NG

4

UNICAMP

UNIVERSIDADE ESTADUAL DE CAMPINAS
Faculdade de Engenharia Civil, Arquitetura e Urbanismo

NATALIA RAMOS ViLAS BOAS

A CUDA ACCELERATED NUMERICAL INTEGRATION OF AN
ELASTOPLASTIC PROBLEM WITH THE FINITE ELEMENT
METHOD

ACELERACAO DA INTEGRACAO NUMERICA DE UM

PROBLEMA ELASTOPLASTICO PELO METODO DOS
ELEMENTOS FINITOS COM CUDA

CAMPINAS
2020

NATALIA RAMOS VILAS BOAS

A CUDA ACCELERATED NUMERICAL INTEGRATION OF AN
ELASTOPLASTIC PROBLEM WITH THE FINITE ELEMENT
METHOD

ACELERACAO DA INTEGRACAO NUMERICA DE UM

PROBLEMA ELASTOPLASTICO PELO METODO DOS
ELEMENTOS FINITOS COM CUDA

Master thesis presented to the School of Civil
Engineering, Architecture and Urban Design
of the State University of Campinas to obtain
the degree of Master in Civil Engineering in
Structures and Geotechnics area.

Dissertacao de Mestrado apresentada a Fac-
uldade de Engenharia Civil, Arquitetura
e Urbanismo da Universidade Estadual de
Campinas para a obtencao do titulo de Mes-
tra em Engenharia Civil na area de Estru-
turas e Geotécnica.

Orientador: Prof. Dr. Philippe Remy Bernard Devloo

ESTE EXEMPLAR CORRESPONDE A VERSAO FINAL
DA DISSERTACAO DEFENDIDA PELA ALUNA NATALIA
RaMOs VILAS BOAS E ORIENTADA PELO PROF.
DRr. PHILIPPE REMY BERNARD DEVLOO.

Assinatura do Orientador

CAMPINAS
2020

Ficha catalografica
Universidade Estadual de Campinas
Biblioteca da Area de Engenharia e Arquitetura
Luciana Pietrosanto Milla - CRB 8/8129

Vilas Boas, Natalia Ramos, 1992-

V71c A CUDA accelerated numerical integration of an elastoplastic problem with
the Finite Element Method / Natalia Ramos Vilas Boas. — Campinas, SP : [s.n.],
2020.

Orientador: Philippe Remy Bernard Devloo.
Dissertagao (mestrado) — Universidade Estadual de Campinas, Faculdade
de Engenharia Civil, Arquitetura e Urbanismo.

1. Método dos elementos finitos. 2. Integracdao numérica. 3.
Elastoplasticidade. 4. CUDA (Arquitetura de computador). I. Devloo, Philippe
Remy Bernard, 1958-. Il. Universidade Estadual de Campinas. Faculdade de
Engenharia Civil, Arquitetura e Urbanismo. Ill. Titulo.

Informacdes para Biblioteca Digital

Titulo em outro idioma: Aceleragao da integragdo numérica de um problema elastoplastico
pelo Método dos Elementos Finitos com CUDA
Palavras-chave em inglés:

Finite element method

Numerical integration

Elastoplasticity

CUDA (Computer architecture)

Area de concentracéo: Estruturas e Geotécnica
Titulacao: Mestra em Engenharia Civil

Banca examinadora:

Philippe Remy Bernard Devloo [Orientador]

Luiz Carlos Marcos Vieira Junior

Edson Borin

Data de defesa: 27-01-2020

Programa de Pés-Graduacao: Engenharia Civil

Identificacéo e informacdes académicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0001-8231-8239
- Curriculo Lattes do autor: http:/lattes.cnpq.br/9304371137146814

UNIVERSIDADE ESTADUAL DE CAMPINAS
FACULDADE DE ENGENHARIA CIVIL, ARQUITETURA E
URBANISMO

A CUDA accelerated numerical integration of an
elastoplastic problem with the Finite Element Method

Natalia Ramos Vilas Boas

Dissertacdao de Mestrado aprovada pela Banca Examinadora, constituida por:

Prof. Dr. Philippe Remy Bernad Devloo
Presidente e Orientador(a)/FEC/UNICAMP

Prof. Dr. Luiz Carlos Marcos Vieira Junior
FEC/UNICAMP

Prof. Dr. Edson Borin
IC/UNICAMP

A Ata da defesa com as respectivas assinaturas dos membros encontra-se no SIGA/
Sistema de Fluxo de Dissertacédo e na Secretaria do Programa da Unidade.

Campinas, 27 de janeiro de 2020

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor, Prof.
Philippe Devloo, for his assistance and engagement through the learning process of this
master thesis. I give my special thanks to Dr. Omar Duran for his friendship and guidance
in the development of this work. Also, I would like to acknowledge my friends at LabMeC
for all the time we spent together. Moreover, thanks to Petrobras and FUNCAMP for
the financial support.

My very profound gratitude to my family, especially to my parents Ivone and
Luiz, for providing me with continuous support and encouragement throughout my years
of study. Finally, I would like to thank Rafael for keeping me harmonious and helping me
putting pieces together.

This accomplishment would not have been possible without them.

Thank you.

Abstract

Finite Element Method (FEM) is a numerical technique to approximate partial differen-
tial equations. It has been widely used to approximate solutions of physical problems
in different fields of research. The numerical simulation of challenging engineering prob-
lems with small error requires refined meshes and leads to high computational cost. To
overcome this difficulty, parallel computing is becoming a mainstream tool. Among the
techniques available to improve the performance of this type of computational application
is the execution of the algorithm using Graphics Processing Unit (GPU) programming.
Although GPU was initially developed for graphics processing, it has been used in the last
years as a general-purpose machine with high parallelism power through the availability
of platforms such as CUDA or OpenGL. The purpose of this research is to develop an
efficient algorithm for the evaluation of the Jacobian matrix and residual vector arising
from a FEM analysis. This work aims the particular variational formulation of an elasto-
plastic problem with associative plasticity, but the adopted approach can be extended
to other fields and problems. The presented strategy for the calculation of the Jacobian
matrix and residual vector relies on several computational ingredients such as gather-
ing and scattering operations, matrix multiplications, and a parallel coloring scheme for
the assembly process. The verification of the nonlinear approximated solution includes a
comparison with regular CPU implementation in terms of numerical results and execu-
tion efficiency. For the residual vector, the GPU outperforms the CPU and the classical
assembly approach by a factor of up to 6 and 24 to cubic polynomial order approxima-
tions, respectively. For the Jacobian matrix, GPU’s performance overcomes CPU’s for
linear polynomial order, being limited by the amount of shared memory for higher orders.
Finally, a Modified Initial Stiffness method is applied to accelerate the convergence of the
load step using the linear elasticity stiffness matrix to take advantage of the inexpensive
residual numerical integration process to achieve convergence in a very efficient manner.

Keywords: Finite Element Method; Numerical Integration; Elastoplasticity; CUDA.

Resumo

O Método dos Elementos Finitos (MEF) é uma técnica numérica para aproximar equagoes
diferenciais parciais. Esse método tem sido amplamente utilizado para aproximar solugoes
de problemas fisicos em diferentes campos de pesquisa. A simulacao numérica de prob-
lemas de engenharia com pequeno erro requer malhas refinadas levando a um alto custo
computacional. Para superar essa dificuldade, a computacao paralela estd se tornando
uma ferramenta convencional. Entre as técnicas disponiveis para melhorar o desempenho
desse tipo de aplicacao esta a execugao de algoritmos usando a programacao na unidade
de processamento grafico (GPU). Embora a GPU tenha sido desenvolvida inicialmente
para processamento grafico, ela tem sido usada nos ultimos anos como uma maquina de
uso geral com alto poder de paralelismo através de plataformas como CUDA ou OpenGL.
O objetivo desta pesquisa é desenvolver um algoritmo eficiente para a avaliacdo da matriz
jacobiana e do vetor residual resultante de uma analise pelo MEF. Este trabalho visa a
formulagao variacional especifica de um problema elastoplastico com plasticidade asso-
ciativa, mas a abordagem adotada pode ser estendida a outros campos e problemas. A
estratégia apresentada para o cdlculo da matriz jacobiana e do vetor residual baseia-se em
varios ingredientes computacionais, como operacoes de agrupamento e dispersao, multi-
plicagoes de matrizes e um esquema de coloracao para facilitar o processo de montagem
dos operadores em paralelo. A verificacdo da solucdo aproximada nao linear inclui uma
comparagao com a implementacao na CPU em termos de resultados numéricos e eficiéncia
de execugao. Para o vetor residual, a GPU supera a CPU e a abordagem de montagem
classica por um fator de até 6 e 24, respectivamente, para aproximacoes de ordem poli-
nomial ctibica. Para a matriz jacobiana, o desempenho da GPU supera o da CPU para
ordem polinomial linear, sendo limitado pela quantidade de memoria compartilhada para
ordens mais altas. Finalmente, o método Initial Stiffness ¢ aplicado para acelerar a con-
vergéncia usando a matriz de rigidez de elasticidade linear e se beneficiar do processo de
integracao numérica do vetor residual para obter a convergéncia de uma maneira eficiente.

Palavras-chave: Método dos Elementos Finitos; Integracao Numérica; Elastoplastici-
dade; CUDA.

List of Figures

2.1
2.2
2.3
24
2.5

2.6

2.7

3.1
3.2

3.3

3.4

3.5

4.1

4.2
4.3

4.4

5.1
0.2
5.3
5.4

2.5

Stress-strain relationship. Extracted from Santos [30].

Isotropic hardening. Extracted from Souza Neto, Peric, and Owen [34].

Kinematic hardening. Extracted from Souza Neto, Peric, and Owen [34].

Perfect plasticity. Extracted from Souza Neto, Peric, and Owen [34].

Return mapping scheme for perfect plasticity. Adapted from Souza Neto,

Peric, and Owen [34].

Mohr plane representation. Extracted from Souza Neto, Peric, and Owen

[B4]. o
Mohr-Coulomb surface. Adapted from Souza Neto, Peric, and Owen [34]. .

General steps in the finite element method.

Linear basis functions for linear elements. Extracted from Becker, Carey,

and Oden [2].

Quadratic basis functions for quadrilateral elements.

A finite element 2. in the z, y-plane obtained as the image under 7, of the

corresponding master element Q) in the &, m-plane. Extracted from Becker,

Carey, and Oden [2].

Finite element method flowchart for the iterative process.

Example of the architecture of a GPU. Extracted from Svensson, Sheeran,

and Claessen [35].
Thread hierarchy. Extracted from Kirk and Hwu [19].

Compilation trajectory of a CUDA program. Extracted from Kirk and

Hwu [19]. . . . o

Overview of the CUDA device memory model. Extracted from Kirk and

Hwu [19]. . . . o

Representation of Band B..
Global connectivities for a quadrilateral finite elements mesh.

Colored two dimensional finite element mesh with quadrilateral elements. .

Boundary elements for a two dimensional finite element mesh with trian-

gular elements.

Evaluation of ¢ with block elements approach.

27

28
29

52
25
57

2.6

7.1

7.2
7.3

7.4

7.5

7.6
7.7
7.8
7.9
7.10
7.11
7.12

Evaluation of ¢ with sparse approach.

Wellbore region geometry with physical conditions and coarse mesh parti-
tion Thlim1e - o v o o
Energy error plots for p = {1,2} with coarse mesh partition Tp,|,—;.

A Runge-Kutta comparison against a finite element approximation with
p =2 a mesh partition Tp|;=1.
GPU residual computation performance for sparse matrix and block ma-
trices storage patterns.o
CPU residual computation performance for sparse matrix and block ma-
trices storage patterns.
GPU and CPU residual computation performance comparison.
GPU and neoPZ residual computation performance comparison.
GPU and CPU Jacobian matrix computation performance comparison.
GPU and neoPZ Jacobian matrix computation performance comparison.
Memory consumption per element for sparse and blocks storage patterns. .
Memory consumption for partition T[4 with p = {1,2,3}.
Convergence history for the vertical wellbore problem for partition Tp|;—4
with p={1,2,3}.

68
70

73

74

List of Tables

2.1

4.1

5.1
5.2
2.3
5.4

7.1
7.2
7.3
7.4
7.5

Summary of the elastoplastic constitutive model for perfect plasticity. . . . 26
CUDA device memory types. ot 44
UDA operators. 51
Dense block matrices storage pattern arrays sizes. o4
Sparse matrix storage pattern arrays sizes. o4
Summary of the constant preprocessing data. 58
Set of geometrical partitions T}, for different refinement levels. 69
Material properties used for numerical simulations. 69
Tests platform description. L oo 72
Solution update with Jacobian matrix decomposition (s). 79

Solution update with no Jacobian matrix decomposition (s). 80

List of Symbols

(+)e
E

I

o oe

2 \

Element entity

Young modulus

Jacobian matrix at integration point f;;
Number of elements

Euclidean domain

Yield criterion

Plastic flow potential

Scattered strain-displacement operator
Scattered integration rule operator

Stress tensor

' Projected stress tensor

Elastic trial stress tensor
Strain tensor

Elastic strain tensor

Plastic strain tensor

Elastic trial strain tensor
Increment solution

Set of internal state variables
Plastic multiplier

Global strain—displacement operator

T

L]

R

Wk

o]

o2

g0

Constitutive operator
Integration rule operator
First Lamé parameter

Elastic constitutive tensor
Set of thermodynamical forces
Hardening modulus

Identity tensor

Jacobian matrix

Linear Jacobian matrix
Volumetric Jacobian matrix
Plastic flow vector

Residual

Linear residual

Volumetric residual

Elastic domain

Number of degrees of freedom
Geometric partition

Yield surface

Second Lamé parameter
Poisson ratio

Integration point weight

Set of plastically admissible stresses

Euclidean boundary
Frictional angle

Hydrostatic stress

RSl O

gy

Dint

Text

Tint

Elastoplastic constitutive matrix
Connectivity vector

Integration point

Outward normal

Normal traction

Displacement vector

Cohesion

Polynomial order

Internal pressure

External radius

Internal radius

Contents

Introduction

1.1 Motivation
1.2 Previous works on FEM with GPU
1.3 Objectives
1.4 Outline.
1.4.1 Body
1.4.2 Appendix

Elastoplastic constitutive modeling

2.1 Strain tensor decomposition
2.2 Elastic constitutive lawo
2.3 Yield criterion L Lo
2.4 Plasticflowrule L
2.5 Hardening law oL
2.6 Loading/unloading criterion

2.7 Return mapping scheme L.
2.8 Mohr-Coulomb Yield Criterion

The Finite Element Method

3.1 Finite Element basis functions
3.2 Finite Element transformations
3.3 Elastoplastic modeling in FEM context

3.3.1 Weak formulation of the elastoplastic problem

GPU programming

4.1 Architecture of a GPU oo
4.2 CUDA program structure
4.3 CUDA programming model
4.4 CUDA device memory types

Restructuring the elastoplastic finite element problem

5.1 Matrix form of the finite element problem

16
16
17
18
19
19
20

21
22
22
23
24
24
26
26
28

30
31
33
34
35

37
39
40
41
43

46

5.1.1 Classical FEM assembly
5.1.2 FEM assembly using integration point contributions
5.2 Modified Unstructured Displacement Approach
5.2.1 Scattered strain-displacement operator
5.2.2 Integration points weight and determinant of Jacobian operator
5.2.3 Elements connectivitieso
5.2.4 Finite element mesh coloring 0.
5.2.5 Linear Jacobian matrix and residual

5.2.6 Jacobian matrix and residual vector strategies

6 Computational implementation and verification
6.1 mneoPZ environment
6.2 Implemented classes
6.3 CUDA implementation,
6.4 Quasi-Newton method for accelerating the convergence
6.5 Solution verification
7 Results and discussion
7.1 Verification
7.2 Performance analysis oL
721 Residual
7.2.2 Jacobian matrix
7.3 Memory consumptiono
7.4 Accelerating the elastoplastic convergence
8 Conclusion
Bibliography
A Voigt notation
B Spectral decomposition
B.1 Eigenvalues
B.2 FEigenvectors
C Results variability

61
61
62
64
65
66

68
68
71
73
76
78
79

81

83

87

88
88
88

91

16

Chapter 1

Introduction

1.1 Motivation

The Finite Element Method (FEM) is one of the most relevant numerical tech-
niques to find approximate solutions of partial differential equations (PDEs). According
to Becker, Carey, and Oden [2], this method defines a systematic way of constructing
basis functions to approximate the solution of PDEs. The underlying idea is that these
functions can be defined piecewise over subregions of the domain called finite elements.
The polynomial order of the functions over each element can be arbitrary. Bhavikatti
[4] states that although FEM has been initially developed for approximating problems of
structural mechanics, it is now widely used as a technique for solving complex problems in
different fields of engineering: civil, mechanical, nuclear, biomedical, geomechanics, and
others. Many problems in these fields can lead to high computational demand.

Most computer codes are written to be executed sequentially: a problem is
split into instructions, and these instructions are executed one after the other. Then, the
performance improvement depends on the advance in CPU efficiency: the software can
achieve a significant speedup as each new generation of processors is introduced. However,
Kirk and Hwu [19] highlight that since 2003 a stagnation of performance improvement
of general applications has been observed because high energy consumption and heat
dissipation limit the increase of the clock frequency. Therefore, the industry offers a new
approach: to increase the number of cores inside each processor.

This new approach has a significant impact on the software development com-
munity, including those that use the Finite Element Method. Hence, parallel computing
in high-performance computers has gradually become a mainstream tool for dealing with
large and detailed numerical problems in FEM analysis. Many parallel algorithms to find
the approximate solution for problems using FEM were developed. However, they may
require a large number of CPUs to achieve high performance.

Graphics Processing Units (GPUs) were initially developed for image and video

Chapter 1. Introduction 17

processing. Due to the market demand for high-quality real-time graphics in computer
applications, these processors have undergone considerable technological progress. For
example, in an electronic gaming application, one needs to render scenes at a resolution
of 60 frames per second. According to Micikevicius [24], a GPU consists of a set of multi-
processors where each multiprocessor has its own stream processors and shared memory.
All multiprocessors of a GPU have access to the global memory, and memory latency is
hidden if thousands of threads are executed concurrently. The main difference between
GPUs and CPUs is that CPUs may be efficient with a small number of threads per
core, whereas GPUs achieve higher performance when thousands of threads are executed
concurrently.

Because of the technological advance of GPUs, researchers who wanted to
improve the performance of their applications started to explore their use for non-graphical
ones. This trend became known as General-Purpose computation on the GPU (GPGPU).
Since then, GPUs have been used for numeric simulation of problems in fields of science
and engineering. According to Zhang and Shen [39], methods that use GPU’s powerful
computing resource to accelerate the FEM analysis have naturally emerged in the last few
years. Among the steps of the FEM calculations to approximate the solution of boundary
value problems, the evaluation of the elements stiffness matrix and residual vector, as well
as the assembly process of the linear system, are the most time-consuming processes in
terms of both memory and runtime.

The research in this thesis presents a data structure and calculation strategies
to compute the residual vector and the Jacobian matrix arising from an elastoplastic FEM
simulation with GPU programming in order to improve the performance to obtain the
approximate solution. The target problem in this research is to perform the geomechanics
analysis in a wellbore region considering the elastoplastic constitutive modeling. Never-
theless, the proposed data structure and calculation strategies can be applied to other

constitutive modelings and research fields.

1.2 Previous works on FEM with GPU

Zhang and Shen [39] implement a code to approximate elasticity problems in
two and three dimensions using the FEM with GPU. The authors use a coloring method
to perform the assembly of the global operators. The tests are conducted on a platform
composed of an Intel Core 2 Duo E7400 processor and an NVIDIA Geforce GT 430. The
authors reach a speedup of 7x for approximations in two space dimensions and 10x for
three-dimensional elements. For the linear system solution, the authors present speedups
of 3.5x and 6x for two and three-dimensional simulations, respectively.

Mafi [23] uses a GPU-based parallel computing approach to perform real-time

Chapter 1. Introduction 18

analysis of soft objects deformation through a nonlinear approximation using the FEM.
The author uses a coalesced data structure to compute the FEM matrices in GPU. The
computation time for the matrices evaluation reaches a speedup of 28x in an NVIDIA
Geforce GTX 470 when compared to a sequential CPU implementation with an Intel
Core i7-3770 processor.

Cecka, Lew, and Darve [8] introduce multiple strategies for evaluating the
FEM global operators assembly. The authors present how to use global, shared, and local
memory properly according to the polynomial order of the finite element discretization.
The experimental setup consists of an NVIDIA GeForce 8800 GTX and an Intel Core
2 Quad CPU Q9450 processor. The assembly process reaches a speedup of 35x to the
double-precision single-core CPU version for linear and quadratic polynomial orders.

Maciot, Ptaszewski, and Bana$ [22] use GPU programming to accelerate the
numerical integration of the elements contributions from Laplace’s equation in a 3D do-
main discretized in prismatic elements. Due to small resources available for a single
thread for GPU architectures, the authors propose a GPU implementation of numerical
integration based on the assumption that a single finite element corresponds to a single
thread block, and these individual threads calculate sets of an element contribution. The
platform test consists of an NVIDIA GeForce 8800 GTX and an AMD X2 processor. The
speedup varies from 3.5x to 20x, depending on the approximation order.

Dziekonski et al. [12] implement a technique to generate the operators arising
from computational electromagnetics analysis through the Finite Element Method using
GPU programming. The results are obtained from tests conducted in an NVIDIA Tesla
C2075 and an Opteron 6174. The authors present a series of optimizations to perform the
numerical integration, such as the use of shared memory to avoid time-consuming writing
and reading to and from the global memory. The authors reach speedups of 81x and 19x

over an optimized single and multi-threaded CPU-only implementations, respectively.

1.3 Objectives

The main objective of the research presented in this thesis is to approximate
the solution of an elastoplastic problem with the FEM using GPU programming. To

accomplish the main objective, four specific objectives of this research are established:

o To understand the fundamental concepts of the elastoplastic constitutive modeling;

o To construct a data structure resulting from the Finite Element Method that allows

parallel operations;

o To understand the principal concepts of GPU programming;

Chapter 1. Introduction 19

e To develop a numerical implementation of the global operators arising from an

elastoplastic finite element problem to be executed in parallel in the GPU.

The proposed strategy for computing the residual vector and the Jacobian
matrix presented in this research relies on pre-computing and storing constant data along
a nonlinear FEM analysis in an aligned data structure and perform GPU parallelized
operations to evaluate the global operators. A finite element coloring scheme is applied to
ensure correct parallel execution of the proposed implementation since the construction
of the global operations involves overlapping information corresponding to the common
degrees of freedom of the system. This strategy is applied to the simulation of an elasto-
plastic problem through a FEM simulation of a wellbore under internal and external
stresses, as well as an initial stress presented by a hydrostatic pre-stress.

This study focuses on accelerating the numerical integration of an elastoplastic
FEM simulation on the GPU. Therefore an analogous CPU implementation is developed
to compare both CPU and GPU’s performances. The GPU’s performance is also compared
with the classical assembly process of a traditional FEM simulation. Besides verifying that
the results obtained by the GPU implementation are identical to the results of the CPU
implementation, the accuracy of the nonlinear approximation is verified by comparing the
results with an approximation obtained using a Runge-Kutta approximation on a very

refined mesh.

1.4 Outline

The present work is organized as follows:

1.4.1 Body

Chapter 2 introduces the elastoplastic constitutive modeling and its main
items. Also, it presents the return mapping scheme for perfect plasticity and the Mohr-
Coulomb yield criterion. In Chapter 3, the Finite Element Method and the weak formu-
lation of the elastoplastic problem are presented. Chapter 4 explores GPU programming
presenting the architecture of a GPU, the CUDA programming model, and GPU memory
types. In Chapter 5 is presented the structure arising from the finite element problem
for the elastoplastic problem. Chapter 6 describes the main aspects of the computational
implementation as well as the approach to verify the accuracy of the results obtained
from the proposed structure. Also, this chapter describes a Quasi-Newton method for
accelerating the convergence. Chapter 7 is dedicated to the presentation of the results

and discussion. Finally, Chapter 8 presents the conclusions.

Chapter 1. Introduction 20

1.4.2 Appendix

Appendix A presents the Voigt notation for the stress and strain tensors. In
Appendix B, the scheme for the spectral decomposition of tensors is described. Ap-
pendix C shows tables with the mean and standard deviation of the presented results.

21

Chapter 2
Elastoplastic constitutive modeling

A body that undergoes elastic strains is characterized by the complete recovery
to its undeformed configuration upon removal of the applied loads. Moreover, this type
of strain depends only on the load applied to the body. On the other hand, irreversible
strains in a body subjected to a loading cycle are known as plastic strains. These strains
occur when a body is subjected to stress intensities above a limit value known as the
elastic limit. In this case, the total strain is formally split into elastic and plastic strains.

The concepts of plasticity are illustrated in Fig. 2.1:

a) b)
A0, A0,
B
A
" §a O C Sa
e P e
H l €n H l €a
»€ »r€

Figure 2.1: Stress-strain relationship. Extracted from Santos [30].

Figure 2.1a) presents the stress-strain curve of a uniaxial tension test of a
material. Figure 2.1b) shows the abstraction of the behavior of the material, which is
easy to identify the elastic and plastic portions of strain. When a bar is subjected to
a loading presented by the straight line OA, the unloading follows AQ, and there is no
residual strain. £,° corresponds to the elastic strain and is totally recovered upon the
unloading. Thus, the behavior of the material is regarded as linear elastic over OA. If
this material is subjected to a loading presented by OAB, the unloading follows BC, and
it is observed a residual strain ¢,”, which is called plastic strain.

A large number of engineering materials, such as metals, concrete, rocks, clays,

Chapter 2. FElastoplastic constitutive modeling 22

and soils in general, may be modeled as plastic under a wide range of circumstances of
practical interest. An incremental stress-strain relation describes the study of these mate-
rials. According to Souza Neto, Peric, and Owen [34], the basic items of the elastoplastic

constitutive modeling are:

e Strain tensor decomposition;
« Elastic constitutive law;

e Yield criterion;

o Plastic flow rule;

o Hardening law.

2.1 Strain tensor decomposition

This topic consists of the decomposition of the total strain tensor () into
elastic and plastic strains, which are related to the applied loads and the history of irre-
versible processes applied to the material, respectively. For the elastoplastic calculation,
the strain given as input data is presented as total strain, and from the solution of the

problem, the elastic (e¢) and plastic (e?) strains are computed.

e=¢e"+¢€r (2.1)

The corresponding rate form of the additive split reads:

0 = e + He?

2.2 Elastic constitutive law
The generalized Hooke’s Law is presented by:

o = Ce°

where C is the fourth-order elastic constitutive tensor. In Voigt notation (see Appendix A),

it is presented by:

Chapter 2. FElastoplastic constitutive modeling 23

O 20+ A A A 0 0 S,
Tyy A 20+ A A 0 0 0 Evy
o | A A 2u+X 0 0 0 <,
o 0 0 0 2u 0 0| |2eg,
Oyz 0 0 0 0 2u 0|2,
O 0 0 0 0 0 2u] \25,

Also, the stress-strain relationship is presented as:

o =2ue® + Mtr(e®)I (2.2)

where A\ and p are the first and second Lamé constants and are given as a function of the

Young modulus' (F) and the Poisson ratio? (v).

2.3 Yield criterion

In a uniaxial tension test, a material undergoes plastic strains when it is sub-
jected to a specific stress limit. This principle can be extended to the three-dimensional
case by stating a yield function. The yield criterion corresponds to the transition between
the elastic and plastic regimes. It can be expressed by a function that is negative when
only elastic strains are possible and zero when a plastic flow is imminent. The function

that describes the yield criterion is given by:

o= (c,A) (2.3)

The yield function defines the elastic domain as the set:

E={o|P(c,A) <0}

of stresses for which plastic yielding is not possible. Any stress lying in the elastic domain

1Slope of the stress-strain curve on the elastic portion and describes the elastic properties of a solid
undergoing tension or compression in one direction.

2Ratio between the lateral strain normal to the applied load and the axial strain in the direction of
the applied load.

Chapter 2. FElastoplastic constitutive modeling 24

or on its boundary is said to be plastically admissible. The set of plastically admissible

stresses are defined as:

E={o|P(0o,A) <0}

The set of stresses for which plastic yielding may occur is called yield locus
and corresponds to the boundary of the elastic domain, where ® (o, A) = 0. The yield
locus is expressed by a hypersurface in the space of stresses which is called yield surface

and is defined as:

Y={o|2(c.A)=0)

2.4 Plastic flow rule

The plastic flow rule assumes the existence of a plastic potential function that
characterizes the tensile behavior of plastic strains in a yielding process. This potential
is defined by:

U =U(o,A) (2.4)

from which the flow vector is obtained as:

_ov
- Jo

Thus, the behavior of the plastic strain tensor is given by:

N(o,A)

se? = 57N(o, A)

where 0y > 0 is a plastic multiplier.

2.5 Hardening law

The yielding process may lead to changes in size, shape, and direction of
the yield surface. The hardening law determines how these modifications happen. This
phenomenon can be considered isotropic or kinematic, and if there is no hardening phe-
nomenon, the model is considered perfectly plastic. Isotropic hardening plasticity mod-
els show a uniform expansion of the initial flow surface without translation (Fig. 2.2).
Whereas in kinematic hardening plasticity models, there is a translation of the surface,

and its size remains constant (Fig. 2.3). In a perfectly plastic model, there is no hardening

Chapter 2. FElastoplastic constitutive modeling 25

phenomenon. That is, the yield stress level does not depend in any way on the degree of
plastification (Fig. 2.4).

T-plane 403 Y

. uniaxial
initial surface

cyclic test

€

hardened surface —

Figure 2.2: Isotropic hardening. Extracted from Souza Neto, Peric, and Owen [34].

9]
T-plane UR
hardened surface *B
initial surface Uniaxial
o ~ .
01 2 cyclic test

Figure 2.3: Kinematic hardening. Extracted from Souza Neto, Peric, and Owen [34].

w-plane I 93 cy‘G [ET:()
F
e/
o €
: 02 -0y uniaxial
Lfived yield surface cyclic test

Figure 2.4: Perfect plasticity. Extracted from Souza Neto, Peric, and Owen [34].

The evolution of the internal variables associated with hardening phenomenon

is given by:
da = dvH(o, A)
where:
ov
H(o,A) = —— 2.
(0.A) =5y (2.5

This work considers the perfect plasticity case. Therefore there is no hardening

phenomenon (A = 0).

Chapter 2. FElastoplastic constitutive modeling 26

2.6 Loading/unloading criterion

The loading/unloading criterion is determined by:

¢<0; 6y>0, 6HP=0 (2.6)

The first statement specifies the plastic admissible region. The second assigns
that the plastic multiplier must be greater or equal to zero. Finally, the last statement
refers to the fact that the plastic multiplier and the yield function cannot be non-null
together. If the material is in the elastic regime (® < 0), the plastic multiplier will be
zero (6 = 0). However, in the plastic regime the yield function is zero (& = 0) and the

plastic multiplier is positive (6 > 0) [32].

Table 2.1 summarizes the principal items of the elastoplastic constitutive model

above described for the perfect plasticity case.

Table 2.1: Summary of the elastoplastic constitutive model for perfect plasticity.

Elastoplastic constitutive model for perfect plasticity
Strain tensor decomposition e = e’ + oe?
Elastic constitutive law o =2ue®+ Atr(e®)1
Yield criterion =9 (0)
Plastic flow rule de? = 6yN(o)
Loading/unloading criterion ®<0; 6v>0; P =0

2.7 Return mapping scheme

Considering the pseudo-time ¢, the strain tensor is g, and the corresponding
plastic portion is €?. The return mapping scheme consists of two conditions that are
imposed to compute €} ,; and §v: an elastic predictor and a plastic corrector. The return
mapping scheme is presented by Souza Neto, Peric, and Owen [34] and is illustrated in
Fig. 2.5.

Chapter 2. FElastoplastic constitutive modeling 27

Omal
n+1
11/_\\ .
¢ as't ¢ plastic
predictor ., octor

elastic

domain

Figure 2.5: Return mapping scheme for perfect plasticity. Adapted from Souza Neto,
Peric, and Owen [34].

Elastic predictor

The elastic predictor step assumes that éy = 0, that is, the step [t,, 1] is

elastic. The elastic trial state is:

gelriol = g¢ 4 S
trial __ e trial e trial
an+1 - 2M€n+1 +)‘tr(gn—i-l)I

The elastic trial state occurs if (o ') < 0 is satisfied. Otherwise, the elastic

trial state is not plastically admissible and a solution to the problem must be obtained

from the plastic corrector.

Plastic corrector

The plastic corrector step uses the elastic trial state to solve the system:

&1 = 0,11 + 07N (o)

(o) =0

where O'fl:?{ is obtained applying the stress-strain relationship presented in Eq. (2.2) where

. . .
the corresponding elastic strain is €}, ;.

Chapter 2. FElastoplastic constitutive modeling 28

2.8 Mohr-Coulomb Yield Criterion

The Mohr-Coulomb yield criterion applies to the modeling of materials such
as concrete or soil. The behavior of these materials is generally characterized by a strong
dependence of the yield limit on the hydrostatic pressure. This criterion is based on the
assumption that the phenomenon of macroscopic plastic yielding depends on the frictional
sliding between material particles. The Mohr-Coulomb yield criterion states that plastic

yielding happens when the shear stress and normal stress reach the given relationship:
T=c—otan¢ (2.7)
from which ¢ corresponds to the material cohesion and ¢ is the material frictional angle.

r=c-o,tan® (critical line) 4

Y

O min

c cot®

s

O max~ O min

Figure 2.6: Mohr plane representation. Extracted from Souza Neto, Peric, and Owen [34].

The yield locus of the Mohr-Coulomb yield criterion is the set of all stress
states such that there exists a plane in which Eq. (2.7) holds, i.e., it is the set of all
stresses whose largest Mohr circle is tangent to the critical line in Fig. 2.6. The elastic
domain for the Mohr-Coulomb yield criterion corresponds to the set of stresses whose all
three Mohr circles are below the critical line.

In principal stresses space, Mohr-Coulomb’s surface consists of six surfaces

described by the following equations and is graphically presented in Fig. 2.7:

&y = (01 — 03) + (01 + 03) sinp — 2ccos ¢
Oy = (09 — 03) + (02 + 03) sin ¢ — 2ccos ¢
O3 = (09 — 01) + (02 + 01) sin ¢ — 2ccos ¢
by = (03 —01) + (03 + 01) sinp — 2ccos ¢
O5 = (03 — 09) + (03 + 02) sinp — 2ccos ¢
O = (01 — 02) + (01 + 02) sinp — 2ccos ¢

Chapter 2. FElastoplastic constitutive modeling 29

_0-3 ,
01=02=03

_0‘1

Figure 2.7: Mohr-Coulomb surface. Adapted from Souza Neto, Peric, and Owen [34].

30

Chapter 3

The Finite Element Method

Finite Element Method (FEM) is a technique to construct an approximate
solution of partial differential equations (PDEs). The main idea of this method is to
represent the problem domain as a finite number of elements and solve not the original
problem, but its weak formulation. To obtain the weak formulation of a differential
equation, one must replace it with an integral equation, using piecewise integration to
reduce the order of the derivatives and multiply it by a test function. Three properties of
the weak formulation are worth noting: the classic formulation is also a weak formulation,
a weak formulation is indeed a classic formulation as long as it is regular enough, and the
solution of the problem is the only solution of the weak formulation.

The Galerkin method is one approach to construct approximate solutions to
boundary-value problems. This method consists in seeking an approximate solution for the
weak formulation in a finite-dimensional subspace of the admissible functions space of the
problem. However, Galerkin method does not provide a systematic way of constructing the
basis functions for the approximate test functions. For this reason, the classical Galerkin
method as described provides several possibilities, which may lead or not to reasonable
approximations. Therefore, the concept of the Finite Element Method is introduced to
overcome these difficulties.

The Finite Element Method provides a general and systematic technique for
constructing the basis functions for Galerkin approximations of boundary-value problems.
The idea is to define the basis functions piecewise over the finite elements from the dis-
cretization of the domain. Moreover, these functions can be chosen to be straightforward
functions such as polynomials of low degree. Also, they are chosen in such a way that
the multiplier coefficients defining the approximate solution are precisely the values of the
approximate solution at the nodal points.

Having selected an appropriate set of basis functions, it is possible to calculate
the operators per element. Finally, each element contribution is appropriately added to

form the global approximation of the problem. This step is called assembly and consists

Chapter 3. The Finite Element Method 31

in gathering the contributions from each element according to the connectivity of the
system. This strongly characterizes the Finite Element Method, since the computations

are performed per element and then incorporated into the global system of the problem

2].

NN S \<D
;f#: "S'AVA'AV’A‘ 4A\ ;‘ AVA
\/

. Oy
ORI POADEREY

VA% . BN\

v NANASEBANANRD <

AN NIPONA SIS

4¢A‘g 74 DOSD SODRDD > "
7054 76

XN ’15‘ DY ALY YAy P

QAADRND
avalh T

AYAVAY
AT\V VA
BRKDRE

K

\/}

52)
o,

AP 7AKENDKR X
= ATA '}" 5‘;‘3“ RN N ;VAVA(A
SO U\
RSO
NIRRT
AN AVA A Vava v 7 AV

+

Figure 3.1: General steps in the finite element method.

The following step in FEM consists in applying the boundary constraints to the
global matrix form followed by solving the system of equations using a proper numerical
method. Finally, it is possible to obtain the solution post-processing and other quantities
of interest, such as reproduce results in tables or graphics. Figure 3.1 illustrates the main
steps in the Finite Element Method.

3.1 Finite Element basis functions

The quality of an approximate solution from a finite element problem strongly
depends on the choice of the basis functions. If they are correctly selected, the determi-
nation of the coefficients is reduced to a computational problem [1]. For unidimensional

domains, it is common to use linear functions presented in Fig. 3.2:

Chapter 8. The Finite Element Method 32

0
h
1
0 1 2 3 4z
wp G
. rl=
0 1 2 3 4z

O
2

0 %1 1 %o

Figure 3.2: Linear basis functions for linear elements. Extracted from Becker, Carey, and
Oden [2].

In the computational environment used in this research, the finite element
approximation spaces are constructed using hierarchical base functions [11]. Figure 3.3

illustrates the quadratic base functions for quadrilateral elements.

Figure 3.3: Quadratic basis functions for quadrilateral elements.

Chapter 3. The Finite Element Method 33

3.2 Finite Element transformations

The finite element transformations are used for mapping the coordinates of a
curvilinear element €, to the master element 2. This approach allows the calculations of
the elements to be performed in terms of (2. Consider the quadrilateral element Q with
coordinates & and n where —1 < &, 7 < 1 in Fig. 3.4. The transformation from Q) onto Q.
is presented by:

)

£=1

('17'1)

Figure 3.4: A finite element 2, in the x,y-plane obtained as the image under 7, of the
corresponding master element €2 in the &, n-plane. Extracted from Becker, Carey, and

Oden [2].

Suppose the functions x and y are continuously differentiable with respect to

¢ and 7. Thus, d¢ and dn transform into dx and dy as:

Chapter 3. The Finite Element Method 34

dx agdf—l—a—dn
0 0
dy = gdf—i— y

In matrix form:

NI
dy G dn

where the 2 x 2 matrix of partial derivatives in Eq. (3.1) is the Jacobian of the transfor-

mation denoted J.

3.3 Elastoplastic modeling in FEM context

The analytical solution of engineering problems governed by the elastoplastic
constitutive model can only be evaluated under the assumption of very simplified condi-
tions. The adoption of appropriate numerical techniques capable of producing approx-
imate solutions with reasonable accuracy is required to provide more realistic analysis.
In the context of FEM, the formulation and numerical solution of nonlinear problems in
continuum mechanics are based on the weak formulation of the principle of virtual works.
For materials governed by the elasticity law, the solution is directly obtained from the
stress tensor that can be introduced into the equation of the principle of virtual work to
obtain a variational equation with only the displacements and its gradient. However, the
plastic behavior consists of an iterative process that necessarily has to be evaluated by

the evolution of the constitutive equations in a pseudo-time (see Fig. 3.5).

[Discrete model]
: iterative process

i .
Compute K Solve Kéu=F H u'=u"'+du H R=Ku™-F]
and F ’ [|

no

R<tolerance?

__

[Postprocess]

Figure 3.5: Finite element method flowchart for the iterative process.

Chapter 3. The Finite Element Method 35

3.3.1 Weak formulation of the elastoplastic problem

Denoting € as the domain for the PDE problem in R? with boundaries 09 =
0€lp U 00 where D and N stand for the boundary with Dirichlet and Neumann data,
respectively. The governing equations for the elastoplastic strain consist of three parts: a

conservation law, a constitutive equation, and boundary conditions.

div(e(z)) = 0 x€Q (3.2)
u(s) = up(s) s€ 00p (3.3)
o(s)-i = t(s)s€ 0Ny (3.4)

where o is the stress tensor, @ represents the displacement vector, ¢ is the normal traction
over dfdy and 7 is the outward normal. Equation (3.2) corresponds to the conservation
law and Egs. (3.3) and (3.4) are the boundary conditions.

Following the elastoplastic constitutive modeling presented in Chapter 2, the
strain tensor € is decomposed into elastic strain €° and plastic strain eP. The stress tensor

o is a function of the elastic part of the strain tensor.

o (4) =2pe’ + Atr(e®)I in Q (3.5)
Under the assumption of small strains, the total strain tensor is expressed as:
£ (@) = = (Vi + V') (3.6)

2

Consider a geometrical partition T, = {€.} of the region € by convex elements
Q). with boundaries 0€2,. The index h stands for the maximum diameter of the elements

Q.. The following functional space is required:

H' (Q) = {5 e L*(Q): Vie L*(Q)} (3.7)

The classical one-field weak formulation for the mechanical problem defined in
Eq. (3.5) is formulated as:
Find @ € V = {#€ H' (Q), #|sn,= 0} such that:

R(7,7) = /Q div(e) 7V = 0 (3.8)

The divergence theorem applied to Eq. (3.8) leads to:

R(ﬁ,ﬁ)z/a:VﬁdV—/ i.7ds (3.9)
Q QN

For the elastoplastic case, in Eq. (3.9) the stress depends on a nonlinear re-

Chapter 3. The Finite Element Method 36

sponse of the strain. Therefore, it must be linearized with respect to « at the point «*.

The linearized problem is finding d« such that:

L(éw,v) = R(a*,v) + D R(a*, 0)[6u] = 0
where L is the linearization of R(u*, ¢') and

d
D R(i@*, 9)[3il] = —|—oRu(@* + 01, 7)
€

is the directional derivative of R, on #* in the direction of d.

d -
D****:—EZ/ Vi dV — L7 dS =
R(u*, v)[du] de| 0 Qa'(e(e)) Vv dV mNt v dS
d "
@620/90(5(6)) L VT dV
where:
i — i N\T'
e(e) = V(T + edt) —|—2V(u + edu) U 4 VS
Applying the chain rule:
D G(a@*, 7)[5d] :/De,, L VP8G VT AV
Q
where:
0o
P e

is the derivative of the stress tensor with respect to the strain.

Thus, the mechanical equilibrium of a body with material governed by the
elastoplastic constitutive law must satisfy the following:

Find @ € V such that:

/Dep:Vséﬁ:VUdV:—/a:VUdV—i— I 7dS (3.10)
Q Q 0N

37

Chapter 4
GPU programming

Traditionally, computer codes were written to be executed sequentially so that
a problem was partitioned into instructions and these instructions were executed one after
another. However, more complex problems have emerged from technological progress
in many industry’s fields. The growing market and increasing demand to solve these
problems more efficiently have driven the manufacturing of faster and smarter processors.
For many years, the strategy for increasing the performance of the processors adopted
by the industry was to develop processors with higher clock frequencies, which increased
each year significantly [19].

The processor clock coordinates all Central Process Unit (CPU) and memory
operations by generating a time reference signal called a clock cycle or tick. Clock rate
is the frequency at which the clock circuit of a processor can generate pulses, which are
used to synchronize the operations of its components [37]. The frequency is specified in
megahertz (MHz), which corresponds to millions of clock cycles per second, or gigahertz
(GHz), which specifies billions of clock cycles per second. Finally, clock speed determines
how fast instructions are executed. Some instructions demand one clock cycle, others
multiple clock cycles, and some processors execute multiple instructions during one clock
cycle [37].

For more than two decades, microprocessors based on a single CPU provided
fast performance increases and cost reductions in computational applications. They could
achieve billions of floating-point! operations per second (gigaFLOPS or GFLOPS) to the
desktop and trillion of floating-point operations per second (teraFLOPS or TFLOPS) to
cluster servers. Thus, it was possible to deliver more functionality to applications, better
user interfaces, and more useful results.

However, after some years, the performance improvement due to the manu-
facturing of more powerful processors experienced a stagnation. Processors’ performance

increased 60 percent per year in the 1990s, but slowed to 40 percent per year from 2000

'Method of encoding real numbers within the limits of finite precision available on computers [13].

Chapter 4. GPU programming 38

to 2004, when performance increased by only 20 percent [15]. Faster processors heated up
faster than the average fan could cool them down. Moreover, they required high energy
consumption to complete their tasks [17]. These two main reasons limited the manufac-
turers to produce faster processors. Thus, the industry had to give up their efforts to
increase clock frequency by looking for a new method: increasing the number of cores
within the processor [9].

Multi-core processors consist of two or more cores or processing units that op-
erate in parallel to read and execute instructions. The main idea of this technology is to
use multiple cores instead of one at a comparatively lower frequency. However, an overall
improvement in the performance is achieved through multiple cores operating simulta-
neously on multiple instructions [31]. For example, a dual-core chip running multiple
applications is about 1.5 times faster than a chip with just one comparable core [15].

On the other hand, another type of processor emerged in terms of compu-
tational performance in the last few years. Graphics Processing Units, or GPUs, were
initially developed for graphic processing of images and videos. The first GPU, a GeForce
256, was launched in 1999 by NVIDIA, the world leader in the graphics processor market
[25]. GeForce 256 consists of a single-chip 3D real-time graphics processor that included
almost every feature of high-end workstation 3D graphics pipelines available at that time.
Due to market demand for high-quality real-time graphics in computer games and video,
these processors have undergone considerable technological advancement over the years.
For example, in a gaming application, one needs to render scenes at an increasing resolu-
tion at a rate of 60 frames per second [19].

Later, researchers who wanted to enhance the performance of their applica-
tions took notice of GPUs’ high processing power and started to explore their use for
non-graphic ones in the fields of science and engineering. This trend became known as
General-Purpose computation on the GPU (GPGPU). However, developing non-graphic
applications was a complex activity since GPUs had been developed to run features in
graphics applications. For example, to run multiple instances of a function in parallel, one
had to write them as pixel shaders®. The input data had to be stored in texture images
and issued to the GPU by submitting triangles. Finally, the output data had to be cast
as a set of pixels generated from raster operations®.

Finally, NVIDIA focused on finding new approaches to make the development
of non-graphic applications more intuitive in the GPUs. This came through Compute
Unified Device Architecture (CUDA). Among the innovations contained in its architecture
is the introduction of a more generic parallel programming model with parallel threads
hierarchy, barrier synchronization, and atomic operations. Presently, GPUs use thousands

of parallel cores that run thousands of threads in parallel, allowing the generation of

2Components of the GPU programmed to change pixel light and color patterns [21].
3Graphic operation to smooth border area colors and opacity.

Chapter 4. GPU programming 39

parallel applications in many fields of research [38].

4.1 Architecture of a GPU

The most common approach to execute non-graphic applications on NVIDIA
graphic processors is using GPUs with CUDA architecture. This architecture corresponds
to the framework by which NVIDIA produces GPUs able to perform both traditional
graphics rendering tasks and general tasks. In 2006 NVIDIA launched GeForce 8800 GTX,
which was the first GPU with this architecture. GeForce 8800 GTX includes several new
components designed strictly for GPU computing and aimed to remedy limitations that
prevented previous GPUs from being legitimately useful for GPGPU [29]. Since then,
more powerful graphics processors have been launched by the company.

The architecture of an NVIDIA GPU is typically composed of streaming mul-
tiprocessors (SMs). Each SM contains several streaming processor cores (SPs), in which
several threads are executed. Figure 4.1 presents the first GPU with CUDA architecture.
It has 16 SMs, each composed of 8 SIMD processors operating at 1350 MHz. Each multi-
processor has 8192 registers. FEach thread block has 16 kB shared memory and the global
memory of the GPU is 768 MB.

Host
| |
Input Assembler Setup/Rstr/ZCull

v v
Vtx Thread Issue Geom Thread Issue Pixel Thread Issue g
| | |
v ! ! ! ! v v] &
sp{ Misp| |mise| |fsp{ |@ise| {isp| |WMisp| fisp| {Wmise| |isp| |Wise| Jisp| |WMise| |fsp| |EmisP| |isp| | A
EEEE EEEE EEEE EEEE EEEE EEEE EEEE EEEm bl
EEEE EEEE EEEE EEEE EEEE EEEE EEEE EEEm 8
ERER EEEE EEEE EEEE EEEE EEEE EEEE EEEm =
EE ER EE RN EE ER EE AR E R BN E R ER E R ER E R EE =
EE ERm EE Enm EE ERm EE EEm EE AR EE ER EE Enm EE EEm H
| [

F
'
{
.
s
y

Figure 4.1: Example of the architecture of a GPU. Extracted from Svensson, Sheeran,
and Claessen [35].

Developing a computing architecture that could perform non-graphic opera-
tions allowed GPUs to move from a graphic processor to a programmable parallel proces-
sor with high parallelism power. However, it was still necessary to develop a language to
support user-processor interaction, or users would have to continue to treat their calcula-
tions as graphic problems. Then, NVIDIA launched CUDA parallel programming model.

It is designed to overcome the challenge of writing non-graphic applications to run in

Chapter 4. GPU programming 40

the GPU while maintaining a low learning curve for programmers familiar with standard
programming languages such as C. At the core of the CUDA programming model are
three fundamental abstractions: a hierarchy of thread groups, shared memories, and bar-
rier synchronization which are exposed to the programmer as a minimal set of language

extensions [27].

Figure 4.2: Thread hierarchy. Extracted from Kirk and Hwu [19].

CUDA applications support the coexistence of a host and one or more devices.
The host is a traditional CPU where kernels are invoked. Kernels are functions that may
be executed in the GPU, which is named device. Each process of a given kernel runs on a
thread*. When launching a kernel, the CUDA runtime system generates a grid of threads
organized in a two-level hierarchy. Figure 4.2 shows the hierarchy levels of a kernel launch.
A grid is composed of thread blocks of the same size, while a thread block consists of a
set of concurrently executing threads that communicate through barrier synchronization

and shared memory.

4.2 CUDA program structure

Essentially, every CUDA application has both host and device codes. On the
other hand, a traditional C/C++ application can be interpreted as a CUDA application
with only the host code. Functions and data declarations that will be used by the GPU
are recognized by the compiler using particular CUDA keywords. Thus, standard C/C++

compilers are not able to recognize them. Because of that, NVIDIA also developed a

4Simplified view of how a processor executes a program in modern computers.

© 00 N O Ut oW N

10
11
12
13
14

Chapter 4. GPU programming 41

compiler called NVIDIA C Compiler (NVCC). Figure 4.3 shows an overview of the com-
pilation trajectory of a CUDA program. This trajectory separates the device code from
the host code, compiles the device functions using NVCC and the host code using a C/C++

available compiler.

Integrated C programs with CUDA extensions

\ 4

NVCC Compiler

Host Code ‘ ‘ Device Code (PTX)

Host C preprocessor, Device just-in-time
compiler /linker compiler

¥y

Figure 4.3: Compilation trajectory of a CUDA program. Extracted from Kirk and Hwu
[19].

4.3 CUDA programming model

To illustrate the GPU programming model, Code 4.1 performs the sum of the

vectors A and B and returns the vector C.

Code 4.1: CUDA programming model.

__global ___ void VectorAddKernel (int N, int %A, int %B, int xC) {
int tid = blockldx.x % blockDim.x 4+ threadldx.x;
if (tid < N) {
Cltid] = A[tid] + B[tid];

int main (void) {
int N = 1000000;
int A[N], B[N], C[N];
int xdev_A, xdev_B, xdev_C;

cudaMalloc(&dev_A, N x sizeof(int));
cudaMalloc(&dev_B, N x sizeof(int));

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Chapter 4. GPU programming 42

cudaMalloc(&dev_C, N % sizeof(int));

for (int i = 0; i < N; i++) {
Ali] = rand() % 100;
B[i] = rand() % 100;

cudaMemcpy (dev_ A, A, N x sizeof(int), cudaMemcpyHostToDevice) ;
cudaMemcpy(dev_B, B, N % sizeof(int), cudaMemcpyHostToDevice) ;

dim3 dimGrid(N, 1, 1), dimBlock(1, 1, 1);
VectorAddKernel<<<dimGrid , dimBlock>>>(N, dev_A, dev. B, dev_C);
cudaDeviceSynchronize () ;

cudaMemcpy (C, dev_C, N x sizeof(int), cudaMemcpyDeviceToHost) ;
cudaFree(dev_A) ;

cudaFree(dev_B);
cudaFree(dev_C);

return 0;

The parallelism on GPUs occurs through the execution of kernels. Launching
a kernel typically generates several threads. The memory used by the input and output
data of a kernel launch is allocated in the GPU’s memory. At the end of the execution,
the allocated memory has to be released. Moreover, the input data have to be transferred
from the host to the device, whereas the output data is transferred from the device to the
host. Also, the programmer has to set up the number of thread blocks and threads per
block of the kernel.

The function cudaMalloc performs memory allocation. It allocates the re-
quired number of bytes of linear memory on the device and returns in a pointer® to the
allocated memory. The allocated memory is suitably aligned for any kind of variable.
Code 4.1 exemplifies this function in Lines 13 to 15. Next, the memory transfer opera-
tions are performed by the function cudaMemcpy. 1t copies the required bytes from the
memory area pointed by the source pointer to the memory area pointed by the destination
pointer. The direction of the copy is specified with the argument cudaMemcpyHostToDe-
vice, cudaMemcpyDeviceToHost, cudaMemcpyHostToHost or cudaMemcpyDeviceToDe-
vice. Lines 22 and 23 in Code 4.1 present the copy from the host to the device of the
input arrays A and B, while Line 28 shows the copy from the device to the host of the
output data stored in array C. Once the allocated memory is not to be used anymore

in an application it has to be released. This operation is performed with cudaFree. It

SVariable whose value is a location in the computer’s memory.

Chapter 4. GPU programming 43

frees the memory space which is pointed by a pointer and is presented in Lines 30 to 32
of Code 4.1.

The kernel identifies and accesses threads by their identifier ID. The blockldzx.x
variable provides the identifier of the current thread block, while threadldz.x corresponds
to the identifier of the current thread within a thread block and blockDim.z is the current
block dimension. Thus, it is possible to have a unique identifier of a thread. The ID is
calculated as shown in Line 2 of the code. Also, it is possible to have two and three-
dimensional grids and thread blocks. Then, blockldz, threadldx, and blockDim can be
determined in x, y, or z axes. This facilitates programming and provides a natural way
to call computational elements in a specific domain such as vector, matrix, or volume.

Invoking a kernel is presented in Line 26 of Code 4.1. The arguments between
the symbol <<< >>> are the number of thread blocks and the number of threads per block
of the kernel, respectively. The keyword _ global__ precedes the definition of the kernel.
It indicates that the function is a kernel that is called from the host and is executed in the
device. In addition to the _ global ___ type, a kernel can be preceded by _ device
or __ host . A kernel preceded by _ device__ can only be called and executed in
the device, while a kernel preceded by _ host is called and executed in the host.
That is, it is a traditional C/C++ function. The cudaDeviceSynchronize function after
the execution of the kernel in Line 27 ensures that the output data can only be accessed

after command executions are finished.

4.4 CUDA device memory types

Having many threads available to execute a CUDA application can theoreti-
cally tolerate long memory access latency. However, one can easily run into a situation
where traffic congestion in the global memory access paths prevents some threads from
making progress, leaving some of the streaming multiprocessors idle. Thus, CUDA de-
vices provide several different memory types, which may allow a significant fraction of
the potential speed of the underlying hardware if used correctly. The memory types of a
device are: global, local, constant, shared, and register memory. Each memory type has
advantages and disadvantages. Table 4.1 summarizes the characteristics of the various

CUDA memory spaces [14]:

Chapter 4. GPU programming 44

Table 4.1: CUDA device memory types.

Memory Location Cached Access Scope

Register On-chip No Read/write One thread
Local On-chip Yes Read /write One thread
Shared On-chip N/A | Read/write | All threads in a block
Global | Off-chip (unless cached) Yes Read/write | All threads + host

Constant | Off-chip (unless cached) Yes Read All threads + host

Registers: are the fastest memory on the GPU. They are a very valuable resource
because they are the only memory on the GPU with enough bandwidth and a low enough
latency to deliver peak performance. Registers are allocated to individual threads; each

thread can only access its registers.

Local memory: local memory accesses occur for only some automatic variables. Gen-
erally, an automatic variable resides in a register except for the following: arrays that
the compiler cannot determine are indexed with constant quantities; large structures or
arrays that would consume too much register space; any variable the compiler decides to

spill to local memory when a kernel uses more registers than are available on the SM.

Shared memory: this type of memory is allocated to thread blocks. All threads in a
block can access variables in the shared memory locations allocated to the block. It is an
efficient means for threads to cooperate by sharing their input data and the intermediate

results of their work.

Global memory: corresponds to the “main” memory of the GPU. It has a global scope
and lifetime of the allocating program. Global memory is limited by the total memory
available to the GPU.

Constant memory: this type of memory is read-only capable. This lifetime is the
entire application execution. Constant variables are often used for variables that provide
input values to kernel functions. Constant memory resides in global memory but may be
cached for efficient access.

Figure Fig. 4.4 illustrates the CUDA device memory model.

Chapter 4. GPU programming 45

Figure 4.4: Overview of the CUDA device memory model. Extracted from Kirk and Hwu
[19].

46

Chapter 5

Restructuring the elastoplastic finite

element problem

This chapter describes the adopted structure to evaluate the global opera-
tors resulting from the Finite Element Method applied to the elastoplastic constitutive
modeling with GPU programming. The structure is adapted from the Unstructured Dis-
placement Approach (UDA), which is an algorithm for computing the global operators
developed by Laouafa and Royis [20].

5.1 Matrix form of the finite element problem

The iterative process to approximate the solution for the elastoplastic problem
is finding 6@ € RN such that:

Kéi = -R, K RVN R e RY (5.1)

The variable du represents the finite element increment that is added to the
approximate solution and N is the number of degrees of freedom. The variables K and
R are the global Jacobian matrix and residual vector, respectively. The evaluation of the

global operators is performed through the assembly process and is written as:

N
K=Y K, K, e RN
e=1

N
R=)Y R, R.eR"
e=1

where N, corresponds to element e number of degrees of freedom and N is the number of
finite elements. The variables K. and R, are the element Jacobian matrix and residual,

respectively. Following the notation introduced by Zienkiewicz [40], the evaluation of K,

Chapter 5. Restructuring the elastoplastic finite element problem 47

and R, is written as:
K, = /Q B'D,,B.
R. - [B/

In terms of numerical integration, K. and R, can be described as follows:

NPe

Ke = Z Wk‘Jlez (é;c) Dep (56) Be (é}ﬂ) (52)
k=1
R, = 3wl B (&) 577 () 53)
k=1

where np,. is the number of integration points of element e and the variables wy and
Ji correspond to the integration rule weight and the Jacobian of the transformation at
integration point k, respectively. B, (f;;) is the strain-displacement matrix at integration
point k. Whereas D, (é) is elastoplastic constitutive matrix at the integration point k.
Finally, &P (é) corresponds to the projection of & i (é;c) after the return mapping
scheme at the integration point k.

The local stress-strain relationship, that is, the stress-strain relationship at

integration point k of element e is described as:

O—_»etm'al <5€) -D g—»ee (g};) (54)

where D and £° (é;) are the elastic constitutive matrix and the elastic strain at integration

point k, respectively. Considering a two-dimensional problem the matrix D is:

2u+X 0 A
D= 0 1 0
A 0 2u+ A

The process of evaluating the solution for the elastoplastic problem consists of
an iterative process. Then, consider the above-mentioned statements are defined at the

current pseudo-time ¢,,1. The elastic strain at ¢, is described as follows:

e (@) =a (@) —ar (&) (5.5)

- ~\n+l
where £7 (fk)n and &, (fk)n correspond to the local plastic strain at pseudo-time ¢,, and

the local total strain at pseudo-time ¢, 1, respectively. The local total strain is given by:

& (&) =z (&) +a (&) (5.6)

Chapter 5. Restructuring the elastoplastic finite element problem 48

The variable d&, (é) corresponds to the local strain increment that is added

to the total strain and is described as follows:

0z, (&) = B (&) ol () (5.7)
The total strain &, and its decomposition (€ and £7), as well as the trial stress
g trial its projection @ P and the increment strain ¢, are presented in Voigt notation.

B. (f;) is presented as:

201 g %2 Pones

0 o) o 0
B. (&) = 6, 201 Do Do O, 90y
e\Sk) = | oz Oy ox oy Ox Oy
0 91 o 9% 0 OPNey
9y gy T 9y

The matrix contains the values of the partial derivatives of the displacement
interpolation functions at integration point & for a two-dimensional element. The variables

N, and N, are the number of degrees of freedom in x and y, respectively.

5.1.1 Classical FEM assembly

The classical approach to perform the assembly of the Jacobian matrix and
residual vector is to serially compute each element contribution K, and R, and add them
to the global matrix and vector K and R according to the connectivity of the elements.
Also, K. and R, are composed of the sum of integrals over the element. Eventually, in
an iterative process K can be kept fixed, then only R, needs to be assembled into R.
Algorithm 5.1 illustrates the classical assembly process. This algorithm has the following
steps:

o Initialize the global Jacobian matrix and residual vector with zero;
e Perform a loop over the finite elements;

— Compute K, and R.;

— Insert the element contribution on K and R.

The characteristics of the classical FEM assembly are:

« Since the finite elements share connectivities, the contributions of different elements

to one connectivity would overlap if the algorithm is parallel;

o This approach does not take advantage of the presented constant data during the
evaluation of Egs. (5.2) and (5.3);

e The classical FEM assembly uses little memory resources;

Chapter 5. Restructuring the elastoplastic finite element problem 49

e The algorithm could be executed in parallel by coloring the elements and assemble

all the elements belonging to a single color simultaneously.

Algorithm 5.1. Classical FEM assembly.
1: K<+ 0N and R « OY
2: for k< 1to N do
3: Compute K, = [, B!D,,B.

4: Compute R, = [, BLG %

5: for i < 1 to N, do

6: lgest = connectivity (i, k)

7 // Element vector assembly
8: R (gest) += Re(7)

9: for 7 < 1 to N, do

10: Jdest = connectivity (7, k)
11: // Element matrix assembly
12: K (idests Jaest) += Kel(i, J)
13: end for

14: end for

15: end for

5.1.2 FEM assembly using integration point contributions

The construction of K, and R, and therefore the global Jacobian matrix K
and the global residual vector R, are responsible for a significant part of the computational
cost of the FEM assembly process presented in the previous section, especially during the
recurrent assignment of information on each integration point that depends on the chosen
integration rule. The computational cost tends to increase significantly in the analysis
of nonlinear problems since the evaluation of the global Jacobian matrix and the global

residual vector is performed at each iteration till the problem reaches convergence.

Unstructured Displacement Approach

The Unstructured Displacement Approach (UDA) is an algorithm for comput-
ing the global operators arising from a FEM problem developed by Laouafa and Royis
[20]. The UDA consists of an integration point by integration point (IBI) method to per-
form the assembly process. The approach introduces three operators: B, D and W. The
first operator corresponds to the global strain—displacement operator; the second one is
the ‘rheological’” operator, which components are the local constitutive relationships. The

third operator is the one associated with the weak equilibrium and numerical integration

Chapter 5. Restructuring the elastoplastic finite element problem 50

rule. These three operators remain distinct and uncoupled during all the iterations of the
nonlinear process of resolution. Thus, only one computation is required, whatever the
number of iterations linked with the iterative solving process.

The algebraic problem presented in Eq. (5.1) can be rewritten as:

Kdii + R, = (B'WDB) 6ii + R, = R, + R;, R, € RY, R, € R (5.8)

where R; is the linear residual resulting from the boundary conditions of the problem and
remains constant during the iterations of the analysis of nonlinear problems. R, is the
volumetric residual in which evaluation is required at each iteration.

The matrix B is a sparse matrix of size N, x N, which components are the
partial derivatives of the displacement interpolation functions. The size N, corresponds
to the sum Zévzl npe Ny, where np, is the number of integration points for each element
and n, is the number of components of the stress tensor in Voigt notation. The size N
corresponds to the number of degrees of freedom of the system. This operator is linear
concerning the displacement and transforms the global solution vector du to the values of

the strain increment values at the integration points:
0 =Boa, Be RN sze RN (5.9)
The matrix D is the constitutive operator transforming the integration points
elastic strain into integration point stress:
gl =D, D e RV>N - g e RV, (5.10)
where £° is the elastic strain defined in Eq. (5.5) at the integration points.
Finally, the volumetric residual R, is computed as:
R, = B'Wg " (5.11)

where W is a diagonal matrix and contains all information about the integra-
tion rule: the weight and the determinant of the Jacobian values for all integration points.
= trial

7P is the projection of &, Table 5.1 summarizes the UDA operators introduced by
Laouafa and Royis [20]:

Chapter 5. Restructuring the elastoplastic finite element problem 51

Table 5.1: UDA operators.

Operator Size Description
B Ny xN Global strain—displacement
D N, x N, Constitutive relationship
W N, x N, | Information of the integration rule

Some important observations can be made about the expressions in Eqs. (5.9)
and (5.11):

e Once the geometrical partition and the polynomial order are assigned to every el-
ement in a finite element mesh, the global strain-displacement operator B and the
diagonal matrix operator W with information of the integration rule are constant

during the finite element computations, i.e., they only have to be evaluated once;

e The construction of B involves overlapping information corresponding to common

degrees of freedom. It can only be constructed in parallel if element coloring is used.

« The construction of B'WDB is implemented in two stages: first at the element
level BtW_ DB, for computing the element residual R, and then assembling the

element residuals.

5.2 Modified Unstructured Displacement Approach

In this work is explored the potential of accelerating the Jacobian matrix and
residual vector evaluation by constructing a block-oriented storage pattern B € RNo*N
The matrix B is block-diagonal and corresponds to a scattered version of B presented
by Laouafa and Royis [20]. While the matrix B represents the global strain-displacement
operator with overlapping information corresponding to common degrees of freedom, the
matrix B is arranged per finite element. Each block of B corresponds to a finite element
strain-displacement matrix B., which in turn is an arrange of the strain-displacement
matrices at the integration points of the element. The matrix structure for B and B, is

shown graphically in Fig. 5.1.

Chapter 5. Restructuring the elastoplastic finite element problem 52

Bl [Be(gl)]
B2 [Be(&Z) J

5 /

Be _/ [Be(énpe)]

Figure 5.1: Representation of B and B,.

The size N, corresponds to the number of rows of B and is the sum Zévzl NPe Ne
where np, is the number of integration points for each element and n, is the number of
components of the stress tensor in Voigt notation. Whereas N is the number of columns of
B and corresponds to the sum of the size of each element > | N,. B contains the values
of the partial derivatives of the displacement interpolation functions per element at the
integration points. Using this structure, each element block B, can be easily constructed
in parallel.

B operates on ot

0c=BS.bi, BeRYN sze RN (5.12)

where 0¢ is the scattered version of the global strain vector 6¢. S, stands for the scatter
operation, taking the mesh degrees of freedom to element-wise degrees of freedom. For
details about gather and scatter operations, the reader can be referred to He et al. [18].

The global degrees of freedom vector du is:

Si = (dur Suy ... duy)

The scattered version of 0 is:

Soi=5a=(6ul Suy ... duk sul su) ... &)

1 N

The term R, € RY corresponds to the scattered version of the volumetric

residual vector R, and is expressed as:

R, = B'W&"" (5.13)

Chapter 5. Restructuring the elastoplastic finite element problem 53

= proj . . _ . 3 .
o is the scattered version of the global stress vector 67" and W carries

the information of the integration rule.

The volumetric Jacobian matrix also has a scattered representation given by:

K, = B'WD,,B (5.14)

where ljep € RNo*Ne g the elastoplastic constitutive matrix at the integration points.
The scattered operators K, and R, are presented as the global volumetric

operators K, and R, using a coloring scheme for the assembly process. Finally, the

linear contributions K; and R; are added to the volumetric operators to form K and R.
The constant preprocessing data for applying the Modified Unstructured Dis-

placement Approach are listed as:
o Scattered strain-displacement operator;
» Integration points weight and determinant of the Jacobian operator;
« Elements connectivities;
o Finite element mesh coloring;

e Linear Jacobian matrix and residual arising from the boundary conditions of the

problem.

5.2.1 Scattered strain-displacement operator

The scattered strain-displacement operator is a block-diagonal matrix with
size N, x N. This work presents two patterns to store B: sparse matrix and dense
block matrices. For both approaches, all element matrices B, are stored in the row-major
format in a single array (Value) with size N, x N. However, sparse matrix and dense
block matrices storage patterns have different indexers for mapping B.

The following matrix presents a example of B structure:

wo]l
I

For this example, the array Value is as follows:

value:(231578461931275342)

Chapter 5. Restructuring the elastoplastic finite element problem 54

Sparse matrix storage pattern

The sparse matrix storage pattern considers the compressed sparse row (CSR)
format. It requires two arrays to access the scattered strain-displacement matrix. The
array RowPointer contains the indices of the first nonzero element in the i*® row of the
array Value and has size N, +1. The array Collndex corresponds to the nonzero elements

column indices and has size N, x N. RowPointer and Collndex for the example are:

RowPointer = (1 4710 13 16 19)

Col]ndemz(l23123456456789789)

Dense block matrices storage pattern

The dense block matrices storage pattern has five arrays associated with the
scattered strain-displacement matrix. The arrays RowSize and ColSize store the number
of rows and columns of each block matrix, respectively. Both arrays have size N. The
array MatrixzPosition stores the indices of the first element of a block matrix in the array
Value and has size N 4+ 1. The arrays RowFirstIndex and ColFirstIndez store the row and
column indices of the first element of a block matrix with size N + 1. For the example,

the presented arrays are:

RowSize = (2 2 2) ColSize = (3 3 3)
RowFirstindex = (1 35 7) ColFirstIndex = (1 4 7 10)

MatrixPosition = (1 7 13 19)

Table 5.2: Dense block matrices Table 5.3: Sparse matrix
storage pattern arrays sizes. storage pattern arrays sizes.
Dense block matrices storage pattern Sparse matrix storage pattern
Value N, x N Value N, x N
RowSize N, RowPointer N, +1
ColSize N, Collndex N, x N
MatrizPosition N, +1
RowFirstindex N, +1
ColFirstindex N, +1

Chapter 5. Restructuring the elastoplastic finite element problem 55

5.2.2 Integration points weight and determinant of Jacobian op-
erator
The operator W corresponds to the diagonal matrix with size N, x N,. Each

diagonal element contains the value of the integration point weight multiplied by the

determinant of the Jacobian at the integration point.

W1X|J1| 0 0
V_V: 0 CUQX|J2|
0
0 0 wNUX|JN0‘

In terms of computational storage, the operator W is stored as a single array

with size N,s where N, is the sum Zévzel NPe.

5.2.3 Elements connectivities

The elements connectivities determine where the element contributions result-
ing from the evaluation of K. and R, are added in the global Jacobian matrix and residual
vector K and R. Since the calculations of the proposed structure occur in the element
level, an array with size N containing the elements connectivities is stored to perform
the scatter operations from the global system to the element level and the gather oper-
ations from the element level to the global system. Figure 5.2 shows an example of the

connectivities for a two quadrilateral finite elements mesh.

78 5 6 11 12

1 2 3 4 9 10

Figure 5.2: Global connectivities for a quadrilateral finite elements mesh.
For the example presented in Fig. 5.2, the global connectivities are:

- T
e=(123456789101112)

The element-wise version of € is:

§:<1234567834910111256)T
El E2

Chapter 5. Restructuring the elastoplastic finite element problem 56

5.2.4 Finite element mesh coloring

Finite element mesh coloring is used to avoid race conditions that may arise
when the code execution order inadvertently affects the result. For instance, when parallel
threads accumulate values in the same memory location, one may finish the computation
faster than others. Thus, the result of the first threads is overlapped by the result of the
last thread to finish the computation. In FEM, the elements of a mesh share connectivities,
then the components of K and R are formed by the contributions from one or more
elements. A coloring technique to avoid race conditions during the evaluation of K and R
is to color the mesh elements such that two elements of the same color do not share any
connectivity and therefore perform the assembly process of all elements of one color. Thus,
the colors of a mesh are treated sequentially. Whereas, the elements of the same color are

executed in parallel. Algorithm 5.2 presents the pseudo-code for the mesh coloring.

Algorithm 5.2. Mesh coloring algorithm.
1: NeedsToContinue < true

2: Ciq 0N // Array of colors indices

3 Id <+ 0

4: while NeedsToContinue do

5: NeedsToContinue < false

6 for k <+ to N do

7: if Element has color then

8: Go to next element

9 end if

10: Get connectivity of element k

11: if Any neighbour has color = Id then
12: NeedsToContinue < true

13: else

14: Ciglk] = Id

15: Connectivity of element k is colored
16: end if

17: end for
18: Id=1d+1
19: end while

Figure 5.3 presents an example of a two-dimensional mesh with quadrilateral

elements colored with Algorithm 5.2.

Chapter 5. Restructuring the elastoplastic finite element problem 57

Figure 5.3: Colored two dimensional finite element mesh with quadrilateral elements.

5.2.5 Linear Jacobian matrix and residual

The linear Jacobian matrix K; and residual vector R; arising from the finite
element discretization do not change during the iterative process to approximate the
solution of the problem. Thus, it can be evaluated only once during the entire process.
K, and R, consist of the contributions of the boundary elements of a finite element mesh.
Figure 5.4 presents boundary elements for a two-dimensional finite element mesh with

triangular elements.

/ AN

N /

~—

Figure 5.4: Boundary elements for a two dimensional finite element mesh with triangular
elements.

For this work, the linear Jacobian matrix K; and the linear residual R; are
constructed under the classical assembly approach presented in Algorithm 5.1. K; is the
global form of the linear Jacobian matrix with size N x N. For computational aspects, it

is stored in the CSR pattern KZ(I?I, [I_(}, JI?Z). R, corresponds to the global form of the

linear residual and has size N.

Chapter 5. Restructuring the elastoplastic finite element problem 58

Table 5.4 summarizes the constant preprocessing data for the Modified Un-

structured Displacement Approach:

Table 5.4: Summary of the constant preprocessing data.

Data Size
Scattered strain-displacement operator (B) Sizes in Table 5.2 or Table 5.3
Int. points weight and det. of jacobian operator (W) Npis
Elements connectivities (é) N
Finite element mesh coloring(Ciy) N
Linear Jacobian matrix and residual (K; and R;) (NNZy, N + 1,NNZ;) and N

where NNZ, stands for the number of nonzero entries of the linear Jacobian matrix K;.

5.2.6 Jacobian matrix and residual vector strategies

The evaluation of the global operators using the Modified Unstructured Dis-
placement Approach is divided into two main folds: the computation of K and R.

For the residual R, there are two strategies of computation. The first is a block
element approach where Eqs. (5.12) and (5.13) are computed in parallel at the element
level with dense matrix-vector multiplications. In this case, the dense block matrices
storage pattern is used for B. The second strategy consists in computing Egs. (5.12)
and (5.13) considering the sparse matriz storage pattern for B. In this case, only matrix-
vector sparse operations are applied to the scattered operators. For both approaches, the
evaluation of @7 is performed at the integration point level following the return mapping
scheme. The projection of the stress tensor is executed using principal stresses. Thus,
its spectral decomposition at the integration points is performed following the method
described in Appendix B. To obtain R, a series of gather, saxpy! and scatter operations
are performed per color set to reduce R, into R,. Finally, the linear residual vector
R, contribution is added to R,. Algorithm 5.3 presents the pseudo-code of the residual

assembly process.

LCombination of scalar multiplication and vector addition.

Chapter 5. Restructuring the elastoplastic finite element problem 59

Algorithm 5.3. Residual assembly process.
1 R+« oY
. Scatter 0 < i
. Compute 0 = B

2
3
4: for k < 1 to np do // Parallel execution

5. Elastic predictor/Plastic corrector @ «+ g trial
6 Concatenate &7 « Proi

7 Compute &7 = &— D~ 1gprroi

8: end for

9: Compute R, = B'W¢

10: for ¢ < 1 to nc do // Serial execution

11: Gather R, « Color subset R,

12: Add color contribution R,+ = R,

13: end for

14: Compute R = R, + R;

Figures 5.5 and 5.6 present both mentioned strategies to compute 6. To

compute R, these strategies are also applied with B in the transpose form.

Bl 5ﬁ1 = 6_51 /—\ B1 ﬁﬁl

BN SﬁN = SEN / BN BﬁN

Figure 5.5: Evaluation of §¢ with block Figure 5.6: Evaluation of 0 with sparse
elements approach. approach.

For the Jacobian matrix K, it is only considered the block elements approach.
Due to the associative characteristic for the elastoplastic equations, the matrix assembly is
restricted to a sparse symmetric structure in CSR format or in other terms K(K, I K, JK).
The element Jacobian matrices K, of elements belonging to a color set are computed in
parallel with dense matrix-matrix multiplications with K, = er BéDepBe. The elasto-
plastic constitutive matrix is computed at the integration level with the strategy proposed
by Cecilio et al. [7]. The contributions K, are added to the array K, € RZ of the ma-
trix KU(I_(J, IK,., J[_(U). Then, using a loop over the colors, the entries of K, associated
to the current color are inserted into the global vector K, € RNN% by gathering all the
corresponding color entries, applying a saxpy operation over the color entries adding all

the contributions to the color local array and finally applying a scatter operation. The

Chapter 5. Restructuring the elastoplastic finite element problem 60

size NNZ stands for the number of nonzeros entries of the global array, whereas NNZ
is the sum 3 | N? and represents the number of non overlapping nonzeros. When the
loop over the colors is complete, the global K, (K,, [K,, JK,) is assembled. Lastly, the
boundary contribution K; is added to K,. Algorithm 5.4 presents the pseudo-code of the

Jacobian matrix assembly process.

Algorithm 5.4. Jacobian matrix assembly process.
1 K, + ONNZ and K, «+ QNNZ
1+ 0
: for k + 1to N do // Parallel execution
Compute K. = [, B!DB.
for i + 1 to N, do
for j < 1 to N, do

// Element matrix scatter

K, (1) + =K.(3,])
4+
end for

© ® > gk ey

>—~
e

end for

—
—_

. end for

— =
w N

: for ¢ - 1 to nc do // Serial execution

Gather K, < Color subset K,

Add the color contribution K.+ = Color subset K,
Scatter K, + K,

: end for

: Compute K = K, + K|

[e S O Y
[R AR

61

Chapter 6

Computational implementation and

verification

This chapter describes the neoPZ environment, the implemented classes and
kernels, as well as a Quasi-Newton method for accelerating the convergence. Also, it

presents the verification method for the elastoplastic problem approximation.

6.1 neoPZ environment

neoPZ environment is an object-oriented C++ library for the development of
finite element programs and is the base for this work. This library has many C++ classes
to implement the main concepts for matrices, finite elements, finite element meshes, in-
terpolation spaces, and materials constitute laws. It was created by Professor Philippe
Remy Bernard Devloo and is maintained by him with the collaboration of the master
and Ph.D. students in LabMeC at Unicamp. The environment is open-source and can
be found at https://github.com/labmec/neopz. It is divided into several modules that

correspond to the mentioned concepts. The main modules are presented below [32]:

o Geom: implements geometric abstractions for some element types (point, linear,
triangle, quadrilateral, tetrahedron, hexahedron, and pyramid) and the mapping

functions;
o Topology: contains basic definitions of a geometric element;
o Shape: constructs the basis functions according to the geometry of an element;

o Material: implements the differential equations representing the constitutive mod-

eling of the materials supported by the environment;

o Integral: contains the integration rules for one, two and three dimensions and several

polynomial orders;

Chapter 6. Computational implementation and verification 62

o Matriz: implements different types of matrices, such as skyline, sparse, etc;

e Mesh: contains the concept of mesh. In neoPZ, there is a distinction between
the geometric and computational meshes. The geometric mesh defines the spatial
discretization of the domain and contains the geometric elements, nodes, and el-
ementary coordinate systems. The computational mesh is related to the solution

interpolation space;

o Analysis: manages the assembly process and the solution of the equation system

related to a computational mesh;

o StrMatriz: is responsible for the interface between Matrix and Finite Element classes

and operates with different matrix storage types;

o LinearSolvers: implements the preconditioning and solving methods of equation

systems;

o Post: generates output files for visualization programs.

6.2 Implemented classes

To implement the approach presented in Chapter 5, six classes are imple-

mented. More details of the implemented classes are described in the following items.

TPZIrregularBlocksMatrix

This class implements a matrix arranged per block. The blocks composing
a TPZlIrregularBlocksMatrixz object can be either regular, i.e., the blocks have the same
number of rows and columns, or irregular, where the number of rows and columns of each
block can differ. This class implements the matrix B storage and operations. The access
of a TPZIrreqularBlocksMatriz object is performed with the sparse matriz or the dense
block matrices storage pattern. The data structure of this class consists of the array with
the values of the element block matrices B, as well as the arrays for accessing the matrix
with the chosen storage pattern. The data structure is arranged in a struct. In this work,
the required algebraic operation of a TPZIrreqularBlocksMatrix is matrix multiplications.
Then it is the only implemented. This class is derived from TPZMatrixz class, in which

other types of matrices are also derived from.

TPZConstitutive LawProcessor

This class implements the elastoplastic constitutive modeling, that is, the eval-

uation of the elastoplastic constitutive matrix D, and the corresponding projection of

Chapter 6. Computational implementation and verification 63

the stress tensor P at the integration points of the elements of a mesh. TPZCon-
stitutive LawProcessor consists of some rewritten methods of the existing classes TPZ-
PlasticStepPV and TPZYCMohrCoulombPV with some modifications so it can also be
executed in the GPU. Both D, and 7" are computed using principal stresses. Thus,
the spectral decomposition presented in Appendix B is also implemented in TPZConsti-
tutive LawProcessor. Moreover, the integration points weight and determinant of jacobian
contributions are also applied in this class. The data structure of this class consists of the
total number of integration points, the constitutive parameters, the array representing
W and arrays to store the history of the irreversible processes applied to the material at
the integration points (total strain, plastic strain, and an identifier for the regime of the

material behavior).

TPZNumericallntegrator

This class implements the assembly process of the volumetric Jacobian matrix
K, and residual vector R,. The data structure of this class is a TPZIrreqularBlocksMatrix
object with the scattered strain-displacement operator, a TPZConstitutiveLawProcessor
object for the elastoplastic constitutive information, the elements connectivities and the

indices of the colors of the elements.

TPZFEIPlasticIPStrMatrix

This class computes the Jacobian matrix K and residual vector R. It is de-
rived from TPZSymetricSpStructMatriz, which implements symmetric sparse Structural
Matrices. In turn, TPZSymetricSpStructMatrixz is derived from TPZStructMatriz. This
class is responsible for the interface between Matrix and Finite Element classes in neoPZ
environment. The data structure of TPZFEIlPlasticIPStrMatriz consists of a TPZNumer-
icallntegrator object encapsulating the scattered strain-displacement operator, the inte-
gration points and determinant of the Jacobian operator, the elements connectivities,
the elastoplastic constitutive information and the finite element mesh coloring. Also, the
linear Jacobian matrix and residual (K; and R;) are computed and stored in this class.
Finally, they are added to K, and R, to obtain K and R.

TPZCudaCalls

The constant preprocessing data presented in Chapter 5 is computed using
neoPZ environment. Also, the approximate solution post-process files are generated with
classes of this environment. Therefore, a link between the host and device codes has to
be implemented. This integration occurs in TPZCudaCalls class, which is responsible for

encapsulating the kernels and CUDA libraries’ functions calls.

Chapter 6. Computational implementation and verification 64

TPZVecCuda

This class implements a vector scheme to manage memory transfers from the
CPU to the GPU (and vice-versa). It is a template class; then, it supports any data
types (int, float, double). This class allows the user to allocate memory of the GPU and
transfer information between the GPU and CPU even in a .cpp extension file since this

class wraps the CUDA API calls responsible for memory managing.

6.3 CUDA implementation

The CUDA programming model introduced by NVIDIA supports CPU and
GPU execution of an application. Kernels are instructions executed in the GPU by
several threads. A warp is a set of 32 threads within a thread block, while a thread
block consists of a set of threads running concurrently that communicate through barrier
synchronization and shared memory. To achieve the maximum performance of a kernel
execution in the GPU, it is desired to maximize the parallel execution, i.e., to maximize
the number of active threads in the GPU during the execution of a kernel. However, three
main factors may limit better performances: registers, shared memory in a thread block,
and the number of threads per thread block.

The gather and scatter operations presented in Algorithms 5.3 and 5.4 are
performed with cuSPARSE library in the GPU. This library contains a set of basic lin-
ear algebra subroutines used for handling sparse matrices [28]. cuBLAS library is used
for the saxpy operations in the GPU. This library corresponds to an implementation of
BLAS (Basic Linear Algebra Subprograms) for NVIDIA GPUs [26]. Both cuSPARSE
and cuBLAS are part of NVIDIA GPU-accelerated libraries. These libraries provide
highly-optimized functions and are expected to perform 2x-10x faster than CPU-only al-
ternatives. Every GPU architecture has its configuration of number thread blocks, shared
memory, and memory bandwidth. The libraries developed by NVIDIA use a different op-
timization strategy for each architecture, which means that their use guarantees optimum
performance of the kernels calls independent of the GPU accelerator card.

To perform the multiplication operations in Algorithm 5.3 for the evaluation
of the global residual R, several matrix storage patterns were tested. This work presents
two approaches to perform these operations. The first is to use the sparse matrixz storage
pattern and perform a sparse matrix-vector multiplication with cuSPARSFE library. The
second approach is to work with each element block in parallel. In this case, a kernel
responsible for performing parallel operations where each thread is assigned to one element
matrix-vector multiplication is constructed. For this approach, the dense block matrices
storage pattern is used.

As seen in Algorithm 5.4, the global Jacobian matrix K assembly process

Chapter 6. Computational implementation and verification 65

consists in computing K, in parallel. Thus, the kernel responsible for performing these
computations assigns each element matrix computation to one thread. This kernel uses
shared memory to access the element matrices in order to enhance the performance.
However, there is a relation between the number of thread blocks and the amount of
shared memory used by a kernel. More shared memory used by a thread block implies
fewer thread blocks available by one kernel call. For the case of the present kernel, higher
polynomial orders imply fewer thread blocks since the dimension of the element matrices

increases demanding more shared memory.

6.4 Quasi-Newton method for accelerating the con-

vergence

Some iterative methods have been proposed to calculate approximate solution
of nonlinear finite element equations in elastoplasticity such as Newton-Raphson, modi-
fied Newton-Raphson and Initial Stiffness methods. The last mentioned uses the elastic
stiffness matrix to update the solution. The following items present the Initial Stiffness
Method and a corresponding modification applied to this method in order to accelerate

the convergence.

Initial Stiffness Method

The method can be cast into the following steps:
1. Perform a single K assembly;
2. Decompose K;
3. Compute Newton correction 6z* ' = —K'R (ﬁk_l);
4. Perform a Newton update of @* = @*~' + du*;

5. Perform 3 to 4, till the residue norm reaches the desired tolerance. i.e. HR (ﬁk> H <.

Modified Initial Stiffness Method

This method uses two subsequent states or @* and #*. Denoting the quasi

Newton update 77*:

g =art Lot sakt, (6.1)

Chapter 6. Computational implementation and verification 66

Let be 60* = —K 'R (gjk) and the new update state defined as follows:

"=yt 4 sur (6.2)
where the factor w is the so-called acceleration factor [33], defined as:

= k—1 = %
k k—1 5u * (SU/
Sk 5

The first iteration assumes w' = 1. This method requires a single assembly,

(6.3)

and two linear solve and two function evaluations per update and is very robust when

applied to problems with large plastic strain and complicated constitutive models.

6.5 Solution verification

The analytical solution for the linear setting is presented by Coussy [10]. The

exact displacement, strain and stress fields are respectively:

(1 + V) (pint - U) rzgnte
E ro

U=

1+v) (0 — pint) 72,
e:()(E pt)r;(er(@er—eg@eg)

o= (U _pznt) (er ® €, — €y ®eg)

The energy norm is one of the most natural and meaningful ways to quantify
the error of an approximation. Thus, it is used to verify the solution’s accuracy of the

linear setting using the proposed structure. The energy norm is given by:

felle = { [[+]}

where e is the error and corresponds to the difference between the exact and the approx-
imate solution.

To verify the nonlinear approximation, a Runge-Kutta solver was implemented.
It is required to simplify the elastoplastic equations and recast the problem as the initial

value problem:

dy
x —f(Y)

There are several considerations for this case:

o Describe the equations in terms of the Cylindrical coordinate system and its corre-

sponding mixed form;

Chapter 6. Computational implementation and verification 67

o The approximation is axisymmetric, leading to a displacement field @ that depends

only on the radius and just has a radial component, i.e. @ = ®(r);

e The initial value problem is described in terms of one independent variable r, and

the ODE data is prescribed at the external radius re.;
e The number of discrete points is large enough to have a reasonable approximation.

The Runge-Kutta solver is implemented according to the paper presented by
Biittner and Simeon [6] and neoPZ environment is used to perform the elastoplastic state
update of the approximation. Moreover, the description of the equations in terms of the

Cylindrical coordinate system is performed following Bradley [5].

68

Chapter 7
Results and discussion

The numerical results are presented in four sections organized as follow: two
verifications are presented pointing to check the validity of the spatial approximation
properties and elastoplastic process; the evaluation of the performance in time for CPU
and GPU versions of the presented algorithms and strategies, and also for the classical
residual and Jacobian matrix assembly with neoPZ environment; a memory consumption
analysis; a Quasi-Newton iterative solver of the elastoplastic problem for accelerating the

convergence.

7.1 Verification

A linear constitutive behavior with the physical conditions presented in Fig. 7.1
is considered to verify the approximation properties of the implementation. The elastic
and elastoplastic problems associated with a circular domain representing a wellbore re-
gion with prescribed Neumann data are approximated. The internal pressure p;,; = on-n
is applied in the wellbore walls, while an external normal stress ¢ = on-n is applied over

the external boundary. A hydrostatic pre-stress oy is the initial stress.

[<
N ey N7
X7
: N7
~ R \\g\t\\}\\\‘&‘\‘\uunl’,’,zlg/,,
A ANPA "
K ;\
' 00 WSNSND
" A NN
N Dl

Figure 7.1: Wellbore region geometry with physical conditions and coarse mesh partition
Thli=1-

Chapter 7. Results and discussion

69

Table 7.1 presents the set of geometrical partitions T} for different refinement

levels.

Table 7.1: Set of geometrical partitions 7}, for different refinement levels.

N | Tuli=1 | Tlize | Talis Thli=a Thli=s
p=11| 7936 32256 | 130048 | 522240 | 2093056
p=21] 31248 | 128016 | 518160 | 2084880 N/A
p=3| 69936 | 287280 | 1164336 | 4687920 N/A

N, 3844 15876 64516 260100 | 1044484

h 0.0071 | 0.0041 | 0.0016 0.0010 0.0004

Table 7.2 shows the material properties used for the numerical results.

Table 7.2: Material properties used for numerical simulations.

Parameter Symbol [unit] | Value
Internal pressure Pint [MPa] -40

External stress o [MPa] -49.9937
Hydrostatic stress oo [MPa] -50
Internal radius Tine [M] 0.1
External radius Text |M] 4.0

Young’s modulus E [MPa] 2000.0
Poisson’s ratio v 0.2
Cohesion ¢ [MPa] 5.0
Friction o [°] 20

Linear setting verification

The energy norm is computed to verify the linear setting of the proposed
structure. The polynomial order and partition p = {1,2} and Tj|,=1 (see Table 7.1) were
selected with several uniform refinements. Disregarding the corresponding elastoplastic
data, the parameters for the linear setting verification are presented in Table 7.2. It
was obtained the expected approximation rate in the sense of energy norm. Figure 7.2
documents the verification of the optimal approximation properties for selected finite

element discretization.

Chapter 7. Results and discussion 70

1073
S 10
—
£a)
>
&0
g
3 107
Polynomial order p
—Linear
10-6 Quadratic
0.001 0.002 0.005
H [m]

Figure 7.2: Energy error plots for p = {1,2} with coarse mesh partition Tj,|,—;.

Nonlinear setting verification

The nonlinear setting verification of the proposed structure is performed com-
paring the approximate solution with the implemented Runge-Kutta solver solution. The
finite element approximation was performed using a quadratic approximation with the
geometrical partition Tj|,—; and the material parameters presented in Table 7.2. Fig-
ure 7.3 shows a remarkable match between the approximations. The number of points
for the Runge-Kutta approximation is 2000. The radius where the plasticity ends is ap-
proximately r &~ 0.15 m for both methods. Figure 7.3 documents the verification for the

implementation considering a nonlinear setting.

Chapter 7. Results and discussion 71

0.000 : 0.008[
-0.002 0.006
& -0.004 ; . & 0.004
~0.0060 &+ e | Approximations .| g g2 ' Approximations :
! -= Runge-Kutta ‘- Runge-Kutta
« FE ' FE |
-0.008t." : 0.000
0 1 2 3 -+ 0 1 2 3 4
Radius [m] Radius [m]
0.0000¢ -
; 0.005
~0:0005 F=s=csoeptrsoreyior st sras sueas : :
' 0.004 -
-0.0010 ‘ ‘
E 2 0.003
% i o
-0.0015p & v
_ 0.002 ‘ ‘
-0.0020 ‘ ‘Approximations - | ‘ - Approximations : |
-+ Runge-Kutta 0.001} - Runge-Kutta =
=0.0025 === omoeet f e FBe g i = FE
: 0.000 - :
0 1 2 3 4 0 1 2 3 4
Radius [m] Radius [m]
0
-2 4
_4 L3
e L3
5] S
i [
v _g 682
8 Approximations : | 1 ‘ Approximétions: \
| —- Runge-Kutta -=— Runge-Kutta
: | = FE « FE
10| = i 0
0 1 2 3 4 0 1 2 3 4
Radius [m] Radius [m]

Figure 7.3: A Runge-Kutta comparison against a finite element approximation with p = 2
a mesh partition Tp|;—1.

7.2 Performance analysis

The numerical experiments were conducted in the High-Performance Comput-
ing Laboratory and Immersive and Interactive 3D Environment for Scientific Visualization
for Petroleum Production cluster (Galileu) at the University of Campinas (UNICAMP).
The cluster provides two processors Intel® Xeon® E5-2630 v3. The graphic processor is
an NVIDIA® Tesla K40. Details about the tests platform are described in Table 7.3.

Chapter 7. Results and discussion

72

Table 7.3: Tests platform description.

Galileu cluster
oS Distribution CentOS Linux 7 (Core)
Kernel 3.10.0-327.el7.x86_ 64
Model Intel® Xeon® E5-2630 v3
Number of Cores 16
Number of Threads 32
CPU
Processor Base Frequency 2.40 GHz
Hyper-Threading Technology Yes
Max Memory Size 768 GB
Model NVIDIA® Tesla K40
CUDA Capability 3.5
Global Memory 12 Gb
GPU -
Multiprocessors (MP) 15
CUDA Cores per MP 192
Max Clock Rate 0.75 GHz
GCC 4.8.5
Compilation NVCC 8.0.44
-std=gnu++11 -mtune=generic
Flags
-march=x86-64 -O3 -ffast-math

For each configuration presented in Table 7.1, five executions were made for
the CPU and GPU using the presented storage patterns. Also, five executions were made
for the classical assembly approach. The comparison between the GPU and CPU parallel
codes is required to verify the efficiency of the GPU compared with the CPU. The CPU
code is implemented in C++ language and is parallelized using Thread Building Blocks,
a C++ template library for task parallelism. The matrix multiplications are performed
using BLAS, whereas the classical assembly approach is performed with neoPZ environ-
ment. The performance analysis takes into account the execution time of the algorithms
presented. The results correspond to the average of the executions. The variability of the
results is presented in Appendix C. Also, the results for the GPU’s performance include
the memory transfers between the CPU and GPU. At each iteration, the finite element
solution is transferred from the CPU’s to the GPU’s memory for evaluating the residual.
Later, the residual is transferred from the GPU’s to the CPU’s memory and the solution

is updated on the CPU using the inverted stiffness matrix.

Chapter 7. Results and discussion 73

7.2.1 Residual

The performance analysis for the residual computation considers both storage
patterns: block matrices and sparse matrixz storage patterns. First, both storage patterns
are compared for computations with the GPU and CPU. Then, a comparison between
the GPU’s and CPU’s performance is presented. Finally, the performance for the residual
assembly using the classical approach with neoPZ environment is compared with the

GPU’s.

GPU performance

Figure 7.4 shows the GPU’s performance for the residual computation with
both sparse matrix (SP) and block matrices (BL) storage patterns for the set of config-
urations presented in Table 7.1. The GPU’s performance is slightly the same for block
matrices storage pattern and sparse matrix storage pattern for partition Tj|,—; with lin-
ear, quadratic and cubic polynomial orders. For partition Tj[;—5 with linear polynomial
order, the GPU’s performance with sparse matrix storage pattern is 2.490x faster than
block matrices storage pattern. However, for partition J|;—4 with quadratic and cubic

polynomial orders, the time difference goes up to 4.641x and 8.021x, respectively.

GPU residual computational time

0.500(|-=

100 |7
050/

Time (s)

0.010¢}
0.005]

1x10% 5x10% 1x10° 5x10° 1x106 5x 100
Ndof

Figure 7.4: GPU residual computation performance for sparse matrix and block matrices
storage patterns.

For the sparse matrix storage pattern, it is used a single sparse matrix-vector
multiplication with cuSPARSFE library. For the block matrices storage pattern, a ker-

nel performs dense matrix-vector multiplications in parallel, where each thread executes

Chapter 7. Results and discussion 74

one serial matrix-vector multiplication. Also, an alternative where each thread assigns
one cuBLAS matrix-vector multiplication was implemented. This operation performs
one parallelized matrix-vector multiplication. However, it does not take advantage of the
parallelism power of the GPU for the element matrices because it is dedicated to larger
dimension matrices. Moreover, to avoid race conditions, one cuBLAS context must be
initialized for each matrix-vector multiplication. This operation is time-consuming, re-
sulting in slow performance of the multiplication. The result shown in Fig. 7.4 presents

only the kernel approach for the block matrices storage pattern.

CPU performance

Figure 7.5 presents the CPU’s performance for the residual computation with
the sparse matrix and block matrices storage patterns for the set of configurations pre-
sented in Table 7.1. It can be noticed that the CPU’s performance for both storage
patterns does not differ significantly. However, the CPU’s performance for the block
matrices storage pattern is slightly better than the sparse matrix storage pattern. For
cubic polynomial order and partition Tj,|;—4, the CPU’s performance for the block ma-
trices storage pattern is 1.579x faster than the sparse matrix storage pattern. For the
sparse matrix storage pattern, a single sparse matrix-vector multiplication with BLAS is
used. In contrast, for the block matrices storage pattern, parallelized dense matrix-vector
multiplications are performed with BLAS. Thus, the presented results are expected since
the performance for dense operators is generally faster than sparse operations on CPU

architectures.

CPU residual computational time

1l [e sP,p=1
0.500 | 5P»p-=2
SP,p=3
BL,p=1

1x104 5x10% 1x10° 5x10° 1x10° 5x 106
Ndof

Figure 7.5: CPU residual computation performance for sparse matrix and block matrices
storage patterns.

Chapter 7. Results and discussion 75

GPU and CPU comparison

Figure 7.6 presents the comparison between the CPU’s and GPU’s best per-
formances. The CPU’s performance is obtained using the block matrices storage pattern,
while the GPU’s considers the sparse matrix storage pattern. For partition Tj,|,—1, the
GPU and CPU’s performance do not differ significantly. However, for more refined parti-
tions, the GPU’s performance is faster than the CPU’s. For linear polynomial order and
partition T}, |;—5, the GPU’s performance is 6.394x faster than the CPU’s. For partition
Th|i=4 with quadratic and cubic orders, the time ratio between the GPU and CPU is
4.797x and 5.479x, respectively.

GPU vs. CPU residual computational time

0.500/

0.100}|

0.050| L

Time (8)

0.010}
0.005/

1x104 5x 104 1x10° 5x 105 1x106 5x 100
Ndof

Figure 7.6: GPU and CPU residual computation performance comparison.

GPU and neoPZ comparison

Figure 7.7 shows the comparison between the GPU’s performance using the
sparse matrix storage pattern and neoPZ’s performance using the classical assembly ap-
proach. It can be observed that for all partitions in Table 7.1 with linear, quadratic and
cubic orders, the GPU’s performance overcomes the classical assembly approach. For
partition Jj|,—5 with linear polynomial order, the GPU’s performance is 149.790x better
than neoPZ’s. Whereas for partition Tj|,—4 with quadratic and cubic orders, the time dif-
ference between the GPU and neoPZ is 40.060x and 23.716x, respectively. It is important
to highlight that neoPZ environment performs the assembly in parallel. Therefore, it is

noticed that the proposed structure leads to better performance than the classical one.

Chapter 7. Results and discussion 76

GPU vs. neoPZ residual computational time

23.716 x| |

001 S e g
r ! / 1

1x104 5x10% 1x10° 5x10° 1x100 5x 106
Ndof

Figure 7.7: GPU and neoPZ residual computation performance comparison.

7.2.2 Jacobian matrix

The performance analysis for the Jacobian matrix computation with the GPU
and CPU considers the block matrices storage pattern. Also, the performance for the Ja-
cobian matrix assembly using the classical approach with neoPZ environment is compared

with the GPU’s performance.

GPU and CPU comparison

Figure 7.8 presents the comparison between the CPU’s and GPU’s performance
for the computation of the Jacobian matrix. It can be observed that for linear polynomial
order, the GPU’s performance reaches better results when compared to the CPU’s for
partitions in Table 7.1. For partition T;|,—5, the GPU’s performance overcomes the CPU’s
by 5.360x. For quadratic polynomial order, the CPU’s and GPU’s performance are almost
the same. However, rising the polynomial order results in a bad performance for the
GPU. Several tests for different configurations of thread blocks and shared memory were
implemented. Since all threads in a thread block access the same shared memory, there is
a relation between the amount of available shared memory to store the element matrices
and the number of active threads in a thread block. Thus, the GPU’s performance does
not overcome the CPU’s for cubic order, being 1.937x slower than the CPU’s for partition
Thli=a-

Chapter 7. Results and discussion 7

GPU vs. CPU Jacobian matrix computational time

T T
[e GPU,p=1
|- aPU,p=2 | |
/|~ GPU,p=3| S S
|+ CPUp=1 |
. -+ CPU,p=2
n | I
v 0.10002=ELp=3) R
g i | | {
5
0.0100 " __~ — S SR
0.0010 ~ - T e b Sttt
1x 10 5x10% 1x10° 5x10° 1x 10 5x 100
Ndof

Figure 7.8: GPU and CPU Jacobian matrix computation performance comparison.

GPU and neoPZ comparison

GPU vs. neoPZ Jacobian matrix matrix computational time
10¢

0.100}

Time (s)

T S S S E i T S|
1x104 5x10% 1x10° 5x10° 1x 106 5x 109
Ndof

Figure 7.9: GPU and neoPZ Jacobian matrix computation performance comparison.

Figure 7.9 shows the comparison between the GPU’s and neoPZ’s performance
for the computation of the Jacobian matrix. It is noticed that for linear and quadratic
orders in partitions of Table 7.1, the GPU’s performance overcomes neoPZ’s. For linear

and quadratic polynomial orders and partition T[;—1, the GPU is 18.371x and 6.000x

Chapter 7. Results and discussion 78

faster, respectively. For partition J|,—5 and linear order, the time difference between
the GPU’s and neoPZ’s performance is 35.974x. Whereas for quadratic order it is 4.489x.
However, there is no relevant time difference between the GPU’s and neoPZ’s performance
for cubic order. For partition Tj|;—4, for example, the GPU’s performance overcomes
neoPZ’s 1.640x.

7.3 Memory consumption

Block matrices and sparse matrix storage patterns have different indexers to
assign the scattered strain-displacement matrix. Both patterns store the values of the
partial derivatives of the basis functions of each element at the integration points in an
array. However, the first approach also requires the storage of the number of rows and
columns of each block matrix, the position of the first element of a block matrix in the
partial derivatives array as well as the row and column indices of the first element of a
block matrix. The sparse matrix storage pattern considers the compressed sparse row
(CSR) format. It assigns the global scattered strain-displacement matrix with an array
of indices with the first nonzero element in the i** row of the sparse matrix and an array
of the nonzero elements column indexes. Figure 7.10 shows the memory consumption
per element for both sparse and blocks storage patterns for linear, quadratic and cubic

polynomial orders.

Memory consumption per element

| Blocks
[Sparse

Memory (Kb)

p=1 p=2 p=3

Figure 7.10: Memory consumption per element for sparse and blocks storage patterns.

Figure 7.11 compares the memory consumption for the storage patterns for
partition Tj,|;—4. [t compares the amount of memory required for both storage patterns
and also the amount of memory to store the global (assembled) Jacobian matrix in CSR

format.

Chapter 7. Results and discussion 79

Memory consumption

5_
m Blocks
m S
b parse
2
Q3
&
3
g
S 2

p=1 p=2 p=3

Figure 7.11: Memory consumption for partition J|,—4 with p = {1,2,3}.

7.4 Accelerating the elastoplastic convergence

The time for computing the residual of a given solution has been considerably
reduced. However, the evaluation of the Jacobian matrix has performance limitations
when increasing the polynomial order. Also, the time for approximating the target prob-
lem has then been shifted from a problem where the time of the residual computation
dominates to a problem where the time for the global system update dominates. Table 7.4
presents the time in seconds of the global system update considering the Jacobian matrix

decomposition.

Table 7.4: Solution update with Jacobian matrix decomposition (s).

Th'l:l Th|l:2 Th|l:3 ‘Th|l:4 Th'l:t’)
p=1]0.007 | 0.021 | 0.120 | 0.601 | 2.154
p=20.018 | 0.151 | 3.366 | 2.500 | N/A
p=3|0.217 | 0.930 | 3.978 | 26.393 | N/A

Seeking to reduce the time to reach the convergence, it is proposed to use the
decomposed global system of the linear elastic problem to update the solution. Thus,
the Jacobian matrix is computed and decomposed only once. The iterative method using
the elastic stiffness matrix to update the solution is denoted Initial Stiffness Method or
Elastic Stiffness Method. The main idea of the Initial Stiffness Method is to construct and
approximate the Jacobian matrix as the elastic stiffness matrix to compute the iterative

solution. The main advantage of this strategy is that the solution update for a single

Chapter 7. Results and discussion 80

iteration is fast and stable (See Table 7.5). On the other hand, the rate of convergence
for the algorithm is slow, especially when the area with plastic strain is large. Then, the
Modified Initial Stiffness Method is applied based on the Thomas acceleration method
presented by Thomas [36] and Sloan, Sheng, and Abbo [33] to accelerate the convergence.

Table 7.5: Solution update with no Jacobian matrix decomposition (s).

Tnli=1 | Tali=2 | Thlizs | Tnliza | Tnli=s
p=110.003 | 0.009 | 0.056 | 0.232 | 0.950

p=210.008 | 0.054 | 0.198 | 0.891 | N/A
p=3|0.021 | 0.099 | 0.362 | 2.488 | N/A

Figure 7.12 shows the effect of the Modified Initial Stiffness Method on the
convergence against the conventional Initial Stiffness Method for partition Tj|,—4. Fewer
iterations were required to reach the same stop criterion. No kind of instability was
observed during the iterative solution process. It is important to remark that by increasing
the polynomial order, the Initial Stiffness Method suffers from a slow convergence due to

the arrow plasticity area around the wellbore region.

10~ = S S T T p7= 3 T T T
AN s I o FE) ek FE
1 i Modified IS ; t . Modified 1S . Modified T
= 107N s = = 10~4f\ - b ;O — = 0.001 J'\IOdlﬁCdIS
= 3 | | E- : | = 107
n 7] ‘n
S 106 g : : : : S s
- N TN TN NN
: : : : : : : : -6l T
T N W AR S AN T O Rl B S e
| H i | H H -7l HL N R O R il
. ; i : 1 10-10L : i ; i 10 1 i 1 i i 1
0 5 10 15 20 0 5 10 15 20 0 20 40 60 80 100 120
Number of iterations Number of iterations Number of iterations

Figure 7.12: Convergence history for the vertical wellbore problem for partition Tj,|;—4
with p = {1,2,3}.

81

Chapter 8
Conclusion

The Finite Element Method is one of the most important numerical techniques
to find approximate solutions of partial differential equations. This method has been
widely used in many different fields of science and engineering. However, growing market
and increasing demand to solve more complex problems efficiently have driven to different
approaches such as the manufacturing of faster and smarter processors and multi-core
processors or even the use of GPUs for non-graphic applications.

Thus, the research in this thesis presents a strategy for computing the element
stiffness matrix and residual vector as well as the assembly process of the global system
resulting from the FEM analysis of an elastoplasticity problem using GPU programming.
In the FEM analysis, the plastic behavior consists of an iterative process that is evaluated
by the evolution of the constitutive equations in a pseudo-time until the problem reaches
convergence. Thus, an efficient evaluation of the global system is required since it is
performed at each iteration.

A data structure and associated parallel algorithm are developed to accelerate
the computation of finite element residual applied to nonlinear elastoplastic problems.
The data structure is designed for GPU processors but has shown to accelerate CPU
computations as well. Also, it differs from the classical assembly process since constant
data is computed only once and is stored globally. The presented structure has a consid-
erable level of parallelism as the algorithms are based on matrix multiplications of highly
structured matrices.

The verification of the algorithms is performed with a linear and a nonlinear
setting. It is obtained the expected approximation rate in the sense of energy norm for
the linear setting. For the nonlinear configuration, a Runge-Kutta solver is implemented.
It is noticed a remarkable match between Runge-Kutta and the FEM approximations.

The matrix-vector multiplications for the computation of the residual are im-
plemented using two different storage patterns. The first uses the compressed row storage

pattern to perform the operations. The second approach uses an element-wise block-

Chapter 8. Conclusion 82

oriented data structure. The first approach performs better on GPU processors, while the
second approach performs better when executed in CPU architectures. When compared
to the classical residual computation implemented in neoPZ environment, the GPU im-
plementation is 24 times faster for a very refined mesh with cubic polynomial order. The
residual computation using the fastest algorithm in the GPU is 5.5 times faster than the
fastest CPU implementation for a cubic polynomial approximation applied to the same
mesh.

The evaluation of the Jacobian matrix in GPU architectures has better per-
formance for linear polynomial order. For a very refined mesh, it overcomes the CPU’s
performance by 5.4 times. However, rising the polynomial order results in a bad per-
formance for the GPU since more shared memory is necessary to evaluate the element
matrices. For cubic polynomial order, the performance in CPU architectures overcomes
GPU’s 1.9 times.

Finally, the Modified Initial Stiffness Method is applied to reduce the number
of iterations using the linear elasticity stiffness matrix. This method requires the con-
struction of the global Jacobian matrix only once and takes advantage of the inexpensive
residual numerical integration process to achieve convergence in a very efficient manner,
reducing up to 83% the number of iterations. Also, it reduces the time for the solution

update since the matrix is decomposed only once.

83

Bibliography

Batalha, N. A. “Modelagem linear elastica para simulagao do estado de tensdao em
pogos de petréleo inclinados”. Master thesis. University of Campinas, School of

Mechanical Engineering and Institute of Geosciences, 2017.

Becker, E. B., Carey, G. F., and Oden, J. T. Finite Elements, An Introduction:
Volume I. Englewood Cliffs: Prentice-Hall, 1981.

Belytschko, T., Liu, W. K., Moran, B., and Elkhodary, K. Nonlinear finite elements
for continua and structures. John Wiley & Sons, 2013.

Bhavikatti, S. S. Finite element analysis. New Age International, 2005.

Bradley, W. B. “Failure of inclined boreholes”. In: Journal of Energy Resources
Technology 101.4 (1979), pp. 232-239.

Biittner, J. and Simeon, B. “Runge-Kutta methods in elastoplasticity”. In: Applied
Numerical Mathematics 41.4 (2002), pp. 443-458.

Cecilio, D. L., Devloo, P. R. B., Gomes, S. M., Santos, E. S. R. dos, and Shauer, N.
“An improved numerical integration algorithm for elastoplastic constitutive equa-
tions”. In: Computers and Geotechnics 64 (2015), pp. 1-9.

Cecka, C., Lew, A. J., and Darve, E. “Assembly of finite element methods on graph-
ics processors”. In: International journal for numerical methods in engineering 85.5
(2011), pp. 640-669.

Correa, G. R. and Sulzbach, M. “Programacao Paralela em CPU e GPU: Uma
avaliacdo do desempenho das APIs OpenMP, CUDA, OpenCL e OpenACC”. In:
RECeT-Revista de Engenharia, Computagao e Tecnologia 1.1 (2017), pp. 19-24.

Coussy, O. Poromechanics. John Wiley & Sons, 2004.
Devloo, P. R. B., Bravo, C. M.A. A., and Rylo, E. C. “Systematic and generic

construction of shape functions for p-adaptive meshes of multidimensional finite
elements”. In: Computer Methods in Applied Mechanics and Engineering 198.21-26
(2009), pp. 1716-1725.

Bibliography 84

[12]

[19]

[20]

[21]

[22]

23]

[25]

2]

Dziekonski, A., Sypek, P., Lamecki, A., and Mrozowski, M. “Finite element ma-
trix generation on a GPU”. In: Progress In Electromagnetics Research 128 (2012),
pp. 249-265.

Electrical, T. I. of and Electronic Engineering Inc, T. R. IEEFE Standard for Binary
Floating-Point Arithmetic. 1985.

Farber, R. CUDA application design and development. Elsevier, 2011.

Geer, D. “Chip makers turn to multicore processors”. In: Computer 38.5 (2005),
pp. 11-13.

Gerschgorin, S. “Uber die Abgrenzung der Eigenwerte einer Matrix”. In: Izvestija
Akademii Nauk SSSR, Serija Matematika 7.3 (1931), pp. 749-754.

Gorder, P. F. “Multicore processors for science and engineering”. In: Computing in
Science & Engineering 9.2 (2007), p. 3.

He, B., Govindaraju, N. K., Luo, Q., and Smith, B. “Efficient gather and scatter op-
erations on graphics processors”. In: Proceedings of the 2007 ACM/IEEE conference
on Supercomputing. ACM. 2007, p. 46.

Kirk, D. B. and Hwu, W.-M. W. Programming massively parallel processors: a
hands-on approach. Morgan Kaufmann, 2012.

Laouafa, F. and Royis, P. “An iterative algorithm for finite element analysis”. In:
Journal of Computational and Applied Mathematics 164-165 (2004), pp. 469 —491.

Lindholm, E., Nickolls, J., Oberman, S., and Montrym, J. “NVIDIA Tesla: A unified
graphics and computing architecture”. In: IEEE micro 28.2 (2008), pp. 39-55.

Maciot, P., Ptaszewski, P., and Banas, K. “3D finite element numerical integration
on GPUs”. In: Procedia Computer Science 1.1 (2010), pp. 1093-1100.

Mafi, R. “GPU-based Parallel Computing for Nonlinear Finite Element Deforma-
tion Analysis”. PhD thesis. McMaster University, Department of Electrical and
Computer Engineering, 2014.

Micikevicius, P. “3D finite difference computation on GPUs using CUDA”. In: Pro-
ceedings of 2nd workshop on general purpose processing on graphics processing units.

ACM. 2009, pp. 79-84.

Nickolls, J. and Dally, W. J. “The GPU computing era”. In: IEEE micro 30.2 (2010),
pp.- 96-69.

NVIDIA. cuBLAS Library. 2019. URL: https://docs.nvidia. com/cuda/pdf/
CUBLAS_Library.pdf (visited on 12/02/2019).

Bibliography 85

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[36]

[37]

[38]

NVIDIA. CUDA C programming model. 2018. URL: https : //docs . nvidia .
com/ cuda/archive/9.1/pdf /CUDA_C_Programming _Guide . pdf (visited on
12/02/2019).

NVIDIA. cuSPARSE Library. 2019. URL: https://docs.nvidia.com/cuda/pdf/
CUSPARSE_Library.pdf (visited on 12/02/2019).

Sanders, J. and Kandrot, E. CUDA by example: an introduction to general-purpose
GPU programming. Addison-Wesley Professional, 2010.

Santos, E. S. R. “Simulador de meios porosos saturados elastoplasticos”. PhD the-
sis. University of Campinas, School of Civil Engineering, Architecture and Urban
Design, 2009.

Sethi, A. and Kushwah, H. “Multicore processor technology-advantages and chal-
lenges”. In: International Journal of Research in Engineering and Technology 4.09
(2015), pp. 87-89.

Shauer, N. “Aproximacao Numérica de Propagacao de Fraturas Hidraulicas em
Dominio Bidimensional com Elastoplasticidade”. Master thesis. University of Camp-

inas, School of Civil Engineering, Architecture and Urban Design, 2015.
Sloan, S. W., Sheng, D., and Abbo, A. J. “Accelerated initial stiffness schemes for

elastoplasticity”. In: International Journal for Numerical and Analytical Methods in
Geomechanics 24.6 (2000), pp. 579-599.

Souza Neto, E. A. de, Peric, D., and Owen, D. R. J. Computational methods for
plasticity: theory and applications. John Wiley & Sons, 2011.

Svensson, J., Sheeran, M., and Claessen, K. “Obsidian: A Domain Specific Embed-
ded Language for Parallel Programming of Graphics Processors”. In: Implemen-
tation and Application of Functional Languages. Springer Berlin Heidelberg, 2011,
pp. 156-173.

Thomas, J. N. “An improved accelerated initial stress procedure for elasto-plastic fi-
nite element analysis”. In: International Journal for Numerical and Analytical Meth-
ods in Geomechanics 8.4 (1984), pp. 359-379.

Thompson, R. B. and Thompson, B. F. PC hardware in a nutshell: a desktop quick
reference. O'Reilly Media, Inc., 2003.

Wu, E. and Liu, Y. “Emerging technology about GPGPU”. In: APCCAS 2008 -
2008 IEEFE Asia Pacific Conference on Circuits and Systems. Institute of Electrical
and Electronics Engineers (IEEE), 2008, pp. 618-622.

Bibliography 86

[39]

[40]

Zhang, J. and Shen, D. “GPU-based implementation of finite element method for
elasticity using CUDA”. In: 2013 IEEFE 10th International Conference on High Per-
formance Computing and Communications & 2013 IEEE International Conference
on Embedded and Ubiquitous Computing. Institute of Electrical and Electronics En-
gineers (IEEE), 2013, pp. 1003-1008.

Zienkiewicz, O. C. The finite element method. Vol. 36. McGraw-hill London, 1977.

Appendix A

Voigt notation

87

The Voigt notation is used to transform second-order symmetric tensors to

vectors and forth-order symmetric tensors to square matrices.

stress tensor o is mapped to [3]:

Oxx Ogxy -
o= —d=|o,| (Al) o= |0, o4, 04
Oyz Oyy
Ogy Ozz Oyz Oz

In Voigt notation the

Qu
Il

O-ZZL‘

for two and three-dimensional stress tensors, respectively. Similarly, the strain tensor &

is redefined in Voigt notation as:

Tx Ty N
€= — &= | gy (A3) €= |ey

2E4y €z

for two and three-dimensional strain tensors, respectively. The factor

Ezy

Eyy

Eyz

Exz
Eyz

E:ZZ

oy

2e4y
2ey,

2€.
of 2

strains results from the requirement that the expressions for the energy be

Voigt notation and indicial notation.

(A.4)

on the shear

equivalent in

38

Appendix B

Spectral decomposition

B.1 Eigenvalues

The first step to evaluate the eigenvalues of the stress tensor in return mapping
is the normalization of stress tensor components. After that, the theorem presented by
Gerschgorin [16] is used to calculate the interval where the eigenvalues of the stress tensor
are. Gershgorin’s Theorem states that given a matrix S,,.,,, all eigenvalues of S lies in the

union of the closed interval:

S — > _|sijly s+ > |syl| . 4.5 =1,....n. (B.1)
J#i J#i
Thus, it is possible to use Newton’s method to compute the maximum and
minimum roots of the characteristic polynomial of the stress tensor using the interval
evaluated by Gershgorin’s theorem as initial guesses. This computation corresponds to

the eigenvalues \; and A3 of the stress tensor. The intermediate eigenvalue \, is evaluated

using the following algebraic relationship:

tT’(S) =)\1 +)\2 +)\3 (BQ)

where S is the stress tensor and \; corresponds to its eigenvalues.

B.2 Eigenvectors

Given a symmetric matrix with eigenvalues and multiplicity known, the eigen-

vectors problem is stated by:
S-v7=M\J (B.3)

A scheme for eigenvectors calculation is defined using the matrix multiplicity.

Appendix B. Spectral decomposition 89

Multiplicity 1

If the multiplicity is unitary, one can extract from the matrix S — AI a non-

singular 2x2 matrix. It is possible to consider three configurations:

T11 T2 Y1 U1
To1 T22 Y2 V2 | =
a b ¢ 1

i1 Y1 Ti2 U1

a b ¢ 1 | =
| X21 Y2 T2 | | V2 | YV
[@ b e][1] [0]

Y1 Ti1 Ti2 vp | =10
| Y2 T2 T22 () 0

Then it is chosen the configuration for which |det X| is maximum where:

To1 T2

X — [L1 T12] (B.4)

The values v; and vy are computed as follows:
Tl x| (B.5)
V2 Yo

In the case multiplicity is 2 the rank of S — Al is unitary and there must be at

Multiplicity 2

least one diagonal other than zero. It is also possible to consider three configurations:

T11 Y2 Y2 U1
a b ¢ 1| =
d e 0

Y1 Y2 Tn U1

Appendix B. Spectral decomposition

90

and equivalently:

T11 Y2
a b
d e
[a b
Y1 T
d e
[a b
d e
| Y1 Y2

T11

(%

(%

It is chosen the configuration for which |z1;| is maximum. Then it is defined,

for instance:
U1
V] =

0

Finally, v7 and v5 are normalized:

Multiplicity 3

In this case the matrix is diagonal and the eigenvectors are the identity matrix.

Appendix C

Results variability

91

GPU residual (sparse matrix st. pat.): Mean and standard deviation ‘

Thli=1 Thli=2 Tnli=s Thli=a Thli=s
D= 0.003s - 1.997% | 0.005s - 1.902% | 0.009s - 2.299% | 0.025s - 2.856% | 0.085s - 0.098%
p=2 1 0.005s - 1.025% | 0.009s - 0.834% | 0.021s - 1.821% | 0.071s - 0.284% N/A
p=3 | 0.006s - 2.690% | 0.012s - 1.156% | 0.036s - 1.186% | 0.130s - 3.373% N/A
GPU residual (block matrices st. pat.): Mean and standard deviation ‘
Tnli=1 Thli=2 Tnli=s Thli=4 Thli=s
D= 0.002s - 1.446% | 0.007s - 0.862% | 0.020s - 0.879% | 0.063s - 0.174% | 0.231s - 0.306%
p=2 | 0.006s - 2.692% | 0.025s - 0.884% | 0.087s - 1.753% | 0.333s - 0.046% N/A
p=3 | 0.014s - 0.332% | 0.074s - 1.384% | 0.276s - 0.284% | 1.045s - 0.101% N/A
CPU residual (sparse matrix st. pat.): Mean and standard deviation ‘
Thli=1 Thli=2 Thli=3 Thli=4 Thli=s
D= 0.004s - 1.409% | 0.015s - 1.741% | 0.057s - 0.635% | 0.215s - 1.147% | 0.719s - 2.016%
p=2|0.011s - 1.147% | 0.045s - 1.106% | 0.149s - 1.087% | 0.543s - 2.398% N/A
p=3 | 0.026s - 1.001% | 0.099s - 0.934% | 0.291s - 0.753% | 1.126s - 0.695% N/A
CPU residual (block matrices st. pat.): Mean and standard deviation ‘
Thli=1 Thli=2 Thli=3 Thli=4 Thli=s
D= 0.004s - 5.525% | 0.011s - 2.013% | 0.042s - 2.389% | 0.151s - 1.734% | 0.544s - 1.077%
p=2 | 0.006s - 6.534% | 0.025s - 3.993% | 0.103s - 2.967% | 0.344s - 1.332% N/A
p=3|0.012s - 5.232% | 0.047s - 3.890% | 0.178s - 3.984% | 0.714s - 3.474% N/A
neoPZ residual: Mean and standard deviation ‘
Thli=1 Thli=2 Tnli=s Thli=a Thli=5
= 0.072s - 8.523% | 0.191s - 5.629% | 0.721s - 2.489% | 2.851s - 4.260% | 12.140s - 1.202%
p= 0.090s - 2.595% | 0.369s - 4.548% | 0.824s - 1.108% | 2.871s - 1.993% N/A
p= 0.121s - 5.374% | 0.329s - 1.048% | 0.818s - 0.842% | 3.088s - 0.779% N/A

Appendix C. Results variability

92

GPU Jacobian Matrix: Mean and standard deviation

Thli=1 Thli=2 Thli=3 Thli=4 Thli=s
p= 0.001s - 1.907% | 0.007s - 3.080% | 0.017s - 2.036% | 0.062s - 2.623% | 0.245s - 2.681%
p=21 0.016s - 2.368% | 0.047s - 2.040% | 0.180s - 0.738% | 0.721s - 0.339% N/A
p=31 0.101s - 0.190% | 0.367s - 0.695% | 1.468s - 0.337% | 5.858s - 0.138% N/A
CPU Jacobian Matrix: Mean and standard deviation ‘
Thli=1 Thli=2 Thli=3 Thli=4 Thli=s
p= 0.005s - 6.354% | 0.016s - 7.831% | 0.057s - 1.349% | 0.259s - 2.375% | 1.046s - 1.167%
p=210.013s - 2.896% | 0.051s - 3.166% | 0.225s - 1.725% | 0.920s - 0.998% N/A
p=31 0.031s - 4.692% | 0.146s - 2.233% | 0.625s - 0.7275% | 2.677s - 1.174% N/A
neoPZ Jacobian Matrix: Mean and standard deviation ‘
Thli=1 Thli=2 Thli=3 Thli=a Thli=s5
p= 0.026s - 6.755% | 0.157s - 4.012% | 0.421s - 1.160% | 1.369s - 1.603% | 8.820s - 3.078%
p=2 1 0.095s - 6.796% | 0.190s - 1.141% | 0.722s - 1.397% | 3.238s - 1.982% N/A
p=3 | 0.259s - 2.318% | 0.654s - 1.067% | 1.998s - 2.663% | 9.609s - 2.575% N/A

	Introduction
	Motivation
	Previous works on FEM with GPU
	Objectives
	Outline
	Body
	Appendix

	Elastoplastic constitutive modeling
	Strain tensor decomposition
	Elastic constitutive law
	Yield criterion
	Plastic flow rule
	Hardening law
	Loading/unloading criterion
	Return mapping scheme
	Mohr-Coulomb Yield Criterion

	The Finite Element Method
	Finite Element basis functions
	Finite Element transformations
	Elastoplastic modeling in FEM context
	Weak formulation of the elastoplastic problem

	GPU programming
	Architecture of a GPU
	CUDA program structure
	CUDA programming model
	CUDA device memory types

	Restructuring the elastoplastic finite element problem
	Matrix form of the finite element problem
	Classical FEM assembly
	FEM assembly using integration point contributions

	Modified Unstructured Displacement Approach
	Scattered strain-displacement operator
	Integration points weight and determinant of Jacobian operator
	Elements connectivities
	Finite element mesh coloring
	Linear Jacobian matrix and residual
	Jacobian matrix and residual vector strategies

	Computational implementation and verification
	neoPZ environment
	Implemented classes
	CUDA implementation
	Quasi-Newton method for accelerating the convergence
	Solution verification

	Results and discussion
	Verification
	Performance analysis
	Residual
	Jacobian matrix

	Memory consumption
	Accelerating the elastoplastic convergence

	Conclusion
	Bibliography
	Voigt notation
	Spectral decomposition
	Eigenvalues
	Eigenvectors

	Results variability

