûε2
i j
=

1√
2
‖ Ûε ‖F, (2.17)

τe =
√

I Iτ =

√
1

2
tr (ττ⊺) =

√
1

2

∑
i

∑
j

τ2
i j
=

1√
2
‖ τ ‖F, (2.18)

where ‖ · ‖F is the Frobenius norm [59, p.55]. It is important to note that using the second
invariant of the tensors returns τe = |τxz | and Ûεe = | Ûεxz | for the simple shear condition (which is
consistent with the ice viscosity expression as we show below).

Using a general form for relation 2.12, i.e.:

Ûε = λτ, (2.19)

Nye obtained the same relation for the effective strain rate and effective shear stress (in fact this
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is easily verifiable since tr ( Ûε Ûε⊺) = λ2tr (ττ⊺)):

Ûεe = λτe. (2.20)

Then, Nye extended the Glen’s relation 2.15 as:

f (τe) =
(τe

B

)n

, (2.21)

which from Eq. 2.16 yields:

Ûεe =

(τe
B

)n

. (2.22)

Using relation 2.20 and Nye’s extension 2.22 yields:

λ =
τn−1

e

Bn
, (2.23)

which is the original relation written by Nye [110]. For numerical purposes, we define λ as a
function of the effective strain rate. Then, from relation 2.22, we have:

τe = B Ûε1/n
e , (2.24)

which through relation 2.20 yields:

λ =
Ûε1−1/n
e

B
. (2.25)

We can finally write an expression for the ice viscosity µ. Using the general form of the
constitutive law, Eq. 2.20, relation 2.25 for λ, and constitutive law 2.12, we have:

µ =
1

2λ
, (2.26)

which yields:

µ =
Bn

2τn−1
e

=

B

2 Ûε1−1/n
e

=

1

2A1/n Ûε1−1/n
e

, (2.27)

with B = A−1/n (or A = B−n). The flow parameter A (the same from the original Glen’s
relation 2.15) is known as the ‘rate factor’, and B as the ‘associated rate factor’. Glen used an
Arrhenius law-type to express A as:

A = A0 exp

(
− Q

RT ′

)
, (2.28)

where A0 is a pre-exponential constant, Q is the activation energy, R is the universal gas
constant, and T ′ is the temperature relative to the pressure melting point. Glen used T ′ as the
absolute temperature in his original paper [56]; here, we consider a linear temperature-pressure
dependency as shown in [61, p.54]:

T ′
= T + β p, (2.29)

where T is the absolute temperature, p is the mechanical pressure, and β is the Clausius-
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Clapeyron constant. Some recommended values for the Arrhenius law (Eq. 2.28) are listed in
Table 2.3.

Recommended values for the flow parameter (A) as a function of the temperature (Cuffey
and Paterson, 2010 [28]) are listed in Table 2.4. Values obtained with Arrhenius law 2.28 and
Table 2.3 are also listed in Table 2.4. Figure 2.2 shows the ice viscosity as a function of the
effective stress (τe). The viscosity values are calculated using Eq. 2.27 with the effective strain
rate ( Ûεe) given by Eq. 2.22. The strain rate behavior for different values of the Glen’s exponent
is illustrated in Figure 2.3. The curves are obtained using Ûε = Aτn. For the linear case (n = 1),
we apply an ice viscosity ∼ 1014 Pa s [28, p.62].

Table 2.3: Typical parameter values for the Arrhenius law, Eq. 2.28 [61].

Parameter Value Obs.

R (universal gas constant) 8.314 Jmol−1K−1

β (Clausius-Clapeyron constant) 7.42 × 10−8 K Pa−1 pure ice
9.8 × 10−8 K Pa−1 air-saturated ice

Q (activation energy) 60 k Jmol−1 for T ′ ≤ 263.15K

139 k Jmol−1 for T ′ > 263.15K

A0 (pre-exponential constant)* 3.985 × 10−13 Pa−3s−1 for T ′ ≤ 263.15K

1.916 × 103 Pa−3s−1 for T ′ > 263.15K

*These values hold for n = 3 [61, p.54].

Table 2.4: Recommended values for the flow parameter A from Cuffey and Paterson (2010) [28,
p.75], and values calculated using Arrhenius law 2.28 with values of Table 2.3.

Temperature* [◦C] A** [Pa−3s−1]
Cuffey & Paterson [28, p.75] Arrhenius law 2.28

0 2.4 × 10−24 5.0 × 10−24

-2 1.7 × 10−24 3.2 × 10−24

-5 9.3 × 10−25 1.6 × 10−24

-10 3.5 × 10−25 4.9 × 10−25

-15 2.1 × 10−25 2.9 × 10−25

-20 1.2 × 10−25 1.7 × 10−25

-25 6.8 × 10−26 9.3 × 10−26

-30 3.7 × 10−26 5.1 × 10−26

-30 2.0 × 10−26 2.7 × 10−26

-40 1.0 × 10−26 1.4 × 10−26

-45 5.2 × 10−27 7.3 × 10−27

-50 2.6 × 10−27 3.6 × 10−27

*Relative to the pressure melting point.

**These values hold for n = 3.
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Figure 2.2: Ice viscosity as a function of the effective stress (τe) and temperature. The values
correspond to Arrhenius law 2.28 (solid lines) and values from Cuffey and Paterson (2010)
(dashed lines). See Table 2.4.
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Figure 2.3: Strain rate as a function of the shear stress ( Ûε = Aτn) for different values of exponent
n. For the linear case, the ice viscosity used is ∼ 1014 Pa s [28, p.62]. The plastic curve refers
to the case when n → ∞; in this case, the plastic yield stress used is 100 kPa.
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2.6 Shelf-Stream Approximation

The aspect ratio of marine ice sheets allows some simplifications in the Stokes equations
(Eqs. 2.9). In fact, the behavior of any fluid on the Earth’s surface is to spread under the
gravitational force, increasing its surface area and reducing, consequently, its thickness, in a
diffusion-type movement. This is the basic behavior of glaciers and ice sheets (see Section 2.2
and Eq. 2.1). In marine ice sheets, both grounded and floating part are under the same driving
force, the gravitational force, but under different equilibrium forces. While the grounded part
slips on the bedrock, which imposes a basal force contrary to the ice flow, the attached ice shelf
is under a negligible base-sea friction, but in a membrane-type stress balance.

In this section we derive the ‘Shelf-Stream’ or ‘Shallow-Shelf’ Approximation (SSA) to
describe the marine ice sheet stress balance. L. W. Morland, in 1987 [100], derived the SSA
equations for unconfined ice shelves. D. R. MacAyeal, in 1989 [94], derived the same formulation
for both ice stream, the grounded part with basal friction, and ice shelf. There are different
approaches to derive these equations in the literature (e.g., [105, 135, 61, 101]). Here, we follow
[61, p.117] and [101, p.47].

The following assumptions are employed in the SSA formulation:

∂σxz

∂x
≪ ∂σzz

∂z
,

∂σyz

∂y
≪ ∂σzz

∂z
,

(2.30)

∂ux

∂z
≈ 0,

∂uy

∂z
≈ 0,

(2.31)

Ûεxz ≈ 0,

Ûεyz ≈ 0,
(2.32)

∂b

∂x
≈ 0,

∂b

∂y
≈ 0.

(2.33)

where b is the ice base (see Figure 2.1). To apply these assumptions, it is useful to rewrite the
Stokes equations (Eqs. 2.9) for each Cartesian component. Considering the balance of angular
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momentum, we have σ = σ
⊺, and then:

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
= 0,

∂σxy

∂x
+

∂σyy

∂y
+

∂σyz

∂z
= 0,

∂σxz

∂x
+

∂σyz

∂z
+

∂σzz

∂z
= ρg,

(2.34)

or, from Eqs. 2.14:

∂

∂x

(
2µ
∂ux

∂x

)
+

∂

∂y

(
µ
∂ux

∂y
+ µ
∂uy

∂x

)
+

∂

∂z

(
µ
∂ux

∂z
+ µ
∂uz

∂x

)
− ∂p

∂x
= 0,

∂

∂x

(
µ
∂ux

∂y
+ µ
∂uy

∂x

)
+

∂

∂y

(
2µ
∂uy

∂y

)
+

∂

∂z

(
µ
∂uy

∂z
+ µ
∂uz

∂y

)
− ∂p

∂y
= 0,

∂

∂x

(
µ
∂ux

∂z
+ µ
∂uz

∂x

)
+

∂

∂y

(
µ
∂uy

∂z
+ µ
∂uz

∂y

)
+

∂

∂z

(
2µ
∂uz

∂z

)
− ∂p

∂z
= ρg,

(2.35)

with the incompressibility equation (Eq. 2.3):

∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
= 0. (2.36)

The first assumption (2.30) leads to a hydrostatic approximation of the vertical normal stress,
σzz. In fact, the shear stresses σxz and σyz are, in general, ≤ 100 kPa for the entire ice sheet [61,
p.73], which are small in comparison to the pressure p magnitude (P0 ≈ 10 Mpa, see Table 2.1).
Therefore, assuming σzz |H≈ ρgH is a reasonable approximation. Then, neglecting the shear
stresses in Eq. 2.34(c) yields:

∂σzz

∂z
=

∂

∂z

(
2µ
∂uz

∂z
− p

)
= ρg. (2.37)

Integrating Eq. 2.37 for z ∈ [z, s], we have:

σzz |s −σzz |z=
(
2µ
∂uz

∂z
− p

)
s

−
(
2µ
∂uz

∂z
− p

)
z

= ρg (s − z) . (2.38)

At the ice surface, the normal stress is assumed to be neglected, i.e., σzz |s= 0. Then, we
can write an expression for pressure p at any z:

p = 2µ
∂uz

∂z
+ ρg (s − z) . (2.39)
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Now, we can use the continuity equation (Eq. 2.36) to rewrite the pressure equation 2.39 as:

p = −2µ

(
∂ux

∂x
+

∂uy

∂y

)
+ ρg (s − z) , (2.40)

which can be inserted in Eqs. 2.35(a, b):

∂

∂x

(
4µ
∂ux

∂x
+ 2µ

∂uy

∂y

)
+

∂

∂y

(
µ
∂ux

∂y
+ µ
∂uy

∂x

)
+

∂

∂z

(
µ
∂ux

∂z
+ µ
∂uz

∂x

)
= ρg

∂s

∂x
,

∂

∂x

(
µ
∂ux

∂y
+ µ
∂uy

∂x

)
+

∂

∂y

(
4µ
∂uy

∂y
+ 2µ

∂ux

∂x

)
+

∂

∂z

(
µ
∂uy

∂z
+ µ
∂uz

∂y

)
= ρg

∂s

∂y
.

(2.41)

Equations 2.41 are known as the ‘hydrostatic approximation’ [61, p.72]. Assumption 2.30
decouples the pressure from the velocity field equations (Stokes equations), which makes the
numerical solution simpler. From Table 2.1 and Eq. 2.1, we can write:

∂uz

∂x
/∂ux

∂z
,
∂uz

∂y
/∂uy

∂z
∼ [W0]

[L0]
/ [U0]
[H0]

=

[W0] [H0]
[U0] [L0]

= ǫ2 ∼ 10−6. (2.42)

Then, neglecting ∂uz/∂x and ∂uz/∂y in Eqs. 2.41, we have:

∂

∂x

(
4µ
∂ux

∂x
+ 2µ

∂uy

∂y

)
+

∂

∂y

(
µ
∂ux

∂y
+ µ
∂uy

∂x

)
+

∂

∂z

(
µ
∂ux

∂z

)
= ρg

∂s

∂x
,

∂

∂x

(
µ
∂ux

∂y
+ µ
∂uy

∂x

)
+

∂

∂y

(
4µ
∂uy

∂y
+ 2µ

∂ux

∂x

)
+

∂

∂z

(
µ
∂uy

∂z

)
= ρg

∂s

∂y
.

(2.43)

In the literature, Eqs. 2.43 are called as the Blatter & Pattyn (BP) or Higher-Order (HO)
Approximation (or yet First-Order, FO, Approximation [61, p.75]). H. Blatter developed this
formulation in 1995 [18] based on a bidimensional version of H. C. Muller (1991). In a different
approach, F. Pattyn, in 2003, developed the same formulation, but solving them in terms of the
velocity field gradient [115], unlike Blatter that solved the equations in terms of the stress field.

Assumptions 2.31 and 2.32 indicate that the vertical changes of the horizontal velocities are
negligible, i.e., the ice motion is mainly dictated by basal sliding, being insignificant the shear
deformation in the ice body. Then, under assumptions 2.31 and 2.32, Eqs. 2.43 are written as:

∂

∂x

(
4µ
∂ux

∂x
+ 2µ

∂uy

∂y

)
+

∂

∂y

(
µ
∂ux

∂y
+ µ
∂uy

∂x

)
= ρg

∂s

∂x
,

∂

∂x

(
µ
∂ux

∂y
+ µ
∂uy

∂x

)
+

∂

∂y

(
4µ
∂uy

∂y
+ 2µ

∂ux

∂x

)
= ρg

∂s

∂y
.

(2.44)

Since it is assumed that ux and uy are z-independent, we can integrate Eqs. 2.44 in the
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vertical coordinate z ∈ [b, s]:

∂

∂x

∫ s

b

(
4µ
∂ux

∂x
+ 2µ

∂uy

∂y

)
dz +

∂

∂y

∫ s

b

(
µ
∂ux

∂y
+ µ
∂uy

∂x

)
dz

+

(
4µ
∂ux

∂x
+ 2µ

∂uy

∂y

)
b

∂b

∂x
−

(
4µ
∂ux

∂x
+ 2µ

∂uy

∂y

)
s

∂s

∂x

+

(
µ
∂ux

∂y
+ µ
∂uy

∂x

)
b

∂b

∂y
−

(
µ
∂ux

∂y
+ µ
∂uy

∂x

)
s

∂s

∂y
= ρgH

∂s

∂x
,

∂

∂x

∫ s

b

(
µ
∂ux

∂y
+ µ
∂uy

∂x

)
dz +

∂

∂y

∫ s

b

(
4µ
∂uy

∂y
+ 2µ

∂vx

∂x

)
dz

+

(
µ
∂ux

∂y
+ µ
∂uy

∂x

)
b

∂b

∂x
−

(
µ
∂ux

∂y
+ µ
∂uy

∂x

)
s

∂s

∂x

+

(
4µ
∂uy

∂y
+ 2µ

∂ux

∂x

)
b

∂b

∂y
−

(
4µ
∂uy

∂y
+ 2µ

∂ux

∂x

)
s

∂s

∂y
= ρgH

∂s

∂y
.

(2.45)

Note that H =
∫ s

b
dz. The Leibniz’s rule is used in the integration since s = s(x, y) and

b = b(x, y). Using the horizontal components of the stress field, Eqs. 2.45 are written as:

∂

∂x

∫ s

b

(
4µ
∂ux

∂x
+ 2µ

∂uy

∂y

)
dz +

∂

∂y

∫ s

b

(
µ
∂ux

∂y
+ µ
∂uy

∂x

)
dz

+

(
2τxx + τyy

)
b

∂b

∂x
−

(
2τxx + τyy

)
s

∂s

∂x

+τxy |b
∂b

∂y
− τxy |s

∂s

∂y
= ρgH

∂s

∂x
,

∂

∂x

∫ s

b

(
µ
∂ux

∂y
+ µ
∂uy

∂x

)
dz +

∂

∂y

∫ s

b

(
4µ
∂uy

∂y
+ 2µ

∂ux

∂x

)
dz

+τxy |b
∂b

∂x
− τxy |s

∂s

∂x

+

(
τxx + 2τyy

)
b

∂b

∂y
−

(
τxx + 2τyy

)
s

∂s

∂y
= ρgH

∂s

∂y
.

(2.46)
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It is assumed that the stress at the ice surface is negligible, i.e., σ |s ns ≈ 0. Then, with:

ns =
1

Ns



− ∂s

∂x

− ∂s

∂y

1


, Ns =

[
1 +

(
∂s

∂x

)2

+

(
∂s

∂y

)2
]1/2

, (2.47)

we have:

σ |s ns =
1

Ns



−τxx

∂s

∂x
− τxy

∂s

∂y
+ τxz + p

∂s

∂x

−τxy
∂s

∂x
− τyy

∂s

∂y
+ τyz + p

∂s

∂y

−τxz

∂s

∂x
− τyz

∂s

∂y
+ τzz − p

 s

≈

0

0

0


. (2.48)

The pressure equation (Eq. 2.40) in terms of the normal deviatoric stresses is written as:

p = −τxx − τyy + ρg (s − z) , (2.49)

then, from Eq. 2.48, assuming τxz and τyz as negligible (assumption 2.32) and considering the
incompressibility condition (τxx + τyy + τzz = 0), we have:

−
(
2τxx + τyy

)
s

∂s

∂x
− τxy |s

∂s

∂y
≈ 0,

−τxy |s
∂s

∂x
−

(
τxx + 2τyy

)
s

∂s

∂y
≈ 0.

(2.50)

Then, neglecting the terms of Eq. 2.50 in Eqs. 2.46, we have:

∂

∂x

∫ s

b

(
4µ
∂ux

∂x
+ 2µ

∂uy

∂y

)
dz +

∂

∂y

∫ s

b

(
µ
∂ux

∂y
+ µ
∂uy

∂x

)
dz

+

(
2τxx + τyy

)
b

∂b

∂x
+ τxy |b

∂b

∂y
= ρgH

∂s

∂x
,

∂

∂x

∫ s

b

(
µ
∂ux

∂y
+ µ
∂uy

∂x

)
dz +

∂

∂y

∫ s

b

(
4µ
∂uy

∂y
+ 2µ

∂ux

∂x

)
dz

+τxy |b
∂b

∂x
+

(
τxx + 2τyy

)
b

∂b

∂y
= ρgH

∂s

∂y
.

(2.51)

Now, we come back to the boundary condition at the ice base. We consider a general basal
friction τb (defined as a vector pointed in the opposite direction to the ice flow) such that:

τb = σ |b nb − [(σ |b nb) · nb]nb , (2.52)
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where:

nb =
1

Nb



∂b

∂x
∂b

∂y

−1


, Nb =

[
1 +

(
∂b

∂x

)2

+

(
∂b

∂y

)2
]1/2

, (2.53)

σ |b nb =
1

Nb



τxx

∂b

∂x
+ τxy

∂b

∂y
− τxz − p

∂b

∂x

τxy
∂b

∂x
+ τyy

∂b

∂y
− τyz − p

∂b

∂y

τxz

∂b

∂x
+ τyz

∂b

∂y
− τzz + p

b

, (2.54)

(σ |b nb) · nb =
1

N2
b

(
τxx

∂b

∂x
+ τxy

∂b

∂y
− τxz − p

∂b

∂x

)
b

∂b

∂x

+

1

N2
b

(
τxy
∂b

∂x
+ τyy

∂b

∂y
− τyz − p

∂b

∂y

)
b

∂b

∂y
− 1

N2
b

(
τxz

∂b

∂x
+ τyz

∂b

∂y
− τzz + p

)
b

.

(2.55)

Then, neglecting the quadratic terms in ∂b/∂x and ∂b/∂y (assumption 2.33, note that
Nb ≈ 1), and using the pressure expression 2.49, we have:

σ |b nb =



τxx |b
∂b

∂x
+ τxy |b

∂b

∂y
−

(
−τxx |b −τyy |b +ρgH

) ∂b

∂x

τxy |b
∂b

∂x
+ τyy |b

∂b

∂y
−

(
−τxx |b −τyy |b +ρgH

) ∂b

∂y

−τzz |b +
(
−τxx |b −τyy |b +ρgH

)


, (2.56)

(σ |b nb) · nb ≈ τzz |b −p |b= −ρgH. (2.57)

Note that the terms τxz and τyz are neglected (assumption 2.32). Then, from Eqs. 2.56
and 2.57, we can define the basal friction (Eq. 2.52) as:

τb =



(
2τxx |b +τyy |b

) ∂b

∂x
+ τxy |b

∂b

∂y
− ρgH

∂b

∂x

τxy |b
∂b

∂x
+

(
τxx |b +2τyy |b

) ∂b

∂y
− ρgH

∂b

∂y

ρgH


+ ρgH



∂b

∂x
∂b

∂y

−1


, (2.58)

or

τb =


τbx

τby

τbz


=



(
2τxx |b +τyy |b

) ∂b

∂x
+ τxy |b

∂b

∂y

τxy |b
∂b

∂x
+

(
τxx |b +2τyy |b

) ∂b

∂y

0


. (2.59)

Therefore, in the SSA formulation, the basal friction has only horizontal components. Then,
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Eqs. 2.51 are written as:

∂

∂x

∫ s

b

(
4µ
∂ux

∂x
+ 2µ

∂uy

∂y

)
dz +

∂

∂y

∫ s

b

(
µ
∂ux

∂y
+ µ
∂uy

∂x

)
dz − τbx = ρgH

∂s

∂x
,

∂

∂x

∫ s

b

(
µ
∂ux

∂y
+ µ
∂uy

∂x

)
dz +

∂

∂y

∫ s

b

(
4µ
∂uy

∂y
+ 2µ

∂ux

∂x

)
dz − τby = ρgH

∂s

∂y
.

(2.60)

The ‘minus’ signs (-) in τbx and τby mean the action is opposite to the ice flow (as considered
in Eq. 2.52). The basal friction τb is neglected in floating parts of the marine ice sheets.
Although a shear stress exists due to the sea water circulation below the ice shelf, it is small in
comparison to the shear stress present on the grounded part [61, 117]. Different formulations
try to model the ‘real’ condition in the ice-bedrock interface. Some models are presented in
Section 2.9. Here, we keep the generic notation (τbx and τby).

Since ux and uy are z-independent, Eqs. 2.60 is integrated in z, which finally yields:

∂

∂x

(
4H µ̄

∂ux

∂x
+ 2H µ̄

∂uy

∂y

)
+

∂

∂y

(
H µ̄
∂ux

∂y
+ H µ̄

∂uy

∂x

)
− τbx = ρgH

∂s

∂x
,

∂

∂x

(
H µ̄
∂ux

∂y
+ H µ̄

∂uy

∂x

)
+

∂

∂y

(
4H µ̄

∂uy

∂y
+ 2H µ̄

∂ux

∂x

)
− τby = ρgH

∂s

∂y
,

(2.61)

where µ̄ = (1/H)
∫ s

b
µdz is the vertically integrated ice viscosity. Eqs. 2.61 are the desired SSA

equations. Using a compact notation, we have:

divxy (2H µ̄ Ûε x) − τbx = fx,

divxy

(
2H µ̄ Ûε y

)
− τby = fy,

(2.62)

with

Ûε x =


2
∂ux

∂x
+

∂uy

∂y

1

2

(
∂ux

∂y
+

∂uy

∂x

)

=

[
2 Ûεxx + Ûεyy

Ûεxy

]
,

Ûε y =



1

2

(
∂ux

∂y
+

∂uy

∂x

)
∂ux

∂x
+ 2
∂uy

∂y


=

[
Ûεyx

Ûεxx + 2 Ûεyy

]
,

(2.63)

and

fx = ρgH
∂s

∂x
,

fy = ρgH
∂s

∂y
.

(2.64)
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Note that divxy (·) indicates that the divergence operator is carried out only on the 2D xy-plane.
The SSA formulation is a set of non-linear elliptic-type equations where a membrane-type stress
balance (vertically integrated horizontal deviatoric stress) is solved.

Dirichlet-type boundary conditions (the velocity field is prescribed) complete the SSA
equations. Neumann-type condition (water-ocean pressure) is applied at the ice-ocean contact
in the calving front, as follows:

2H µ̄ Ûε x · ni f =

(
1

2
ρgH2 − 1

2
ρwgb2

)
ni f x ,

2H µ̄ Ûε y · ni f =

(
1

2
ρgH2 − 1

2
ρwgb2

)
ni f y ,

(2.65)

where ni f is the horizontal normal unit vector (see definition in Section 2.13).
The last variable to be prescribed is the effective strain rate, Ûεe. Then, for SSA formulation,

Eq. 2.17 is simplified to:

Ûεe =

[(
∂ux

∂x

)2

+

(
∂uy

∂y

)2

+

∂ux

∂x

∂uy

∂y
+

1

4

(
∂ux

∂y
+

∂uy

∂x

)2
]1/2

. (2.66)

2.7 Shallow Ice Approximation

The Shallow Ice Approximation (SIA) is widely used in Glaciology, mainly due to its fast velocity
field computation. However, its assumptions are stronger than any other Stokes’ approximations,
which may limit its applicability2. The SIA formulation is assigned to K. Hutter [74] and L.
Morland [99]. Although we do not apply it in this work, its presentation is a didactic way to
show the essential behavior of a glacier motion. The assumptions are based on the aspect ratio
ǫ (Eq. 2.1), and the deduction is found in [61, 101]. The SIA assumptions are:

τxx = τyy = τzz = τxy = 0, (2.67)

∂uz

∂x
≪ ∂ux

∂z
,

∂uz

∂y
≪ ∂uy

∂z
.

(2.68)

In SIA, only horizontal shear stresses are considered, τxz, τyz, and the normal stresses are
equal to the pressure, i.e., σxx = σyy = σzz = −p. These assumptions lead to a hydrostatic
pressure:

∂p

∂z
= −ρg. (2.69)

2In fact, the SIA formulation is only applied to grounded ice. The accuracy of SIA depends on the aspect ratio
ǫ of the glacier/ice sheet. See discussion in [61, p.151].
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and, from Eqs. 2.34(a,b), yields:

∂τxz

∂z
= ρg

∂s

∂x
,

∂τyz

∂z
= ρg

∂s

∂y
.

(2.70)

Integrating Eqs. 2.70, we express the shear stresses along the vertical coordinate3:

τxz (z) = −ρg (s − z) ∂s

∂x
,

τyz (z) = −ρg (s − z) ∂s

∂y
.

(2.71)

The horizontal components of the velocity field in SIA are4:

ux (z) = ubx − 2 (ρg)n ‖ ∇s ‖n−1 ∂s

∂x

∫ z

b

A (T ′) (s − ζ)n dζ,

uy (z) = uby − 2 (ρg)n ‖ ∇s ‖n−1 ∂s

∂y

∫ z

b

A (T ′) (s − ζ)n dζ,

(2.72)

where the basal velocities ubx and uby can be written as5:

ubx = −C (ρgH)(1−q)/m ‖ ∇s ‖1/m−1 ∂s

∂x
,

uby = −C (ρgH)(1−q)/m ‖ ∇s ‖1/m−1 ∂s

∂y
,

(2.73)

where n is the Glen’s exponent (see Section 2.5), C is a positive coefficient (variable in space),
m and q are positive constants. Therefore, in SIA, the horizontal velocities are only functions
of the local variables, and follow the (opposite) surface gradient. Also, note that the balance of
the driving and resistive forces is local (see Section 2.8).

2.8 Driving stress

The force vector in the SSA formulation (Eqs. 2.64) is called as the ‘driving stress’:

τdx = −ρgH
∂s

∂x
,

τdy = −ρgH
∂s

∂y
,

(2.74)

The driving stress represents the force that drives the ice sheet/glacier movement, and is

3Note that a free condition at the ice surface (i.e., τxz |s= τyz |s= 0) is applied in Eqs. 2.71.
4The complete deduction can be found in [61, p.77].
5Considering a generalized Weertman-type (or Budd-type) model for the basal stress. See Section 2.9.
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proportional to the ice surface gradient. In SIA, Eqs. 2.74 are the shear stresses at the ice
base (see Eqs. 2.71). This reinforces the statement written in Section 2.7: the driving stress is
balanced locally by the basal drag6.

2.9 Basal friction

The choice of basal friction law in ice sheet models impacts not only the grounding line dynamics,
but also future sea level projections [20, 55, 80, 97, 146]. The relation between the basal drag
(τb) and basal velocities (ub) is a theme of constant discussion [146]: in-situ observations are
rare [61, p.157] and there are many processes interacting at the ice/bed interface [25]. A first
model is assigned to J. Weertman, who demonstrated the following relation for ice sliding on a
rigid bedrock [155]:

τb = Cum
b , (2.75)

where C is a friction coefficient and m is a parameter (positive). An extension of Eq. 2.75 was
carried by Budd and colleagues [21]:

τb = Cum
b Nq, (2.76)

where N is the effective pressure at the ice/bed interface and q is another positive parameter.
Relation 2.76, also called as generalized Weertman’s model, is the most common friction law
employed in ice sheet models [146].

The presence of water-filled cavities at the ice/bed interface bounds the maximum value of
the basal drag [77]. The general form, called here as Schoof’s model, is [134, 50, 90]:

τb =
Cum

b
Nq(

1 + ub (C/Cmax N)1/m
)m , (2.77)

where Cmax corresponds to the upper bounded value of the relation τb/N . When N → ∞,
Eq. 2.77 yields τb ∼ Cum

b
, a Weertman-type law. When N → 0, Eq. 2.77 results in τb ∼ Cmax N ,

a Coulomb-type friction. The interpretation of this latter behavior is: at small N , water-filled
cavities open, which decreases the roughness of the rigid bedrock.

Considering two types of friction regime at the base, Weertman and Coulomb, Tsai and
colleagues proposed the following relation [150]:

τb = min
(
Cum

b , f N
)
, (2.78)

where f is a friction coefficient. Both Tsai and Schoof laws produce similar asymptotic
behaviors. Figure 2.4 shows basal drag values as a function of sliding velocity and effective
pressure for the friction laws exposed above.

6The basal drag for SIA is equal to the negative of the basal stress, i.e. =
[
−τxz (b) , −τyz (b)

]
⊺

. See Eqs. 2.71.
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Figure 2.4: Values of the basal drag τb (0.04−0.2 MPa) as a function of the effective pressure N

and sliding velocity ub for the following friction laws: (a) Weertman, Eq. 2.75, (b) Budd, Eq. 2.76,
(c) Schoof, Eq. 2.77 and (d) Tsai, Eq. 2.78. Parameter values used: C = 7.624×106 (SI), Cmax =

f = 0.5, m = 1/3. Thin dotted lines are the basal drag values for the Schoof’s law. Vertical
thick black lines represent N = 1 MPa. Figure from [20]. ©The Authors, 2017, distributed
under a Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

2.10 Scaling arguments of the ice flow

Since inertial forces are negligible in ice sheets and glaciers (see Section 2.4), the balance of
forces acting on these ice masses should result in zero. In other words, ice sheets and glaciers
are in a static equilibrium [28, p.295]. A first approximation is assuming that the driving stress
is balanced by the basal stress. This balance is responsible for shaping glaciers and ice sheets.
We demonstrate this using scaled variables. The driving stress (Eqs. 2.74) can be written as:

τd ∼ ρgH0
H0

L0
, (2.79)

where we approximate the surface gradient by the aspect ratio, i.e., ∇s ∼ H0/L0. Then, assuming
the basal stress τb as the resistive force, we have:

τb ∼ τd . (2.80)

In fact, Eq. 2.80 is a first estimate of the basal stress. Experimental results show that the
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ice deformation rates increase substantially when the effective stress exceeds 100 kPa (1 bar)7.
This is mainly dictated by the non-linear Glen’s law. Also, driving stresses obtained by actual
geometries rarely exceed 100 kPa: more than 3/4 of the glacial areas8 are under driving stresses
below 1 bar [97]. This threshold allows us to assume the basal stress at a constant value τ0, like
a ‘perfectly plastic’ behavior9. Then, from Eqs. 2.79 and 2.80, we can write:

H2
0

L0
∼ const, (2.81)

or

L0 ∼ H2
0, (2.82)

An immediate consequence of Eq. 2.82 is the aspect ratio of ice sheets and glaciers: the
larger they are, the shallower they become. In fact, Eq. 2.82 can be written as:

ǫ ∼ 1

H0
. (2.83)

Another interesting consequence of assuming perfect plasticity is the relation between thick-
ness and surface gradient. If τ0 = 100 kPa, we have τ0/ρg ≈ 11 m. Thus:

∇sH0 ∼ 11 m, (2.84)

what means that the ice thickness can be estimated by measurements of the surface slope.
Relation 2.84 tell us the glacier is thin in the regions with high gradients, and vice versa.

Scaling arguments also allow us to compare driving stress with (ice) deformation stress.
Then, the shear deformation and ice viscosity are written as (see Section 2.5):

τs ∼ µ0
U0

H0
,

µ0 ∼ 1

2A0τ
n−1
s

.

(2.85)

Relation 2.85 estimates the stress τs needed to deform an ice body such that the observed
surface velocities U0 are matched. These simple calculations show that there is a scatter relation
between τs and τd: about 50% of both Greenland and Antarctica areas present τs > τd [97]. This
means that the observed velocities are not explained only by internal shear deformation and,
therefore, a basal sliding component may be present in such area. Sliding also occurs beneath
glaciers and ice caps [97, and references therein]. The fundamental implication of this simple
analysis is that basal sliding is a dominant process in glacial contributions to sea level rise, and
subglacial processes involved in the ice-bed interface should be the major concern in ice sheet
modeling.

7See Figure 2.3 and [28, p.61].
8Including Greenland, Antarctica and Alpine glaciers [97].
9Assuming ice as a perfectly plastic material, τ0 means the yield stress. See Figure 2.3.
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2.11 Transport equation

As we see in Section 2.4, the dynamics of a glacier/ice sheet is a quasi-static movement. It means
that the glacier/ice sheet geometry defines the stress field, and consequently, the velocity field at
any point in the ice body. The velocity field induces a new geometry since both ice surface and
ice base are free boundaries. Additionally, a glacier/ice sheet gains and loses ice mass through
the accumulation and ablation zones, respectively. These called external forces also induce a
change in the ice geometry. Rarely a glacier/ice sheet is in a steady state condition: external
forces follow climate fluctuations and a glacier/ice sheet has its own characteristic response
time10. Therefore, if one wants to understand the evolution of a glacier/ice sheet, it is necessary
to analyze the kinematics of the ice surface and ice base. As we see in Section 2.11.3, for the
SSA formulation, the kinematics of both surface and base are combined to generate a transport
equation of the ice thickness.

2.11.1 Ice surface

The ice surface s (x, y, t) is expressed as an implicit function:

fs (x, y, z, t) = z − s (x, y, t) = 0. (2.86)

At a scenario with no accumulation neither ablation, the material derivative of fs is:

dfs

dt
=

∂ fs

∂t
+ (∇ fs) · us = 0, (2.87)

where us is the surface velocity. From Eq. 2.86, we have:

∂s

∂t
= − ∂s

∂x
ux |s −

∂s

∂y
uy |s + uz |s . (2.88)

Both accumulation and ablation change the rate of s in relation to time t. Then, inserting a
surface mass balance (=accumulation-ablation) in Eq. 2.88 yields:

∂s

∂t
= − ∂s

∂x
ux |s −

∂s

∂y
uy |s + uz |s + Ûms , (2.89)

where Ûms is the surface mass balance (SMB, positive for accumulation).

2.11.2 Ice base

Similar to Section 2.11.1, we define an implicit function to the ice base:

fb (x, y, , z, t) = z − b (x, y, t) = 0. (2.90)

10The characteristic response time is the time for which a glacier takes to adjust its own geometry to a change in
the external forcings (mass balance and/or climate conditions)[124].
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Applying the material derivative in fb and using Eq. 2.90, we have:

∂b

∂t
= −∂b

∂x
ux |b −∂b

∂y
uy |b + uz |b . (2.91)

Now, we insert a base mass balance in Eq. 2.91 to account refreezing and basal melting:

∂b

∂t
= −∂b

∂x
ux |b −∂b

∂y
uy |b + uz |b + Ûmb , (2.92)

where Ûmb is the base mass balance (positive for melting).

2.11.3 Ice thickness

Equations 2.89 and 2.92 are combined to obtain a transport equation of the ice thickness,
H = s − b. Thus, by subtracting Eq. 2.92 from Eq. 2.89, we have:

∂s

∂t
− ∂b

∂t
=

∂H

∂t
= − ∂s

∂x
ux |s +

∂b

∂x
ux |b − ∂s

∂y
uy |s +

∂b

∂y
uy |b + uz |s − uz |b + Ûms − Ûmb. (2.93)

According to the Leibniz’s rule, we have:

∂

∂x

∫ s

b

uxdz =

∫ s

b

∂ux

∂x
dz +

∂s

∂x
ux |s −

∂b

∂x
ux |b . (2.94)

Thus, by applying the same for uy, and being
∫ s

b
(∂uz/∂z) dz = uz |s − uz |b , Eq. 2.93 is

rewritten as:

∂H

∂t
= − ∂
∂x

∫ s

b

uxdz+

∫ s

b

∂ux

∂x
dz− ∂

∂y

∫ s

b

uydz+

∫ s

b

∂uy

∂y
dz+

∫ s

b

∂uz

∂z
dz+ Ûms − Ûmb, (2.95)

which can be simplified through the continuity equation. Then, we have:

∂H

∂t
= − ∂
∂x

∫ s

b

uxdz − ∂
∂y

∫ s

b

uydz + Ûms − Ûmb. (2.96)

Since it is assumed that both ux and uy are z-independent for the SSA formulation, we
can integrate the horizontal velocities in z. Then, we finally have the ice thickness evolution
equation:

∂H

∂t
= −divxyQ + Ûms − Ûmb , (2.97)

where Q = Huxy is the horizontal flux, being uxy =
[
ux uy

]
⊺

the horizontal velocities, which
are functions of x, y and t. Eq. 2.97 is the fundamental evolution equation applied in glacier/ice
sheet modeling.

2.11.4 Diffusion equation

An important consequence of the SIA formulation is a non-linear diffusion equation that arises
from the ice thickness evolution equation. As we see, in SIA, horizontal velocities are functions
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of the surface gradient, and they can be inserted in the ice thickness equation (Eq. 2.97). The
horizontal flux from SIA velocities can be written as:

Qx =

∫ s

b

uxdz = −D
∂s

∂x
,

Qy =

∫ s

b

uydz = −D
∂s

∂y
,

(2.98)

where:

D =

∫ s

b

[
C (ρgH)p−q ‖ ∇s ‖p−1

+ 2 (ρg)n ‖ ∇s ‖n−1
∫ z

b

A (T ′) (s − ζ)n dζ

]
dz. (2.99)

Then, inserting Eq. 2.98 in the ice thickness equation (Eq. 2.97), and writing the ice surface
as s = H − b, we have:

∂H

∂t
= divxy [D∇ (H − b)] + Ûms − Ûmb. (2.100)

Equation 2.100 is a non-linear diffusion equation of the ice thickness [76]. It means that the
more a glacier’s length increases (which makes SIA assumptions valid), the more its motion is
diffusive11.

2.12 Grounding line

Grounding line dynamics is the central motivation of this thesis, in the sense of applying adaptive
mesh refinement. As we show in Section 1.2, the grounding line migration associated with the
Marine Ice Sheet Instability hypothesis may potentially contribute to sea level rise, mainly due
to the (potential) West Antarctic Ice Sheet collapse. Here, we attempt to show the theory of
grounding line dynamics based on the main works of the literature.

As we see in Section 2.6, the ice flow in ice shelves is dictated by a membrane-like stress,
which means that only horizontal stretching is accounted (SSA). On the other hand, as we see in
Section 2.7, the ice flow in the grounded part of ice sheets occurs mainly due to the shear stress,
with or without a basal slip component (SIA). Then, a so called ‘transition zone’ in ice flow
exists around the grounding line. In a Stokes-like model, all these flow patterns are modeled,
with the grounding line being a singular point in the basal boundary condition [98, 109]. Then,
a contact-type problem arises in the Stokes equations in solving the grounding line migration,
e.g., [109, 37]. Besides that, a fine mesh resolution is required to account accurately the ice flow
in the transition zone and the grounding line migration, which is computationally prohibitive in
large scale simulations [37, 39, 49]. Alternatively, the Shallow Ice and Shallow Shelf (Shelf-
Stream) Approximations overcome the high computational cost of the Stokes equations with an
acceptable accuracy12, but the transition zone must be correctly treated when both SIA and SSA

11See also an interesting discussion in [44, p.624].
12It is important to note that both SIA and SSA have limitations, and for some glaciers the flow pattern is really

3D, which requires a High-Order model or even the Stokes equations.
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equations are combined around the grounding line.
One of the first numerical studies on transition zone is from K. Herterich, in 1987 [67].

Herterich used simplified equations derived from the Stokes model to obtain a two-dimensional
ice flow in the transition zone under different boundary conditions. He found the width of the
transition zone is within the order of the ice thickness and the horizontal velocity present large
gradients around the grounding line. R. Lestringant, in 1994 [92], carried out a similar study, but
using the two-dimensional Stokes equations. His results shown clearly two flow patterns: the
shallow ice (on the ice sheet) and the shallow shelf (on the ice shelf) regimes. Lestringant noted
a very narrow transition zone between these two regimes (within the order of the ice thickness)
where a strong horizontal gradient in the shear stress was present.

Pattyn and colleagues, in 2006 [117], studied the role of the transition zone in the dynamics
of marine ice sheets. They used a two-dimensional High-Order model13 and the ice thickness
evolution equation14 coupled to a grounding line migration model with subgrid accuracy. They
changed the width of the transition zone by prescribing a spatial variation of the basal friction.
Their results shown that the amplitude of the grounding line advance/retreat is a function of
the transition zone length and that a neutral equilibrium15 for the grounding line positions was
observed for small transition zones. Unfortunately, their results may have been affected by a
low grid resolution used in the numerical discretization, which may not have solved accurately
small transition zones16.

Nowicki and Wingham, in 2008 [109], analyzed steady state conditions for grounding line
positions by solving the transition zone with the Stokes equations (considering linear viscosity)
under two different basal boundary conditions: with and without slip. They noted a very thin
’transition zone’ (2-3 × the ice thickness upstream to the grounding line), in which they applied
a fine mesh resolution. Although they found a singular solution for the pressure at the base near
the grounding line17, they argued that the stress solution in that region was not affected by this
singularity. Also, they noted high deviatoric stresses values around the grounding line. For the
case with basal slip, they found a unique velocity solution for the given grounding line position.
However, for the no-slip condition at the base, a range of ice flows for the same grounding line
position were found.

Durand and colleagues, in 2009 [37], performed a similar study to Nowicki and Wingham.
They solved the full Stokes with non-linear viscosity for an entire ice sheet coupled to the
transport equations of the ice surface and ice base18. A contact problem was also applied to
solve the grounding line migration. They analyzed the stability of a marine ice sheet under
two different bedrock geometries. They found the ice sheet is unstable on bedrock with inland-
deepening slopes. On a prograde bedrock slope, they noted that the ’neutral equilibrium’
disappeared when high mesh resolution was applied in the grounding line vicinity (element size
< 100 m in a domain of 1, 800 km). Their results were in agreement with the semianalytical
results from [136].

13The xz-version of Eqs. 2.43.
14See Section 2.11.3.
15Neutral equilibrium means that the grounding line presents infinite equilibrium positions. This hypothesis was

proposed by R. Hindmarsh, in 1993 [68]. Nowadays, this hypothesis has been discarded [137, 136].
16See the discussion in [136, line 105].
17In fact, it is expected a singular solution of the type p(x) |b∼ O

(
x−1/2) .

18See Sections 2.11.1 and 2.11.2.
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C. Schoof, in 2007 [137, 136], studied the role of the transition zone in controlling the
marine ice sheet stability. He used an asymptotic analysis in the case of fast sliding ice
sheets (with negligible internal shear stress) in opposition to a previous work of Chugunov and
Wilchinsky [23, 157, 158], who studied the case of no basal sliding. The transition zone was
treated as a boundary layer structure, and with matched asymptotic expansions he found an
increasing function between the bedrock elevation and ice flux, both at the grounding line. He
also found that there is no ’neutral equilibrium’ in marine ice sheets, and there is no stable
grounding line position on retrograde bedrock slope. Comparing his asymptotic result with a
numerical model, Schoof pointed out that high mesh resolution, mainly in solving the transition
zone, it is an important issue to achieve reliable numerical results.

Here, to illustrate, we are considering a marine ice sheet flowing by fast basal sliding,
then shear stresses acting within the ice body are negligible (see assumptions in Section 2.6).
Consequently, a diffusive-type equation arises in the grounded ice sheet. This can be shown
considering a Weertman-type law for the basal friction (see Section 2.9):

τbx = −Cum−1
b ux,

τby = −Cum−1
b uy,

(2.101)

where ub =

√
u2

x + u2
y is the basal velocity magnitude; then, neglecting the longitudinal stress

terms in the SSA equations (Eqs. 2.61), we have:

ux = − 1

Cum−1
b

ρgH
∂ (H − b)
∂x

,

uy = − 1

Cum−1
b

ρgH
∂ (H − b)
∂y

.

(2.102)

Therefore, for the fast sliding case (for which we ignore the horizontal stress terms), the
horizontal velocities, ux and uy, are functions of the ice surface gradient. From Eq. 2.97, it is
possible to obtain a non-linear diffusion equation describing the ice thickness evolution. Note
that the structure of this diffusion equation is the same of the diffusion equation (Eq. 2.100)
obtained with SIA equations with no shear deformation. In general, the basal sliding tends to
reduce the internal deformation, controlling the ice motion [97].

Both numerical and boundary layer studies described above produce similar results: the
transition zone is very small compared to the ice sheet domain. Following [137, 136], this
allows to solve only the grounded part of the ice sheet by the ice thickness diffusion equation
(e.g., Eq. 2.100), provided that an additional boundary condition is employed to account the role
of the transition zone. From the boundary layer results [137, 136], this boundary condition is
the ice flux at the grounding line. This approach is used in some continental scale simulations
(e.g. [123, 31, 116]), although the accuracy of this scheme is questionable [120].

The SSA formulation solves both grounded and floating parts, including the transition zone
(where basal and longitudinal stresses have the same magnitude). However, as we see above,
high resolution is required to solve accurately the transition zone. The grounding line position in
the SSA formulation can be defined by an implicit level set function φgl based on the floatation
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criteria, as follows:
φgl = ρH + ρwr, (2.103)

where r is the bedrock elevation (negative if below sea level). Then, the position of the grounding
line is defined as: 


φgl > 0 : ice is grounded
φgl < 0 : ice is floating
φgl = 0 : grounding line position

. (2.104)

The level set function φgl defines the changes in the basal boundary condition, i.e., the basal
friction. For φgl < 0, τbx = τby = 0. The basal friction for φgl = 0 is a numerical matter, and
depends on the discretization type of the domain. In Section 3.5 there are some details about
how ISSM deals with this issue.

A free floating ice shelf does not impact the attached upstream grounded ice [136]. As free
we mean that the ice shelf is not confined in a bay neither fixed on pinning points19. On the other
hand, a confined ice shelf leads to an important interaction with the ice sheet/glacier through the
‘backstress’: the stress resulting from the lateral (basal) friction exerted by the boundaries of a
bay (pinning points) [42]. The backstress ‘buttresses’ the ice sheet, stabilizing the grounded ice
and decreasing the ice flow speed [36]. Therefore, the effect of the buttressing is in extending
inland the transition zone and stabilizing the grounding line on retrograde bed slopes [136, 62].
In fact, an increasing in the ice velocities and mass losses were observed in the tributary glaciers
of the Larsen B Ice Shelf, Antarctic Peninsula, after its collapse in 2002 [127, 16, 85].

2.13 Ice front

The ice front (or calving front) is another place where the adaptive mesh refinement can be
applied. As suggested by [61, p.116] and implemented by [19], the position of the ice front
can be determined by a level set function φi f , in a similar approach used for the grounding line
position: 


φi f > 0 : no ice
φi f < 0 : presence of ice
φi f = 0 : ice front position

. (2.105)

The evolution of the ice front can be determined through a ’kinematic condition’ [61, p.116],
which is given by the material derivative of level set φi f :

dφi f

dt
=

∂φi f

∂t
+ ui f · ∇φi f = 0, (2.106)

where ui f =
[
ui f x ui f y

]
⊺

is the ice front (calving front) velocity, which can be related to the ice
velocity at the ice front, u |i f , as:

c =
(
u |i f −ui f

)
· ni f , (2.107)

where c is the ’calving rate’, i.e., the rate by which ice is lost by ’physical release’ at the ice

19Pinning points are isolated bedrock elevations that touch the floating ice.
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front, and ni f is the horizontal normal unit vector, defined as:

ni f =
∇φi f

‖ ∇φi f ‖ =
∇φi f

Ni f

. (2.108)

Through the calving rate expression (Eq. 2.107) and Eq. 2.108, Eq. 2.106 is rewritten as:

∂φi f

∂t
+ u · ∇φi f = cNi f , (2.109)

The solution of Eq. 2.109 gives the evolution of level set φi f , considering that both ice
velocity and calving rate are calculated in advance. More details about the level set method can
be found in [113, 141].
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Chapter 3

Implementation of adaptive mesh

refinement in the Ice Sheet System Model

3.1 Introduction

We describe in this chapter a brief introduction to finite element method, which is used to solve
the SSA formulation, the main features of the Ice Sheet System Model (ISSM) architecture, an
overview of the adaptive mesh refinement (AMR) technique, and the implementation of this
technique and refinement criteria in ISSM.

3.2 Finite element spaces on triangles

The meshes used in this work are based on a Delaunay-like triangulation. Then, the finite
element spaces should be constructed on triangular elements. The finite element space used
here is based on polynomials P of degrees p defined as:

Pp = span {xm
y

n, 0 ≤ m, n, m + n ≤ p} . (3.1)

Specifically, we work with p = 1 and, therefore, the P1 polynomials build the finite element
space in ISSM1. There are some important assumptions on the meshes before building the finite
element space. We are following [2, p.9]. Let Ω be a polygonal domain with boundary Γ. A
finite element partition P of Ω is a set of elements {K} such that:

(1) Each element is a triangle contained in Ω;

(2) The elements form a partition of the domain: Ω̄ = ∪K∈P K̄;

(3) The nonempty intersection of the closure of each distinct pair of elements is either a single
common vertex or a single common edge of both elements.

The regularity κK of a triangle K is defined as:

κK =
hK

̺K

, (3.2)

1There are p = 2 polynomials in ISSM, but these are not considered in this thesis.
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where hK is the diameter of the triangle (= supx, y ∈K ‖ x − y ‖) and ̺K is the diameter of the
largest circle that my be inscribed in K . A partition P is said to be ‘regular’ if there is a constant
κ such that:

κK ≤ κ, ∀K ∈ Ω. (3.3)

More generally, regular families of partitions consist of partitions composed by elements for
which the regularity κK is uniformly bounded over the whole family [2, p.9]. In the literature,
this property is referred as the ‘shape regularity’ of the elements. The regularity assumption
allows partitions of the domainΩ into meshes that may be very highly locally refined containing
elements of quite different sizes. The assumption of regularity indeed includes meshes generated
by an adaptive refinement procedure: elements where the solution is nonsmooth may be refined
at every step of the procedure, while other elements may not be refined [2, p.9].

The finite element space associated with the partition P is defined by continuous piecewise
polynomials:

V =
{
υ ∈ C

(
Ω̄
)

: ∀K ∈ P, υ |K∈ P1
}
. (3.4)

We define a basis for the space V composed by functions {Φi : i ∈ N} that satisfies the
following conditions:

(1) Φi ∈ V for all i ∈ N;

(2) Φi(x j) = δi j for all i, j ∈ N , where δi j is the Kronecker symbol;

where
{
x j

}
is the set of vertices existing in the given partition, Here, N is a natural number

accounting for the existing number of vertices in the partition. This basis is referred as the ‘P1

Lagrange basis’. Therefore, in P1 Lagrange basis, the degrees of freedom of the space V is
identified by function evaluations at the vertices of the elements presents in the partition.

The numerical implementation of the space V using P1 Lagrange basis is carried out
through a ‘reference element’2. For triangular elements, the reference element is defined as:

K̂ = {(x̂, ŷ) : 0 ≤ x̂ ≤ x, 0 ≤ ŷ ≤ 1 − x̂} . (3.5)

Each triangular element K is related to the reference element K̂ under a continuous, affine,
invertible transformation FK written as:

FK(x̂) = AK x̂ + bk, (3.6)

where x̂ = [x̂ ŷ]⊺, AK is a matrix and bK is a vector. The regularity of the element K implies
that AK is nonsingular, and there is a constant C that depends only on the regularity parameter
κK such that [2, p.9]: 


‖ AK ‖≤ Chk

‖ A−1
K ‖≤ C̺−1

k

C̺2k ≤ |det(AK)| ≤ Ch2
k

, (3.7)

2Also named as ‘master element’.
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where ‖ · ‖ is a matrix norm.
TheP1 Lagrange basis functions3

{
Φ̂i(x̂), i = 1, 2, 3

}
of the spaceV defined in the reference

element K̂ (Eq. 3.5) are: 

Φ̂1(x̂, ŷ) = 1 − x̂ − ŷ

Φ̂2(x̂, ŷ) = x̂

Φ̂3(x̂, ŷ) = ŷ

. (3.8)

Considering the edges of an element K remain straight, a possible transformation FK is
written as4:

FK(x̂) =
[

x

y

]
=

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

] [
x̂

ŷ

]
+

[
x1

y1

]
, (3.9)

where {xi, yi, i = 1, 2, 3} are the vertices’ coordinates of element K . Transformation 3.9 can
be written as:

FK(x̂) =
{

x = (x2 − x1)x̂ + (x3 − x1)ŷ + x1

y = (y2 − y1)x̂ + (y3 − y1)ŷ + y1
, (3.10)

or, after some rearrangement, as:

FK(x̂) =




x = (1 − x̂ − ŷ)x1 + x̂ x2 + ŷx3 =

3∑
i=1

xiΦ̂i

y = (1 − x̂ − ŷ)y1 + x̂y2 + ŷy3 =

3∑
i=1

yiΦ̂i

. (3.11)

The application of the P1 basis functions to the geometric transformation FK (Eq.3.11)
illustrates the attractive features of implementations based on reference elements: the basis
functions of the reference elements are used to construct both the finite element space and the
geometry of the elements5.

It is important to note that the space V defined by 3.4 composed by functions {Φi : i ∈ N}
is in fact a subspace of the class of functions H1 (see Appendix A). Note that we don’t fix
the values of the basis functions at the boundary of the domain as carried out in Appendix A
(definition of H1

0 ); then we exclude the subscript 0 in the space H1 notation.
The matrix AK is also known in the literature as the Jacobian matrix6, J, which contains all

the first-order partial derivatives of the linear transformation FK(x̂), i.e., Ji j = ∂FK, j/∂xi 7. The
determinant of J represents the ratio between the areas of the ‘distorted’ and reference elements.

3Also named in the literature as shape functions.
4This is verified by setting: FK (0, 0) = (x1, y1), FK (1, 0) = (x2, y2), FK (0, 1) = (x3, y3).
5Here, we are working with the concept of ‘isoparametric’ elements, in the sense that the same basis functions

are used to represent both approximation space and geometric description of the elements.
6Or as the transpose of the Jacobian matrix.
7In fact, the most common definition of the Jacobian matrix is Ji j = ∂FK, i/∂xj .
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3.3 Finite element formulation

In this section we describe the finite element formulations for the SSA stress balance equations
and ice thickness evolution equation.

The SSA stress balance problem is summarized as: find u(x) =
[
ux(x, y) uy(x, y)

]
⊺

such
that: 



div (2H µ̄ Ûε x) − τbx = fx

div
(
2H µ̄ Ûε y

)
− τby = fy

u = u0 on ΓD

2H µ̄ Ûε x · nΓN =

(
1

2
ρgH2 − 1

2
ρwgb2

)
nΓNx

on ΓN

2H µ̄ Ûε y · nΓN =

(
1

2
ρgH3 − 1

2
ρwgb2

)
nΓNy

on ΓN

Ûε x =


2
∂ux

∂x
+

∂uy

∂y

1

2

(
∂ux

∂y
+

∂uy

∂x

)

, Ûε y =



1

2

(
∂ux

∂y
+

∂uy

∂x

)
∂ux

∂x
+ 2
∂uy

∂y


fx = ρgH

∂s

∂x
, fy = ρgH

∂s

∂y

µ̄ = (1/H)
∫ s

b

µ dz, µ =
B

2 Ûε1−1/n
e

Ûεe =

[(
∂ux

∂x

)2

+

(
∂uy

∂y

)2

+

∂ux

∂x

∂uy

∂y
+

1

4

(
∂ux

∂y
+

∂uy

∂x

)2
]1/2

, (3.12)

where ΓD and ΓN represent the parts of the boundary Γ of domain Ω in which Dirichlet and
Neumann boundary conditions are applied, respectively. Note that we exclude the xy-plane
notation in the divergence operator (see Eq. 2.62).

The finite element space for the velocity field u is defined as:

Vu =
{
υ ∈ (V)2, υ = u0 on ΓD

}
, (3.13)

where V is defined by Eq. 3.4. The test functions υ =

[
υx υy

]
⊺

are vectors where each
component is a function that belongs to spaceV. Although the SSA problem has two components
of stress balance, the finite element formulation of Eq. 3.12 is carried out using the same
procedure shown in Appendix A. Then, applying a dot product between the two SSA stress
equations and a test function υ ∈ Vu, and integrating over the domainΩ, the resulting variational
formulation is: ∫

Ω

[
div (2H µ̄ Ûε x) υx + div

(
2H µ̄ Ûε y

)
υy − τbxυx − τbyυy

]
dΩ

=

∫
Ω

(
fxυx + fyυy

)
dΩ.

(3.14)
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Integrating Eq. 3.14 by parts and applying a tensor property, we have:∫
Ω

[
div (2H µ̄ Ûε x υx) − 2H µ̄ Ûε x · ∇υx + div

(
2H µ̄ Ûε y υy

)
− 2H µ̄ Ûε y · ∇υy − τbxυx − τbyυy

]
dΩ

=

∫
Ω

(
fxυx + fyυy

)
dΩ.

(3.15)

Applying the Gauss’ theorem in the divergence operator in Eq. 3.15 and rearranging the
terms, the variational formulation of the SSA equations is:∫

Ω

(
2H µ̄ Ûε x · ∇υx + 2H µ̄ Ûε y · ∇υy + τbxυx + τbyυy

)
dΩ

=

∫
ΓN

(
2H µ̄ Ûε x υx + 2H µ̄ Ûε y υy

)
dΓ

−
∫
Ω

(
fxυx + fyυy

)
dΩ.

(3.16)

The Galerkin’s approximation is reached by searching the solution of Eq. 3.16 in a finite
subspace VN

u of Vu. Then, Eq. 3.16 is written as:∫
Ω

(
2H µ̄ ÛεN x · ∇υN x + 2H µ̄ ÛεNy · ∇υNy + τbxυN x + τbyυNy

)
dΩ

=

∫
ΓN

(
2H µ̄ ÛεN x υN x + 2H µ̄ ÛεNy υNy

)
dΓ

−
∫
Ω

(
fxυN x + fyυNy

)
dΩ,

(3.17)

where:

ÛεN x =


2
∂uN x

∂x
+

∂uNy

∂y

1

2

(
∂uN x

∂y
+

∂uNy

∂x

)

,

ÛεNy =



1

2

(
∂uN x

∂y
+

∂uNy

∂x

)
∂uN x

∂x
+ 2
∂uNy

∂y


.

(3.18)
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Inserting Eqs. 3.18 in Eq. 3.17, we have:

∫
Ω

2H µ̄

(
2
∂uN x

∂x
+

∂uNy

∂y

)
∂υN x

∂x
+ H µ̄

(
∂uN x

∂y
+

∂uNy

∂x

)
∂υN x

∂y

+H µ̄

(
∂uN x

∂y
+

∂uNy

∂x

)
∂υNy

∂x
+ 2H µ̄

(
∂uN x

∂x
+ 2
∂uNy

∂y

)
∂υNy

∂y

+τbxυN x + τbyυNy dΩ

=

∫
ΓN

(
2H µ̄ ÛεN x υN x + 2H µ̄ ÛεNy υNy

)
dΓ

−
∫
Ω

(
fxυN x + fyυNy

)
dΩ.

(3.19)

Since both approximate solution
[
uN x uNy

]
⊺

and test function
[
υN x υNy

]
⊺

are written as a
linear combination of basis functions of subspace VN

u , i.e.:

υN x(x, y) =
N∑

i=1

βxiΦi(x, y), υNy(x, y) =
N∑

i=1

βyiΦi(x, y),

uN x(x, y) =
N∑

j=1

αx jΦ j(x, y), uNy(x, y) =
N∑

j=1

αy jΦ j(x, y),
(3.20)

we rewrite Eq. 3.19 as:

∫
Ω

4H µ̄
∂

∂x

©«
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j=1

αx jΦ j
ª®¬
∂
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)
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∂
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ª®¬
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(
N∑
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ª®¬
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∂
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ª®¬
∂
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(
N∑
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∂
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dΓ
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∫
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i=1

βyiΦi

)
dΩ.

(3.21)

The resulting system of (non-linear) equations of Eq. 3.21 is:

Kα = F, (3.22)
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where K and F are the stiffness matrix and load vector, respectively, defined as:

Ki j =

∫
Ω
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Fi =

∫
ΓN

(
2H µ̄ ÛεN x υN x + 2H µ̄ ÛεNy υNy

)
dΓ

−
∫
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Φi + fy
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Φi
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(3.23)

It is important to note that Eq. 3.22 is a non-linear system of equations, since both ice
viscosity µ̄ and basal stress τb are functions of the velocity field, i.e., K = K(α).

Analogously, the finite element space for the ice thickness H evolution is:

VH = {υ ∈ V, υ = H0 on ΓD} . (3.24)

The ice thickness evolution problem is summarized as: find H = H(x, y, t) such that:




∂H

∂t
= −divQ + Ûms − Ûmb

Q = Hu

H = Hi at t = 0

. (3.25)

For numerical stabilization purposes, the advection-type ice thickness equation is modified
by adding an artificial diffusion term. Then, the modified ice thickness evolution problem is:
find H such that: 



∂H

∂t
= −divQ + div (D∇H) + Ûms − Ûmb

Q = Hu

D = h

2

[ |ux | 0
0 |uy |

]

H = Hi at t = 0

, (3.26)
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where D is the artificial diffusion coefficient and h is the characteristic size of the elements8.
Multiplying Eq.3.26 by a test function υ ∈ VH , integrating over domain Ω and applying the
integrating-by-parts in the artificial diffusion term, we have:∫

Ω

∂H

∂t
υ dΩ = −

∫
Ω

div (Hu) υ + ∇υ · (D∇H) dΩ +

∫
Ω

( Ûms − Ûmb) υ dΩ. (3.27)

In a similar way, the Galerkin’s approximation of Eq. 3.27 is:∫
Ω

∂HN

∂t
υN dΩ = −

∫
Ω

div (HNu) υN + ∇υN · (D∇HN ) dΩ +

∫
Ω

( Ûms − Ûmb) υN dΩ. (3.28)

Writing the approximate solution HN and the test function as a linear combination of the
basis of the subspace VN

H
of VH , i.e.:

υN (x, y) =
N∑

i=1

βiΦi(x, y), HN (x, y) =
N∑

j=1

α jΦ j(x, y), (3.29)

we have:
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(3.30)

The resulting system of equations9 is:

M
∂α

∂t
+Kα = F, (3.31)

where M is known as ‘mass matrix’, and K and F are the stiffness matrix and load vector,
respectively. Each one of these entities is written as:

Mi j =

∫
Ω

(
N∑

i=1

Φi

) ©«
N∑

j=1

Φ j
ª®¬

dΩ,
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Φi

)
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Φ j
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dΩ,
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∫
Ω
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(

N∑
i=1

Φi

)
dΩ.

(3.32)

8In ISSM, the artificial diffusion coefficient is calculated in each element using its characteristic size.
9There are different methods to solve the time derivative of H. ISSM employs the ‘implicit method’.
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3.4 Numerical scheme

Here, we briefly describe the numerical schemes implemented in ISSM to solve the systems of
equations (Eqs. 3.22 and 3.31). In order to illustrate the numerical resolution, we change the
notation of the systems such that the following system:

Kv(αv, αH) αv
= Fv(αH), (3.33)

represents the SSA non-linear system of equations and:

MH ∂α
H

∂t
+KH (αv) αH

= FH, (3.34)

represents the ice thickness system of equations10.
The solution of Eq.3.33 for αv is carried out by the Picard’s iterative scheme (also known

as fixed-point iteration). The process is: given a geometry at time t and an initial guess for the
velocity field, i.e., αH

t and α
v

0, respectively, solve the following sequence of linear systems:

Kv(αv

i , α
H
t ) αv

i+1 = Fv(αH
t ), i = 0, 1, 2, ... , (3.35)

until a convergence criterion is reached (e.g., ‖ α
v

i+1 − α
v

i
‖≤ ǫv, where ǫv is a given tolerance).

The temporal discretization of Eq. 3.34 is based on the implicit method:

MH

(
α

H
t+1 − α

H
t

)
∆t

+KH
(
α
v

t

)
α

H
t+1 = FH, (3.36)

where the resulting linear system (for αH
t+1) is:

[
MH
+ ∆tKH

(
α
v

t

) ]
α

H
t+1 = ∆tFH

+MH
α

H
t . (3.37)

Note that we keep, in Eq. 3.37, the previous velocity field, i.e., α
v

t . Considering the
computation of both velocity field and ice thickness, the resulting coupled numerical scheme is
‘semi-implicit’ in time, as summarized by the following sequence:




Given α
v

0 and α
H
1 , find α

v

t and α
H
t+1 :

Kv(αv

i , α
H
t ) αv

i+1 = Fv(αH
t )

for i = 0, 1, 2, ... , until ‖ α
v

i+1 − α
v

i ‖≤ ǫv

α
v

t = α
v

i+1[
MH
+ ∆tKH

(
α
v

t

) ]
α

H
t+1 = ∆tFH

+MH
α

H
t

for t = 1, 2, 3, ...

. (3.38)

10Note that Kv depends on the velocity field and ice thickness (represented here as α
v and α

H , respectively);
KH depends on the velocity field (see Eqs. 3.21 and 3.30).
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3.5 Grounding line parameterization

The grounding line parameterization represents the numerical scheme of how the basal friction is
applied on the elements present in the ice sheet/ice shelf transition. The implicit level set function
φgl (Eq. 2.103) is used to define the grounding line position. In ISSM, there are four types of
numerical discretization of basal friction within the elements: no sub-element parameterization
(NSEP), sub-element parameterization 1 (SEP1), sub-element parameterization 2 (SEP2) and
sub-element parameterization 3 (SEP3). Last one, SEP3, is actually not fully supported, then
we focus on the first three. Figure 3.1 illustrates the grounding line position and sub-element
parameterizations.

Figure 3.1: Different basal friction discretization within the elements. (a) is the exact
grounding line position, (b) no sub-element parameterization, (c) sub-element parameteri-
zation 1, (d) sub-element parameterization 2, (e) sub-element parameterization 3. Figure
from [138] ©The Authors, 2014, distributed under a Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/)

In NSEP, no sub-element parameterization exists, in the sense that the grounding line is
defined as the last grounded mesh vertex. Then, the basal friction is applied only on fully
grounded elements. In SEP1, the basal friction coefficient C is reduced as Cg = C Ag/A, being
Cg the new friction coefficient, Ag and A the grounded area and the total area of the element,
respectively. In SEP2, the contribution of the basal friction is integrated11 only on the grounded
area of the element. More details of SEPs are found in [138].

11During the element stiffness matrix calculation.
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3.6 ISSM architecture

The implementation of adaptive mesh refinement in ISSM is strongly based on its architecture.
We describe here the main ISSM features necessary to understand the adaptive mesh strategy.
We refer to Larour et al. [88] for a more detailed description of ISSM12.

ISSM is an open source finite-element-based ice sheet simulator developed in collaboration
between the Jet Propulsion Laboratory and University of California at Irvine. The main purpose
of this collaboration is to tackle the challenge of modeling the evolution of Greenland and
Antarctica ice sheets. ISSM is funded by NASA Cryosphere, IceBridge Research and MAP
(Modeling Analysis and Prediction) programs, JPL R&TD (Research, Technology and Devel-
opment), and National Science Foundation (NSF). The computational core of ISSM is written
in C/C++, and its interface13 is written in MATLAB.

Several stress balance approximations are implemented in ISSM, including higher-order
models (e.g., Blatter & Pattyn [18, 115], Full Stokes). The current adaptive mesh capability
is supported for the 2-D vertically integrated Shallow-Shelf or Shelfy-Stream Approximation,
SSA [94, 100]. The SSA formulation is employed for both grounded and floating ice, then
membrane stress terms [136] are included but all vertical shearing is neglected [139]. Here, the
mesh used for the SSA formulation is unstructured and relies on a Delaunay triangulation. The
initial mesh is generated by Bamg [66], but the mesh adaptation can be performed by Bamg or
NeoPZ [34] (one or the other mesh generator is used according to the user’s choice).

In ISSM, the solution of one partial differential equation (or a single time step in a time-
dependent partial differential equation) is called ‘analysis’, e.g., stress balance analysis, mass
transport analysis, damage evolution analysis, etc. One or several analyzes can be carried out in
a given numerical simulation; then, the solution of one or several analyzes is called ‘core’, e.g.,
stress balance core, transient core, hydrology core, etc. The ISSM core used in this work is the
transient core, which involves several analyzes (e.g., stress balance, mass transport, grounding
line migration, ice front migration, etc). These analyzes are executed or not according to the
user definition.

The ISSM data structure is organized through the ‘FemModel’ class, which represents the
finite element model (FEM) of the physical problem. The class FemModel contains the following
FEM data structures:

1. Analysis_Type_List: a list of analyzes to be carried out;

2. Elements: a list of the FEM elements (does not depend on the analysis type);

3. Vertices: a list of the geometric vertices (does not depend on the analysis type);

4. Nodes: a list of the degrees of freedom (depends on the analysis type);

5. Constraints: a list of the constraints (depends on the analysis type);

6. Materials: a list of materials, for each element (does not depend on the analysis type);

7. Parameters: a list of all model parameters (does not depend on the analysis type).

12Additional information is also found in the ISSM website: https://issm.jpl.nasa.gov/, last access: Feb 2 2019.
13Pre and post processes.
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Analysis_Type_List is a vector filled up with the analyzes according to the core chosen to
be carried out. Each analysis is responsible to compute the element stiffness matrix as well as
the element vector load. General algorithms of solution sequences lead the computation and
assembly of the stiffness matrix and load vector, as well as the numerical solution of the resulting
(non)linear system.

The Elements vector represents both the geometric and computational elements. Here,
computational means that the elements deal with the description of the fields in the corresponding
approximation space; e.g., let’s say that the ice thickness H is described by P1 Lagrange
polynomials, then a given element computes the P1 basis functions and their spatial derivatives
to generate H(x, y) and ∇H(x, y), respectively, over the element domain. The Vertices vector
keeps the spatial coordinates of the geometric vertices. Nodes is a matrix that keeps, for each
analysis to be carried out, the corresponding degrees of freedom. The degrees of freedom that are
constrained by Dirichlet boundary conditions are also kept in the Nodes structure. Constraints

is also a matrix that keeps, for each analysis, the values of the boundary conditions, as well as the
indexes of the corresponding nodes. The Materials vector has the same size of the Elements

vector, and is responsible for computing material properties like ice viscosity, equivalent ice
viscosity when the ice is damaged or enhanced, etc. Parameters is a vector structure that keeps
all model setups, like domain dimension, physical constants, convergence criterion, etc.

In ISSM, all the information and data necessary to define a FEM model are called ‘inputs’.
Basically, there are five types of FEM model inputs:

1. Material type and state (ice or lithosphere, is damaged or not, etc);

2. Material parameters varying in space, which can be post-processed or not (ice viscosity,
damage, Glen’s flow law exponent, flow law parameter, etc);

3. Fields that vary in space (ice velocity, ice thickness, ice surface, bedrock elevation, basal
friction coefficient, etc);

4. Physical constants, numerical parameters and model configuration that are constants (ice
density, gravitational acceleration, convergence criterion, maximum number of iterations,
domain dimension, grounding line migration type, etc).

5. Specified field values that represent the (Dirichlet) boundary conditions, which vary in
space (specified ice velocity, specified ice thickness, etc).

These model inputs are kept in the following FemModel data structures:

1. Inputs (1) are kept in the Materials vector, i.e., FemModel->Materials;

2. Inputs (2) and (3) are kept within the FEM elements through the data structure called
Inputs, i.e., FemModel->Elements[i]->Inputs14;

3. Inputs (4) are kept in the Parameters vector, i.e., FemModel->Parameters;

4. Inputs (5) are kept in the Constraints matrix, i.e., FemModel->Constraints.

14Here, ‘i’ is an index in the vector FemModel->Elements.
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ISSM is designed to run in parallel in a distributed memory scheme based on the ‘Message
Passing Interface’, MPI. When a model is launched, the entire mesh15 is spatially partitioned
over processing units (CPUs), and the FEM model data structures are built in each partition.
In this scheme, only one FemModel is built per each partition (CPU). Figure 3.2 shows an
example of a mesh being partitioned in three partitions16. The mesh partitioner used in ISSM
(METIS [82]) generates partitions with similar number of elements. This procedure reduces the
imbalances during the solver phase (e.g., stiffness matrix assembly).

Figure 3.2: Example of a mesh partitioning: each color represents a partition (CPU). The mesh
partitioner in ISSM keeps the number of elements similar between the partitions.

MPI communications between the partitions (CPUs) are performed to assemble the global
stiffness matrix and load vector, as well as during the solution update in the elements once the
system of equations is solved. The advantage of MPI is its ability to handle larger models (i.e.,
continental-scale simulations) in many cores and nodes on a cluster. Its disadvantage is the cost
in the communications between the partitions.

The suite of solvers applied in ISSM is provided by the Portable, Extensive Toolkit for
Scientific Computation package [11, 10, PETSc], which is also based on MPI. The non-linear
SSA equations are solved using the Picard scheme and the Multifrontal Massively Parallel sparse
direct Solver [4, 5, MUMPS].

15Which describes the whole physical domain.
16In this case, three CPUs are used; each CPU is responsible to build the FEM data corresponding to its own

partition.
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3.7 Adaptive mesh refinement

The quality of the finite element approximation of a boundary-value problem depends on the
choice of the basis functions. In its turn, the construction of the set of the basis functions depends
on the mesh describing the domain. One can often confronts with the situation of deciding on
a mesh, analyzing the quality of the calculated solution, and perhaps iteratively adjusting and
enriching the mesh. Since the solution and its derivatives may change considerably over the
domain and/or over the time (in transient problems), enriching the mesh locally is a suitable way
to guarantee numerical accuracy and computational efficiency. This technique is often called
’adaptive mesh refinement’.

The first works on adaptive refinement in finite element calculations were introduced by
Babuška and Rheinboldt in the late 1970’s [8, 9]. Their technique was based on a posteriori
error estimators calculated on each finite element such that the adaptive meshing was design to
minimize the error over the mesh. The search of effective adaptive methods took place during
the early 1980’s, when many of ad hoc errors estimators were developed. Most of these errors
estimators were based on a priori estimation, which provided sufficient indicators for driving
the adaptive procedures, but that sometimes failed when complex features of the solution appear
(e.g., boundary layer, shock-boundary layer interactions) [1]. A simple but relatively effective a
posteriori error estimator appeared with the work of Zienkiewicz and Zhu in 1987 [161]. The
core of their estimator is the recovering process of the gradient of solutions such that recovered
gradients are compared to the original FEM gradients to assess an estimation of the error. This
technique is classified as a ’recovery based method’, and the accuracy and robustness of the
estimator depends on the specifics steps used to construct the recovered gradient [2, p. 66].
The extension of this technique was carried out by Zienkiewicz and Zhu in 1992 [162, 163]
to the named ’superconvergent patch recovery’ method, which main process is selecting mesh
points that exhibits superconvergent recovery solutions. By superconvergent we mean that the
solution converges faster in comparison to a priori estimation when the adaptive refinement is
guided by this technique. In the following decades, many studies dedicated to the development
of a posteriori error technique for both h and p version of the finite element method, and to the
studies of robustness of such estimators in different applications [2, p. 4]. A complete review of
the progress of adaptive mesh refinement and a posteriori error estimator is found in the book
of Ainsworth and Oden [2] and in the references within it.

Basically, the adaptive mesh refinement technique can be performed with three different
methods [112, 160, p. 402]: remeshing, r-adaptivity and h-adaptivity methods. The remeshing
method represents a complete mesh regeneration where both refinement and coarsening elements
are executed according to a posteriori analysis of the solution. The r-adaptivity method, also
known as moving mesh method, moves progressively a fixed number of vertices in a given
direction or region [6, p. 533]; in this method, the total number of vertices are kept constant.
The h-adaptivity method splits edges and/or elements, inserting new vertices and elements into
the mesh where high resolution is required (where high errors are observed), e.g., [15, 33];
the coarsening is also executed in the h-adaptivity method. The performance of each of these
methods depends on the problem for which they are applied. Here, we are interested in the
remeshing and h-adaptivity techniques.

There are a number of works analyzing the adaptive mesh refinement method applied to ice
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sheet dynamics. Vieli and Payne, in 2005 [153] showed that models applying a moving mesh to
track the grounding line movement perform better than fixed mesh models. Since the position
of the grounding line is explicitly defined in moving meshes, Vieli and Payne noticed for this
method a weak mesh resolution dependency in comparison to the fixed mesh method, for which
the grounding line position falls between mesh vertices. Goldberg and colleagues, in 2009 [57],
obtained accurate solutions with fewer computational effort solving the time-dependent shelfy-
stream equations with the two of the mesh adaptation techniques mentioned above, moving
mesh and h-adaptivity methods. Using a one-dimensional shelfy-stream model based on finite
difference scheme, Gladstone and colleagues, in 2010 [54], demonstrated that adaptive mesh
refinement and sub-element parameterization for grounding line position could produce robust
predictions of grounding line migration. In a 1D marine ice sheet model intercomparison project
(MISMIP), Pattyn and participants, in 2012 [119], found that moving mesh technique tends to be
the most accurate and h-adaptivity method can further improve grounding line position accuracy
compared to models based on a fixed mesh. In 2013, through a 3D marine ice sheet model
intercomparison project (MISMIP3d), Pattyn and participants [118] confirmed the grounding
line dynamics dependency on mesh resolutions. Cornford and co-authors, in 2013 [27], im-
plemented a block-structured adaptive mesh refinement in the Berkeley Ice Sheet Initiative for
Climate Extremes (BISICLES), a 2.5-D ice sheet model based on the finite volume method.
They demonstrated that simulations with mesh adaptivity are computationally cheaper and more
efficient, even as the grounding line moves over significant distances. Jouvet and Gräser, also
in 2013 [81], combined the shallow ice approximation and the shallow-shelf approximation in
a mesh adaptivity numerical scheme involving a truncated Newton multigrid and finite volume
method. Through MISMIP3d experiments [118], they highlighted the relevance and efficiency
of adaptive mesh refinement in terms of computational cost when high resolution (∼100 m) is
necessary to reproduce grounding line reversibility. Recently (2017), Gillet-Chaulet and col-
leagues [53] implemented an anisotropic mesh adaptation in the finite element ice flow model,
Elmer/Ice [51]. Based on the MISMIP+ experiment [7], they showed that combining various
variables (ice thickness, basal drag, velocity, etc.) in an estimator allowed to reduce the number
of mesh vertices by more than 1 order of magnitude compared to uniformly refined meshes, for
the same level of numerical accuracy.

3.7.1 NeoPZ

NeoPZ [34] is a finite element library dedicated to highly adaptive techniques [22]. The scheme
used by NeoPZ is the h-adaptivity method. In NeoPZ’s data structure, each element is refined into
4 topologically similar elements, whose resolutions are half of the refined element. Figure 3.3(a)
presents a triangle (vertices 1-2-3) refined in four triangles (A, B, C, and D).

To avoid hanging vertices/nodes [22] (red vertices in Figure 3.3(a)), some elements are
divided in specific ways such that any two elements in the mesh may have a vertex or an entire
edge in common, or no vertices in common [147, p. 81]. The degrees of freedom associated
with the hanging vertices should be handled to keep a continuous space of test functions. This
can be done by constraining the (hanging) degrees of freedom on the neighbor nodes (red
lines in Figure 3.3(a)), a procedure that changes the local stiffness matrix of the elements and,
consequently, the global stiffness matrix. An alternative that does not change the (non)linear
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Algorithm 1 Transient simulation with adaptive mesh refinement
1. set initial solution state and initial mesh18
2. while tn ≤ tmax , do:

a. call stress balance core (diagnostic)

b. call thickness balance core (prognostic)

c. call ice front migration core (level set adjustment)

d. call grounding line migration core (hydrostatic adjustment)

e. call remesh core (AMR)

e.1. call AMR core (refine/coarsen mesh, Bamg or NeoPZ, serial in CPU #0)

e.2. call mesh partitioning (over all CPUs, serial)

e.3. build new data structures (all CPUs, parallel)

e.4. interpolate solutions (all CPUs, parallel)

e.5. call geometry adjustment core (all CPUs, parallel)

f. time increment tn+1 = tn + dt

3. post processing

Our implementation keeps the number of partitions constant during the entire simulation
time. The number and distribution of elements into the partitions vary every time the adaptive
mesh refinement is executed, since the mesh partitioning process (step ‘e.2’, Algorithm 1)
generates partitions with a similar number of elements. This process reduces memory imbalance
among the CPUs and overheads during the solver phase [88]. Figure 3.7 shows the evolution of
the grounding line, and consequently the evolution of the mesh, for four consecutive time steps.
We observe in Figure 3.7 how the distribution of the elements changes over the partitions every
time the remesh core is called.

Each time remeshing core is performed, the solutions and all data fields that vary in space are
interpolated from the old mesh onto the new mesh. This process is executed by reducing all fields
in CPU no. 0, and then broadcasting them to the other CPUs as soon as the partitioning process
and the building of new data structures are executed. The interpolation process is executed in
parallel, where each CPU interpolates the solutions and fields just on its own mesh partition (step
‘e.4’, Algorithm 1). This all-to-one reduction and one-to-all broadcasting strategy is adopted
because the distribution of elements over the partitions is not constant during the simulation
time. Although this reduction/broadcasting process may be a bottleneck for large models, our
strategy takes the advantage of using a pre-existent ISSM interpolation algorithm where all fields

18The setup of initial solutions into the initial mesh is important to reduce numerical artifacts during the first
time steps. Therefore, the initial mesh should be defined using AMR with the same level of refinement chosen in
Algorithm 1 (e.g., see [27, 89]).
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are interpolated on given point using a vectorized operation, saving computational time during
this step. Just to illustrate the size of MPI data transmissions, we show here a simple calculation.
A mesh with 100,000 elements has about 50,000 vertices. Then, we have: 50,000 x 8 bytes =
0.4 Mb per interpolated field. This size is relatively small considering the transmission rate of
current InfiniBand19 (>10 Gb/s).

The construction of FEM model data structures and the adjustment of solutions (steps ‘e.3’
and ‘e.5’, respectively, Algorithm 1) are executed in parallel, i.e., each partition takes care of its
own data structure. The computation of the refinement criteria (see Section 3.9) is also carried
out in parallel.

Figure 3.7: Example of a mesh partitioning during transient simulations (four consecutive time
steps) with adaptive mesh refinement: each color represents a partition. Red line: grounding
line position. Black line: adapted mesh.

All MPI communications in the remesh core (step ‘e’, Algorithm 1) are minimized to avoid
overheads when large models are run. In order to minimize MPI calls, we perform a single
communication of a large array that includes all data structures. In the interpolation process,
for example, all solutions and fields are compacted by CPU no. 0 in a single vector structure
in such a way that only one MPI broadcast is called. This approach is based on the fact that,
in general, it is more efficient to perform few large MPI messages instead of carrying out many
smaller ones [125, p.327].

19InfiniBand is a common networking device used for data transmission between several nodes in high-
performance clusters.
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3.9 Refinement criteria

The performance of any adaptive mesh approach depends on the refinement criterion [33]. We
implement the three following criteria in ISSM:

(a) Element distance to the grounding line, Rgl ;

(b) Error estimator for deviatoric stress tensor, τ, and ice thickness, H;

(c) Different combinations of (a) and (b).

Criterion (a) is based on a heuristic approach commonly applied in the literature [57, 62, 27],
where elements near the grounding line are refined until a desired resolution is reached. For
example, Schoof 2007 [136] applied a high grid resolution at the transition zone, the region
around the grounding line where mechanical sheet-shelf coupling must be accurately resolved
(see Section 2.12). In fact, he observed discrepancies in the grounding line dynamics using
an adapted high-resolution grid and an equally spaced coarse grid. In criterion (a), both the
width around the grounding line in which the elements are refined and the desired resolution are
parameters imposed by the user.

The second criterion, (b), automates the decision about the region or elements that should be
refined based on their error estimates. We implement the a posteriori error estimator conceived
by Zienkiewicz and Zhu in 1987 (ZZ, [161]). The ZZ error estimator was proposed for a linear
elasticity problems, which involves elliptic equations. We implement the ZZ error estimator
for the deviatoric stress tensor (τ) and we also extend the estimator for the ice thickness (H).
Applying the ZZ error estimator to the deviatoric stress tensor is a natural extension, since the
non-linear SSA equations are also elliptic. In fact, criterion (b) is based on the fact that high
changes in the gradients in the velocity field (therefore, in the deviatoric stress tensor, τ) and
ice thickness, H, are expected to be present near the grounding line, i.e., in the transition zone.
Figure 3.8 shows an example of the velocity field (x-direction, steady state) around the grounding
line for the MISMIP+ setup (see details in Section 4.3). The velocity field in Figure 3.8 was
calculated using adaptive mesh refinement.

The ZZ error estimator calculated for the ice thickness highlights the regions of sharp
bedrock gradient, and could be used to improve the resolution of the bedrock geometry. In fact,
the bedrock defines the ‘vertical geometry’ of the mathematical problem, which impacts the
solutions (velocity field and ice thickness). Therefore, the ZZ estimator for the ice thickness
could be an indicator of areas where the bedrock geometry should be improved in terms of
resolution, mainly in transient simulations where the grounded area changes with time. We
suspect that the ZZ for the ice thickness could be also useful if applied together with the other
one (ZZ for the deviatoric stress). The performance of this combination in real ice sheets and
glaciers should be assessed in the future, since in real bedrock elevation there are complex
features and noises.

Criterion (c) extends and merges the features of the other two previous refinement criteria.
This criterion is based on the following: we know a priori that applying high resolution around
the grounding line would reduce the error caused by the basal friction discretization within the
elements (see Section 3.5 and [138]). On the other hand, applying only an error estimator does
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not guarantee that the all elements around the grounding line are refined as properly desired20.
We suspect there are at least three sources of numerical errors (which may be related to each
other) in ice sheet simulations:

(1) Basal friction discretization within the elements around the grounding line;

(2) High gradient changes in the velocity field near the grounding line;

(3) Bedrock geometry description.

Figure 3.8: Example of the velocity field around the grounding line for the steady state solution
of the MISMIP+ setup (see Section 4.3). The color bar represents the velocity field in the
x-direction, and the brown surface represents the level set function φgl that determines the
grounding line position (see Section 2.12).

Component (1) is a numerical model-dependent error. Using the sub-element parameteriza-
tions SEP1 and SEP2, the numerical convergence is higher than using NSEP (see [138]; also see
our results in Section 4.2). Nevertheless, high resolution at the grounding line is yet necessary
to reduce this error component. Then, criterion (a) should reduce this error. Component (2) is
a physical problem-dependent error. We know that around the grounding line, in the transition
zone, and in shear stream margins ([133, 64]), the deviatoric stress tensor dominates the stress
balance (e.g., [136]). The width of these zones where the velocity field changes significantly
(where the deviatoric stress tensor dominates) depends on the geometry of the physical prob-
lem, e.g., bedrock topography, ice thickness, ice sheet length, basal conditions, etc. Refining
the elements in these zones would reduce the numerical error in the deviatoric stress tensor.

20In fact, we noted this for the MISMIP+ experiments. See Section 4.3.
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Therefore, criterion (b) should reduce this component in an automated way. Component (3)
is the error due to the discretization of the physical geometry. Currently, our adaptive mesh
refinement doesn’t increase the resolution of real bedrock topographies accordingly the mesh
refinement process. This means that, for real ice sheets, the bed elevation remains the same as
the coarse bed elevation (i.e., defined by the coarse mesh) during all simulation time. The only
exception is for the MISMIP+ experiments: we hard coded the MISMIP+ bed elevation directly
in ISSM such that the resolution of the bed is increased/decreased during the mesh refinement
process. Keeping the bed resolution constant, and let’s say, in a coarse representation, complex
features and noises of the bed topography are smoothened, which tends to reduce the numerical
error. But not necessarily this is always true, because fundamental geometric aspects could
be ‘hidden’ in a coarse representation. As an example, let’s take a given 2D problem in the
unit circle for which we would like to solve numerically. The representation of the boundary
(the circle) will be always finite and it will depend on the mesh resolution. Figure 3.9 shows a
representation of our unit circle using different mesh resolutions. It is clear, through Figure 3.9,
that the real boundary geometry is better approximated with the increase of mesh resolution.
But if the circle description is kept in the coarser representation (the coarser mesh in Figure 3.9),
even with mesh refinement, the boundary is not well approximated and this error component
continues to pollute the solution. Figure 3.10 shows this case, where we apply a mesh refinement
into the coarser unit circle geometry. Therefore, not necessarily applying criterion (a) or (b)
(or combination of both) in an adaptive mesh scheme should improve the bedrock resolution as
the setup of an initial uniformly refined mesh does (considering that the bedrock resolution is
increased/decreased with the mesh resolution in this case). In fact, increasing/decreasing the
bedrock geometry resolution during the mesh adaptation makes the problem different from a
mathematical point of view. The impact of the bedrock description on real ice sheet numerical
modeling is addressed in some works (e.g., [38, 106]). Although numerical models could be
more sensitive to bed resolutions on coastal areas [38], small topographic features can cause
significant differences in dynamic response in decadal-scale simulations [106]. We are not
addressing this analysis in this work, Despite component (3), we suspect that criterion (c) should
work properly to reduce the others components, (1) and (2).

We define the adaptive mesh refinement criterion used based on binary flags θ (= 0 or 1):



θgl = 1 : use element distance to the GL
θτ = 1 : use ZZ error estimator for τ
θH = 1 : use ZZ error estimator for H

. (3.39)

We propose Algorithm 2, inspired by [33], to execute the refinement and coarsening processes
under different criteria (AMR core, step ’e.1’ in Algorithm 1). The first 3 steps in Algorithm 2
compute the criterion according to the binary flags, θ, defined above. These steps are performed
in parallel. Step ’4’ verifies, for each element in the mesh, if it should be refined: its distance to
the grounding line and its ZZ error estimators are compared with prescribed limits (thresholds).
The element is refined if at least one of the thresholds is exceeded, so long as its level of refinement
is less than the maximum level chosen by the user. This logical operation is performed by the
operator ‘or’ in the statement ‘if’ in step ’4’. Once an element is refined, it is identified as a
group. Step ’5’ verifies for each group if it should be coarsened. To be coarsened, a group
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should meet all thresholds; the logical operator used in this case is ‘and’ (statement ‘if’ in step
’5’). Algorithm 2 has two sets of thresholds (shown with max), for elements and for groups of
elements. For the algorithm to work properly, these sets of thresholds should be defined such
that (following [33]): χmax

g
< χmax

e , where χ represents the threshold, g refers to group of
elements, and e refers to elements.

The generic form of the ZZ [161] error estimator ǫ (e) for a given element e is:

ǫ (e) =
[∫
Ωe

(
∇u∗N − ∇uN

)2
dΩe

]1/2
, (3.40)

where Ωe is the domain of the element e, ∇uN is the gradient of the finite element solution uN

and ∇u∗
N

is the smoothed recovery gradient, calculated on the element e as:

∇u∗N =
s∑

i=1

∇u∗N, iΦi , (3.41)

and

∇u∗N, i =
1

Wi

k∑
j=1

w j∇uN, j , (3.42)

whereΦi is the ith P1 Lagrange shape function on element e, s is the number of shape functions
of the element e (for triangular elements, s = 3), j is the jth element connected to the vertex i, k

is the number of elements connected to vertex i, w j is the weight relative to the element j and Wi

is the sum of all weights for the vertex i. Here, the weights w are defined as the geometric area
of the triangular elements. Figure 3.11 presents the gradient (derivative) of the analytic solution
of problem A.1 (see Appendix A), the gradient of the solution from the finite element method
and the recovery gradient, based on expressions 3.41 and 3.42. The ZZ error estimator uses the
recovery gradient as an estimate of the ‘true’ unknown gradient, and compares it with the gradient
obtained from the finite element solution; the higher is the difference between the FEM gradient
and the recovery gradient, the higher is the estimator. In fact, we can note through Figure 3.11
that the recovery gradient is a ‘good’ approximation of the analytic gradient solution, giving a
reasonable estimation of the ‘true’ error. Although possessing several attractive features, there
are some drawbacks in the ZZ error estimator. An interesting discussion is found in [2, p.82]
and in [60].

The implementation of the ZZ error estimator for the deviatoric stress tensor (τ) is written
in a vectorized form, i.e., for SSA we have ∇u → ®τ =

[
τxx τyy τxy

]
⊺

. For the ice thickness,
we have u = H. In practice, our ZZ estimator for the deviatoric stress takes into account the
gradient of the velocity field multiplied by the non-linear viscosity, which in its turn depends on
the gradient of the velocity field (see Section 2.5).
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Figure 3.9: Geometric representation of the unit circle using different mesh resolutions.

Figure 3.10: Example of mesh refinement using the coarse representation of the unit circle.



73

Algorithm 2 AMR core: refinement criteria calculation, refinement and coarsening processes.
e = element. g = group of elements that are nested and derived from a refined element. L (e) =
level of refinement of the element e. Lmax = maximum level of refinement. Rmax = maximum
threshold for element/group distance to the grounding line. ǫmax = maximum threshold for
element/group error estimator (thickness/deviatoric stress). θ = binary flags that define the
criteria.
1. if θgl = 1,

then compute element and group distances to the grounding line, Rgl (e) and Rgl (g).
2. if θτ = 1,

then compute element and group deviatoric stress error estimators, ǫτ (e) and ǫτ (g).
3. if θH = 1,

then compute element and group thickness error estimators, ǫH (e) and ǫH (g).
4. for each element e such that L (e) < Lmax , do:

if
[
Rgl (e) < θgl · Rmax

gl,e

]
or if

[
θτ · ǫτ (e) > ǫmax

τ,e

]
or if

[
θH · ǫH (e) > ǫmax

H,e

]
,

then refine e.
5. for each group g, do:

if
[
Rgl (g) > θgl · Rmax

gl,g

]
and if

[
θτ · ǫτ (g) < ǫmax

τ,g

]
and if

[
θH · ǫH (g) < ǫmax

H,g

]
,

then coarsen g.
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Figure 3.11: Comparison of gradients (exact gradient, FEM gradient, and recovery gradient)
of the boundary-value problem A.1. The FEM gradient is given by the derivative of uN (x),
Eq. A.34. Here, in this example, ∇ ≡ d/dx.
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Chapter 4

Results

4.1 Introduction

We describe the numerical experiments used to assess the implementation of adaptive mesh
refinement in ISSM. We compare the grounding line positions obtained with both uniform and
adaptive meshes. The results from adaptive meshes should be as close as possible (within
an acceptable tolerance) to those obtained from uniformly refined mesh, for the same level
of refinement applied in both meshes. This comparison is an indicator of the adaptive mesh
refinement performance. We run two different numerical experiments to assess our implemen-
tation. The first experiment is based on the Marine Ice Sheet Model Intercomparison Project
3D, MISMIP3d1. The second experiment is the MISMIP+, part of the Marine Ice Sheet-Ocean
Model Intercomparison Project, MISOMIP2.

4.2 MISMIP3d

The MISMIP3d experiment [118] is a similar initiative to the Marine Ice Sheet Model Intercom-
parison Project, MISMIP3, a previous project with the purpose to evaluate numerical models
along a flowline (xz-plane). MISMIP3d adds the y-axis to the physical domain, incorporating
complexity in the ice flux through the buttressing effect during the perturbation phase of the
experiment. The purpose of these experiments is to assess the reversibility of numerical models
in terms of grounding line migration, as prescribed by the boundary layer theory [137, 136].

The bedrock elevation has a constant slope given by:

r(x, y) = −100 − x, (4.1)

where r (m) is the bedrock elevation, being positive if above sea level, and x (km) is the horizontal
coordinate. The domain (xy-plane) is rectangular (800 × 50 km) and the ice flux occurs in the

1http://homepages.ulb.ac.be/ fpattyn/mismip3d/
2http://www.climate-cryosphere.org/activities/targeted/misomip
3http://homepages.ulb.ac.be/ fpattyn/mismip/welcome.html
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x-direction. The boundary conditions are defined as:

ux = 0 at x = 0 km;

uy = 0 at y = 0 km;

uy = 0 at y = 50 km;

4µ
∂ux

∂x
=

ρgH2

2ρw
(ρw − ρ) at x = 800 km.

(4.2)

The default physical parameters are defined in Table 4.1. The friction model considered is
the Weertman-type law, Eq. 2.75.

Table 4.1: Physical parameters used in MISMIP3d [118].

Parameter Symbol [unit] Value

ice density ρ [kg/m3] 900
water density ρw [kg/m3] 1000
gravitational acceleration g [m/s2] 9.8
Glen’s law exponent n 3
Glen’s law coefficient A [Pa−3s−1] 10−25

bed friction exponent* m 1/3
bed friction coefficient* C [Pa m−1/3s1/3] 107

surface mass balance Ûms [m/yr] 0.5
seconds per year [s/yr] 31, 536, 000

*Considering a Weertman-type friction law (Eq. 2.75).

The numerical experiment consists of 3 phases: steady state (Stnd), basal sliding perturbation
(P75S) and basal sliding restoring (P75R). The Stnd phase is initialized with a constant 10 m-
thick ice shelf, and runs forward in time until a steady state is reached (which occurs after
∼ 30, 000 yr). The P75S phase starts from the steady state geometry obtained in Stnd, and runs
forward in time for 100 yr with a bed friction coefficient perturbation C∗ defined as:

C∗
= C

{
1 − a exp

[
−(x − xb)2

2x2
c

− (y − yb)2
2y2

c

]}
, (4.3)

where a = 0.75, xb is the grounding line position at y = 0 km obtained from Stnd, yb = 0 km,
xc = 150 km and yc = 10 km. The P75R phase starts at the end of P75S, and the bed friction
coefficient is restored to the original value; then, the model runs forward in time until a steady
state is reached (after ∼ 30, 000 yr).

We investigate the effect of the refinement criteria based on the element distance to the
grounding line, Rgl , as defined in Section 3.9. Three different distances are used for comparison:
Rgl = 5, 10, and 15 km. The adaptive meshes generated by these criteria are labeled as AMR R5,
AMR R10, and AMR R15, respectively. Table 4.2 summarizes the criteria used in MISMIP3d.
The coarse resolution, common for all uniform and adaptive meshes, is equal to 5 km. We refine
up to 3 levels of refinement, and the corresponding mesh resolutions are 2.5 km (1 level), 1.25 km
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(2 levels), and 0.625 km (3 levels). Table 4.3 summarizes the correspondence between level of
refinement and mesh resolution. We use both Bamg and NeoPZ to run the Stnd experiments.
For the perturbation experiments, P75S and P75R, we use only Bamg.

Table 4.2: Refinement criteria used in MISMIP3d.

Label Criterion

AMR R5 distance of 5 km to GL
AMR R10 distance of 10 km to GL
AMR R15 distance of 15 km to GL

GL=grounding line.

Table 4.3: Level of refinement and mesh resolution used in MISMIP3d.

Level Label Resolution

0 (CM) L0 5 km

1 L1 2.5 km

2 L2 1.25 km

3 L3 625 m

CM=coarse mesh.

In addition, we investigate the sensitivity of adaptive mesh refinement to different grounding
line parameterizations into the elements, as implemented in ISSM [138]. We test three different
sub-element parameterizations (SEPs): NSEP, SEP1, and SEP2 (see Section 3.5). Figure 4.2
presents the grounding line positions at steady state condition (Stnd experiment) for different
meshes and sub-element parameterizations as a function of number of elements. The refinement
criterion used is the element distance to the grounding line, Rgl (see Section 3.9). Grounding line
positions obtained with uniformly refined meshes are also shown in Figure 4.2. The grounding
line positions and the ice volume above floatation (VAF4) as a function of mesh resolutions are
present in Figure 4.1. For NSEP, the grounding line position varies between 200 km and 520 km

for meshes L0 (coarse mesh) and L3, respectively. For these same meshes, the grounding line
position varies between 620 km and 600 km for SEP1, and 550 km and 600 km for SEP2. The
boundary layer theory [136] predicts a grounding line position at ∼ 606.8 km.

We note that grounding line positions obtained with NeoPZ are similar to the ones produced
with uniformly refined mesh. This holds for all sub-element parameterizations and values of
Rgl . Adaptive mesh refinement using Bamg is more sensitive to NSEP, for which grounding
line positions depend on the Rgl chosen, especially for the lower refinement level (level equal to
1). Nevertheless, grounding line positions from adaptive meshes using Bamg are in agreement
with uniformly refined meshes for SEP1 and SEP2. Table 4.4 summarizes the ratio between
the number of elements for adaptive and uniformly refined meshes using NeoPZ and Bamg (in
parentheses). Virtually, adaptive meshes using NeoPZ and Bamg have the same computational
cost. For example, for the level of refinement equal to 3 (L3), the number of elements in adaptive
meshes represents 4% (3%) to 7% (6%) of the number of elements present in uniformly refined
meshes, depending on the Rgl value.

4The ice volume above floatation is the ice volume that contributes to sea level rise [17].
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Figure 4.2: Grounding line (GL) position convergence in terms of number of elements, for three
sub-element parameterizations: NSEP, SEP1, and SEP2. Both uniform and adaptive meshes
are shown. Three levels of refinement are shown: L1, L2, and L3.
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The grounding line positions at the end of the friction perturbation experiments (P75S
and P75R) are present in Table 4.5. The grounding line positions at the end of the steady
state phase (Stnd) is also shown. We use Bamg and SEP1 in the P75S and P75R phases.
Based on the boundary layer theory [136], the grounding line positions at the end of Stnd
and P75R experiments should be the same, since a unique solution is expected in a bedrock
shape like MISMIP3d [136, 119, 118]. Therefore, we should expect a reversibility behavior
in the grounding line movement. Through Table 4.5, we note the grounding line reversibility
is virtually obtained for all refinement criteria used, for all levels of refinement. For AMR
R5 meshes, there is a small difference between Stnd and P75R, even for the highest level of
refinement. Figures 4.3 and 4.4 show the grounding positions at the end of Stnd, P75S and
P75R. The adaptive meshes at the end of P75S are also shown, as well as the ice velocity.

We also perform the experiments using the ZZ error estimator calculated for the deviatoric
stress tensor. Figures 4.5 show the grounding line positions at the end of Stnd, P75S and P75R,
as well as the adapted mesh at the end of P75S. The thresholds for element/group used are,
respectively, ǫmax

τ,e = 0.03ǫmax
τ and ǫmax

τ,g = 0.001ǫmax
τ , where ǫmax

τ is the maximum estimated
error observed at the end of Stnd using the coarse mesh. We note that the reversibility in the
grounding line movement is achieved, although a small difference is observed between Stnd
and P75R. We suspect that this difference could be reduced by adjusting (‘tightening’) the error
thresholds.

Table 4.5: Grounding line positions (km) at the end of the Stnd, P75S and P75R experiments
using Bamg and SEP1. Positions at y = 0 km and at y = 50 km

Level Criteria Stnd P75S P75R Stnd P75S P75R
y = 0 km y = 50 km

L1 AMR R5 609.3 619.6 609.1 609.4 603.4 609.0
L1 AMR R10 610.4 620.7 607.0 610.7 604.7 607.3
L1 AMR R15 607.3 617.8 607.3 607.2 601.1 607.2

L2 AMR R5 604.8 615.3 604.3 605.0 599.8 604.4
L2 AMR R10 604.1 614.2 603.8 603.9 597.8 603.8
L2 AMR R15 605.4 615.3 605.3 605.2 599.1 605.1

L3 AMR R5 604.2 614.5 603.9 604.2 598.1 603.8
L3 AMR R10 604.2 614.2 604.2 604.1 598.0 604.2
L3 AMR R15 604.7 614.7 604.7 604.8 598.5 604.8
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Figure 4.3: Adaptive meshes for the P75S experiment with level of refinement equal to 2 (L2)
and different values of Rgl : R5, R10, and R15. Blue line: grounding line at the end of P75S.
Red line: grounding line at the end of P75R. Black line: grounding line at the end of Stnd.
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Figure 4.4: Adaptive meshes for the P75S experiment with level of refinement equal to 3 (L3)
and different values of Rgl : R5, R10, and R15. Blue line: grounding line at the end of P75S.
Red line: grounding line at the end of P75R. Black line: grounding line at the end of Stnd.
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Figure 4.5: Adaptive meshes for the P75S experiment with levels of refinement equal to 2 (L2,
top) and 3 (L3, bottom) using the ZZ error estimator for the deviatoric stress tensor. Blue line:
grounding line at the end of P75S. Red line: grounding line at the end of P75R. Black line:
grounding line at the end of Stnd.
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4.3 MISMIP+

The MISOMIP [7] project is an effort of the Climate and Cryosphere5, a core project of the
World Climate Research Programme6, an international organization that coordinates global
climate research. The MISOMIP initiative aims to design idealized numerical setups based on
the West Antarctic Ice Sheet, and to compare the behavior of different ice sheet-ocean models in
terms of grounding line dynamics and ice discharge induced by ocean-melting forcing. Recent
observations show strong correlation between the grounding line retreat and warmer ocean
circulations in WAIS region (e.g., [78, 84, 140]), and future projections of sea level rise due to
WAIS depend on ice sheet models coupled with ocean models.

The MISOMIP program is based on three model intercomparison projects (MIPs): an
updated version of the Ice Shelf-Ocean Model Intercomparison Project (ISOMIP+), a third
version of the Marine Ice Sheet Model Intercomparison Project (MISMIP+), and the first
version of the Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP). Here, we
focus only in MISMIP+, where the melting induced by the ocean is parameterized within the
ice sheet model.

The MISMIP+ bedrock elevation is defined as:

r(x, y) = max
(
rx(x) + ry(y), rdeep

)
, (4.4)

with:

rx(x) = r0 + r2

( x

x̄

)2
+ r4

( x

x̄

)4
+ r6

( x

x̄

)6
,

ry(y) =
d

1 + exp
[
−2(y − Ly/2 − wc)/ fc

] + d

1 + exp
[
2(y − Ly/2 + wc)/ fc

] ,
(4.5)

where r (m) is the bedrock elevation (positive if above sea level), x (km) and y (km) are the
horizontal coordinates, rdeep = −720 m, r0 = −150.0 m, r2 = −728.8 m, r4 = 343.91 m,
r6 = −50.57 m, x̄ = 300 km, d = 500 m, Ly = 80 km, wc = 24 km, and fc = 4 km. The domain
is rectangular (640 × 80 km) and the ice flux occurs in the x-direction. The bedrock is designed
to induce strong buttressing through lateral stress (on the ice shelf) such that the grounding
line stabilizes on the bed part with retrograde slope. Figure 4.6 shows the MISMIP+ bedrock
elevation. The boundary conditions are defined as:

ux = 0 at x = 0 km;

uy = 0 at y = 0 km;

uy = 0 at y = 80 km;

4µ
∂ux

∂x
=

ρgH2

2ρw
(ρw − ρ) at x = 640 km.

(4.6)

5CliC, http://www.climate-cryosphere.org
6WCRP, https://www.wcrp-climate.org
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Figure 4.6: Bedrock elevation used in the MISMIP+ experiments.

The physical parameters are presented in Table 4.6. The friction model is the Weertman-type
law, Eq. 2.75. The basal melting Ûmb is parameterized as:

Ûmb = Ûmb0 tanh

(
Hc

Hc0

)
max (b0 − b, 0) , (4.7)

where Ûmb0 is the melt-rate factor, Hc is the ocean-cavity thickness (Hc = b − r), Hc0 is the
reference thickness, b is the ice base (negative if below sea level), and b0 is the depth above
which the melt is zero.

It is important to emphasize that the MISMIP+ bed elevation (Figure 4.6) is calculated
directly in code every time AMR core is called (step ’e.5’, Algorithm 1). This procedure avoids
excessive smoothing of complex bedrock features in refined regions.

The MISMIP+ experiment consists of three phases with different basal melting: Ice0, Ice1
and Ice2, being Ice0 a control simulation, and Ice1 and Ice2r are divided in Ice1r, Ice1ra, Ice1rr
and Ice2r, Ice2ra, Ice2rr, respectively. All these phases start from a steady state condition (Stnd),
which is reached with no basal melting ( Ûmb = 0). This steady state condition is characterized
by a grounding line position stabilized on a retrograde bed slope at the center of the channel
(y = 40 km). The steady state is reached after 20, 000 yr starting from a 100 m-thick ice
stream. Table 4.7 summarizes the experimental phases. The Ice1r experiment induces the loss
of buttressing7 by basal melting applied on the ice shelf (Eq. 4.7). Both Ice1ra and IceIrr start
from the end of Ice1r, but in Ice1ra the basal forcing is turned off, while in Ice1rr the basal
forcing is kept on. The decrease of buttressing is also considered in Ice2r experiment, where
an extensive ‘calving event’ is simulated by a basal ice shelf melt-rate of 100 m/yr applied at
x > 480 km. Similar to Ice1, both Ice2ra and Ice2rr start from the end of Ice2r: in Ice2ra, the
basal forcing is turned off; in Ice2rr, the forcing is kept on.

7The basal melting produces thinning of the ice shelf, which reduces the buttressing.
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Table 4.6: Physical parameters used in MISMIP+ [7].

Parameter Symbol [unit] Value
ice density ρ [kg/m3] 918
water density ρw [kg/m3] 1028
gravitational acceleration g [m/s2] 9.81
Glen’s law exponent n 3
Glen’s law coefficient A [Pa−3s−1] 6.338 × 10−25

bed friction exponent* m 1/3
bed friction coefficient* C [Pa m−1/3s1/3] 3.160 × 106

surface mass balance Ûms [m/yr] 0.3
seconds per year [s/yr] 31, 556, 926
melt-rate factor Ûmb0 [yr−1] 0.2
depth above which the melt is zero b0 [m] −100
reference ocean-cavity thickness Hc0 [m] 75
*Considering a Weertman-type friction law (Eq. 2.75).

Table 4.7: Phases of MISMIP+ [7].

Phases Basal melting ( Ûmb) Description
Ice0 no 100-year control simulation
Ice1r as given by Eq. 4.7 100-year with melt-induced retreat
Ice1ra no 900-year simulation from the end of Ice1r
Ice1rr as given by Eq. 4.7 900-year simulation from the end of Ice1r
Ice2r 100 m/yr for x > 480 km 100-year with ‘calving event’
Ice2ra no 900-year simulation from the end of Ice2r
Ice2rr 100 m/yr for x > 480 km 900-year simulation from the end of Ice2r

As performed in MISMIP3d experiments, we also investigate the sensitivity of the grounding
line position to refinement criteria based on the element distance, Rgl . We choose element
distances equal to Rgl = 5, Rgl = 15, and Rgl = 30 km, and the respective meshes are labeled
as AMR R5, AMR R15, and AMR R30. Table 4.8 summarizes the criteria used in MISMIP+.
The coarse mesh resolution, common for all uniform and adaptive meshes, is equal to 4 km.
Here, we refine up to 4 levels of refinement, and the corresponding mesh resolutions are 2 km

(1 level), 1 km (2 levels), 0.5 km (3 levels), and 0.25 km (4 levels). Table 4.9 summarizes
the correspondence between level of refinement and mesh resolution. We use both Bamg and
NeoPZ to run the Stnd experiments. For the perturbation experiments (see Table 4.7), we use
only Bamg.

The MISMIP+ bed topography is designed to induce a strong buttressing on the ice stream
from the confined ice shelf. It is therefore expected that the results are more sensitive to the
mesh refinement compared to simpler bedrock descriptions (e.g., MISMIP3d), since refining
the mesh also improves the resolution of the bedrock geometry (valid only for MISMIP+).
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Table 4.8: Refinement criteria used in MISMIP+.

Label Criterion
AMR R5 distance of 5 km to GL
AMR R15 distance of 15 km to GL
AMR R30 distance of 30 km to GL
AMR ZZ ZZ error estimator for τ
GL=grounding line. τ=deviatoric stress tensor.

Table 4.9: Level of refinement and mesh resolution used in MISMIP+.

Level Label Resolution

0 (CM) L0 4 km

1 L1 2 km

2 L2 1 km

3 L3 500 m

4 L4 250 m

CM=coarse mesh.

Figure 4.8 presents the coarse mesh and three examples of adaptive meshes obtained with
Bamg and NeoPZ and different criteria: element distance to the GL, Rgl (= 5 km, R5) and error
estimator ZZ (see Table 4.8). The figure also shows the grounding line positions obtained with
these meshes and with the most refined uniform mesh (250 m resolution). Figure 4.8 provides
an example of a case for which the grounding line position remains resolution dependent and
refinement criterion dependent. We can note that, using the same criterion based on the element
distance to the grounding line (meshes R5), Bamg and NeoPZ produce different meshes, as
expected. For Bamg, the mesh transition zone between the lowest and highest resolution
is smoother than NeoPZ’s mesh, since the resolutions in NeoPZ are obtained stepwise by
nested elements. In Figure 4.8, at the center of the domain (y = 40 km), the grounding line
position differs by 12 and 13 km between the most refined uniform mesh and the adaptive meshes
generated by Bamg and NeoPZ, respectively. Between the coarse mesh and the adaptive meshes,
the grounding line position differs by about 10 km (for both Bamg and NeoPZ). When the ZZ
criterion is used, the grounding line positions differ by 6 km (17 km) in comparison with the one
obtained from the most refined uniform mesh (coarse mesh). Figure 4.13 shows the grounding
line positions at the beginning and end of the Ice1r phase for different meshes: coarse mesh,
adaptive meshes (L4 AMR ZZ and L3 AMR R5+ZZ) and uniformly refined mesh (L4). We
note that the grounding line positions obtained with the adapted meshes are in agreement with
those obtained with the most (uniformly) refined mesh.

Figure 4.9 presents a set of results for the grounding line position and ice volume above
floatation (VAF) at steady state (Stnd) as a function of mesh resolution. The evolution of
the grounded area along all the experimental phases is summarized in Figure 4.11, while the
evolution of VAF (Ice1r and Ice1ra phases) is summarized in Figure 4.12. Adaptive mesh
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dependency is visible in Figure 4.9. For mesh adaptivity with NeoPZ, grounding line positions
obtained with AMR R5 differ from the ones produced by AMR R15 and AMR R30. Virtually
AMR R15 and AMR R30 produce the same grounding line positions. For mesh adaptivity
with Bamg, AMR R5 and AMR R15 do not improve the position of the grounding line as the
resolution increases. We can note that the differences of grounding line positions obtained
with mesh adaptivity (with Bamg and NeoPZ) and with uniformly refined meshes are higher in
comparison to MISMIP3d. The same adaptive mesh dependency is observed in the VAF values.

To investigate the possible causes of this adaptive mesh dependency, we perform the adaptive
mesh refinement using the ZZ error estimator calculated for the deviatoric stress tensor, τ

(Table 4.8). The grounding line positions obtained with AMR ZZ are presented in Figure 4.9.
We observe that grounding line positions with AMR ZZ are closer to the ones obtained with
uniform meshes, for all mesh resolutions. To understand this AMR ZZ result, we plot the
spatial distributions of the ZZ error estimator for the coarse and adaptive meshes (using NeoPZ),
as illustrated in Figure 4.10. The ZZ error values are normalized between 0 and 1. For the
coarse mesh, we see in Figure 4.10 that the error estimators calculated for the deviatoric stress
tensor and ice thickness present high values around the grounding line. In particular, for the ice
thickness, the estimator also presents high values in the grounded part of the marine ice sheet,
following the high gradient presents in the side walls of the bedrock (see Figure 4.6). For AMR
R5 meshes, there are high ZZ error values around the refined region. This is not observed when
the refinement criterion used is the ZZ estimator (AMR ZZ), as expected. Using the ZZ criterion
induces an equalization in the spatial distribution of the estimated errors, improving the solutions
(e.g., grounding line position, see Figure 4.9). In terms of efficiency, AMR ZZ generates fewer
elements than AMR R30. At the end of the experiment and for a level of refinement equal to 4
(resolution equal to 250m), using NeoPZ, AMR R30 mesh has 464,712 elements, while AMR
ZZ mesh has 24,428 elements (i.e., only ∼ 5% of the number of elements in AMR R30). In
Figure 4.7 we see the number of elements generated in the adaptive and uniform meshes.
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Figure 4.7: Grounding line (GL) position convergence in terms of number of elements. Both
uniform and adaptive meshes are shown. AMR ZZ H: ZZ error estimator for the ice thickness.
AMR ZZ τ, H: combination of estimators. Mesher used: NeoPZ.
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Figure 4.11: Grounded area evolution along the MISMIP+ phases for different meshes:
coarse mesh (top), adaptive mesh (L3 AMR R5+ZZ, middle) and uniformly refined mesh (L4,
bottom). The MISMIP+ phases are described in Table 4.7. The criterion R5+ZZ means the
combination of the ZZ error estimator (deviatoric stress) and element distance to the grounding
line (Rgl = 5 km, R5). The thresholds used for element/group in the ZZ criterion are, respectively,
ǫmax
τ,e = 0.16ǫmax

τ and ǫmax
τ,g = 0.016ǫmax

τ , where ǫmax
τ is the maximum error value observed in

the coarse mesh. Mesher used: Bamg.
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Figure 4.12: Volume above floatation (VAF) evolution along Ice1r and Ice1ra phases for different
meshes: coarse mesh, adaptive meshes (L4 ZZ and L3 AMR R5+ZZ) and uniformly refined mesh
(L4). The phases are described in Table 4.7. The criterion R5+ZZ means the combination of the
ZZ error estimator (deviatoric stress) and element distance to the grounding line (Rgl = 5 km,
R5). The thresholds used for element/group in the ZZ criterion are, respectively, ǫmax

τ,e =

0.08ǫmax
τ and ǫmax

τ,g = 0.008ǫmax
τ for AMR ZZ, and ǫmax

τ,e = 0.16ǫmax
τ and ǫmax

τ,g = 0.016ǫmax
τ for

AMR R5+ZZ, where ǫmax
τ is the maximum error value observed in the coarse mesh. Mesher

used: Bamg.
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Figure 4.13: Grounding line positions at the beginning and end of the Ice1r phase for different
meshes: coarse mesh, adaptive meshes (L4 AMR ZZ and L3 AMR R5+ZZ) and uniformly
refined mesh (L4). The phase is described in Table 4.7. The description of the refinement
criteria (AMR meshes) are summarized in the legend of Figure 4.12. Mesher used: Bamg.
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4.4 Adaptive mesh refinement time performance

To analyze the AMR performance in terms of computational time, we run the experiment Ice1r
of MISMIP+ [7]. The experiment starts from the steady state condition and runs forward in time
for 100 yr with a basal melt rate applied. The time step is equal to 0.2 yr (computed to fulfill the
CFL condition for the highest resolution mesh). The non-linear SSA equations are solved using
the Picard scheme and the Multifrontal Massively Parallel sparse direct Solver, MUMPS [4, 5].

The purpose of the experiments described here is to assess the computational overhead when
the mesh adaptivity is activated. We initialize all the models using the steady state solution
obtained with the same adaptive mesh (level of refinement and criteria) used to carry out the
Ice1r experiment. This procedure emulates a common modeling practice (e.g., [27, 89]): the
initial conditions are self-consistent with the adaptive mesh, avoiding numerical artifacts during
the transient simulation. All the experiments are run in parallel (16 cores) in a 2x Intel Xeon
E5-2630 v3 2.40 GHz with 64 GB of RAM.

Table 4.10 presents grounding line positions obtained with different meshes at the end of
Ice1r experiment, and the computational time and number of elements required for each mesh,
as well as the criterion used. The levels of refinement are labeled as ’L#’, e.g., L3 means level
3 (see Table 4.9). Considering the grounding line position obtained from the highest resolution
mesh (L4 uniform) as a reference result, we compare the computational cost using uniform
and adaptive meshes to obtain the same result within a deviation of 1.5%. In Table 4.10, only
L3 uniform, L3 AMR R30, L3 AMR ZZ, and L3 AMR R5+ZZ meshes produce this required
accuracy. AMR R30 mesh has at least 25% of the number of elements of the L3 uniform mesh,
which represents virtually 80% of the computational time using the uniform mesh. In terms of
refinement criteria, AMR ZZ generates 20% of the number of elements in comparison to AMR
R30, which means virtually 25% of computational time. Comparing AMR ZZ and L3 uniform,
the computational time using the adaptive mesh represents at least 25% of the computational
time using the uniform mesh. The performance of Bamg and NeoPZ is similar, and the ratio of
computational time and number of elements is virtually equal for both packages.

Figure 4.14 shows the element counts and the solution time for the adaptive meshes nor-
malized against the values for the equivalent uniform meshes. In Figure 4.14, the solution time
curve represents the relative savings due to mesh adaptivity, while the gap between the two
curves (solution time minus element counts) illustrates the overhead due to the adaptive mesh
procedure. We note the mesh adaptivity overhead decreases with the level of refinement and
becomes reasonable for level 2 or higher.
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Table 4.10: AMR time performance comparison for the Ice1r experiment, MISMIP+.

Level CPU time (s) Nb elem. GL pos. (km)

L0 uniform 40 6,780 396.5
L1 uniform 188 27,706 407.0
L2 uniform 857 107,722 411.9
L3 uniform 1,705 473,446 416.0
L4 uniform 9,035 1,780,012 419.0
L3 AMR R5 498 33,794 405.2
L3 AMR R30 1,376 110,332 413.7
L3 AMR ZZ 369 21,088 415.7
L3 AMR R5+ZZ 807 56,267 413.7

Level = level of refinement. Nb elem. = number of elements.

GL pos. = grounding line position at the end of the Ice1r experiment,

MISMIP+. Mesher used: Bamg.

AMR R5+ZZ = combination of the criteria ZZ error estimator

(deviatoric stress tensor) and element distance to the GL (Rgl = 5 km, R5).

The thresholds for element/group used in the ZZ criterion

are, respectively, ǫmax
τ,e = 0.16ǫmax

τ
andǫmax

τ,g = 0.016ǫmax
τ

for AMR ZZ,

and ǫmax
τ,e = 0.48ǫmax

τ
andǫmax

τ,g = 0.08ǫmax
τ

for AMR R5+ZZ,

where ǫmax
τ

is the maximum error value observed in the coarse mesh.
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Figure 4.14: Number of elements and CPU time for adaptive meshes using the ZZ error
estimator (AMR ZZ). The number of elements and CPU time are normalized by the respective
values of the uniformly refined meshes. The normalized CPU time curve represents the mesh
adaptivity savings, while the difference between the two curves represents the adaptive mesh
procedure cost. Mesher used: Bamg. The thresholds for element/group used in the AMR
ZZ are, respectively, ǫmax

τ,e = 0.64ǫmax
τ and ǫmax

τ,g = 0.32ǫmax
τ for L1, ǫmax

τ,e = 0.24ǫmax
τ and

ǫmax
τ,g = 0.08ǫmax

τ for L2, ǫmax
τ,e = 0.16ǫmax

τ and ǫmax
τ,g = 0.016ǫmax

τ for L3, ǫmax
τ,e = 0.048ǫmax

τ and
ǫmax
τ,g = 0.0064ǫmax

τ for L4, where ǫmax
τ is the maximum error value observed in the coarse mesh.



96

4.5 Discussion: MISMIP3d and MISMIP+ results

In this work, we describe the implementation of an adaptive mesh refinement approach in the
Ice Sheet System Model (ISSM) as well as the performance of our implementation in terms
of accuracy of the simulated grounding line position and simulation time. We investigate the
adaptive meshes performance using a heuristic criterion based on the distance to the grounding
line [27, 39, 57, 62], and we compare with an error estimator (ZZ, [161]) based on the a posteriori
analysis of the transient solutions (e.g., [27, 57, 62]).

We rely on two different mesh generators, Bamg [66] and NeoPZ [34], that have different
properties. It is therefore expected that their solutions are not identical. This explains the
difference observed in the grounding line positions compared to uniform meshes for the three
sub-element parameterizations (e.g., the MISMIP3d setup, Figure 4.1).

NeoPZ generates nested meshes, which reduces errors in the interpolation step and is useful
to assess mesh adaptivity performance in comparison to uniformly refined mesh. Bamg’s
algorithm works differently: the fact that some vertices’ positions change produces at least two
side effects: (1) induced errors in the interpolation process; (2) positive or negative impact on
the convergence of the solutions. The weight of the first side effect can be reduced using higher
element distance to the grounding line (Rgl), for which the highest resolution is applied, and
increasing the length of the mesh transition zone between fine and coarse elements. Higher-order
interpolative schemes can be also used, as pointed out by Goldberg and colleagues [57], to avoid
solution diffusion. In ISSM, the interpolation scheme is carried out by P0 and P1 Lagrange
polynomials, and we suspect these are enough for our adaptive mesh procedure. The weight of
the second side effect depends on the problem considered. We suspect that for grounding line
dynamics this effect has overall a positive impact, once updating vertex positions is somewhat
similar to the moving mesh technique, although the grounding line is not explicitly defined in
our approach as in other studies (e.g., [153]). This argument is based on the results shown here,
for both MISMIP3d and MISMIP+ setups. Some mesh packages and finite element libraries
related to NeoPZ are Deal II [13], Hermes [154], libMesh [87], and HP90 [32]. Mesh generators
related to Bamg are MMG [29], Yams [46], and Gmsh [52]. Then, we expect that the results
shown in this work would be reproduced with these related packages.

The results from MISMIP3d suggest that, independently of the sub-element parameterization
and refinement level, refining elements within a 5 km region with highest resolution around the
grounding line is enough to generate solutions (grounding line position and grounding line
reversibility) similar to the ones produced by uniformly refined meshes. This holds for Bamg
and NeoPZ (Figure 4.1). Cornford and colleagues [27] presented similar results for MISMIP3d
using SSA equations through BISICLES, a finite-volume-based ice sheet model. Based on the
MISMIP3d experiment, they concluded that refining four cells on either side of the grounding
line was enough to achieve results similar to uniform meshes for all levels of refinement. Here,
the grounding line reversibility is also achieved by applying the ZZ error estimator.

For MISMIP+, a minimal distance of 30 km for the highest resolution around the grounding
line is necessary to accurately capture the grounding line position (Figure 4.9). Nevertheless,
there is a residual between grounding line positions from adaptive and uniform meshes. This
adaptive mesh dependency can be explained by the bed topography of MISMIP+ (Figure 4.6);
the high gradient in the side walls induces numerical errors on the gradients of the velocity
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field (deviatoric stress tensor, near the grounding zone) and ice thickness (on grounded ice), as
illustrated by the spatial distribution of the a posteriori error estimator used here (Figure 4.10).
For the MISMIP3d setup, the highest values of the error estimate concentrate only around the
grounding line, which explains why a few kilometers of high resolution near the grounding line
improve its position.

Figures 4.1 and 4.9 present a picture of the impact of mesh resolution in integrated quantities
like the ice volume above floatation (VAF). The VAF curves follow the grounding line position
behavior, presenting the same adaptive mesh dependency in the MISMIP+ setup. Therefore,
the accuracy of VAF depends on the accuracy of the grounding line dynamics. Since VAF
changes represent potential sea level rise, we highlight that the grounding line movement should
be accurately tracked in ice sheet models. This is illustrated in Figures 4.11 and 4.12, where
the evolution of the grounded area and VAF along the MISMIP+ experiments are shown,
respectively. The amount of changes on these integrated quantities depends on the mesh
resolution.

Since numerical errors are not only concentrated near the grounding line for the MISMIP+
setup, an error estimator is likely more appropriate to understand the error structure of the
problem, to guide the refinement and to reduce the error estimates along the domain, improving
AMR performance. This explains why a simple test with the AMR ZZ produces better conver-
gence with much fewer elements than mesh adaptivity based on the heuristic criterion (element
distance to the grounding line, Figure 4.9). Related works have used proxies of error estimators:
Goldberg et al. (2009, [57]) used the jumps in strain rate between adjacent cells; Gudmundsson
et al. (2012, [62]) used the second derivative of the ice thickness; Cornford et al. (2013, [27])
used the Laplacian of the velocity field, and Gillet-Chaulet et al. (2017, [53]) used the estimator
proposed by Frey and Alauzet (2005, [47]), whose metric is based on a priori interpolation
error calculated by the field’s Hessian matrix (second derivative). The ZZ used here is a true a
posteriori error estimator based on the recovered gradient [2], widely used in the finite element
community [3, 60] and suitable to be implemented in ice sheet models, including those based
on finite volumes or finite differences. As the MISMIP+ bed geometry is more realistic than
MISMIP3d, we can expect similar results for real glaciers, i.e., high numerical errors present in
regions not necessarily adjacent to the grounding line.

Further analysis with ZZ or another error estimator should be developed to improve the
mesh adaptivity criterion used in ice sheet modeling. An important issue to be investigated is
the interpolation of real bed topography directly from a dataset every time the mesh is adapted.
This interpolation increases bed resolution according to mesh adaptation, which reduces the
smoothness of the bed in the model (since real beds are not necessarily smooth). The reduction
of the bed smoothness induces some numerical errors and counterbalances the effect of mesh
adaptation, increasing adaptive mesh dependency. Real bed topographies should be analyzed in
benchmark models as well as in real ice sheet domains. Our current adaptive mesh refinement
implementation interpolates the bed elevation from the coarse mesh, except for the MISMIP+
experiment, for which we hard-coded the calculation of the bed topography directly in the code
(in this case, the adaptive mesh approach reduces the smoothness of the bed in the model, but as
there is no small-scale bed topography, the numerical error based on the ZZ error estimator for
the ice thickness is reduced). The interpolation from a dataset will be implemented in ISSM in
the future. Based on this discussion and the results shown in this study, we recommend adaptive
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Table 4.11: AMR criteria comparison for MISMIP+ experiment.

Level Criteria GL pos. (km) Nb elem.
L0 (coarse mesh) 435.6 6,780
L1 AMR ZZ 446.8 15,864
L1 AMR R5+ZZ 446.7 15,976
L1 Uniform 447.0 27,120
L2 AMR ZZ 452.6 20,891
L2 AMR R5+ZZ 452.2 22,692
L2 Uniform 451.9 108,480
L3 AMR ZZ 455.3 21,936
L3 AMR R5+ZZ 455.6 42,617
L3 Uniform 456.3 433,920
L4 AMR ZZ 455.8 24,428
L4 AMR R5+ZZ 455.4 192,149
L4 Uniform 459.0 1,735,680
Level = level of refinement. GL pos. = grounding line position

at the end of the experiment. Nb elem. = number of elements.

AMR R5+ZZ = combination of the criteria ZZ error estimator

(deviatoric stress tensor) and element distance to the

grounding line (Rgl = 5 km, R5). Mesher used: NeoPZ.

The thresholds used in the ZZ criterion are described in the

legend of Figure 4.9.

mesh refinement with the combination of the heuristic criterion (using a minimal distance,
e.g., 5 km) with an associated error estimator. Our recommendation is based on the following:
we know a priori that applying high resolution around the grounding line would reduce the
error caused by the basal friction discretization within the elements. In fact, applying only an
error estimator does not guarantee that the elements around the grounding line are refined until
the highest (desired) resolution. We noted this for the MISMIP+ setup (see the last mesh in
Figure 4.8). On the other hand, only imposing fine mesh resolution near the grounding line does
not ensure that the grounding line position is correctly captured because the extension of the
grounding zone [136] depends on the physical parameters of the ice sheet. Interestingly, for the
MISMIP+ setup, the combination of the heuristic criterion with the ZZ error estimator (AMR
R5+ZZ) and the AMR ZZ produce similar results (as shown in Table 4.11), which does not
guarantee that it would be the case for real ice sheets. Therefore, for real ice sheets, we suspect
that using both criteria (R5+ZZ) should work properly (also, see Figure 4.12; R5+ZZ generates
∆VAF evolution similar to ones produced by the most refined mesh, L4 uniform). Tests varying
AMR parameters (distance to the grounding line, maximum thresholds for the error estimator,
level of refinement, etc.) should be carried before any ice sheet simulation to optimize the mesh
adaptivity performance in terms of both solutions and computational time.

The grounding zone is not the only place where adaptive meshes can be applied. Ice front
and calving dynamics [149] as well as shear margins in ice streams [64] are examples for which
adaptive meshes can improve numerical solutions with reduced computational efforts. In ISSM,
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the mesh adaptivity can be applied to these regions through extension of Algorithm 2. Other
experiments testing the adaptive mesh approach to refine in the ice front region show promising
results [132].

Our mesh adaptivity performance analysis shows that the computational time in adaptive
mesh refinement simulations reaches up to 1 order of magnitude less in comparison to models
based on uniformly refined meshes. Computational time and solution accuracy of mesh adap-
tivity depend on the physical problem and the refinement criterion used. In this work, even with
hundreds of elements generated (e.g., meshes AMR R30), the computational time is satisfactory.
This is observed for both NeoPZ and Bamg. Further analysis should be carried out to check the
performance in real ice sheets and in higher computational scale (thousand of elements), but the
results presented in this study suggest that our adaptive mesh refinement implementation strategy
is adapted to the modeling questions being investigated. Our mesh adaptivity computation time
compares to Cornford et al. (2013, [27]), in which adaptive mesh refinement simulations spent
approximately one-third of CPU time needed in simulations performed by uniformly refined
meshes.
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Chapter 5

Conclusions and future works

We implemented dynamic mesh adaptivity into ISSM and tested its performance on two different
experiments with different refinement criteria. The comparison between Bamg and NeoPZ
shows that they present similar performance, and the choice of which to be used is up to the user.
Moreover, users using Bamg (or similar mesh generator) should pay attention in the minimal
extension of the mesh transition zone to reduce numerical errors (e.g., in the interpolation step).
NeoPZ (or similar package) is more suitable with error estimators, since the refinement of
elements with high numerical errors is straightforward. Besides that, there is no error during the
interpolation step. Based on the adaptive mesh sensitivity observed here, we conclude that mesh
adaptivity in marine ice sheet simulation without an error estimator should be avoided, mainly
in setups where bedrock induces complex stress distributions and/or strong buttressing. In real
bedrock topographies, where small scale features may play an important role, an error estimator
is suitable to guide the adaptive mesh refinement. Further research should be carried out in
order to evaluate mesh adaptivity performance in real bed geometries. Our recommendation to
improve the adaptive mesh refinement performance while minimizing computational effort is
the combination of the heuristic criteria, applying a minimal distance around the grounding line
(e.g., 5 km), with an error estimator. The numerical experiments performed with the ZZ error
estimator show a significant potential, mostly due to its simple implementation and performance.
The mesh adaptivity technique in ISSM can be extended to others physical processes such that
the evolution of marine ice sheets and, consequently the sea level rise, can be accurately modeled
and projected.

As future works and extensions of this thesis, we write :

1. Numerical modeling of real marine ice sheets (e.g., WAIS) using adaptive meshes;

2. Application of adaptive mesh refinement to other places, like ice front dynamics, ice
stream margins, hydrology, etc;

3. Extension of adaptive mesh refinement to 3D meshes, enabling the use of high order
approximations;

4. Further analysis of the ZZ error estimator in real bedrock topographies and real ice sheets.
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Appendix A

Finite element method: a brief overview

The understanding of many physical problems requires the solution of partial differential equa-
tions that represents, in general, physical laws of conservations (mass, momentum, energy, etc).
The analytical solution of these differential equations is restricted to simple domains and regular
boundary conditions and forces. The solutions on real domains with non-regular boundary con-
ditions and external forces are only obtained using numerical methods, e.g., finite differences,
finite volumes, finite elements, etc. Here, we describe a brief introduction to finite element
method, following the works of [111, 147, 2, 160].

The finite element method is a numerical scheme for obtaining approximate solutions to
boundary-value problems [111, p.1]. In this method, the domain is divided into finite number of
subdomains, the finite elements, and the approximate solution is constructed over these elements
using variational concepts. To illustrate the main idea of the method, we start with a simple
boundary-value problem [111, p.2]:




−u′′ + u = x

0 ≤ x ≤ 1

u(0) = 0

u(1) = 0

, (A.1)

where u′′ = d2u/dx2.
The variational statement (also known as the ‘weak statement’) of problem A.1 is setting as:

find a function u that both the differential equation and the boundary conditions are satisfied in a
‘weak formulation’ (a weighted average). The weak formulation is obtained by multiplying the
differential equation by a test function υ and then integrating it over the domain. For the simple
problem A.1, we have: ∫ 1

0
(−u′′ + u) υ dx =

∫ 1

0
xυ dx (A.2)

The function υ = υ (x) is also referred as ‘weight’ function, and it could be any function
that is well behaved in terms of integrals, that is, the integrals of the weak form A.2 exist1. For
simplicity, we denote the set of such functions by H; we specify that the functions υ ∈ H are

1In fact, the specification of test functions is crucial to the finite element method theory.
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smooth2 and have zero values at x = 0 and x = 1. Then, the complete variational or weak
statement of problem A.1 is: find u such that




∫ 1

0
(−u′′ + u) υ dx =

∫ 1

0
xυ dx

for all υ ∈ H

u(0) = 0

u(1) = 0

. (A.3)

We highlight two important points:

1. The weak formulation A.3 and the original (strong) formulation A.1 are equivalent: the
solution of A.1 is the only solution of A.3;

2. The specification of the test functions (the set H) is a crucial component for constructing
an acceptable weak formulation.

The point 2 leads a reformulation of the weak form A.3. In fact, the test function υ in A.3
may not belong to the same set of functions H̄ to which the solution u belongs. The set H̄ is
called as the ‘class of trial functions’ of problem A.3. The fact that H and H̄ are not the same
produces a non-symmetric formulation. For computational or theoretical purposes, a symmetric
formulation is more suitable. We obtain an alternative symmetric weak formulation applying
the integration-by-parts on the weak form A.3, considering that u and υ are sufficiently smooth:

∫ 1

0
−u′′υ dx =

∫ 1

0
u′υ′ dx − (u′υ)

���1
0
. (A.4)

Considering that the test functions υ vanish at the endpoints of the domain, we have that:

∫ 1

0
−u′′υ dx =

∫ 1

0
u′υ′ dx, (A.5)

for all admissible test functions υ. This results in the following alternative variational problem:
find u ∈ H1

0 such that: 


∫ 1

0
(u′υ′ + uυ) dx =

∫ 1

0
xυ dx

for all υ ∈ H1
0

u(0) = 0

u(1) = 0

. (A.6)

where H1
0 is a set of functions such that any function υ ∈ H1

0 has derivatives of order 1 which
are square-integrable on the interval 0 ≤ x ≤ 1 (superscript 1), and that υ(0) = υ(1) = 0
(subscript 0). We note that the same order of derivatives in both trial (u) and test (υ) functions
are present in this alternative weak formulation (A.6), then we can set H = H̄ = H1

0 . This leads
to a symmetric formulation3. It is important to highlight that the point 1 described above still

2‘Smooth’ means that the function derivatives are always continuous.
3The symmetry is clear below.
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holds for this new weak formulation: any solution satisfying the original problem A.1 satisfies
the weak form A.6. However, we have progressively weakened the smoothness requirements
on the solution u, since the weak form A.4 contains second derivative whereas the form A.6
contains only the first derivative of u. We shall refer to form A.6 as the (desired) variational or
weak formulation of the problem A.1.

The set H1
0 of test and trial functions is defined such that the integral in the form A.6 exists,

i.e., limiting to functions that satisfy the boundary conditions and are regular on the domain
ensures that the integral makes sense. If u and υ are irregular, certainly their derivatives are
even less regular and then the integration of the term u′υ′ may not exist. The choice of functions
which derivatives of order 1 are square-integrable is based on the following: assuming that
υ = u, then υ′2 must be smooth enough for its integral to be calculated. The condition of square
integrability is more restrictive than that of integrability. For example, the function υ(x) = x−1/2

is integrable over 0 ≤ x ≤ 1 but υ2 is not. Functions satisfying this condition are said to have
square-integrable first derivatives. Therefore, any function υ belongs to H1

0 if

∫ 1

0
(υ′) dx < ∞

υ(0) = 0

υ(1) = 0

. (A.7)

Two additional properties of the set H1
0 play an important role in the construction of approx-

imation of solution u:

1. H1
0 is a linear space. This means that any linear combination of functions in H1

0 also
belongs to H1

0 ; e.g., if υ1 ∈ H1
0 and υ2 ∈ H1

0 , then defining υ3 = α · υ1 + β · υ2, we have
υ3 ∈ H1

0 , for arbitrary constants α and β;

2. H1
0 is infinite-dimensional. This means that any function υ ∈ H1

0 is only uniquely defined
by an infinite number of parameters; e.g., in the Fourier Series Theory, we can write a
function υ(x) as υ(x) = ∑∞

i=1 βiΨi(x), where Ψi(x) =
√

2 sin iπx, i = 1, 2, 3, ... , and βi

are scalar coefficients; then, the function υ(x) is defined through infinite parameters βi.

Through these 2 properties of H1
0 , we can represent any test function υ ∈ H1

0 as a linear
combination:

υ(x) =
∞∑

i=1

βiΦi(x), (A.8)

where Φi(x) are given to have this representation of υ. A set of functions {Φ1, Φ2, Φ3, ...} with
this property is called ‘basis’ of H1

0 , and the functions Φi are called ‘basis functions’.
If the series A.8 is truncated, we have a finite representation of υ:

υN (x) =
N∑

i=1

βiΦi(x), (A.9)

where N is any arbitrary positive integer. The N basis functions {Φ1, Φ2, ... , ΦN } define an
N-dimensional subspace H

1, N
0 of H1

0 .
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The Galerkin’s method seeks an approximate solution to the weak form A.6 in a finite-
dimensional H

1, N
0 of the space H1

0 rather than in the entire space H1
0 . That means that we are

seeking for an approximate solution uN in the subspace H
1, N
0 (i.e., uN ∈ H

1, N
0 ) of such form:

uN (x) =
N∑

i=1

αiΦi(x). (A.10)

Then, the variational statement of the approximate problem is: find uN ∈ H
1, N
0 such that:




∫ 1

0

(
u′Nυ

′
N + uNυN

)
dx =

∫ 1

0
xυN dx

for all υN ∈ H
1, N
0

uN (0) = 0

uN (1) = 0

. (A.11)

Although the boundary conditions uN (0) = 0 and uN (1) = 0 in the variational statement are
redundant, since this specification is included in the space H

1, N
0 (definition A.7), we are keeping

them here as a reminder of the boundary-problem.
The approximate solution uN is completely determined once the N coefficients αi in A.10

are known, since the N basis functions Φi of H
1, N
0 are known in advance and the coefficient βi

of the test function υN are arbitrary. The coefficients αi are called ‘degrees of freedom’ of the
weak statement A.11. Introducing A.9 and A.10 into the weak form A.11, we have:

∫ 1

0


d

dx

(
N∑

i=1

βiΦi

)
d

dx

©«
N∑

j=1

α jΦ j
ª®¬
+

(
N∑

i=1

βiΦi

) ©«
N∑

j=1

α jΦ j
ª®¬


dx

=

∫ 1

0
x

N∑
i=1

βiΦi dx

for all βi, i = 1, 2, ... , N

. (A.12)

Factoring A.12 in terms of coefficients β j yields:

N∑
i=1

βi




N∑
j=1

[∫ 1

0

(
Φ
′
iΦ

′
j + ΦiΦ j

)
dx

]
α j −

∫ 1

0
xΦi dx


 = 0

for all βi, i = 1, 2, ... , N

. (A.13)

Rewriting A.13 in a more compact form yields:

N∑
i=1

βi
©«

N∑
j=1

Ki jα j − Fi
ª®¬
= 0

for all βi, i = 1, 2, ... , N

, (A.14)
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where:

Ki j =

∫ 1

0

(
Φ
′
iΦ

′
j + ΦiΦ j

)
dx

Fi =

∫ 1

0
xΦi dx

i, j = 1, 2, ... , N

, (A.15)

where K = Ki j and F = Fi are commonly called ‘stiffness matrix’ and ‘load vector’, respectively,
for problem A.11 and for basis functions Φi ∈ H1 N

0 . Since the basis functions Φi are known,
both K and F can be computed by A.15. Parameters βi can be chosen in such a way that a linear
system arises:

N∑
j=1

Ki jα j − Fi = 0

i = 1, 2, ... , N

. (A.16)

As the basis functions Φi have been chosen to be independent, equations A.16 are also
independent. Thus, the stiffness matrix K is invertible, which means that α = α j are uniquely
determined by inverting K:

α = K−1F. (A.17)

Once the coefficients α are determined, the approximate solution uN is defined by introduc-
ing A.17 in A.10.

We highlight that the stiffness matrix K obtained above is symmetric since (through its
definition A.15):

Ki j = Φ
′
iΦ

′
j + ΦiΦ j = K ji = Φ

′
jΦ

′
i + Φ jΦi . (A.18)

The symmetry of K here occurs due to the weak formulation A.6 and to the fact the spaces
of trial functions and test functions are the same. It is clear that if we had used the previous
weak form A.3, K would not be symmetric.

We can point out some reasons about the choice of a symmetric variational formulation:

1. The symmetric formulation, in general, leads to a symmetric stiffness matrix, which
means a reducing in the computational effort for obtaining the unknown coefficients and,
consequently, the approximate solution of the problem;

2. It can be shown that, using a symmetric formulation, the Galerkin’s method provides the
best possible approximation of the solution u in the subspace H

1, N
0 ;

3. In the symmetric formulation, both spaces of the trial and test functions coincide. There-
fore, only one set of basis functions Φi of the subspace H

1, N
0 need to be built.

Another important observation is that the quality of the approximation uN depends com-
pletely on the choice of the basis functions Φi, or in a general aspect, of the subspace H

1, N
0 .

Once the basis are chosen, the determination of the coefficients αi is a computational task.
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The systematic construction of basis functions are not explicitly provided by Galerkin’s
method, mainly in cases where irregular geometries are present (in 2D/3D). A general and sys-
tematic technique for constructing the basis functions are given by the finite element method: the
basis functions Φi are defined piecewise over subregions of the domain called ‘finite elements’.
In general, the basis Φi are chosen to be very simple functions such as low order polynomials.

The first step in the finite element method is dividing the domain (Ω) 0 ≤ x ≤ 1 in a finite
number of elements, Ωi, i = 1, 2, ... , whose lengths are denoted by hi. The elements are linked
by a shared point called as ‘vertex’ (also as ‘node’). The collection of elements and vertices is
referred as a ‘mesh’ or ‘geometric mesh’. As an example, one can divide the domain in four
elements of equal sizes (then hi = h = 1/4, i = 1, ... , 4) such that the vertices’ coordinates are:

xi = (i − 1) · 1/4
i = 1, 2 ... , 5

. (A.19)

Then, the elements are defined as:

Ωi = {xi, x1+1}
i = 1, 2 ... , 4

. (A.20)

Once the geometric mesh is defined, we can generate the basis functions on this mesh. The
main criteria of the finite element method are such that the basis functions Φi should be:

• Generated by simple functions defined element by element over the mesh;

• Smooth enough to be members of the space H1
0 ;

• Chosen in such a way that the parameters αi defining the approximate solution uN are
exactly the values of uN (x) at the vertices (nodes).

Following these criteria, a set of basis functions can be defined as:

Φi(x) =



(x − xi) /hi for xi ≤ x ≤ xi+1

(xi+2 − x) /hi+1 for xi+1 ≤ x ≤ xi+2

0 for x ≤ xi and x ≥ xi+2

. (A.21)

with i = 1, 2, 3 and hi = xi+1 − xi the elements’ lengths. The first derivatives of the basis
functions are:

Φ
′
i(x) =




1/hi for xi < x < xi+1

−1/hi+1 for xi+1 < x < xi+2

0 for x < xi and x > xi+2

. (A.22)

It is not hard to verify that these basis Φi(x), i = 1, 2, 3 follow the criteria shown above.
Once the basis are defined, we can return to the Galerkin’s approximation of the variational
boundary-value problem. Since the basis is chosen such that αi = ui, the approximate solution
uN is written as:

uN (x) =
N∑

i=1

uiΦi(x), (A.23)

where N = 3 in this case.
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The first step is the computation of the stiffness matrix A.15 (also called ‘assembly’), which
can be integrated element-by-element:

Ki j =

∫ x2

x1

(
Φ
′
iΦ

′
j + ΦiΦ j

)
dx

+

∫ x3

x2

(
Φ
′
iΦ

′
j + ΦiΦ j

)
dx

+

∫ x4

x3

(
Φ
′
iΦ

′
j + ΦiΦ j

)
dx

+

∫ x5

x4

(
Φ
′
iΦ

′
j + ΦiΦ j

)
dx

=

4∑
e=1

∫
Ωe

(
Φ
′
iΦ

′
j + ΦiΦ j

)
dx

=

4∑
e=1

Ke
i j

i, j = 1, 2, 3

, (A.24)

where Ωe are the domains of each element e = 1, 2, 3, 4 and:

Ke
i j =

∫
Ωe

(
Φ
′
iΦ

′
j + ΦiΦ j

)
dx (A.25)

is the element’s stiffness matrix. Next step is the load vector computation, which is done by a
similar way element-by-element:

Fi =

4∑
e=1

∫
Ωe

xΦi dx

Fi =

4∑
e=1

Fe
i

i = 1, 2, 3

, (A.26)

where:

Fe
i =

∫
Ωe

xΦi dx (A.27)

is the element’s load vector.
The last computational is the integration of the element’s stiffness matrix and element’s load

vector. This integration procedure can be done through some numerical integration technique
(e.g., Gaussian quadrature), which is essential mainly in 2D/3D elements. In our example, the
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integration process through each element yields:

K1
=

1

24


98 0 0
0 0 0
0 0 0


,K2
=

1

24


98 −95 0
−95 98 0

0 0 0


,

K4
=

1

24


0 0 0
0 0 0
0 0 98


,K3
=

1

24


0 0 0
0 98 −95
0 −95 98


,

(A.28)

and:

F1
=

1

96


2
0
0


,F2
=

1

96


4
5
0


,

F4
=

1

96


0
0
10


,F3
=

1

96


0
7
8


,

(A.29)

where Ke
= Ke

i j
and Fe

= Fe
i
. Then, the global stiffness matrix K and global load vector F are

given by the assembly process:

K = K1
+K2

+K3
+K4,F = F1

+ F2
+ F3

+ F4, (A.30)

which yields to:

K =
1

24


196 −95 0
−95 196 −95

0 −95 196


,

F =
1

96


6
12
18


.

(A.31)

The linear system is

1

24


196 −95 0
−95 196 −95

0 −95 196




u1

u2

u3


=

1

96


6
12
18


. (A.32)

whose solution is:

u =


u1

u2

u3


=


0.0352
0.0569
0.0505


. (A.33)

Finally, the approximate solution uN (x) of the boundary-value problem A.1 is:

uN (x) = 0.0352Φ1(x) + 0.0569Φ2(x) + 0.0505Φ3(x), (A.34)
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where functions Φi(x) are given by A.21. A comparison between the exact solution of prob-
lem A.1 and the approximate solution A.34 is shown in Figure A.1.
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Figure A.1: Comparison between the exact solution and approximate solution of the boundary-
value problem A.1. The approximate solution uN (x) is given by A.34.
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