
Universidade Estadual de Campinas
Faculdade de Engenharia Civil, Arquitetura e Urbanismo

Natália Ramos Vilas Boas

A cuda accelerated numerical integration of an
elastoplastic problem with the finite element

method

Aceleração da integração numérica de um
problema elastoplástico pelo método dos

elementos finitos com cuda

CAMPINAS
2020

Natália Ramos Vilas Boas

A cuda accelerated numerical integration of an
elastoplastic problem with the finite element

method

Aceleração da integração numérica de um
problema elastoplástico pelo método dos

elementos finitos com cuda

Master thesis presented to the School of Civil
Engineering, Architecture and Urban Design
of the State University of Campinas to obtain
the degree of Master in Civil Engineering in
Structures and Geotechnics area.

Dissertação de Mestrado apresentada à Fac-
uldade de Engenharia Civil, Arquitetura
e Urbanismo da Universidade Estadual de
Campinas para a obtenção do título de Mes-
tra em Engenharia Civil na área de Estru-
turas e Geotécnica.

Orientador: Prof. Dr. Philippe Remy Bernard Devloo

Este exemplar corresponde à versão final

da dissertação defendida pela aluna Natália

Ramos Vilas Boas e orientada pelo Prof.

Dr. Philippe Remy Bernard Devloo.

Assinatura do Orientador

Campinas

2020

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor, Prof.
Philippe Devloo, for his assistance and engagement through the learning process of this
master thesis. I give my special thanks to Dr. Omar Durán for his friendship and guidance
in the development of this work. Also, I would like to acknowledge my friends at LabMeC
for all the time we spent together. Moreover, thanks to Petrobras and FUNCAMP for
the Ąnancial support.

My very profound gratitude to my family, especially to my parents Ivone and
Luiz, for providing me with continuous support and encouragement throughout my years
of study. Finally, I would like to thank Rafael for keeping me harmonious and helping me
putting pieces together.

This accomplishment would not have been possible without them.

Thank you.

Abstract

Finite Element Method (FEM) is a numerical technique to approximate partial differen-
tial equations. It has been widely used to approximate solutions of physical problems
in different Ąelds of research. The numerical simulation of challenging engineering prob-
lems with small error requires reĄned meshes and leads to high computational cost. To
overcome this difficulty, parallel computing is becoming a mainstream tool. Among the
techniques available to improve the performance of this type of computational application
is the execution of the algorithm using Graphics Processing Unit (GPU) programming.
Although GPU was initially developed for graphics processing, it has been used in the last
years as a general-purpose machine with high parallelism power through the availability
of platforms such as CUDA or OpenGL. The purpose of this research is to develop an
efficient algorithm for the evaluation of the Jacobian matrix and residual vector arising
from a FEM analysis. This work aims the particular variational formulation of an elasto-
plastic problem with associative plasticity, but the adopted approach can be extended
to other Ąelds and problems. The presented strategy for the calculation of the Jacobian
matrix and residual vector relies on several computational ingredients such as gather-
ing and scattering operations, matrix multiplications, and a parallel coloring scheme for
the assembly process. The veriĄcation of the nonlinear approximated solution includes a
comparison with regular CPU implementation in terms of numerical results and execu-
tion efficiency. For the residual vector, the GPU outperforms the CPU and the classical
assembly approach by a factor of up to 6 and 24 to cubic polynomial order approxima-
tions, respectively. For the Jacobian matrix, GPUŠs performance overcomes CPUŠs for
linear polynomial order, being limited by the amount of shared memory for higher orders.
Finally, a ModiĄed Initial Stiffness method is applied to accelerate the convergence of the
load step using the linear elasticity stiffness matrix to take advantage of the inexpensive
residual numerical integration process to achieve convergence in a very efficient manner.

Keywords: Finite Element Method; Numerical Integration; Elastoplasticity; CUDA.

Resumo

O Método dos Elementos Finitos (MEF) é uma técnica numérica para aproximar equações
diferenciais parciais. Esse método tem sido amplamente utilizado para aproximar soluções
de problemas físicos em diferentes campos de pesquisa. A simulação numérica de prob-
lemas de engenharia com pequeno erro requer malhas reĄnadas levando a um alto custo
computacional. Para superar essa diĄculdade, a computação paralela está se tornando
uma ferramenta convencional. Entre as técnicas disponíveis para melhorar o desempenho
desse tipo de aplicação está a execução de algoritmos usando a programação na unidade
de processamento gráĄco (GPU). Embora a GPU tenha sido desenvolvida inicialmente
para processamento gráĄco, ela tem sido usada nos últimos anos como uma máquina de
uso geral com alto poder de paralelismo através de plataformas como CUDA ou OpenGL.
O objetivo desta pesquisa é desenvolver um algoritmo eĄciente para a avaliação da matriz
jacobiana e do vetor residual resultante de uma análise pelo MEF. Este trabalho visa a
formulação variacional especíĄca de um problema elastoplástico com plasticidade asso-
ciativa, mas a abordagem adotada pode ser estendida a outros campos e problemas. A
estratégia apresentada para o cálculo da matriz jacobiana e do vetor residual baseia-se em
vários ingredientes computacionais, como operações de agrupamento e dispersão, multi-
plicações de matrizes e um esquema de coloração para facilitar o processo de montagem
dos operadores em paralelo. A veriĄcação da solução aproximada não linear inclui uma
comparação com a implementação na CPU em termos de resultados numéricos e eĄciência
de execução. Para o vetor residual, a GPU supera a CPU e a abordagem de montagem
clássica por um fator de até 6 e 24, respectivamente, para aproximações de ordem poli-
nomial cúbica. Para a matriz jacobiana, o desempenho da GPU supera o da CPU para
ordem polinomial linear, sendo limitado pela quantidade de memória compartilhada para
ordens mais altas. Finalmente, o método Initial Stiffness é aplicado para acelerar a con-
vergência usando a matriz de rigidez de elasticidade linear e se beneĄciar do processo de
integração numérica do vetor residual para obter a convergência de uma maneira eĄciente.

Palavras-chave: Método dos Elementos Finitos; Integração Numérica; Elastoplastici-
dade; CUDA.

List of Figures

2.1 Stress-strain relationship. Extracted from Santos [30]. 21

2.2 Isotropic hardening. Extracted from Souza Neto, Peric, and Owen [34]. . . 25

2.3 Kinematic hardening. Extracted from Souza Neto, Peric, and Owen [34]. . 25

2.4 Perfect plasticity. Extracted from Souza Neto, Peric, and Owen [34]. 25

2.5 Return mapping scheme for perfect plasticity. Adapted from Souza Neto,

Peric, and Owen [34]. 27

2.6 Mohr plane representation. Extracted from Souza Neto, Peric, and Owen

[34]. 28

2.7 Mohr-Coulomb surface. Adapted from Souza Neto, Peric, and Owen [34]. . 29

3.1 General steps in the Ąnite element method. 31

3.2 Linear basis functions for linear elements. Extracted from Becker, Carey,

and Oden [2]. 32

3.3 Quadratic basis functions for quadrilateral elements. 32

3.4 A Ąnite element Ω𝑒 in the 𝑥, 𝑦-plane obtained as the image under 𝑇𝑒 of the

corresponding master element Ω̂ in the Ý, Ö-plane. Extracted from Becker,

Carey, and Oden [2]. 33

3.5 Finite element method Ćowchart for the iterative process. 34

4.1 Example of the architecture of a GPU. Extracted from Svensson, Sheeran,

and Claessen [35]. 39

4.2 Thread hierarchy. Extracted from Kirk and Hwu [19]. 40

4.3 Compilation trajectory of a CUDA program. Extracted from Kirk and

Hwu [19]. 41

4.4 Overview of the CUDA device memory model. Extracted from Kirk and

Hwu [19]. 45

5.1 Representation of B̄ and B𝑒. 52

5.2 Global connectivities for a quadrilateral Ąnite elements mesh. 55

5.3 Colored two dimensional Ąnite element mesh with quadrilateral elements. . 57

5.4 Boundary elements for a two dimensional Ąnite element mesh with trian-

gular elements. 57

5.5 Evaluation of Ó�⃗� with block elements approach. 59

5.6 Evaluation of Ó�⃗� with sparse approach. 59

7.1 Wellbore region geometry with physical conditions and coarse mesh parti-

tion Tℎ♣𝑙=1. 68

7.2 Energy error plots for 𝑝 = ¶1, 2♢ with coarse mesh partition Tℎ♣𝑙=1. 70

7.3 A Runge-Kutta comparison against a Ąnite element approximation with

𝑝 = 2 a mesh partition Tℎ♣𝑙=1. 71

7.4 GPU residual computation performance for sparse matrix and block ma-

trices storage patterns. 73

7.5 CPU residual computation performance for sparse matrix and block ma-

trices storage patterns. 74

7.6 GPU and CPU residual computation performance comparison. 75

7.7 GPU and neoPZ residual computation performance comparison. 76

7.8 GPU and CPU Jacobian matrix computation performance comparison. . . 77

7.9 GPU and neoPZ Jacobian matrix computation performance comparison. . 77

7.10 Memory consumption per element for sparse and blocks storage patterns. . 78

7.11 Memory consumption for partition Tℎ♣𝑙=4 with 𝑝 = ¶1, 2, 3♢. 79

7.12 Convergence history for the vertical wellbore problem for partition Tℎ♣𝑙=4

with 𝑝 = ¶1, 2, 3♢. 80

List of Tables

2.1 Summary of the elastoplastic constitutive model for perfect plasticity. . . . 26

4.1 CUDA device memory types. 44

5.1 UDA operators. 51

5.2 Dense block matrices storage pattern arrays sizes. 54

5.3 Sparse matrix storage pattern arrays sizes. 54

5.4 Summary of the constant preprocessing data. 58

7.1 Set of geometrical partitions Tℎ for different reĄnement levels. 69

7.2 Material properties used for numerical simulations. 69

7.3 Tests platform description. 72

7.4 Solution update with Jacobian matrix decomposition (s). 79

7.5 Solution update with no Jacobian matrix decomposition (s). 80

List of Symbols

(∙)𝑒 Element entity

𝐸 Young modulus

𝐽𝑘 Jacobian matrix at integration point Ý⃗𝑘

𝑁 Number of elements

Ω Euclidean domain

Φ Yield criterion

Ψ Plastic Ćow potential

B̄ Scattered strain-displacement operator

W̄ Scattered integration rule operator

σ Stress tensor

σ
𝑝𝑟𝑜𝑗 Projected stress tensor

σ
𝑡𝑟𝑖𝑎𝑙 Elastic trial stress tensor

ε Strain tensor

ε
𝑒 Elastic strain tensor

ε
𝑝 Plastic strain tensor

ε
𝑒 𝑡𝑟𝑖𝑎𝑙 Elastic trial strain tensor

Ó�⃗� Increment solution

Óα Set of internal state variables

ÓÒ Plastic multiplier

B̂ Global strainŰdisplacement operator

D̂ Constitutive operator

Ŵ Integration rule operator

Ú First Lamé parameter

C Elastic constitutive tensor

A Set of thermodynamical forces

H Hardening modulus

I Identity tensor

K Jacobian matrix

K𝑙 Linear Jacobian matrix

Kà Volumetric Jacobian matrix

N Plastic Ćow vector

R Residual

R𝑙 Linear residual

Rà Volumetric residual

E Elastic domain

N Number of degrees of freedom

Tℎ Geometric partition

Y Yield surface

Û Second Lamé parameter

Ü Poisson ratio

æ𝑘 Integration point weight

E Set of plastically admissible stresses

𝜕Ω Euclidean boundary

ã Frictional angle

à0 Hydrostatic stress

D𝑒𝑝 Elastoplastic constitutive matrix

C⃗ Connectivity vector

Ý⃗𝑘 Integration point

�⃗� Outward normal

�⃗� Normal traction

�⃗� Displacement vector

𝑐 Cohesion

𝑝 Polynomial order

𝑝𝑖𝑛𝑡 Internal pressure

𝑟𝑒𝑥𝑡 External radius

𝑟𝑖𝑛𝑡 Internal radius

Contents

1 Introduction 16

1.1 Motivation . 16

1.2 Previous works on FEM with GPU . 17

1.3 Objectives . 18

1.4 Outline . 19

1.4.1 Body . 19

1.4.2 Appendix . 20

2 Elastoplastic constitutive modeling 21

2.1 Strain tensor decomposition . 22

2.2 Elastic constitutive law . 22

2.3 Yield criterion . 23

2.4 Plastic Ćow rule . 24

2.5 Hardening law . 24

2.6 Loading/unloading criterion . 26

2.7 Return mapping scheme . 26

2.8 Mohr-Coulomb Yield Criterion . 28

3 The Finite Element Method 30

3.1 Finite Element basis functions . 31

3.2 Finite Element transformations . 33

3.3 Elastoplastic modeling in FEM context . 34

3.3.1 Weak formulation of the elastoplastic problem 35

4 GPU programming 37

4.1 Architecture of a GPU . 39

4.2 CUDA program structure . 40

4.3 CUDA programming model . 41

4.4 CUDA device memory types . 43

5 Restructuring the elastoplastic finite element problem 46

5.1 Matrix form of the Ąnite element problem 46

5.1.1 Classical FEM assembly . 48

5.1.2 FEM assembly using integration point contributions 49

5.2 ModiĄed Unstructured Displacement Approach 51

5.2.1 Scattered strain-displacement operator 53

5.2.2 Integration points weight and determinant of Jacobian operator . . 55

5.2.3 Elements connectivities . 55

5.2.4 Finite element mesh coloring . 56

5.2.5 Linear Jacobian matrix and residual 57

5.2.6 Jacobian matrix and residual vector strategies 58

6 Computational implementation and verification 61

6.1 neoPZ environment . 61

6.2 Implemented classes . 62

6.3 CUDA implementation . 64

6.4 Quasi-Newton method for accelerating the convergence 65

6.5 Solution veriĄcation . 66

7 Results and discussion 68

7.1 VeriĄcation . 68

7.2 Performance analysis . 71

7.2.1 Residual . 73

7.2.2 Jacobian matrix . 76

7.3 Memory consumption . 78

7.4 Accelerating the elastoplastic convergence 79

8 Conclusion 81

Bibliography 83

A Voigt notation 87

B Spectral decomposition 88

B.1 Eigenvalues . 88

B.2 Eigenvectors . 88

C Results variability 91

16

Chapter 1

Introduction

1.1 Motivation

The Finite Element Method (FEM) is one of the most relevant numerical tech-

niques to Ąnd approximate solutions of partial differential equations (PDEs). According

to Becker, Carey, and Oden [2], this method deĄnes a systematic way of constructing

basis functions to approximate the solution of PDEs. The underlying idea is that these

functions can be deĄned piecewise over subregions of the domain called Ąnite elements.

The polynomial order of the functions over each element can be arbitrary. Bhavikatti

[4] states that although FEM has been initially developed for approximating problems of

structural mechanics, it is now widely used as a technique for solving complex problems in

different Ąelds of engineering: civil, mechanical, nuclear, biomedical, geomechanics, and

others. Many problems in these Ąelds can lead to high computational demand.

Most computer codes are written to be executed sequentially: a problem is

split into instructions, and these instructions are executed one after the other. Then, the

performance improvement depends on the advance in CPU efficiency: the software can

achieve a signiĄcant speedup as each new generation of processors is introduced. However,

Kirk and Hwu [19] highlight that since 2003 a stagnation of performance improvement

of general applications has been observed because high energy consumption and heat

dissipation limit the increase of the clock frequency. Therefore, the industry offers a new

approach: to increase the number of cores inside each processor.

This new approach has a signiĄcant impact on the software development com-

munity, including those that use the Finite Element Method. Hence, parallel computing

in high-performance computers has gradually become a mainstream tool for dealing with

large and detailed numerical problems in FEM analysis. Many parallel algorithms to Ąnd

the approximate solution for problems using FEM were developed. However, they may

require a large number of CPUs to achieve high performance.

Graphics Processing Units (GPUs) were initially developed for image and video

Chapter 1. Introduction 17

processing. Due to the market demand for high-quality real-time graphics in computer

applications, these processors have undergone considerable technological progress. For

example, in an electronic gaming application, one needs to render scenes at a resolution

of 60 frames per second. According to Micikevicius [24], a GPU consists of a set of multi-

processors where each multiprocessor has its own stream processors and shared memory.

All multiprocessors of a GPU have access to the global memory, and memory latency is

hidden if thousands of threads are executed concurrently. The main difference between

GPUs and CPUs is that CPUs may be efficient with a small number of threads per

core, whereas GPUs achieve higher performance when thousands of threads are executed

concurrently.

Because of the technological advance of GPUs, researchers who wanted to

improve the performance of their applications started to explore their use for non-graphical

ones. This trend became known as General-Purpose computation on the GPU (GPGPU).

Since then, GPUs have been used for numeric simulation of problems in Ąelds of science

and engineering. According to Zhang and Shen [39], methods that use GPUŠs powerful

computing resource to accelerate the FEM analysis have naturally emerged in the last few

years. Among the steps of the FEM calculations to approximate the solution of boundary

value problems, the evaluation of the elements stiffness matrix and residual vector, as well

as the assembly process of the linear system, are the most time-consuming processes in

terms of both memory and runtime.

The research in this thesis presents a data structure and calculation strategies

to compute the residual vector and the Jacobian matrix arising from an elastoplastic FEM

simulation with GPU programming in order to improve the performance to obtain the

approximate solution. The target problem in this research is to perform the geomechanics

analysis in a wellbore region considering the elastoplastic constitutive modeling. Never-

theless, the proposed data structure and calculation strategies can be applied to other

constitutive modelings and research Ąelds.

1.2 Previous works on FEM with GPU

Zhang and Shen [39] implement a code to approximate elasticity problems in

two and three dimensions using the FEM with GPU. The authors use a coloring method

to perform the assembly of the global operators. The tests are conducted on a platform

composed of an Intel Core 2 Duo E7400 processor and an NVIDIA Geforce GT 430. The

authors reach a speedup of 7x for approximations in two space dimensions and 10x for

three-dimensional elements. For the linear system solution, the authors present speedups

of 3.5x and 6x for two and three-dimensional simulations, respectively.

MaĄ [23] uses a GPU-based parallel computing approach to perform real-time

Chapter 1. Introduction 18

analysis of soft objects deformation through a nonlinear approximation using the FEM.

The author uses a coalesced data structure to compute the FEM matrices in GPU. The

computation time for the matrices evaluation reaches a speedup of 28x in an NVIDIA

Geforce GTX 470 when compared to a sequential CPU implementation with an Intel

Core i7-3770 processor.

Cecka, Lew, and Darve [8] introduce multiple strategies for evaluating the

FEM global operators assembly. The authors present how to use global, shared, and local

memory properly according to the polynomial order of the Ąnite element discretization.

The experimental setup consists of an NVIDIA GeForce 8800 GTX and an Intel Core

2 Quad CPU Q9450 processor. The assembly process reaches a speedup of 35x to the

double-precision single-core CPU version for linear and quadratic polynomial orders.

Macioş, Pşaszewski, and Banaś [22] use GPU programming to accelerate the

numerical integration of the elements contributions from LaplaceŠs equation in a 3D do-

main discretized in prismatic elements. Due to small resources available for a single

thread for GPU architectures, the authors propose a GPU implementation of numerical

integration based on the assumption that a single Ąnite element corresponds to a single

thread block, and these individual threads calculate sets of an element contribution. The

platform test consists of an NVIDIA GeForce 8800 GTX and an AMD X2 processor. The

speedup varies from 3.5x to 20x, depending on the approximation order.

Dziekonski et al. [12] implement a technique to generate the operators arising

from computational electromagnetics analysis through the Finite Element Method using

GPU programming. The results are obtained from tests conducted in an NVIDIA Tesla

C2075 and an Opteron 6174. The authors present a series of optimizations to perform the

numerical integration, such as the use of shared memory to avoid time-consuming writing

and reading to and from the global memory. The authors reach speedups of 81x and 19x

over an optimized single and multi-threaded CPU-only implementations, respectively.

1.3 Objectives

The main objective of the research presented in this thesis is to approximate

the solution of an elastoplastic problem with the FEM using GPU programming. To

accomplish the main objective, four speciĄc objectives of this research are established:

• To understand the fundamental concepts of the elastoplastic constitutive modeling;

• To construct a data structure resulting from the Finite Element Method that allows

parallel operations;

• To understand the principal concepts of GPU programming;

Chapter 1. Introduction 19

• To develop a numerical implementation of the global operators arising from an

elastoplastic Ąnite element problem to be executed in parallel in the GPU.

The proposed strategy for computing the residual vector and the Jacobian

matrix presented in this research relies on pre-computing and storing constant data along

a nonlinear FEM analysis in an aligned data structure and perform GPU parallelized

operations to evaluate the global operators. A Ąnite element coloring scheme is applied to

ensure correct parallel execution of the proposed implementation since the construction

of the global operations involves overlapping information corresponding to the common

degrees of freedom of the system. This strategy is applied to the simulation of an elasto-

plastic problem through a FEM simulation of a wellbore under internal and external

stresses, as well as an initial stress presented by a hydrostatic pre-stress.

This study focuses on accelerating the numerical integration of an elastoplastic

FEM simulation on the GPU. Therefore an analogous CPU implementation is developed

to compare both CPU and GPUŠs performances. The GPUŠs performance is also compared

with the classical assembly process of a traditional FEM simulation. Besides verifying that

the results obtained by the GPU implementation are identical to the results of the CPU

implementation, the accuracy of the nonlinear approximation is veriĄed by comparing the

results with an approximation obtained using a Runge-Kutta approximation on a very

reĄned mesh.

1.4 Outline

The present work is organized as follows:

1.4.1 Body

Chapter 2 introduces the elastoplastic constitutive modeling and its main

items. Also, it presents the return mapping scheme for perfect plasticity and the Mohr-

Coulomb yield criterion. In Chapter 3, the Finite Element Method and the weak formu-

lation of the elastoplastic problem are presented. Chapter 4 explores GPU programming

presenting the architecture of a GPU, the CUDA programming model, and GPU memory

types. In Chapter 5 is presented the structure arising from the Ąnite element problem

for the elastoplastic problem. Chapter 6 describes the main aspects of the computational

implementation as well as the approach to verify the accuracy of the results obtained

from the proposed structure. Also, this chapter describes a Quasi-Newton method for

accelerating the convergence. Chapter 7 is dedicated to the presentation of the results

and discussion. Finally, Chapter 8 presents the conclusions.

Chapter 1. Introduction 20

1.4.2 Appendix

Appendix A presents the Voigt notation for the stress and strain tensors. In

Appendix B, the scheme for the spectral decomposition of tensors is described. Ap-

pendix C shows tables with the mean and standard deviation of the presented results.

Chapter 2. Elastoplastic constitutive modeling 22

and soils in general, may be modeled as plastic under a wide range of circumstances of

practical interest. An incremental stress-strain relation describes the study of these mate-

rials. According to Souza Neto, Peric, and Owen [34], the basic items of the elastoplastic

constitutive modeling are:

• Strain tensor decomposition;

• Elastic constitutive law;

• Yield criterion;

• Plastic Ćow rule;

• Hardening law.

2.1 Strain tensor decomposition

This topic consists of the decomposition of the total strain tensor (ε) into

elastic and plastic strains, which are related to the applied loads and the history of irre-

versible processes applied to the material, respectively. For the elastoplastic calculation,

the strain given as input data is presented as total strain, and from the solution of the

problem, the elastic (ε𝑒) and plastic (ε𝑝) strains are computed.

ε = ε
𝑒 + ε

𝑝 (2.1)

The corresponding rate form of the additive split reads:

Óε = Óε
𝑒 + Óε

𝑝

2.2 Elastic constitutive law

The generalized HookeŠs Law is presented by:

σ = Cε
𝑒

where C is the fourth-order elastic constitutive tensor. In Voigt notation (see Appendix A),

it is presented by:

Chapter 2. Elastoplastic constitutive modeling 23

∏︀

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

∐︁

à𝑥𝑥

à𝑦𝑦

à𝑧𝑧

à𝑥𝑦

à𝑦𝑧

à𝑧𝑥

⎞

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︀

=

⋃︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⨄︀

2Û + Ú Ú Ú 0 0 0

Ú 2Û + Ú Ú 0 0 0

Ú Ú 2Û + Ú 0 0 0

0 0 0 2Û 0 0

0 0 0 0 2Û 0

0 0 0 0 0 2Û

⋂︀

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⋀︀

∏︀

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

∐︁

𝜀𝑒
𝑥𝑥

𝜀𝑒
𝑦𝑦

𝜀𝑒
𝑧𝑧

2𝜀𝑒
𝑥𝑦

2𝜀𝑒
𝑦𝑧

2𝜀𝑒
𝑧𝑥

⎞

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︀

Also, the stress-strain relationship is presented as:

σ = 2Ûε
𝑒 + Ú 𝑡𝑟(ε𝑒)I (2.2)

where Ú and Û are the Ąrst and second Lamé constants and are given as a function of the

Young modulus1 (𝐸) and the Poisson ratio2 (Ü).

Ú =
𝐸Ü

(1 + Ü)(1⊗ 2Ü)

Û =
𝐸

2(1 + Ü)

2.3 Yield criterion

In a uniaxial tension test, a material undergoes plastic strains when it is sub-

jected to a speciĄc stress limit. This principle can be extended to the three-dimensional

case by stating a yield function. The yield criterion corresponds to the transition between

the elastic and plastic regimes. It can be expressed by a function that is negative when

only elastic strains are possible and zero when a plastic Ćow is imminent. The function

that describes the yield criterion is given by:

Φ = Φ (σ, A) (2.3)

The yield function deĄnes the elastic domain as the set:

E = ¶σ ♣Φ (σ, A) < 0♢

of stresses for which plastic yielding is not possible. Any stress lying in the elastic domain

1Slope of the stress-strain curve on the elastic portion and describes the elastic properties of a solid
undergoing tension or compression in one direction.

2Ratio between the lateral strain normal to the applied load and the axial strain in the direction of
the applied load.

Chapter 2. Elastoplastic constitutive modeling 24

or on its boundary is said to be plastically admissible. The set of plastically admissible

stresses are deĄned as:

E = ¶σ ♣Φ (σ, A) ⊘ 0♢

The set of stresses for which plastic yielding may occur is called yield locus

and corresponds to the boundary of the elastic domain, where Φ (σ, A) = 0. The yield

locus is expressed by a hypersurface in the space of stresses which is called yield surface

and is deĄned as:

Y = ¶σ ♣Φ (σ, A) = 0♢

2.4 Plastic flow rule

The plastic Ćow rule assumes the existence of a plastic potential function that

characterizes the tensile behavior of plastic strains in a yielding process. This potential

is deĄned by:

Ψ = Ψ(σ, A) (2.4)

from which the Ćow vector is obtained as:

N(σ, A) =
𝜕Ψ

𝜕σ

Thus, the behavior of the plastic strain tensor is given by:

Óε
𝑝 = ÓÒN(σ, A)

where ÓÒ ⊙ 0 is a plastic multiplier.

2.5 Hardening law

The yielding process may lead to changes in size, shape, and direction of

the yield surface. The hardening law determines how these modiĄcations happen. This

phenomenon can be considered isotropic or kinematic, and if there is no hardening phe-

nomenon, the model is considered perfectly plastic. Isotropic hardening plasticity mod-

els show a uniform expansion of the initial Ćow surface without translation (Fig. 2.2).

Whereas in kinematic hardening plasticity models, there is a translation of the surface,

and its size remains constant (Fig. 2.3). In a perfectly plastic model, there is no hardening

Chapter 2. Elastoplastic constitutive modeling 26

2.6 Loading/unloading criterion

The loading/unloading criterion is determined by:

Φ ⊘ 0; ÓÒ ⊙ 0; ÓÒΦ = 0 (2.6)

The Ąrst statement speciĄes the plastic admissible region. The second assigns

that the plastic multiplier must be greater or equal to zero. Finally, the last statement

refers to the fact that the plastic multiplier and the yield function cannot be non-null

together. If the material is in the elastic regime (Φ < 0), the plastic multiplier will be

zero (ÓÒ = 0). However, in the plastic regime the yield function is zero (Φ = 0) and the

plastic multiplier is positive (ÓÒ > 0) [32].

Table 2.1 summarizes the principal items of the elastoplastic constitutive model

above described for the perfect plasticity case.

Table 2.1: Summary of the elastoplastic constitutive model for perfect plasticity.

Elastoplastic constitutive model for perfect plasticity

Strain tensor decomposition Óε = Óε
𝑒 + Óε

𝑝

Elastic constitutive law σ = 2Ûε
𝑒 + Ú 𝑡𝑟(ε𝑒)I

Yield criterion Φ = Φ (σ)

Plastic Ćow rule Óε
𝑝 = ÓÒN(σ)

Loading/unloading criterion Φ ⊘ 0; ÓÒ ⊙ 0; ÓÒΦ = 0

2.7 Return mapping scheme

Considering the pseudo-time 𝑡𝑛 the strain tensor is ε𝑛 and the corresponding

plastic portion is ε
𝑝
𝑛. The return mapping scheme consists of two conditions that are

imposed to compute ε
𝑝
𝑛+1 and ÓÒ: an elastic predictor and a plastic corrector. The return

mapping scheme is presented by Souza Neto, Peric, and Owen [34] and is illustrated in

Fig. 2.5.

30

Chapter 3

The Finite Element Method

Finite Element Method (FEM) is a technique to construct an approximate

solution of partial differential equations (PDEs). The main idea of this method is to

represent the problem domain as a Ąnite number of elements and solve not the original

problem, but its weak formulation. To obtain the weak formulation of a differential

equation, one must replace it with an integral equation, using piecewise integration to

reduce the order of the derivatives and multiply it by a test function. Three properties of

the weak formulation are worth noting: the classic formulation is also a weak formulation,

a weak formulation is indeed a classic formulation as long as it is regular enough, and the

solution of the problem is the only solution of the weak formulation.

The Galerkin method is one approach to construct approximate solutions to

boundary-value problems. This method consists in seeking an approximate solution for the

weak formulation in a Ąnite-dimensional subspace of the admissible functions space of the

problem. However, Galerkin method does not provide a systematic way of constructing the

basis functions for the approximate test functions. For this reason, the classical Galerkin

method as described provides several possibilities, which may lead or not to reasonable

approximations. Therefore, the concept of the Finite Element Method is introduced to

overcome these difficulties.

The Finite Element Method provides a general and systematic technique for

constructing the basis functions for Galerkin approximations of boundary-value problems.

The idea is to deĄne the basis functions piecewise over the Ąnite elements from the dis-

cretization of the domain. Moreover, these functions can be chosen to be straightforward

functions such as polynomials of low degree. Also, they are chosen in such a way that

the multiplier coefficients deĄning the approximate solution are precisely the values of the

approximate solution at the nodal points.

Having selected an appropriate set of basis functions, it is possible to calculate

the operators per element. Finally, each element contribution is appropriately added to

form the global approximation of the problem. This step is called assembly and consists

Chapter 3. The Finite Element Method 35

3.3.1 Weak formulation of the elastoplastic problem

Denoting Ω as the domain for the PDE problem in R
2 with boundaries 𝜕Ω =

𝜕ΩD ∪ 𝜕ΩN where 𝐷 and 𝑁 stand for the boundary with Dirichlet and Neumann data,

respectively. The governing equations for the elastoplastic strain consist of three parts: a

conservation law, a constitutive equation, and boundary conditions.

div (σ(𝑥)) = 0 𝑥 ∈ Ω (3.2)

�⃗�(𝑠) = �⃗�𝐷(𝑠) 𝑠 ∈ 𝜕Ω𝐷 (3.3)

σ(𝑠) ≤ �⃗� = �⃗�(𝑠) 𝑠 ∈ 𝜕Ω𝑁 (3.4)

where σ is the stress tensor, �⃗� represents the displacement vector, �⃗� is the normal traction

over 𝜕Ω𝑁 and �⃗� is the outward normal. Equation (3.2) corresponds to the conservation

law and Eqs. (3.3) and (3.4) are the boundary conditions.

Following the elastoplastic constitutive modeling presented in Chapter 2, the

strain tensor ε is decomposed into elastic strain ε
𝑒 and plastic strain ε

𝑝. The stress tensor

σ is a function of the elastic part of the strain tensor.

σ (�⃗�) = 2Ûε
𝑒 + Ú tr(ε𝑒)I in Ω (3.5)

Under the assumption of small strains, the total strain tensor is expressed as:

ε (�⃗�) =
1

2

(︁

∇�⃗� +∇𝑡�⃗�
)︁

(3.6)

Consider a geometrical partition Tℎ = ¶Ω𝑒♢ of the region Ω by convex elements

Ω𝑒 with boundaries 𝜕Ω𝑒. The index ℎ stands for the maximum diameter of the elements

Ω𝑒. The following functional space is required:

H1 (Ω) =
{︁

�⃗� ∈ 𝐿2 (Ω) : ∇�⃗� ∈ L2 (Ω)
}︁

(3.7)

The classical one-Ąeld weak formulation for the mechanical problem deĄned in

Eq. (3.5) is formulated as:

Find �⃗� ∈ V =
{︁

�⃗� ∈ H1 (Ω) , �⃗� ♣𝜕ΩD
= 0

}︁

such that:

R(�⃗�, �⃗�) =
∫︁

Ω

div(σ) �⃗� dV = 0 (3.8)

The divergence theorem applied to Eq. (3.8) leads to:

R(�⃗�, �⃗�) =
∫︁

Ω

σ : ∇�⃗� dV⊗
∫︁

𝜕ΩN

�⃗� ≤ �⃗� dS (3.9)

For the elastoplastic case, in Eq. (3.9) the stress depends on a nonlinear re-

Chapter 3. The Finite Element Method 36

sponse of the strain. Therefore, it must be linearized with respect to �⃗� at the point �⃗�*.

The linearized problem is Ąnding Ó�⃗� such that:

L(Ó�⃗�, �⃗�) = R(�⃗�*, �⃗�) + D R(�⃗�*, �⃗�)[Ó�⃗�] = 0

where L is the linearization of R(�⃗�*, �⃗�) and

D R(�⃗�*, �⃗�)[Ó�⃗�] =
𝑑

𝑑𝜖
♣𝜖=0R𝑢(�⃗�* + 𝜖Ó�⃗�, �⃗�)

is the directional derivative of R𝑢 on �⃗�* in the direction of Ó�⃗�.

D R(�⃗�*, �⃗�)[Ó�⃗�] =
𝑑

𝑑𝜖
♣𝜖=0

∫︁

Ω

σ (ε(𝜖)) : ∇�⃗� dV⊗
∫︁

𝜕ΩN

�⃗� ≤ �⃗� dS =

𝑑

𝑑𝜖
♣𝜖=0

∫︁

Ω

σ (ε(𝜖)) : ∇�⃗� dV

where:

ε(𝜖) =
∇(�⃗�* + 𝜖Ó�⃗�) +∇(�⃗�* + 𝜖Ó�⃗�)𝑇

2
= ∇𝑠�⃗�* + 𝜖∇𝑠Ó�⃗�

Applying the chain rule:

D G(�⃗�*, �⃗�)[Ó�⃗�] =
∫︁

Ω

D𝑒𝑝 : ∇𝑠Ó�⃗� : ∇�⃗� dV

where:

D𝑒𝑝 =
𝜕σ

𝜕ε

is the derivative of the stress tensor with respect to the strain.

Thus, the mechanical equilibrium of a body with material governed by the

elastoplastic constitutive law must satisfy the following:

Find �⃗� ∈ V such that:

∫︁

Ω

D𝑒𝑝 : ∇𝑠Ó�⃗� : ∇�⃗� dV = ⊗
∫︁

Ω

σ : ∇�⃗� dV +
∫︁

𝜕ΩN

�⃗� ≤ �⃗� dS (3.10)

37

Chapter 4

GPU programming

Traditionally, computer codes were written to be executed sequentially so that

a problem was partitioned into instructions and these instructions were executed one after

another. However, more complex problems have emerged from technological progress

in many industryŠs Ąelds. The growing market and increasing demand to solve these

problems more efficiently have driven the manufacturing of faster and smarter processors.

For many years, the strategy for increasing the performance of the processors adopted

by the industry was to develop processors with higher clock frequencies, which increased

each year signiĄcantly [19].

The processor clock coordinates all Central Process Unit (CPU) and memory

operations by generating a time reference signal called a clock cycle or tick. Clock rate

is the frequency at which the clock circuit of a processor can generate pulses, which are

used to synchronize the operations of its components [37]. The frequency is speciĄed in

megahertz (MHz), which corresponds to millions of clock cycles per second, or gigahertz

(GHz), which speciĄes billions of clock cycles per second. Finally, clock speed determines

how fast instructions are executed. Some instructions demand one clock cycle, others

multiple clock cycles, and some processors execute multiple instructions during one clock

cycle [37].

For more than two decades, microprocessors based on a single CPU provided

fast performance increases and cost reductions in computational applications. They could

achieve billions of Ćoating-point1 operations per second (gigaFLOPS or GFLOPS) to the

desktop and trillion of Ćoating-point operations per second (teraFLOPS or TFLOPS) to

cluster servers. Thus, it was possible to deliver more functionality to applications, better

user interfaces, and more useful results.

However, after some years, the performance improvement due to the manu-

facturing of more powerful processors experienced a stagnation. ProcessorsŠ performance

increased 60 percent per year in the 1990s, but slowed to 40 percent per year from 2000

1Method of encoding real numbers within the limits of finite precision available on computers [13].

Chapter 4. GPU programming 38

to 2004, when performance increased by only 20 percent [15]. Faster processors heated up

faster than the average fan could cool them down. Moreover, they required high energy

consumption to complete their tasks [17]. These two main reasons limited the manufac-

turers to produce faster processors. Thus, the industry had to give up their efforts to

increase clock frequency by looking for a new method: increasing the number of cores

within the processor [9].

Multi-core processors consist of two or more cores or processing units that op-

erate in parallel to read and execute instructions. The main idea of this technology is to

use multiple cores instead of one at a comparatively lower frequency. However, an overall

improvement in the performance is achieved through multiple cores operating simulta-

neously on multiple instructions [31]. For example, a dual-core chip running multiple

applications is about 1.5 times faster than a chip with just one comparable core [15].

On the other hand, another type of processor emerged in terms of compu-

tational performance in the last few years. Graphics Processing Units, or GPUs, were

initially developed for graphic processing of images and videos. The Ąrst GPU, a GeForce

256, was launched in 1999 by NVIDIA, the world leader in the graphics processor market

[25]. GeForce 256 consists of a single-chip 3D real-time graphics processor that included

almost every feature of high-end workstation 3D graphics pipelines available at that time.

Due to market demand for high-quality real-time graphics in computer games and video,

these processors have undergone considerable technological advancement over the years.

For example, in a gaming application, one needs to render scenes at an increasing resolu-

tion at a rate of 60 frames per second [19].

Later, researchers who wanted to enhance the performance of their applica-

tions took notice of GPUsŠ high processing power and started to explore their use for

non-graphic ones in the Ąelds of science and engineering. This trend became known as

General-Purpose computation on the GPU (GPGPU). However, developing non-graphic

applications was a complex activity since GPUs had been developed to run features in

graphics applications. For example, to run multiple instances of a function in parallel, one

had to write them as pixel shaders2. The input data had to be stored in texture images

and issued to the GPU by submitting triangles. Finally, the output data had to be cast

as a set of pixels generated from raster operations3.

Finally, NVIDIA focused on Ąnding new approaches to make the development

of non-graphic applications more intuitive in the GPUs. This came through Compute

UniĄed Device Architecture (CUDA). Among the innovations contained in its architecture

is the introduction of a more generic parallel programming model with parallel threads

hierarchy, barrier synchronization, and atomic operations. Presently, GPUs use thousands

of parallel cores that run thousands of threads in parallel, allowing the generation of

2Components of the GPU programmed to change pixel light and color patterns [21].
3Graphic operation to smooth border area colors and opacity.

Chapter 4. GPU programming 42

15 cudaMalloc(&dev_C , N ∗ s izeof (int)) ;

16

17 for (int i = 0 ; i < N; i++) {

18 A[i] = rand () % 100 ;

19 B[i] = rand () % 100 ;

20 }

21

22 cudaMemcpy(dev_A , A, N ∗ s izeof (int) , cudaMemcpyHostToDevice) ;

23 cudaMemcpy(dev_B , B, N ∗ s izeof (int) , cudaMemcpyHostToDevice) ;

24

25 dim3 dimGrid (N, 1 , 1) , dimBlock (1 , 1 , 1) ;

26 VectorAddKernel<<<dimGrid , dimBlock>>>(N, dev_A , dev_B , dev_C) ;

27 cudaDeviceSynchronize () ;

28 cudaMemcpy(C, dev_C , N ∗ s izeof (int) , cudaMemcpyDeviceToHost) ;

29

30 cudaFree (dev_A) ;

31 cudaFree (dev_B) ;

32 cudaFree (dev_C) ;

33

34 return 0 ;

35 }

The parallelism on GPUs occurs through the execution of kernels. Launching

a kernel typically generates several threads. The memory used by the input and output

data of a kernel launch is allocated in the GPUŠs memory. At the end of the execution,

the allocated memory has to be released. Moreover, the input data have to be transferred

from the host to the device, whereas the output data is transferred from the device to the

host. Also, the programmer has to set up the number of thread blocks and threads per

block of the kernel.

The function cudaMalloc performs memory allocation. It allocates the re-

quired number of bytes of linear memory on the device and returns in a pointer5 to the

allocated memory. The allocated memory is suitably aligned for any kind of variable.

Code 4.1 exempliĄes this function in Lines 13 to 15. Next, the memory transfer opera-

tions are performed by the function cudaMemcpy. It copies the required bytes from the

memory area pointed by the source pointer to the memory area pointed by the destination

pointer. The direction of the copy is speciĄed with the argument cudaMemcpyHostToDe-

vice, cudaMemcpyDeviceToHost, cudaMemcpyHostToHost or cudaMemcpyDeviceToDe-

vice. Lines 22 and 23 in Code 4.1 present the copy from the host to the device of the

input arrays 𝐴 and 𝐵, while Line 28 shows the copy from the device to the host of the

output data stored in array 𝐶. Once the allocated memory is not to be used anymore

in an application it has to be released. This operation is performed with cudaFree. It

5Variable whose value is a location in the computer’s memory.

Chapter 4. GPU programming 43

frees the memory space which is pointed by a pointer and is presented in Lines 30 to 32

of Code 4.1.

The kernel identiĄes and accesses threads by their identiĄer ID. The blockIdx.x

variable provides the identiĄer of the current thread block, while threadIdx.x corresponds

to the identiĄer of the current thread within a thread block and blockDim.x is the current

block dimension. Thus, it is possible to have a unique identiĄer of a thread. The ID is

calculated as shown in Line 2 of the code. Also, it is possible to have two and three-

dimensional grids and thread blocks. Then, blockIdx, threadIdx, and blockDim can be

determined in 𝑥, 𝑦, or 𝑧 axes. This facilitates programming and provides a natural way

to call computational elements in a speciĄc domain such as vector, matrix, or volume.

Invoking a kernel is presented in Line 26 of Code 4.1. The arguments between

the symbol <<< >>> are the number of thread blocks and the number of threads per block

of the kernel, respectively. The keyword __global__ precedes the deĄnition of the kernel.

It indicates that the function is a kernel that is called from the host and is executed in the

device. In addition to the __global__ type, a kernel can be preceded by __device__

or __host__. A kernel preceded by __device__ can only be called and executed in

the device, while a kernel preceded by __host__ is called and executed in the host.

That is, it is a traditional C/C++ function. The cudaDeviceSynchronize function after

the execution of the kernel in Line 27 ensures that the output data can only be accessed

after command executions are Ąnished.

4.4 CUDA device memory types

Having many threads available to execute a CUDA application can theoreti-

cally tolerate long memory access latency. However, one can easily run into a situation

where traffic congestion in the global memory access paths prevents some threads from

making progress, leaving some of the streaming multiprocessors idle. Thus, CUDA de-

vices provide several different memory types, which may allow a signiĄcant fraction of

the potential speed of the underlying hardware if used correctly. The memory types of a

device are: global, local, constant, shared, and register memory. Each memory type has

advantages and disadvantages. Table 4.1 summarizes the characteristics of the various

CUDA memory spaces [14]:

Chapter 4. GPU programming 44

Table 4.1: CUDA device memory types.

Memory Location Cached Access Scope

Register On-chip No Read/write One thread

Local On-chip Yes Read/write One thread

Shared On-chip N/A Read/write All threads in a block

Global Off-chip (unless cached) Yes Read/write All threads + host

Constant Off-chip (unless cached) Yes Read All threads + host

Registers: are the fastest memory on the GPU. They are a very valuable resource

because they are the only memory on the GPU with enough bandwidth and a low enough

latency to deliver peak performance. Registers are allocated to individual threads; each

thread can only access its registers.

Local memory: local memory accesses occur for only some automatic variables. Gen-

erally, an automatic variable resides in a register except for the following: arrays that

the compiler cannot determine are indexed with constant quantities; large structures or

arrays that would consume too much register space; any variable the compiler decides to

spill to local memory when a kernel uses more registers than are available on the SM.

Shared memory: this type of memory is allocated to thread blocks. All threads in a

block can access variables in the shared memory locations allocated to the block. It is an

efficient means for threads to cooperate by sharing their input data and the intermediate

results of their work.

Global memory: corresponds to the ŞmainŤ memory of the GPU. It has a global scope

and lifetime of the allocating program. Global memory is limited by the total memory

available to the GPU.

Constant memory: this type of memory is read-only capable. This lifetime is the

entire application execution. Constant variables are often used for variables that provide

input values to kernel functions. Constant memory resides in global memory but may be

cached for efficient access.

Figure Fig. 4.4 illustrates the CUDA device memory model.

46

Chapter 5

Restructuring the elastoplastic finite

element problem

This chapter describes the adopted structure to evaluate the global opera-

tors resulting from the Finite Element Method applied to the elastoplastic constitutive

modeling with GPU programming. The structure is adapted from the Unstructured Dis-

placement Approach (UDA), which is an algorithm for computing the global operators

developed by Laouafa and Royis [20].

5.1 Matrix form of the finite element problem

The iterative process to approximate the solution for the elastoplastic problem

is Ąnding Ó�⃗� ∈ R
N such that:

KÓ�⃗� = ⊗R, K ∈ R
N×N, R ∈ R

N (5.1)

The variable Ó�⃗� represents the Ąnite element increment that is added to the

approximate solution and N is the number of degrees of freedom. The variables K and

R are the global Jacobian matrix and residual vector, respectively. The evaluation of the

global operators is performed through the assembly process and is written as:

K =
𝑁

∑︁

𝑒=1

K𝑒, K𝑒 ∈ R
Ne×Ne

R =
𝑁

∑︁

𝑒=1

R𝑒, R𝑒 ∈ R
Ne

where N𝑒 corresponds to element 𝑒 number of degrees of freedom and 𝑁 is the number of

Ąnite elements. The variables K𝑒 and R𝑒 are the element Jacobian matrix and residual,

respectively. Following the notation introduced by Zienkiewicz [40], the evaluation of K𝑒

Chapter 5. Restructuring the elastoplastic finite element problem 47

and R𝑒 is written as:

K𝑒 =
∫︁

Ωe

B𝑡
𝑒D𝑒𝑝B𝑒

R𝑒 =
∫︁

Ωe

B𝑡
𝑒à⃗

𝑝𝑟𝑜𝑗
𝑒

In terms of numerical integration, K𝑒 and R𝑒 can be described as follows:

K𝑒 =
𝑛𝑝e
∑︁

𝑘=1

æ𝑘♣𝐽𝑘♣B
𝑡
𝑒

(︁

Ý⃗𝑘

)︁

D𝑒𝑝

(︁

Ý⃗𝑘

)︁

B𝑒

(︁

Ý⃗𝑘

)︁

(5.2)

R𝑒 =
𝑛𝑝e
∑︁

𝑘=1

æ𝑘♣𝐽𝑘♣B
𝑡
𝑒

(︁

Ý⃗𝑘

)︁

à⃗ 𝑝𝑟𝑜𝑗
𝑒

(︁

Ý⃗𝑘

)︁

(5.3)

where 𝑛𝑝𝑒 is the number of integration points of element 𝑒 and the variables æ𝑘 and

𝐽𝑘 correspond to the integration rule weight and the Jacobian of the transformation at

integration point 𝑘, respectively. B𝑒

(︁

Ý⃗𝑘

)︁

is the strain-displacement matrix at integration

point 𝑘. Whereas D𝑒𝑝

(︁

Ý⃗𝑘

)︁

is elastoplastic constitutive matrix at the integration point 𝑘.

Finally, à⃗ 𝑝𝑟𝑜𝑗
𝑒

(︁

Ý⃗𝑘

)︁

corresponds to the projection of à⃗ 𝑡𝑟𝑖𝑎𝑙
𝑒

(︁

Ý⃗𝑘

)︁

after the return mapping

scheme at the integration point 𝑘.

The local stress-strain relationship, that is, the stress-strain relationship at

integration point 𝑘 of element 𝑒 is described as:

à⃗ 𝑡𝑟𝑖𝑎𝑙
𝑒

(︁

Ý⃗𝑘

)︁

= D �⃗� 𝑒
𝑒

(︁

Ý⃗𝑘

)︁

(5.4)

where D and �⃗� 𝑒
𝑒

(︁

Ý⃗𝑘

)︁

are the elastic constitutive matrix and the elastic strain at integration

point 𝑘, respectively. Considering a two-dimensional problem the matrix D is:

D =

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

2Û + Ú 0 Ú

0 Û 0

Ú 0 2Û + Ú

⋂︀

⎥

⎥

⎥

⋀︀

The process of evaluating the solution for the elastoplastic problem consists of

an iterative process. Then, consider the above-mentioned statements are deĄned at the

current pseudo-time 𝑡𝑛+1. The elastic strain at 𝑡𝑛+1 is described as follows:

�⃗� 𝑒
𝑒

(︁

Ý⃗𝑘

)︁𝑛+1

= �⃗�𝑒

(︁

Ý⃗𝑘

)︁𝑛+1

⊗ �⃗� 𝑝
𝑒

(︁

Ý⃗𝑘

)︁𝑛
(5.5)

where �⃗� 𝑝
𝑒

(︁

Ý⃗𝑘

)︁𝑛
and �⃗�𝑒

(︁

Ý⃗𝑘

)︁𝑛+1

correspond to the local plastic strain at pseudo-time 𝑡𝑛 and

the local total strain at pseudo-time 𝑡𝑛+1, respectively. The local total strain is given by:

�⃗�𝑒

(︁

Ý⃗𝑘

)︁𝑛+1

= Ó�⃗�𝑒

(︁

Ý⃗𝑘

)︁

+ �⃗�𝑒

(︁

Ý⃗𝑘

)︁𝑛
(5.6)

Chapter 5. Restructuring the elastoplastic finite element problem 48

The variable Ó�⃗�𝑒

(︁

Ý⃗𝑘

)︁

corresponds to the local strain increment that is added

to the total strain and is described as follows:

Ó�⃗�𝑒

(︁

Ý⃗𝑘

)︁

= B𝑒

(︁

Ý⃗𝑘

)︁

Ó�⃗�𝑒

(︁

Ý⃗𝑘

)︁

(5.7)

The total strain �⃗�𝑒 and its decomposition (�⃗� 𝑒
𝑒 and �⃗� 𝑝

𝑒), as well as the trial stress

à⃗ 𝑡𝑟𝑖𝑎𝑙
𝑒 , its projection à⃗ 𝑝𝑟𝑜𝑗

𝑒 and the increment strain Ó�⃗�𝑒 are presented in Voigt notation.

B𝑒

(︁

Ý⃗𝑘

)︁

is presented as:

B𝑒

(︁

Ý⃗𝑘

)︁

=

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

𝜕ã1

𝜕𝑥
0 𝜕ã2

𝜕𝑥
0 . . .

𝜕ãNex

𝜕𝑥
0

𝜕ã1

𝜕𝑥
𝜕ã1

𝜕𝑦
𝜕ã2

𝜕𝑥
𝜕ã2

𝜕𝑦
. . .

𝜕ãNex

𝜕𝑥

𝜕ãNey

𝜕𝑦

0 𝜕ã1

𝜕𝑦
0 𝜕ã2

𝜕𝑦
. . . 0

𝜕ãNey

𝜕𝑦

⋂︀

⎥

⎥

⎥

⋀︀

The matrix contains the values of the partial derivatives of the displacement

interpolation functions at integration point 𝑘 for a two-dimensional element. The variables

N𝑒𝑥 and N𝑒𝑦 are the number of degrees of freedom in 𝑥 and 𝑦, respectively.

5.1.1 Classical FEM assembly

The classical approach to perform the assembly of the Jacobian matrix and

residual vector is to serially compute each element contribution K𝑒 and R𝑒 and add them

to the global matrix and vector K and R according to the connectivity of the elements.

Also, K𝑒 and R𝑒 are composed of the sum of integrals over the element. Eventually, in

an iterative process K can be kept Ąxed, then only R𝑒 needs to be assembled into R.

Algorithm 5.1 illustrates the classical assembly process. This algorithm has the following

steps:

• Initialize the global Jacobian matrix and residual vector with zero;

• Perform a loop over the Ąnite elements;

– Compute K𝑒 and R𝑒;

– Insert the element contribution on K and R.

The characteristics of the classical FEM assembly are:

• Since the Ąnite elements share connectivities, the contributions of different elements

to one connectivity would overlap if the algorithm is parallel;

• This approach does not take advantage of the presented constant data during the

evaluation of Eqs. (5.2) and (5.3);

• The classical FEM assembly uses little memory resources;

Chapter 5. Restructuring the elastoplastic finite element problem 49

• The algorithm could be executed in parallel by coloring the elements and assemble

all the elements belonging to a single color simultaneously.

Algorithm 5.1. Classical FEM assembly.

1: K⊂ 0N×N and R ⊂ 0N

2: for 𝑘 ⊂ 1 to 𝑁 do

3: Compute K𝑒 =
√︃

Ωe
B𝑡

𝑒D𝑒𝑝B𝑒

4: Compute R𝑒 =
√︃

Ωe
B𝑡

𝑒à⃗
𝑝𝑟𝑜𝑗

𝑒

5: for 𝑖⊂ 1 to N𝑒 do

6: 𝑖𝑑𝑒𝑠𝑡 = connectivity(𝑖, 𝑘)

7: // Element vector assembly

8: R (𝑖𝑑𝑒𝑠𝑡) += R𝑒(𝑖)

9: for 𝑗 ⊂ 1 to N𝑒 do

10: 𝑗𝑑𝑒𝑠𝑡 = connectivity(𝑗, 𝑘)

11: // Element matrix assembly

12: K (𝑖𝑑𝑒𝑠𝑡, 𝑗𝑑𝑒𝑠𝑡) += K𝑒(𝑖, 𝑗)

13: end for

14: end for

15: end for

5.1.2 FEM assembly using integration point contributions

The construction of K𝑒 and R𝑒, and therefore the global Jacobian matrix K

and the global residual vector R, are responsible for a signiĄcant part of the computational

cost of the FEM assembly process presented in the previous section, especially during the

recurrent assignment of information on each integration point that depends on the chosen

integration rule. The computational cost tends to increase signiĄcantly in the analysis

of nonlinear problems since the evaluation of the global Jacobian matrix and the global

residual vector is performed at each iteration till the problem reaches convergence.

Unstructured Displacement Approach

The Unstructured Displacement Approach (UDA) is an algorithm for comput-

ing the global operators arising from a FEM problem developed by Laouafa and Royis

[20]. The UDA consists of an integration point by integration point (IBI) method to per-

form the assembly process. The approach introduces three operators: B̂, D̂ and Ŵ. The

Ąrst operator corresponds to the global strainŰdisplacement operator; the second one is

the ŚrheologicalŠ operator, which components are the local constitutive relationships. The

third operator is the one associated with the weak equilibrium and numerical integration

Chapter 5. Restructuring the elastoplastic finite element problem 50

rule. These three operators remain distinct and uncoupled during all the iterations of the

nonlinear process of resolution. Thus, only one computation is required, whatever the

number of iterations linked with the iterative solving process.

The algebraic problem presented in Eq. (5.1) can be rewritten as:

KÓ�⃗� + R𝑙 =
(︁

B̂𝑡ŴD̂B̂
)︁

Ó�⃗� + R𝑙 = Rà + R𝑙, Rà ∈ R
N, R𝑙 ∈ R

N (5.8)

where R𝑙 is the linear residual resulting from the boundary conditions of the problem and

remains constant during the iterations of the analysis of nonlinear problems. Rà is the

volumetric residual in which evaluation is required at each iteration.

The matrix B̂ is a sparse matrix of size 𝑁à × N, which components are the

partial derivatives of the displacement interpolation functions. The size 𝑁à corresponds

to the sum
√︁𝑁

𝑒=1 𝑛𝑝𝑒 𝑛à, where 𝑛𝑝𝑒 is the number of integration points for each element

and 𝑛à is the number of components of the stress tensor in Voigt notation. The size N

corresponds to the number of degrees of freedom of the system. This operator is linear

concerning the displacement and transforms the global solution vector Ó�⃗� to the values of

the strain increment values at the integration points:

Ó�⃗� = B̂Ó�⃗�, B̂ ∈ R
𝑁σ×N, Ó�⃗� ∈ R

𝑁σ . (5.9)

The matrix D̂ is the constitutive operator transforming the integration points

elastic strain into integration point stress:

à⃗ 𝑡𝑟𝑖𝑎𝑙 = D̂�⃗� 𝑒
𝑒 , D̂ ∈ R

𝑁σ×𝑁σ , à⃗ ∈ R
𝑁σ . (5.10)

where �⃗� 𝑒
𝑒 is the elastic strain deĄned in Eq. (5.5) at the integration points.

Finally, the volumetric residual Rà is computed as:

Rà = B̂𝑡Ŵà⃗ 𝑝𝑟𝑜𝑗 (5.11)

where Ŵ is a diagonal matrix and contains all information about the integra-

tion rule: the weight and the determinant of the Jacobian values for all integration points.

à⃗ 𝑝𝑟𝑜𝑗 is the projection of à⃗ 𝑡𝑟𝑖𝑎𝑙. Table 5.1 summarizes the UDA operators introduced by

Laouafa and Royis [20]:

Chapter 5. Restructuring the elastoplastic finite element problem 51

Table 5.1: UDA operators.

Operator Size Description

B̂ 𝑁à ×N Global strainŰdisplacement

D̂ 𝑁à ×𝑁à Constitutive relationship

Ŵ 𝑁à ×𝑁à Information of the integration rule

Some important observations can be made about the expressions in Eqs. (5.9)

and (5.11):

• Once the geometrical partition and the polynomial order are assigned to every el-

ement in a Ąnite element mesh, the global strain-displacement operator B̂ and the

diagonal matrix operator Ŵ with information of the integration rule are constant

during the Ąnite element computations, i.e., they only have to be evaluated once;

• The construction of B̂ involves overlapping information corresponding to common

degrees of freedom. It can only be constructed in parallel if element coloring is used.

• The construction of B̂𝑡ŴD̂B̂ is implemented in two stages: Ąrst at the element

level B𝑡
𝑒W𝑒DB𝑒 for computing the element residual R𝑒 and then assembling the

element residuals.

5.2 Modified Unstructured Displacement Approach

In this work is explored the potential of accelerating the Jacobian matrix and

residual vector evaluation by constructing a block-oriented storage pattern B̄ ∈ R
𝑁σ×N̄.

The matrix B̄ is block-diagonal and corresponds to a scattered version of B̂ presented

by Laouafa and Royis [20]. While the matrix B̂ represents the global strain-displacement

operator with overlapping information corresponding to common degrees of freedom, the

matrix B̄ is arranged per Ąnite element. Each block of B̄ corresponds to a Ąnite element

strain-displacement matrix B𝑒, which in turn is an arrange of the strain-displacement

matrices at the integration points of the element. The matrix structure for B̄ and B𝑒 is

shown graphically in Fig. 5.1.

Chapter 5. Restructuring the elastoplastic finite element problem 53

à⃗
𝑝𝑟𝑜𝑗

is the scattered version of the global stress vector à⃗ 𝑝𝑟𝑜𝑗 and W̄ carries

the information of the integration rule.

The volumetric Jacobian matrix also has a scattered representation given by:

K̄à = B̄𝑡W̄D̂𝑒𝑝B̄ (5.14)

where D̂𝑒𝑝 ∈ R
𝑁σ×𝑁σ is the elastoplastic constitutive matrix at the integration points.

The scattered operators K̄à and R̄à are presented as the global volumetric

operators Kà and Rà using a coloring scheme for the assembly process. Finally, the

linear contributions K𝑙 and R𝑙 are added to the volumetric operators to form K and R.

The constant preprocessing data for applying the ModiĄed Unstructured Dis-

placement Approach are listed as:

• Scattered strain-displacement operator;

• Integration points weight and determinant of the Jacobian operator;

• Elements connectivities;

• Finite element mesh coloring;

• Linear Jacobian matrix and residual arising from the boundary conditions of the

problem.

5.2.1 Scattered strain-displacement operator

The scattered strain-displacement operator is a block-diagonal matrix with

size 𝑁à × N̄. This work presents two patterns to store B̄: sparse matrix and dense

block matrices. For both approaches, all element matrices B𝑒 are stored in the row-major

format in a single array (Value) with size 𝑁à × N̄. However, sparse matrix and dense

block matrices storage patterns have different indexers for mapping B̄.

The following matrix presents a example of B̄ structure:

B̄ =

⋃︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⨄︀

2 3 1

5 7 8

4 6 1

9 3 1

2 7 5

3 4 2

⋂︀

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⋀︀

For this example, the array Value is as follows:

𝑉 𝑎𝑙𝑢𝑒 =
(︁

2 3 1 5 7 8 4 6 1 9 3 1 2 7 5 3 4 2
)︁

Chapter 5. Restructuring the elastoplastic finite element problem 54

Sparse matrix storage pattern

The sparse matrix storage pattern considers the compressed sparse row (CSR)

format. It requires two arrays to access the scattered strain-displacement matrix. The

array RowPointer contains the indices of the Ąrst nonzero element in the ith row of the

array Value and has size 𝑁à +1. The array ColIndex corresponds to the nonzero elements

column indices and has size 𝑁à × N̄. RowPointer and ColIndex for the example are:

𝑅𝑜𝑤𝑃𝑜𝑖𝑛𝑡𝑒𝑟 =
(︁

1 4 7 10 13 16 19
)︁

𝐶𝑜𝑙𝐼𝑛𝑑𝑒𝑥 =
(︁

1 2 3 1 2 3 4 5 6 4 5 6 7 8 9 7 8 9
)︁

Dense block matrices storage pattern

The dense block matrices storage pattern has Ąve arrays associated with the

scattered strain-displacement matrix. The arrays RowSize and ColSize store the number

of rows and columns of each block matrix, respectively. Both arrays have size 𝑁 . The

array MatrixPosition stores the indices of the Ąrst element of a block matrix in the array

Value and has size 𝑁 +1. The arrays RowFirstIndex and ColFirstIndex store the row and

column indices of the Ąrst element of a block matrix with size 𝑁 + 1. For the example,

the presented arrays are:

𝑅𝑜𝑤𝑆𝑖𝑧𝑒 =
(︁

2 2 2
)︁

𝐶𝑜𝑙𝑆𝑖𝑧𝑒 =
(︁

3 3 3
)︁

𝑅𝑜𝑤𝐹𝑖𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 =
(︁

1 3 5 7
)︁

𝐶𝑜𝑙𝐹 𝑖𝑟𝑠𝑡𝐼𝑛𝑑𝑒𝑥 =
(︁

1 4 7 10
)︁

𝑀𝑎𝑡𝑟𝑖𝑥𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =
(︁

1 7 13 19
)︁

Table 5.2: Dense block matrices
storage pattern arrays sizes.

Dense block matrices storage pattern

Value 𝑁à × N̄

RowSize 𝑁𝑒

ColSize 𝑁𝑒

MatrixPosition 𝑁𝑒 + 1

RowFirstIndex 𝑁𝑒 + 1

ColFirstIndex 𝑁𝑒 + 1

Table 5.3: Sparse matrix
storage pattern arrays sizes.

Sparse matrix storage pattern

Value 𝑁à × N̄

RowPointer 𝑁à + 1

ColIndex 𝑁à × N̄

Chapter 5. Restructuring the elastoplastic finite element problem 56

5.2.4 Finite element mesh coloring

Finite element mesh coloring is used to avoid race conditions that may arise

when the code execution order inadvertently affects the result. For instance, when parallel

threads accumulate values in the same memory location, one may Ąnish the computation

faster than others. Thus, the result of the Ąrst threads is overlapped by the result of the

last thread to Ąnish the computation. In FEM, the elements of a mesh share connectivities,

then the components of K and R are formed by the contributions from one or more

elements. A coloring technique to avoid race conditions during the evaluation of K and R

is to color the mesh elements such that two elements of the same color do not share any

connectivity and therefore perform the assembly process of all elements of one color. Thus,

the colors of a mesh are treated sequentially. Whereas, the elements of the same color are

executed in parallel. Algorithm 5.2 presents the pseudo-code for the mesh coloring.

Algorithm 5.2. Mesh coloring algorithm.

1: 𝑁𝑒𝑒𝑑𝑠𝑇𝑜𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒⊂ 𝑡𝑟𝑢𝑒

2: �⃗�𝑖𝑑 ⊂ 0𝑁 // Array of colors indices

3: 𝐼𝑑⊂ 0

4: while NeedsToContinue do

5: 𝑁𝑒𝑒𝑑𝑠𝑇𝑜𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒⊂ 𝑓𝑎𝑙𝑠𝑒

6: for 𝑘 ⊂ to 𝑁 do

7: if 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 ℎ𝑎𝑠 𝑐𝑜𝑙𝑜𝑟 then

8: 𝐺𝑜 𝑡𝑜 𝑛𝑒𝑥𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

9: end if

10: Get connectivity of element 𝑘

11: if 𝐴𝑛𝑦 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 ℎ𝑎𝑠 𝑐𝑜𝑙𝑜𝑟 = 𝐼𝑑 then

12: 𝑁𝑒𝑒𝑑𝑠𝑇𝑜𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒⊂ 𝑡𝑟𝑢𝑒

13: else

14: �⃗�𝑖𝑑[𝑘] = 𝐼𝑑

15: Connectivity of element 𝑘 is colored

16: end if

17: end for

18: 𝐼𝑑 = 𝐼𝑑 + 1

19: end while

Figure 5.3 presents an example of a two-dimensional mesh with quadrilateral

elements colored with Algorithm 5.2.

Chapter 5. Restructuring the elastoplastic finite element problem 58

Table 5.4 summarizes the constant preprocessing data for the ModiĄed Un-

structured Displacement Approach:

Table 5.4: Summary of the constant preprocessing data.

Data Size

Scattered strain-displacement operator (B̄) Sizes in Table 5.2 or Table 5.3

Int. points weight and det. of jacobian operator (W̄) 𝑁𝑝𝑡𝑠

Elements connectivities (C⃗) N̄

Finite element mesh coloring(�⃗�𝑖𝑑) 𝑁

Linear Jacobian matrix and residual (K𝑙 and R𝑙) (NNZ𝑏,N + 1, NNZ𝑏) and N

where NNZ𝑏 stands for the number of nonzero entries of the linear Jacobian matrix K𝑙.

5.2.6 Jacobian matrix and residual vector strategies

The evaluation of the global operators using the ModiĄed Unstructured Dis-

placement Approach is divided into two main folds: the computation of K and R.

For the residual R, there are two strategies of computation. The Ąrst is a block

element approach where Eqs. (5.12) and (5.13) are computed in parallel at the element

level with dense matrix-vector multiplications. In this case, the dense block matrices

storage pattern is used for B̄. The second strategy consists in computing Eqs. (5.12)

and (5.13) considering the sparse matrix storage pattern for B̄. In this case, only matrix-

vector sparse operations are applied to the scattered operators. For both approaches, the

evaluation of à⃗
𝑝𝑟𝑜𝑗

is performed at the integration point level following the return mapping

scheme. The projection of the stress tensor is executed using principal stresses. Thus,

its spectral decomposition at the integration points is performed following the method

described in Appendix B. To obtain Rà, a series of gather, saxpy1 and scatter operations

are performed per color set to reduce R̄à into Rà. Finally, the linear residual vector

R𝑙 contribution is added to Rà. Algorithm 5.3 presents the pseudo-code of the residual

assembly process.

1Combination of scalar multiplication and vector addition.

Chapter 5. Restructuring the elastoplastic finite element problem 60

size NNZ stands for the number of nonzeros entries of the global array, whereas ¯NNZ

is the sum
√︁𝑁

𝑒=1 N
2
𝑒 and represents the number of non overlapping nonzeros. When the

loop over the colors is complete, the global Kà(𝐾à, 𝐼𝐾à, 𝐽𝐾à) is assembled. Lastly, the

boundary contribution K𝑙 is added to Kà. Algorithm 5.4 presents the pseudo-code of the

Jacobian matrix assembly process.

Algorithm 5.4. Jacobian matrix assembly process.

1: 𝐾à ⊂ 0NNZ and �̄�à ⊂ 0
¯NNZ

2: 𝑙⊂ 0

3: for 𝑘 ⊂ 1 to 𝑁 do // Parallel execution

4: Compute K𝑒 =
√︃

Ωe
B𝑡

𝑒DB𝑒

5: for 𝑖⊂ 1 to N𝑒 do

6: for 𝑗 ⊂ 1 to N𝑒 do

7: // Element matrix scatter

8: �̄�à (𝑙) + = K𝑒(𝑖, 𝑗)

9: l++;

10: end for

11: end for

12: end for

13: for 𝑐⊂ 1 to 𝑛𝑐 do // Serial execution

14: Gather 𝐾𝑐 ⊂ Color subset 𝐾à

15: Add the color contribution 𝐾𝑐+ = Color subset �̄�à

16: Scatter 𝐾à ⊂ 𝐾𝑐

17: end for

18: Compute K = Kà + K𝑙

61

Chapter 6

Computational implementation and

verification

This chapter describes the neoPZ environment, the implemented classes and

kernels, as well as a Quasi-Newton method for accelerating the convergence. Also, it

presents the veriĄcation method for the elastoplastic problem approximation.

6.1 neoPZ environment

neoPZ environment is an object-oriented C++ library for the development of

Ąnite element programs and is the base for this work. This library has many C++ classes

to implement the main concepts for matrices, Ąnite elements, Ąnite element meshes, in-

terpolation spaces, and materials constitute laws. It was created by Professor Philippe

Remy Bernard Devloo and is maintained by him with the collaboration of the master

and Ph.D. students in LabMeC at Unicamp. The environment is open-source and can

be found at https://github.com/labmec/neopz. It is divided into several modules that

correspond to the mentioned concepts. The main modules are presented below [32]:

• Geom: implements geometric abstractions for some element types (point, linear,

triangle, quadrilateral, tetrahedron, hexahedron, and pyramid) and the mapping

functions;

• Topology: contains basic deĄnitions of a geometric element;

• Shape: constructs the basis functions according to the geometry of an element;

• Material: implements the differential equations representing the constitutive mod-

eling of the materials supported by the environment;

• Integral: contains the integration rules for one, two and three dimensions and several

polynomial orders;

Chapter 6. Computational implementation and verification 62

• Matrix: implements different types of matrices, such as skyline, sparse, etc;

• Mesh: contains the concept of mesh. In neoPZ, there is a distinction between

the geometric and computational meshes. The geometric mesh deĄnes the spatial

discretization of the domain and contains the geometric elements, nodes, and el-

ementary coordinate systems. The computational mesh is related to the solution

interpolation space;

• Analysis: manages the assembly process and the solution of the equation system

related to a computational mesh;

• StrMatrix: is responsible for the interface between Matrix and Finite Element classes

and operates with different matrix storage types;

• LinearSolvers: implements the preconditioning and solving methods of equation

systems;

• Post: generates output Ąles for visualization programs.

6.2 Implemented classes

To implement the approach presented in Chapter 5, six classes are imple-

mented. More details of the implemented classes are described in the following items.

TPZIrregularBlocksMatrix

This class implements a matrix arranged per block. The blocks composing

a TPZIrregularBlocksMatrix object can be either regular, i.e., the blocks have the same

number of rows and columns, or irregular, where the number of rows and columns of each

block can differ. This class implements the matrix B̄ storage and operations. The access

of a TPZIrregularBlocksMatrix object is performed with the sparse matrix or the dense

block matrices storage pattern. The data structure of this class consists of the array with

the values of the element block matrices B𝑒 as well as the arrays for accessing the matrix

with the chosen storage pattern. The data structure is arranged in a struct. In this work,

the required algebraic operation of a TPZIrregularBlocksMatrix is matrix multiplications.

Then it is the only implemented. This class is derived from TPZMatrix class, in which

other types of matrices are also derived from.

TPZConstitutiveLawProcessor

This class implements the elastoplastic constitutive modeling, that is, the eval-

uation of the elastoplastic constitutive matrix D𝑒𝑝 and the corresponding projection of

Chapter 6. Computational implementation and verification 63

the stress tensor à⃗ 𝑝𝑟𝑜𝑗 at the integration points of the elements of a mesh. TPZCon-

stitutiveLawProcessor consists of some rewritten methods of the existing classes TPZ-

PlasticStepPV and TPZYCMohrCoulombPV with some modiĄcations so it can also be

executed in the GPU. Both D𝑒𝑝 and à⃗ 𝑝𝑟𝑜𝑗 are computed using principal stresses. Thus,

the spectral decomposition presented in Appendix B is also implemented in TPZConsti-

tutiveLawProcessor. Moreover, the integration points weight and determinant of jacobian

contributions are also applied in this class. The data structure of this class consists of the

total number of integration points, the constitutive parameters, the array representing

W̄ and arrays to store the history of the irreversible processes applied to the material at

the integration points (total strain, plastic strain, and an identiĄer for the regime of the

material behavior).

TPZNumericalIntegrator

This class implements the assembly process of the volumetric Jacobian matrix

Kà and residual vector Rà. The data structure of this class is a TPZIrregularBlocksMatrix

object with the scattered strain-displacement operator, a TPZConstitutiveLawProcessor

object for the elastoplastic constitutive information, the elements connectivities and the

indices of the colors of the elements.

TPZElPlasticIPStrMatrix

This class computes the Jacobian matrix K and residual vector R. It is de-

rived from TPZSymetricSpStructMatrix, which implements symmetric sparse Structural

Matrices. In turn, TPZSymetricSpStructMatrix is derived from TPZStructMatrix. This

class is responsible for the interface between Matrix and Finite Element classes in neoPZ

environment. The data structure of TPZElPlasticIPStrMatrix consists of a TPZNumer-

icalIntegrator object encapsulating the scattered strain-displacement operator, the inte-

gration points and determinant of the Jacobian operator, the elements connectivities,

the elastoplastic constitutive information and the Ąnite element mesh coloring. Also, the

linear Jacobian matrix and residual (K𝑙 and R𝑙) are computed and stored in this class.

Finally, they are added to Kà and Rà to obtain K and R.

TPZCudaCalls

The constant preprocessing data presented in Chapter 5 is computed using

neoPZ environment. Also, the approximate solution post-process Ąles are generated with

classes of this environment. Therefore, a link between the host and device codes has to

be implemented. This integration occurs in TPZCudaCalls class, which is responsible for

encapsulating the kernels and CUDA librariesŠ functions calls.

Chapter 6. Computational implementation and verification 64

TPZVecCuda

This class implements a vector scheme to manage memory transfers from the

CPU to the GPU (and vice-versa). It is a template class; then, it supports any data

types (int, float, double). This class allows the user to allocate memory of the GPU and

transfer information between the GPU and CPU even in a .cpp extension Ąle since this

class wraps the CUDA API calls responsible for memory managing.

6.3 CUDA implementation

The CUDA programming model introduced by NVIDIA supports CPU and

GPU execution of an application. Kernels are instructions executed in the GPU by

several threads. A warp is a set of 32 threads within a thread block, while a thread

block consists of a set of threads running concurrently that communicate through barrier

synchronization and shared memory. To achieve the maximum performance of a kernel

execution in the GPU, it is desired to maximize the parallel execution, i.e., to maximize

the number of active threads in the GPU during the execution of a kernel. However, three

main factors may limit better performances: registers, shared memory in a thread block,

and the number of threads per thread block.

The gather and scatter operations presented in Algorithms 5.3 and 5.4 are

performed with cuSPARSE library in the GPU. This library contains a set of basic lin-

ear algebra subroutines used for handling sparse matrices [28]. cuBLAS library is used

for the saxpy operations in the GPU. This library corresponds to an implementation of

BLAS (Basic Linear Algebra Subprograms) for NVIDIA GPUs [26]. Both cuSPARSE

and cuBLAS are part of NVIDIA GPU-accelerated libraries. These libraries provide

highly-optimized functions and are expected to perform 2x-10x faster than CPU-only al-

ternatives. Every GPU architecture has its conĄguration of number thread blocks, shared

memory, and memory bandwidth. The libraries developed by NVIDIA use a different op-

timization strategy for each architecture, which means that their use guarantees optimum

performance of the kernels calls independent of the GPU accelerator card.

To perform the multiplication operations in Algorithm 5.3 for the evaluation

of the global residual R, several matrix storage patterns were tested. This work presents

two approaches to perform these operations. The Ąrst is to use the sparse matrix storage

pattern and perform a sparse matrix-vector multiplication with cuSPARSE library. The

second approach is to work with each element block in parallel. In this case, a kernel

responsible for performing parallel operations where each thread is assigned to one element

matrix-vector multiplication is constructed. For this approach, the dense block matrices

storage pattern is used.

As seen in Algorithm 5.4, the global Jacobian matrix K assembly process

Chapter 6. Computational implementation and verification 65

consists in computing K𝑒 in parallel. Thus, the kernel responsible for performing these

computations assigns each element matrix computation to one thread. This kernel uses

shared memory to access the element matrices in order to enhance the performance.

However, there is a relation between the number of thread blocks and the amount of

shared memory used by a kernel. More shared memory used by a thread block implies

fewer thread blocks available by one kernel call. For the case of the present kernel, higher

polynomial orders imply fewer thread blocks since the dimension of the element matrices

increases demanding more shared memory.

6.4 Quasi-Newton method for accelerating the con-

vergence

Some iterative methods have been proposed to calculate approximate solution

of nonlinear Ąnite element equations in elastoplasticity such as Newton-Raphson, modi-

Ąed Newton-Raphson and Initial Stiffness methods. The last mentioned uses the elastic

stiffness matrix to update the solution. The following items present the Initial Stiffness

Method and a corresponding modiĄcation applied to this method in order to accelerate

the convergence.

Initial Stiffness Method

The method can be cast into the following steps:

1. Perform a single K̃ assembly;

2. Decompose K̃;

3. Compute Newton correction Ó�⃗�𝑘⊗1 = ⊗K̃⊗1R
(︁

�⃗�𝑘⊗1
)︁

;

4. Perform a Newton update of �⃗�𝑘 = �⃗�𝑘⊗1 + Ó�⃗�𝑘⊗1;

5. Perform 3 to 4, till the residue norm reaches the desired tolerance. i.e.
⧸︁

⧸︁

⧸︁R
(︁

�⃗�𝑘
)︁⧸︁

⧸︁

⧸︁ ⊘ 𝜖.

Modified Initial Stiffness Method

This method uses two subsequent states or �⃗� 𝑘 and �⃗� 𝑘. Denoting the quasi

Newton update �⃗� 𝑘:

�⃗� 𝑘 = �⃗� 𝑘⊗1 + æ𝑘⊗1 Ó�⃗� 𝑘⊗1. (6.1)

Chapter 6. Computational implementation and verification 66

Let be Ó�⃗� * = ⊗K̃⊗1R
(︁

�⃗� 𝑘
)︁

and the new update state deĄned as follows:

�⃗� 𝑘 = �⃗� 𝑘 + Ó�⃗� * (6.2)

where the factor æ is the so-called acceleration factor [33], deĄned as:

æ𝑘 = æ𝑘⊗1 +
Ó�⃗� 𝑘⊗1 ≤ Ó�⃗� *

Ó�⃗� 𝑘⊗1 ≤ Ó�⃗� 𝑘⊗1
. (6.3)

The Ąrst iteration assumes æ1 = 1. This method requires a single assembly,

and two linear solve and two function evaluations per update and is very robust when

applied to problems with large plastic strain and complicated constitutive models.

6.5 Solution verification

The analytical solution for the linear setting is presented by Coussy [10]. The

exact displacement, strain and stress Ąelds are respectively:

�⃗� =
(1 + Ü) (𝑝𝑖𝑛𝑡 ⊗ à)

𝐸

𝑟2
𝑖𝑛𝑡

𝑟
e𝑟

ε =
(1 + Ü) (à ⊗ 𝑝𝑖𝑛𝑡)

𝐸

𝑟2
𝑖𝑛𝑡

𝑟2
(e𝑟 · e𝑟 ⊗ e𝜃 · e𝜃)

σ = (à ⊗ 𝑝𝑖𝑛𝑡) (e𝑟 · e𝑟 ⊗ e𝜃 · e𝜃)

The energy norm is one of the most natural and meaningful ways to quantify

the error of an approximation. Thus, it is used to verify the solutionŠs accuracy of the

linear setting using the proposed structure. The energy norm is given by:

♣♣e♣♣𝐸 =
⎭∫︁

Ω

[︁

(e′)
2

+ e2
]︁

}︂1/2

where e is the error and corresponds to the difference between the exact and the approx-

imate solution.

To verify the nonlinear approximation, a Runge-Kutta solver was implemented.

It is required to simplify the elastoplastic equations and recast the problem as the initial

value problem:

𝑑y

𝑑x
= f (y)

There are several considerations for this case:

• Describe the equations in terms of the Cylindrical coordinate system and its corre-

sponding mixed form;

Chapter 6. Computational implementation and verification 67

• The approximation is axisymmetric, leading to a displacement Ąeld �⃗� that depends

only on the radius and just has a radial component, i.e. �⃗� = Φ(𝑟);

• The initial value problem is described in terms of one independent variable 𝑟, and

the ODE data is prescribed at the external radius 𝑟𝑒𝑥𝑡;

• The number of discrete points is large enough to have a reasonable approximation.

The Runge-Kutta solver is implemented according to the paper presented by

Büttner and Simeon [6] and neoPZ environment is used to perform the elastoplastic state

update of the approximation. Moreover, the description of the equations in terms of the

Cylindrical coordinate system is performed following Bradley [5].

Chapter 7. Results and discussion 69

Table 7.1 presents the set of geometrical partitions Tℎ for different reĄnement

levels.

Table 7.1: Set of geometrical partitions Tℎ for different reĄnement levels.

N Tℎ♣𝑙=1 Tℎ♣𝑙=2 Tℎ♣𝑙=3 Tℎ♣𝑙=4 Tℎ♣𝑙=5

𝑝 = 1 7936 32256 130048 522240 2093056

𝑝 = 2 31248 128016 518160 2084880 N/A

𝑝 = 3 69936 287280 1164336 4687920 N/A

𝑁𝑒 3844 15876 64516 260100 1044484

ℎ 0.0071 0.0041 0.0016 0.0010 0.0004

Table 7.2 shows the material properties used for the numerical results.

Table 7.2: Material properties used for numerical simulations.

Parameter Symbol [unit] Value

Internal pressure 𝑝𝑖𝑛𝑡 [MPa] -40

External stress à [MPa] -49.9937

Hydrostatic stress à0 [MPa] -50

Internal radius 𝑟𝑖𝑛𝑡 [m] 0.1

External radius 𝑟𝑒𝑥𝑡 [m] 4.0

YoungŠs modulus 𝐸 [MPa] 2000.0

PoissonŠs ratio Ü 0.2

Cohesion 𝑐 [MPa] 5.0

Friction ã [°] 20

Linear setting verification

The energy norm is computed to verify the linear setting of the proposed

structure. The polynomial order and partition 𝑝 = ¶1, 2♢ and Tℎ♣𝑙=1 (see Table 7.1) were

selected with several uniform reĄnements. Disregarding the corresponding elastoplastic

data, the parameters for the linear setting veriĄcation are presented in Table 7.2. It

was obtained the expected approximation rate in the sense of energy norm. Figure 7.2

documents the veriĄcation of the optimal approximation properties for selected Ąnite

element discretization.

Chapter 7. Results and discussion 71

Figure 7.3: A Runge-Kutta comparison against a Ąnite element approximation with 𝑝 = 2
a mesh partition Tℎ♣𝑙=1.

7.2 Performance analysis

The numerical experiments were conducted in the High-Performance Comput-

ing Laboratory and Immersive and Interactive 3D Environment for ScientiĄc Visualization

for Petroleum Production cluster (Galileu) at the University of Campinas (UNICAMP).

The cluster provides two processors Intel® Xeon® E5-2630 v3. The graphic processor is

an NVIDIA® Tesla K40. Details about the tests platform are described in Table 7.3.

Chapter 7. Results and discussion 72

Table 7.3: Tests platform description.

Galileu cluster

OS
Distribution CentOS Linux 7 (Core)

Kernel 3.10.0-327.el7.x86_64

CPU

Model Intel® Xeon® E5-2630 v3

Number of Cores 16

Number of Threads 32

Processor Base Frequency 2.40 GHz

Hyper-Threading Technology Yes

Max Memory Size 768 GB

GPU

Model NVIDIA® Tesla K40

CUDA Capability 3.5

Global Memory 12 Gb

Multiprocessors (MP) 15

CUDA Cores per MP 192

Max Clock Rate 0.75 GHz

Compilation

GCC 4.8.5

NVCC 8.0.44

Flags
-std=gnu++11 -mtune=generic

-march=x86-64 -O3 -ffast-math

For each conĄguration presented in Table 7.1, Ąve executions were made for

the CPU and GPU using the presented storage patterns. Also, Ąve executions were made

for the classical assembly approach. The comparison between the GPU and CPU parallel

codes is required to verify the efficiency of the GPU compared with the CPU. The CPU

code is implemented in C++ language and is parallelized using Thread Building Blocks,

a C++ template library for task parallelism. The matrix multiplications are performed

using BLAS, whereas the classical assembly approach is performed with neoPZ environ-

ment. The performance analysis takes into account the execution time of the algorithms

presented. The results correspond to the average of the executions. The variability of the

results is presented in Appendix C. Also, the results for the GPUŠs performance include

the memory transfers between the CPU and GPU. At each iteration, the Ąnite element

solution is transferred from the CPUŠs to the GPUŠs memory for evaluating the residual.

Later, the residual is transferred from the GPUŠs to the CPUŠs memory and the solution

is updated on the CPU using the inverted stiffness matrix.

81

Chapter 8

Conclusion

The Finite Element Method is one of the most important numerical techniques

to Ąnd approximate solutions of partial differential equations. This method has been

widely used in many different Ąelds of science and engineering. However, growing market

and increasing demand to solve more complex problems efficiently have driven to different

approaches such as the manufacturing of faster and smarter processors and multi-core

processors or even the use of GPUs for non-graphic applications.

Thus, the research in this thesis presents a strategy for computing the element

stiffness matrix and residual vector as well as the assembly process of the global system

resulting from the FEM analysis of an elastoplasticity problem using GPU programming.

In the FEM analysis, the plastic behavior consists of an iterative process that is evaluated

by the evolution of the constitutive equations in a pseudo-time until the problem reaches

convergence. Thus, an efficient evaluation of the global system is required since it is

performed at each iteration.

A data structure and associated parallel algorithm are developed to accelerate

the computation of Ąnite element residual applied to nonlinear elastoplastic problems.

The data structure is designed for GPU processors but has shown to accelerate CPU

computations as well. Also, it differs from the classical assembly process since constant

data is computed only once and is stored globally. The presented structure has a consid-

erable level of parallelism as the algorithms are based on matrix multiplications of highly

structured matrices.

The veriĄcation of the algorithms is performed with a linear and a nonlinear

setting. It is obtained the expected approximation rate in the sense of energy norm for

the linear setting. For the nonlinear conĄguration, a Runge-Kutta solver is implemented.

It is noticed a remarkable match between Runge-Kutta and the FEM approximations.

The matrix-vector multiplications for the computation of the residual are im-

plemented using two different storage patterns. The Ąrst uses the compressed row storage

pattern to perform the operations. The second approach uses an element-wise block-

Chapter 8. Conclusion 82

oriented data structure. The Ąrst approach performs better on GPU processors, while the

second approach performs better when executed in CPU architectures. When compared

to the classical residual computation implemented in neoPZ environment, the GPU im-

plementation is 24 times faster for a very reĄned mesh with cubic polynomial order. The

residual computation using the fastest algorithm in the GPU is 5.5 times faster than the

fastest CPU implementation for a cubic polynomial approximation applied to the same

mesh.

The evaluation of the Jacobian matrix in GPU architectures has better per-

formance for linear polynomial order. For a very reĄned mesh, it overcomes the CPUŠs

performance by 5.4 times. However, rising the polynomial order results in a bad per-

formance for the GPU since more shared memory is necessary to evaluate the element

matrices. For cubic polynomial order, the performance in CPU architectures overcomes

GPUŠs 1.9 times.

Finally, the ModiĄed Initial Stiffness Method is applied to reduce the number

of iterations using the linear elasticity stiffness matrix. This method requires the con-

struction of the global Jacobian matrix only once and takes advantage of the inexpensive

residual numerical integration process to achieve convergence in a very efficient manner,

reducing up to 83% the number of iterations. Also, it reduces the time for the solution

update since the matrix is decomposed only once.

83

Bibliography

[1] Batalha, N. A. ŞModelagem linear elástica para simulação do estado de tensão em

poços de petróleo inclinadosŤ. Master thesis. University of Campinas, School of

Mechanical Engineering and Institute of Geosciences, 2017.

[2] Becker, E. B., Carey, G. F., and Oden, J. T. Finite Elements, An Introduction:

Volume I. Englewood Cliffs: Prentice-Hall, 1981.

[3] Belytschko, T., Liu, W. K., Moran, B., and Elkhodary, K. Nonlinear finite elements

for continua and structures. John Wiley & Sons, 2013.

[4] Bhavikatti, S. S. Finite element analysis. New Age International, 2005.

[5] Bradley, W. B. ŞFailure of inclined boreholesŤ. In: Journal of Energy Resources

Technology 101.4 (1979), pp. 232Ű239.

[6] Büttner, J. and Simeon, B. ŞRungeŰKutta methods in elastoplasticityŤ. In: Applied

Numerical Mathematics 41.4 (2002), pp. 443Ű458.

[7] Cecílio, D. L., Devloo, P. R. B., Gomes, S. M., Santos, E. S. R. dos, and Shauer, N.

ŞAn improved numerical integration algorithm for elastoplastic constitutive equa-

tionsŤ. In: Computers and Geotechnics 64 (2015), pp. 1Ű9.

[8] Cecka, C., Lew, A. J., and Darve, E. ŞAssembly of Ąnite element methods on graph-

ics processorsŤ. In: International journal for numerical methods in engineering 85.5

(2011), pp. 640Ű669.

[9] Correa, G. R. and Sulzbach, M. ŞProgramação Paralela em CPU e GPU: Uma

avaliação do desempenho das APIs OpenMP, CUDA, OpenCL e OpenACCŤ. In:

RECeT-Revista de Engenharia, Computação e Tecnologia 1.1 (2017), pp. 19Ű24.

[10] Coussy, O. Poromechanics. John Wiley & Sons, 2004.

[11] Devloo, P. R. B., Bravo, C. M.A. A., and Rylo, E. C. ŞSystematic and generic

construction of shape functions for p-adaptive meshes of multidimensional Ąnite

elementsŤ. In: Computer Methods in Applied Mechanics and Engineering 198.21-26

(2009), pp. 1716Ű1725.

Bibliography 84

[12] Dziekonski, A., Sypek, P., Lamecki, A., and Mrozowski, M. ŞFinite element ma-

trix generation on a GPUŤ. In: Progress In Electromagnetics Research 128 (2012),

pp. 249Ű265.

[13] Electrical, T. I. of and Electronic Engineering Inc, T. R. IEEE Standard for Binary

Floating-Point Arithmetic. 1985.

[14] Farber, R. CUDA application design and development. Elsevier, 2011.

[15] Geer, D. ŞChip makers turn to multicore processorsŤ. In: Computer 38.5 (2005),

pp. 11Ű13.

[16] Gerschgorin, S. ŞUber die Abgrenzung der Eigenwerte einer MatrixŤ. In: Izvestija

Akademii Nauk SSSR, Serija Matematika 7.3 (1931), pp. 749Ű754.

[17] Gorder, P. F. ŞMulticore processors for science and engineeringŤ. In: Computing in

Science & Engineering 9.2 (2007), p. 3.

[18] He, B., Govindaraju, N. K., Luo, Q., and Smith, B. ŞEfficient gather and scatter op-

erations on graphics processorsŤ. In: Proceedings of the 2007 ACM/IEEE conference

on Supercomputing. ACM. 2007, p. 46.

[19] Kirk, D. B. and Hwu, W.-M. W. Programming massively parallel processors: a

hands-on approach. Morgan Kaufmann, 2012.

[20] Laouafa, F. and Royis, P. ŞAn iterative algorithm for Ąnite element analysisŤ. In:

Journal of Computational and Applied Mathematics 164-165 (2004), pp. 469 Ű491.

[21] Lindholm, E., Nickolls, J., Oberman, S., and Montrym, J. ŞNVIDIA Tesla: A uniĄed

graphics and computing architectureŤ. In: IEEE micro 28.2 (2008), pp. 39Ű55.

[22] Macioş, P., Pşaszewski, P., and Banaś, K. Ş3D Ąnite element numerical integration

on GPUsŤ. In: Procedia Computer Science 1.1 (2010), pp. 1093Ű1100.

[23] MaĄ, R. ŞGPU-based Parallel Computing for Nonlinear Finite Element Deforma-

tion AnalysisŤ. PhD thesis. McMaster University, Department of Electrical and

Computer Engineering, 2014.

[24] Micikevicius, P. Ş3D Ąnite difference computation on GPUs using CUDAŤ. In: Pro-

ceedings of 2nd workshop on general purpose processing on graphics processing units.

ACM. 2009, pp. 79Ű84.

[25] Nickolls, J. and Dally, W. J. ŞThe GPU computing eraŤ. In: IEEE micro 30.2 (2010),

pp. 56Ű69.

[26] NVIDIA. cuBLAS Library. 2019. url: https://docs.nvidia.com/cuda/pdf/

CUBLAS_Library.pdf (visited on 12/02/2019).

Bibliography 85

[27] NVIDIA. CUDA C programming model. 2018. url: https : / / docs . nvidia .

com / cuda / archive / 9 . 1 / pdf / CUDA _ C _ Programming _ Guide . pdf (visited on

12/02/2019).

[28] NVIDIA. cuSPARSE Library. 2019. url: https://docs.nvidia.com/cuda/pdf/

CUSPARSE_Library.pdf (visited on 12/02/2019).

[29] Sanders, J. and Kandrot, E. CUDA by example: an introduction to general-purpose

GPU programming. Addison-Wesley Professional, 2010.

[30] Santos, E. S. R. ŞSimulador de meios porosos saturados elastoplásticosŤ. PhD the-

sis. University of Campinas, School of Civil Engineering, Architecture and Urban

Design, 2009.

[31] Sethi, A. and Kushwah, H. ŞMulticore processor technology-advantages and chal-

lengesŤ. In: International Journal of Research in Engineering and Technology 4.09

(2015), pp. 87Ű89.

[32] Shauer, N. ŞAproximação Numérica de Propagação de Fraturas Hidráulicas em

Domínio Bidimensional com ElastoplasticidadeŤ. Master thesis. University of Camp-

inas, School of Civil Engineering, Architecture and Urban Design, 2015.

[33] Sloan, S. W., Sheng, D., and Abbo, A. J. ŞAccelerated initial stiffness schemes for

elastoplasticityŤ. In: International Journal for Numerical and Analytical Methods in

Geomechanics 24.6 (2000), pp. 579Ű599.

[34] Souza Neto, E. A. de, Peric, D., and Owen, D. R. J. Computational methods for

plasticity: theory and applications. John Wiley & Sons, 2011.

[35] Svensson, J., Sheeran, M., and Claessen, K. ŞObsidian: A Domain SpeciĄc Embed-

ded Language for Parallel Programming of Graphics ProcessorsŤ. In: Implemen-

tation and Application of Functional Languages. Springer Berlin Heidelberg, 2011,

pp. 156Ű173.

[36] Thomas, J. N. ŞAn improved accelerated initial stress procedure for elasto-plastic Ą-

nite element analysisŤ. In: International Journal for Numerical and Analytical Meth-

ods in Geomechanics 8.4 (1984), pp. 359Ű379.

[37] Thompson, R. B. and Thompson, B. F. PC hardware in a nutshell: a desktop quick

reference. OŠReilly Media, Inc., 2003.

[38] Wu, E. and Liu, Y. ŞEmerging technology about GPGPUŤ. In: APCCAS 2008 -

2008 IEEE Asia Pacific Conference on Circuits and Systems. Institute of Electrical

and Electronics Engineers (IEEE), 2008, pp. 618Ű622.

Bibliography 86

[39] Zhang, J. and Shen, D. ŞGPU-based implementation of Ąnite element method for

elasticity using CUDAŤ. In: 2013 IEEE 10th International Conference on High Per-

formance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing. Institute of Electrical and Electronics En-

gineers (IEEE), 2013, pp. 1003Ű1008.

[40] Zienkiewicz, O. C. The finite element method. Vol. 36. McGraw-hill London, 1977.

87

Appendix A

Voigt notation

The Voigt notation is used to transform second-order symmetric tensors to

vectors and forth-order symmetric tensors to square matrices. In Voigt notation the

stress tensor σ is mapped to [3]:

σ =

⋃︀

⨄︀

à𝑥𝑥 à𝑥𝑦

à𝑦𝑥 à𝑦𝑦

⋂︀

⋀︀⊃ à⃗ =

∏︀

̂︁

̂︁

̂︁

∐︁

à𝑥𝑥

à𝑦𝑦

à𝑥𝑦

⎞

̂︂

̂︂

̂︂

̂︀

(A.1) σ =

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

à𝑥𝑥 à𝑥𝑦 à𝑥𝑧

à𝑥𝑦 à𝑦𝑦 à𝑦𝑧

à𝑥𝑧 à𝑦𝑧 à𝑧𝑧

⋂︀

⎥

⎥

⎥

⋀︀

⊃ à⃗ =

∏︀

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

∐︁

à𝑥𝑥

à𝑦𝑦

à𝑧𝑧

à𝑥𝑦

à𝑦𝑧

à𝑧𝑥

⎞

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︀

(A.2)

for two and three-dimensional stress tensors, respectively. Similarly, the strain tensor ε

is redeĄned in Voigt notation as:

ε =

⋃︀

⨄︀

𝜀𝑥𝑥 𝜀𝑥𝑦

𝜀𝑦𝑥 𝜀𝑦𝑦

⋂︀

⋀︀⊃ �⃗� =

∏︀

̂︁

̂︁

̂︁

∐︁

𝜀𝑥𝑥

𝜀𝑦𝑦

2𝜀𝑥𝑦

⎞

̂︂

̂︂

̂︂

̂︀

(A.3) ε =

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

𝜀𝑥𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧

𝜀𝑥𝑦 𝜀𝑦𝑦 𝜀𝑦𝑧

𝜀𝑥𝑧 𝜀𝑦𝑧 𝜀𝑧𝑧

⋂︀

⎥

⎥

⎥

⋀︀

⊃ �⃗� =

∏︀

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

̂︁

∐︁

𝜀𝑥𝑥

𝜀𝑦𝑦

𝜀𝑧𝑧

2𝜀𝑥𝑦

2𝜀𝑦𝑧

2𝜀𝑧𝑥

⎞

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︂

̂︀

(A.4)

for two and three-dimensional strain tensors, respectively. The factor of 2 on the shear

strains results from the requirement that the expressions for the energy be equivalent in

Voigt notation and indicial notation.

88

Appendix B

Spectral decomposition

B.1 Eigenvalues

The Ąrst step to evaluate the eigenvalues of the stress tensor in return mapping

is the normalization of stress tensor components. After that, the theorem presented by

Gerschgorin [16] is used to calculate the interval where the eigenvalues of the stress tensor

are. GershgorinŠs Theorem states that given a matrix S𝑛𝑥𝑛, all eigenvalues of S lies in the

union of the closed interval:

⋃︀

⨄︀𝑠𝑖𝑖 ⊗
∑︁

𝑗 ̸=𝑖

♣𝑠𝑖𝑗♣ , 𝑠𝑖𝑖 +
∑︁

𝑗 ̸=𝑖

♣𝑠𝑖𝑗♣

⋂︀

⋀︀ , 𝑖, 𝑗 = 1, ..., 𝑛. (B.1)

Thus, it is possible to use NewtonŠs method to compute the maximum and

minimum roots of the characteristic polynomial of the stress tensor using the interval

evaluated by GershgorinŠs theorem as initial guesses. This computation corresponds to

the eigenvalues Ú1 and Ú3 of the stress tensor. The intermediate eigenvalue Ú2 is evaluated

using the following algebraic relationship:

𝑡𝑟(S) = Ú1 + Ú2 + Ú3 (B.2)

where S is the stress tensor and Ú𝑖 corresponds to its eigenvalues.

B.2 Eigenvectors

Given a symmetric matrix with eigenvalues and multiplicity known, the eigen-

vectors problem is stated by:

S ≤ �⃗� = Ú�⃗� (B.3)

A scheme for eigenvectors calculation is deĄned using the matrix multiplicity.

Appendix B. Spectral decomposition 89

Multiplicity 1

If the multiplicity is unitary, one can extract from the matrix S ⊗ ÚI a non-

singular 2x2 matrix. It is possible to consider three conĄgurations:

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

𝑥11 𝑥12 𝑦1

𝑥21 𝑥22 𝑦2

𝑎 𝑏 𝑐

⋂︀

⎥

⎥

⎥

⋀︀

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

𝑣1

𝑣2

1

⋂︀

⎥

⎥

⎥

⋀︀

=

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

0

0

0

⋂︀

⎥

⎥

⎥

⋀︀

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

𝑥11 𝑦1 𝑥12

𝑎 𝑏 𝑐

𝑥21 𝑦2 𝑥22

⋂︀

⎥

⎥

⎥

⋀︀

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

𝑣1

1

𝑣2

⋂︀

⎥

⎥

⎥

⋀︀

=

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

0

0

0

⋂︀

⎥

⎥

⎥

⋀︀

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

𝑎 𝑏 𝑐

𝑦1 𝑥11 𝑥12

𝑦2 𝑥21 𝑥22

⋂︀

⎥

⎥

⎥

⋀︀

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

1

𝑣1

𝑣2

⋂︀

⎥

⎥

⎥

⋀︀

=

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

0

0

0

⋂︀

⎥

⎥

⎥

⋀︀

Then it is chosen the conĄguration for which ♣𝑑𝑒𝑡 X♣ is maximum where:

X =

⋃︀

⨄︀

𝑥11 𝑥12

𝑥21 𝑥22

⋂︀

⋀︀ (B.4)

The values 𝑣1 and 𝑣2 are computed as follows:

⋃︀

⨄︀

𝑣1

𝑣2

⋂︀

⋀︀ = ⊗X⊗1

⋃︀

⨄︀

𝑦1

𝑦2

⋂︀

⋀︀ (B.5)

Multiplicity 2

In the case multiplicity is 2 the rank of S⊗ÚI is unitary and there must be at

least one diagonal other than zero. It is also possible to consider three conĄgurations:

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

𝑥11 𝑦2 𝑦2

𝑎 𝑏 𝑐

𝑑 𝑒 𝑓

⋂︀

⎥

⎥

⎥

⋀︀

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

𝑣1

1

0

⋂︀

⎥

⎥

⎥

⋀︀

=

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

0

0

0

⋂︀

⎥

⎥

⎥

⋀︀

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

𝑎 𝑏 𝑐

𝑦1 𝑥11 𝑦2

𝑑 𝑒 𝑓

⋂︀

⎥

⎥

⎥

⋀︀

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

1

𝑣1

0

⋂︀

⎥

⎥

⎥

⋀︀

=

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

0

0

0

⋂︀

⎥

⎥

⎥

⋀︀

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

𝑎 𝑏 𝑐

𝑑 𝑒 𝑓

𝑦1 𝑦2 𝑥11

⋂︀

⎥

⎥

⎥

⋀︀

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

1

0

𝑣1

⋂︀

⎥

⎥

⎥

⋀︀

=

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

0

0

0

⋂︀

⎥

⎥

⎥

⋀︀

Appendix B. Spectral decomposition 90

and equivalently:

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

𝑥11 𝑦2 𝑦2

𝑎 𝑏 𝑐

𝑑 𝑒 𝑓

⋂︀

⎥

⎥

⎥

⋀︀

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

𝑣2

0

1

⋂︀

⎥

⎥

⎥

⋀︀

=

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

0

0

0

⋂︀

⎥

⎥

⎥

⋀︀

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

𝑎 𝑏 𝑐

𝑦1 𝑥11 𝑦2

𝑑 𝑒 𝑓

⋂︀

⎥

⎥

⎥

⋀︀

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

0

𝑣2

1

⋂︀

⎥

⎥

⎥

⋀︀

=

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

0

0

0

⋂︀

⎥

⎥

⎥

⋀︀

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

𝑎 𝑏 𝑐

𝑑 𝑒 𝑓

𝑦1 𝑦2 𝑥11

⋂︀

⎥

⎥

⎥

⋀︀

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

0

1

𝑣2

⋂︀

⎥

⎥

⎥

⋀︀

=

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

0

0

0

⋂︀

⎥

⎥

⎥

⋀︀

It is chosen the conĄguration for which ♣𝑥11♣ is maximum. Then it is deĄned,

for instance:

𝑣1 =

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

𝑣1

1

0

⋂︀

⎥

⎥

⎥

⋀︀

𝑣2 =

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

𝑣2

0

1

⋂︀

⎥

⎥

⎥

⋀︀

(B.6)

Finally, 𝑣1 and 𝑣2 are normalized:

𝑣1 =
𝑣1

♣♣𝑣1♣♣
𝑣2 =

𝑣2

♣♣𝑣2♣♣
(B.7)

Multiplicity 3

In this case the matrix is diagonal and the eigenvectors are the identity matrix.

91

Appendix C

Results variability

GPU residual (sparse matrix st. pat.): Mean and standard deviation

Th♣l=1 Th♣l=2 Th♣l=3 Th♣l=4 Th♣l=5

p = 1 0.003s - 1.997% 0.005s - 1.902% 0.009s - 2.299% 0.025s - 2.856% 0.085s - 0.098%

p = 2 0.005s - 1.025% 0.009s - 0.834% 0.021s - 1.821% 0.071s - 0.284% N/A

p = 3 0.006s - 2.690% 0.012s - 1.156% 0.036s - 1.186% 0.130s - 3.373% N/A

GPU residual (block matrices st. pat.): Mean and standard deviation

Th♣l=1 Th♣l=2 Th♣l=3 Th♣l=4 Th♣l=5

p = 1 0.002s - 1.446% 0.007s - 0.862% 0.020s - 0.879% 0.063s - 0.174% 0.231s - 0.306%

p = 2 0.006s - 2.692% 0.025s - 0.884% 0.087s - 1.753% 0.333s - 0.046% N/A

p = 3 0.014s - 0.332% 0.074s - 1.384% 0.276s - 0.284% 1.045s - 0.101% N/A

CPU residual (sparse matrix st. pat.): Mean and standard deviation

Th♣l=1 Th♣l=2 Th♣l=3 Th♣l=4 Th♣l=5

p = 1 0.004s - 1.409% 0.015s - 1.741% 0.057s - 0.635% 0.215s - 1.147% 0.719s - 2.016%

p = 2 0.011s - 1.147% 0.045s - 1.106% 0.149s - 1.087% 0.543s - 2.398% N/A

p = 3 0.026s - 1.001% 0.099s - 0.934% 0.291s - 0.753% 1.126s - 0.695% N/A

CPU residual (block matrices st. pat.): Mean and standard deviation

Th♣l=1 Th♣l=2 Th♣l=3 Th♣l=4 Th♣l=5

p = 1 0.004s - 5.525% 0.011s - 2.013% 0.042s - 2.389% 0.151s - 1.734% 0.544s - 1.077%

p = 2 0.006s - 6.534% 0.025s - 3.993% 0.103s - 2.967% 0.344s - 1.332% N/A

p = 3 0.012s - 5.232% 0.047s - 3.890% 0.178s - 3.984% 0.714s - 3.474% N/A

neoPZ residual: Mean and standard deviation

Th♣l=1 Th♣l=2 Th♣l=3 Th♣l=4 Th♣l=5

p = 1 0.072s - 8.523% 0.191s - 5.629% 0.721s - 2.489% 2.851s - 4.260% 12.140s - 1.202%

p = 2 0.090s - 2.595% 0.369s - 4.548% 0.824s - 1.108% 2.871s - 1.993% N/A

p = 3 0.121s - 5.374% 0.329s - 1.048% 0.818s - 0.842% 3.088s - 0.779% N/A

Appendix C. Results variability 92

GPU Jacobian Matrix: Mean and standard deviation

Th♣l=1 Th♣l=2 Th♣l=3 Th♣l=4 Th♣l=5

p = 1 0.001s - 1.907% 0.007s - 3.080% 0.017s - 2.036% 0.062s - 2.623% 0.245s - 2.681%

p = 2 0.016s - 2.368% 0.047s - 2.040% 0.180s - 0.738% 0.721s - 0.339% N/A

p = 3 0.101s - 0.190% 0.367s - 0.695% 1.468s - 0.337% 5.858s - 0.138% N/A

CPU Jacobian Matrix: Mean and standard deviation

Th♣l=1 Th♣l=2 Th♣l=3 Th♣l=4 Th♣l=5

p = 1 0.005s - 6.354% 0.016s - 7.831% 0.057s - 1.349% 0.259s - 2.375% 1.046s - 1.167%

p = 2 0.013s - 2.896% 0.051s - 3.166% 0.225s - 1.725% 0.920s - 0.998% N/A

p = 3 0.031s - 4.692% 0.146s - 2.233% 0.625s - 0.7275% 2.677s - 1.174% N/A

neoPZ Jacobian Matrix: Mean and standard deviation

Th♣l=1 Th♣l=2 Th♣l=3 Th♣l=4 Th♣l=5

p = 1 0.026s - 6.755% 0.157s - 4.012% 0.421s - 1.160% 1.369s - 1.603% 8.820s - 3.078%

p = 2 0.095s - 6.796% 0.190s - 1.141% 0.722s - 1.397% 3.238s - 1.982% N/A

p = 3 0.259s - 2.318% 0.654s - 1.067% 1.998s - 2.663% 9.609s - 2.575% N/A

	Introduction
	Motivation
	Previous works on FEM with GPU
	Objectives
	Outline
	Body
	Appendix

	Elastoplastic constitutive modeling
	Strain tensor decomposition
	Elastic constitutive law
	Yield criterion
	Plastic flow rule
	Hardening law
	Loading/unloading criterion
	Return mapping scheme
	Mohr-Coulomb Yield Criterion

	The Finite Element Method
	Finite Element basis functions
	Finite Element transformations
	Elastoplastic modeling in FEM context
	Weak formulation of the elastoplastic problem

	GPU programming
	Architecture of a GPU
	CUDA program structure
	CUDA programming model
	CUDA device memory types

	Restructuring the elastoplastic finite element problem
	Matrix form of the finite element problem
	Classical FEM assembly
	FEM assembly using integration point contributions

	Modified Unstructured Displacement Approach
	Scattered strain-displacement operator
	Integration points weight and determinant of Jacobian operator
	Elements connectivities
	Finite element mesh coloring
	Linear Jacobian matrix and residual
	Jacobian matrix and residual vector strategies

	Computational implementation and verification
	neoPZ environment
	Implemented classes
	CUDA implementation
	Quasi-Newton method for accelerating the convergence
	Solution verification

	Results and discussion
	Verification
	Performance analysis
	Residual
	Jacobian matrix

	Memory consumption
	Accelerating the elastoplastic convergence

	Conclusion
	Bibliography
	Voigt notation
	Spectral decomposition
	Eigenvalues
	Eigenvectors

	Results variability

